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Abstract

The emerging field of high resolution mobile and inexpensive depth cameras, promise to
revolutionize many parts of computer vision. One area in particular where 3D data has been
shown to improve performance, is face recognition. Using a combination of local and global
pattern matching and a committee of neural networks, this thesis present a robust 3D face
recognition approach, decisively outperforming current methods. The system is evaluated on
the Bosphorus database, a challenging benchmarking dataset that include face scans with
both facial expressions and partial occlusions, captured in angles of up to 90◦ rotation. The
proposed system achieves a recognition rate of 98.9%, which is the highest recognition rate
ever reported on the Bosphorus database, improving the state of the art by 5.2%.

Keywords: 3D, Face Recognition, Machine Learning, Neural Networks, ICP, Computer Vision,
Deep Learning
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Chapter 1

Introduction

The problem of biometric human identification can be approached in several different ways.
Analysis of fingerprints has historically been very successful and has the advantage of being
highly accurate, but it suffers the disadvantage of being quite intrusive. A non intrusive
alternative to fingerprints, which has been shown to hold the same discriminative power, is face
recognition [23]. Looking to nature, it turns out that the ability to perform face recognition
is so important for humans, that the human brain has evolved a center, the fusiform face
area, specialized for this task [17]. This tells us two things, (1) nature has deemed this ability
advantageous enough to spend significant amounts of time and energy on acquiring it, and
(2) face recognition is a problem that probably needs specialized processing to be solved
satisfactorily.

Much research has been spent on face recognition using 2D color pictures. The motivation
behind this is first, that humans are able to identify other humans from 2D pictures and hence
it should be possible to program a computer to do the same. Second, until recently hardware
for 3D surface acquisition has been either low resolution or expensive and bulky. However, the
latter is no longer valid, which has spurred renewed interest in the use of 3D data for face
recognition. Using 3D data, stronger classifiers can be constructed that are more resilient to
circumstances such as lightning conditions and cosmetics, which has proved a big challenge for
pure 2D techniques.

The use of 3D data in face recognition does, however, come with its own challenges. Two of
the largest challenges being, (1) facial expressions that distort the global shape of the face and
makes global face matching inaccurate, and (2) occluded or non frontal face scans that limit
the usable facial surface and may confuse the registration1 process.

In this thesis a novel 3D face recognition approach is presented, insensitive to both facial
expressions and partial occlusions. The method is evaluated on a dataset exhibiting a full
range of facial expressions, viewing angles, and partial occlusions. In this demanding setting,
the proposed method outperforms all other methods found in current research.

1Registration is the process of transforming raw input data to a common coordinate system, see Section
1.3.3 for details.
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Figure 1.3.1: Schematic overview of a generic face recognition pipeline.

1.1 Purpose

The aim of this thesis is to investigate whether a robust face recognition system may be created,
utilizing 3D surface data. To be considered successful the system should be resilient to:

1. Pose variations of up to 90◦ rotation.

2. Partially occluded faces in realistic situations, e.g. a hand or hair covering parts of the
face.

3. A full range of facial expressions, ranging from subtle smiles to very distorted faces.

1.2 Limitations

The system will be evaluated using a benchmarking dataset of manually landmarked2 faces,
see Section 1.3.2 for details. However, the system should not depend on the exact nature of
manual landmarking, but generalize to automatic landmarking.

1.3 Background and related work

A face recognition system may be decomposed into three subsystems, see Figure 1.3.1. (1) A
data acquisition system that captures the facial surface, (2) a registration process that frames
the raw input data in a well defined coordinate system and, (3) a classification system.

1.3.1 Data acquisition

The first step in all signal processing applications, is to digitize the physical phenomena that is
to be analyzed. In the particular case of 3D face recognition, this constitutes capturing a three
dimensional representation of the facial surface to be recognized. There are several techniques
that can accomplish this, the three dominant ones are passive stereo vision, structured light
and time of flight.

2A facial landmark refers to the position of a facial feature, e.g. the nose tip, the corners of the eyes, or any
other distinguishable position on a face.

2



Figure 1.3.2: IR image of the projected light pattern produced by a Kinect Sensor.

Passive stereo vision

Passive stereo vision is a biologically inspired 3D reconstruction technique that uses two RGB
cameras, mounted side by side, each capturing the scene with a slight offset to the other camera.
By comparing the location of key-points found in both images it is possible to triangulate the
depth of these using the known horizontal offset between the cameras.

The fact that no special hardware is needed, and that it is similar to human 3D vision, has
made it popular in the humanoid robotics community. However, it has a couple of drawbacks,
(1) it is computationally intensive, and (2) it fails when there is no, or too little, texture to
extract common key-points from [30], e.g. very plain surfaces or bad lighting conditions.

Structured light

Structured light sensors [8] project a complex light pattern into the environment using an
infrared (IR) laser projector, see Figure 1.3.2. The light pattern is subsequently captured using
an IR detector, and the positions corresponding to local patterns found in both the IR image
and the internal representation of the light pattern (in the memory of the sensor), is extracted.
Using these positions, and the known projector to camera offset, three dimensional points on
the surface of the object being captured, is triangulated.

The active nature of this sensor makes it less sensitive to structure and lighting of the object
being captured. However, the fact that it is asymmetric gives rise to shadows on one side of
the object where no depth information can be extracted, see Figure 1.3.3.

Time of flight

Time of Flight (ToF) cameras [8] operate using modulated infrared light, measuring the flight
time by comparing the phase of the sent and reflected signal.

ToF sensors are the most expensive type of sensor investigated and produce rather low
resolution images. However, they do not suffer from the problems associated with featureless
surfaces inherent to passive stereo vision, or the blind spot shadows of structured light sensors
[12].

3



Figure 1.3.3: A bottle captured using a Kinect camera to illustrate the loss of information in
the shadow cast by the object being captured.

