
Development and implementation of
remote steering
Bachelor’s thesis in Mechatronics Engineering

OSSIAN BERGSTRÖM
TOBIAS WERNERSSON

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Bachelor’s thesis 2021

Development and implementation of
remote steering

OSSIAN BERGSTRÖM
TOBIAS WERNERSSON

Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Gothenburg, Sweden 2021

Development and implementation of remote steering
Ossian Bergström
Tobias Wernsersson

© OSSIAN BERGSTRÖM, 2021.
© TOBIAS WERNERSSON, 2021.

Supervisor: Klomp Matthijs, Solution Architect, Volvo Cars
Fredrik Bruzelius, VTI, Chalmers University of Technology
Examiner: Fredrik Bruzelius, VTI, Chalmers University of Technology
Report number: 2021:02

Bachelor’s Thesis 2021
Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Car that were used during thesis work to apply remote steering

Typeset in LATEX, template by Magnus Gustaver
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Abstract
During the last couple of years, the strive for developing autonomous cars has dras-
tically increased. With this said, new problems arise parallel to the evolution of
this new technology, as it grows bigger. This thesis examines an alternative way of
steering these autonomous cars, when the cars themselves malfunction or are unable
to manage a certain situation. Volvo Cars AB presented a thesis concept that in-
volves an investigation of the possibilities of steering a Volvo XC60 remotely from a
central communication unit. The method applied to achieve this utilized UDP data
transmission over Wi-Fi and a remote gaming steering wheel. To remotely send
the input steering angle value from the remote steering wheel to be received by a
VN8911 module implemented on a test rig in the first phase of the thesis and later
on being implemented on a XC60.

To analyse if the implementations and the alternative way of steering the XC60 re-
motely, function as intended. A couple of qualitative oriented tests were performed
to determine whether the alternative way of steering will work in practise. This
based on the test drivers’ intuition and personal judgement. Furthermore, the test
driver will manoeuvre the car simultaneously as watching a live streamed video of
the test course with the help of a GoPro Hero 8.

Due to this being a bachelor thesis, some limitations were applied to cut down any
unnecessary time demanding steps, in order to have enough time to finish within
the timespan of the thesis. The limitations of the thesis will include Wi-Fi only
being implemented during the test rig tests and not during the tests performed with
the implementations on the XC60. Instead, the tests will be performed over LAN
and the Wi-Fi latency that would have been applied will instead be replaced by a
simulated time delay implemented in the sending UDP programming script. Fur-
thermore, the test driver will simulate the remote environment of steering the car
from the backseat watching the livestreamed video.

Towards the end, the tests performed on the test rig provided an outcome enabling
an implementation of the developed hardware and software setup, on a Volvo XC60.
By analysing the data achieved from the tests performed on the car, an outcome
indicating great drivability and manoeuvrability was achieved. Whilst operating
during relatively high velocities and with different time-delays.

Keywords: Remote steering, UDP, CANoe, CAPL, VN8911, Python, Tests, Auton-
mous Cars.

v

Acknowledgements
We would like to extend our inmost gratitude to Volvo Cars for providing us such
a thrilling opportunity and project to test our engineering abilities, It has been an
absolute honor.

First and foremost, we would like to give special thanks and appreciation to our su-
pervisor Matthijs Klomp for his counseling and support during the entire duration
of this thesis. For showing great interest and great passion for the subject itself and
for the provided guidance and improving the quality of our bachelor’s thesis.

Additionally, we would like to pay our gratitude to the people working at Volvo
cars who helped us during different circumstances. Especially Bill Nakos and Jeber
Mandus for sharing their knowledge and expertise while providing us a helping hand
regarding both hardware and software related issues.

We also would like to thank our examiner Fredrick Bruzelius for his expertise in sig-
nal processing and in many other subjects and for all conversations and discussions
along the way.

Last but not least, we would like to thank Ravi Linder and Emil Johansson for
providing great company and humorous conversations during days at the office.

Ossian Bergström and Tobias Wernersson, Gothenburg, June 2021

vii

Contents

List of Figures xiii

List of Tables xv

Terminology / Abbreviations xvii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 1
1.3 Limitations . 2
1.4 Specification of issue under investigation 2

2 Theory 3
2.1 Python . 3

2.1.1 Pygame . 3
2.2 Matlab . 4
2.3 OBS Studio . 4
2.4 Network Latencies . 4
2.5 UDP: User Datagram Protocol . 4
2.6 Transfer function . 6
2.7 Bode Diagram . 6
2.8 Coherence . 7
2.9 CANoe . 7

2.9.1 Controller Area Network . 7
2.10 VN-module . 8

2.10.1 VN-8911 Setup . 8
2.11 Electrical Control Units and Interface 9

3 Methods 11
3.1 Hardware implementations . 12

3.1.1 Rig . 12
3.1.2 Breakout Cabling Kit . 13
3.1.3 Remote Steering Wheel . 15
3.1.4 GoPro . 15
3.1.5 Additional Hardware . 15
3.1.6 Car Setup . 16

3.2 Software implementations . 17

ix

Contents

3.2.1 Reading the steering angle . 17
3.2.2 Sending the value over UDP 19

3.2.2.1 UDP - Python . 20
3.2.2.2 UDP - CAPL . 21

3.2.3 The Rig and the whole setup 22
3.2.4 LAN and Wi-Fi tests . 24
3.2.5 Test page explanation . 24
3.2.6 Simulation setup for car implementation 25
3.2.7 Matlab code . 27

3.3 Tests and Simulations . 28
3.3.1 Sending and Receiving . 28
3.3.2 Rig And Car Test . 29

3.3.2.1 Rig test . 29
3.3.2.2 Car Test . 29

3.3.2.2.1 Maximum Delay 30
3.3.2.2.2 Low Intensity 31
3.3.2.2.3 High Intensity 32

3.3.3 Evaluation . 32

4 Results 35
4.1 Latency tests of LAN and Wi-Fi . 35
4.2 Vehicle test results . 36

4.2.1 Low intensity test results . 36
4.2.2 High intensity test results . 42

4.3 Test Sheet and Inaccuracies. 48
4.3.1 Inaccuracies noticed . 48
4.3.2 General thoughts . 48
4.3.3 Evaluation of Maximum Delay 48
4.3.4 Evaluation sheet . 49
4.3.5 Further Thoughts Regarding Tests 50

5 Discussion 53
5.1 Overall conclusion . 53
5.2 Hardware implementations . 53
5.3 Software implementations . 54
5.4 Further developments . 55

Bibliography 57

A Appendix A I

B Appendix B III

C Appendix C VII

D Appendix D XI

E Appendix E XV

x

Contents

F Appendix F XIX

xi

Contents

xii

List of Figures

2.1 Typical architecture of a User Datagram protocol message. 5
2.2 Visualizing the sending structure of data transportation over UDP . . 6
2.3 Typical architecture of a CAN-based system 8
2.4 Vn-module and user desktop connection. 9
2.5 IP-address configuration of VN8911 9

3.1 Network setup without break out cable. 12
3.2 Connection between rig, VN8911 and computer 13
3.3 Breakout Cabling Kit . 13
3.4 CANoe configuration network setup with the breakout cable. 14
3.5 Connection between rig, VN8911 and computer with breakout cabling

kit . 15
3.6 Displays the setup for steering a car 16
3.7 Code describing the initialization of the Pygame library and the joy-

stick module. 17
3.8 Code describing the counting and initialization of the connected joy-

stick devices. 18
3.9 Code describing the method of how the program attains the input

value of the remote steering wheel. 19
3.10 Code describing the manipulation of the steering angle value in Python,

to a value susceptible for CAPL. 19
3.11 The receiving node from the simulation setup in CANoe. 20
3.12 Code describing the declaration of datagram socket following the

UDP structure. 20
3.13 Code describing the implementation of OPEN and CLOSE button

on the test page. 21
3.14 Code describing the final modification before sending the steering

angle value to the CAN bus. 22
3.15 Visual representation of the created simulation setup utilized on the

tests performed on the test rig. 23
3.16 Visual GUI representation of the test page in CANoe, used for direct

interaction between the car and the GUI. 25
3.17 Visual representation of the created simulation setup utilized on the

tests performed on the XC60. 26
3.18 Visual representation of CAN2_Networks and ChassiCAN_VDDM

CAN busses in the simulation setup. 26

xiii

List of Figures

3.19 Code describing an example of sending Frames and signal between
CAN networks programmed in the Gateway node. 27

3.20 Code describing the functions generating the data analysis from the
different tests performed. 28

3.21 Remote steering wheel and computer that display the view placement 30
3.22 Figure Demonstrating test track at PV-north. 30
3.23 Caption . 31
3.24 Illustrating concourse for high intensity test 32

4.1 Bar graph visualizing the difference in latency between Wi-Fi and
LAN performed 5 times. 36

4.2 Timespan plot for 0 ms simulated time-delay during the low intensity
test. 37

4.3 Timespan plot for 50 ms simulated time-delay during the low intensity
test. 38

4.4 Angular difference in the timespan plot during 50 ms low intensity
test, between input and output steering angle 38

4.5 Bode plot and coherence plot with the time-delay 0 ms during the
low intensity test. 41

4.6 Bode plot and coherence plot with the time-delay 50 ms during the
low intensity test. 42

4.7 Timespan plot for 0 ms simulated time-delay during the high intensity
test. 43

4.8 Timespan plot for 50 ms simulated time-delay during the high inten-
sity test. 44

4.9 Timespan plot for 150 ms simulated time-delay during the high in-
tensity test. 44

4.10 Bode plot and coherence plot with the time-delay 0 ms during the
high intensity test. 46

4.11 Bode plot and coherence plot with the time-delay 50 ms during the
high intensity test. 47

4.12 Bode plot and coherence plot with the time-delay 150 ms during the
high intensity test. 47

4.13 Illustrations of how the car was steered through cone track with dif-
ferent delays . 51

A.1 Maximum delay table . II
A.2 Maximum delay table continuation II

xiv

List of Tables

3.1 Maximum Delay . 31
3.2 Low intensity attempts . 31
3.3 High intensity attempts . 32

4.1 Result for each test, Question 1 . 49
4.2 Result for each test, Question 2 . 49
4.3 Result for each test, Question 3 . 49
4.4 Result for each test, Question 4 . 50
4.5 Result for each test, Question 5 . 50

xv

List of Tables

xvi

Terminology / Abbreviations

• CAPL - Communication Access Programming Language
• CAN - Controller Area Network
• ECU - Electrical Control Units
• PSCM - Power Steering Control Module
• SAS - Steering Angle Sensor
• VDDM - Vehicle Dynamic Domain Master
• LIN - Local Interconnect Network
• PAP - Parking Assist Pilot
• DIM - Driver Information Module
• SUM - Suspension Module
• LAN - Local Area Network
• SAP - Steering Assist Pilot
• GUI - Graphical User Interface
• Wi-Fi - Wi-Fi is a family of wireless network protocols
• SASChasFr01 - Steering Angle Sensor Chassis Frame 01
• PinionSteerAG1 - Pinion Steering Angle 1
• VDDMChasiFr15 - Vehicle Dynamic Domain Master Chassis Frame 15
• ParkAssiPinionAgReq - Park Assistant Pinion Angle Required
• SteerWhlAgSafe - Steering Wheel Angle Safe
• SPA - Scalable Product Architecture
• UDP - User Datagram Protocol

xvii

1
Introduction

The modern society undergoes constant changes in every area regarding it. New
inventions and developments of already existing products are invented and new im-
plementations of these developments and inventions are created. There is endless
possibilities for the development of new technology and in the current time, there are
a lot of focus on the connection and the interaction between humans and technology.
Technology that are commonly used for this purpose is for example the touchscreen,
which enables the user to physically communicate with its user, and Wi-Fi which
enables the user to communicate wirelessly with the product. To be able to com-
municate from a wireless distance is a powerful tool. This thesis examines if it is
reliable enough to send information over Wi-fi in a safe and secure manor with as
low latency as possible.

1.1 Background
The car industry is evolving at a high velocity and the direction the development
is going is reflected in the cars produced. Nowadays the interior components of the
car heavily consist of electronic components with an increased number of interac-
tive features which allows an improved interaction between the driver and the car.
The developments have gotten as far as designing and researching in self driving,
autonomous cars controlled by algorithms. Therefore, there is an increasing need
of exploring the wireless possibilities of driving a car to explore the possibilities of
doing so as an alternative way of steering a car if needed. The possibilities such
as how much latency there is before turning unstable and if steering the car over
Wi-Fi is manageable, or if the time delay will be too great to be able to steer the
car in any relevant velocity. The intention behind this thesis is therefore to research
in this area and explore how well this will work, both in theory and in practise.

1.2 Aim
The objective of this thesis is to explore how well steering a car over Wi-fi, using
UDP data transmission, will work. Will the time delay by doing so be too great or
will it be small enough so that steering the car will end up manageable? Will this
way of wireless information delivery be reliable enough to not jeopardize the safety
of the driver and its surroundings while driving the car? These are the questions
that are going to be answered in this report. The anticipated result of this project
is to get a clear answer, whether it is possible to steer the car or not in a relevant

1

1. Introduction

speed. Hopefully, the result of this thesis end up in a positive manner where driving
the car with the implemented setup translates to be with high measure of drivability,
while being tested safely. This with low latency so that it is possible to steer the
car at a relevant velocity.

1.3 Limitations
With a detailed and throrough investigation of the areas touched upon in the thesis,
the possibilities and practical implementations of analysing an alternative way of
steering a Volvo XC60 will be made. To create a scenario where the desired result
is achievable, regarding the size of the thesis, some limitations are needed. These
limitations are stated below.

• The only test drivers performing the tests will be the authors.
• The Driver’s visual perspective while maneuvering the vehicle remotely will

only be a linear perspective from the front end of the car.
• The high intensity test will only cover simulated time-delays in the range of

0-50 ms and the low intensity test within the interval of 0-150 ms.
• The maximum velocity of the performed tests during this thesis, will be a

velocity of 40 km/h.
• The tests will only be implemented and performed on a Volvo XC60.
• This report will not cover any implementation of how well controlling the

throttling or breaking will work over Wi-Fi.
• This report will only cover the usage of data transportation over UDP-protocols.
• The focus on this report will be on the proof of concept. A demonstration and

a verification of a concept or theory to review its practical potential.

