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Geometrical Optimization of Plate-Fin Heat-Sink
Dani Irawan
Engineering Mathematics and Computational Science
Chalmers University of Technology

Abstract
In this thesis the geometrical configuration of a processor heat sink is optimized. Two
objective functions, operational cost and maximum temperature, have been chosen
and the design space has been limited to three degrees of freedom represented by
number of fins, fin height and fin thickness.
The optimization is simulation-based and carried out using multi-objective parti-
cle swarm optimization (MO-PSO). Two variants of MO-PSO have been selected,
adapted and implemented. The first is a variant introduced by Coello and Lechuga in
"MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization" which is
based on density of the pareto front. The second is a variant introduced by Fieldsend
and Singh in "A Multi-Objective Algorithm Based Upon Particle Swarm Optimisa-
tion, an Efficient Data Structure and Turbulence" which is based on distance to the
pareto front. Simulations have been performed using a state-of-the-art immersed
boundary flow solver called IBOFlow developed by Fraunhofer-Chalmers research
centre.
Comparisons presented in this thesis show that FS-method requires less evaluations
to find the Pareto front, whereas the CL-method explores the Pareto front more
evenly. The number of particles does not seem to give an apparent effect on explo-
ration it is rather the distribution of initial points that determines the exploration.
Many evaluated points have been observed to be clustered in objective space, espe-
cially in FS-method. This observation triggered the idea of a filter.
In the current work it has been found that the number of simulations can be sig-
nificantly reduced by using filters. However, the threshold used in the filter must
be chosen conservatively to prevent coarsening of the Pareto front. It has also been
found that the Pareto front can be refined by projection of infeasible points onto
the boundary of the feasibility region. The improvement from projection comes at
the expense of additional evaluations.
Optimal designs of the heat sink are proposed based on lexicographic method, An-
alytical Hierarchy Process, and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS), respectively.

Keywords: CFD, multi-objective optimization, PSO, IBOFlow, conjugated heat
transfer.
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1
Introduction

Processors and electrical components generate heat by joule heating (heating due to
passage of electric current), therefore their temperatures are ever increasing when
they are working. A high temperature is feared to affect the hardware as an over-
heated component will wear out and the damages are usually permanent [31; 39].
Some components may even melt if the temperature is too high. Although some
semiconductors can withstand 300◦ C, the packaging, solder materials, reliability
considerations, and some other factors limit the operating temperature at approxi-
mately 175◦ C [22].

To confront the heating problem, a heat sink system is applied. For processors,
the heat sink system employed usually in the form of placing solids with high heat
conductance near or in contact with the processor to draw heat from the processor
and then use flowing fluids to cool down the solids. Further in this thesis, heat
exchange between solids and fluids is termed as conjugate heat transfer.

1.1 Background

Heat sink design have been evolving and there are many different types of heat sinks
available currently: from a simple fin array heat sink to a complex staggered pin
heat sink. These different designs affect the heat sinks performance due to different
flow profile that passes through the heat sink elements. Different flow profile induces
different heat transfer coefficient between the heated solids and the cooling fluid.

Heat sink designs are usually constrained by their fabrications method. A heat
sink made by extrusion can have very thin fins but they must be linear. Heat sink
made by stamping or die casting on the other hand cannot be as thin as extrusion-
made heat sink but a complex shape can be easily made. The materials that can
be used to fabricate is also constrained by the fabrication method. This material
choice in turn will also limit the heat sink’s thermal conductivity. An example of
this limitation is the die casting method which requires that the material is a metal.
Comparison of the different methods is available in [25] and [9].

Fluids flowing through the different designs of heat sinks will have different
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1. Introduction

flow profile. For example, the pin heat sink may induce larger pressure drop (i.e.
pressure gradient) compared to a plate fin heat sink due to repeated expansion [21].
The different designs will also give different temperature profiles which in turn will
affect buoyancy.

Another important factor regarding the flow is turbulence. Turbulence usually
credited for increasing the heat transfer rate. In heat sinks, we need to consider
two things regarding turbulence: the length of the heat sink along the direction of
the flow; and the space between the fins. Air flowing at 5m/s above a plate would
need a trailing length of approximately 1.68m to become turbulent, relatively large
compared to the typical dimensions of processor heat sinks, however the spacing
between fins only need to be at least 3.5mm to be turbulent [17].

In this thesis, plate fin heat sinks are simulated to evaluate their performance.
The simulations are conducted using a finite volume method with an immersed
boundary at the location of the solids.

1.2 Objective

The objective of this master thesis is to suggest an optimal heat-sink design in terms
of thermal-performance and operating-cost. The thesis is also aimed to test and
evaluate the usage of some optimization methods in finding the optimal heat-sink
design.

The optimization is based on simulations which in this case implies that sim-
ulation results are treated as output from a black box function characterizing the
performance of the heat sink system. The heat sink geometry is modified following
a multi-objective particle swarm optimization (MO-PSO) algorithm.

1.3 Scope

In this thesis, constraints due to the fabrication methods, design limitations as well
as constraints arising from simulation limitations are considered. The optimization
is conducted in an a posteriori approach. Some possible optimization methods are
reviewed thoroughly in paper by Reyes-Sierra and Coello[33] (MO-PSO) and master
thesis by Rudholm and Wojciechowski [36] (surrogate-assited optimization).

In simulation based problems, the function being solved does not contain in-
formation regarding its gradient/derivative thus gradient-based methods are not
applicable.

One of the design variable in the case considered in this thesis is discrete,
therefore surrogate-assisted methods which rely on the continuity of the problem[41]

2



1. Introduction

are also not applicable.

The remaining option is to consider a stochastic algorithm e.g. MO-PSO or
multi-objective genetic algorithm (MO-GA). The MO-PSO algorithm is chosen be-
cause it is superior compared to MO-GA [15; 37]. Another reason for choosing
MO-PSO rather than MO-GA is that GA is normally applied to problems with
large number variables but we are only considering 3 degrees of freedom[45].

Two variants of MO-PSO are used, the first method was developed by Coello
and Lechuga[8] and the second was developed by Fieldsend and Singh [14]. The two
methods are chosen due to their simplicity. Also, Fieldsend and Singh developed
their method after Coello and Lechuga and claimed their new method is better,
thus it would be interesting to compare them in this optimization problem. The
performance of the methods are compared based on the density of Pareto front, the
Pareto front shape and location, and the size of the area explored in the design
space.

The optimization algorithms will give a Pareto front as the result. The best
design will then be chosen from the Pareto front by doing post-Pareto analysis.
There are many methods for post-Pareto analysis and three of them are implemented
in this work.

The outline for this thesis is as follows:

• Chapter 2 describes the fundamental theory of fluid dynamics and conjugate
heat transfer,

• Chapter 3 describes multi-objective optimization problems and general meth-
ods to solve them,

• Chapter 4 describes the simulations and optimization methods used in the
thesis,

• Chapter 5 presents the main results of the work, discussion, and a posteriori
analysis of the work,

• Chapter 6 summarize the main conclusions of the work.

3
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2
Fundamental Theories of

Computational Fluid Dynamics
and Heat Transfer

The simulations conducted in this thesis involve fluid flow and heat transfer in both
fluids and solids. The first section of this chapter describes the physics in the flow
using the assumption that the fluid is Newtonian and incompressible. The second
section of this chapter is about heat transfer. Means of heat transfer and the heat
transfer between solids-fluids are discussed in this part.

Equations used in both sections are transport equations which describe how a
quantity is transferred from one place to another. Generally, the equation consists
of transient term, diffusion term, convection term, and external source/sink [44],

∂ρφ

∂t︸ ︷︷ ︸
transient term

+ ∇ · (ρvφ)︸ ︷︷ ︸
convection term

= ∇ · (Γ∇φ)︸ ︷︷ ︸
diffusion term

− Sφ︸︷︷︸
ext. source/sink

, (2.1)

ρ is the mass density, φ is the quantity of interest (e.g. energy, mass, momentum,
etc.), v is velocity of the element1, Γ is the diffusion rate, and Sφ is the source
(positive value) or sink (negative value).

