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Abstract
Tractable methods for obtaining uncertainty-aware neural networks (NNs), NNs
that know what they don’t know, have only recently been proposed and no winner
has been crowned yet. The ability to take predictive uncertainty into account may
be critical for real-world applications, and has been shown to improve performance
in some decision-making applications. For instance, recent work in reinforcement
learning (RL) indicates that uncertainty-aware models may play a central role in
getting model-based RL to work in complex environments where any model will be
imperfect.

In this thesis, we study five methods for obtaining uncertainty-aware NNs: Monte
Carlo dropout (MC-dropout), probabilistic ensembles (PE), cyclical stochastic gra-
dient Markov chain Monte Carlo (cSGMCMC), Bayesian linear regression (BLR)
on the final layer, and BLR ensembles. We propose using the variance prediction
of the underlying NN to allow heteroscedastic variance estimation with BLR. The
methods’ uncertainty estimates are visually compared on toy 1-D and 2-D regression
datasets, and quantitatively compared on standard regression datasets in terms of
predictive root mean square error and log-likelihood. We also evaluate the methods’
uncertainty estimates for out-of-distribution inputs.

Finally, we compare the downstream RL performance of PE, BLR, and BLR en-
sembles when used as models in a recent model-based RL algorithm. Our results
indicate that BLR is competitive with ensembles. Furthermore, BLR ensembles may
outperform ensembles, although further research is needed.

Keywords: uncertainty-aware, model-based, exploration, reinforcement learning,
Bayesian neural network, Bayesian linear regression, MC-dropout, probabilistic en-
semble, cSGMCMC.
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1
Introduction

Reinforcement learning (RL) has seen great successes in recent years, revitalized
with the advent of deep learning. By using neural networks (NNs) as powerful
value function approximators, model-free RL algorithms have succeeded at learning
a variety of complex tasks. These tasks include continuous and discrete domains
like humanoid walking (Schulman et al., 2017) and Atari games (Mnih et al., 2013)
respectively, and recently even highly complex video games like Dota 2 (OpenAI,
2019) and StarCraft 2 (DeepMind, 2019). However, solving these problems has
required massive amounts of computation and millions of interactions with the true
environment. Learning Atari requires millions of frames, and learning to play Dota
2 required weeks of training on 128,000 CPU cores. In the real world, the number
of samples required by many contemporary RL algorithms is infeasible and more
efficient learning is necessary.

Model-based RL (MBRL) promises increased sample efficiency, but learning a suf-
ficiently accurate model of a complex environment is difficult, and a slightly biased
model can lead to seriously erroneous conclusions about optimal behaviour. To
date, MBRL hasn’t seen the wide array of successes that model-free RL (MFRL)
has, but recent work (Chua et al., 2018; Kurutach et al., 2018) indicates that using
ensembles of models, inducing uncertainty in the dynamics, can produce MBRL
algorithms that perform as well as MFRL algorithms but learn much faster.

Everything boils down to the ability to trust the model. If we are going to base our
decisions on extensive planning in our model, it must know what it doesn’t know,
i.e., keep track of its uncertainty. A common distinction is between epistemic and
aleatoric uncertainty. Epistemic uncertainty is uncertainty resulting from a lack
of knowledge about the world, and thus uncertainty that could be eliminated by
obtaining more information. Aleatoric uncertainty is uncertainty that is inherent
in the environment, e.g., actual stochastic transitions or noisy sensors. While the
aleatoric uncertainty isn’t at all unimportant, it is the epistemic uncertainty we are
most interested in, since that is what is open to improvement. In short, we want a
model that is aware of its epistemic uncertainty.

Using uncertainty-aware neural networks to represent approximate dynamics models
can enable efficient and safe model-based learning in complex real-world environ-
ments. The posterior distribution over models, representing plausible realities, can
be used by the agent to learn a policy that is safe and robust with regard to our
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1. Introduction

often crude knowledge of reality. Beyond better and more efficient learning, uncer-
tainty can be used for efficient exploration (Shyam et al., 2019), and may prove to be
of crucial importance for safety. In safety-critical applications such as autonomous
driving, we need to know our limitations in order to act safely, and uncertainty
quantifies this.

In recent years, many methods to estimate the uncertainty of deep NNs have been
proposed, but so far a winner is far from crowned. More research is necessary to
understand these methods and the properties of their uncertainty estimates.

1.1 Objective and method

For this thesis, we set out to identify and evaluate state-of-the-art methods for pro-
ducing uncertainty-aware NNs that can be used in model-based RL, and if possible,
improve on them.

In this setting, we desire methods that

• produce reliable uncertainty estimates that encompass both epistemic and
heteroscedastic (input-dependent) aleatoric uncertainty, and

• scale to large number of samples and high-dimensional inputs and outputs.

To this end, we begin by investigating the methods’ uncertainty estimates on a
set of toy examples which highlight our requirements. The methods’ predictive
performance (which includes the ability to handle uncertainty) are then evaluated
on a set of standard regression datasets. Finally, the downstream capability of
the methods for producing uncertainty-aware models is evaluated by using them as
components in a model-based RL algorithm.

1.2 Limitations

With such a broad objective, we have to make some significant limitations. First
of all, we restrict ourselves to the regression case. While classification-type models
can be useful in discrete environments, we are primarily interested in the continuous
case.

Secondly, we don’t concern ourselves with uncertainty calibration (e.g., ensuring
that a 90% credible interval contains the true outcome 90% of the time) and instead
view uncertainty as relative. However, calibration methods such as the one proposed
by Kuleshov et al. (2018) can be applied to any of our uncertainty-aware models.

Our greatest limitation is that we cannot compare all promising methods for un-
certainty estimation and had to restrict ourselves to an interesting and reasonable
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1. Introduction

subset. Some of the methods we don’t cover are discussed in Section 3.7 and par-
ticularly promising ones are highlighted. Of course, hindsight is 20/20.

Finally, there is a vast literature on Bayesian reinforcement learning (Ghavamzadeh
et al., 2015) which is theoretically very attractive, but unfortunately intractable in
general due to the exponential size of the belief space. While this field is closely
related to and very relevant for our work, we decided not to cover it due to time
constraints. However, research is ongoing and recent work by, e.g., Lee et al. (2018a)
looks promising.

1.3 Outline and contributions

In Chapter 2 we provide the reader with background necessary to understand the
rest of the thesis. We introduce concepts such as epistemic and aleatoric uncertainty,
reinforcement learning, neural networks, and Bayesian neural networks.

Chapter 3 describes the five methods for uncertainty estimation that are considered
in the thesis. The chapter ends with a brief survey of the many alternative methods
that aren’t covered in this work.

In Chapter 4, the chosen methods are evaluated on progressively more complex
regression tasks, starting with 1-D functions which are easily visualized. This is
followed by a comprehensive benchmark on a set of standard datasets. The chapter
ends with a brief evaluation of the ability to detect out-of-distribution inputs.

Chapter 5 brings us back to our goal of using uncertainty-aware models in RL.
A selection of uncertainty-aware NNs are evaluated based on their downstream
performance in some continuous environments when used as a component in the
uncertainty-aware MBRL algorithm PETS (Chua et al., 2018).

In Chapter 6, we conclude the thesis, discuss our findings, and suggest areas for
further research.

Our main contribution is the comparison of Deep Bayesian linear regression (Deep
BLR) for uncertainty estimation with some alternatives in the literature. We also
propose a slight modification that lets Deep BLR predict heteroscedastic aleatoric
uncertainty, which, to the best of our knowledge, is novel. The method is shown to
be competitive with the ensemble method that is prominent in recently proposed
uncertainty-aware model-based RL algorithms. Furthermore, our results indicate
that ensembles of Deep BLR may outperform probabilistic ensembles, although more
research is needed.

3
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2
Background

This chapter introduces some central concepts underlying the thesis, such as that of
reinforcement learning and uncertainty. We also provide some background theory,
covering the foundations of artificial neural networks, Bayesian inference, Bayesian
neural networks, and Gaussian processes. Our treatment will by necessity be brief,
but we provide references to relevant literature for the interested reader.

2.1 Reinforcement learning

While this thesis doesn’t delve into any details of RL algorithms, producing reliable
uncertainty-aware models that can be used for efficient RL is our ultimate objective.
Chapter 5 is dedicated to comparing the performance of some different uncertainty-
aware models when used as a component in a RL algorithm. This section gives a
brief introduction to the subject to provide the reader with some context. For a
more in-depth treatment, we recommend the book by Sutton and Barto (2018).

2.1.1 Popular introduction

Reinforcement learning is about constructing algorithms that produce agents which
take actions to maximize the cumulative reward (referred to as return) in some
environment. At each timestep, the agent receives an observation, executes an
action, and gets a reward (which may be zero, or even negative.) As time progresses,
the agent should learn which actions lead to a high return.

A central concept is the exploration-exploitation dilemma: should you use the strat-
egy you currently believe to be the best, or should you explore the environment to
potentially find an even better strategy? This is the trade-off we face when choosing
food at a restaurant — do you pick a dish you’re familiar with or do you risk it and
try something new? A common approach is to use an ε-greedy strategy where you
act greedily most of the time, but choose a random action with probability ε > 0.
Usually, ε is decreased from 1 to e.g. 0.01 during the course of training.

Note that RL is very general in the sense that many problems can be formulated

5



2. Background

as an environment where it can be applied. Some examples are robotics, chess,
autonomous driving, data center cooling, and of course, video games. The reward
function can either be hand-crafted to simplify learning, or binary, e.g., ±1 for
win/loss in Chess. For “real-life” problems, the difficulty often lies in formulating a
reward function that (1) doesn’t make learning too hard, and (2) doesn’t result in
undesired behaviour (e.g., solving a game by finding a software bug (Lehman et al.,
2018).)

The resurgence of neural networks had led to great success in RL, creating the
subfield of Deep RL. The most prominent success stories are playing Atari (DQN,
(Mnih et al., 2013)), Go and Chess (AlphaGo Zero, (Silver et al., 2017), Dota 2 and
robotic hand manipulation (Rapid, distributed PPO (OpenAI, 2019)), and StarCraft
2 (DeepMind, 2019). While impressive feats, a common denominator is that all
require massive compute, e.g., 128,000 CPUs and 256 GPUs in the case of Dota 2.
This is not only expensive, but also potentially infeasible for many real-world tasks
we are interested in.

Model-based RL, in which a model of the environment is explicitly learned and used
for planning, has shown promise of increased sample efficiency, but has not had
the same success as model-free RL in complex environments. Uncertainty-aware
models may be one step on the way to successful, sample-efficient model-based RL,
by utilizing uncertainty about the environment intelligently. In this context, sample
efficiency refers to reducing the number of interactions with the true environment,
which may be expensive or time-consuming in real systems.

2.1.2 Formalizing RL

RL is usually formalized in the context of Markov decision processes (MDPs). A
MDP is a 5-tuple (S,A, T, r, γ), where S and A are sets of states and actions,
T : S × A → P (S) is the transition function, r : S × A × S → R is the reward
function, and γ ∈ [0, 1] is the discount factor. Each episode starts at some initial
state s0 ∈ S (which may be fix or follow some distribution). After observing s0, an
action a0 ∈ A is executed according to some policy π : S → P (A), leading to the
next state s1 ∼ T (s0, a0) and a reward r(s0, a0, s1). This continues for N timesteps
for some N ∈ N, where N is the task horizon. Note that T only depends on the
current state, explaining the Markov in MDP.