1.3.2 Facial databases

The results from a performance evaluation of a face recognition system is highly dependent
on the evaluation data. To enable comparative studies of different systems, the results must
therefore be calculated on the same database. To accommodate this, several databases have
been compiled using different types of depth data acquisition systems. The databases have
subsequently been made freely available for researchers in the field, and employed to run
comparable benchmark tests on face recognition systems. A short description of a few selected
databases follow and a comparison matrix is tabulated in Table 1.3.1.

Eurecom kinect face dataset

In [14] a database is presented that consists of multi-modal RGBD3 facial images of 52 people
(14 females, 38 males), in 9 different states including facial expressions and partial occlusions,
captured using a Kinect [8] sensor, at two different occasions two weeks apart. The dataset
includes meta data such as gender, year of birth, ethnicity, eyeglasses and six manually marked
facial landmark positions.

The face recognition grand challenge

The Face recognition Grand Challenge (FRGC) [22] was initiated to promote progress in
the field of face recognition, and ran from May 2004 to March 2006. The RGBD face image
database associated with this project includes 4003 depth images of over 400 subjects, produced
using a Minolta Vivid 900/910 series sensor.

The Bosphorus database

To produce images with natural facial expressions, the creators of the Bosphorus database
[5] used professional actors as subjects. The database consists of 4666 RGBD face images,
taken from different angles, of 105 subjects. Some facial scans include occlusions like beard &

3RGBD is an image format that includes both an RGB image and a depth map.
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Table 1.3.1: Comparison matrix describing six popular 3D face databases.

Database Properties

Name Sensor Resolution #Subjects Expr. Markers Year

Eurecom [14] Kinect 640x480 52 3 6 2012
FRGC [22] Minolta

Vivid
900/910

307/76 Kps 477 1 - 2004

Bosphorus [5] Inspeck
Mega
Cap-
turer II
3D

30-50 Kps 105 35 24 2009

UMB-DB [7] Minolta
Vivid
VI-900

307/76 Kps 143 4 7 2011

BU-3DFE [28] 1040x1329 100 7 - 2006
BU-4DFE [29] 1040x1329 101 6 - 2008

mustache, hair, a hand or eyeglasses, and up to 35 facial expressions per subject. The images
were acquired using a structured light sensor, with a (x,y,z) resolution of (0.3mm, 0.3mm,
0.4mm), and manually marked at 24 facial landmarks.

The university of Milano Bicocca 3D face database

The University of Milano Bicocca 3D face database (UMB-DB) [7] consists of a total of 1473
RGBD images taken of 143 subjects (98 male and 45 female), where a pair of male twins and
a baby is included. Four different facial expressions are used and 590 images are partially
occluded. The images were created using a Minolta Vivid VI-900 laser depth scanner and
annotated with seven facial landmarks. Masks representing the visual part of the face are
available for the partially occluded pictures.

Binghamton university 3D facial expression database

In [28] a set consisting of 100 subjects (56 female and 44 male), each performing seven different
facial expressions in front of the camera, are presented. The age of the subjects are ranging
from 18 to 70 years old.

Binghamton university 3D dynamic facial expression database

With an emphasis on dynamic facial expressions the dataset in [29] are captured as videos
with a frame rate of 25 fps. The database consists of 101 subjects, each filmed in six sessions
of about 100 frames, doing different facial expressions in different sessions. In total, the set
consists of 60600 RGBD frames, each with a resolution of approximately 35000 vertices. The
subjects consists of 58 females and 43 males coming from a verity of ethnic backgrounds.
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1.3.3 Registration

The problem of face recognition is an intraclass4 problem, and as such it attempts to classify
surfaces that are very similar in shape. To enable the system to detect the small differences in
shape, it is advantageous to first register the depth image to a common coordinate system [1,
2, 3, 9, 15, 18, 24, 25, 26]. This is achieved by setting up a cost function that describes how
well the data is oriented, and subsequently minimizing this function.

The by far most common approach to this problem, used in [1, 2, 3, 9, 15, 18, 25], is
to employ some variant of Iterative Closest Point (ICP). ICP iteratively matches points in
the probe image with corresponding points in the reference model and calculates the rigid
transform that minimizes the cost function describing their alignment. Using ICP it is possible
to relatively quickly align 3D surfaces, however it may get stuck at local optima under certain
circumstances. For more details regarding ICP see Section 2.2.

In [24] the cost function was constructed using the Surface Interpenetration Measure (SIM),
computed between the probe and the gallery image to be compared, and Simulated Annealing
(SA) was subsequently used to minimize this cost function. This approach had the advantage
of being less prone to get stuck at local optima during the optimization, but was rather slow
compared ICP [24].

A similar approach was taken in [26], using SIM as cost function but a Genetic Algorithm
(GA) [21] for the optimization. This provided even better convergence than (SA), but at the
expense of being extremely time consuming [24].

Reference model

In much of the early work regarding 3D face recognition, the probe image (i.e the image to be
classified) was registered against every gallery image separately. This is called the one-to-all
approach. This approach provides very good registration, but at the expense of not scaling
well with gallery size. In [15] a reference model was employed, to which both the gallery and
probe images was registered, providing a significant speedup without suffering a significant
impact on the Recognition Rate (RR) [3]. For more details see Section 2.6.

1.3.4 Feature extraction & classification

When performing classification of a probe image, two approaches are commonly used. Either
the probe is compared to all images in the gallery, calculating a one-dimensional similarity
measure, or a hyperspace is constructed where probes hopefully will cluster according to the
subjects they represents.