The transient term appear when the system is changing with respect to time.
Convection term appear due to the velocity of the element v, this term is apparent
in fluid flow where the quantities are carried away with the fluid following the flow.
Diffusion happens when there exist difference of the quantities at different points in
the element, i.e. when there are gradients. Generally a quantity of an element will
diffuse to neighboring element with lower value, e.g. an element with high concen-
tration will transport (diffuse) its mass to another element with lower concentration
thus increasing the latter’s concentration.

1element refers to a very small part of the fluids/solids which carry the quantity of interest
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2. Fundamental Theories of Computational Fluid Dynamics and Heat Transfer

2.1 Navier-Stokes Equations

Navier-Stokes equations can be derived from the conservation of mass (φ = 1 in
equation 2.1) and momentum (φ = v in equation 2.1). The Navier-Stokes equations
are

ρ
Dvi
Dt

= − ∂p

∂xi
+ ∂

∂xj
[µ( ∂vi

∂xj
+ ∂vj
∂xi

)− 2
3µ

∂vk
∂xk

δij] + ρfi, (2.2)

Dρ

Dt
+ ρ

∂vi
∂xi

= 0. (2.3)

where ρ is the fluid density, v is the fluid velocity, P is the pressure, µ is the kinematic
viscosity, fi is the body force per unit mass, and t is time.[10]

2.1.1 Incompressible Navier-Stokes Equations

In this thesis, the fluid is considered to be incompressible. In incompressible fluid,
the density ρ is constant with respect to pressure, but this would also imply that the
density variation with respect to time is very small and thus negligible, i.e. Dρ

Dt
= 0,

therefore:

ρ
∂vi
∂xi

= 0, (2.4)

ρ cannot be zero, therefore

∂vi
∂xi

= 0. (2.5)

Substituting equation 2.5 to 2.2 and using ρDvi

Dt
= ρ∂vi

∂t
+ ρvj

∂vi

∂xj
yields:

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
+ ∂

∂xj
[µ( ∂vi

∂xj
+ ∂vj
∂xi

)] + ρfi. (2.6)

2.1.2 Boussinesq Approximation for Buoyancy

For the cases considered in this thesis, the flow is subjected to a temperature differ-
ence which may cause natural convection. In equation 2.6, this effect is not stated
explicitly. The temperature gradients affect the flow by means of buoyancy force
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2. Fundamental Theories of Computational Fluid Dynamics and Heat Transfer

[43]. There is no clear guideline on when we should consider including buoyancy to
the equation, but it is generally accepted that its effect on heat transfer decreases
to negligible level when the air speed exceeds 1.5-2 m/s[25].

To be able to model the effect of temperature gradients, buoyancy force need
to be added to equation 2.6. To model buoyancy, Boussinesq approximation for
buoyancy is used(notice that there are other approximation named "Boussinesq ap-
proximation", e.g. in turbulence modelling and water waves). In Boussinesq approx-
imation, the only property variation to consider in the fluid is its density variation,
other properties variations are completely ignored [43]. Variations in density are
also ignored except where the term is affected by gravity, so gravitational force is
included as body force in equation 2.6, yielding

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
+ ∂

∂xj
[µ( ∂vi

∂xj
+ ∂vj
∂xi

)] + ρg. (2.7)

Variation in density need to be considered only in the last term, ρ in the first term is
replaced into a constant ρ0, while in the last term into ρ = ρ0 + ∆ρ. ∆ρ = −αρ0∆T
is added here to address the variation giving the equation

ρ0
∂vi
∂t

+ ρ0vj
∂vi
∂xj

= − ∂p

∂xi
+ ∂

∂xj
[µ( ∂vi

∂xj
+ ∂vj
∂xi

)] + (ρ0 − αρ0∆T )g. (2.8)

Often, to avoid potential round-off errors from the buoyancy term, a "pressure shift"
is employed[1],

− ∂p

∂xi
+ (ρ0 − αρ0∆T )g = −∂P

∂xi
− αρ0∆Tg, (2.9)

with P = p+ ρ0gh, and h is the elevation. The Navier-Stokes equation with Boussi-
nesq approximation can then be written as

ρ0
∂vi
∂t

+ ρ0vj
∂vi
∂xj

= −∂P
∂xi

+ ∂

∂xj
[µ( ∂vi

∂xj
+ ∂vj
∂xi

)]− αρ0∆Tg. (2.10)

2.2 Conjugate Heat Transfer

Heat transfer between fluids and solids is termed conjugate heat transfer. Heat
transfer in fluids arises from convective and diffusive heat transfer, while in solids
no convective term is used. This situation means that the boundary between solids
and fluids need to be treated carefully to correctly model the heat transfer. A
simple method to model the heat transfer would be by using an overall heat transfer
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2. Fundamental Theories of Computational Fluid Dynamics and Heat Transfer

coefficient, but a more precise method would be to address local heat transfer at the
boundary by using the transport equation for temperature.

The transport equation for temperature are derived from transport equation for
internal energy (using φ = u in equation 2.1, u is the internal energy) and Fourier’s
law[10]. The transport equation for temperature is

ρcp
∂T

∂t
+∇ · (ρcpvT ) = ∇ · (Γ∇T )− ST . (2.11)

For equation 2.11, Γ is the thermal conductivity k = α
ρcp

, with α is the thermal
diffusivity. It should be noted that in solids, the convection term is zero.

To use equation 2.11 in a heat exchanger system, it is needed to solve the
equation for both the solid and fluid element. The problem is how to define the
boundary, i.e. where should the properties of the fluid be used and where should
properties of the solid be used instead. The methods to tackle this problem are
discussed in chapter 4.

8



3
Multi-Objective Optimization

Optimization is a process to bring somethings (refered as objective values) to its
best state, i.e. maximum or minimum[5]. Often the system is limited by some
conditions, known as constraints. The general form of an optimization problem is

minimize
x

f(x),

subject to gi(x) ≤ bi, i = 1, . . . , k.
(3.1)

Here, x is the decision variable, f(x) is the objective function, gi(x) are constraints,
bi are constants, and k is the number of constraints.

An optimization problem with several objective functions often occurs, for ex-
ample, maximizing capacity of a facility while minimizing the cost to build it, there-
fore resulting 2 objective functions, one for capacity, the other one for cost. In
reality, there can be more than 2 objective functions. Such problem will result in a
vector of objective values, each representing its own objective function:

minimize
x

F = (f1(x), f2(x), . . . , fn(x)),

subject to gi(x) ≤ bi, i = 1, . . . , k.
(3.2)

By having multiple design parameters and multiple objective functions, we get
2 spaces of decisions. First, we have design space with dimension m, as the number
of input/controllable variables. The other is objective space where each vector in
design space is mapped to an objective vector. The objective space has dimension
n, the number of objective functions.

Often, the objective functions are in conflict with each other, i.e. an optimum
for one objective function, is not the optimum for other objective functions. To
handle conflicting objective functions, designers’ preference is needed to specify the
notion of optimality, i.e. a trade-off (balance) between the objective functions. The
results can vary depending on the designers’ preference; thus we have several possible
optimal values called the Pareto-optimum values or Pareto-front. The designers’
preference can be imposed before (a priori) or after (a posteriori) the optimization
process.
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3. Multi-Objective Optimization

3.1 Pareto-front

Pareto-optimum vectors are defined as vectors in the design space where improve-
ment of one of its corresponding objective values can only be achieved by the wors-
ening of at least one other objective [3; 32].

The mapping of such vectors into objective space will create a frontier which is
non-dominated [3]. Assuming a minimization problem, a vector F 1 dominates F 2 if
and only if:

F 1
i ≤ F 2

i ∀i ∈ 1, . . . , n,
F 1
i < F 2

i for at least one i.
(3.3)

Pareto-optimum vectors form a set called the Pareto-optimal set or Pareto-set.
Graphical representations of the Pareto-front are presented in figure 3.1, 3.2, and
3.3

3.2 A Priori Method

In a priori methods, the designers’ preference are inputted before the process started.
The result from the optimization is a single optimal vector in the objective space.
This can be done, for example, by sorting the objective function based on their
importance or applying weights to the objective functions.

