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The effect of holes on pattern formation in two species two dimensional reaction-
diffusion systems
SEBASTIAN PERSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Spatial patterns arise in a wide range of biological processes ranging from embryonic
development to cell polarisation. Owing to the complexity of pattern formation,
attempts to understand it often resorts to modelling by reaction-diffusion (RD)
models, which is a model type consisting of coupled partial differential equations
(PDE:s). In biological systems, it has been observed that some patterns form regions
of high concentration (poles) close to regions in which the species relevant for pattern
formation cannot enter (holes). In order to understand the impact of holes on RD-
models, and if RD-models can capture this behaviour with poles being confined on
domains with holes, this thesis investigated two questions; (1) the impact of holes
on pattern formation, (2) if poles by some strategy can be spatially confined on a
domain containing holes.
In order to answer these questions, two classical models, the Schnakenberg and
Gierer-Meinhardt, were simulated on a two dimensional domain with zero, five, seven
and 20 small densely packed circular holes. For solving the RD-systems numerically
on such domains a finite element method (FEM) was implemented.
The results suggested that on a domain with many holes poles have a tendency
to accumulate close to, or directly in, the region dense in holes. The exact reason
behind this behaviour is not known, but it might be due to the model species being
confined in the diffusion-restricted region between holes. Regarding the control of
pole formation, changing parameters outside the Turing space in a sub-region proved
efficient for spatially confining poles to a specific region. Although potentially useful
for recreating observed patterns, it should be noted that the usage of this method
raises the question of why the parameter values are different in a sub-region.
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1
Introduction

Spatial pattern formation is a common process in biology [1]. For example, patterns
arise during fur development on animals like giraffes, during embryonic development
of mammals in which patterns regulate the shape of the embryo [1], and during cell
polarisation in the bakers yeast Saccharomyces cerevisiae [2]. These are just a few
examples of patterns in nature, but they highlight that an understanding of pat-
tern formation is required in order to understand processes ranging from embryonic
development to single-cell level polarisation.
Understanding pattern formation is far from trivial, as the formation of a spatial
pattern is a highly complex process [1]. Nonetheless, mathematical modelling has
proven useful for understanding and recreating observed patterns [1, 3, 4, 5]. Among
the models used to describe pattern formation, the most commonly used and most
successful one is the reaction-diffusion (RD) model [4], with the following general
form:

∂c
∂t

= f(c) + D∇2c (1.1)

Here c is a vector of concentrations (species), f is a non-linear often bounded reaction
term, D is the diffusivity matrix and ∇2 is the Laplacian operator. That the system
in Eq. (1.1) can give rise to patterns was first demonstrated in a paper from 1952
by Alan Turing, where stable patterns were created using a RD-model with two
chemical species [6]. Although producing patterns, Turing’s model had a problem
with being mechanistically unrealistic. Fortunately, since Turing’s time this problem
has been addressed and more realistic RD-models have appeared. Among these
models, two of the most well studied are the Schnakenberg model [7], Eq. (2.8), and
Gierer-Meinhardt model [8], Eq. (2.6) (Fig. 1.1a and 1.1b).
If a pattern is formed on a domain that approximates a flat surface, e.g a butterfly
wing, a rectangular domain (Fig. 1.1a) is a reasonable choice for studying said
pattern. However, sometimes patterns are formed on more complex domains. An
example of such a complex, but biologically plausible, domain is one that contains
holes in which the species in the model cannot enter (Fig. 1.1c). These holes can
from a biological perspective correspond to budding scars on S. cerevisiae1 [9], or
patches of fur where certain molecules cannot diffuse. In the viewpoint of Eq. (1.1)
these holes are zero concentration (c = 0) regions (subdomains), with boundaries

1The proteins responsible for polarisation don’t accumulate on the budding scars.
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Figure 1.1: Pattern on the flat surface. (a) Pattern with one pole for the Schnaken-
berg model. (b) Pattern with three poles for the Gierer-Meinhardt model. (c) Domain
with holes. For parameters for (a-b) see appendix B.