Similarity measures

Several different similarity measures have been tested in the context of 3D face recognition. In
systems using one-to-all registration, the remaining alignment error is frequently employed (e.g.
[24]). The main disadvantage of this approach is that it relies on the one-to-all registration,
which is computationally intensive. Another, but related, approach was taken in [25] where
an Average Face Model (AFM) was used for registration and the registered surface was

4Intraclass, or within class, classification is the problem of distinguishing different instances of the same
type of object. In contrast, the problem of general object recognition is an interclass problem.
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subsequently resampled on a regular grid to construct a feature vector. This feature vector
was projected onto a subspace constructed using Principal Component Analysis (PCA)5, and
classified using a k-Nearest Neighbors (k-NN) classifier. In [26] and [24] SIM was employed,
and shown to sometimes produce better results then the remain alignment error, and in [2]
Linear Discriminant Analysis (LDA) was used for dimensionality reduction before matching,
which led to a significant improvement in RR.

Attacking the problem of 3D face recognition from a different direction, [19] extracted
Spherical Harmonics (SH) and used these to train a face classifier, performing well on frontal
images.

Facial expression and partial occlusions

The problems of facial expressions and partial occlusions have been tackled from several
directions, most having in common that local descriptors have been used. In [1] the face
was divided into 5 regions and separately registered using ICP on an AFM, and classified by
fusing the separate results discarding regions with high alignment error. A completely different
approach was taken in [27] where a 3D adaptation of Scale-Invariant Feature Transform (SIFT),
called meshSIFT, was used with good results on a the face database ”SHREC 11: face Scans”.
In [18] and [9] face curves were used as local descriptors, in [18] only as a rejection classifiers to
eliminate very dissimilar faces in the gallery, but in [9] for final classification. Facial curves have
the advantage of being computationally inexpensive to compute [9], and may be a promising
approach.

5See Section 2.5
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Chapter 2

Theory and method

Face recognition systems are generally the sum of many parts, and the proposed system is
no exception. For an intuition regarding how these parts interact see Figure 2.0.1, while a
detailed description of the used techniques is the topic in the remainder of this chapter.

2.1 Face orientation using landmarks

The topology of the facial surface is staked out by three-dimensional points, referred to as a
point cloud. To enable further processing of the facial surface point cloud (P(S)), it is roughly
aligned to a standard orientation. This is accomplished using the positions of the landmarks
found on both the aligner face model (A(L)) and probe landmarks (P(L)), by calculating
the rigid transform (R and T) which minimizes the alignment error. The transformation is
calculated using Singular Value Decomposition (SVD)1 as follows:

A
(L)
0 = A(L) − 〈A(L)〉 (2.1.1)

P
(L)
0 = P(L) − 〈P(L)〉 (2.1.2)

SVD(A
(L)
0 P

∗(L)
0 ) =⇒ UΣV∗ (2.1.3)

R = V

1 0 0
0 1 0
0 0 det(UV ∗)

U∗ (2.1.4)

T = 〈A(L)〉 −R〈P(L)〉 (2.1.5)

1SVD is a matrix factorization technique closely related to eigenvalue decomposition. In fact, the left and
right singular vectors (U and V) are the eigenvectors of MM∗ and M∗M respectively, and the singular values
(the diagonal entries of Σ) is the square roots of the eigenvalues of both MM∗ and M∗M.
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Figure 2.0.1: Schematic overview of the used techniques and the interacting parts of the system,
each described in detail throughout Chapter 2.
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2.2 Iterative closest point

Given two roughly aligned point clouds (M and P) of N points each, it is possible to efficiently
compute the rigid transform which minimizes the point to point distances between them using
ICP [6]. ICP works in iterations as described in Algorithm 1, and visualized in Figure 2.2.1.

Algorithm 1: ICP

1. Every point in P is associated with its closest match in M.

2. The transformation (R and T) which minimizes the error (e) is calculated.

P0 = P− 〈P〉 (2.2.1)

M0 = M− 〈M〉 (2.2.2)

SVD(P0M∗
0) =⇒ UΣV∗ (2.2.3)

R = V

1 0 0
0 1 0
0 0 det(UV ∗)

U∗ (2.2.4)

T = 〈P〉 −R〈M〉 (2.2.5)

3. Transform P using (R and T)

P := RP + T (2.2.6)

4. Iterate x times or until the error e falls under a given threshold.

e =
√
N−1

∑
‖ P −M ‖ (2.2.7)

ICP is proven to find the local minimum by monotonically moving towards lower errors,
however it is not guaranteed to find the global minimum which is why the point clouds needs to
be roughly aligned before ICP is applied. See Section 2.1 for details regarding rough alignment.

2.2.1 KD-trees

Most of the processing time used during an ICP registration, is spent matching the points
between the point clouds. In fact, matching n points in one unstructured point cloud to
another, will cost O(n2) operations. A way to overcome this problem is to structure one of the
point clouds in a k-d tree, reducing the cost of n nearest neighbor searches to O(n log n).

10
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Figure 2.2.1: ICP minimizes the point to point distance between two point clouds, here visulaized
as red and blue points.

Nearest neighbor search of a KD-tree

A kd-tree, or k-dimensional tree, is a binary search tree adapted for k-dimensional data. Each
node in the search tree splits the data in one of its k dimensions, cycling through the dimensions
as the search moves down the tree, see Algorithm 2 for details.

Algorithm 2: Search KD-Tree

1. Starting at the root, move down recursively, going to the left if the search point (P ) value
of the corresponding dimension is lower than the node value and otherwise to the right.

2. When the algorithm reaches a leaf, this value is stored as the potential nearest neighbor
(Nbest).

3. Now backtrack towards the root, checking each node for:

(a) If ‖ P −Ncurrent ‖<‖ P −Nbest ‖ than set Nbest := Ncurrent.

(b) Check whether points on the other branch of the current node may be closer. If
(P −Ncurrent)split.dim. <‖ P −Nbest ‖ then there may be closer points on the other
side. This is handled by initiating a new search on this subtree, and saving the
result in Nbest if it is closer than the current best value.