The objective is to learn a policy π that maximizes the expected discounted return

E
ak+1∼π(sk)

sk+1∼T (sk,ak)

[
N−1∑
k=0

γkr(sk, ak, sk+1)
]

when following the policy.

In the model-based RL setting, we aim to learn the transition function T from our
interactions with the environment. This reduces to a supervised learning problem:
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2. Background

given the input (st, at), predict st+1. It is common to assume that the reward
function is known, and we do so in this thesis. Given a perfect model of T , it is
comparatively easy to learn an optimal policy. Most importantly, it can be done
without additional interaction with the true environment, which may be expensive
or unsafe. Model-based RL may thus be able to learn in much fewer samples than
model-free methods which are notoriously inefficient.

2.2 Types of uncertainty

In this section, the notions of aleatoric and epistemic uncertainty are introduced
as a decomposition of uncertainty that can be important to understand and utilize
uncertainty efficiently. We begin with an intuitive description of these uncertainties
and how we would expect them to behave, and then try our best to formalize these
notions.

Aleatoric uncertainty is irreducible uncertainty that is inherent to the output, e.g.
normal sensor noise or throwing a die. Even with infinite data, we cannot expect to
predict an outcome accurately in the presence of aleatoric uncertainty. Epistemic
uncertainty is subjective uncertainty that is caused by our lack of information. With
enough data, we would expect to be able to remove the epistemic uncertainty.

The ability to separate aleatoric and epistemic uncertainty can be very helpful in
applications. For a concrete example, a RL agent that attempts to learn by taking
actions to minimize its future uncertainty (i.e. some sort of curiosity) may end up
repeatedly taking actions with high aleatoric uncertainty, thus learning nothing of
value. Minimizing the epistemic uncertainty would clearly be much more reasonable
in this scenario.

To formalize these notions, we follow the work of Depeweg et al. (2018). The total
uncertainty of some real-valued random variable Y is given by its variance. By the
law of total variance, we can decompose this as

Var(Y)︸ ︷︷ ︸
total uncertainty

= Var(E[Y |W])︸ ︷︷ ︸
epistemic uncertainty

+ E[Var(Y |W)]︸ ︷︷ ︸
aleatoric uncertainty

where the expectations are taken over the posterior of the parameter vector W. As
we gather more data, the posterior for W will concentrate and the variance will go
to zero, so the epistemic uncertainty goes away as we want. Simultaneously, the
second term will approach the variance of Y as expected. For many of our models,
we are able to approximate the terms by Monte Carlo integration.

Another important distinction is between homoscedastic and heteroscedastic vari-
ance (inducing aleatoric uncertainty). A model with homoscedastic variance as-
sumes equal variance σ2 for all inputs, while heteroscedastic variance permits input-
dependent variance σ2(x). While homoscedasticity can be a reasonable assumption
in many cases, it can also be entirely unreasonable, especially in the context of

7



2. Background

model-based RL where stochasticity may be present only in some states. For this
reason, the capability of uncertainty-aware NNs to model heteroscedasticity is im-
portant.

2.3 Artificial neural networks

Artificial neural networks (NNs) form the backbone of the field called deep learning,
which is a fuzzy term that refers to NNs with “many” layers. For a comprehensive
introduction to deep learning, we point the reader to the book by Goodfellow et al.
(2016). In this chapter, we briefly introduce the concepts necessary for the thesis.

2.3.1 Artificial neural networks

A neural network consists of an input layer, an output layer, and some number of
hidden layers in between. Each input is successively transformed to some output by
passing through each layer, finally producing an output. A layer consists of some
number of units (also called neurons), each of which produces a scalar as a linear
combination of its inputs and applies a nonlinear differentiable activation function
σ(·) to it.

More precisely, given an input x ∈ Rn, the output of a unit is given by σ(wTx) for
some weights w ∈ Rn that are specific to that unit. Extending this to a whole layer
consisting of p units, the layer will output o(x) ∈ Rp, where each oi = σ(wT

i x). The
resulting o(x) is then fed as input to the next layer. The structure of the output
layer will depend on the desired output, but in regression a linear output layer is
commonly used, i.e., without a nonlinear transformation.

Once the architecture is set, the NN is trained by minimizing a suitable loss function,
e.g., mean-squared error for regression. The next few sections cover loss functions,
optimization, and regularization.

2.3.2 Activation functions

There are many activation functions to choose from, and the choice is often based
on empirical results rather than theory. A common choice is the rectified linear
unit, ReLU, given by ReLU(x) = max(x, 0), and this is what will be used for
most NNs throughout the thesis. A less common choice is the sigmoid, given by
Sigmoid(x) = 1

1+e−x . In Section 5.1 we follow prior work and use the fairly recent
Swish activation function (Ramachandran et al., 2017):

Swish(x) = x · Sigmoid(x).
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Figure 2.1: Plots of the Sigmoid, ReLU, and Swish activation functions discussed
in Section 2.3.2.

It can be seen as a smooth version of ReLU that doesn’t become identically zero for
x ≤ 0 which may aid learning by preventing units from “dying”. Figure 2.1 contains
plots of the three activation functions described.

2.3.3 Loss functions and probabilistic NNs

As is common in machine learning, learning to model a problem with a NN is viewed
as an optimization problem where some loss function is minimized. For regression
tasks, the most common loss function is the mean-squared error (MSE) loss which,
given some targets y = (y1, . . . , yN) and a NN outputting some point estimates
ŷ = (ŷ1, . . . , ŷN) is defined by

MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2.

However, this approach cannot take aleatoric uncertainty into account and the loss
will only be able to converge to the mode of the true output distribution, giving the
maximum a posteriori (MAP) estimate.

A simple way to obtain a NN that estimates aleatoric uncertainty is to let it output
the mean and standard deviation (µ̂, σ̂) of a normal distribution rather than just
µ̂. An appropriate loss function is then the negative log-likelihood of the normal
distribution, which is easily found to be

NLL(y, (µ̂, σ̂)) = 1
N

N∑
i=1

(1
2 log σ̂2

i + (yi − µ̂i)2/(2σ̂2
i )
)
.

Note the resemblance to the MSE. We call a NN trained in this fashion a probabilistic
NN. To ensure positivity of σ̂, the NN is parameterized to output log σ̂i which is
subsequently transformed to σ̂i with exp(·). Of course, the NN can parameterize
any distribution, but we will stick with normal distributions for simplicity.
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2.3.4 Optimization

As a composition of differentiable functions, a NN is differentiable. Given a differ-
entiable loss function, the derivative of the loss can be efficiently computed with
regards to each weight in the NN using the chain rule and memoization. Modern
deep learning libraries provide automatic differentiation which makes this straight-
forward.

Given the gradient containing the derivatives of the loss function with respect to
each weight, gradient descent methods can be applied to minimize the loss. For
large data sets, it is infeasible to compute the gradient using the entire data set,
which gives rise to the idea of stochastic gradient descent1 (SGD) in which only a
small subset (a mini-batch) of the training examples is used for each step. Using
small batches not only makes training tractable, but may also improve generalization
(Keskar et al., 2017). NNs are trained for some number of epochs, where an epoch
refers to the whole dataset having been used in batches for optimization. For this
reason, it can be a good idea to prefer small mini-batches (e.g., 32 rather than 512)
even if large mini-batches makes for faster epochs.

There are many variants of SGD in use, but Adam (Kingma and Ba, 2015) is a
common choice and all NNs in this thesis are trained with Adam, with the exception
of cSGMCMC (to be introduced in Chapter 3) which uses a simpler variation. In
short, Adam adapts the step size automatically and introduces something called
momentum which avoids too erratic steps in the presence of noise.

2.3.5 Regularization

Overfitting, which means that the model adapts too closely to the particular data,
can lead to poor generalization to unseen data. There is a range of regularization
techniques that can be used to combat this, and in this section we cover some of the
most basic ones: L1, L2, and dropout.

L1 and L2 regularization is one of the most common techniques in all of machine
learning (e.g., corresponding to lasso and ridge regression for linear models.) It
is done by adding a penalty on the norm of the weights to the loss, with the L1
(absolute value) or L2 (squared) norm respectively. The terms are weighted by some
parameter λ > 0, so the regularization term for L2 will look like λ∑iw

2
i , where wi

denotes the weights of the NN. The effect is that the weights are encouraged to be
small, resulting in a “simpler” model that may generalize better.

Dropout (Srivastava et al., 2014) is another common technique to prevent overfitting
and improve generalization. It means that, with some probability p ∈ (0, 1), the
output of a unit is set to zero. It can be applied to some layer or all layers. Dropout

1Strictly speaking, SGD refers to computing the gradient using only a single example, and the
algorithm described is called mini-batch gradient descent. Still, the family of methods is most
often referred to as just SGD.
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discourages weights from coadapting to the data, and intuitively creates a more
robust NN that is forced to utilize all information optimally. In effect, utilizing
dropout during training amounts to concurrently training an ensemble of NNs that
have different architectures and adapt to the data in different ways. Note that
dropout is usually turned off when the NN is used for inference, but as we will see,
it is possible to use dropout during test time to obtain uncertainty estimates.

2.3.6 Software libraries

We use the deep learning library PyTorch (Paszke et al.) in Python for implemen-
tation of all methods in this thesis.

2.4 Bayesian neural networks

Bayesian neural networks (BNNs, (Neal, 1996)) constitute the gold standard of
uncertainty-aware neural networks. Unfortunately, exact inference is intractable
even for NNs considered small by today’s standards. However, research into approx-
imate inference for BNNs is ongoing and many methods for uncertainty estimation
frame it as attempting to approximate BNNs. In this section, we introduce BNNs,
starting with an introduction to the Bayesian framework.

2.4.1 The Bayesian framework

The framework of Bayesian inference provides a systematic approach to statistical
inference and dealing with uncertainty. Given some prior distribution p(θ) on the
sought parameter θ, encoding prior knowledge, and a likelihood function p(x | θ)
which describes how the observed data x ∈ X is generated, Bayes’ rule tells us how
to compute the posterior distribution over the parameter space, for θ ∈ Θ:

p(θ |X) = p(X | θ)p(θ)
p(X) .

The posterior distribution represents our belief about plausible parameters after
observing the data. To make predictions for a test point x′, the posterior predic-
tive distribution is used. It is obtained by averaging over the space of all possible
parameters θ ∈ Θ:

p(x′ |X) =
∫

Θ
p(x′ | θ)p(θ |X) dθ.

In cases where we cannot perform the integration analytically, we can use Monte
Carlo integration wherein we sample θi ∼ p(θ |X) for i = 1, 2, . . . , N and approxi-
mate

p(x′ |X) ≈ 1
N

N∑
i=1

p(x′ | θi).
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Unfortunately, life is not as easy as it may seem. We glossed over an important part:
computing p(X) (which occurs in the denominator of the posterior) analytically
is often difficult or impossible, even for simple-looking models. Unless we restrict
ourselves and design our model to have a simple posterior, we must resort to methods
for approximate inference.