Γi described by a zero flux Neumann-condition (n · ∇c = 0 on Γi).
Besides being formed on domains containing holes, some biological patterns possess
a pole (region of high concentration) at a specific region. One example of this is the
polarisation of the protein Cdc42 in S. cerevisiae, where polarisation sites (poles) are
created close to already existing budding scars (holes) [9]. Previous studies indicate
that confinement of a pole to a specific region in a RD-model could be achieved by
varying the model parameter values in a sub-region [5, 10, 11]. Besides varying the
parameters, disturbing the initial conditions of the RD-system by a large positive
noise in a sub-region could potentially confine a pole. As the effect of holes on RD-
models is unclear though, it is hard to predict if any of these approaches could work.
Still, as it is possible to simulate the system in Eq. (1.1) on a domain with holes,
these approaches for controlling pole formation can be investigated via simulations.
Consequently, with the aim to increase the understanding of RD-models on domains
with holes, and how poles might be spatially confined on such a domain, this thesis
investigates the following two scenarios:

1. The effect of holes on pattern formation for the Schnakenberg model and
Gierer-Meinhardt model in two dimensions.

2. The effect of varying parameters and/or the initial conditions in a small sub-
region when a two dimensional domain contains holes for the Schnakenberg
model and Gierer-Meinhardt model in two dimensions.
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2
Theory

This chapter presents a theoretical background of reaction-diffusion models, with the
focus being placed on the Schnakenberg model (2.8) and Gierer-Meinhardt model
(2.6). As both these models are two-species models, attention is thus placed on
two-species RD-systems.
In this report vectors and matrices are denoted by small and capital letters respec-
tively in bold font. The gradient is denoted by ∇, the laplacian operator by ∇2, the
normal vector by n and the scalar (inner) product by a dot (·).

2.1 Nondimensionalisation of RD-systems

The process of nondimensionalisation aims to remove the units in a model [4]. This
is achieved by scaling the states, space-coordinates and time by a combination of pa-
rameters in the model and/or a characteristic-length. At a first glance this rescaling
of the original equations might seem worthless, however this operation has two ben-
efits. Firstly, the process of nondimensionalisation can reduce the number of model
parameters [4]. This is of interest in RD-models because the pattern forming ability
of a RD-model is governed by the parameter values (section 2.2). Consequently, if
the number of parameters is reduced it becomes easier to find the Turing space (space
of parameter values that produce a pattern). Secondly, nondimensionalisation can
result in parameters that are more intuitive to interpret [4].
The technique of nondimensionalisation is in this thesis demonstrated on the Gierer-
Meinhardt model. Here, the standard form of the model [8] and the nondimension-
alisation procedure as in [4] are followed. The two species Gierer-Meinhardt models
is:

∂α

∂t
= Dα∇2α + k1 − k2α + k3

α2

β
(2.1a)

∂β

∂t
= Dβ∇2β + k4α

2 − k5β (2.1b)

Where Di is diffusion constants and ki correspond to a rate constant. The first step
in the nondimensionalisation is to rescale the time and states:
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2. Theory

α = k3

k4
u, β = k2

3
k4k5

v, τ = Dαt

L2 , r∗ = r
L

d = Dβ

Dα

, a = k1

k5
, k2 = k2

k5
, γ = L2k5

Dα

(2.2)

Where u and v are the dimensionless concentrations, τ is the dimensionless time and
r∗ is the dimensionless spatial coordinate. Using the expression of τ in Eq. (2.2) it
follows from the chain rule that:

∂α

∂t
= ∂α

∂τ

∂τ

∂t
= ∂α

∂τ

Dα

L2 ,
∂β

∂t
= ∂β

∂τ

∂τ

∂t
= ∂β

∂τ

Dα

L2 (2.3)

Furthermore, by applying the chain rule, product rule and lastly chain rule it follows
that for component ri in r that:

∂2α

∂r2
i

= ∂2α

∂(r∗i )2

(
∂r∗i
∂ri

)2

+ ∂r

∂r∗i

(
∂2r∗i
∂r2

i

)
︸ ︷︷ ︸

=0

= ∂2r

∂(r∗i )2
1
L2 (2.4)

Now using Eq. (2.3) and Eq. (2.4) it follows that the system in Eq. (2.1) can be
rewritten as:

∂α

∂τ
= ∇2

∗α + L2

Dα

(
k1 − k2α +K3

α2

β

)
∂β

∂τ
= Dβ

Dα︸︷︷︸
=d

∇2
∗β + L2

Dβ

(
k4α

2 − k5β
) (2.5)

By now substituting α for u and β for v using the substitutions in Eq. (2.2), and
dropping the stars on ∇2

∗ for ease of notation, it follows that the system in Eq. (2.1)
can be rewritten as:

∂u

∂τ
= ∇2u+ γ

(
a− bu+ u2

v

)
(2.6a)