1.4 Specification of issue under investigation
To create a scenario where steering a Volvo XC60 over Wi-Fi is achievable, a for-
mulation of the specification of issues under investigation is a requirement. There
is a great importance in specifying these issues in such a way that make it easy and
straightforward to judge if the process of the thesis is going in the right direction.
Following below are the problem statements formulated for this thesis.

• Will it be possible to manoeuvre a car implemented with remote steering using
UDP?

• How does one modify and create a setup applied on the XC60 to enable the
possibility to steer the car remotely?

• How does one create a valid and functional test track environment?
• How well will manoeuvring a Volvo XC60 through a created test track do,

regarding the implementation of different time-delays and different velocities
applied during these tests?

2

2
Theory

The following chapter of the thesis presents the prior knowledge and theory required
for understanding the thesis.

2.1 Python

The programming language Python is partly based on the usage of a vast number of
open libraries and its included classes and functions. With the help of these classes
and functions it gives the user the possibility to write and design any desired pro-
gram to perform the task intended for it. Furthermore, Python is an object-oriented
programming language that focuses on objects and classes rather than functions.
This allows the user to create and manipulate classes and objects which makes it
beneficial to write large and complex programs that are easy to understand and
edit. Therefore, Python allows the user to create and write programs swiftly and
efficiently with a straightforward code construction that emphasizes on readability
and accessibility [1]. In this thesis, three main libraries are used; Socket library,
Time library and Pygame library.

The socket library allows the user to use the socket objects which enables the usage
of different data transmission protocols and other TCP/IP transportation layers [2].
Additionally, the time library gives the user the possibility to use different time-
related objects and functions [3]. The Pygame library allows the user to interact
with gamepads and joysticks devices.

2.1.1 Pygame

Pygame is a free and open-source python-based programming language library [4].
This means that anyone can use its content if a reference is made. The library is
a great tool to use for these exact purposes of creating inputs and outputs for a
game-like programming script or similar. Regarding this thesis, the functions from
the joystick module from the library was used. This module is specifically created
for interacting with gamepad and joystick devices. It includes multiple functions
intended to manipulate the plugged-in joystick device.

3

2. Theory

2.2 Matlab
Matlab is one of two main softwares includeded in Mathworks. The founders, Jack
Little and Cleve Moler, developed and founded this software in 1984. Matlab is a
well-known programming and numeric computing platform, designed to allow the
user to use all their content for math, graphics, and programming [9]. It is a tool
for engineers and scientists to develop their own programs and to analyse data.
Furthermore, it gives the user the possibility to create their own algorithms and
models.

2.3 OBS Studio
OBS Studio is an application for video recording and live streaming built on an
application programming interface that allows the user to interact with multiple
software applications at the same time. OBS Studio was founded and still main-
tained by Hugh “Jim” Bailey and developed by the community utilizing the software
[11].

2.4 Network Latencies
All data transmissions utilizes different means of network transportation. The most
common networks used are Wi-Fi, LAN, internet, mobile 4G network and mobile
5G network. All these different networks are optimized for different scenarios and
purposes. Furthermore, each of them has different settings and specifications and
therefore different latencies for end-to-end data transmission. The two relevant la-
tencies used during the thesis is Wi-Fi and LAN. The fastest method with the lowest
latency is a wired one, due to few latency demanding steps between the sending and
the receiving client. For the Wi-Fi communication, the data transmission first has
to go through the Wi-Fi router that later on sends it to the receiving client. By
having these extra steps in the transportation duration, a higher latency is therefore
achieved.
Other types of latencies are video-based latencies regarding the time-delay between
camera and display. Due to the large amount of data required to be transferred
over Wi-Fi or LAN, the latency will be larger compared to sending a small value or
similar data. By observing the OBS studio software, the live streaming latency can
be adjusted in the advanced settings. The lowest latency achievable while utilizing
this software is a latency of around 500 ms.

2.5 UDP: User Datagram Protocol
The user datagram protocol (UDP) is one of the two most common protocols under
the transport layer in the TCP/IP model [5]. The TCP/IP model exists of five layers
which are application layer, transport layer, network layer, data link layer and the
physical layer. All five layers handles different tasks in the TCP/IP model, where

4

2. Theory

the transport layer provides the wireless end-to-end data transmission between two
units. The UDP protocol is the more unreliable one of the two common protocols
in the transport layer. This due to its protocol structure and how the process of
sending and receiving a data package works.

The structure of the UDP-package consists out of a header which contains two 4
bytes sequences of necessary information, see figure 2.1. Every sequence includes
two ports of 16 unsigned bits and the first 4 bytes contains information such as the
source port and the destination port. This is where the UDP-package receives its
information regarding the sending and receiving process. The first 16 bits of the
second sequence consists of the length of the sequences of the UDP-package and the
UDP checksum on the remaining bits, which checks if the package is corrupt or not.
The following sequences contains the user defined data, that is the message that the
user desires to send using this protocol [7].

Figure 2.1: Typical architecture of a User Datagram protocol message.

Initializing of a socket is needed for data transmission between two clients. Also,
a socket type is required to be determined. There are different types of sockets.
The UDP protocol is using a message-oriented socket type called datagram sockets,
for data transportation between two devices. By sending data using this socket
type, the packages are sent one at a time without a receiving confirmation from
the opposing end of the transmission [8]. The client in both end of the end-to-end
communication is required to create a socket with purpose to either receive from or
send data to the UDP server. Afterwards, the socket of each client is required to be
defined to the same port, to enable data transmission with the defined server. As
seen in figure 2.2, the sending client is requesting a connection to the UDP server to
send the data package. The server then defines a new socket and start to listen for
incoming requests from the receiving client. When the connection been made with
a receiving client a transmission of data can be made.

5

2. Theory

Figure 2.2: Visualizing the sending structure of data transportation over UDP

The client utilizes the function sendto() to send data packages over to the server,
as shown in figure 2.2. The server receives the package by calling the function
recvfrom() and then initialize a process of waiting for a receiving client to request
for a data transfer. The receiving client then calls the function recvfrom() and gives
the server the request required to enable the final data transfer.

2.6 Transfer function

Achieving deeper understanding of how different signals behave and how its respec-
tive output signals vary after undergoing a certain process, can be useful. There is
a great importance in acquiring correct and rich data to thereby achieve knowledge
otherwise unattainable through our own eyes. A Transfer functions is a great tool
for signal processing and to understand how a system behaves and affects the cor-
responding inputs and outputs. It is also often utilized for measurement purposes
and data analysing within a bode plot. It compares the input and output signals
of a system to visually and theoretically compare the achieved data from different
tests on a bode plot.

2.7 Bode Diagram

It is possible to estimate a system with with the help of its in and output signals.
With the help of a bode plot it is then possible to visualise the characteristic’s
between the system’s in and output. From the characteristic’s, data can be extracted
to later on be able to draw conclusions regrading the system’s abilities [19].

6

2. Theory

2.8 Coherence

One way of judging the correlation of two signals is to measure the coherence between
them. The coherence is explained as a relation between two propositions and the
correlation between them. The two propositions can be anything free of choice,
the coherence still measures the amount of proposition A that is in proposition B
[6]. According to [18], coherence can be used to study if there is a linear relation
between two signals. Which values that are seen as good measures is up for debate
and depends on the situation, but if the coherence is equal to one the signals are in
perfect linear relation.
If the coherence value drops below one it means that the signals are not in a perfect
linear relation. Reasons behind this can be due to that the input signal does not
contains some the specific frequencies. Which means that that the data collected
only consist of noise for the specific frequencies. Or if if there is a non-linearity,
which means that it does not exist an linear relation between the signals.

2.9 CANoe

CANoe is a software tool for analysis, test and development of entire Electrical
Control Units (ECU) networks and individual ECUs. ECUs send and receive signals
with the help of CAN, LIN, and FLexRay for instance. In CANoe it is possible to
create simulation models that simulate the behaviour of a real ECU. CANoe has it is
own Communication Access Programming Language (CAPL). Which is very similar
to C-programming language. CAPL offer the possibilities to manually program the
test, and manually set up your ECU [10].

2.9.1 Controller Area Network

Controller Area Network (CAN) was introduced by Robert Bosch in 1986, due to
obtain robust communication between the rising electrical control units used in cars.
CAN is now days applied in in every automotive vehicle and electromechanical
components for communication between the different ECUs. In 1993 the CAN
standard ISO 11898 was released [12]. CAN is not a master/slave system, all control
units (nodes) can send and receive a message. A CAN messages consists of several
bits and is also called a frame. There are four types of frames. Data frames that
contain information from a source sent to receiver/receivers.Remote frames which
are used to request transmission of a data frame. Error frames that are sent out
if an error is detected on the network. Overload frames which are controlling the
flow and can if needed request time delay. Also, Data frames can be divided into
two different types of frames. The standard one where the Identifier is 11-bits and
the extended where the Identifier is 29-bits. Figure 2.3 shown below illustrates the
typical architecture of a CAN-based system.

7

2. Theory

Figure 2.3: Typical architecture of a CAN-based system

2.10 VN-module
To establish connection between external software and the bus system integrated in
a car a VN-module can be used. In this project the advanced VN-8911 was suitable
due to that it has the possibility of internet connection. A VN-8911 can best be
described as a small computer with an Intel ATOM processor. It is designed to
communicate with control units in any application. It can be run in several modes
[16]. The mode real time processing is used in this thesis due to the need of very low
latency. It is used together with CANoe. VN-module execute real-time simulation
and test functions and its graphic interface is displayed on the computer connected
to it. Figure 2.4 below illustrates its connection. The VN-module is in this case
connected to the CAN-bus to read or write to frames sent out by PSCM and SAS.
Which handles the frames necessary for steering.

2.10.1 VN-8911 Setup
As described earlier, the VN-module can be seen as a small computer. In order for
it to work properly with our CANoe configuration and rig/car. A few settings need
to be set. It is done through CANoe under the tab Vector Hardware Configuration.
Once it is open the user can choose which mode the module should operate in and
configure its IP-address. Configuration of its IP-address is important due to this
project use of UDP and LAN to send and receive data. Figure 2.5 below shows how
the specified settings are done.

8

2. Theory

Figure 2.4: Vn-module and user desktop connection.

Figure 2.5: IP-address configuration of VN8911

2.11 Electrical Control Units and Interface
ECUs that handle frames related to steering is Power Steering Control Module
(PSCM), Vehicle Dynamic Domain Master (VDDM) and Steering Angle Sensor
(SAS) measure the steering column angle. They transmit and receive frames related
to steering to one and other. Actions taken by the ECUs is depending on what
interface that is active. ECUs above communicate with each other by transmitting
and receiving frames to ensure that steering works properly. Parking Assist Pilot
(PAP) is a form of interface. It is constructed to find and maneuver your car when
parking. It can also assist when steering out of a parallel parking spot. PAP is
impossible to activate when a trailer is attached. On every occasion it does only

9

2. Theory

assist the steering, braking, gas and supervision is the driver’s responsibility. It is
possible for PAP to handle steering because of its programmed controller [14].

10

3
Methods

There are multiple ways of achieving a desired result. The thesis is divided into two
different sections/chapters. In the first section a small quantitative oriented survey
was used to find the answer to the problem that was implied in the first problem
statement. The statement about being able to manoeuvre a car through a test
track while controlling the steering rack with a remote steering wheel, but through
a purely technical viewpoint. Plenty of layers of investigation was needed to achieve
a result, which gave the opportunity to explore the following section of the thesis.
In the second section the methodology used where more qualitative oriented and
less data heavy, where the focus was rather based on a personal point of view and
impression on whether the car was manoeuvrable through the created test tracks or
not.

First and foremost, to have the possibility to conduct any tests at all, a lot of prob-
lems of different technical areas must be solved. The whole thesis itself is reliant
on all these solutions to cooperate to create a scenario where the alternative way
of steering a XC60, which this report is based on, becomes a reality. During the
planning period of the thesis a basic idea was created of how the problem state-
ments were to be solved. The objective was to send a steering angle value over
Wi-Fi using UDP to steer a car. To be able to send the value remotely, a script
written in Python was used for reading the steering angle value generated from an
alternative hardware and later send it. The receiving end of the UDP-protocol is
the XC60 internal software. To enable the data transmission between the python
script and the internal software of the car, a VN8911 module must be utilized as
a bridge between the car and UDP packages. When the data has been received
to the VN8911 module, the real value of the steering rack can then be overwritten
by modifying the value of the input signal received by the VN8911 module to the
output signal.

Secondly, after a solution has been accomplished and manoeuvring a car is possible,
the second chapter of the report can be initiated. The chapter more focused on a
qualitative oriented method approach, where tests are used to examine whether the
previous technical part of the report works in practise. This is where the second and
third problem statement is answered. To be able to examine the functionality and
effectiveness of the implementations, the tests is required to be designed in such way
where it produces accurate data. The objective with the thesis is to see how well the
car can be manoeuvred in a real-life scenario. In a scenario where the way of driving
is not necessarily an intense one where a lot of quick and powerful manoeuvres are

11

3. Methods

performed. To create test environments where accurate data can be analysed and
where conclusions can be made on which driving scenarios suits the implementations
of the car better or worse. To determine this, two different tests were decided to be
used. One for high intensity driving and one for low intensity. The test drivers then
determine the feel of the car based on their own intuition and judgement.

3.1 Hardware implementations
To be able to create an environment for test of remote steering. Different hardware
was needed to be included and remodelled to work with each other. At first the test
of different solutions was conducted on a rig. The best working solution was later
transferred to a car. Below is a brief description of each hardware and its setup.