Two common approaches are variational inference (VI) and Markov chain Monte
Carlo (MCMC). In VI, we postulate an analytical form for the posterior and use
optimization techniques to get it as close as possible to the true posterior, e.g., by
minimizing the Kullback-Leibler divergence between the distributions. In MCMC,
a Markov chain is cleverly constructed so that it has the posterior as its stationary
distribution, allowing us to sample from the exact posterior after a warmup stage.
However, both methods have their drawbacks: VI might result in a poor approxima-
tion to the often very complex posterior, and MCMC doesn’t scale to large datasets
or models, just to name a few.

2.4.2 Bayesian linear regression

In this section, we introduce Bayesian linear regression as a concrete example of
Bayesian inference that also will be used later as a component of an attempt to
construct an uncertainty-aware neural network.

Assume that we have observed N real-valued outputs yi, each with an associated
input xi ∈ Rp, giving us the data y ∈ RN and X ∈ RN×p. For simplicity, suppose
the data is centered to have mean zero.

Now, we posit a normal likelihood with known variance σ2. This amounts to as-
suming the output yi is produced as a linear transformation of xi with an additional
noise term distributed as N (0, σ2). Thus our likelihood is

p(y |X,w, σ2) = N (y |Xw, σ2IN)

It remains to define a prior for w. If we choose a normal prior, the posterior
distribution will also be normal and simple to compute (we say that a normal prior
is conjugate prior to a normal likelihood.) So let

p(w) = N (w |w0,V0)

for some prior mean w0 ∈ Rp and covariance V0 ∈ Rp×p, e.g., w0 = 0p and V0 = Ip
if we don’t have any helpful information to encode.

Applying Bayes’ rule to compute the posterior (Murphy, 2012), we find

p(w |X,y, σ2) = N (w |wN ,VN),

where the posterior mean and covariance are given by

wN = VNV−1
0 w0 + 1

σ2 VNXTy, and

VN = σ2(σ2V−1
0 + XTX)−1.
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Figure 2.2: The resulting posterior predictive distribution after applying Bayesian
linear regression to a 1-D regression problem. The gray lines are generated by
sampling from the posterior for w.

Furthermore, the posterior predictive distribution will also be normal:

p(y |x,D, σ2) = N (y |wT
Nx, σ2 + xTVNx).

Figure 2.2 shows the posterior predictive distribution for a simple example where
σ2 = 1. We see that the uncertainty is small where there is data and high otherwise.
The gray lines are generated by sampling w from the posterior, producing some
plausible models explaining the data.

2.4.3 Bayesian neural networks

Applying the Bayesian framework to neural networks amounts to defining a likeli-
hood function and putting a prior distribution on the weights. For example, for a
regression problem where we want to predict y given x, we may choose a normal
likelihood

p(y |x,w, σ2) = N (y |NN(x; w), σ2),

where σ2 is a known variance and NN is a neural network with weights w. For a
prior, we may assume the weights are independently standard normal distributed.
Thus

p(w) = N (w |0, I).

That’s it — we have defined a Bayesian neural network! Inference is the tricky
part. Obtaining the exact posterior is generally impossible (unless the NN is very
simple, in which case MCMC methods may be able to give us samples from it),
and even approximating it can be extraordinarily difficult. Further discussion of
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contemporary methods for inference in BNNs is left to Section 3.7 where we survey
the existing literature.

2.5 Gaussian processes

Gaussian processes are powerful tools for regression and classification that provide
natural uncertainty estimates. Unfortunately, exact inference on Gaussian processes
has cubical complexity in the number of samples and contemporary approximate in-
ference is not much better (Hensman et al., 2013). This makes Gaussian process
regression infeasible even for datasets considered modestly sized in the age of deep
learning. However, we can use Gaussian processes as a target and a point of com-
parison in the cases where it can be used.

In this section, we provide a brief introduction to Gaussian processes. We also
demonstrate some connections to Bayesian neural networks. For a much more in-
depth treatment of theory and applications, see the classic book by Rasmussen and
Williams (2006).

2.5.1 Gaussian processes

Formally, a Gaussian process (GP) is a stochastic process, i.e., a collection of random
variables, such that any finite subcollection of them have a multivariate normal
distribution. A GP is determined by its mean and covariance functions

m(x) = E[f(x)]
k(x,x′) = Cov(f(x), f(x′))

for x ∈ X where X is some index set, e.g. X = R. It is common to set m(x) ≡ 0,
while the choice of kernel depends on the application and is usually where any
prior knowledge (e.g., periodicity) is encoded. A simple example is the squared
exponential kernel

k(x,x′) = σ2 exp
(
− 1

2`2 |x− x
′|2
)

for which the covariance of the function values for close-by inputs is almost σ2, while
it decays rapidly to zero as the inputs get farther apart. Here ` and σ are parameters
that must be chosen by the user.

Given some Gaussian process prior f(x) ∼ GP(m(x), k(x,x′)), we sample functions
by selecting a collection of m test points at which we want to evaluate the function.
This is done by sampling from the multivariate normal distribution induced by
the GP over the function values at the m test points. Figure 2.3a shows three
samples, i.e. three different function realizations, from the GP prior with a squared
exponential kernel.
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Figure 2.3: Demonstration of Gaussian process regression with mean zero and a
squared exponential kernel with ` = 1.5 and σ = 1. The light-red region is a 95%
confidence interval.

Suppose that we have some training data {(xi, fi)}ni=1 to which we would like to
fit the Gaussian process. This essentially means ensuring that all samples from the
GP will coincide with the data. We do this by considering the joint distribution
over training and test points and conditioning it on the observed data. Fortunately
Gaussian distributions are nice and the resulting posterior distribution has a closed-
form formula. Less fortunately it involves the inverse of the covariance matrix which
has (n + m)2 entries. Figure 2.3b displays the result of fitting a GP to three data
points.

2.5.2 Relation to Bayesian neural networks

It can be shown that a single-layer Bayesian neural network with an i.i.d. prior
converges to a Gaussian process as you let the number of neurons go to infinity
(Neal, 1996). This is essentially done by noting that the output of each neuron is a
sum of independent terms, and so will be normally distributed in the limit according
to the central limit theorem from probability theory. This gives us a multivariate
normal distribution over the output of all neurons, which is precisely a Gaussian
process.

Lee et al. (2018b) extend this to deep BNNs by an induction argument and show
that the covariance function for the corresponding GP can be efficiently computed
given the prior on the BNN parameters. In the case of ReLU activations, the
kernel corresponding to a single-layer BNN was analytically derived by Cho and
Saul (2009), and so we can express the kernel analytically in the form of a recurrence
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relation

K l(x, x′) = σ2
b + σ2

w

2π
√
K l−1(x, x)K l−1(x′, x′)

(
sin θl−1

x,x′ + (π − θl−1
x,x′) cos θl−1

x,x′

)
θlx,x′ = arccos

 K l(x, x′)√
K l(x, x)K l(x′, x′)

 ,
which terminates with

K0(x, x′) = σ2
b + σ2

w

(
x · x′

din

)
,

where σ2
b and σ2

w are the variances of the bias and weight priors for the corresponding
layer.

To summarize, infinitely wide BNNs of arbitrary depth are equivalent to GPs with
covariance functions that we can compute. In the case of ReLU activations, this
can be done analytically. Many of the methods investigated in this thesis try to
approximate the posterior of BNNs, and so these results motivate using ReLU GPs
as a gold standard method.
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3
Uncertainty-aware Neural

Networks

The area of uncertainty-aware NNs is an active field with an abundance of proposed
methods, where even the most prominent methods are fairly recent developments.
For this thesis, we had to select a handful of methods we deemed the most interesting.
The following methods are considered in this thesis:

• Monte-Carlo dropout (MC-droput, Gal and Ghahramani (2016)).

• Probabilistic ensembles (PE, Lakshminarayanan et al. (2017)).

• Cyclical stochastic gradient MCMC (cSGMCMC, Zhang et al. (2019)).

• Bayesian linear regression on the hidden layer representation. This method has
appeared in multiple papers (Snoek et al., 2015; Azizzadenesheli et al., 2018;
Riquelme et al., 2018) with no canonical name. We call it Deep BLR. Further-
more, we propose using the variance prediction of the underlying probabilistic
NN to allow heteroscedastic variance estimation.

• Deep BLR ensembles, i.e., combining the predictive distributions of indepen-
dently trained Deep BLR NNs.

The next few sections describe these methods in detail, followed by a brief discussion
on their computational footprints. The chapter ends with a short survey of the field
and describes some alternative methods that didn’t fit in this thesis.

3.1 Monte Carlo dropout (MC-dropout)

Using dropout to obtain uncertainty estimates from NNs was first proposed by Gal
and Ghahramani (2016). The NN is trained with dropout as usual, but instead of
turning it off for inference, multiple stochastic forward passes are used to obtain the
posterior predictive distribution. For this reason, it is called Monte Carlo dropout
(MC-dropout). The Bernoulli dropout mask effectively samples from some posterior
distribution over NN weights, resulting in an ensemble of NNs. The main appeal of
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the method is perhaps how easy and comparatively cheap it is to apply, especially
for NN architectures which already utilize dropout.

Gal and Ghahramani (2016) show that a NN with MC-dropout approximates a deep
Gaussian process (Damianou and Lawrence, 2012) in the sense of minimizing the
Kullback-Leibler divergence. The predictive distribution is approximated by match-
ing the first two moments with the sample mean and variance over N stochastic
forward passes for some sufficiently large N . The version of MC-dropout used in
Gal and Ghahramani (2016) uses homoscedastic variance, but is easily extended to
the heteroscedastic setting by employing a probabilistic NN and viewing the predic-
tive distribution as a mixture of normals.

While MC-dropout is one of the most prominent methods for uncertainty-aware
NNs, several papers indicate that ensembling (to be introduced in the next section)
performs better on a range of tasks (Lakshminarayanan et al., 2017; Mcallister et al.,
2018; Gustafsson et al., 2019). A weakness of the method is that the dropout rate
p has to be tuned, usually with an expensive grid search. In particular, the dropout
rate doesn’t depend on the data which leads to strange behaviour, for example that
the posterior is invariant to duplicates of the dataset (Osband et al., 2018). The
tuning process may be problematic in the RL context, where more data is constantly
added to the dataset. Despite the criticism, we choose to include MC-dropout since
it is, as mentioned, a prominent method.

Gal et al. (2017) proposed Concrete Dropout as an improvement on Dropout, fixing
the flaw discussed above by introducing automatic tuning of p. Our preliminary
experiments indicated that the method is very sensitive to parameter choice, and
even with careful hand-tuning good performance couldn’t be attained on simple
toy examples. It is possible that the method performs well on large and high-
dimensional datasets, but since it doesn’t pass a basic sanity check we chose not to
continue investigating it.

3.2 Probabilistic Ensembles (PE)

A simple approach to uncertainty estimation is to train M probabilistic NNs on
the same data, relying on the random initialization and stochasticity introduced
in training to create diversity in the resulting models. As far as we know, this
was introduced by Osband et al. (2016b) in the context of Deep Q-networks for
reinforcement learning, and later elaborated on by Lakshminarayanan et al. (2017)
in a more general context. Lakshminarayanan et al. (2017) refer to it as Deep
Ensembles, but we opt to call it Probabilistic Ensembles (PE) as in other work.