∂v

∂τ
= d∇2v + γ(u2 − v) (2.6b)

For the Schnakenberg model [7], the general form is:

∂α

∂t
= Dα∇2α + k1 − k2α + k3α

2β (2.7a)
∂β

∂t
= Dβ∇2β + k4β

2 − k5α
2β, (2.7b)
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2. Theory

In a similar manner, it can be shown (for details see [4]) that the corresponding
nondimensional model is:

∂u

∂τ
= ∇2u+ γ(a− u+ u2v) (2.8a)

∂v

∂τ
= d∇2v + γ(b− u2v) (2.8b)

By comparing the original and dimensionless model formats three noteworthy de-
tails can be noted. Firstly, for both models the nondimensionalisation reduced the
number of parameters from seven to four, which simplifies the analysis performed
in section 2.2 and 2.2.3. Secondly, for both models the diffusion constant (Dα and
Dy) were replaced by d, a parameter easier to interpret than the individual diffusion
constants. Thirdly, it can be noted that both models after nondimensionalisation
have the same general format:

∂u

∂τ
= ∇2u+ γf(u, v) (2.9a)

∂v

∂τ
= d∇2v + γg(u, v) (2.9b)

Where γ has the interpretation of a control parameters that determines the strength
of the reaction terms relative to the diffusion d [4].

2.2 Turing patterns
The ability of RD-model, like the one in Eq. (1.1), to generate patterns strongly
depends on the reaction dynamics f(c) (with associated parameters) and the diffu-
sion constants. It has been shown that so called Turing patterns can be formed if a
model fulfils diffusion driven instability; the homogeneous steady state is stable to
small perturbations in the absence of diffusion, but unstable in presence of diffusion
[4]. The ability of a model to fulfil diffusion driven instability strongly depends on
the model parameters, and the region where the parameters fulfil this is referred
to as the Turing space. As this thesis considers two species models, this section
derives the mathematical conditions for diffusion driven instability for a two species
model (Eq. (2.25)). In addition, based on these conditions an intuitive explanation
to pattern formation is provided. Lastly, based on the conditions the actual Turing
spaces for the Schnakenberg model and the Gierer-Meinhardt model are presented
(Fig. 2.2.3).

2.2.1 Mathematical conditions for Turing patterns
The derivation of the conditions for diffusion driven instability presented in this
section will relatively closely follow the derivation presented by Murray [4]. Further-
more, since this thesis investigates two species models the conditions are derived for
the following general two-species RD-system:

5



2. Theory

∂u

∂t
= Du∇2u+ F (u, v), n · ∇u = 0 on Γ

∂v

∂t
= Dv∇2v +G(u, v), n · ∇v = 0 on Γ

(2.10)

Where Γ refers to the boundary. Note that in this general format a factor γ cannot
be factorised out from the reaction terms. The first requirement for diffusion driven
instability is that the steady state (u∗, v∗) is stable given no diffusion. With other
words, a small perturbation to the steady state δw = (u−u∗, v−v∗) should over time
converge to the steady state. Conditions for when this holds can be investigated
using linear stability analysis, since a linearisation approximates the diffusion free
system well for small perturbations:

dδw
dt ≈ J∗δw (2.11)

Where J∗ is the Jacobian matrix evaluated at the steady state:

J∗ =
[
∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

] ∣∣∣∣∣
(u∗,v∗)

=
[
F ∗u F ∗v
G∗u G∗v

]
(2.12)

As shown in Appendix A, the system in Eq. (2.11) has the following general solution:

δwt = c1a1e
λ1t + c2 + c2a2e

λ2t (2.13)

Where λ1 and λ2 are the eigenvalues of J∗. The eigenvalues can be obtained by
solving the characteristic equation det(J∗ − Iλ) = 0, resulting in:

λ1, λ2 = 1
2

(
(F ∗u +G∗v)±

(
(F ∗u +G∗v)2 − 4(F ∗uG∗v − F ∗vG∗u)

)1/2
)

(2.14)

From Eq. (2.13) it follows that λ1, λ2 < 0 in order for the steady state to be
stable, since this will result in small perturbations δw → 0 as t → ∞ (the initial
perturbation converges to the steady state). By investigating Eq. (2.14) it is noted
that the following two conditions must hold for this to be true:

Tr(J∗) = F ∗u +G∗v < 0, det(J∗) = F ∗uG
∗
v − F ∗vG∗u > 0 (2.15)