3.1.1 Rig
A former test rig that is designed to test mechanical hardware and software updates
related to steering. The rig is based on Volvo’s SPA platform and is equipped
with some of the ECUs found in a car. Power Steering Control Module (PSCM,
CAN) which contains the autopilot (traffic jam assist) function. Steering Angle
Sensor (SAS, CAN) the measured steering angle. Driver Information Module (DIM,
FlexRay) shows vehicle speed, gear etc [15]. Due that both the Rig and car used
in this thesis is based on the SPA platform transition back and forth are possible.
Figure 3.1 shows how the configuration in CANoe were constructed to be able to
read and write to specific frames. Some of the ECUs had to be simulated to represent
the non existing.

Figure 3.1: Network setup without break out cable.

Before the rig was able to be used a series of small modifications were to be done.
The wires connected to the power steering motor were replaced to better suit our

12

3. Methods

power supply. Controlling of the ignition (KL15) was replaced with a wire instead of
controlling it with the help of software.The figure 3.2 below describes the connection
that had to be established to be able to read values from the sensors and ECUs.

Figure 3.2: Connection between rig, VN8911 and computer

3.1.2 Breakout Cabling Kit
Transition from rig to car required a few modifications regarding connection of the
hardware as well as the software setup. To enable connection and have the possi-
bilities to overwrite existing ECUs frames without gain error frames. A breakout-
cabling kit had to be created. Figure 3.3 displays the construction of the cabling
kit.

Figure 3.3: Breakout Cabling Kit

13

3. Methods

As can be seen above in the figure 3.3 the frames sent out and received by the PSCM
travels through the VN-module. Which in this case makes it possible to modify the
frames needed for the steering rack to move in the specified direction. As well as
have the car believe that it is a correct action. Figure 3.4 display how the CANoe
configuration were modified to have the possibility to change specific frames.

Figure 3.4: CANoe configuration network setup with the breakout cable.

Figure 3.5 below demonstrates the connection setup for the rig when the new cabling
kit is installed. KL15 is the wire used for ignition. Which is sending a signal to
PSCM to ‘’start up”. PSCM is built inside of the power steering motor but its socket
is located at the outside.

14

3. Methods

Figure 3.5: Connection between rig, VN8911 and computer with breakout cabling
kit

3.1.3 Remote Steering Wheel
For remote steering to be possible an external steering wheel has to be used. In this
case it is a Thrustmaster T300 RS that is originally designed for gaming. It has its
own software that offers the possibility to simulate feedback in terms of increasing
the torque when turning. In this case feedback from the car is not sent out to the
remote steering wheel and simulating the feedback is needed.

3.1.4 GoPro
To be able to steer remotely a view of what is ahead of the vehicle maneuvered, is
needed. For this a camera that can live stream in different perspective as wide and
linear view is needed. The camera should also be easy to mount in the front of the
car and water resistant. To fulfill all these needs a GoPro Hero 8 was chosen.

3.1.5 Additional Hardware
Beyond all the necessary hardware for steering, a few more components is needed
to be used. All of the electronics used need power supplies in some sort. Therefore,
converters and distributors are inserted when installing everything inside of the car.
Every item used is stated below.

15

3. Methods

Power supplies
- 12 V computer charger.
- 12 V VN-power supplier.
- 230V to 12 V converter.
- regular computer charger.
- Socket for 230 V to power remote steering wheel was already installed.
- 12 distributor.

Wires and converters
- Ethernet to USB converter.
- GoPro cable.
- USB distributor.

3.1.6 Car Setup
Once all hardware is gathered and configured to work properly with each other and
the break out cabling kit is installed. Everything needs to be connected to each
other. Figure 3.6 below displays connection of the complete system inserted and
connected inside of the car. The VN-module runs the same CANoe configuration
used to control the rig after break out cabling kit is installed.

Figure 3.6: Displays the setup for steering a car

16

3. Methods

3.2 Software implementations
The following chapter of the thesis presents the software developed during this thesis
from the different tests performed with the applied implementations.

3.2.1 Reading the steering angle
The first thing that is required to be solved to enable remote steering of the XC60,
is to generate a steering angle value remotely from an alternative hardware. The
Thrustmaster T300 RS steering wheel was used for this purpose. The Thrustmaster
steering wheel is mainly designed for gaming purposes and not for implementations
on a real physical car. For the purpose of this thesis, a gaming steering wheel was the
perfect hardware to utilize. It is designed to provide an input steering angle value
for a chosen computer application and to gain access to this value. The open-source
Python programming language library Pygame was utilized for this purpose. By
having access to the functions in the joystick module of Pygame, a script that reads
the input of the Thrustmaster T300 RS can be written. With the following lines of
code, and by implementing the library “import pygame” in the script header, the
functions are enabled and ready to be used. The complete code exists in appendix
B.

Figure 3.7: Code describing the initialization of the Pygame library and the joy-
stick module.

In figure 3.7, the system variable named horizontal_axis is the receiving variable of
the input steering angle value from the Remote steering wheel. The system variable
named x-coordinate is the modified variable with the purpose of being sent over
UDP. The following step is to initialize the Thurstmaster as a joystick to enable
data transmission between the hardware and the python script. Figure 3.8 shows
that on row 22 the number of joysticks initialized are counted. If the number of
joysticks is zero, the program will stop running. Otherwise, if the value is not zero,
the program will bind the Thrustmaster T300 RS to the first slot of joysticks in the
Pygame joystick module and initialize it on row 29 and 30.

17

3. Methods

Figure 3.8: Code describing the counting and initialization of the connected joy-
stick devices.

The internal steering angle value of the Thrustmaster will now be possible to attain
as an input to the Python program when the initialization of the joystick device has
been completed. To achieve this, the function Thrustmaster_T300_RS.get_axis(0)
is implemented on row 62 in the figure 3.8. The function reads the value of the
steering wheel angle as a float value and overwrites the value of the system variable
horizontal_axis. The value is interpreted as a Gamepad joystick with a horizontal
value which converts the angular value from the Thrustmaster steering device to a
horizontal value between the interval of -1 and +1.

To design the python program to produce a continuous steering angle value to trans-
fer to the VN8911, an indefinite loop is needed. This is achieved by the usage of
a while loop with a terminating parameter if something would go wrong and an
emergency stop is required. As shown in figure 3.9 The value from the variable
horizontal_axis is then transferred to the x_coordinate variable. To allow the Volvo
XC60 internal software to receive the data sent from the Python program, the UDP
package is required to be a string datatype variable and consist of a precise size
of 16 bytes. The programming operation to converting a float value to a string is
done by a cast function str(x_coordinate) on row 71. The Thrustmaster generates
a varying output size. Therefore, every data package is required to be filled up with
zeros from the right side of the x_coordinate value.

The test rig’s steering wheel takes the opposite value for a right-hand turn and vice
versa for a left-hand turn. The x_coordinate value must then change sign to achieve
a true synergy between the remote steering wheel and the test rig’s physical one.
As shown on figure 3.10, an if statement was utilized for this purpose.

18

3. Methods

Figure 3.9: Code describing the method of how the program attains the input
value of the remote steering wheel.

Figure 3.10: Code describing the manipulation of the steering angle value in
Python, to a value susceptible for CAPL.

3.2.2 Sending the value over UDP
The second thing that must be solved is to enable wireless data transportation
over Wi-Fi between a computer and the VN8911 module. This requires both a
programming script implementing the sending part of UDP written in Python and
a script of the receiving part written in CAPL. The CANoe software is running
on the VN8911 module which then executes the CAPL receiving node as shown
in figure 3.11. The VN8911 is running in distributed mode instead of standalone
mode. By running in distributed mode, the VN8911 module is required to have a
graphical user interface (GUI) operated on an external GUI device. This in the form
of another laptop.

19

3. Methods

Figure 3.11: The receiving node from the simulation setup in CANoe.

3.2.2.1 UDP - Python

The sending part of the UDP is implemented in the Python programming script.
This is written in the same program as where the input value from the Thrustmas-
ter T300 RS is generated and modified. To enable data transmission using UDP
protocol, a datagram socket must be declared. This is done by the declaration
of the variable sock with the function initialization socket.socket(socket.AF_INET,
socket.SOCK_DGRAM) as shown in figure 3.12. The first parameter of the function
informs the created socket the ipv4 family address is used. The second parameter
declares the created socket as a datagram socket. With this done, the UDP sending
client is declared and a UDP server is created. To specify a mutual server address
and port between the sending and receiving client, a declaration of the destination
port and the source port is done on row 40.

Figure 3.12: Code describing the declaration of datagram socket following the
UDP structure.

The sendto() function sends a request to the UDP server to enable the data trans-
portation between the client and the server. As shown in figure 3.10, this function
is being used on row 74 and 83. The first input parameter of the function contains
the modified steering angle value, as earlier explained, and the second parameter is
the destination server address where the data package is delivered to. This enables
the possibility for the requesting client to receive the data package being sent.

20

3. Methods

3.2.2.2 UDP - CAPL

To transfer the data package to the VN8911 module over UDP communication, a
receiving programming script is needed. The VN8911 uses CANoe for this purpose,
the same internal software implemented in the Volvo XC60. The receiving UDP
client of the CANoe simulation setup is the receiving node that is shown in the
figure 3.11. The internal programming language used in the CANoe software is
CAPL, a programming language very similar to the C programming language. The
receiving node contains the program written in CAPL that receives the data pack-
age requested. To start the data transportation between the UDP server and the
requesting client, a declaration of the server address and the source port is needed.
This is achieved by code line 20 where the UDP socket is being declared with the
same IP-address and port as the UDP server. To initialize the communication be-
tween the UDP server and the receiving client, the built in function ReceiveFrom()
from the socket communication library is used to enable the transport layer protocol
data transmission communication. The input parameters of ReceiveFrom() gives the
CAPL program a buffer capable of taking in data packages of size 16 bytes.

Figure 3.13: Code describing the implementation of OPEN and CLOSE button
on the test page.

Previously mentioned in the report, the data package sent over UDP is modified to
be a string of 16 bytes. In order to send the message over the CAN bus of CANoe,
the string of 16 bytes is required to change data type according to a certain bit
setup. The data type required is a double number where the bytes of the number
need to be allocated as follows: Blank space - Sign- Digits - .Digits. As seen in
figure 3.14, this allocation is made by the typecast function atodbl. The modified
value is then transferred to the desired variable emphParkAssiPinionAgReq and is
thereafter sent to the CAN bus.

21

3. Methods

Figure 3.14: Code describing the final modification before sending the steering
angle value to the CAN bus.

3.2.3 The Rig and the whole setup
By being able to generate the input value of the remote steering wheel and enabling
the UDP communication, the focus shifts from the individual solution to a more
complete scenario. A scenario where the focus now lies on the objective to make
the physical steering wheel of the rig move accordingly to the remote one. With
the right hardware configuration and UDP communication, a complete simulation
setup for testing the rig can be created. On the test rig, there are some physical
nodes producing real values to the VN8911 module. These physical nodes are the
PSCM, SAS and SUM. As mentioned in the hardware chapter 3.1, the frames from
the PSCM are produced from the ECU located inside of the power steering motor.
The SAS and SUM frames are coming from the steering wheel of the test rig. All
other ECUs are simulated in the simulation setup, this with the purpose to simulate
a real testing environment to fool the test rig to believe it is a real car. This is
shown by figure 3.15 where the faded squares are the real ECUs and the remaining
ones are simulated. The simulated ECUs are the missing physical components not
implemented on the test rig, from the ChassisCAN Gateway. The ChassisCAN
Gateway is a minority of CAN networks inside of a XC60, but it includes the ECUs
needed for the purpose of this thesis.

22

3. Methods

Figure 3.15: Visual representation of the created simulation setup utilized on the
tests performed on the test rig.

To make the steering wheel mounted on the test rig to turn with the help of the
simulation setup in figure 3.15, an understanding of what is required to make the
steering wheel turn, is necessary. The XC60 is chosen to be in park assist driv-
ing interface, this is done due to two main reasons. The first reason is that the
behaviour of the car is unknown while overwriting system variables and signals in
normal driving interface. Therefore, this is done with the purpose to not interfere
with the XC60 internal driving system. Simply put, it is a delimitation at the start
of the thesis. The other reason is, while in park assist driving interface, the internal
system for controlling the steering wheel will not intervene with the actual steer-
ing wheel in a way that is hindering the wheel to turn as intended. There will be
no controller systems in park assist driving interface that will prevent the steering
wheel of the car to move accordingly to the remote steering wheel. In other words,
the steering wheel will be very accurate to the movement of the remote one. In
order to do this, fooling the car that the velocity is below 5 kilometres an hour is
necessary. Otherwise, the car will enter a different driving interface and the created
configuration will not work as intended.

In park assist pilot interface, the received signal that instructs the steering rack to
turn, is being held by the system variable PinionSteerAG1. This variable is one of
the variables included in PSCMChasiFr01 which is the first frame from the PSCM
ECU. The value of PinionSteerAG1 is received from the VDDM system variable
ParkAssiPinionAgReq from the VDDM frame VDDMChasiFr15. As previously ex-
plained, ParkAssiPinionAgReq obtains its value from the UDP data transmission.
But in order to change the value of PinionSteerAG1, the ParkAssiPinionAgReq must
be compared with SteerWhlAgSafe from SASChasFr01. This comparison is made
due to safety measures e.g., if the deviation between the two variables is too great,
the value of PinionSteerAG1 will not be overwritten. If this occurs during simula-
tion tests on the test rig, the test rig will shut down the simulation. This is due to
how the simulation setup is programmed to change the driving interface from park
assist pilot interface to the regular driving interface. This is partly caused by how

23

3. Methods

the internal software of Volvo XC60 car configuration handles the comparison of the
SteerWhlAgSafe and ParkAssiPinionAgReq variable.

3.2.4 LAN and Wi-Fi tests
By this stage, a complete scenario has been created and tests can be performed on
the rig. Two main tests are performed. The first test was executed without the usage
of the created cabling kit, explained in the hardware chapter previously. This test
was made with both LAN connection and Wi-Fi connection between the VN8911
and the second computer operating the Python script. The second test was executed
with the same prerequisites except this time performed with the created cabling kit
implemented on the rig. Between the two tests, the configuration of the hardware
differs. The IP-address will need to change accordingly to whether the test will be
performed over LAN or over Wi-Fi connection. This change is also required in both
the sending client Python script and the receiving client CAPL script to make the
test possible to perform.