4. When the backtracking completes the root node, the search returns the node Nbest as the
nearest neighbor of the search point P .

Building a KD-tree

Construction of a kd-tree can be accomplished in several different ways, and which particular
method that best accommodates the problem at hand depends mostly on how the data is
delivered. The canonical method, described in Algorithm 3, can be used when all data is
available at build time, and costs O(n log n) to build.
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Algorithm 3: Build KD-Tree (k = 2)

1. Find the median value in the full set, for the first dimension. Use the node holding this
value as root node and split the rest of the set into two subsets, using the median value
as pivot.

2. For each of the two subsets, find the median value of the second dimension, create a
node, and split the sets again.

3. Now for each of the four subsets, start over with the first dimension.

4. Continue splitting until all subsets are empty sets, the final nodes becoming the leafs of
the tree.

2.3 Thin-plate splines

Thin-Plate Spline (TPS) was introduced in [10] and is based on the physical analogy of the
bending energy in a thin sheet of metal, anchored at a fixed set of points. Using TPS a
landmarked surface-mesh may be morphed to fit another given set of landmark positions,
interpolating the effects on the surrounding surface in a physically plausible way. A point
(x ∈ R3) in space is mapped using the input landmarks (P) and the radial basis function:

f(x; P,V) = a0 +
3∑

k=1

akxk +
n∑

i=1

ωiϕ(‖Pi − x‖) (2.3.1)

The kernel function (ϕ), that may be chosen to take several different forms, is here defined as

ϕ(r) = r (2.3.2)

and the parameters (a and ω) are calculated as

[ω1, . . . , ωn, a1, . . . , a3]T = L−1

[
VT

0

]
(2.3.3)

where V is the given landmarks towards which the model is warped and L is calculated as:

L =

[
K W

WT 0

]
(2.3.4)

W = [1|P] (2.3.5)

K =


0 ϕ(r1,2) . . . ϕ(r1,n)

ϕ(r2,1) 0 . . . ϕ(r2,n)
. . . . . . . . . . . .

ϕ(rn,1) ϕ(rn,2) . . . 0

 (2.3.6)

ri,j = ‖Pi −Pj‖ (2.3.7)

12



2.4 Resampling

To create comparable fixed dimension surface meshes, the point data will need to be resampled
on a uniform grid. This is achieved using linear Delaunay tessellation interpolation [11]. The
interpolant is subsequently used to create a mesh on a square grid, scaled to match the
resolution of the depth camera.

2.5 Principal component analysis

PCA [16] is a statistical tool used to find the directions in a given dataset, that hold the
highest variance. The principal components are the eigenvectors of the covariance matrix of
the dataset, sorted according to the associated eigenvalues, in decreasing order. This has the
effect of setting the first principal component to the direction in the dataset that has the
highest variance, the second to the direction that has the next highest variance, under the
constraint that it must be orthogonal to the first principal component. This process continues,
in the order of ever decreasing variance, until all dimensions are enumerated. PCA may be
implemented using eigenvalue decomposition of the covariance matrix described above, but it
is also possible to use SVD to find the principal components directly. The SVD approach is
more numerally stable and hence usually recommended.

2.6 Average face model

In a large scale face recognition implementation, it is not feasible to register the probes against
every subject in the gallery, in a one-to-all comparison. This is because the registration step,
with an order of magnitude, is the most computationally expensive step in the process. A
better alternative might be to register all frames in the coordinates of an Average Face Model
(AFM), a process which scales as O(1) instead of O(N) and is a simplification that has been
shown to have a negligible impact on the RR of the system [25]. Also, using an AFM opens
up for the use of machine learning techniques, which as will be later shown can significantly
improve the RR of a face recognition system.

The AFM is created in two steps, using a subset of neutral faces from the training set, which
will be described below.

2.6.1 Mean landmarks

The mean landmarks are calculated using an iterative process that aims to minimize the
difference between the sought reference shape (A(L)) and the mean positions of the landmarks

corresponding to all subjects (P
(L)
i ,∀i ∈ S) registered using the reference shape A(L), see

Algorithm 4 for a complete description.
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Algorithm 4: Mean Landmarks

1. Choose one of the subjects (i ∈ S) as the initial reference (e.g. i=0).

A(L) := P
(L)
0

2. For each subject (i ∈ S) calculate the rigid transform (Ti and Ri) that minimizes the

Root Mean Squared (RMS) difference between P
(L)
i and A(L), as described in Section

2.1.

3. Calculate the mean positions for each of the registered landmarks.

A
(L)
next = 〈Ri ∗P

(L)
i + Ti〉,∀i ∈ S

4. Compute the remaining error ε as the RMS difference between the reference shape A(L)

and the mean positions of the landmarks.

ε = RMS(A(L) −A
(L)
next)

5. Assign the mean positions of the registered landmarks to the reference shape.

A(L) := A
(L)
next

6. If the remaining error ε is larger than a set threshold go back to step 2.

7. Normalize the pose of the reference shape A(L) to use its largest principal component as
y-axis, the next biggest as x-axis and its smallest principal component as z-axis. The
principal components of the data is found using PCA as described in Section 2.5.

8. Return A(L)

2.6.2 Mean facial surface

Using the mean facial landmarks A(L) the mean facial surface (A(S)) may be constructed as
described in Algorithm 5. This surface constitutes the sought AFM, see Figure 2.6.1 for an
example.

2.7 Landmark variance clustering

One of the biggest challenges within face recognition stems from the dynamic nature of the
face. Facial expressions distort parts of the facial surface, which degrades the performance of
classifiers using these distorted regions. A classifier based on the whole face will, hence, only
perform well for neutral faces. This can be solved by breaking up the face into smaller regions
[1]. However, as can be seen when studying the face recognition performance in humans [17], as
well as computers as will be shown later, it is not enough to only analyze the local features of
the face, if a high performance system is sought. To combat this issue, the regions are, in the
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Algorithm 5: Mean Facial Surface

1. For each subject i ∈ S calculate the rigid transform (Ti and Ri) that minimizes the

RMS difference between P
(L)
i and A(L), as described in Section 2.1.