3.2.1 Lexicographic Method

The basis of lexicographic method is sorting the objective functions by its impor-
tance [13]. The method is similar with the process of sorting words in dictionaries:

• sort by the first letter

• if the first letter is same, then sort by the second letter

• continue to the next letters until all items have different ranks or all letters in the
word are used.

The lexicographic method in multi-objective optimization does exactly the same
(analogously) procedure:

• do a single objective optimization on the most important objective function, if it is
unique or unbounded then stop, we have an optimum or the problem is unbounded

10



3. Multi-Objective Optimization

(a)

(b)

Figure 3.1: (a) Two objective functions f1 = (x − 1)2 and f2 = (x − 3)2. (b) the
objective functions drawn in the objective space.
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3. Multi-Objective Optimization

Figure 3.2: The concept of dominance. We see that f1(x1) < f1(x3) but f2(x1) > f2(x3)
therefore x1 does not dominates x3 and vice versa. This is also the case for the pair x2
and x3. However, f1(x1) < f1(x2) and f2(x1) < f2(x2) therefore x2 dominates x1 and x1
does not belong to the Pareto-front.

Figure 3.3: The Pareto-front formed from all non dominated points in the objective
space is shown in (a). The corresponding Pareto-set is shown in (b).
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3. Multi-Objective Optimization

• if the value of the most important objective function is not unique, i.e. several
vectors in design space mapped to the same value, then from this list of vectors
optimize the second most important objective value, if it is unique or unbounded
then stop, we have an optimum or the problem is unbounded

• continue to the next objective functions until an optimum found or the problem is
found unbounded or all objective functions have been evaluated.

This method is especially useful when the objective functions have very clear priority
ordering. This method does not seek balance, it seeks instead the best for one
objective function at a time.

3.2.2 Objective Value Scalarization

One way to impose preference is by element-wise multiplication (scalar product)
between the objective vector with a weight vector (hence it is also called as the
weighted sum method).

F̄ (x) = f(x) · z
zi > 0 i = 1, . . . , n
n∑
i=1

wi = 1
(3.4)

Using this method, the problem is reduced to a single objective optimization
and we can use methods for optimizing single objective optimization problems.

minimize
x

F̄ (x)

subject to gi(x) ≤ bi, i = 1, . . . , k.
(3.5)

The problem with scalarization is scaling [3; 11]. Often objective functions and
design variables have very different scale, for example in this thesis we have several
length scales:

• length of the whole simulation area can be in the order of 100m

• width and length of the heat sink in the order of 10−2m

• thickness of the fins in the order of 10−4m

Scaling becomes a critical problem because the algorithms to solve the problem
usually are not scale-invariant [11].
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3. Multi-Objective Optimization

3.3 A Posteriori Method

A posteriori methods aim to produce the Pareto-front before setting any preference,
then the designer pick a choice from the Pareto-front later.

The easiest way to obtain the Pareto-front is by repeating the objective value
scalarization method with different weights. This method however has a drawback
that the objective vectors found are not well distributed and objective vectors in
non-convex region are missed entirely. The problems can be mitigated by applying
a modified version of the method called the Adaptive Weighted Sum (AWS) method
[4; 23]. Another drawback is that the each optimization run will only yield a single
Pareto-optimum point.

Another possible method is using multi-objective evolutionary algorithms such
multi-objective genetic algorithm (MOGA) or multi-objective particle swarm opti-
mization (MOPSO)[6]. The main advantage of these methods is that they can find
multiple Pareto-optimal vectors in a single run. The methods also do not require
any knowledge of derivatives of the objective functions, thus they are especially use-
ful when we are dealing with "black-boxes" where we do not know how the system
will response to changes in the design, e.g. the results of simulations. However, as
these methods usually require a lot of evaluation vectors, they become inefficient
when each evaluation takes very large resource, i.e. when they are very long to eval-
uate. These methods are initially designed for unconstrained optimization, thus it
is necessary to transform the optimization problem into an unconstrained problem
by using penalty functions or skipping the non-feasible points.

A computationally more efficient method is to use surrogate models to predict
the response of the black-box function to changes in design. However, the method
is based on the assumption that the objective functions are smooth and continuous
therefore surrogate-assisted methods simply cannot solve a discrete optimization
problem.
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4
Methods

In this chapter the simulation and optimization methods used in the thesis will be
presented. Often, researchers use a boundary conforming mesh to do computational
fluid dynamics (CFD) simulations. In this thesis however, the method for simulating
the fluid flow and heat transfer is the hybrid immersed boundary method, developed
by Mark et.al. [26; 29].

For the optimization method, a number of methods have been described in
chapter 3. The chosen method to be performed in this thesis is the multi-objective
particle swarm optimization method. The reasons to choose this method are:

• No information on the gradient of objective function (black box function), thus
gradient-based methods are not feasible.

• There is a discrete variable in the system (see 5.1.4), thus surrogate-assisted
optimization methods are not feasible.

• Evaluation time of each point in the design space is not too long (in average
1 hour per simulation on standard FCC workstation1), thus evaluating a large
number of points is affordable.

• The MO-PSO method can find multiple Pareto-optimum points in a single
run.

• The MO-PSO method does not require encoding and decoding of variables (as
in genetic algorithm) needed.

4.1 Computational Fluid Dynamics

The Navier-Stokes equations (2.6), are solved using IBOFlow, a finite volume
based incompressible flow solver used to simulate a number of industrial applications
[20; 27; 28; 40]. The equations are discretized on a Cartesian octree grid that can
be dynamically refined to get a higher resolution of the interface. A segregated

1Intel i7-5930K 3.50GHz, 64GB RAM, NVIDIA GeForce GTX 650 Ti 1GB
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solution technique, the SIMPLEC method [12], of the Navier-Stokes equations is
employed to couple the velocity and pressure fields. First, the momentum equation
is approximated with an estimated pressure field, and the pressure field is then
corrected by the continuity equation. A new velocity field is then obtained by
applying the corrected pressure field to the previously obtained velocity field. The
method iterates until both the momentum and continuity equations are satisfied.
All variables are stored in a co-located grid arrangement and the pressure weighted
flux interpolation by Rhie and Chow [34] is used to prevent pressure oscillations.
The temporal discretization, the unsteady part of Navier-Stokes equations, is done
using implicit backward Euler time scheme. To handle interfaces between solids and
fluids the hybrid immersed boundary method[26; 29] is employed. See section 4.1.1
for a comparison of boundary conforming and immersed boundary methods.

In this thesis, the fan speed is set at 1 m/s on all simulations. Using this
speed, the flow is expected to be turbulent when the spacing between the fins is
more than 17.5mm. Most of the models simulated have smaller spacing, thus a
laminar flow is expected in every simulation if the velocity is constant and uniform
in the whole simulation area. However, when entering the heat sink, the flow face
a contraction therefore its speed may increase (alternatively, the flow can bypass
through the side and above the heat sink). The increase may be large enough to
make the flow turbulent. Lee[25] in his experiment found that there is a momentary
lag of performance when the spacing decrease from 11.25 mm to 8.75 mm which
he attributes to flow regime change from turbulent to laminar. For this reason, a
turbulent flow model needs to be considered.

4.1.1 Boundary Conforming Mesh vs Immersed Boundary

In boundary conforming mesh, the mesh where we solve the equations is made such
that it conforms (i.e. follows) the shape of the boundary. This means the method
starts from having the geometry of the boundaries, then we set the meshes to follow
them. A small change in the geometry may change the structure of the mesh greatly
and gives disproportionate change in the output which may be regarded as noise [36].
Figure 4.1 shows how the boundary conforming mesh is made.

Contrary to what we do in the boundary conforming mesh, an immersed bound-
ary method starts with building a base mesh, usually a structured one. After the
base mesh is set, the boundary is then inserted into the mesh. After defining the
boundary, the cell type is then determined whether it is inside or outside of the
boundary. Each cell type has its own system of equation to solve. The advantage
of this method is that complex boundaries can be easily inserted without changing
the structure of the mesh. Figure 4.2 shows how the immersed boundary mesh is
made.
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Figure 4.1: Boundary conforming mesh method: the meshes (here for solving the
fluid mechanics) follow the curvature of the boundary ("solid" section, depicted by
dashed area).