The next condition for Turing patters is diffusion driven instability. More specif-
ically, a small perturbation δw to the steady state should result in the dynamics
moving away from the steady state when diffusion is present. Adding diffusion to
the linearised dynamics results in the following system:

∂δw
∂t

= J∗δw + D∇2δw (2.16)

6



2. Theory

Where D = diag(Du, Dv) is the diagonal diffusion matrix. The solutions to the
system in Eq. (2.16), following the method of variable separation, is [4]:

δw =
∑
k

ckeαktWk(r) (2.17)

Where ck are given by the Fourier series expansion of the initial conditions and
Wk(r) is an eigenfunction solving the spatial problem ∇Wk +k2Wk = 0 that arises
from the variable separation [4]. From Eq. (2.17) it follows that in order to have
diffusion driven instability there must exist at least one αk > 0 (else the dynamics
will not move away from the steady state). To obtain an expression of αk Eq. (2.17)
can be inserted into Eq. (2.16), resulting in the following equation [4]:

αkWk = J∗Wk + D∇2Wk︸ ︷︷ ︸
=−k2DWk

=⇒ (J∗ − k2D)Wk = αkWk (2.18)

From Eq. (2.18) it follows that the αk value can be obtained by solving for the
eigenvalues of the matrix

M = J∗ − k2D =
[
F ∗u − k2Du F ∗v

G∗u G∗v − k2D2
v

]
. (2.19)

By applying some algebra on the characteristic equation det(M − αI) = 0 the
eigenvalues can, for a fixed k, be formulated as:

α1, α2 =
Tr(M)±

√
Tr(M)2 − 4 det(M)

2 (2.20)

As Tr(M) < 0, due Tr(J∗) < 0 and k,Du, Dv > 0, it follows that the only way to
achieve diffusion driven instability is via det(M) < 0. A bit of algebra yields that:

det(M) = det(J∗)− k2(DvF
∗
u +DuG

∗
v) + k4DuDv (2.21)

Overall it follows that det(M) is a parabolic function with respect to k2. Some
straightforward derivation yields a minimum for this function at:

k2
min = DvF

∗
u +DuG

∗
v

2DuDv

(2.22)

Inserting this minimum in Eq. (2.21) yields:

det(M)min = det(J∗)− (DvF
∗
u +DuG

∗
v)2

4DuDv

(2.23)

As det(J∗) > 0 and kmin > 0, it follows that the following two conditions must be
fulfilled for det(M)min < 0 to be true:

7



2. Theory

0 < DvF
∗
u +DuG

∗
v, det(J∗) < (DvF

∗
u +DuG

∗
v)2

4DuDv

(2.24)

If the conditions in Eq. (2.24) are fulfilled it follows that there exists a k such
that det(M)min < 0 and, in extension via Eq. (2.21), there exists an αk > 0.
In other words, the system exhibits diffusion driven instability. To simplify further
calculations, it can be noted that for models of the format in Eq. (2.9), the conditions
in Eq. (2.15) and Eq. (2.24) simplify into:

f ∗u + g∗v < 0 (2.25a)
f ∗ug

∗
v − f ∗v g∗u > 0 (2.25b)
df ∗u + g∗v > 0 (2.25c)

f ∗ug
∗
v − f ∗v g∗u <

(df ∗u + g∗v)2

4d (2.25d)

For the models investigated in this thesis the conditions in Eq. (2.25) give four nec-
essary conditions for diffusion driven instability. In extension, they therefore make
up necessary conditions for Turing pattern formation. If the parameters in a model
fulfil these conditions, it means that given a random perturbation of the steady state
(u∗, v∗) the eigenfunctions connected with the eigenvalues αk > 0 will grow. As the
reaction term f(c) generally is bounded this growth will not be indefinite, instead
the growing eigenfunctions might settle into spatial patterns [4].

2.2.2 An intuitive description of Turing pattern formation
It is possible from the conditions in Eq. (2.25) to get an intuitive feeling of Turing
pattern formation. By assuming that f ∗u > 0, some straightforward algebra on
Eq. (2.25) result in d > 1 and two possible sign configurations of J∗ ( Fig. 2.1).
The two cases in Fig. 2.1 have two traits in common; u is self-activating around
the steady state (f ∗u > 0) and v diffuses faster than u (d > 1) [4]. Besides these
similarities the two configurations are different, and they actually correspond to
distinct mechanisms of pattern formation [4]. For the Gierer-Meinhardt model (Fig.
2.1a) and the Schnakenberg model (Fig. 2.1b) the following two paragraphs present
an intuitive description, based on those provided by Murray [4], for each model.+ −

+ −


(a) Gierer-Meinhardt model

+ +
− −


(b) Schnakenberg model

Figure 2.1: The two configurations of J∗ that gives rise to Turing patterns for a
two-species RD-model. (a) Gierer-Meinhardt model. (b) Schnakenberg model.