2. Align the facial surface points (P
(S)
i ) of each subject i ∈ S using Ti and Ri and warp

them using TPS, as described in Section 2.3, to fit the reference landmarks A(L).

P
(W )
i = TPS(A(L),P

(L)
i , R ∗P

(S)
i + T )

3. Resample the surfaces (P
(W )
i ) on a regular x-y grid, as described in 2.4, to form a set of

depth maps Di
x,y,∀i ∈ S

Di
x,y = Interpolate(P

(W )
i , x, y), i ∈ S

4. Average Di
x,y over all subjects in S and convert back to points and form A(S)

A(S) =
[
x, y, 〈Di

x,y〉
]

5. Return A(S)

Figure 2.6.1: AFM constructed from 3D scans of 105 individuals.
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proposed method, grouped to form additional classifiers. However, this leads to the non trivial
problem of how to combine these smaller regions to form good classifiers. One approach could
be to use all possible combinations of landmarks, however this would yield

∑|L|
i=1

(
n
i

)
areas to

register and investigate (i.e. the dataset used in this thesis has a cardinality of |L| = 22 which
equates to 4 194 303 possible combinations of regions), which is computationally infeasible.

In this thesis a novel solution, Landmark Variance Clustering (LVC), to the above problem
is presented. LVC aims to find low variance regions, which may be used as discriminative,
yet expression invariant, features. LVC achieves this by constructing a landmark Euclidean
inter-variance matrix (d(S) ∈ R2) and subsequently performing a hierarchical clustering of
this matrix. This approach will yield 2|L| − 1 regions (i.e. 43 for |L| = 22) which is a more
manageable number of classifiers for a real time system.

2.7.1 The LVC distance measure

When a face is distorted by facial expressions, the landmarks in the face will move with respect
to each other. This interplay may be analyzed to find the clusters of landmarks that are more
static with respect to each other, and hence have a greater probability of not being distorted,
yet providing a more global perspective of the face.

Using the full training set of subjects (i ∈ S), making all available facial expressions (e ∈ E)

the average point to point variance (d
(S)
l1,l2

) is calculated as:

d
(i)
l1,l2

= VAR(‖P(i,e)
l1
−P

(i,e)
l2
‖),∀e ∈ E (2.7.1)

d
(S)
l1,l2

= 〈d(i)
l1,l2
〉, ∀i ∈ S (2.7.2)

where P(i,e) denotes the facial landmarks of subject i making facial expression e.

2.7.2 Hierarchical clustering

Hierarchical clustering is a technique used to form a hierarchy of clusters from a proximity
matrix. The hierarchy is represented by a binary tree structure where the root represents a
cluster of all nodes, every branch splitting the set to form two sub clusters, and the leaves
representing single nodes, see Figure 2.7.1. The clusters are split using Euclidean distance and
single-linkage clustering. The resulting super regions of an LVC analysis can be seen in Figure
3.1.2.

2.8 Dimensionality reduction

When faced with high dimensional data, that is likely to fester dependent variables, it is usually
advantageous to try and reduce the dimensionality of the data. Optimally, in such a way that
the resulting variables are independent, and with minimal loss of information.

This can be achieved using PCA, see Section 2.5. In this setting, only the first few principal
components are kept. The number of dimensions to keep are either given, or decided by
discarding the principal components that hold less than a given ratio of the total variance, e.g.
components corresponding to less than 0.5% of the variance may be rejected. Finally, using
the found principal components, the data is projected onto the new basis.
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Figure 2.7.1: Dendrogram representing a hierarchical clustering of facial landmarks, based on
Euclidean inter-variance under facial expressions.

2.9 Artificial neural networks

Artificial Neural Networks (ANN) [13] are biologically motivated and is a machine learning
technique that comes in many flavors, see Figure 2.9.1 for an example topology.

2.9.1 Feed-forward neural networks

A Feed-Forward Neural Network (FFNN) [13] is a popular ANN architecture that can be used
to perform pattern recognition. The technique is similar to logistic regression using non-linear
terms, but does not rely on the user to choose the terms needed to fit the data, making it
much more adaptable to complex datasets. The neurons in a FFNN are structured in layers,
the first layer called the input layer, the last called the output layer and interim layers are
called hidden layers, see Figure 2.9.1. The hidden layers are optional, however, to fit complex
patterns they are necessary.

Each neuron is updated as the weighted sum of its inputs, and squeezed into the interval
[0, 1] using a sigmoid function.

g(z) =
1

1 + e−z
(2.9.1)

The information learned by the neurons is stored in the input weights (Θ), which are used
to calculate the output from each layer (a(l)), eventually producing the network output
(hΘ(x) = y).
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a(2) = g(Θ(1)a(1))a(1) = x
a(3) = g(Θ(2)a(2))

= hΘ(x) = y

Figure 2.9.1: Network diagram representing an example of a FFNN with four input neurons, one
hidden layer, and five output neurons. This type of architecture is appropriate when classifying
some data x ∈ R4 into one of 5 different categories, however depending on the complexity of
the input, the number and size of the hidden layers should be scaled accordingly.