4.1.2 Turbulence Modelling

As briefly mentioned in chapter 1, the spacing between fins may be enough for the
flow inside the heat sink to be turbulent. However, if the spacing is small enough, the
flow will stay in the laminar regime. This means that we need a turbulence model
that is able to model both laminar and turbulent regime and also the transition.
Another requirement for the turbulence model is that we need high resolution near
the solids because we are interested in the heat exchange between the solids and
fluids. The latter requirement yields turbulence modelling with wall functions may
not be sufficient because of the inaccuracies associated with the wall functions.

In this work the LVEL turbulence model, which fulfill the requirements, is used.
The LVEL turbulence model only require knowledge of the wall distances (L) and
the local velocities (VEL), hence its name. The LVEL model is based on Spalding’s
law of the wall (see [2] for more details).

4.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a biologically-inspired iterative method for
solving optimization problems. It was inspired by swarming behaviour of many
organisms.
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Figure 4.2: Immersed boundary method: The method starts with a base grid/cells.
The red line represent the boundary is then immersed into the grid. The cells then
assigned a value indicating whether it is inside the boundary (solid cells), outside
(fluid cells), or at the boundary (IB cells).
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4.2.1 Basic Particle Swarm Optimization Algorithm

The algorithm uses a concept of position and velocity. "Position" x is a vector of
design variables, while "velocity" v is used to determine which "position" should be
evaluated at the next iteration.

In PSO we have a number of candidate solutions named "particles". Each
particle has its own position and velocity. In each iteration (called "generation"),
the positions of all particles are evaluated (i.e. the value of design variables inserted
into the objective function) to give its corresponding objective value. The best value
(i.e. smallest objective value in minimization, or largest in maximization) is then
saved and will be used to update the "velocity" (i.e. "acceleration"). We have 2 kinds
of best values:

• Particle best: the best position each particle had so far,

• Swarm best (often called "leader"): the best position found by the algorithm
so far (the best among particle best).

There are many versions of PSO algorithms, but all of them share a basic
algorithm, as described by Wahde[45]:

1. Set initial position and velocity for each particle.

2. Evaluate the objective value of each particle.

3. Update the best positions (swarm-best and particle-best).

4. Update velocities and positions:

(a) Calculate new velocities

vij = wvij + c1q(xpb − xij)
∆t + c2r(xsb − xij)

∆t . (4.1)

(b) Restrict velocities such that |vij | ≤ vmax.

(c) Update positions:
xij = xij + vij∆t. (4.2)

5. Return to 2 until stopping criteria are reached.

i = 1, 2, . . . , N and j = 1, 2, . . . ,M , with N denotes the number of particles
and M denotes the number of variables. w is called "inertia weight", a relaxation
factor on the velocity. c1 and c2 are constants, typically set to 2. q and r are uniform
random numbers in the interval [0,1]. xpb and xsb are positions of the best point
in each particle history (particle best) and best point among all evaluated points
(swarm best) respectively. ∆t typically set as 1.
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4.2.2 Multi-Objective PSO (MO-PSO)

For multi-objective optimization problem (MOOP), multi-objective variants of PSO
are developed. These variants of PSO are using the basic PSO algorithm with
modifications on determining swarm-best and particle-best values. In MO-PSO,
several points are considered best (the "current" Pareto-front2) therefore there are
several candidates for swarm-best and particle-best position. There are various ways
of determining swarm-best and particle-best vectors. A summary of these methods
can be found in [33]. Among the methods, the schemes described by Fieldsend-
Singh[14] and Coello-Lechuga[8] are used in this thesis. For both methods, the
velocities are restricted because this is a crucial step in preventing the swarm from
expanding indefinitely[45].

4.2.2.1 Coello and Lechuga’s Approach

Coello and Lechuga [8] used density of Pareto-front and roulette-wheel selection to
choose the leaders for each particle. The leaders are not unique, different particles
can use different points in the Pareto-front. The motivation is to create a well
distributed Pareto-front by preferring search on areas with low Pareto-optimum-
points density. The "particle best" point is the last non-dominated point in the
particle’s history. The algorithm (further will be referred as CL-method or Coello’s
method) can be described as follows:

1. Set initial position and velocity for each particle.

2. Evaluate the objective value of each particle.

3. Update the best positions (swarm-Pareto and particle-best).

4. Create several hypercubes of Pareto-front explored so far and calculate its fitness
(the method of creating the hypercubes and calculating the fitness described below)

5. Update velocities and positions:

(a) For each particle, pick a hypercube of current Pareto-front using roulette-wheel
selection based on its fitness

(b) For each particle, pick a non-dominated point from the chosen hypercube as
leader

(c) Calculate new velocities

vij = wvij + c1q(xpp − xij)
∆t + c2r(xspi − xij)

∆t . (4.3)
2It is termed "current" because it is Pareto-front found by the algorithm so far, i.e. non-

dominated points found so far. The algorithms attempt to get as close as possible to the "true"
Pareto-front. In this thesis Pareto-front and Pareto-optimum points refers to the non-dominated
front and non-dominated points found by the algorithm, not the "true" Pareto-front.

20



4. Methods

(d) Update positions:
xij = xij + vij∆t. (4.4)

(e) Restrict position such that they stay in feasible region.

6. Return to 2 until stopping criteria are reached.

The hypercubes mentioned above are created by dividing the objective space
bounded by the minimum and maximum value of objective values found-so-far in
each axis into a constant number of equally sized partitions. A hypercube fitness
fhypercube is set as zero if the hypercube contains zero non-dominated point, otherwise
the fitness is calculated as:

fhypercube = A

Npareto

. (4.5)

A is a constant larger than 1 (in this thesis 10 is used), and Npareto is the number
of non-dominated points inside the hypercube.

Some modifications are done on the implementation. The first modification is
not to restrict the positions to stay in the feasible region because the restriction
would limit exploration. Instead, to handle the points on non-feasible region, a
penalty method is used. These non-feasible points are saved and after the PSO
finishes, the points are projected back into feasible region for a posteriori analysis.

Another modification is on picking particle-best point: instead of comparing
current point with a single last particle-best point, in this thesis all non-dominated
points in the particle’s history are used. Fieldsend and Singh in [14], referring to
other researches, stated that the original method is prone to oscillation. Also, all
of the points considered are non-dominated and potentially lead closer to the true
Pareto-front so it is unfair to only consider one or two of them.

4.2.2.2 Fieldsen and Singh’s Approach

Fieldsend and Singh [14] used a measurement of "closeness" to determine which
point in the Pareto-front found-so-far to be used as the leader. Closeness is defined
as the distance between points in the objective space. A particle will choose a
currently non-dominated point with the most similar objective values as its leader.
Similar with Coello and Lechuga’s approach, each particle can have its own choice
of leader. Fieldsend and Singh’s approach does not require the particle positions to
be restricted in the feasible region.

The downside is that the method relies on a relationship between "closeness"
in objective space and "closeness" in design space, i.e. the algorithm may perform
poorly if points "close" in the objective space are faraway in the design space or
vice versa. The simulations in this thesis are expected to have close (i.e. similar)
objective values if the designs are similar. However, points close to each other in the
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objective space are not necessarily close in the objective space due to the existence
of discrete variable in the design space.

To promote exploration and prevent early/premature convergence, a "turbu-
lence" operator is introduced. The turbulence operator randomly includes a new
term into the velocity equation with probability pturb. In this thesis, the tur-
bulence probability is 0.2 and the turbulence magnitude b is a random number
U(−0.05Vmax, 0.05Vmax)3.

The algorithm (further will be referred as FS-method or Fieldsend’s method)
is as follows:

1. Set initial position and velocity for each particle.

2. Evaluate the objective value of each particle.

3. Update the best positions (swarm-Pareto and particle-Pareto).

4. Calculate distance between each particle’s objective value with all points in the
current Pareto-front.

5. Update velocities and positions:

(a) For each particle, pick the closest non-dominated point

(b) Calculate new velocities

vij = wvij + c1q(xpp − xij)
∆t + c2r(xspi − xij)

∆t . (4.6)

(c) For each particle check for turbulence:

• Get a random number r,

• If r is larger than pturb include turbulence term bj

vij = vij + bj . (4.7)

(d) Update positions:
xij = xij + vij∆t. (4.8)

6. Return to 2 until stopping criteria are reached.

3In [14], the distribution for b is N(0, 0.1R) with R the absolute range of the variables. It is
changed so it complies with the velocity restriction.
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5
Geometrical Optimization of Plate

Fin Heat Sink

Heat sinks utilizing parallel plates are widely used to cool electronic modules (e.g.
CPU, graphic processors)[38]. This type of heat-sink are known as plate-fin heat-
sinks. The fins are stacked together on top of a base plate. An illustration of
plate-fin heat-sink is presented in figure 5.1.