Considering the Gierer-Meinhardt case (Fig. 2.1a), it corresponds to a scenario
where around the steady state, the self activating component u activates v (g∗u > 0).

8



2. Theory

Consequently, if u is perturbed around the steady state in a small region, the levels
of u and v will both increase in that region. As d > 1, v diffuses faster away from
this zone of local activation than u, and as v inhibits u (f ∗v < 0) this results in
the creation of a barrier that inhibits formation of u outside of the activation zone.
Overall, this results in that if u is perturbed randomly around the steady state,
regions can arise with high levels of u and v, interspersed with regions were both
concentrations are low. This entire process is illustrated in Fig. 2.2a for the one
dimensional case.
Considering the Schnakenberg case (Fig. 2.1b), it corresponds to a scenario where
around the steady state the self activating component u inhibits the formation of v
(g∗u < 0). Consequently, if u is perturbed around the steady state in a small region,
the levels of u increase, while the levels of v decrease in that region. As d > 1, this
decrease in v results in a net flux of v from the neighbouring regions, leading to
a decrease of u in the those regions as the activation of u depends on v (f ∗v > 0).
Hence, if u is perturbed randomly around the steady state this mechanism can give
rise to regions with high u and low v levels, intermixed with regions of low u and
high v levels. This entire process is illustrated in Fig. 2.2b for the one dimensional
case.
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Figure 2.2: 1D-illustration of how Turing patterns are formed for different sign-
configuration of J∗. In both plots the homogeneous steady state of u is randomly
perturbed in the middle of the domain. The parameter values used for the Gierer-
Meinhardt model (a) and Schnakenberg model (b) can be found in appendix B
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2. Theory

2.2.3 Finding the Turing space
The conditions in Eq. (2.25) define the Turing space, that is the set of all parameters
that can give rise to Turing patterns [4]. As Turing patterns cannot be generated
without knowing a subset of the Turing space, it is relevant to have a methodology
for identifying this space. One possible way to identify it is to make a numeric
grid-search over a set of possible parameter values, and then report those parameter
combinations which fulfil the conditions in Eq. (2.25). This approach is straightfor-
ward, but as the Turing space in this case depend on a, b and d it becomes tricky
to visualise the result from such a grid-search. In the case of the Gierer-Meinhardt
model and the Schnakenberg model another possible approach is to analytically de-
rive the Turing space in a manner that can be visualised [4]. Although this method
algebraically heavy, it is the preferred choice in this thesis as it avoids the mentioned
visualisation problem.
The technique of deriving the Turing space was first introduced by Murray [4],
and is demonstrated in this thesis on the Gierer-Meinhardt model. The first step
in analytically finding the Turing space is to express the steady state f(u, v) =
g(u, v) = 0 in terms of u∗ and the parameters a and b:

a− bu+ u2

v
= 0 =⇒ u∗ = a+ 1

b

u2 − v = 0 =⇒ v∗ = (a+ 1)2

b2 = (u∗)2
(2.26)

As noted in Eq. (2.26) the Gierer-Meinhardt only has one steady state. If the model
had more than one, the following steps would have to be repeated for each one. The
next step in finding the Turing space is to express the different conditions in Eq.
(2.25) in terms of a and u∗. To simplify further calculations it is first advantageous
to rewrite the Jacobian as:

J∗ =
[
f ∗u f ∗v
g∗u g∗v

]
=
[
−b+ 2u∗

v∗ − (u∗)2

(v∗)2

2u∗ −1

]
=
[1−a
u∗ − 1

(u∗)2

2u∗ −1

]
(2.27)

Where b was rewritten using the steady state in Eq. (2.26). Starting with the first
condition in Eq. (2.25a), it can be rewritten as:

f ∗u + g∗v = 1− a
u∗
− 1 < 0 =⇒ a > 1− u∗ (2.28)

The second conditions in Eq. (2.25b) holds trivially:

|J∗| = f ∗ug
∗
v − f ∗v g∗u = a− 1

u∗
+ 2
u∗

= 1 + a

u∗
> 0 (2.29)