2.9.2 Network training using backpropagation

A FFNN is trained by minimizing the cost function (regularization terms omitted for brevity)

J(Θ) =
1

m

m∑
i=1

K∑
k=1

(
−y(i)

k log((hΘ(x(i)))k)− (1− y(i)
k ) log(1− (hΘ(x(i)))k)

)
(2.9.2)

that represent the performance of the network, where m and K denotes the number of input
and output neurons respectively.
J(Θ) is not convex, however it is rather well behaved, and is therefore usually treated as if it

were convex when optimized since this opens up for the use of high performance optimization
methods, such as the conjugate gradient method. If the algorithm does get stuck at a bad
local optimum the optimization is simply restarted. The partial derivatives ∂

∂Θ
J(Θ), needed to

guide the optimization, are calculated using backpropagation [13].
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Chapter 3

Implementation

Two different face recognition approaches are implemented and evaluated in the context of this
thesis, see Figure 3.0.1 for a system overview. The first method uses a simple k-NN classifier,
implemented to provide a baseline score, and the second uses a FFNN classifier. However, the
features used in both systems are identical.

3.1 Feature templates

As a prerequisite for both training and testing, an AFM is constructed as described in Section
2.6.1. The AFM is subsequently divided into 22 basic regions, based on the euclidean distance
to the nearest facial landmark, see Figure 3.1.1. In addition to the basic regions, another 21
super regions are constructed based on an LVC, described in Section 2.7, analysis, see Figure
3.1.2. These, in total 43, extracted regions, denoted Ci, i ∈ {1, . . . , 43}, will later be used as
feature templates during feature extraction.

3.2 Registration and feature extraction

Given a probe point cloud (P(S)) of arbitrary orientation with landmarks (P(L)), the first step
in the recognition process is rough alignment using landmarks, see Section 2.1. This step is
necessary to ensure convergence of the fine grained registration, used during feature extraction.

Next ICP, see Section 2.2, is applied using P(S) as the model and the first feature template
(C1) as the point cloud to be registered. The reason that P(S) is used as the model, and not
the other way around (which might seem more natural), is that this will implicitly segment
the region of interest and not try to match each point in (the much larger) point cloud P(S)

to points in C1. Finally the registered subregion of P(S) corresponding to C1 is re-sampled,
see Section 2.4, on the (x,y) grid defined by C1, and the resulting z values is used to form the
feature vector f1. This processes is repeated for each Ci, i ∈ {1, . . . , 43} resulting in the feature
vectors fi, i ∈ {1, . . . , 43}.
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Feature TemplatesExtract Features

Data Acquisition

Training Validation

Figure 3.0.1: System overview depicting the flow of information in the system. The first step,
data acquisition, was taken care of when the face database was created, described in Section
1.3.2. Next, using a subset of this data, feature templates are created, see Section 3.1. These
are only created ones and are subsequently used in the feature extraction step, Section 3.2,
during both training and validation. Training of the classifiers are done first, and subsequently
validation of the system is carried out using the learned parameters from the training step, but
on a different subset of the data, see Sections 3.3 and 3.4.

Figure 3.1.1: An AFM dived into 22 different regions based on the euclidean distance to the
nearest facial landmark.
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Figure 3.1.2: 21 super regions, constructed using clusters of basic AFM facial regions. The
clustering is based on an LVC analysis.

3.3 k-NN classification

To create a base line performance, k-NN classifiers are trained for each facial region and
evaluated.

3.3.1 Gallery generation

Training of the k-NN classifiers are straight forward. It consists of generating feature vectors
(fi,s, {i ∈ {1, . . . , 43}, s ∈ S}) corresponding to one neutral scan of each subject in the data set,
and letting these make up the feature space for the classifiers.

3.3.2 Probe classification

For every region, a set of similarity scores are calculated as the inverse of the euclidean distance,
in feature space, between the probe and each prototype. The scores are subsequently normalized
to zero mean and unit standard deviation withing each region, weighted (excluding regions with
an alignment error higher than one standard deviation above the others), and summed to form
one score per subject in the gallery. Finally the probe is assigned the identity corresponding to
the highest score.

3.4 Neural networks classification

To learn more complicated, non linear, relationships between the feature vectors, a neural
network may be used. In this context a set of expert FFNNs, see Section2.9.1, is set up, one
for each region, and the results are fused to form the final results.
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3.4.1 Preprocessing

Before the feature vectors may be fed to the network, a few preprocessing steps are necessary.

Fix unknowns

Since the face scans may be captured from different angles, there is no guarantee that every
point in the feature template has a corresponding point in the probe. In this case that value
will be set to the mean value of that point in the training set, and a new feature vector will be
generated where the missing value is set to zero and all other to 1.

Normalization

Since the position in space is of no consequence, the feature vectors may without loss of
information be normalized to zero mean. Scaling to unit standard deviation may in fact lead
to a certain degree of information loss, however it is necessary to be able to do the subsequent
sub space projection.

Sub space projection

Training a FFNN using > 20000 input neurons is computationally intensive, and will lead to
overfitting if trained using the, in comparison, small dataset used in this thesis. To overcome
this problem, a subspace is constructed using PCA, see Section 2.8, into which the feature
vectors are projected. The dimensionality of the subspace is set by discarding 0.5% of the total
variance, which compresses the feature space to about 30 dimensions ±5 depending on region.

3.4.2 Network architecture

A pattern recognition FFNN architecture is used for the expert networks, and as such the size
of the input layer is defined by the dimensionality of the input vector, and the output layer
by the total number of subjects. The number of hidden layers and the number of neurons in
each layer are, however, hyper parameters in this model. A few different topologies were tried,
among which the setup using three hidden layers with 30, 30, and 60 neurons respectively, gave
the best results on the validation set, and is hence the one used in the experiment described in
Section 4.4.

3.4.3 Training

Training of a FFNN, as detailed in Section 2.9.2, is a deterministic process. However, it will
lead to different results depending on the initial weights, which are randomly chosen. To
combat the risk of having one or more of the networks sub-optimally trained, each network is
retrained several times, using different initial weights, keeping the network of lowest energy
under the constraint that it does not have a negative impact on the validation RR. In practice
this means that the algorithm minimizes the validation RR in a greedy1 best first matter, but
allows unchanged validation RR if the new network has lower energy than the current best in
that region.