This thesis is considering simulation-based optimization, i.e. the objective func-
tions fi are output from a simulation rather than evaluations of mathematical func-
tions. In other words, the design variables are inserted into a "black box", i.e. the
simulation software with its internal workings, and the objective values are returned
as outputs.

The simulation setup is shown in figure 5.2. The heat sink is placed in the
middle of an air channel. Due to symmetry considerations, only half of the heat
sink is used in the simulations. The base plate is heated uniformly by 20W.

Figure 5.1: Illustration of a plate-fin heat-sink. Air will flow between the plates
and cool down the plates. The plates are typically made of metals such as copper

or aluminium.
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Figure 5.2: Simulation setup (a) side view, (b) streamwise view.
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Figure 5.3: The objective space has two axes. Each axis corresponds to an
objective function.

5.1 Optimization Problem

An optimization problem is formulated from objective functions and design variables
(which creates the objective space and design space respectively) with respect to
some constraints. The variations in the objective space and design space will be
limited by some constraints. These constraints define the border between the feasible
and non-feasible points in the spaces.

5.1.1 Objectives

We can use several objectives for the optimization problem. Some of the possible
objectives are:

• Minimize the steady state temperature,

• Minimize the operating cost,

• Minimize the production cost,

• Minimize the dimension of the heat sink.

In this thesis, minimization of steady state temperature and minimization of
operating costs are used as objective functions. The operating cost is assumed to
be proportional to the energy needed to propel the air flow through a pressure
difference. To measure performance with respect to this objective, we set a constant
flux of air at the inlet. It is then sufficient to gauge the average pressure at the inlet
and outlet to get the pressure drop. The pumping power, i.e. the energy required
to propel the air flow, is proportional to the pressure drop. The objective space is
illustrated in figure 5.3.
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Figure 5.4: The design space is three-dimensional. Each axis corresponds to a
design variable.

5.1.2 Variables

There are many variables that can be modified for the optimization problem such
as fin spacing/density, fin thickness, fin height, dimension of the heat sink, air flow
velocity, etc. However, we limit the problem to be a geometrical optimization and
only vary the thickness, height, and number of fins. The design space is illustrated
in figure 5.4.

5.1.3 Constraints

When optimizing heat-sinks by means of simulations, the constraints may appear
due to different reasons. Some are due to design limitation e.g. maximum dimension
of the heat sink, some may come from the fabrication process e.g. minimum fin
thickness and spacing.

The first set of constraints comes from the fabrication and defined by Iyen-
gar [19]. There are several fabrication methods and the bonding method is chosen
for this thesis. The constraints are presented in table 5.1. Some design constraints
also introduced and shown in table 5.2.

Table 5.1: Constraints due to bonding fabrication-method

Minimum fin thickness 0.75 mm
Maximum fin height:spacing ratio 60:1
Material Al, Cu, or Mg
Minimum spacing between fins 0.8 mm

The total height is the sum of the fin height and base plate thickness. The
base plate thickness is kept at 1.25 mm, therefore we can rewrite the constraint as:
maximum fin height = 48.75 mm.
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Table 5.2: Constraints due to design specification

Minimum fin height 0.625 mm
Maximum total height 50 mm
Minimum number of Fins 2
Heat sink width 50 mm
Heat sink length 100 mm

Table 5.3: Symbols and definitions for equation 5.1

Symbol Definition
τ Thickness
h Fin height
N Number of fins
Tmax Maximum temperature of solid
∆P Pressure drop
s Fin spacing
w Heat sink width

5.1.4 Complete Problem

As we have specified the objective, variables and constraints, we can then formally
state the optimization problem,

minimize
τ,h,N

(Tmax,∆P ),

subject to τ ≥ 7.5× 10−4 (Minimum thickness),
6.25× 10−4 ≤ h ≤ 4.875× 10−2 (Minimum and maximum height),
N ≥ 2 (Minimum number of fins),
h/s ≤ 60 (Maximum height:spacing ratio),
s ≥ 8× 10−4 (Minimum spacing),
Nτ + (N − 1)s = w (Spacing equality).

(5.1)
N is an integer variable, while the others are positive real numbers. The feasibility
cut is shown in figure 5.5. The last constraint in 5.1.4 is due to the width of the
heat-sink set at a constant value w. The boundary shape resembles stairs, with
number of fins defining the steps. The boundary contour is shown in figure 5.6.

5.1.5 Optimization Configurations

The MO-PSO has been run 6 times with different configurations, see table 5.4. For
all configurations, the maximum number of evaluations is 120. Each simulation takes
1 hour on average, so in total an optimization run would require approximately 5
days. However, non-feasible points are not simulated and given∞ for both objective

27



5. Geometrical Optimization of Plate Fin Heat Sink

Figure 5.5: Feasibility cuts due to constraints
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values. The number of non-feasible points evaluated varies depending on how the
particles moved, but it is in the range of 20-80 evaluations which corresponds to
20-80 hours reduction in run time.

As mentioned in section 4.2.2, velocity restrictions are used. The restrictions
are based on the maximum and minimum values for thickness and height. The
velocity for the number-of-fin is more restricted because adding or reducing even
just one fin may give very different performance. The restrictions are presented in
table 5.5.

Table 5.4: MO-PSO configurations

No. Leader Choosing Method Number of Particles Number of Generations
1 FS 3 40
2 FS 6 20
3 FS 12 10
4 CL 3 40
5 CL 6 20
6 CL 12 10

Table 5.5: Maximum speed for each axis in design space

Axis Max Speed
τ 49.375 mm
h 24.25 mm
N 1

5.1.6 Design of Experiment

The standard PSO algorithm chooses starting points for the first generation particles
randomly with a uniform distribution in each axis of design space. The choice of
starting points is then modified to suit our optimization problem and obtain more
meaningful data at the start of the algorithm.

The algorithm is modified in such a way that the starting point is restricted to
be inside the feasible region. This is achieved by randomly (uniform distribution)
choosing fin height and number of fins, and then after the two are set, the choice of
thickness is restricted to follow the constraints. This method is chosen due to two
reasons. First, the complicating constraint for height (h/s ≤ 60) is an inequality
(as opposed to equality constraint on N and τ) so it is more flexible and actually
can be chosen almost freely in its range (minimum to maximum height). Second, it
is expected that the performance difference due to changing the number of fin to be
larger than the effect of changing thickness therefore exploration on number of fins
is more important than exploration on thickness.
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5.2 Results and Discussion

The simulations is performed using IBOFlow and the PSO algorithms is imple-
mented in MATLAB. To use IBOFlow, the fins and base-plate mesh need to be
generated beforehand and immersed into the the base grid constructed in IBOFlow.
The generation of the base-plate only needs to be run once while the fins need to
be generated multiple times for different dimensions of fins. The fin generation
process has been scripted using Paraview’s python interface pvpython. Simulation
set-up and configuration in IBOFlow is written in Lua. The administration of the
simulation results is managed using MATLAB scripts. The entire simulation and
optimization process is automated by a master script in MATLAB.

Illustrations of simulation results are shown in figure 5.7 and 5.8. The figures
show the temperature and velocity profile simulated in IBOFlow and visualized in
Paraview.

Figure 5.7: Temperature distribution from a simulation

Figure 5.8: Velocity profile from a simulation. The heat sink is the gray area in
the middle.
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5.2.1 Pareto-front

Each configuration explores the design and objective space differently, not only due
to the different number of particles but also due to randomization in the algorithm.
Thus, each configuration yields a Pareto-front with characteristic qualities. Figure
5.9 shows the objective space explored by each configuration and the associated
Pareto-front.