Osband et al. (2016b) use a variation of Probabilistic Ensembles that gives a boot-
strap sample of the data to each NN, i.e., sampling with replacement to obtain a
subset of the data. Lakshminarayanan et al. (2017) observed that this deteriorated
performance. Intuitively, it seems strange to potentially throw away samples if our
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goal is to construct “an accurate posterior”, and while this additional stochasticity
may avoid overfitting and improve predictive performance, it appears unmotivated
for our goal of estimating uncertainty. While research is too sparse for us to be able
to reject it entirely, we don’t consider it in this thesis.

Another variation adds randomized priors (Osband et al., 2018) and uses it for
representing the value function in RL, leading to improved exploration and thus
performance. The idea is to add a fixed random prior (represented by an identical
NN) to the output and optimizing only the weights of the NN, keeping the prior
fixed. While this appears to introduce long-term diversity useful in exploration, it
isn’t clear to us why this should improve performance in a more general setting. For
these reasons, and for simplicity, we choose to not consider this variation.

While not considered in this thesis, Pearce et al. (2018) cast ensembling in a Bayesian
light by adding a regularization term that “anchors” the weights to some prior. For
wide NNs (50-100 units in the paper), this procedure supposedly results in a good ap-
proximation of the true posterior. Their experiments indicate that anchored ensem-
bling performs very well on datasets with high epistemic uncertainty, outperforming
PE significantly, but not so well in the presence of high aleatoric uncertainty. This
is likely because it does not model heteroscedastic uncertainty. Nevertheless, this is
an interesting research direction in that it may put ensembling on solid theoretical
ground.

3.3 Cyclical Stochastic Gradient MCMC (cSGM-
CMC)

Stochastic Gradient MCMC (SGMCMC) constitutes a class of methods that attempt
to handle the scaling issue of MCMC by framing it as an optimization problem and
using mini-batches of data to compute the gradient. There are many variations, e.g.,
Stochastic Gradient Langevin Dynamics (SGLD, Welling and Yee Whye (2011)) and
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC, Chen et al. (2014)), with
varying success. It turns out that there is a very elegant connection to SGD, in
which the SGD iterates converge to the posterior distribution when the learning rate
is appropriately annealed. For SGLD, this amounts to simply adding some noise
to SGD, and for SGHMC, adding noise to SGD with momentum. An uncertainty-
aware NN is then constructed as an ensemble of NNs with weights sampled along
the trajectory of SGD in parameter space.

Zhang et al. (2019) recently proposed cyclical SGMCMC (cSGMCMC), which is
a generalization of SGLD and SGHMC that incorporates a cyclical learning rate
schedule. SGLD and SGHMC have trouble exploring multimodal distributions and
end up sampling from around a single local minima of the loss function. The idea
of cSGMCMC is that a cyclical learning rate helps the SGD iterates jump out of
their local minima to explore another mode. Figure 3.1 compares the cSGMCMC
stepsize schedule to the traditional decreasing stepsize. The training is divided up
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into cycles, each of which begins with an exploration phase (analogous to the burn-in
stage in MCMC) and ends with a sampling stage, in which the weights of the NN
are sampled.

Figure 3.1: Illustration of the cyclical stepsize schedule used in cSGMCMC (red)
and the traditional decreasing stepsize schedule (blue) in SGMCMC algorithms. In
this case, β = 0.5. Figure from Zhang et al. (2019).

3.3.1 Technical details

In this section, we provide the necessary ingredients to implement cSGMCMC. The
learning rate at iteration k is given by

αk = α0

2

[
cos

(
πmod(k − 1, dK/Me)

dK/Me

)
+ 1

]
,

whereM is the number of cycles, K the number of total iterations, and α0 the initial
stepsize. The parameter β ∈ (0, 1) controls how much of each cycle is dedicated to
exploration, e.g., if β = 0.9, sampling begins after 90% of the iterations in each cycle.
The algorithm uses SGD with momentum, where the final parameter α ∈ [0, 1]
controls the momentum parameter which is given by 1 − α. During optimization,
SGD with momentum is run as usual during the exploration stage, and noise is
added during sampling to replicate traditional SGMCMC methods. In this sense,
α = 1 and α < 1 correspond to SGLD and SGHMC respectively.

More precisely, a prior loss and a noise loss are added during the sampling stage.
The prior loss is a regularization term that consists of the sum of squares of the NN
weights scaled by 1/σ0 for some prior standard deviation σ0 > 0. For the noise loss,
each set of weights is scaled by ε ∼ N (0, σnoise), sampled independently for each
set of weights, where σnoise =

√
2α
αi
. The sum of scaled weights is then added as a

penalty term to the loss.

In our implementation, we use a probabilistic NN with a negative log-likelihood loss
to estimate aleatoric uncertainty.
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Figure 3.2: High-level illustration of Deep BLR as described in Section 3.4. A
probabilistic NN is trained by maximzing the normal log-likelihood. The represen-
tation φ(x), extracted from the NN before the linear output layer, and the predicted
variance σ2(x) are then used in Bayesian linear regression, producing posterior and
posterior predictive distributions with closed-form expressions.

3.4 Deep Bayesian Linear Regression (Deep BLR)

Given a NN with a linear output layer, as is common for regression problems, a
simple way to obtain uncertainty estimates is to do Bayesian linear regression (as
shown in Section 2.4.2) on the NN’s representation of the input data before the final
layer. It is not obvious why this should yield good uncertainty estimates, but the
prediction should at least not be worse than the maximum likelihood estimate.

This method was used successfully by Snoek et al. (2015) for Bayesian optimization,
where Gaussian processes are traditionally used. Riquelme et al. (2018) evaluated its
performance when used as a model for contextual bandits and find it to be compet-
itive with other methods. Azizzadenesheli et al. (2018) apply the method to a Deep
Q-network (DQN) and use the posterior for Thompson sampling, showing better
performance than Bootstrapped DQN (which uses a bootstrap ensemble (Osband
et al., 2016a)) on Atari. Riquelme et al. (2018) call this method Neural Linear. In
this work, we refer to it as Deep Bayesian Linear Regression (Deep BLR for short)
since we are doing BLR on a deep representation.

Unlike prior work, where the variance is either assumed known or homoscedastic
(e.g., with an inverse-gamma prior), we incorporate heteroscedastic variance by using
the variance prediction of the probabilistic NN. Thus our BLR model uses both a
deep representation and the variance predicted in the final layer. This results in an
efficient uncertainty-aware NN that can estimate both epistemic and heteroscedastic
aleatoric uncertainty. Of course, it remains to see how reliable these estimates are.
Figure 3.2 provides a high-level illustration of Deep BLR.

21



3. Uncertainty-aware Neural Networks

3.4.1 Technical details

Suppose that we begin with some dataset with N q-dimensional inputs stored in
X ∈ RN×q with corresponding one-dimensional and centered outputs y ∈ RN . For
multi-output problems, we treat each output independently. We train a probabilistic
NN with a linear output layer that outputs µ(x) and σ2(x) by maximizing the normal
log-likelihood. Denote by φ(x) the hidden representation of x that is fed to the NN’s
final layer.

Using the NN, construct a new data matrix in the hidden representation space,

Z =


φ(x1)
φ(x2)

...
φ(xN)

 ∈ RN×p,

where p is the number of units in the last hidden layer. Since the NN is trained to be
able to do linear regression on this representation, it makes sense to apply Bayesian
linear regression. We always center Z by subtracting the mean of each feature over
the training set.

As in Section 2.4.2, we posit a normal likelihood and a normal prior on the weights:
p(y |Z,w,Σ) = N (y |Zw,Σ),

p(w) = N (w |w0,V0).
For prior parameters, w0 = 0p and V0 = gI0 are used, where g > 0 controls the prior
variance and has an effect analogous to L2 regularization. The covariance matrix
used in the likelihood, Σ = Σ(X), is constructed with the NN’s predicted variance
for each input, i.e.,

Σ = diag(σ2(x1), σ2(x2), . . . , σ2(xN)).

Using Bayes’ rule for linear Gaussian systems (Murphy, 2012), we find the posterior
distribution p(w |X,y,Σ) = N (w |wN ,Vn) with parameters

Vn = (V−1
0 + ZTΣ−1Z)−1

wN = Vn(V−1
0 w0 + ZTΣ−1y).

Furthermore, the posterior predictive distribution at a test point x is given by

p(y |x,X,y,Σ) = N (y |wT
Nφ(x), σ2(x) + φ(x)TVNφ(x)).

3.4.2 Deep BLR ensemble

It is straightforward to combine PE and Deep BLR by simply adding Deep BLR
on top of each NN. Since the predictive distribution of each NN is normal, we can
easily replace it with the BLR posterior predictive distribution. This can be viewed
either as improving BLR by introducing more variety in the representations, or as
“squeezing out” more uncertainty from each NN.
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3. Uncertainty-aware Neural Networks

3.4.3 Implementation details

The method is simple to implement: we just train a NN as usual, obtain the final
hidden layer representation for each sample, and use the equations described above.
A naive implementation will scale poorly in the number of samples since we must
store and invert a N ×N covariance matrix, but making use of libraries supporting
sparse matrices (we use scipy.sparse.diags from SciPy (Jones et al., 2001)) and
noting that the covariance matrix is diagonal circumvents these issues.

3.4.4 The limited applicability of Deep BLR

A major weakness of Deep BLR is that it, in practice, only works for architectures
with a fully connected, linear output layer. This essentially means that it cannot be
used for architectures with a convolutional output layer, which usually is the case
when the output is an image. Some examples of this are predicting the next frame
in Atari games for model-based RL (Leibfried et al., 2017; Kaiser et al., 2019) and
predicting the depth of images (Ma et al., 2018). As far as we know there is no
way to efficiently replicate convolutions in the framework of linear regression, but
we describe one attempt.

It is possible to view a convolutional layer as linear regression with some data aug-
mentation to enable parameter sharing. We illustrate this with an example. The
final convolutional layer in Ma et al. (2018) applies an 1 × 1 convolution to each
input channel, where the input has shape (128, 352, 1216). Each filter activation
can be viewed as a linear regression over the input channels, but we must construct
352× 1216 = 428, 032 examples for each input image1 given that we want to share
parameters as in a convolutional layer. While no expensive matrix inversions are
necessary, we must now compute, e.g., φ(x)TVNφ(x) where φ(x) is 468032 × 128
and VN is 128× 128, to get the predictive distribution for a single input x. Similar
computation is needed to get the posterior distribution itself. While the computa-
tion can be done, it is far too demanding for any real-time application.

Despite the limited applicability, Deep BLR can be useful for the many problems
where the output is linear and fully connected. All hope is not lost for image-based
RL either. An alternative approach to directly dealing with images in RL is to
transform the observations to a low-dimensional latent space using, for example, a
variational autoencoder (as done by Ha and Schmidhuber (2018)), and do RL in
that space instead. Deep BLR can then be used to obtain uncertainty in our latent
space predictions. Another approach to solving this is to do approximate inference
(e.g., by variational inference), but this is not so appealing since it takes us away
from simple, closed-form updates.