The third condition in Eq. (2.25c) yields:

10



2. Theory

df ∗u + g∗v = d
1− a
u∗
− 1 > 0 =⇒ a < 1− u∗

d
(2.30)

The last condition in Eq. (2.25d) yields:

|J∗| < (dfu + gv)2

4d =⇒ 1 + a

u∗
<

(
d(1− a)− u∗

)2

4d(u∗)2 (2.31)

Now by applying some algebra on Eq. (2.31) it follows that:

0 < a2d2 − 2ad2 − 2adu+ d2 − 6du+ u2

4du2 =⇒
d>0

0 < a2 d2︸︷︷︸
=c1(d)

+a (−2d2 − 2du)︸ ︷︷ ︸
=c2(d)

+ d2 + u2 − 6du︸ ︷︷ ︸
=c3(d)

(2.32)

Overall this results in the following constraints on a:

a <
−c2 −

√
c2

2 − 4c1c3

2c1
, a >

−c2 +
√
c2

2 − 4c1c3

2c1
(2.33)

Which after some algebra simplifies to:

a < 1 + du∗ − 2
√

8d3u∗

d2 , a > 1 + du∗ + 2
√

8d3u∗

d2 (2.34)

The rightmust condition in Eq. (2.34) cannot hold as it is directly conflicting with
Eq. (2.31), resulting in the first condition in Eq. (2.34) being required to hold.
Overall, Eq. (2.28), (2.30) and (2.34) result in the following limits of the Turing
space for the Gierer-Meinhardt model:

amin = 1− u∗ (2.35a)

amax = min
{

1− u∗

d
, 1 + du∗ −

√
8d3u∗

d2

}
(2.35b)

For the Schnakenberg model (for details see [4]), the following limits hold for the
Turing space:

amin = u∗

2

(
1− (u∗)2

)
(2.36a)

amax = u∗

2

(
1− 2u∗√

d
− (u∗)2

d

)
(2.36b)
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Figure 2.3: The Turing space for the Gierer Meinhardt model (a) and the
Schnakenberg model (b) for different values of d. For example, if d = 25 in (a)
any combination of (a, b) being below the curve marked by d = 25 and above the
lower limit (red-dotted curve) will result in diffusion driven instability.

Given the limits in Eq. (2.35) and (2.36) it is possible to plot the Turing space.
This is done by noting that b = (a + 1)/u∗ for the Gierer-Meinhardt model and
that b = u∗ − a for the Schnakenberg model. Given this, the parameter space can
be plotted for different d-values by plotting the resulting (amax/min, bmax/min) values
for each u∗ in the interval [0,∞). This procedure results in curves that define the
Turing space (Fig. 2.3). A noteworthy detail about these curves however is that
they do not guarantee Turing patterns. This is because the formation of patterns
also depend on γ, as it has to be big enough to allow any eigenfunction to grow [4].
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3
Methods

This chapter presents the finite element variational formulation (Eq. (3.5)) used
for solving the Gierer-Meinhardt model and the Schnakenberg model on a domain
containing holes. In addition the finite element meshes, on which the PDEs were
solved, are presented.
All the code used for solving the PDE:s, generating the meshes and generating the
figures for this thesis can be found on GitHub (https://github.com/sebapersson/
Master_thesis). Some important details about the code is that must figures were
created using R (version 3.6.2), the meshes were generated using Gmsh (version
4.4.1) [12], and the PDE:s were solved in Python (version 3.7.5) using FeniCS [13].
Efforts have been made to make the project as reproducible as possible by basing the
directory structure on the following two suggestions [14, 15]. Assuming a unix based
operating system and an Anaconda distribution, the results should be reproducible
by first creating an Anaconda environment form the yml-file, and then given this
environment run the Run_all.sh-script. It is recommended to run the Run_all.sh-
script on a cluster, as it took over 60 hours to produce the result in this report on a
cluster with 112 CPU:s (Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz). More
details about reproducing the results can be found on the GitHub page.