The figures show that by using 120 evaluations, FS-method could create a better
Pareto-front. "Better" here defined by having smaller values, i.e. several dominating
points, compared to the Pareto-front from CL. Notice that the figures use the same
scale so it can be easily compared. At a glance it can be seen that the "knee" of the
Pareto-front from FS-method (bottom row) is lower than CL-method Pareto-front.

The relatively bad performance of the CL-method may be attributed to the
number of evaluations which are too low compared to Coello’s suggestion. Coello
suggested to use 20-80 particles with 80-120 generations so the minimum suggested
number of evaluation is 1600 evaluations, more than 10 times the 120 evaluations
conducted in this thesis. It can be concluded that the FS-method is more efficient
in finding the Pareto-front.

The FS-method yields a dense Pareto-front in some areas and coarser in other
areas. This behaviour is expected and consistent with the assumption that similar
designs will give similar performances. By choosing leaders based on distance, the
particles will move closer and closer to the Pareto-set. Looking at equation 4.6, when
the distance is small, the acceleration will also be small making the search around a
Pareto-optimum point more extensive (i.e. more points sampled). If similar designs
indeed give similar performances the points would be located very close to each other
both in objective space and design space. Thus, we observe crowding/clustering of
points which is a characteristic trait of FS.

None of the configurations from CL-simulations resulted in dense Pareto-fronts.
The spirit in CL is attraction towards less populated Pareto-front regions. Thus,
the observations from CL are consistent with the expectations. It can then be
concluded that CL will give a coarser Pareto-fronts compared with FS. However,
coarser Pareto-fronts should not be considered worse because several data points
giving similar objective values is most likely not efficient. Rather, it could be argued
that the Pareto-front from CL has a more reasonable distribution.

Considering that FS finds the Pareto-front faster whereas CL yields less cluster-
ing, a combination of the methods may be considered. The suggested improvement
would be to use distance-based method to quickly find the Pareto-front, but avoid
clustering/crowding of points. A proposal is to change the craziness (turbulence)
operator from giving a random velocity change into changing the leader to less popu-
lated Pareto-front. The method should quickly refine the Pareto-front by extensively
searching around a Pareto-optimum point, but sometimes it will change its leader
thus exploring a different parts of the design space. However, the evaluation of the
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5. Geometrical Optimization of Plate Fin Heat Sink

method is not in the scope of the thesis.

Generally, PSO performs better with few particles but more evaluations[45], but
the optimum number of particles may actually differ depending on the case[7; 35]. In
this thesis, the number of particles (3, 6, or 12) does not seem to show an apparent
consistent-effect in the objective space.

5.2.2 Pareto-set

While getting a good Pareto-front is the optimization objective, in the end the goal
is to decide which designs are optimum, i.e. the Pareto-set. The Pareto-set is a set
consisting of all Pareto-optimal points. Pareto-sets from the simulations are shown
in figure 5.10-5.13.

Intuitively, the smallest fin located at the boundary (shortest and thinnest)
will also have the smallest pressure drop as it is the least obstructing configuration
therefore it should be a Pareto-optimum point. A heat-sink with many fins also gen-
erally believed to have higher thermal performance compared to heat-sink with few
fins[25]. This means that the Pareto-set would be located near or at the boundaries.

Looking at figure 5.10-5.13 it can be seen that many of the points are indeed
located near the boundaries, particularly in the direction of "thickness" axis. It can
be seen in the figures (especially by looking at the rightmost figure in each figure
set) that several of the Pareto-optimum points are near the thinnest allowed fin.

Top-right figure in figure 5.12 (CL, 3 particles) shows a very small exploration
along the "number of fin" (N)-axis, but remembering that the number of evaluations
is constant then the exploitation (local search) is more intensive which fits Röhler
and Chen’s[35] theory regarding number of particles. This is due to the uneven
distribution (crowding) of initial points (the initial points are 32, 23, and 20 fins)
thus no information is acquired for other (lower) number of fins. The starting Pareto-
optimum points used as leaders will also be among these initial points therefore the
exploration is only in a small area around the initial points. The velocity restriction
also prevents the particles from exploring too far. This behaviour is not observed in
the other three figures (including the FS-3 particles) due to the initial points being
more spread.

Even though the behaviour is not observed in the FS-3 particles case, the num-
ber of particles can affect the spread of initial points. More particles means more
initial points will be seeded thus it is more likely that the initial points are spread
out because they are seeded randomly.

The MO-PSO algorithms do not require the points to be evenly spread in the
design space. It may even start from the infeasible region and find a good solution,
such as the tests reported by Castro, et.al.[24, Chapter 9]. However, considering the
small number of evaluations conducted, it is beneficial if the design of experiment is
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modified to guarantee the initial points being spread in the design space. Examples
of methods to promote spreading of initial points are the Latin Hypercube Sampling
(LHS) (see [30])and orthogonal sampling (see [42]) method.

If LHS or orthogonal sampling are used, all areas of the design space are guar-
anteed to be represented by at least one particle[30]. The number of particles will
affect the sizes of the areas, more particles mean more areas can be sampled, thus
the areas can be smaller.

5.3 Post-processing

5.3.1 Design Space Filter

It appears in the objective space that the evaluated points are clustered in some
areas. The clustering suggests that introducing a design space filter can speed up
the optimization process by reducing the number of evaluated designs. Since, as
stated in section 4.2.2.2, points close to each other in the design space should be
close in the objective space, but not necessarily vice versa. The filtering should
then be based on this assumption that two designs with very similar dimensions
will show similar performance (maximum temperature and pressure drop), thus
evaluating only one of the two candidates is expected to be reasonable.

In order to filter the design space, a measure of similarity is required. There
exist several measurements of similarity. In this thesis, three similarity measures
are evaluated to test the filtering proposal:

• Volume difference (∆V ): τmin∆h+ hmin∆τ + ∆h∆τ1,

• L2 Norm: N
√

∆h2 + ∆τ22,

• L∞ Norm: max(∆h,∆τ).

In addition to similarity measures, thresholds must be introduced to distinguish sim-
ilar designs from unique designs. Three different values of the similarity-threshold
for each of the similarity measures mentioned above are evaluated, see table 5.6.
An additional tracker is required to record which points are evaluated (evaluated-
points) and which are filtered (filtered-points) because filtered-points should not be
used as references in similarity comparisons. The filter is tested using the following
algorithm:

1. Load a data set from previous MO-PSO run.

1τmin is the smaller τ value between the two point, as is hmin is the smaller h value
2The L2 norm is multiplied by the number of fins because the total change is subject to the

number of fins.
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2. Re-evaluate the points starting from oldest generation, first particle and do filtering:

• If there are any similar evaluated-point, mark the new point as "filtered". As-
sign identical objective values with the most similar evaluated-point,

• else, evaluate the new point, mark it as "evaluated".

3. Continue until all particles in the generation are re-evaluated.

4. Continue until all generations are re-evaluated.

The filtering test cases and their results are summarized in table 5.6. An exam-
ple of re-evaluated MO-PSO data (FS, 3 particle) and the change to the Pareto-front
are shown in figure are shown in figure 5.14. In the figure, some "x"-marks are not in-
side the upward triangles indicating the design corresponding to the objective vector
are filtered.

The number of simulations can be decreased significantly using filtering. How-
ever, the Pareto-front also changes. Some Pareto-optimum points may be filtered
(circles without triangle) and some sub-optimum points may be identified as Pareto-
optimum (triangles without circle). A higher threshold increases the number of fil-
tered points and also increase the risk of missing the real Pareto-front. By using
filters and data from previous optimization runs, the MO-PSO can be re-run to
explore the design space further. Doing this potentially improve the Pareto-front
with a very short run-time because only unexplored designs will be simulated.

It should be mentioned that specifying a similarity-threshold before performing
any simulations is not a trivial task. Too high a threshold will filter too many points
and much information is lost, while too low a threshold means that almost no points
are filtered. The remark is thus that there is not an obvious way to quantify "high"
and "low" values of similarity threshold before performing simulations. A proposed
guideline is to use inherent limits and uncertainties in the fabrication process e.g.
if the uncertainty in thickness of the fin is estimated to 0.05mm it is reasonable to
use this value or slightly larger as the threshold for the L∞-norm filter.