Both these tests are done using a quantitative way of method where the data from
the tests will be collected and analysed. The primary goals of performed tests are
to manage to steer the steering rack and so also the physical steering wheel with
the remote steering wheel. But at the same time measure the different time-delays
occurring over different parts of the tests. Time-delays such as the delay from
the computer executing the Python program to the program implemented in the
VN8911, and the differences between these time delays using LAN connection and
Wi-Fi connection.

3.2.5 Test page explanation
Initialization of the simulation is done by the computer directly connected with the
VN8911 over USB. The computer handles the GUI of the VN8911 with the CANoe
software. The GUI allows the user to interact with the VN8911 and change between
different interfaces and other possible interactions are possible, such as generating
data graphs and other valuable data. As seen in figure 3.16 below, some of the
important GUI interactions of the simulation setup are shown. As previously men-
tioned, both the tests with the car and the test rig need to operate in the park assist
pilot interface. To achieve this, the VDDM is required to be in driving interface,
which is shown as the UsgModDrvg_UsgModSts number 13. While in driving inter-
face, the LatCtrlMod can be changed to LatCtrlMod4_PrkgAut, which forces the car
into the SAP interface.

An interactable panel where the system variables Open or Close is available is shown
in figure 3.16. This panel enables the CAPL program to know if the UDP receiving
socket is open and susceptible to receiving UDP packages or closed. The value
of the UDP packages can be observed on the receiver panel by the system variable

24

3. Methods

RxText. Other options and interactions are also available, options such as regulating
a simulated vehicle speed.

Figure 3.16: Visual GUI representation of the test page in CANoe, used for direct
interaction between the car and the GUI.

3.2.6 Simulation setup for car implementation
After successfully steering the test rig remotely, the next phase of the thesis can be
initiated. The next phase involves the previous implementations tested on the test
rig but applied on a Volvo XC60. Therefore, the breakout cabling kit of the PSCM
CAN bus network needs to be implemented and mounted on the car by Volvo me-
chanics. VN8911 is connected in such a way that channel 1 is connected to the CAN
network from the real PSCM of the car and channel 2 and 3 is directly connected
to the CAN network communicating with the rest of the car. All messages and sig-
nals sent or received to channel 1 are therefore between the PSCM and the VN8911
and the messages and signals sent or received over channel 2 and 3 are between the
VN8911 and the car.

Additionally, some adjustments in the simulation setup are required. The XC60
differs a lot from the test rig and some signals and frames are needed to be allocated
differently by the VN8911. As shown in figure 3.17, the majority of ECUs are faded

25

3. Methods

and are therefore real ECUs sending real values generated from the car. The VDDM
ECU is the only simulated ECU required. As mentioned previously in the report, the
VDDM frame VDDMChasFr15 consist of the system variable ParkAssiPinionAgReq
that compares its value with the corresponding variable from SAS and PSCM. The
PSCM system variable PinionSteerAg1 will therefore be overwritten and the PSCM
frames can be sent through the VN8911 on to the XC60. As shown on figure 3.17
and 3.18, two additional CAN networks and a gateway ECU between the three
CAN networks is needed to enable an exchange of signals between the hijacked
PSCM ECU and the car that allows the comparison.

Figure 3.17: Visual representation of the created simulation setup utilized on the
tests performed on the XC60.

Figure 3.18: Visual representation of CAN2_Networks and ChassiCAN_VDDM
CAN busses in the simulation setup.

The gateway ECU is programmed to send PSCMChasiFr01, PSCMChasiFr02, PSCM-
ChasiFr03 and PSCMChasiFr04 to the CAN network CAN2_Networks plugged into
channel 2. These frames are the modified frames including the overwritten system
variable PinionSteerAg1. Additionally, the ECU is programmed to send the simu-
lated frame VDDMChasFr15 to ChassiCAN_VDDM over channel 2 and the SAS
frame SASChasFr01 to the PSCM through channel 1 over ChassisCANhs. The code
lines written to execute the previous operations are greatly similar and an example
of how VDDMChasFr15 is sent, is shown in Fig 3.19.

26

3. Methods

The on message function initializes the code lines inside of its brackets by checking
if the message/signals is active on the desired location. In this case, the following
location was used; ChassisCANhs::VDDM::VDDMChasFr15. The ChassiCANhs is
the CAN network linked to channel 1 informs the CAPL program where to check if
the message VDDM::VDDMChasFr15 is active. The message chassiCAN_VDDM.*
m; tells the program the location where message m are being sent during the if
statement. The if statements checks the incoming message from on message if the
message is a receiving or transmitted signal and which CAN network it is being sent
from.

Figure 3.19: Code describing an example of sending Frames and signal between
CAN networks programmed in the Gateway node.

3.2.7 Matlab code
To be able to analyse the data received from the tests performed, the system vari-
ables ParkAssiPinionAgReq and PinionSteerAg1 were required. These variables are,
as mentioned earlier in the thesis, the input and output signals regarding the steer-
ing of the car. After each test, these two variables containing all signals received by
the car during the test, were saved and later used as two large arrays of complex
coordinate values. The function of tfestimate and mscohere was later used in the
Matlab script as shown in figure 3.20, to generate an estimated transfer function
and to gain the linear relation between the two variables.

27

3. Methods

Figure 3.20: Code describing the functions generating the data analysis from the
different tests performed.

3.3 Tests and Simulations
Test and simulation chapter explains what experiment method that was used. Why
it is used and what the result will narrate.

3.3.1 Sending and Receiving
As mentioned under LAN and WIFI test. It is important to determine the existing
delay when sending signals over WIFI and LAN. To later on be able to set up the
other experiments correctly. To measure the built-in delay a timer was implemented
in Python. The timer starts when the computer that runs python is sending a value
to the VN-module. The configuration loaded at the VN-Module receives the value
and then sends it back immediately. When the computer that runs python receives
the value the timer stops. The total time was then divided by two to get the latency
of one way. When the delay for sending data over either WIFI or LAN is known. It
is possible to work out the test with different time delays implemented.

28

3. Methods

3.3.2 Rig And Car Test
To create and measure how well the car’s steering works when a new way of steering
is applied requires accurate test methods. At first some minor tests were performed
on the rig to verify if steering with the chosen solution even would be possible to
implement in a car. To measure how well the actual steering angle followed the re-
quested steering angle comparison needed to be done. In order to do so the reference
signal was compared with the system’s present value. In this case ParkAssiPinion-
AgReq represents the requested value and PinionSteerAg1 is the system’s output.
CANoe has the possibility to collect data from each signal and plot them. From CA-
Noe you can export the data to Matlab where it is possible to use different built-in
math functions to analyze the result.

3.3.2.1 Rig test

The rig is a powerful tool to try out the solutions before moving on to a real car. In
this case the rig were not used for any further analysis in Matlab. The test was to
by eye try to recognise any latency between the different steering wheels. A Final
test was constructed as following. Every hardware is setup and connected to the rig
together with the CANoe configuration. The steering motion back and forth started
with slow movements but was successively increased. The steering movement was
increased until the point where it was visible that rig’s steering wheel is pointing in
the wrong direction compared to the remote steering wheel.

3.3.2.2 Car Test

Experiments performed with the car were divided in to the two categories low inten-
sity and high intensity. To better get an understating of maneuvering possibilities
in different scenarios. Hardware setup and connections were the same in both cases
and the exact same CANoe configuration was used.

The remote steering wheel was placed in the backseat. Above the steering wheel a
computer was placed. A GoPro was mounted on the windshield and its view was
displayed on the computer placed above the remote steering wheel. Figure 3.21
below is displaying the setup from the backseat. With the help of that view the test
driver tried to navigate around the courses. The view was a bit delayed. It did not
have the same delay as when sending the steering angle. A safety driver was located
in the front seat to handle gas and brake. As well as have the possibility to overtake
the steering of the car in case of emergency.

29

3. Methods

Figure 3.21: Remote steering wheel and computer that display the view placement

Figure 3.21 above shows how the remote steering wheel was mounted in the backseat
and where the computer that displayed the view were placed. As can be seen the
safety driver is located in the front seat to handle gas and brake.

3.3.2.2.1 Maximum Delay Before moving on to experiments devoted to low
or high intensity maneuvering. It was necessary to get an understanding of how
different delays regarding sending the remote steering wheels steering angle affects
maneuvering. To later on be able to choose between what steering delays low inten-
sity and high intensity experiments should be conducted with. Delays chosen during
this test was related to latency’s that can occur when using WiFi. But simplified
due to that it will not fluctuate during the tests.
For this experiment the setup was a bit different, no camera was attached to the
windshield. Driver that was maneuvering with the help of the remote steering wheel
did instead look directly at the road. Which means that there were not any delays
regarding view and the test did only evaluate how well the driver could maneuver
when a fixed delay was applied. This experiment was performed at the circuit seen
in Figure 3.22.

Figure 3.22: Figure Demonstrating test track at PV-north.

Experiment was divided into two attempts depending on velocity. Delays on sending
the steering angle were in both cases first set to zero the successively increased till

30

3. Methods

it felt impossible to steer in a safe way. It was increased with 50 ms after each lap
around the track. Table 3.1 illustrates the attempts.

Table 3.1: Maximum Delay

attempt velocity delay
1 Curve = 15 km/h, Straight = 30 km/h 0 –> impossible
2 Curve = 15 km/h, Straight = 30 km/h 0 –> impossible

3.3.2.2.2 Low Intensity An experiment to simulate driving on a country road
that does not have the need of fast maneuvering. To exemplify and test driving in
low intensity situations. Figure 3.23 below demonstrates the track driven. As can
be seen the track is colored in blue and red. The use of different colors is due to the
different velocities applied during the track.

Figure 3.23: Caption

The low intensity test track can be seen above. Red represents a velocity of 40
km/h and blue 30 km/h. The test was divided into two attempts, the track was
run with the same velocity changes in each attempt but different delays on sending
the steering angle was used in each attempt. If the car crossed the road lines or the
safety driver had to interfere, the attempt was marked as failed. In this experiment
maximum delay was set to 50ms due to the risk of injury.

Table 3.2: Low intensity attempts

attempt velocity delay
1 depending 0 ms
2 depending 50 ms

31

3. Methods

3.3.2.2.3 High Intensity An experiment to test and simulate driving in situa-
tions when faster manoeuvring is needed. To test higher intensity a concourse was
put together. Figure 3.24 below demonstrates the cone course.

Figure 3.24: Illustrating concourse for high intensity test

As can be seen in the figure 3.24 above, the cone course had track-lines that represent
the edges. If a track line was crossed with all four wheels or if a cone was hit, the
attempt was marked as failed. High intensity test was divided into three different
attempts.

Table 3.3: High intensity attempts

attempt velocity delay
1 15 km/h 0 ms
2 15 km/h 50 ms
3 15 km/h 150 ms

3.3.3 Evaluation
To better get an understanding of how well the solution performed during the tests.
Evaluation of each test is important. It was done theoretical and by taking the
drivers feelings regarding steering into consideration. Therefore, measuring of the
reference signal ParkAssiPinionAgReq and the system output signal PinionSteerAg1
were done during each test. The measured value were later exported to MATLAB
for further analysis. After the high- and low intensity tests were performed a sheet
was answered by the participants. It included questions related to steering to better
get an understanding of how the handling felt. As well as what expectations partic-
ipants had. Questions included in the sheet are stated below.

32

3. Methods

What was the experience of the deviation between screen and the remote steering
wheel? 1 (Not noticeable) - 5 (Very noticeable)

How did it feel to steer while only watching a screen? When not the same field of
view was possible.
1 (Not noticeable) - 5 (Very noticeable)

Question 3: How was the feeling of turning the car with the remote steering wheel
with its settings and moment of inertia? Compared with the actual one.
1 (Not Strange) - 5 (Very Strange)

What were the expectations before the test? Knowing steering will be delayed.
1(Not Nervous) - (Very nervous)

How noticeable was the delay when maneuvering?
1(Not noticeable at all) - 5(Impossible to maneuver)

33

3. Methods

34

4
Results

The following chapter of the thesis presents the results achieved from the different
tests performed with the applied implementations.

4.1 Latency tests of LAN and Wi-Fi
This thesis is based on evaluating the possibilities of steering a Volvo XC60 remotely
over Wi-Fi. One of the areas of greatest importance is therefore the evaluation of
the different latencies occurring while using the implementation developed during
this thesis. Due to the limitations of the thesis, a simulated time delay in the python
program has been utilized to measure the extreme latencies appendix C. By testing
these boundaries of when the car gets undrivable according to the tests performed,
one can judge the possibilities of remote steering. But these simulated latencies
applied to the program itself, are not the only existing latencies. There is also the
latency of the UDP data transfer from the Thrustmaster R300 TS to the actual
steering wheel. These latencies were achieved, as mentioned earlier in the thesis, on
the test rig using the sending node implemented in the CANoe simulation setup.
As seen in figure 4.1, the Wi-Fi latency is a bit larger than the LAN latency, with
an average latency of 2.325 ms for a LAN connection and 3.4112 ms for a Wi-Fi
connection between the computer executing the Python program and the VN8911.
The main idea behind the simulated time delay is to practically evaluate the safety
margin of the length of a Wi-Fi connection delay is possible.

35

4. Results

Figure 4.1: Bar graph visualizing the difference in latency between Wi-Fi and
LAN performed 5 times.

This section of the chapter describes the outcomes from the signal processing analysis
of the implementations on both the test rig and the car. The signal processing
analysis is achieved by four graphs describing the characteristics of the differences
between the input and output signals of the system in different situations. These
graphs consist of Bode, coherence and timespan plots. These plots are used with the
purpose of achieving data and information otherwise unattainable through humans’
eyes. With the usage of the information gained, a deeper understanding of how well
the hardware and software implementations on the XC60 works in practise, can be
understood. Is it drivable? Is it possible to steer the car in any relevant velocity
without losing control?