3.1 Finite element variational formulation

The finite element method (FEM) is a commonly used approach for solving PDE:s.
It is the preferred method in this thesis by two reasons. Firstly, it is relatively easy
to adapt the method to complex geometries (e.g domains with holes) [16]. Secondly,
it is relatively straightforward to implement a FEM-solver using the open-source
software FeniCS, which only requires the finite element variational formulation as
input [13].
The underlying idea of FEM is to rewrite the PDE-system into a variational (or
weak) formulation. Following this, a FEM-solver aims to approximate a solution
to the variational formulation by solving the approximate problem which is the
finite element variational formulation [13, 16]. In order to avoid repeating the same
calculations twice, this sections provides the finite element variational formulation
for the general system in Eq. (2.9). Before introducing the variational formulation
however, some notations must be introduced. Let Ω correspond the the domain
where the species u and v can diffuse, and let Γ denote the outer boundary of Ω.
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3. Methods

Let ωi correspond to hole i and let Γi be the boundary between ωi and Ω (Fig 1.1c).
Assuming the holes to be zero-concentration regions (u, v) = 0 bounded by a zero
flux Neumann condition, the PDE-system of interest to solve in this thesis can be
formulated as:

∂u

∂τ
= uτ = ∇2u+ γf(u, v), u ∈ Ω (3.1a)

∂v

∂τ
= vτ = d∇2u+ γg(u, v), u ∈ Ω (3.1b)

u = v = 0, u, v ∈ ωi, ∀i (3.1c)
n · ∇u = n · ∇v = 0, u, v ∈ Γ ∪ Γi ∀i (3.1d)

Given the system in Eq. (3.1) it is possible to formulate the finite element variational
formulation. The variational formulation can be obtained for a fixed τ by multiplying
each equation by a test functions q, s ∈ H1(Ω) (Sobolev space see [16] for definition),
integrating over Ω and adding Eq. (3.1a) and Eq. (3.1b) together. By this procedure
the variational formulation becomes; for a fixed τ find u, v ∈ H1(Ω) such that:

∫
Ω

(
uτq − γf(u, v)q +∇u · ∇q

)
dx+∫

Ω

(
vτs− γg(u, v)s+ d∇v · ∇s

)
dx = 0 ∀s, q ∈ H1(Ω)

(3.2)

As mentioned, the idea behind FEM is to find an approximate solution (uh, vh) to
Eq. (3.2). There are many different ways to approximate the solution [13], and as
the must simple approach works for the system in Eq. (3.1) it is the one used in this
thesis. This approach corresponds to first partitioning the domain into triangles.
More precisely, let Th = {K} be the set of triangles such that an intersection is
either an edge, corner or empty. Given this, the approximate solution to (3.2) is
obtained by replacing H1(Ω) in Eq. (3.2) by:

Sh = {v ∈ C(Ω̄), v|k ∈ P1(k), ∀K ∈ Th} (3.3)

Where C is the set of continuous function in this case on Ω̄ (union of Ω and the
boundaries) and P1(K) is the set of linear functions on K:

P1(K) = {v : v = c0 + c1x1 + c2x2, (x1, x2) ∈ K, c0, c1, c2 ∈ R} (3.4)

By seeking a solution in Sh to (3.2) it is possible, for a fixed τ , to obtain an approx-
imate piecewise linear spatial solution to Eq. (3.1). However, as noted in Eq. (3.1)
the problem is also time-dependent. On other words, in order to solve the problem a
time-discretisation is required. In this thesis an explicit-implicit time-discretisation
method is used, where the reaction terms f(u, v) and g(u, v) are made explicit while
the gradient is kept implicit. Overall, given this time-discretisation the finite ele-
ment variational formulation becomes; for each τ find u(n)

h , v
(n)
h ∈ Sh(Ω), where the

superscript denote time-step n, such that:
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∫
Ω

(
∆τ−1(u(n+1)

h − u(n)
h )q − γf(u(n)

h , v
(n)
h )q +∇u(n+1)

h · ∇q
)

dx+
∫

Ω

(
∆τ−1(v(n+1)

h − v(n)
h )s− γg(u(n)

h , v
(n)
h )s+∇v(n+1)

h · ∇s
)

dx = 0 ∀s, q ∈ Sh(Ω)

(3.5)

Given an initial condition (u(0)
h , v

(0)
h ) the system in Eq. (3.5) can be plugged into

FeniCS and solved for each time step.
Lastly, it should be noted that there are two ways to implement the holes in Eq. (3.1)
for the variational finite element formulation in Eq. (3.5). The first approach is to
simply make holes in the mesh (Fig 3.1a) and the second approach it to consider holes
as sub-domains (Fig 3.1b). Although the second approach is much more engaging
from a coding-perspective (the zero concentration condition for the sub-domain must
be added to the code), it is the preferred choice in this thesis as it lays a more
general foundation for future studies. This is because if the holes are sub-domains, it
becomes relatively straightforward to investigate other scenarios, like what happens
if the species are allowed to diffuse, but not partake in any reaction in a hole.