5.3.2 Exploring the Boundaries

The MO-PSO run had many points not evaluated due to the fact that it crossed the
feasible region boundary. These points are ignored in the optimization, but recalling
that the Pareto-optimum points should be close to or at the boundaries, exploration
on the boundaries is considered particularly relevant.

The boundaries themselves have infinitely many points. To search the whole
boundaries is practically impossible, therefore a guidance on which point in the
boundary to evaluate is needed. One alternative is to use the non-feasible points in
the PSO run. The points in the non-feasible area can be used as a guide because in
the optimization run, these points are supposed to be results of pulling the particles
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Table 5.6: Filter test configurations

No. Data set Method Threshold Originala Filteredb Missingc New Paretod

1

CL,3 pare

∆V 0.00007m3

59

3 1 0
2 0.00014m3 7 2 0
3 L2

0.01m 40 10 7
4 0.005m 10 3 7
5 L∞

0.25mm 18 4 8
6 0.1mm 1 0 0
7

FS,3 parf

∆V 0.00007m3

97

32 1 1
8 0.00014m3 64 13 2
9 L2

0.01m 83 17 3
10 0.005m 65 15 3
11 L∞

0.25mm 43 11 5
12 0.1mm 12 4 2
a Number of simulated points without filtering
b Number of filtered points
c Number of Pareto-optimum points missed due to being filtered
d Number of new Pareto-optimum points. "New" means without filtering these points
were suboptimum

e CL, 3 particles data set
f FS, 3 particles data set

to potentially better positions, therefore it is likely that these points can refine the
Pareto-front when projecting back onto the feasible region.

Projection to the nearest point in the boundary, however, is quite difficult in
this case due to the constraints being discontinuous. An alternative way is to address
the constraints one by one and project the point in the direction of one axis every
time it violates the constraint. The direction can be along the height, number of
fins or thickness axis.

The first three constraints in equation 5.1 are straight-forward to deal with by
assigning the minimum or maximum value for the axes. The remaining constraints,
however, are complicated since they are coupling several design variables, and one
of the design variables is discrete.

For the complicating constraints, it would be simpler to decompose the con-
straints. The spacing equality constraint in 5.1 can be rewritten as

s = w −Nτ
N − 1 . (5.2)

Substituting it into the minimum spacing constraint yields

w −Nτ
N − 1 ≥ 8× 10−4. (5.3)

Rearranging the equation gives

τ ≤ w − 8× 10−4(N − 1)
N

, (5.4)
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N ≤ w + 8× 10−4

τ + 8× 10−4 , (5.5)

Substituting equation 5.2 to the maximum height:spacing ratio also yields

h(N − 1)
w −Nτ

≤ 60. (5.6)

Rearranging the equation, gives:

N ≤ 60(w −Nτ)
h

+ 1. (5.7)

τ ≤ 60w − h(N − 1)
N

. (5.8)

h ≤ 60(w −Nτ)
N − 1 . (5.9)

The maximum allowed value for each design variable then can be rewritten as 3 new
constraints, replacing the last 3 constraints in 5.1:

τmax = min
[
w − 8× 10−4(N − 1)

N
,
60w − h(N − 1)

N

]
, (5.10)

hmax = 60(w −Nτ)
N − 1 , (5.11)

Nmax = min
[

60(w −Nτ)
h

+ 1, w + 8× 10−4

τ + 8× 10−4

]
. (5.12)

After knowing the maximum allowed value for each design variable, the viola-
tions ∆ are calculated, i.e. for particle i:

∆τi = τi − τmax, (5.13)

∆hi = hi − hmax, (5.14)

∆Ni = Ni −Nmax. (5.15)

The violations are then normalized by the maximum allowed values.

∆τ ′i = ∆τi
τmax

, (5.16)

∆h′i = ∆hi
hmax

, (5.17)

∆N ′i = ∆Ni

Nmax

. (5.18)
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The projection will be directed to the smallest positive of these three values, i.e.
if the smallest positive is ∆N ′, then the number of fins will be reduced while the
thickness and height are kept. (A negative or zero violation means that it is inside
the feasible region and no projection is needed)

Projection has been tested on two data sets. First on the data from configu-
ration number 4 of table 5.4 and the other is on data from configuration number
3 5.4. The former represent the case where the exploration is limited, in this case
the search is only on heat sinks with at least 20 fins (see figure 5.12). The latter
represent the case where exploration is broader (see figure 5.10).

The effect of projection is presented in figure 5.15 and 5.16. It can be seen
that indeed the Pareto-front is improved. In both cases new Pareto-optimum points
are found and some previous Pareto-optimum points becomes sub-optimum thus it
is confirmed that projection of infeasible points into the feasibility boundary is a
reasonable way to refine the Pareto-front.

Even though the projection certainly yielded a refined Pareto-front, the method
is not cheap. A specific example is optimization configuration number 4 with 59 fea-
sible designs and 61 infeasible designs. More simulations would be required to evalu-
ate the projections than the feasible designs. In this case the number of simulations
and, consequently, the computational time are more than doubled by considering
projections.
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Figure 5.15: Projection-evaluation on Pareto-front of configuration 3
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Figure 5.16: Projection-evaluation on Pareto-front of configuration 4

5.3.3 Choosing the Best Design

Once the Pareto-front is found, the final step is to pick the best design from the
available choices in the Pareto-front. The process is known as post-Pareto analysis.
All points in the Pareto-front are optimum, but a product can only have one design.
At this step, designers’ preferences are needed.

Several methods can be used to determine the best design once the designers’
preferences are specified. Three such methods are considered, the corresponding
results and best designs are presented in this section3. The data used in this section is
a compounded data from all simulations conducted. The Pareto-optimum solutions
are presented in table 5.7 and 5.17. It should be noted that some of the solutions
presented in the table is not practical because the maximum temperature from
the simulation exceed the operating temperature limit (around 175◦ C or 449 K)
therefore the data should be filtered so these impractical designs are excluded in
decision making.

5.3.3.1 Lexicographic Method

The easiest method to choose a design is the lexicographic method. The method has
been described in section 3.2.1. Using this method, the solution is either solution
number 1 if temperature is preferred or 40 if pressure drop is preferred.

3see Hwang and Yoon[18] for more methods
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Table 5.7: Compounded Pareto-optimum solutions sorted by objective values.
Greyed rows indicates the temperature exceed operating temperature limit and not

considered in the decision making.

No. τ (mm) Height (mm) Num. of fins Spacing (mm) Tmax (K) −∆P (Pa/m)
1 0.8703 45.0496 12 3.6 305.4232 1.1037
2 0.7638 44.4611 12 3.7 305.4505 1.0396
3 1.0480 40.5090 10 4.4 307.4992 0.8918
4 0.8995 37.8903 11 4.0 307.7265 0.8757
5 1.0122 38.0074 10 4.43 308.3137 0.8342
6 0.9695 37.6391 10 4.48 308.495 0.8182
7 0.9882 37.6822 9 5.14 309.3 0.7443
8 1.2785 38.0434 8 5.68 309.8515 0.7328
9 1.2524 37.5514 8 5.71 310.0961 0.7226
10 0.7589 35.8034 10 4.71 310.133 0.6973
11 0.9909 37.9724 8 6.01 310.4181 0.6863
12 0.8092 37.8003 8 6.22 311.0514 0.6496
13 0.9413 34.4159 8 6.07 312.3095 0.6288
14 0.8613 34.4763 8 6.16 312.3955 0.6112
15 1.1356 33.6721 7 7.01 314.1755 0.5840
16 1.1485 28.9944 8 5.83 315.9209 0.5729
17 1.0997 28.1952 8 5.89 316.6367 0.5547
18 1.2645 31.9186 6 8.48 318.0909 0.5118
19 1.2310 30.5528 6 8.52 319.3324 0.4971
20 0.9654 30.6307 6 8.84 320.0806 0.4830
21 1.2714 21.8 8 5.69 323.676 0.4811
22 1.2299 22.2282 7 6.90 325.7606 0.4524
23 1.8328 21.9485 6 7.80 329.3331 0.4428
24 2.9677 34.9490 3 20.55 333.1692 0.4315
25 1.4385 17.3498 8 5.50 333.7974 0.4308
26 1.075 17.0107 8 5.91 333.8781 0.4098
27 1.2348 15.9273 8 5.73 336.8343 0.4011
28 2.4457 23.5315 4 13.4 339.5859 0.3998
29 2.0783 14.3779 7 5.91 344.8056 0.3885
30 0.9439 12.9312 9 5.19 346.8166 0.3749
31 1.8884 11.9501 8 4.98 353.022 0.3723
32 4.3833 15.2765 4 10.82 359.6116 0.3695
33 0.7996 9.9980 9 5.35 361.4313 0.3373
34 4.0003 19.9172 2 42.00 378.6095 0.3333
35 1.0395 15.2783 3 23.44 378.6349 0.3166
36 1.3551 7.2009 8 5.60 394.2132 0.3118
37 0.9339 6.4205 9 5.20 400.7254 0.3065
38 1.6475 7.4988 4 14.47 411.4077 0.2997
39 1.9443 4.0727 12 2.42 445.1884 0.2978
40 1.0622 4.1526 10 4.37 448.2688 0.2944
41 2.7060 4.7463 3 20.94 456.368 0.2901
42 2.6186 2.6398 10 2.65 473.2611 0.2897
43 1.6261 2.6219 12 2.77 479.5023 0.2886
44 7.0654 2.3908 4 7.25 485.3148 0.2881
45 1.6587 2.0672 8 5.25 491.4896 0.2839
46 0.9433 1.3897 19 1.78 526.3024 0.2825
47 1.7244 0.9566 12 2.66 572.993 0.2800
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Figure 5.17: Pareto-optimum solutions from all simulations conducted. The line
represent the operating temperature limit 449K.