4.2 Vehicle test results
As previously explained in the test and simulation chapter, the two tests consist of
a low intensity country road test and a high intensity cone test.

4.2.1 Low intensity test results
By observing the second plot of figure 4.2 and 4.3, the timespan of the individual
tests and value of both the input variable ParkAssiPinionAgReq as red and output
variable PinionSteerAg1 as blue. The difference between the two signals is almost
unnoticeable. By observing the difference in time for the zero-crossings between the
two signals, the difference in time describes the total time-delay of the system. The
time-delay including the simulated one and the overall delay between the system
variable PinionSteerAg1 is received and the steering rack starts to turn. The gen-
eral size of the time-delay was approximately 126 m with 0 ms simulated time-delay
implemented. Furthermore, at a few moments during the tests performed, the graph

36

4. Results

of the input value is clearly visible. An interesting observation can be made from
figure 4.4 4.3 4.4, where two arbitrary value spikes occur from the ParkAssiPin-
ionAgReq variable. The reason behind the safety precautions made during the low
intensity test of only implementing the low and medium time-delays. Was due to
the large and sudden value changes from the sent value of the remote steering wheel.
As seen in figure 4.4, the real steering value of the car, attempts to obtain the same
value through the variable PinionSteerAg1. Luckily, the small static sampling time
of CANoe of 30 ms prevented this. The value then relatively fast tried to change the
value back to a relevant one, but a small movement of the steering rack of the car
still occurred. This small movement will grow larger depending on the simulated
time-delay length. In higher velocities this movement could end up dangerous and
therefore the safety margins applied on the tests were applied.

Additionally, the rate and steering wheel torque limiter was applied in the CAPL
programming script to prevent the arbitrary value changes happening, see appendix
D. The implementation of the previous was shown unsuccessful and not completely
compatible with the settings of the real car. Strange behaviours from the car oc-
curred as the result of this. Due to lack of test time, the right values or modifications
of these implementations were never successfully applied during any tests.

Figure 4.2: Timespan plot for 0 ms simulated time-delay during the low intensity
test.

37

4. Results

Figure 4.3: Timespan plot for 50 ms simulated time-delay during the low
intensity test.

Figure 4.4: Angular difference in the timespan plot during 50 ms low intensity
test, between input and output steering angle

The first three graphs regarding a more in depth signal processing analysis per-
formed during the low intensity country road test, are the visualization of the Bode
plot and the coherence between the input and the output signals. As mentioned in

38

4. Results

chapter 3.3.2.2.2, the extreme simulated time-delay was considered too dangerous
for the safety of the test. Figure 4.5 and 4.6 is providing a theoretical and visual
explanation of the behaviour of the car during the low intensity test. For both the
test implemented with a simulated time-delay of 0ms and 50ms added with the ac-
tual latency of the implemented system over LAN.

There is a great importance of the system having as good characteristics as possible
for the relevant frequencies of steering the car, with a minor phase shift and differ-
ence in magnitude. According to [17], 3 hertz are the maximum extreme frequency
that a human being can control when steering a car without loosing control while
keeping the car on track. Therefore, acquiring a system that has beneficial char-
acteristics for frequencies as close to 3 hertz as possible is essential. By observing
both bode plots, more noise is affecting the system after a certain frequency. The
probable reason behind this behaviour was due to higher steering angle frequencies
never were used which provided less accurate data. The system will therefore be
perceived as signal noisy. Which is affecting the system in an inaccurate way with
a low coherence value for frequencies where the signal noise is considered substan-
tial. Considering each gain plot, the system for 0 ms time-delay consisted of more
accurate data and less signal noise and gave the graph better attributes than the
one regarding the 50 ms time-delay, during higher frequencies. The blue signal vi-
sualizes the average value of the transfer signal and the general direction the graph
is headed towards. Otherwise explained as an easier signal to read compared to
the red signal. The red signal of the bode plot visualizes the real unfiltered signal
that tends to be volatile and fluctuate plenty and is therefor harder to analyse. The
red signal attains these characteristics during the frequencies with a low coherence
value. Additionally, the gain between the input and output signal for the system
regarding 0 ms, does not fluctuate and spike as high or as much. The gain value is
more consistent around the 0-decibel mark until around 1.25 hertz compared to the
system regarding the larger time-delay. The blue signal concerning figure 4.6 can be
observed to separate from the 0-decibel mark earlier, around 1 hertz before being
more affected by signal noise. The simulated time-delay is small enough to not have
a great impact on the outcome of the graphs. Therefore, the two graphs regarding
the gain plot should be almost identical. As mentioned before, the probable reason
behind this is rather the difference in driving and steering the car during the low
intensity test than a result indicating on poor attributes for frequencies over 1 hertz.

By observing the phase plot, a dissimilarity can be recognised in the steepness in
which the signals are descending after around 1 hertz. By considering the gain plot
that was more stable for a longer amount of time for both simulated time-delays,
the phase graphs differ accordingly. The phase margin for figure 4.5 acquired the
value of 106 degrees and for figure 4.6 the value of 107 degrees. The system in the-
ory turns unstable when the phase shift crosses the value of -180 degrees, but this
comparison is not directly applicable in this occasion, due to a lot more factors are
affecting the result. But the general idea is having as small phase shift possible for
as high frequencies possible. This to gain desired characteristics and an easier time
controlling the steering of the car. For the test performed with the simulated time-

39

4. Results

delay of 0 ms, if the filtered estimated signal is the signal taken under consideration.
The gain margin was around 16,5 decibel and reached the -180 degrees mark at 2,42
Hertz. For the test with 50 ms time-delay applied, the gain margin was around 18,7
decibel and reached the -180 degrees mark at 2,7 Hertz. This result compared to the
maximum possible frequency of 3 hertz, is close enough to increase the credibility
of the outcome from the performed tests [17]. To take into account, the outcome of
the tests is based on the steering frequencies that actually were utilized during the
tests in the XC60. The values shown in the figures would not be accurate over these
frequencies. A conclusion can be made that when the unfiltered estimated phase
shift is starting to be excessively affected by signal noise and gain unreasonable val-
ues, the attributes of system would no longer be attainable by observing the plotted
graphs. By observing the graph when the red signal behaves like mentioned, the
system can be analysed for frequencies up to around 1,5 Hertz for 0 ms simulated
time-delay and 1.6 Hertz for the larger one.

The third plot in figure 4.5 and 4.6, shows the statistics of the coherence value and
its linear relation between the input and output signal. For the simulated latency
of 0 ms and 50 ms applied in the Python programming script. According to [18], if
the value of the coherence between the steering signals and the actual value of the
steering rack in a Volvo XC60 are dropping below the value of 0.9. The frequencies
generating a value that low will be considered as irrelevant during the analyse of the
outcome from the tests performed. The frequencies that fulfils this outcome required,
while applying a simulated delay of 0 ms and 50 ms, lies within the interval of 0-81
Hz (for 0 ms) and 0-79 Hz (for 50 ms) by an observation of the third graph of figure
4.5 and 4.6. By evaluating these values from the previous statement, the only valid
frequencies of turning the car from the remote steering wheel would be within these
intervals, for the corresponding time-delay while striving for a high linear relation.
But as mentioned earlier, the likely reason behind the low frequency intervals with
a low coherence value, for both implementations. Is probably due to the lack of use
of higher steering angle frequencies in a way that would gather imprecise data and
therefore would have an impact on the outcome with a lower frequency range.

40

4. Results

Figure 4.5: Bode plot and coherence plot with the time-delay 0 ms during the
low intensity test.

41

4. Results

Figure 4.6: Bode plot and coherence plot with the time-delay 50 ms during the
low intensity test.

4.2.2 High intensity test results
The result from the high intensity test differs significantly from the low intensity
test. As mentioned in the test and simulation chapter 3.3.2.2.3, three different sim-
ulated time-delays were evaluated during the high intensity test. From figure 4.7,
4.8 and 4.9, the difference between the three time-delays were visualized in times-
pan plots. As mentioned for the low intensity test, the input and output signals
are visualized in these figures. The zero crossing time delay was extremely similar
to the low intensity one. Which is demonstrating on a system that is functioning
well in both scenarios, regarding this area. A big difference in outcome of the high
intensity tests, is that the arbitrary value spikes seem to occur less frequently. In
fact, not once during any of the high intensity tests. The reason behind this result
could potentially be that those values spikes only occur during straights or when the
angle value has not changed for a small amount of time. By observing figure 4.9, a
significant and clear difference between the input and output signal can be observed.
The test performed with the simulated time-delay of 150 ms was a failed test where
a physical overtaking of the actual steering wheel was forced by the safety driver
in the driver seat of the XC60. The reason behind the value spike was due to the
change of value being too great, leaving the steering rack of the car unavailable to
attain the next upcoming value and leaving the park assist pilot interface to acti-
vate the driving interface LatCtrlModRegSafe number 0 instead of 11. This can be
observed by the graph regarding where the input value containing the same value

42

4. Results

throughout the rest of the test, due to the input from the remote steering wheel is
no longer necessary.

Figure 4.7: Timespan plot for 0 ms simulated time-delay during the high
intensity test.

43

4. Results

Figure 4.8: Timespan plot for 50 ms simulated time-delay during the high
intensity test.

Figure 4.9: Timespan plot for 150 ms simulated time-delay during the high
intensity test.

44

4. Results

By observing figure 4.10, 4.11 and 4.12, the outcome of the gain plot during the high
intensity test implemented with 0 ms time-delay, resulted in a relatively consistent
system around the 0 decibel mark. Between the interval of frequencies 0-1.75 Hertz
with fairly small deviations from the 0 db magnitude level. Considering an extreme
value of the steering angle frequency is 3 Hertz according to [17],this outcome is
positive. Compared to figure 4.11, the gain plot concerning the time-delay of 50 ms
is more affected by signal noise in lower frequencies. Furthermore, the system has
desirable characteristics during a relatively small interval of 0-1.2 Hertz with accept-
able small deviations of the graph. By comparing the results, a clear difference can
be seen. The lower the time-delay, the closer the transfer function between the input
and output signal is to the gain of 1 and 0 decibel line. But during higher frequencies
the outcome is the same as for the low intensity test with most likely the same rea-
son behind this as for the low intensity test as well with less noise affecting the result.

By observing the phase plot of the bode diagram for figure 4.10 and 4.11, the phase
shift is successively increasing which means the difference between the input steering
angle and the output steering angle is increasing as well. The larger phase shift,
the harder it gets controlling the car through the high intensity test track and ex-
ecute the manoeuvres necessary. The phase margin of the system for 0 ms was
90.6 degrees and for the system with 50 ms was 134 degrees, which is a value too
great for achieving desired characteristics for the implemented system. The gain
margin was 3,5 decibel from the test performed with a simulated time-delay of 0
ms. For the test regarding the 50 ms time-delay, the filtered signal of the phase
graph never achieved the value of -180 degrees, but by observing the figure 4.11 the
unfiltered one seems to turn reach -180 degrees at around 2-2,5 Hertz. Although,
the outcome regarding the mentioned frequency interval is likely to be inaccurate
due to the frequency interval being too great compare to the outcome to the gain
plot being affected by signal noise for significantly lower frequencies. The outcome
regarding the aforementioned analyse is probably caused by the same reason as the
outcome from the low intensity tests. With that being said, the reason behind the
signal noise in the relevant frequency interval is because the higher frequencies are
not behind performed during the tests.

As shown in figure 4.12, a more extreme delay was applied, the bode plot shows
clear signs of the driver struggling to control the car over the course of the test
track. By observing the graph, heavy signal noises can be noticed for all frequencies
within the 0-3 hertz interval. Therefore, the graph is completely incomprehensible
and irrelevant to analyse any further regarding the phase and gain plot. During
the test, the car was still drivable but according to the outcome of the graph, an
implementation of this delay should be avoided.

Figure 4.10, 4.11 and 4.12 demonstrates the coherence of the systems. The accept-
able frequency interval for the coherence value for all three systems analysed are:
for 0 ms the interval was 0-0.93 Hertz, for 50 ms the interval was 0-0.89 Hertz and
for 150 ms the coherence value never reaches an desirable value of 0.9. The outcome
shows that the longer delay, the more signal noise there is affecting the linearity of

45

4. Results

the system. For safety reasons and drivability, the extreme delay turned out to be
too large of a delay to gain any valuable information.

Figure 4.10: Bode plot and coherence plot with the time-delay 0 ms during the
high intensity test.

46

4. Results

Figure 4.11: Bode plot and coherence plot with the time-delay 50 ms during the
high intensity test.

Figure 4.12: Bode plot and coherence plot with the time-delay 150 ms during the
high intensity test.

47

4. Results

4.3 Test Sheet and Inaccuracies.
After each test the participants answered a sheet with questions regarding steering
characteristics. Due to the lack of time, only a small amount of people have an-
swered. In addition to the sheet, test drivers overall feelings were taken in account
to better get an understanding of how the driver perceives the changes of delay time

4.3.1 Inaccuracies noticed
As described earlier, large arbitrary angle values sent to PSCM resulted in the car
to turn without any notice. It would usually emerge on a straight when the steering
value has remained unchanged for a while. How powerful of a turn it resulted in was
related to velocity and what steering delay was used. Greater steering delay resulted
in more powerful sudden turns. Probably because the time between the arbitrary
value and the correct value was greater. Furthermore, higher velocity would result
in the turn being perceived as stronger.

The large arbitrary angle value did in some cases result in that the safety driver
had to interfere and take control of the steering. Once the safety driver had taken
over the steering, the car changed the driving interface to a safety mode. Once
the car was in safety mode it signaled that city safety needed support. It resulted
in difficulties for the car to regain correct settings and interface needed for remote
steering to be possible. It was solved by disconnecting the modified cabling kit
and use it as a extension to drive around the course steering with the traditional
steering wheel. The message about city safety then disappeared and it was possible
to reconnect the setup and choose correct settings and interfaces.