1A greedy algorithm uses the heuristic of locally optimal choices, to solve complex problems efficiently.
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3.4.4 Sum of expert networks

The output from each expert network is fused using a weighted sum, where the weights is
either 0 or 1 depending on the alignment error of the corresponding region. The threshold is
set to 0.35 standard deviations above mean alignment error.
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Chapter 4

Validation

Validation of the proposed face recognition system is performed on the open benchmarking
dataset Bosphorus 3D face database, described in Section 1.3.2. The experiments conducted
are designed to measure the performance of the proposed FFNN method and the baseline
k-NN method, in both an identification scenario and a verification scenario. The metrics used
and the specifics concerning the experiments, are described below.

4.1 Recognition rate

The RR, also denoted Rank 1 RR, measures which portion of the probes that are correctly
identified during a trial.

4.1.1 Cumulative match characteristic

A Cumulative Match Characteristic (CMC) curve plots the RR as a function of allowed rank,
i.e. the first point in the plot will constitute the rank 1 RR, and the last point will include all
ranks, hence it will equal one.

4.2 Verification rate

The Verification Rate is a measure used in verification scenarios. It measures the True Positive
Rate (TPR) (i.e. the ratio of frames correctly verified), constrained by a given False Accept
Rate (FAR) usually chosen to be 0.1%.

4.2.1 Receiver operating characteristic

The Receiver Operating Characteristic (ROC) curve describes the verification rate, also denoted
the true accept rate, as a function of the FAR. If plotted on a linear scale a straight line from
the origin to (1, 1) constitutes a random guess system, and in a perfect system the same line
will pass through (0, 1). In the face recognition community, the axis corresponding to the FAR
is, however, usually plotted on a logarithmic scale.
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Figure 4.3.1: Examples of face scans included in the Bosphorus face database.

4.3 The dataset

Guided by the face database evaluation reported in Section 1.3.2, the Bosphorus face database
[5] was selected for evaluation of the system. Bosphorus was selected because it was deemed
the most challenging face databases available, exhibiting a wide range of facial expressions,
partial occlusions and rotated faces, see Figure 4.3.1.

4.4 Experiments

All performance metrics are calculated from one single experiment per approach. In both cases
a classifier is first trained, using the gallery set in the case of k-NN, and the training/validation
set in the case of FFNN. Using the trained classifier, a similarity score for each potential
identity is calculated for each frame. The resulting output matrix is subsequently used to
calculate both identification and validation performance.
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Chapter 5

Results

The result of each separate region is discussed in Section 5.1. These results show what
discriminate power each separate classifier holds and provides a baseline for the compound
classifier discussed in Section 5.2.

5.1 Regional performance

In order to determine the discriminative power of each separate region Ci a per region RR
analysis was conducted. The layout of the basic regions C{1,...,22} can be seen in Figure 3.1.1,
and the compound regions C{23,...,43} in Figure 3.1.2. The resulting regional RRs is tabulated
in Table 5.1.1.

From this analysis it is apparent that no single region, basic nor compound, can be used
to construct an optimal classifier on its own, and that the full facial scan (C43), that was
commonly used in early work, constitutes a rather weak classifier when applied to a dataset
like the Bosphorus face database.

5.2 Fused results

In order to obtain a stronger classifier, each of the regional scores are fused, as described in
Section 3.4.4. The fused scores are further analyzed, as described in Section 4, resulting in the
RR and verification rate compiled in Table 5.2.1.

5.2.1 Identification performance

A rank 1 RR of 93.68% was achieved using the baseline k-NN classifier, and a 98.86% RR
was achieved by training a FFNN to recognize the feature vectors. The corresponding rank n
characteristics, described using CMC curves, can be seen Figure 5.2.1.

5.2.2 Verification performance

In the verification experiment the difference between the two methods were even more evident.
The k-NN approach achieving a verification rate of 18.46%, while the approach using a FFNN
achieved 95.86%, both measured at 0.1% FAR.
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Table 5.1.1: The per region rank 1 RR, as measured on the Bosphorus face database.

Region Description k-NN RR(%) FFNN RR(%)

C1 Outer left eyebrow 25.66 38.00
C2 Middle left eyebrow 41.00 51.00
C3 Inner left eyebrow 51.30 58.57
C4 Inner right eyebrow 50.84 62.71
C5 Middle right eyebrow 46.29 43.43
C6 Outer right eyebrow 37.94 63.29
C7 Outer left eye corner 51.41 67.43
C8 Inner left eye corner 37.32 42.43
C9 Inner right eye corner 46.38 46.71
C10 Outer right eye corner 63.12 68.43
C11 Nose saddle left 31.34 34.86
C12 Nose saddle right 43.07 49.71
C13 Left nose peak 45.90 60.43
C14 Nose tip 48.03 72.71
C15 Right nose peak 55.83 52.14
C16 Left mouth corner 39.41 44.14
C17 Upper lip outer middle 32.33 46.86
C18 Right mouth corner 46.36 54.57
C19 Upper lip inner middle 7.13 1.57
C20 Lower lip inner middle 7.63 6.14
C21 Lower lip outer middle 31.36 39.29
C22 Chin middle 34.74 36.14
C23 C11 ∧C12 56.40 58.43
C24 C8 ∧C9 51.97 63.00
C25 C13 ∧C15 52.49 62.14
C26 C24 ∧C25 64.20 67.43
C27 C23 ∧C26 71.03 62.71
C28 C3 ∧C4 62.75 61.43
C29 C10 ∧C27 76.16 74.71
C30 C14 ∧C28 76.85 81.43
C31 C6 ∧C29 78.55 77.29
C32 C30 ∧C31 82.80 80.71
C33 C5 ∧C32 83.08 75.29
C34 C1 ∧C7 59.74 60.00
C35 C17 ∧C33 81.97 84.00
C36 C34 ∧C35 81.12 73.86
C37 C19 ∧C36 80.46 72.43
C38 C20 ∧C22 38.35 44.14
C39 C21 ∧C38 43.64 50.29
C40 C2 ∧C37 80.64 77.00
C41 C18 ∧C40 77.86 48.57
C42 C16 ∧C41 75.12 80.29
C43 C39 ∧C42 75.05 71.29
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Table 5.2.1: The rank 1 RR and verification rate at 0.1% FAR of the purposed methods, as
measured on the Bosphorus face database.