1Each example corresponds to the filter being applied to one pixel across the input channels.
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3.5 Discussion: Computational footprint

MC-dropout and Deep BLR are the cheapest in terms of training: we only need to
train a single NN, and the additional computation for Deep BLR will be negligible
in most cases. Probabilistic ensembles and cSGMCMC ensembles require training
M NNs which may add a significant footprint, but in the case of Probabilistic
ensembles training can be parallelized, while cSGMCMC permits sampling multiple
NNs in each cycle which may decrease the number of cycles necessary.

When it is time for inference, Deep BLR only requires a single forward-pass, but
computing the posterior predictive distribution may add some overhead for high-
dimensional representations. MC-dropout only requires storing a single NN, but
many forward passes are necessary. Probabilistic ensembles and cSGMCMC ensem-
bles both require storing M NNs and doing one forward pass through each.

The size of the NN is crucial to this discussion, especially in comparing PE with Deep
BLR. For large NNs with millions of parameters, ensembling can often only be done
by either training sequentially (which is time-consuming) or by using parallel GPUs
(which is expensive), while Deep BLR only requires training a single NN. However,
in the context of transition models in RL, the NNs tend to be small (unless images
are involved) and so the whole ensemble can be trained simultaneously. In effect, the
power of modern GPUs makes it so that training M NNs often takes no longer than
one NN. The same principle holds for inference. Thus, while ensembling appears
demanding at first glance, Deep BLR can be slower due to the additional overhead.

3.6 Intermission

We have described five methods for constructing uncertainty-aware NNs, all of
which, with the exception of BLR, are ensemble-based. The difference lies in how
the NNs making up the ensemble are obtained: PE relies on random initialization,
cSGMCMC takes snapshots of the weights during training with a modified learn-
ing procedure, and MC-dropout randomly drop outs units. Each of these can be
viewed as sampling weights from some posterior distribution and constructing a
Monte Carlo estimate of the predictive distribution by averaging out over a finite
set of possible models explaining the data. This is not necessary for BLR since we
have closed-form solutions for the posterior and predictive distributions.

Since each NN outputs a normal distribution, the output of the ensemble will be
distributed as a mixture of normals. In Section 4.1 we approximate this mixture
with a normal distribution by matching the first two moments, as done by Laksh-
minarayanan et al. (2017), to obtain confidence intervals. In Section 4.2 we use the
full distribution to compute the predictive negative log-likelihood.
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3.7 Survey of other methods

The most prominent set of methods that we haven’t considered in this thesis are
those that directly attempt approximate inference for BNNs by variational inference.
In this section, we discuss some alternatives from the ever-growing literature on
uncertainty-aware NNs.

Hamiltonian Monte Carlo (HMC, Neal (2011)) is a MCMC method often mentioned
as the “gold standard” for exact inference in BNNs. While accurate, it doesn’t
scale. We put significant effort in attempting exact inference for BNNs for the
toy 1-D regression examples seen in Chapter 4 with limited success for NNs with
more than 20 hidden units. In particular, inference in probabilistic NNs (i.e., with
heteroscedastic variance) seems problematic.

Bayes-by-Backprop (BBB, (Blundell et al., 2015)) approximates the posterior distri-
bution over weights with a diagonal normal distribution by minimizing the Kullback-
Leibler (KL) divergence to the true posterior, i.e. variational inference. The KL di-
vergence is approximated with Monte Carlo samples from the approximate posterior
(using the reparametrization trick (Kingma and Welling, 2013)) and is minimized
with SGD.

Hernández-Lobato and Adams proposed Probabilistic Backpropagation (PBP), which
also approximates the posterior with a factored distribution, but applies something
called assumed density filtering (which we will not attempt to explain) instead of VI.
Their experiments indicate that it outperforms the VI approach of Graves (2011)
(which is what BBB is based on and improves upon.)

Louizos and Welling (2016) and Sun et al. (2017) extend VI and PBP respectively
to allow posterior correlations between the weights in the same layer by using nor-
mal distributions over matrices. This seems to perform better than the factored
univariate distributions previously used.

Hernández-Lobato et al. (2016) proposed black-box alpha-divergence minimization
(BB-α) in which the α-divergence is minimized, of which KL is a special case. Mini-
batch SGD is used to minimize a Monte Carlo estimate of the resulting energy
function. It is shown that BB-α becomes VI when α → 0. The posterior is ap-
proximated with a factorized normal distribution (as in BBB and PBP), but the
method supposedly transfers easily to more complex models. Depeweg et al. (2017)
use BB-α in the context of model-based RL with some success.

An interesting recent development is the functional variational BNNs (fvBNN) pro-
posed by Sun et al. (2019). The idea is to do approximate inference on distributions
over functions rather than distributions in parameter space. With appealing theory
and promising results on regression datasets and the bandit benchmark of Riquelme
et al. (2018), we think this is the most promising candidate that we unfortunately
did not have time to evaluate.

Another line of research has produced Noisy K-FAC (Kronecker-factored Approx-
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imate Curvature, (Zhang et al., 2018)), in which an approximation of the Fisher
information matrix is used for natural gradient descent. It is shown that this ap-
proximates VI with appropriately added noise. As in (Louizos and Welling, 2016;
Sun et al., 2017), matrix variate Gaussian posterior approximations are used. Like
fvBNN, good empirical results are shown and it seems promising.

A clear disadvantage of many of the methods mentioned is that they are complicated
to derive and implement, as acknowledged by Korattikara et al. (2015). We spent
some time playing around with BBB, PBP, and BB-α, but had little success in
getting them to work. This contributed significantly to our choice of focusing on
other methods. Ideally, we would have liked to try more methods, especially fvBNN
and Noisy K-FAC, but of course, time is limited. We discuss the potential for future
research in Chapter 6.
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4
Evaluation in Supervised Learning

In this chapter, we study the performance of the methods on successively more dif-
ficult regression tasks. We begin with some toy regression datasets and visually
evaluate the resulting posterior distributions. For a more quantitative comparison,
we proceed with some real and more complex datasets from the UCI Machine Learn-
ing Repository (Dua and Graff, 2017). The chapter ends with a short study of the
uncertainty estimates for out-of-distribution inputs.

4.1 Toy regression

In this section, the chosen methods for estimating uncertainty are evaluated visually
on two 1-D toy regression datasets, followed by a simple 2-D regression dataset. On
one of the datasets, we provide the “true” uncertainty as computed with a ReLU
GP (which, as we saw in Section 2.5.2, is the limit of a BNN.) While this type of
evaluation is subjective and possibly of little relevance for large-scale use, we believe
that it acts as a sanity check: can the methods do well on very simple problems? It
also allows us to familiarize ourselves with, e.g., hyperparameters in a setting where
the results can be visualized.

In these experiments, we visually judge whether a posterior is “good” or not, but
that is, of course, subjective. Given some prior and likelihood, Bayes’ rule gives us
the true posterior (although it is often difficult or impossible to compute), but the
choice of model is subjective and for most methods we cannot explicitly specify a
prior. This makes evaluating the success of each method difficult and inherently
subjective. What can be said is that we expect low uncertainty in regions with data
(unless there is aleatoric uncertainty), high uncertainty where there is none, and
smooth interpolation in between.

All nets were trained with Adam (Kingma and Ba, 2015) to convergence. See Ap-
pendix A.1 for a complete list of hyperparameters used for each experiment. The
hyperparameters for each method were handpicked since selecting a good metric for
optimization is difficult. ReLU activations were used for all NNs. The chosen hy-
perparameters represent our best effort to showcase representative performance and
are the same for each problem in this section. We used the library Pyro (Bingham
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et al., 2018) for HMC.

4.1.1 One-dimensional regression

In this section, we apply the methods to two 1-D regression tasks, D1 and D2,
and study the resulting posterior predictive distributions visually. For the slightly
more complicated D2, we also study the effect of ensemble size where applicable.
Hyperparameters were chosen to perform well across both tasks.

D1 is generated by evaluating

fi(x) = x3 + εi, εi ∼ N (0, σ2
i ), i ∈ {1, 2, 3}

where σ1 = σ3 = 0.01 and σ2 = 1, on 50 samples of x from each region Ri, where
R1 = [−1.5,−0.4], R2 = [−0.5, 0.5], and R3 = [0.6, 1.5]. This task constitutes
a simple sanity check and also evaluates the ability to represent heteroscedastic
aleatoric uncertainty.

Figure 4.1 displays the approximate posterior predictive distributions given by the
five methods trained on D1. We note that the distributions are qualitatively similar
and all are able to capture the heteroscedastic variance present around the origin.

D2 is generated by evaluating

g(x) = sin(x) + ε, ε ∼ N (0, 0.052)

on 50 samples of x from each of the three regions R1 = [−7,−4], R2 = [−2, 0],
and R3 = [2, 3]. This task is more complicated than D1 (but has homoscedastic
variance) and also allows us to evaluate intersample uncertainty.

Figure 4.2 displays the approximate posterior predictive distributions given by the
five methods trained on D2, including a reference result provided by a ReLU GP
in 4.2a. Remember that there is no true posterior independent of the prior and
likelihood, both of which are different for all methods, and so the GP result doesn’t
serve as truth, but rather an example of a good result.

We see reasonable results for all methods. PE seems to slightly underestimate the
uncertainty between R1 and R2, indicating too little variety among the NNs. cS-
GMCMC does better in this respect. Out of all methods, Deep BLR and Deep BLR
ensemble seem to most resemble the ReLU GP uncertainty. Based on these results,
all methods seem to produce reasonable uncertainty estimates, and in particular
Deep BLR does so despite its naivety.

In Figure 4.3 we see the effect of varying the prior weight variance g when using
Deep BLR on D2. It is clear that higher prior variance leads to higher predictive
uncertainty, and that the effect is significant. While this adds another hyperparam-
eter, it makes the subjectivity of uncertainty explicit rather than implicit, which can
be seen as an advantage.
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(a) Probabilistic ensemble. 10 NNs
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(b) cSGMCMC ensemble. 80 NNs
with 5 hidden layers, each with 10

ReLU.
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(c) MC-dropout. 100 samples from a
NN with 2 hidden layers, each with 10

ReLU, and p = 0.25.
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(d) Deep BLR. Prior variance 2I and
representation from NN with 3 hidden

layers, each with 50 ReLU.
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(e) Deep BLR ensemble. 10
instances of Deep BLR with parameters

as in 4.1d.

Figure 4.1: Approximate posterior predictive distributions onD1 for each method.
Each method outputs a Gaussian mixture which we approximate with a single Gaus-
sian distribution. The shaded area covers two standard deviations of that approxi-
mate posterior predictive distribution. See A.1 for the full set of hyperparameters.
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(b) Probabilistic ensemble. 10 NNs
with 5 hidden layers with 10 ReLU each.
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(c) cSGMCMC ensemble. 80 NNs
with 5 hidden layers with 10 ReLU each.
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(d) MC-dropout. 100 samples from a
NN with 2 hidden layers of 1000 ReLU

each and p = 0.25.

8 6 4 2 0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

(e) Deep BLR. Prior variance 2I and
representation from NN with 3 hidden

layers of 50 ReLU each.
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(f) Deep BLR ensemble. 10 instances
with parameters as in 4.2e.

Figure 4.2: Approximate posterior predictive distributions onD2 for each method,
including a reference distribution in 4.2a. Each method outputs a Gaussian mixture
which we approximate with a single Gaussian distribution. The shaded area covers
two standard deviations of that approximate posterior predictive distribution. See
A.1 for the full set of hyperparameters.
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Figure 4.3: Effect of the prior weight variance g on uncertainty estimates pro-
duced by Deep BLR. It is clear that higher prior variance leads to higher predictive
uncertainty. Best viewed on a computer.