4.3.2 General thoughts
Regardless which test that was performed, some general thoughts were collected
and it is summarised below. Steering a car when the field of view was limited to
only a screen is difficult as well as it gave the test drivers a strange feeling of not
having the possibility to look around. Even if the camera had a linear view, distance
assessment was hard. It resulted in turns being taken in the last minute regardless
test. But it should also be mentioned that the test driver got used to the condition
and could better adapt to the environment during the tests.

4.3.3 Evaluation of Maximum Delay
As explained under the test and simulations chapter a test to find the maximum
delay to where it would no longer be possible to steer the car was conducted. It was
divided into several attempts. During this test no camera was used which meant
that delays regarding view were not taken into account. This test was conducted
to later on be able to choose reasonable delays when performing the high and low
intensity tests. The focus was not to determine how well steering works in different
situations. Delays in the range of 50 – 350 ms were examined. Test drivers comments

48

4. Results

on the examined delays can be read in appendix A.

4.3.4 Evaluation sheet
Sheet contained five questions that were to be ranked from one to five. Ranking
value is an average of the two participants answers.

Question 1: What was the experience of the deviation between screen and remote
steering wheel?
1 (Not noticeable) - 5 (Very noticeable)

Table 4.1: Result for each test, Question 1

What kind of test Delay [ms] Ranking Value
Low 0 4
Low 50 4
High 0 2
High 50 2
High 150 4

Question 2: How did it feel to steer while only watching a screen? When not the
same field of view was possible.
1 (As usual) - 5 (Impossible)

Table 4.2: Result for each test, Question 2

What kind of test Delay [ms] Ranking Value
Low 0 3
Low 50 3
High 0 2
High 50 2
High 150 2

Question 3: How was the feeling of turning the car with the remote steering wheel
with its settings and moment of inertia? Compared with the actual one.
1 (Not Strange) - 5 (Very Strange)

Table 4.3: Result for each test, Question 3

What kind of test Delay [ms] Ranking Value
Low 0 4
Low 50 4
High 0 4
High 50 4
High 150 4

49

4. Results

Question 4: What were the expectations before the test? Knowing steering will be
delayed.
1 (Not Nervously) - 5 (Very nervous)

Table 4.4: Result for each test, Question 4

What kind of test Delay [ms] Ranking Value
Low 0 1
Low 50 2
High 0 1
High 50 1
High 150 2

Question 5: How noticeable was the delay when manoeuvring?
1 (Not noticeable) - 5 (Very noticeable)

Table 4.5: Result for each test, Question 5

What kind of test Delay [ms] Ranking Value
Low 0 1
Low 50 1
High 0 1
High 50 1
High 150 4

4.3.5 Further Thoughts Regarding Tests
Low Intensity test

• 0 ms
The field of view is the most challenging part as well as the delay regarding the live
stream. As mentioned in 2.4 the delay regarding the live stream is 500ms. To better
get an understanding of how it affects. It can be said that if the car travels at 40
km/h it will travel a distance of 5,5 m before the view on the screen is updated.
Which resulted in difficulties on keeping a straight line when steering. Several small
turns were needed during a long sweeping turn instead of a long smooth turn. The
simulated steering delay is not yet noticeable.

• 50 ms
The simulated steering delay began to be noticeable and resulted in turning back
and forth on the road instead of keeping a straight line.

High Intensity
• 0 ms

Field of view had less influence when trying to manoeuvre between the cones. The
delay regarding view was less noticeable then in low intensity tests, probably because
traveling at 15km/h resulted in a distance of 2,1 m had been traveled before the
view updates. But it did have the effect of late turning in general between the cones.
Beyond that, turning between cones worked out fine.

50

4. Results

• 50 ms
When steering delay was set to 50 ms it did influence the manoeuvring in the fact
of how smooth the turns were performed. The driver did end up performing wider
turns around the cones.

• 150 ms
A delay of 150 ms did affect the manoeuvring in many ways. It was clearly noticeable
and the turns became very wide. Due to the latency before actions were done by
the system drivers tried to fend off during turns which resulted in hitting cones and
crossing the track line. Once the track-line was crossed with all four wheels or a
cone was hit, the test was marked as failed. It was clear that manoeuvring a cone
course at 15 km/h with a steering delay of 150 ms can be set as a limit. Figure
4.13 below illustrates how the car traveled through the course with different steering
delays.

Figure 4.13: Illustrations of how the car was steered through cone track with
different delays

51

4. Results

52

5
Discussion

The following chapter of the thesis presents the discussion and conclusions of the
results achieved during the thesis.

5.1 Overall conclusion
During this thesis, the followed the early planning of the development process in
most areas. Both tests and implementations of the hardware and software setup
were applied successfully to both the test rig and the car and functioned as in-
tended. Steering the rack remotely over UDP of both the test rig and the car, was
done efficiently with no larger complications. Attaining the input steering value
from the remote steering wheel was done successfully and sending the value over
UDP worked as intended. The implemented simulated time-delay proved to be low
enough to provide a fully manageable drivability of the car during the different tests
performed. The real estimated latency of sending data over Wi-Fi resulted in a far
lower delay then the acceptable and manageable for the simulated one. This out-
come was greatly positive due to the difference being that large. The Wi-Fi delay
measured on the internal Volvo Wi-Fi network tested on the test rig setup, was only
a delay of average 3.412 ms. Compared to the simulated time-delay of 50 ms. The
practical marginal of the latency to achieve an acceptable performance during the
test, was therefore a significant contrast.

By observing the results gained from a theoretical point of view, the aim of the
thesis was achieved. The outcome of the data gained from the tests was showing
great promise and indicated on a technical area full of possibilities. With the pre-
requisites of this thesis, there are still areas of improvement of making the car more
drivable and efficient in higher frequencies. Still, the implementations made on the
car functioned as intended and were shown to be drivable remotely while operated
relatively efficiently, according to the data gained from the tests.

5.2 Hardware implementations
To find the right configuration of the different hardware utilized during the thesis
and figuring out what hardware was required for the implementations on both the
rig and the car, was time demanding. During the thesis, a better understanding
of what was required was needed and all the hardware, together with the software,

53

5. Discussion

started to come together. Therefore the outcome was a complete and fully func-
tional implementation setup for both the test rig and for the car.

Whilst performing the tests, the setup undeniably could have been better. The
safety driver in the driving seat of the car is forced to physically hold the laptop
running the live stream from the GoPro. A better solution for this could have been
achieved, where the laptop would have been more securely stationed in the car to
prevent incidents regarding the laptop and the drivers’ health. The remote steering
wheel was placed in between the middle backseat and the console, which also could
have been placed more efficiently.

From the result of the tests, an illustrative figure of how the car was manoeuvring
during the high intensity test was created. This provided a feeling of how the out-
come of the test was, but due to the limited time of the bachelor’s thesis, a solution
for a more precise analysis regarding the previous was excluded. By having more
precise data from the tests, a more accurate result could have been gained.

Since the start of the thesis, there have been issues getting the right hardware
when needed. Obtaining the hardware proved to be more time demanding than
anticipated. A lesson learned regarding this area for future thesis work, to be more
aware of the actual time it takes to obtain the right hardware in time. Additionally,
getting the right configuration on the VN module and to make it fully functional
for the created hardware and software setup, was something that was proving to
be a huge struggle over a large duration of the thesis. There are always difficulties
in estimating the amount of time needed in achieving different sub goals during a
thesis work. This is a lesson learned for the future, to do things more efficiently.

5.3 Software implementations
During this thesis, the implementation of the different sub goals concerning the soft-
ware aspect of the thesis has proven to be successful. The different programming
scripts of both Python and CAPL worked as intended for sending the input value
of the remote steering wheel and by doing so over UDP. Every step worked with no
larger issues, but the road to achieve these results have not been without setbacks.
During the creation of the simulation setup and the writing of the different pro-
grams implemented during the thesis, the hardware issues resulted in a postponed
development due to the time demanding steps getting the right configuration and
hardware. Due to the lack of understanding what issues needed to be solved for a
successful implementation of the setup in the Volvo XC60, a lot of time was spent
on testing different setups and solutions over different areas, during the duration of
the thesis.

Moreover, during the first implementation of the complete setup developed during
the thesis applied on the car. The car accepted the breakout cabling kit and the
simulation setup developed for the purpose of fooling the car into believing the park
assist pilot interface was active. This implementation had a successful outcome,

54

5. Discussion

due to the car showing no signs of repulsion of the applied software and hardware
setup on the XC60. By doing so, the signals and messages regarding the VDDM
and PSCM frames will be modified and the first expectations concerning this was
that the car would show great signs of repulsion. This enabled the time gained to
be focused on developing and investigating in other areas of the thesis.

Throughout the different tests performed, some safety issues were affecting the out-
come of the tests and forced adjustments to be applied to the design of the tests
executed. For example, due to the underlying danger of a large arbitrary value
change, only the 0 ms and 50 ms simulated time-delays were performed during the
low intensity test. By having more time for developments and adjustments for a rate
limiter in CAPL, might have provided an extra layer of safety that would enable a
test regarding an extreme simulated time-delay to be performed, and more data to
analyse.

As mentioned previously in the result chapter, the car was forced into a city safety
interface when the safety driver had to intervene during a failed test, to by force
physically take over the steering wheel. By having more time for developments and
testing the implementation of a steering wheel torque limiter that would change
the LatCtrlModRegSafe to the regular driving interface when a take-over is needed
during the tests, a better outcome could have been achieved.

Furthermore, an issue that was realized during the tests was an issue related to the
reason why a rate limiter was needed. The remote steering wheel was not completely
proportional to the real steering wheel of the car. This due to the remote steering
wheel having no feedback available both regarding the steering wheel itself but also
a software implementation of feedback to the remote steering wheel itself. The car
could therefore behave unpredictable during high intensity manoeuvres.

5.4 Further developments
As mentioned during the discussion chapter so far, there are multiple areas of im-
provements. First and foremost, the whole thesis is based on steering a car remotely
over Wi-Fi with the help of UDP. Due to the limited time of the bachelor’s thesis a
decision was made to make a limitation of the thesis to exchange the Wi-Fi latency
with a simulated time-delay over a LAN connection between the external laptop
running the Python program and the VN8911. The ideal scenario would instead be
to apply a central control unit where the remote steering angles were sent from a
far, over Wi-Fi. This could easily have been solved without the lack of time during
the thesis. The solution would have been to implement two Wi-Fi access points, one
on the car and one by the central control unit. Moreover, the same software and
hardware implementation and all other areas of the thesis is based on being able to
steer the car over Wi-Fi and would support this solution. The test rig is a proof of
this statement, where the whole setup is fully functional over a Wi-Fi connection.

Additionally, to be able to produce better test results and a better test environment,

55

5. Discussion

a more suitable camera equipment for livestreaming with a much lower latency would
have been needed as an improvement. Performing the tests would have been easier
and more accurate and the analyses gained might prove that the car could have
been manoeuvred more efficiently during larger simulated time-delays and latencies.
A better camera equipment could also provide a more realistic video livestream
perspective. The perspective used during the tests, was something the test drivers
reacted to as being a nuisance while trying to perceive different distances and overall
perspective of the environment.

Regarding the hardware setup in the car, a computer table for both laptops and
some sort of a more stable setup for the remote steering wheel would have improved
the experience and the safety of the tests performed. This is something that can be
improved for future works inspired by this thesis. Furthermore, for a better result
regarding more accurate data gathered during the tests and a better correlation
between the remote steering wheel and the steering rack of the car, implementing
feedback to the remote steering wheel would be preferred and might be a capable
solution. This could be done by either replacing the remote steering wheel itself
for a far more optimal one, or by somehow implementing feedback in the software
programming script.

Moreover, to produce more accurate data analyses and to design better and more
extensive test courses, more than just a few test drivers is needed. By having a
larger amount of test drivers, more quantitative, correct, and rich data would be
obtained. The outcome would therefore be based on the general population rather
than a few individuals. A result produced by a quantitative test is more reliable
and trustworthy and would therefore be truly valuable and increase the credibility
for this thesis.