5.3.3.2 Analytical Hierarchy Process (AHP)

In choosing a design, qualitative judgement frequently comes into the system. Pref-
erence of the objectives is one of them. The most prominent feature of AHP is its
ability to assign weights to qualitative judgements. The requirement for AHP is
that the qualitative judgements are given a score (number). An example of valid
preference is "objective X is twice more important than objective Y" or "objective X
score is ten, while objective Y score is three".

In reality, it may happen that more than 2 objectives are considered. To com-
pare more than 2 objectives, a pairwise comparison should be done resulting an n×n
matrix (n is the number of objectives). The importance (weight) of each objectives
is then taken from the eigenvector of the matrix.

AHP is not scale invariant, therefore the objective values need to be normalized.
After normalizing, it is then only a matter of evaluating each point in the Pareto-
front multiplied by the weights making it a weighted sum approach similar with the
method in 3.2.2, but done a posteriori. For a more detailed description and example,
see [16] and the section "Hierarchical Additive Weighting Method" in [18].

There can be several possible results using this method depending on the de-
signers’ preferences. Some possible results are presented in table 5.8.
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5.3.3.3 Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS)

TOPSIS is a method to rank choices developed by Yoon and Hwang[18] in 1980.
Similar with AHP, TOPSIS starts with normalizing and weighting the objectives.
The weighting and normalizing method introduced in AHP can be used in TOPSIS,
but other methods can also be used. The main difference between TOPSIS and
AHP is instead of using a weighted sum like in AHP, TOPSIS consider 2 special
points to choose the best design: the ideal solution and the negative-ideal solution.
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Figure 5.18: Ideal and negative-ideal solution without normalization and equal
weights

The ideal solution is the point where all weighted normalized objective values
are at their best possible at the same time, for example assuming equal weights and
no normalization, in table 5.7 the T bestmax is 305.4232 K and −∆P best is 0.2944 Pa/m
therefore the ideal solution is (305.4232,0.2944). This point usually is not attainable
by the system (otherwise the problem becomes trivial).

The negative-ideal solution is the opposite of the ideal solution, i.e. the point
where all weighted normalized objective values are at their worst possible at the
same time. Using table 5.7 assuming equal weights and no normalization, it is the
point (448.268,1.1037).
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The idea is that the best design should be as close as possible to the ideal so-
lution and as far away as possible to the negative-ideal solution. However, this may
also become another multi-objective optimization problem. To prevent this, Yoon
and Hwang[18] propose a method to consider the distance to both points simulta-
neously by taking the relative closeness to the ideal solution. Relative closeness of
point i to the special points is calculated using equation 5.19.

ci = si−
si+ + si−

(5.19)

ci is the relative closeness, si+ is the Euclidean L2-norm between point i and the
ideal solution, and si− is the Euclidean L2-norm between point i and the negative-
ideal solution4. Notice that si+ = 0 at the ideal solution so that ci = 1 and si− = 0
at the negative-ideal solution so that ci = 0.

It should be noted that different weights will give different values of relative
closeness therefore changing the decision. The effect of changing weights is shown
in figure 5.19. In the figure it can be seen that when maximum temperature is given
a larger weight than pressure drop, the Pareto-front shape becomes flattened in the
vertical direction, i.e. the distance in the pressure-drop axis is scaled to be smaller
while the distance in maximum-temperature axis is scaled larger. On the opposite
case, the Pareto-front is flattened in the horizontal direction. The weights also shifts
the position of the ideal and negative-ideal point.

The best designs with respect to different preferences both using AHP and
TOPSIS are presented in table 5.8 and in figure 5.20. In the figure, the appearance
of the best designs can also be seen. In general, when the pressure drop (operating
cost) is preferred, the fins will be short and/or has large spacing. On the other hand,
when temperature is preferred the operating cost would be higher and the fins will
be tall and dense. The best design when temperature is preferred have almost 4
times higher operating cost.

The thickness seems to vary greatly between designs in the Pareto-set, ranging
from 0.75mm to 4.4mm. Many designs have spacing less than 8.75mm which means
they operate at laminar flow regime according to [25] thus it can be said that effect
of turbulence on temperature performance is not significant.

4the L2-norm is the norm used in the main description of TOPSIS, other measure of distance
can also be used
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Figure 5.19: Effect of weights on the Pareto-front

Table 5.8: Best design with respect to relative
weight of Tmax using AHP and TOPSIS

Tmax/−∆P weight Optimum Configuration ID
AHP TOPSISa

1/10000 40 40
1/20 40 38
1/5 38 35
1b 33 33
5 20 20
20 12 14

10000 1 1
a The weighting and normalizing method used is
using same method as in AHP

b Usually taken when no decision-maker/designer
available and referred as "no-preference meth-
ods".
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Figure 5.20: Location of the best designs on the Pareto-front and its image
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6
Conclusion

The simulation based Multi-Objective Particle Swarm Optimization of a processor
heat sink has been presented in this thesis. Two objective functions are chosen and
the design space is three dimensional. Two MO-PSO variants from literature are
selected, implemented and evaluated for the geometric optimization considered. The
multi-physics software IBOFlow are used to simulate fluid flows and conjugate heat
transfer.

The results show that Fieldsend and Singh’s approach creates a more refined
Pareto front than Coello and Lechuga’s without any post-processing. However,
the CL-method has a better-distributed Pareto front. A method is proposed to
combine the benefit of both MO-PSO method by modifying the turbulence operator
in FS-method, however the thesis does not cover the implementation and test of the
proposed method.

The number of particles may affect the spread of initial points which in turn
may increase the probability of crowding. Latin hypercube sampling and orthogonal
sampling methods are proposed to mitigate the effect but not tested in this thesis.

Two post-processing methods for the multi-objective optimization are proposed
and tested. The two methods have opposing effect. The first method, filtering,
is proven to be able to reduce computation time significantly with reduced Pareto
front quality as the price. The second method, projection of infeasible points, is
capable of improving the Pareto front but it would increase the computational cost
significantly, potentially doubling the cost.

Post-Pareto analysis to choose the best design is conducted. The analysis re-
quires one or several decision makers to make ordinal or cardinal preference of the
objective functions. Three methods to account for these preferences are tested. For
generality, several scenarios of decision maker preference are evaluated. The ob-
tained best point for each scenario under different methods have been shown. When
operating cost is preferred, the fins are short and/or has large spacing. When tem-
perature performance is preferred, the fins are tall and dense. Turbulence which was
believed to improve thermal performance is observed to have insignificant effect.
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