To study the effect of ensemble size on the quality of uncertainty estimates, we
trained each ensemble method with M ∈ [1, 3, 5, 10, 20, 50]. The result can be seen
in Figure 4.4. Deep BLR doesn’t seem to benefit much from ensembling, while
M = 3 seems sufficient for PE in this case.

Probabilistic ensemble

8 6 4 2 0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 1
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 3
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5
True function
Prediction (+-2 std)
Samples

M = 5
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 10
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 20

cSGMCMC ensemble

8 6 4 2 0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 4
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 12
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 20
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 40
8 6 4 2 0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

True function
Prediction (+-2 std)
Samples

M = 80

Deep BLR ensemble
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Figure 4.4: Effect of ensemble size on uncertainty estimates on D2 for the ensem-
ble methods. On this simple problem, Probabilistic ensembles perform well with
only 3 NNs. Deep BLR performs well with a single NN, and it is unclear if the com-
putational trade-off is worth ensembling in this case. Best viewed on a computer.

4.1.2 Two-dimensional regression

To verify the methods’ capacity to handle multiple variables, the methods were also
evaluated on a simple two-dimensional regression problem D3. The training set
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consists of f(x, y) = x2 +y2 evaluated on random points in the annulus between two
concentric circles of radii 4 and 5 respectively and around the origin. We expect the
uncertainty to be low in the annulus and around the origin, moderate in between,
and increase with the distance from the annulus.

Figure 4.5 displays the results. All methods behave roughly as expected. cSGMCMC
estimates an abrupt increase in uncertainty in the middle region, while the other
methods have much more smooth uncertainty estimates. Deep BLR has asymmetric
uncertainty around the origin which is smoothed out in the Deep BLR ensemble.
All methods estimate increased uncertainty outside the annulus.

4.1.3 Discussion

We have seen that all methods provide reasonable uncertainty estimates. Prob-
abilistic ensembles seem promising, but require training many independent NNs.
However, this can be parallelized, even on a single GPU if the NNs aren’t too large.
cSGMCMC ensembles also seem promising, and allow (require!) finer tuning than
PE. MC-dropout is simple, but seems less reliable. Deep BLR provides reasonable
uncertainty estimates while only requiring training a single network. Also, unlike
other methods, it doesn’t require multiple forward passes during inference. We have
also seen that varying the prior variance g lets us encode some sort of prior uncer-
tainty. This is both a strength and a weakness, but uncertainty is subjective and g
makes this explicit, in contrast to PE where no such parameter exists. Figure 4.4
indicates that ensembling BLR is unnecessary for simple 1-D problems, but it may
be helpful for more difficult problems.
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(a) Probabilistic ensemble. 10 NNs
with 5 hidden layers with 10 ReLU each.
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(b) cSGMCMC ensemble. 80 NNs
with 5 hidden layers with 10 ReLU each.
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(c) MC-dropout. 100 samples from a
NN with 2 hidden layers of 1000 ReLU

each and p = 0.25.
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(d) Deep BLR. Prior variance 2I and
representation from NN with 3 hidden

layers of 50 ReLU each.
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(e) Deep BLR ensemble. 10 instances
with parameters as in 4.5d.

Figure 4.5: Approximate posterior predictive distributions on the two-dimensional
dataset D3 for each method. Each method outputs a Gaussian mixture which we
approximate with a single Gaussian distribution. The heatmap is constructed from
the normalized variance of this distribution. See A.1 for the full set of hyperparam-
eters.
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4.2 UCI regression

In this section, we proceed to compare the methods by testing them on real-world
regression datasets from the UCI Machine Learning Repository (Dua and Graff,
2017). By looking at the predictive mean-squared error and log-likelihood, we get a
quantitative understanding of the methods’ performance. We follow the experiment
set-up of previous work on uncertainty-aware NNs (Hernández-Lobato and Adams;
Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017), but on a subset of the
datasets due to limited time and resources.

4.2.1 Experimental setup

Specifically, the methods are evaluated on the following datasets:

• Boston Housing, with 506 samples and 13 features,

• Concrete Strength, with 1, 030 samples and 8 features,

• Kin8nm, with 8, 192 samples and 8 features,

• Power Plant, with 9, 568 samples and 4 features,

• Protein Structure, with 45, 730 samples and 9 features, and

• Year Prediction MSD, with 515, 345 samples and 90 features.

To obtain robust performance metrics, we evaluate each method on 20 random 90/10
training/test splits except for Protein Structure and Year Prediction MSD where 5
and 1 splits are done respectively due to their size. Input and target variables were
normalized by the mean and standard deviation based on the training set. Since
each method outputs a mixture of normals, the negative log-likelihood is obtained
with the mixture density.

4.2.2 Training and hyperparameters

We follow prior work (Hernández-Lobato and Adams; Gal and Ghahramani, 2016;
Lakshminarayanan et al., 2017) and use a NN with a single hidden layer with 50
ReLU for all datasets, except for the larger Protein Structure and Year Prediction
MSD where 100 ReLUs are used. Each network outputs the mean and variance of
a normal distribution and is trained by minimizing the negative log-likelihood, thus
estimating the aleatoric uncertainty.

With the exception of the cSGMCMC ensemble, each NN is optimized for 40 epochs
using Adam (Kingma and Ba, 2015) with batch size 32 and learning rate 0.01 (0.001
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and 0.0001 for Protein Structure and Year Prediction MSD respectively). The cS-
GMCMC ensemble is trained for 5 · 40 epochs, following the procedure described
in 3.3. In the cases where hyperparameter optimization is necessary, we perform a
grid-search to minimize the negative log-likelihood on a 20% validation set contained
within the training set. The algorithm-specific hyperparameters are as follows:

• Probabilistic MC-dropout. The dropout rate p is tuned by a grid search
over p ∈ {0.005, 0.01, 0.05, 0.1} for each split.

• Probabilistic ensemble. 5 NNs are used the ensemble, as in Lakshmi-
narayanan et al. (2017).

• cSGMCMC ensemble. Trained for 5 cycles of 40 epochs each. Learning
proportion β = 0.9 and 4 NNs sampled during the sampling stage. The initial
learning rate α0 and the prior variance σ are tuned with Bayesian optimization
(BO, (Snoek et al., 2012) for 10 iterations with α0 ∈ [0.1, 10] and σ ∈ [0.01, 10]
on a single random split. For the larger data sets Protein Structure and Year
Prediction MSD, BO was replaced by minor hand-tuning, giving α0 = 0.1,
σ = 5.0 and α0 = 0.5, σ = 5.0 respectively.

• Deep BLR. The prior variance g is tuned by a grid search over 50 logarith-
mically spaced points in [10−2, 104] for each split. Note that this is very cheap
since the NN doesn’t have to be retrained.

• Deep BLR ensemble. Deep BLR was applied in the same fashion as above,
but on 5 NNs trained as for PE.

4.2.3 Results

The results are contained in Table 4.1, where the first table contains the predictive
RMSE and the second the negative log-likelihood which measures the methods’
ability to handle predictive uncertainty. The mean and standard error over all splits
is reported. For each dataset, the methods are ranked from 1 to 5 (where 1 is best).
The sum of ranks across all datasets are displayed below each method with the
lowest rank marked in bold.

There is no clear winner of this evaluation. Considering RMSE and NLL separately,
we find that cSGMCMC ensemble and Deep BLR ensemble do best respectively.
Deep BLR ensemble consistently produces the lowest NLL, which is promising. We
also note that, overall, all methods (perhaps with the exception of P-Dropout)
perform very similarly, which indicates that the benchmark may be too easy.

PE and cSGMCMC are in the same ballpark but cSGMCMC wins out slightly in
terms of RMSE, which may be due to poor optimization of PE. The number of hy-
perparameters is the main differentiator of the methods. PE is simpler and requires
no additional parameter, bar the number of NNs in the ensemble. cSGMCMC re-
quires more tuning which can be costly, but may also lead to significantly improved
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Predictive RMSE
Dataset P-Dropout PE cSGMCMC dBLR dBLRE

Boston Housing 3.17± 0.18 (1) 3.18± 0.23 (1) 3.07± 0.19 (1) 3.03± 0.18 (1) 3.27± 0.25 (1)
Concrete Strength 5.75± 0.13 (3) 5.30± 0.12 (2) 4.99± 0.10 (1) 5.57± 0.13 (3) 5.29± 0.11 (2)
Kin8nm 0.09± 0.00 (3) 0.08± 0.00 (2) 0.08± 0.00 (2) 0.08± 0.00 (2) 0.07± 0.00 (1)
Power Plant 4.29± 0.04 (3) 4.03± 0.03 (2) 3.95± 0.03 (1) 4.04± 0.02 (2) 4.03± 0.03 (2)
Protein Structure 4.69± 0.02 (4) 4.46± 0.02 (3) 4.40± 0.02 (1) 4.43± 0.00 (2) 4.41± 0.02 (1)
Year Prediction MSD 9.12± NA (5) 8.93± NA (3) 8.84± NA (1) 8.90± NA (2) 8.96± NA (4)
Sum of ranks 19 13 7 12 11

Predictive NLL
Dataset P-Dropout PE cSGMCMC dBLR dBLRE

Boston Housing 2.40± 0.05 (1) 2.40± 0.05 (1) 2.47± 0.06 (1) 2.47± 0.05 (1) 2.37± 0.05 (1)
Concrete Strength 3.05± 0.03 (2) 2.97± 0.02 (1) 2.96± 0.03 (1) 3.04± 0.03 (2) 2.93± 0.03 (1)
Kin8nm −1.10± 0.01 (4) −1.22± 0.00 (3) −1.26± 0.01 (1) −1.20± 0.00 (2) −1.25± 0.00 (1)
Power Plant 2.84± 0.01 (3) 2.79± 0.00 (2) 2.77± 0.01 (1) 2.80± 0.01 (2) 2.78± 0.00 (1)
Protein Structure 2.82± 0.02 (3) 2.78± 0.01 (2) 2.83± 0.03 (3) 2.80± 0.02 (2) 2.77± 0.01 (1)
Year Prediction MSD 3.40± NA (2) 3.39± NA (2) 3.70± NA (4) 3.58± NA (3) 3.38± NA (1)
Sum of ranks 15 11 11 12 6

Table 4.1: Comparison of MC-dropout, Random ensemble, cSGMCMC ensemble,
Deep BLR, and Deep BLR ensemble on a set of standard datasets. We report the
mean and standard error of predictive RMSE and NLL across 20 random training-
test splits (5 for Protein Structure, 1 for Year Prediction MSD). We rank the methods
for each data set (up to a standard error) and sum the ranks to quantify each
method’s overall performance.