56

Bibliography

[1] Python Accessed:Jan, 2021. [Online]. Available:https://www.python.org/
[2] Using socket in Python Accessed:Feb 2021. [Online]. Available: https://docs.

python.org/3/library/socket.html
[3] Insert Timer Python Accessed:May 2021. [Online]. Available: https://docs.

python.org/3/library/time.html?highlight=time#module-time
[4] Pygame library in Python Accessed:Mar 2021. [Online]. Available: https://

www.pygame.org/docs/ref/joystick.html
[5] UDPAccessed:Feb 2021. [Online]. Available: https://www.javatpoint.com/

computer-network-tcp-ip-model
[6] P. Thagard. (1989) A theory of explanatory coherence. Explanatory co-

herence. Cognitive SCience Labratory, Princeton University, 221 Nas-
sau St., Princeton, NJ 08540. http://www.arts.uwaterloo.ca/~pthagard/
Articles/1989.explanatory.pdf

[7] UDP ArchitectureAccessed:Feb 2021. [Online]. Available: https://www.
eetimes.com/guide-to-embedded-systems-architecture-part-3-transport-layer-udp-and-embedded-java-and-networking-middleware-examples/

[8] UDP Accessed:Feb 2021. [Online]. Available: https://internetstiftelsen.
se/guide/introduktion-till-ip-internet-protocol/
tcp-och-udp-nivan/

[9] Matlab Accessed:May 2021. [Online]. Available: https://se.mathworks.com/
company.html?s_tid=hp_ff_a_company

[10] Vector. Stuttgart, Germany, CANoe (2021). Accessed:Apr, 2021. [on-
line]. Available:https://www.vector.com/int/en/products/products-a-z/
software/canoe/

[11] OBS studio Accessed: April 2021. [Online]. Available: https://obsproject.
com/sv

[12] History of CAN technology Accessed:May 2021.[Online]. Available: https://
www.can-cia.org/can-knowledge/can/can-history/

[13] M.D.Natale, H.Zeng, P.Giusto, A,Ghosal, Understanding and Using the Con-
troller Area Network Communication Protocol., Springer, New York

[14] Volvo Car Corporation, Sweden, Park Assist Pilot (2019-11) Accessed: June,
2021. [Online]. Available: https://www.volvocars.com/se/support/topics/
anvanda-din-bil/bilfunktioner/park-assist-pilot

[15] Volvo Car Steering Rig, Vector Sweden, Gothenburg, Sweden, 2017
[16] Vector InformatikGmbH, VN8900 Interface Family Manual v6.4, (2019),

[Online], Available: https://assets.vector.com/cms/content/products/
VN89xx/docs/VN8900_Manual_EN.pdf

57

https://www.python.org/
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/time.html?highlight=time#module-time
https://docs.python.org/3/library/time.html?highlight=time#module-time
https://www.pygame.org/docs/ref/joystick.html
https://www.pygame.org/docs/ref/joystick.html
https://www.javatpoint.com/computer-network-tcp-ip-model
https://www.javatpoint.com/computer-network-tcp-ip-model
http://www.arts.uwaterloo.ca/~pthagard/Articles/1989.explanatory.pdf
http://www.arts.uwaterloo.ca/~pthagard/Articles/1989.explanatory.pdf
https://www.eetimes.com/guide-to-embedded-systems-architecture-part-3-transport-layer-udp-and-embedded-java-and-networking-middleware-examples/
https://www.eetimes.com/guide-to-embedded-systems-architecture-part-3-transport-layer-udp-and-embedded-java-and-networking-middleware-examples/
https://internetstiftelsen.se/guide/introduktion-till-ip-internet-protocol/tcp-och-udp-nivan/
https://internetstiftelsen.se/guide/introduktion-till-ip-internet-protocol/tcp-och-udp-nivan/
https://internetstiftelsen.se/guide/introduktion-till-ip-internet-protocol/tcp-och-udp-nivan/
https://se.mathworks.com/company.html?s_tid=hp_ff_a_company
https://se.mathworks.com/company.html?s_tid=hp_ff_a_company
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://obsproject.com/sv
https://obsproject.com/sv
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.volvocars.com/se/support/topics/anvanda-din-bil/bilfunktioner/park-assist-pilot
https://www.volvocars.com/se/support/topics/anvanda-din-bil/bilfunktioner/park-assist-pilot
https://assets.vector.com/cms/content/products/VN89xx/docs/VN8900_Manual_EN.pdf
https://assets.vector.com/cms/content/products/VN89xx/docs/VN8900_Manual_EN.pdf

Bibliography

[17] M. Harrer , P. Pfeffer , HH Braess . (2017) Steering-Feel, Interaction Between
Driver and Car. Steering Handbook. Springer, Cham. https://doi.org/10.
1007/978-3-319-05449-0_7

[18] L. Ljung. (1999) System Identification: Theory for the User. Linköping, Swe-
den: https://books.google.se/books/about/System_Identification.
html?id=nHFoQgAACAAJ&redir_esc=y

[19] B. Thomas, Liber AB, "Frekvensanalys, Beräkning av egenskaper hos regler-
system," in Modern Reglerteknik, 5th ed. Göteborg, Sweden: 2016, pp. 133-191.

58

https://doi.org/10.1007/978-3-319-05449-0_7
https://doi.org/10.1007/978-3-319-05449-0_7
https://books.google.se/books/about/System_Identification.html?id=nHFoQgAACAAJ&redir_esc=y
https://books.google.se/books/about/System_Identification.html?id=nHFoQgAACAAJ&redir_esc=y

A
Appendix A

I

A. Appendix A

Figure A.1: Maximum delay table

Figure A.2: Maximum delay table continuation

II

B
Appendix B

import pygame
import keyboard
import socket
import s t r u c t
import thread ing
import time

Timer In t e r up t s :
In i t i a t i onT ime = time . time ()
def irq_timedelay_ms () :

determines the l e n gh t o f de lay wanted
time . s l e e p (0 . 5)

I n i t i a l i z e the Pygame l i b r a r y
pygame . i n i t ()
I n i t i a l i z e the j o y s t i c k module .
pygame . j o y s t i c k . i n i t ()
The input va lue o f the Thrustmaster T300 RS
hor i zon ta l_ax i s = 0
The x−ax i s coord ina te t ha t are to be sen t
x_coordinate = 0

done = False

Count the j o y s t i c k s the computer has
j oyst i ck_count = pygame . j o y s t i c k . get_count ()
print ("Number␣ o f ␣ j o y s t i c k s ␣ found " , joyst i ck_count)
i f j oyst i ck_count == 0 :

No j o y s t i c k s were found !
print (" Error , ␣no␣ j o y s t i c k s ␣has␣been␣ i d e n t i f i e d . ")

else :
Use j o y s t i c k #0 and i n i t i a l i z e i t
Thrustmaster_T300_RS = pygame . j o y s t i c k . Joy s t i ck (0)
Thrustmaster_T300_RS . i n i t ()
print (" found␣a␣ j o y s t i c k ")

III

B. Appendix B

i s_ i n i t = pygame . j o y s t i c k . g e t_ in i t ()
re turns t rue i f a j o y s t i c k i s i n i t i a l i z e d , f a l s e o the rw i s e
print (i s_ i n i t)

Creates UDP soc k e t s
sock = socket . socke t (socket .AF_INET, socke t .SOCK_DGRAM)
in t e rne t , UDP

Connects the soc ke t to a por t and an IP−address
s p e c i f i e s IP−address f o r por t and s e r v e r
Wi−Fi
se rver_address = (’ 10 . 246 . 39 . 162 ’ , 40001)
LAN
server_address = (’169 .254 .202 .226 ’ , 40001)

print (’UDP␣ s e r v e r ␣ address ␣ {} , ␣ port ␣{} ’ . format (∗ server_address))

while not done :
Sending the s t e e r i n g ang l e wi th the i n t e r v a l l o f 10ms
time . s l e e p (0 .010000 − ((time . time () − In i t i a t i onT ime) % 0 .010000))

i = 0
j = 16
x_coordinate = 0
for event in pygame . event . get () :

i f event . type == pygame .QUIT:
done = True

As long as t he r e i s a j o y s t i c k
i f j oyst i ck_count != 0 :

This g e t s the p o s i t i o n o f the a x i s on the game c o n t r o l l e r
I t r e turns a number between −1.0 and +1.0
0 fo r h o r i z on t a l a x i s and 1 f o r v e r t i c a l a x i s
hor i zon ta l_ax i s = Thrustmaster_T300_RS . get_axis (0)
x_coordinate = x_coordinate + hor i zon ta l_ax i s
An i n t e n t i o n a l time de lay between read ing the s t e e r i n g ang l e va lue and sending i t
irq_timedelay_ms ()
i f keyboard . i s_pres sed (’ q ’) :

done = True

i f x_coordinate < 0 :

x_coordinate = −x_coordinate
conver t to a s t r i n g
x_coordinate_str ing = str (x_coordinate)
x_coordinate_str ing = x_coordinate_str ing . z f i l l (1 6) [i : j]

IV

B. Appendix B

conver t s the s t r i n g to by tes , to then send v ia UDP
x_coordinate_str ing = bytes (x_coordinate_str ing , ’ ut f −8 ’)
Send the UDP package to de s i gna t ed s e r v e r address
sock . sendto (x_coordinate_str ing , se rver_address)
print (x_coordinate_str ing)

e l i f x_coordinate >= 0 :

x_coordinate = −x_coordinate
conver t to a s t r i n g
x_coordinate_str ing = str (x_coordinate)
x_coordinate_str ing = x_coordinate_str ing . z f i l l (1 6) [i : j]
conver t s the s t r i n g to by tes , to then send v ia UDP
x_coordinate_str ing = bytes (x_coordinate_str ing , ’ ut f −8 ’)
Send the UDP package to de s i gna t ed s e r v e r address
sock . sendto (x_coordinate_str ing , se rver_address)
Print to se the va l u e s sen t in the termina l
print (x_coordinate_str ing)

pygame . qu i t ()

V

B. Appendix B

VI

C
Appendix C

import pygame
import keyboard
import socket
import s t r u c t
import thread ing
import time

Timer In t e r up t s :
In i t i a t i onT ime = time . time ()
def irq_timedelay_ms () :

determines the l e n gh t o f de lay wanted
time . s l e e p (0 . 5)

I n i t i a l i z e the Pygame l i b r a r y
pygame . i n i t ()
I n i t i a l i z e the j o y s t i c k module .
pygame . j o y s t i c k . i n i t ()
The input va lue o f the Thrustmaster T300 RS
hor i zon ta l_ax i s = 0
The x−ax i s coord ina te t ha t are to be sen t
x_coordinate = 0

done = False

Count the j o y s t i c k s the computer has
j oyst i ck_count = pygame . j o y s t i c k . get_count ()
print ("Number␣ o f ␣ j o y s t i c k s ␣ found " , joyst i ck_count)
i f j oyst i ck_count == 0 :

No j o y s t i c k s were found !
print (" Error , ␣no␣ j o y s t i c k s ␣has␣been␣ i d e n t i f i e d . ")

else :
Use j o y s t i c k #0 and i n i t i a l i z e i t
Thrustmaster_T300_RS = pygame . j o y s t i c k . Joy s t i ck (0)
Thrustmaster_T300_RS . i n i t ()
print (" found␣a␣ j o y s t i c k ")

VII

C. Appendix C

i s_ i n i t = pygame . j o y s t i c k . g e t_ in i t ()
re turns t rue i f a j o y s t i c k i s i n i t i a l i z e d , f a l s e o the rw i s e
print (i s_ i n i t)

Creates UDP soc k e t s
sock = socket . socke t (socket .AF_INET, socke t .SOCK_DGRAM)
in t e rne t , UDP

Connects the soc ke t to a por t and an IP−address
s p e c i f i e s IP−address f o r por t and s e r v e r
Wi−Fi
se rver_address = (’ 10 . 246 . 39 . 162 ’ , 40001)
LAN
server_address = (’169 .254 .202 .226 ’ , 40001)

print (’UDP␣ s e r v e r ␣ address ␣ {} , ␣ port ␣{} ’ . format (∗ server_address))

while not done : # This wh i l e loop might not be needed in UDP, bcs o f UDP " wh i l e t rue " loop

measure the time between s t a r t and end
s t a r t = time . per f_counter ()
measure the time between s t a r t and end in nanoseconds
s t a r t = time . perf_counter_ns ()
Sending the s t e e r i n g ang l e every 10ms
time . s l e e p (0 .010000 − ((time . time () − In i t i a t i onT ime) % 0 .010000))
#time . s l e e p (1 − ((time . time () − In i t i a t i onTime) % 1)) # Sending the s t e e r i n g ang l e every
irq_timedelay_ms ()

i = 0
j = 16
x_coordinate = 0

for event in pygame . event . get () :
i f event . type == pygame .QUIT:

done = True

Pos s i b l e j o y s t i c k ac t i on s : JOYAXISMOTION JOYBALLMOTION JOYBUTTONDOWN JOYBUTTONUP JOYHATMOTION
i f event . type == pygame .JOYAXISMOTION: #om man v i l l se a t t de t fungerar

As long as t he r e i s a j o y s t i c k
i f j oyst i ck_count != 0 :

This g e t s the p o s i t i o n o f the a x i s on the game c o n t r o l l e r
I t r e turns a number between −1.0 and +1.0
hor i zon ta l_ax i s = Logitech_G920 . get_axis (0) # 0 fo r h o r i z on t a l a x i s and 1 f o r v e r t i c a l a x i s

#x_coordinate = x_coordinate + hor i z on t a l_ax i s

VIII

C. Appendix C

i f keyboard . i s_pres sed (’ q ’) :
done = True

x_coordinate = −1
i f x_coordinate < 0 :

x_coordinate = −x_coordinate
x_coordinate_str ing = str (x_coordinate) # conver t to a s t r i n g
x_coordinate_str ing = x_coordinate_str ing . z f i l l (1 6) [i : j]
x_coordinate_str ing = bytes (x_coordinate_str ing , ’ ut f −8 ’)

conver t s the s t r i n g to by tes , to then send v ia UDP
sock . sendto (x_coordinate_str ing , se rver_address)

Send the UDP package to de s i gna t ed s e r v e radd r e s s
print (x_coordinate_str ing)

e l i f x_coordinate >= 0 :

x_coordinate = −x_coordinate
x_coordinate_str ing = str (x_coordinate) # conver t to a s t r i n g
x_coordinate_str ing = x_coordinate_str ing . z f i l l (1 6) [i : j]
x_coordinate_str ing = bytes (x_coordinate_str ing , ’ ut f −8 ’)

conver t s the s t r i n g to by tes , to then send v ia UDP
sock . sendto (x_coordinate_str ing , se rver_address)

Send the UDP package to de s i gna t ed s e r v e radd r e s s
print (x_coordinate_str ing)

in t e rne t , UDP
sock = socket . socke t (socket .AF_INET, socke t .SOCK_DGRAM)
s p e c i f i e s IP−address f o r por t and server , f o r r e c i e v i n g UDP−package WiFi
server_address_rece iv ing = (’10 .246 .39 .178 ’ , 40010)
s p e c i f i e s IP−address f o r por t and server , f o r r e c i e v i n g UDP−package LAN
s e rve r_addre s s_rece iv ing = (’ 169 . 254 . 21 . 61 ’ , 40010)
sock . bind (se rve r_addre s s_rece iv ing)

The r e c i e v i n g par t : used to see the de lay−time
#whi l e True :
print ("Waiting␣ to ␣ r e c e i v e ␣data ")
data = 0
bu f f e r s i z e i s 1024 by t e s
data , address = sock . recvfrom (1024)
Writes the r e c e i v ed data
print (" S t e e r i ng ␣ ang le : ␣ {} , ␣ r e c e i v ed ␣ from␣{} " . format (data , address))
i f data != 0 :

print (" I n t e r v a l l ␣ o f ␣ sending ␣UDP␣package : ")
end = time . per f_counter ()
print (end − s t a r t)