Method Verification Rate(%) at 0.1% FAR RR(%)

k-NN 18.46 93.68
FFNN 95.86 98.86
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Figure 5.2.1: The CMC curves corresponding to the proposed method and the baseline method,
as measured on the Bosphorus face database. Both systems show similar characteristics, but
the FFNN approach is much better in the top ranks.
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Figure 5.2.2: The ROC curves of the proposed method and the baseline method, as measured
on the Bosphorus face database. The FFNN classifier achieves much greater security than the
simple k-NN approach. The FFNN approach verifying the identity of over 90% of the probes
when accepting a risk of less then 0.01% of false verification of an intruder, compared to about
10% FAR for the k-NN classifier at the same verification rate.

The ROC curves, describing the systems verification rate as a function of FAR, is illustrated
in Figure 5.2.2.
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Chapter 6

Discussion and conclusions

A novel 3D face recognition approach is presented, outperforming all existing methods found
in current research. The method uses local and global features, extracted using the novel
landmark variance clustering method LVC and an AFM for registration. Classification is done
using FFNNs, achieving a top rank 1 RR score of 98.86% and a verification rate of 95.86% at
0.1% FAR, on the challenging dataset the Bosphorus face database.

By choosing the Bosphorus face database for verification, the success conditions stipulated
in Section 1.1 could be verified, and considering the results achieved, the conditions can be
considered met.

A short description of the main contributions of this thesis follows.

6.1 Rough alignment

To handle faces rotated up to 90◦, a robust rough alignment method had to be developed. The
purposed method, described in Section 2.1, uses all 22 available landmarks on the aligner face,
and is able to converge as long as at least three landmarks can be found on the probe face, no
matter which of the landmarks this may be. However, if more landmarks are found on the
probe, this will lead to a less noisy result, less dependent on exact landmarking.

6.2 LVC

The novel LVC method, described in Section 3.1.2, was developed to enable the algorithm
to choose which parts of the face that are more likely to be rigid. This information is used
by the system to create larger facial areas, staked by several facial landmarks, in a way that
minimizes the distortion introduced by facial animations.
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Table 6.4.1: Rank 1 RR of the purposed methods compared to state of the art results, measured
on the Bosphorus face database.

Method RR(%) Subjects Note

k-NN [this] 93.68 105
MeshSIFT [20] 93.7 105
ARM [1] 95.29 47
Spherical Harmonics [24] 95.63 105 90◦ scans excluded
AvRM+LDA [2] 98.19 105 Only frontal and non-occluded scans
FFNN [this] 98.86 105

6.3 Classification using FFNN

To enable the use of machine learning methods, fixed length feature vectors were generated
using AFM registration and regular re-sampling. These were subsequently classified using
a FFNN, significantly outperforming the reference k-NN classifier. Concretely, the RR was
improved from 95.86% to 98.86% and the 0.1% FAR verification rate from 18.46% to 93.68%.

6.4 Performance comparison

During the literature study in conjunction with this thesis, state of the art results on the
Bosphorus database were compiled, see Table 6.4.1. The metric most commonly reported in
the literature is the RR, and therefore, this metric was selected as the benchmark score. From
the compiled list it is apparent that the result achieved using the proposed FFNN approach
is significantly improving the state of the art, considering that the results close behind the
FFNN approach are achieved on a less challenging subset of the database. The best found
result on the full database was 93.7% which means that the achieved result in this thesis is an
improvement by 5.2%.
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Chapter 7

Future work

7.1 Real time implementation

The prototype was implemented using Matlab, achieving an acceptable recognition time of a
few seconds, the majority of which was spent during registration. However, if the system is to
be used in a real time application, e.g. a humanoid robot, a frame rate of about 20 fps will
likely be needed. To achieve this, one solution might be to use a GPU implementation of ICP.

7.2 On-line learning

A drawback with using a FFNN, is that it cannot be continually updated with new information.
In fact, if new data is to be incorporated without gradually loosing the already learned, the
network will need to be retrained using all previously learned data in addition to the new data.
This type of learning is refereed to as off-line learning, and is clearly not a plausible solution
if a continually learning system is required. However, there are other learning methods, e.g.
incremental learning vector quantization, that are able to handle on-line learning, and that
could be used instead of the FFNN to create a classifier that is able to learn as it goes along.

7.3 Automatic landmarking

To ease up the face recognition problem, manually landmarked face scans were used. In
a realistic scenario this landmarking would, however, necessarily need to be automatically
accomplished. Automatic landmarking is an active area of research, but it would still be
interesting to see how well the proposed system would perform using current, state of the art,
automatic landmarking.

7.4 Advanced machine learning classifiers

Using FFNNs to classify the probe images proved a big step forward in system performance.
There are, however, many more advanced machine learning algorithms that may provide even
better results. It might for instance be rewarding to apply the deep learning paradigm, and
learn the mapping between the expert FFNNs and the final output.
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7.5 Deploy in a social robot

The ultimate challenge for a face recognition system is to learn, not only the difference between
different subject, but the intricate facial interplay used by humans in social interactions. The
localized features employed by the proposed approach make it a plausible candidate for such a
system.
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