Predictive RMSE Predictive NLL
Dataset D-Dropout P-Dropout D-Dropout P-Dropout

Boston Housing 2.97 ± 0.85 3.17 ± 0.18 2.46 ± 0.25 2.40 ± 0.05
Concrete Strength 5.23 ± 0.53 5.75 ± 0.13 3.04 ± 0.09 3.05 ± 0.03
Kin8nm 0.10± 0.00 0.09 ± 0.00 −0.95± 0.03 −1.10 ± 0.01
Power Plant 4.02 ± 0.18 4.29± 0.04 2.80 ± 0.05 2.84 ± 0.01
Protein Structure 4.36 ± 0.04 4.69± .02 2.89± 0.01 2.82 ± 0.02
Year Prediction MSD 8.85 ± NA 9.12± NA 3.59± NA 3.40 ± NA

Table 4.2: Comparison of MC-dropout with deterministic (minimizing MSE) and
probabilistic (minimizing NLL) NNs performed as in 4.1. Results for D-Dropout
obtained from Gal and Ghahramani (2016).
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performance. We believe that a more efficient heuristic for the initial learning rate
can be constructed, which would make the tuning process easier.

We note slightly better performance for PE than seen in Lakshminarayanan et al.
(2017) and believe that this can be attributed to our batch size of 32 as opposed to
the 100 originally used.

At the bottom of the ranking lie P-Dropout and Deep BLR. Both have similar
performance in terms of NLL, but P-Dropout performs poorly in terms of RMSE. As
above, this may be improved with better optimization. In the original MC-dropout
paper, (Gal and Ghahramani, 2016) use a deterministic NN which doesn’t take
aleatoric uncertainty into account. Table 4.2 compares the predictive performance
of the different approaches. We see that the difference is mostly negligible, although
D-Dropout tends to have lower RMSE and P-Dropout lower NLL which matches the
corresponding optimization criteria. Since we are primarily interested in accurate
uncertainty estimation, we believe P-Dropout suits our purposes better, hence our
choice.

4.2.4 Conclusions and further work

The combination of PE and Deep BLR leads to better predictive performance in
terms of NLL than the methods it was compared with. Furthermore, while Deep
BLR doesn’t outperform any of the ensemble methods by itself, it delivers compet-
itive performance with no modifications to the underlying NN. Tweaking the archi-
tecture may lead to significant improvement in performance. MC-dropout doesn’t
perform very well and combined with the theoretical weakness previously discussed,
this evaluation leads us to prefer the other methods. Finally, both PE and cSGM-
CMC ensembles do well in this evaluation, with simplicity and flexibility as their
respective strengths and weaknesses.

In the interest of following prior work, we kept the network architecture constant for
all methods. It is clear that this may lead to a somewhat unfair comparison since
the methods may benefit from individual tuning. However, individual tuning of all
parameters is prohibitively expensive, and any restriction may introduce bias. For
these reasons, we leave a more thorough comparison to future work.

Evaluating the methods on more difficult problems would also be interesting. It is
not clear whether the small differences in performance are due to the difficulty of
the datasets or actual small difference in predictive performance of the methods.
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Point A
Point B

Figure 4.6: Illustration of the experimental setup used in Section 4.3. The fig-
ure depicts the dataset (with reduced dimension) with the two test points and the
line segment highlighted. Dimensionality reduction was done using the nonlinear
dimensionality reduction algorithm t-SNE (van der Maaten and Hinton, 2008).

4.3 Out-of-distribution inputs

A reliable uncertainty-aware NN should produce higher uncertainty estimates for
out-of-distribution inputs, i.e., on samples that are far away from the training set. In
this section, we present a short evaluation of this capability on a simulated dataset.

4.3.1 Simulated data and experimental setup

The data used for this experiment is generated with make_classification from
scikit-learn (Pedregosa et al., 2011). We generate 200 samples with 10 features
(of which 5 are informative, 3 redundant, and 2 noise) that essentially lie in two
separate clusters. While originally intended for classification, we do regression on
the class labels. Input variables and target values are normalized to have mean 0
and standard deviation 1.

The idea is as follows: pick two random points, one in each cluster, and study how
the uncertainty varies as we move along the line segment between them. That is,
for two points xA,xB, evaluate the estimated uncertainty for all points

x ∈ {(1− α)xA + αxB | α ∈ [0, 1]}.

Note that these x are not in the training set. Figure 4.6 illustrates the setup.
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4.3.2 Methods and hyperparameters

We use the same methods and general hyperparameters as in Section 4.2, i.e. all
NNs have one hidden layer with 50 ReLU. The NNs are trained to convergence
using Adam (Kingma and Ba, 2015) with learning rate 0.001 and batch size 32.
All ensembles except cSGMCMC use 5 NNs. cSGMCMC uses 20 NNs obtained
from 5 cycles with α = 0.5 and β = 0.9, as in the previous section. The remaining
hyperparameters were tuned manually on another set of points xA and xB that were
replaced for the final evaluation. The following hyperparameters were chosen:

• Deep BLR. Prior variance g = 1.

• MC-dropout. Dropout probability p = 0.1.

• cSGMCMC. Initial stepsize α0 = 0.5 and prior standard deviation σ0 = 1.

We note that both Deep BLR and MC-dropout work well for a wide range of hy-
perparameters while cSGMCMC is much more sensitive.

4.3.3 Results

Figure 4.7 contains the results. The predictive uncertainty is obtained for points
along the line segment between xA and xB, i.e., α = 0 and α = 1 gives the uncer-
tainty for xA and xB respectively. The uncertainty is represented by the standard
deviation of the predictive distributions. For each point, we also plot the distance
to the closest point in the training set.

The first thing to note is that all methods estimate higher uncertainty for one of the
training points, which shouldn’t be surprising. Furthermore, all methods estimate
increased uncertainty between the two points, which is good. PE and Deep BLR
ensemble have very similar uncertainty estimates, whereas cSGMCMC and Deep
BLR differ slightly. The only method that really stands out is MC-dropout, where we
see the uncertainty increasing very slowly, particularly from α = 1, and then change
drastically. This means that MC-dropout would estimate fairly low uncertainty even
for α = 0.6 which is far from any data it has seen.

4.3.4 Conclusions

We have seen that all methods estimate higher uncertainty for out-of-distribution
inputs which is promising. However, MC-dropout doesn’t behave like the other
methods and provides questionable uncertainty estimates. This lends further cre-
dence to our previous conclusion that MC-dropout is the worst method out of the
ones evaluated.

39



4. Evaluation in Supervised Learning

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.01

0.02

0.03

0.04

0.05

Un
ce

rta
in

ty

Uncertainty
Distance to closest training point 0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Di
st

an
ce

(a) Probabilistic ensemble.
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(b) cSGMCMC ensemble.

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Un
ce

rta
in

ty

Uncertainty
Distance to closest training point 0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Di
st

an
ce

(c) MC-dropout.
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(d) Deep BLR.
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(e) Deep BLR ensemble.

Figure 4.7: Uncertainty estimates along the line segment between two points in
the training set, as described in Section 4.3, for different methods for obtaining
uncertainty-aware NNs. The uncertainty is represented by the standard deviation
of the predictive distributions. For each point, the distance to the closest point in
the training set is plotted.
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Learning

While uncertainty-aware neural networks can be useful in almost any deep learning
application, we are primarily interested in using them as uncertainty-aware models
in model-based reinforcement learning. In this chapter, Probabilistic ensembles,
Deep Bayesian linear regression and Deep BLR ensembles are compared based on
the downstream performance when used as components in a RL algorithm.

The algorithm uses uncertainty-aware models for particle-based planning, where
probabilistic ensembles were originally used. While evaluating also the other meth-
ods for obtaining uncertainty would be interesting, the experiments conducted re-
quire significant computation and so we picked the candidate we found most inter-
esting.

5.1 Deep BLR in PETS

We use the RL algorithm Probabilistic Ensembles with Trajectory Sampling (PETS,
Chua et al. (2018)). It is a planning-based algorithm that, for each interaction, gen-
erates action sequences that are evaluated based on average performance across
all models in the probabilistic ensemble. The first action of the best action se-
quence is then executed in the real environment, and planning recommences. The
uncertainty-aware model is updated after each episode. Chua et al. (2018) show
that it learns faster than state-of-the-art model-free algorithms on some continuous
toy environments.

The section is organized as follows: the algorithm is first described in more detail,
followed by a description of the experiments, and ends with the results and a brief
discussion.
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5.1.1 The algorithm

The particular instantiation of the algorithm that is used is PETS with TS1 using
the cross-entropy method (CEM, (Botev et al., 2013)) for optimization. We chose
TS1 as it is the main variant presented in the paper, but also because it allows us
to sample directly from the posterior predictive distribution which is convenient.

Algorithm 1 PETS with TS1 (Chua et al., 2018):
Initialize data D with a random controller for one trial.
for Trial k = 1 to K do

Train uncertainty-aware dynamics model to obtain p(s′ | s, a,D).
for Time t = 0 to TaskHorizon do

for Actions sampled at:t+T ∼ CEM(·), 1 to NSamples do
Propagate P state particles spτ with at:t+T using p(s′ | s, a,D).
Evaluate the cost of at:t+T as - 1

P

∑P
p=1

∑t+T
τ=t r(spτ , aτ ).

Update CEM(·) distribution using the computed cost.
Execute first action a∗t from the optimal action sequence a∗t:t+T .
Record outcome: D ← D ∪ {st, a∗t , st+1}.

Algorithm 1 describes PETS with TS1. In the case of a Deep BLRmodel, p(s′ | s, a,D)
refers to the posterior predictive distribution. When a probabilistic ensemble is used,
it refers to the uniformly weighted normal mixture density.

At each timestep in the true environment, the cross-entropy method (CEM) is used
for some number of iterations to attempt to find the action sequence with the lowest
mean cost (highest mean total reward) across all P particles, each following its
own trajectory using the dynamics model p for some horizon. CEM optimizes in
an evolutionary fashion by iteratively sampling action sequences from a truncated
normal distribution, computing their costs, and refitting the distribution using some
number of elite (top performing) action sequences.

For a concrete example, suppose the planning horizon is 25, the action dimension
is 2, the population size is 400, and the number of elites is 40. We also have a
parameter α ∈ [0, 1). At each iteration i, 400 samples are drawn from a truncated
normal distribution with mean and variance µi and σ2

i , both 25 ·2-dimensional. The
cost for each sample, representing an action sequence, is then computed as described
in Algorithm 1. The samples are sorted by their cost, and the mean and variance
µE and σ2

E of the 40 elite samples is computed. The mean and variance are then
updated for the next iteration to be

µi+1 = αµi + (1− α)µE
σ2
i+1 = ασ2

i + (1− α)σ2
E.

After some iterations, e.g. 5, the optimization is interrupted and the best action
executed. For the next timestep, the previous best action sequence (with the first
action removed) is used as the initial mean for the CEM optimization.
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(a) Cartpole. (b) Reacher.

Figure 5.1: The two environments used in our evaluation. In Cartpole, the goal
is to swing up the pole by controlling the horizontal force applied to the cart. The
observation is 4-dimensional and contains the position and velocity of the cart and
pole. In Reacher, the goal is to control the robot arm to touch the ball. The
action and observation spaces are 7- (the robot has 7 degrees of freedom) and 17-
dimensional respectively.

5.1.2 Experimental details

We compare the downstream performance of the two methods for estimating uncer-
tainty by running PETS on two environments using the MuJoCo (Todorov et al.,
2012) simulator, Cartpole and 7-dof Reacher. Chua et al. (2018) also tried Pusher
or Half-Cheetah, which we skip only due to lack of resources. Each experiment was
repeated 10 times with different random seeds to combat the large variance.