IX

C. Appendix C

i f not data :
break

#Compare the ang l e va lue t ha t were sen t and the va lue t ha t were r e c i e v ed
print (" S t e e r i ng ␣ ang le ␣ sent : ␣ {} , ␣ S t e e r i ng ␣ ang le ␣ r e c i e v ed ␣{} " . format (data , x_coordinate_str ing))

pygame . qu i t ()

X

D
Appendix D

va r i a b l e s
{

UdpSocket gSocket ;
char gRxBuffer [1 6] ; // changed from 1500 to 8 . again 2021−03−25 to 16
double Steer ingAngle_double ; // Var iab l e t h a t r e c e i v e s s t e e r i n g ange l from bu f f e r
double SteeringAngle_double_old ;
int Stee r ingRat i o = 10 ; // S t e e r ing ra t i on between , remot s t e e r i n gwhe e l and s t e e r i n g gear

}

on sysvar_update sysvar : : Rece iver : : Open
{

// on open but ton down . . .
i f (@this == 1)
{

// Open an UDP socke t . As source address 0 . 0 . 0 . 0 i s used ,
// t h i s means t ha t
// the con f i gu r e address o f the TCP/IP s t ack i s used .
//See TCP/IP s t ack
// con f i g u r a t i on d i a l o g in the s imu la t i on se tup
// On UDP por t 40001 we want to r e c e i v e UDP pacek t s .
gSocket = UdpSocket : : Open(IP_Endpoint (169 . 2 54 . 2 02 . 2 26 : 4 0001)) ;
//Changed from 10.246 .39 .162 :40001 on 2021−04−19 (11 :32) , 169 .254 .202 .226 :40001 LAN
// 169.254 .202 .226
i f (IpGetLastError () != 0)
{

// i f UdpSocket : : Open f a i l s , we p r i n t a message to the wr i t e window
wr i t e ("<%BASE_FILE_NAME%>␣UdpSocket : : Open␣ f a i l e d ␣with␣ r e au l s ␣%d" , IpGetLastError ()) ;
return ;

}
// To r e c e i v e data wi th the crea t ed socke t ,
//we have to c a l l ReceiveFrom .
gSocket . ReceiveFrom (gRxBuffer , e l count (gRxBuffer)) ;

// i f ReceiveFrom does not immed ia t e l l y copy to to gRxBuffer ,
// i t r e tu rns 997 to
// i n d i c a t e i t w i l l c a l l t he c a l l b a c k func t i on

XI

D. Appendix D

//OnUdpReceiveFrom l a t e r .
i f ((gSocket . GetLastSocketError () != 0) &&
(gSocket . GetLastSocketError () != 997))
{

char e r r o r S t r i n g [1 0 0] ;
// i f ReceiveFrom f a i l s , we p r i n t a message to the wr i t e window
gSocket . GetLastSocketErrorAsStr ing (e r r o rS t r i ng , e l count
(e r r o r S t r i n g)) ;
wr i t e ("<%BASE_FILE_NAME%>␣ReceiveFrom␣ f a i l e d ␣with␣ r e s u l t ␣%d␣(%s) " ,
IpGetLastError () , e r r o r S t r i n g) ;

}

// update pane l c on t r o l s s t a t e
EnableControl (" Rece iver " , "OpenButton " , 0) ;
EnableControl (" Rece iver " , " CloseButton " , 1) ;

}
}

on sysvar_update sysvar : : Rece iver : : Close
{

// on open but ton down . . .
i f (@this == 1)
{

// Close soc k e t
gSocket . Close () ;

// update pane l c on t r o l s s t a t e
EnableControl (" Rece iver " , "OpenButton " , 1) ;
EnableControl (" Rece iver " , " CloseButton " , 0) ;

}
}

on preStop
{

// Close soc k e t on measurement s top
gSocket . Close () ;

}
// Implement OLd vs Newvalue , and c i t y s a f e to break e a r l i e r . .
// Ca l l back func t ion , which i s c a l l e d i f a UDP packe t i s r e c e i v ed
void OnUdpReceiveFrom(dword socket , long r e su l t , ip_Endpoint
remoteEndpoint , char bu f f e r [] , dword s i z e)
{

wr i t e (" r e c i v ed ␣package ") ; // Print i f package i s r e c e i v ed
i f (r e s u l t == 0)
{

char endpo intSt r ing [3 0] ;

XII

D. Appendix D

remoteEndpoint . PrintEndpointToStr ing (endpo intSt r ing) ;
// s e t s y s va r s to d i s p l a y r e c e i v e data in Receiver pane l s
s y sSe tVar i ab l eS t r i ng (sysvar : : Rece iver : : RxAddress , endpo intSt r ing) ;
s y sSe tVar i ab l eS t r i ng (sysvar : : Rece iver : : RxText , bu f f e r) ;

// I f PAP i s in use and wheel g e t s Tq over 2 Nm, CAN 1
i f (abs ($ChassisCANhs : :PSCM: : PSCMChasFr02 : : SteerWhlTq)> 3)
// i f (abs ($CAN2_Networks : :PSCM: : PSCMChasFr02 : : SteerWhlTq) >2)
{
// change from ParkAss i s t to r e gu l a r mode , CAN 1

$ChassisCANhs : :VDDM: : VDDMChasFr07 : : LatCtrlModReqSafe = 0 ;
//$CAN2_Networks : :VDDM: : VDDMChasFr07 : : LatCtrlModReqSafe = 0;

}/∗ e l s e {
// added 2 ∗ 2021−03−25
Steer ingAngle_doub le_old = Steer ingAng le_doub le ;
// Converts the s t r i n g b u f f e r in t o a doub le number
Steer ingAng le_doub le = (S tee r ingRat io ∗ a t o d b l (b u f f e r)) ;

i f (abs (Steer ingAngle_double−Steer ingAngle_doub le_old) > 0 .2)
{

Steer ingAng le_doub le = Steer ingAngle_doub le_old ;
}∗/

Steer ingAngle_double = (Stee r ingRat io ∗ atodbl (bu f f e r)) ;
// wr i t e s the s t e e r i n g ange l when Park As s i s t a c t i v e
$ParkAssiPinionAgReq = Steer ingAngle_double ;

// wr i t e s the s t e e r i n g ange l when t r a f f i c j am ac t i v e
//$AsyPinionAgReq = Steer ingAng le_doub le ;
// Pr in t s s t e e r i n g ange l in wr i t e window
// wr i t e ("%s " , Steer ingAng le_doub le) ;

// }
}

// To r e c e i v e more data , we have to c a l l ReceiveFrom again .
gSocket . ReceiveFrom (gRxBuffer , e l count (gRxBuffer)) ;

}

XIII

D. Appendix D

XIV

E
Appendix E

i n c l ud e s
{

}

v a r i a b l e s
{

}
// t e s t 2021−04−23
/∗
on message CAN2_Networks : : SAS : : SASChasFr01
{

$ChassisCANhs : : SAS : : SASChasFr01 : : SteerWhlAgSafe = $CAN2_Networks : : SAS : : SASChasFr01 : : SteerWhlAgSafe ;
//$ChassisCANhs : : PSCMChasFr01 : : PinionSteerAg1 = $ChassisCANhs : : SAS : : SASChasFr01 : : SteerWhlAgSafe ;

}
∗/
//−−−−−−−−−−−−−−−−−−−−−−−# CAN1 −−> CAN2 #−−−−−−−−−−−−−−−−−−−−−−−−
//on message ChassisCANhs
on message ChassisCANhs : :PSCM: : PSCMChasFr01
{

message CAN2_Networks . ∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==1)) // check i f the frame was r e c e i v ed on CAN 1 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t
{

m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}
on message ChassisCANhs : :PSCM: : PSCMChasFr02
{

message CAN2_Networks . ∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==1)) // check i f the frame was r e c e i v ed on CAN 1 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t

XV

E. Appendix E

{
m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}
on message ChassisCANhs : :PSCM: : PSCMChasFr03
{

message CAN2_Networks . ∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==1)) // check i f the frame was r e c e i v ed on CAN 1 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t
{

m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}
on message ChassisCANhs : :PSCM: : PSCMChasFr04
{

message CAN2_Networks . ∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==1)) // check i f the frame was r e c e i v ed on CAN 1 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t
{

m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}

on message ChassisCANhs : :PSCM: : PscmChasNMFr
{

message CAN2_Networks . ∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==1)) // check i f the frame was r e c e i v ed on CAN 1 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t
{

m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}

on message ChassisCANhs : :VDDM: : VDDMChasFr15
{

message chassiCAN_VDDM.∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==1)) // check i f the frame was r e c e i v ed on CAN 1 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t

XVI

E. Appendix E

{
m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}

on message ChassisCANhs .VddmChasNMFr
{

message chassiCAN_VDDM.∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==1)) // check i f the frame was r e c e i v ed on CAN 1 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t
{

m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}
//−−−−−−−−# CAN2 −−> CAN1 #−−−−−−−−−−−−−−−−−−−−
//on message chassiCAN_VDDM. SASChasFr01
on message CAN2_Networks . SASChasFr01
{

message ChassisCANhs . ∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==2)) // check i f the frame was r e c e i v ed on CAN 2 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t
{

m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}
//on message chassiCAN_VDDM.SasChasNMFr
on message CAN2_Networks . SasChasNMFr
{

message ChassisCANhs . ∗ m;
// i f ChassisCANhs
//{}
i f ((this .DIR == RX) && (this .CAN==2)) // check i f the frame was r e c e i v ed on CAN 2 , to avoid d u p l i c a t i n g frames t ha t were t ransmi t t ed by CANoe, Rx reve i ve , tx , t r an smi t t
{

m=this ; // copy data from the r e c e i v ed message to a new message
output (m) ; // send the new message on CAN 2

}
}

XVII

E. Appendix E

XVIII

F
Appendix F

va r i a b l e s
{

UdpSocket gSocket ;
int var = 0 ;
char t ex t [1 6] ;

}

//on s t a r t
//on sysvar_update sy svar : : Rece iver : : Open
on sysvar_update sysvar : : Sender : : RxText
{

// Open an UDP socke t . As source address 0 . 0 . 0 . 0 i s used , t h i s means t ha t
// the con f i gu r e address o f the TCP/IP s t ack i s used . See TCP/IP s t ac k
// con f i g u r a t i on d i a l o g in the s imu la t i on se tup
// As por t no i s t used , t h i s means a source por t i s dynamica l l y a s s i gn
// by the TCP/IP s t ack .
gSocket = UdpSocket : : Open(IP_Endpoint (1 6 9 . 2 5 4 . 2 1 . 6 1)) ; // changed from 0 . 0 . 0 . 0 2021−04−13 13:06

i f (IpGetLastError () != 0)
{

// i f UdpSocket : : Open f a i l s , we p r i n t a message to the wr i t e window
wr i t e ("<%BASE_FILE_NAME%>␣UdpSocket : : Open␣ f a i l e d ␣with␣ r e s u l t ␣%d" , IpGetLastError ()) ;

}
}

on preStop
{

// Close soc k e t on measurement s top
gSocket . Close () ;

}
/∗on sysvar sysvar : : Rece iver : : Open
{

// send on but ton down
i f (@this == 1)
{

char t e x t [1 6] ; // changed from 200 2021−04−13 13:13

XIX

F. Appendix F

// ge t s t r i n g from sysvar
sy sGe tVar iab l eS t r ing (sy svar : : Rece iver : : RxText , t e x t , e l c oun t (t e x t)) ;
wr i t e ("%s " , t e x t) ;

// send t e x t to IP address /UDP por t o f the r e c e i v e r
gSocket . SendTo(IP_Endpoint (10 .246 .39 .178 :40010) , t e x t , s t r l e n (t e x t)) ; // change IP and Port 192 .168 .1 .2 :40001

}
}∗/
//on s i g n a l ParkAssiPinionAgReq
// bor t kommenterat 2021−05−21

//on message VDDMChasFr15
on message PSCMChasFr02
{

i f ($ParkAssiPinionAgReq != 0)
{

// ge t s t r i n g from sysvar
// sy sGe tVar iab l eS t r ing (sysvar : : Sender : : RxText , t e x t , e l c oun t (t e x t)) ;
t ex t [0] = ’ 1 ’ ;

// send t e x t to IP address /UDP por t o f the r e c e i v e r
gSocket . SendTo (IP_Endpoint (1 6 9 . 2 5 4 . 2 1 . 6 1 : 4 0 010) , text , s t r l e n (t ex t)) ; // change IP and Port , WIFI = 10 .246 .39 .178 :40010 , LAN

169 .254 .21 .61
wr i t e (" Package␣ sent ") ; // Print i f package sen t

}
}

XX

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Terminology / Abbreviations
	Introduction
	Background
	Aim
	Limitations
	Specification of issue under investigation

	Theory
	Python
	Pygame

	Matlab
	OBS Studio
	Network Latencies
	UDP: User Datagram Protocol
	Transfer function
	Bode Diagram
	Coherence
	CANoe
	Controller Area Network

	VN-module
	VN-8911 Setup

	Electrical Control Units and Interface

	Methods
	Hardware implementations
	Rig
	Breakout Cabling Kit
	Remote Steering Wheel
	GoPro
	Additional Hardware
	Car Setup

	Software implementations
	Reading the steering angle
	Sending the value over UDP
	UDP - Python
	UDP - CAPL

	The Rig and the whole setup
	LAN and Wi-Fi tests
	Test page explanation
	Simulation setup for car implementation
	Matlab code

	Tests and Simulations
	Sending and Receiving
	Rig And Car Test
	Rig test
	Car Test
	Maximum Delay
	Low Intensity
	High Intensity

	Evaluation

	Results
	Latency tests of LAN and Wi-Fi
	Vehicle test results
	Low intensity test results
	High intensity test results

	Test Sheet and Inaccuracies.
	Inaccuracies noticed
	General thoughts
	Evaluation of Maximum Delay
	Evaluation sheet
	Further Thoughts Regarding Tests

	Discussion
	Overall conclusion
	Hardware implementations
	Software implementations
	Further developments

	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