We use the same hyperparameters as Chua et al. (2018), only replacing the linear
output layer of the NN with BLR. The NN has three hidden fully-connected layers
with 500 and 200 Swish units for Cartpole and Reacher respectively. It outputs the
mean and variance with a small trick to prevent zero or infinite variance for out-
of-distribution inputs, see Appendix A.2. Instead of predicting the next state, we
predict the difference between the current state and the next state, as is common in
the MBRL literature. It is trained for 5 epochs before each episode by minimizing
the negative log-likelihood using Adam with learning rate 0.001 and batch size 32.
The ensemble uses 5 NNs, as in the original paper. For both environments, CEM
runs for 5 iterations with a population/elite size of 400/40 and α = 0.1.

Three variants of uncertainty-aware models are evaluated: Probabilistic ensemble,
Deep BLR, and Deep BLR ensemble. Each NN in the ensembles is trained on a
bootstrap sample of the data, as in Chua et al. (2018). We also run the method
with a single probabilistic NN to see if the epistemic uncertainty induced by the
other methods is necessary for good performance. For Deep BLR, we used g = 0.1
for Cartpole and g = 0.01 for Reacher. We also tried g = 1.0 and g = 10.0, but
found that it resulted in poor performance. Our hypothesis is that the regularization
enforced by a small g leads to a simpler, more stable model. Since the delta-state is
predicted, it is reasonable that the prior on the weights is tightly centered around
zero.
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For implementation, we started with an open-source PyTorch implementation1 more
or less directly ported from the authors’ official implementation in TensorFlow. We
modified this to use TS1 rather than TS∞ and added Deep BLR.

5.1.3 Results

Figure 5.2 and 5.3 display the mean return per episode on CartPole and Reacher
respectively. The poor performance of 1 NN on Cartpole indicates that epistemic
uncertainty is helpful for Cartpole. For the rest of the methods, we see similar
performance. In particular, Deep BLR performs as well as PE with 5 NN, which
indicates that Deep BLR is able to capture uncertainty that is helpful for model-
based RL. Deep BLR ensemble performs slightly better than the other methods,
lending evidence to the hypothesis that ensembling improves uncertainty estimation.
This also proves the perhaps obvious fact that both Deep BLR and PE have room
for improvement.

On Reacher, there is little differentiation between the methods, and all methods
perform roughly equally well. Deep BLR ensemble seems to have a slight edge, but
the performance of 5 NN is much more stable than the Deep BLR methods. Unlike
Cartpole, 1 NN performs almost as well as the other methods. This might explain the
similar performance between Deep BLR ensemble and 5 NN: improved uncertainty
estimation doesn’t help much in this environment. Further study of the effect of
replacing ensembles with Deep BLR should therefore be done in environments where
a clear benefit of ensembling, and thus epistemic uncertainty, can be seen.

As touched upon in Section 3.5, Deep BLR can add a significant overhead when
the NNs are small enough to be trained in parallel, and this is such a case. PETS
with Deep BLR takes almost twice as long as with PE, and this can be attributed to
the additional computation of the posterior predictive distribution, which essentially
amounts to computing ZTVNZ. Using samples from the posterior instead may help
speed this up, especially in the case of TS∞, but potentially also for TS1. Since
the model is updated only at the beginning of each episode, we could obtain a large
number of samples from the posterior after training and then use them throughout
the episode.

5.1.4 Discussion and further work

The main conclusion we draw from this experiment is that Deep BLR can be compet-
itive with ensemble methods when used in uncertainty-aware MBRL. Furthermore,
combining Deep BLR and ensembles may yield superior performance. However,
PETS with Deep BLR displayed unstable performance on one of the environments,
where we saw some episodes with low return. We see potential for future work in

1https://github.com/quanvuong/handful-of-trials-pytorch
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Figure 5.2: Comparison of 1 probabilistic NN, 5 probabilistic NNs, Deep BLR,
and Deep BLR ensemble when used as an uncertainty-aware model for PETS on
CartPole. The experiment is repeated 10 times and the mean return for each of the
15 episodes is reported, with the shaded area representing one standard error.
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Figure 5.3: Comparison of 1 probabilistic NN, 5 probabilistic NNs, Deep BLR,
and Deep BLR ensemble when used as an uncertainty-aware model for PETS on
Reacher. The experiment is repeated 10 times and the mean return for each of the
30 episodes is reported, with the shaded area representing one standard error.
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two main areas, evaluating on more difficult environments and tuning NN hyperpa-
rameters for Deep BLR, which we discuss in the next paragraphs.

The obvious next step is to evaluate these methods on more difficult environments,
e.g., Half-Cheetah in which Kurutach et al. (2018) showed good performance for
PETS. As previously mentioned, such an evaluation should be done in environments
where a clear benefit from accurate uncertainty estimation can be seen. We did
not do this due to lack of time and resources. The planning phase of PETS is
computationally expensive, and it is unclear how well it performs on even more
complex environments, e.g., Humanoid walking or more complex robotics tasks.
An alternative uncertainty-aware MBRL algorithm is ME-TRPO (Kurutach et al.,
2018), where replacing PE by Deep BLR could also be investigated. Since ME-
TRPO has been shown to work on e.g. Humanoid, this might be a better way to
study Deep BLR’s capacity to model the uncertainty of more complex environments.

Another interesting avenue for research is to evaluate the relationship between the
NN architecture and Deep BLR performance. In this experiment, we used the NN
architecture as-is, but optimizing for Deep BLR performance may yield significantly
better performance. Studying the relationship between the prior variance g and the
underlying deep representation would also be interesting.
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In this final chapter, we end with conclusions from our work and discuss potential
for further research.

6.1 Conclusions

In this thesis, we have evaluated five methods for obtaining uncertainty-aware NNs,
first directly in terms of supervised learning, and then indirectly in terms of down-
stream performance when used as a component in a model-based RL algorithm.

The first part involved visual inspection of the predictive distributions on 1-D and
2-D regression problems, a qualitative comparison on standard regression datasets,
and studying the uncertainty estimates for out-of-distribution inputs. In the second
part, Deep BLR and Deep BLR ensembles were compared to PE as uncertainty-
aware models in the model-based RL algorithm PETS (Chua et al., 2018).

We found that all methods yield visually reasonable uncertainty estimates on 1-
D and 2-D problems. In particular, our variation of Deep BLR did so, despite
its simplicity. In our evaluation on standard datasets, we found that MC-dropout
was underwhelming, Deep BLR was competitive, and cSGMCMC and Deep BLR
ensembles were the strongest contenders. PE and cSGMCMC performed similarly,
but cSGMCMC allows and requires much more hyperparameter tuning. Finally, all
methods, with the exception of MC-dropout, estimate consistently high uncertainty
for out-of-distribution inputs. Combined with the results on standard dataset, this
led us to view MC-dropout as the worst method considered.

Our evaluation of the downstream RL performance indicate that Deep BLR is com-
petitive with PE as an uncertainty-aware model. Furthermore, Deep BLR ensemble
may outperform PE in environments where the capacity to model epistemic un-
certainty is important. On the other hand, Deep BLR yielded slightly less stable
performance and is computationally more expensive when the full posterior predic-
tive distribution is used.

To conclude, our main finding is that Deep BLR is a reliable method for produc-
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ing uncertainty-aware NNs1 that may outperform PE, which is the most common
method used today. We want to emphasize that, in all our comparisons with other
methods, Deep BLR has been applied with no changes to the NN architecture. It
is possible, and even likely, that Deep BLR performs better with method-specific
adjustment of the NN.

6.2 Further research

In Section 3.7, we surveyed some of the methods that we didn’t consider in this
thesis. Out of these, we find Noisy K-FAC (Zhang et al., 2018) and fvBNN (Sun
et al., 2019) the most promising. Based on our results in Section 4.2, cSGMCMC
(Zhang et al., 2019) may also be a promising method for uncertainty-aware models,
although we didn’t have time to evaluate it. We think that a comprehensive down-
stream comparison of these methods, Deep BLR, and PE in RL would be interesting,
including both for exploration and model-based RL.

Furthermore, a major hurdle in evaluating methods for uncertainty-aware NNs is
implementation. Developing a software library that implements state-of-the-art
uncertainty estimation techniques would be a huge boon for the field, similar to
what OpenAI Baselines2 did for RL. Similarly, designing environments that facili-
tate benchmarking uncertainty estimation would be useful.

Finally, we would like to see Deep BLR evaluated as an uncertainty-aware model in
a wider range of MBRL algorithms, e.g., ME-TRPO (Kurutach et al., 2018), and
on more difficult environments where accurate uncertainty estimation is important.
On a more general note, studying ways in which uncertainty-aware models can be
used for safe RL is also interesting, as in, for example, Kahn et al. (2017).

1We remind the reader of the limits of Deep BLR discussed in Section 3.4.4. It can realistically
only be applied to NNs with a linear output layer, which prevents it from being used with a
convolutional output layer, i.e., in most applications with image outputs.

2https://github.com/openai/baselines
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A
Experimental details

A.1 Toy regression

We used the same hyperparameters for each method throughout the toy regression
experiments, with the natural exception of figure 4.4 where the number of models
used was varied. The following hyperparameters were used:

• Probabilistic ensemble: 10 NNs, 5 hidden layers with 10 ReLU neurons
per layer. Optimized using Adam with a learning rate of 1e-3 and no weight
decay.

• cSGMCMC ensemble: 20 cycles with 4 samples per cycle, resulting in 80
NNs with 5 hidden layers and 10 ReLU neurons per layer. α = 0.5, β = 0.9,
initial learning rate α0 = 1.0 and prior standard deviation of 2.0.

• MC-dropout: 2 hidden layers with 1000 ReLU neurons each. Dropout rate
p = 0.25 and predictive distribution approximated with 100 stochastic forward
passes. Optimized using Adam with a learning rate of 1e-3 and no weight
decay.

• Deep BLR: 3 hidden layers with 50 ReLU neurons each, so regression on
a 50-dimensional representation with g = 2. Optimized using Adam with a
learning rate of 1e-4 and no weight decay. The ensemble was built using 10
such models.

• Gaussian process: ReLU kernel, σ2 = 0.005, prior variance of w=10, prior
variance of b=500.

A.2 Trick for bounded variance in PETS

Chua et al. (2018) observed that the variance outputted by a probabilistic NN can
take arbitrary values for out-of-distribution inputs, for example collapsing to zero
or exploding to infinity. It can be fixed by using the following trick.

I



A. Experimental details

For each output, two variables max_logvar and min_logvar are instantiated, with
initial values 0.5 and −10 respectively. The output is then given by

logvar← max_logvar− softplus(max_logvar− logvar)
logvar← min_logvar + softplus(logvar− min_logvar)

var← exp(logvar)

where softplus(x) = log(1 + ex), a differentiable approximation to max(x, 0). This
ensures that the log-variance, and thus variance, will be bounded. A small regular-
ization penalty is added to max_logvar and −min_logvar so that they don’t grow
above or below the maximum and minimum variance of the training set.

Unfortunately, we saw this trick too late to incorporate it in our experiments prior
to PETS, but believe it is a good idea to utilize it for probabilistic NNs (although we
haven’t analyzed it in-depth.) Nevertheless, it was used for the PETS experiments.
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