X

Y

Z

(a) Holes as holes in the mesh
X

Y

Z

(b) Holes as sub-domains

Figure 3.1: Two possible ways to implement a domain with holes. (a) Implement
the holes as holes the mesh. (b) Consider the holes as sub-domains (the regions with
different colour).

3.2 Finite element meshes
As noted in section 3.1 a partition of the domain (mesh), in this case consisting of
triangles, is required for solving the system in Eq. (3.5). In this thesis the meshes
were created using Gmsh [12]. The main motivation for using Gmsh, instead of
the easier to use FeniCS mesh-generator, is that the holes were modelled as sub-
domains. With Gmsh it is possible to take these sub-domains into account and
create a mesh where the nodes create a smooth line between the different domains
(Fig. 3.1b), which is not possible with FeniCS. Furthermore, it is possible to import
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into to FeniCS from Gmsh information of which sub-domain a node belongs to. This
removes the need of defining the sub-domains via geometric conditions in the code,
which would have been required if the mesh was generated in FeniCS.
Eight different meshes were created (Fig. C.1). Out of these, four had a circular
(radius = 2.5) base-domain and the other four had a rectangular base domain (size
4.2 × 4.2). For each base-domain a mesh with zero, five, seven and 20 holes was
created. The holes were circular and densely packed, and the area of each hole was
1.5 % of of the base-domain area. These hole characteristics were chosen since small
densely packed holes have been observed in biological systems [17].
For the eight different meshes the characteristic length (lc), which determines the
coarseness of the mesh [12], was fine-tuned. This parameter is of importance to tune
properly, as a small lc-value results in a small numerical error but long runtime,
while a large lc-value results in a large error but short runtime [16]. Thus to avoid
numerical errors, but ensuring a reasonable runtime, a good lc-value is required. The
lc-value was tuned by a procedure where the steady state was perturbed in the centre
of the domain by a constant value. The idea behind this procedure is that if the
mesh is fine enough, then making it finer should not affect the result. Overall three
different lc-values were tried, lc = (0.06, 0.04, 0.03). Generally lc = 0.06 worked
well, but obvious errors were produced for the Gierer-Meinhardt model when using
a mesh with 20 holes (Fig. 3.2). Regarding a lc-value of 0.04, it yielded the same
result for both models and all meshes as a lc-value of 0.03 (only the case in Fig. 3.2
shown here). Consequently, all the meshes were constructed with lc = 0.04.
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Figure 3.2: The Gierer-Meinhardt model at τ = 1.5 for identical domains with
different lc-values (smaller value corresponds to a finer mesh). In each case the
initial steady state was perturbed by a constant value in the middle of the domain.
As noted, lc = 0.06 deviates in the top-right corner from the other cases. The
parameter values used can be found in appendix B
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4
Result

Many different experiments were conducted in order to investigate the effect of holes
on pattern formation for the Gierer-Meinhardt model and the Schnakenberg model.
As mentioned in chapter 1, the first point of interest to investigate in these exper-
iments was the general effect of holes on pattern formation. This was investigated
by observing the shape of the created patterns and the pattern-creation time (sec-
tion 4.1). The second point of interest to investigate was the possibility of spatially
confining the poles (regions of high concentrations) in the created patterns. This
was investigated by observing what happened when the initial homogeneous steady
state was varied in a sub-region (section 4.2) and by varying the parameters in a
sub-region (section 4.3). The parameter values used for the plots mentioned in this
chapter can be found in appendix B.
Two different base-domains were created for the meshes, one rectangular (size 4.2×
4.2) and one circular (radius = 2.5) (section 3.2). As the results generated on the
rectangular base-domain were highly similar to those for the circular base-domain,
this chapter will only report results from the rectangular one. Lastly, the holes
considered are closely packed circular holes whose area corresponds to 1.5 % of the
base-domain’s area.

4.1 Effect of holes

To investigate the effect of holes on pattern formation 30 simulations, with different
random perturbations of the initial steady state, were each run on the the domains
with zero, five and 20 holes. Based on these simulations, the shape of the created
patterns and the pattern creation time were investigated. Starting with the pattern
creation time, it was investigated by plotting the maximum value of u (Fig. 4.1).
As patterns show regions of high concentration, the maximum value of u acts as
an indicator of whether or not a pattern has been created. From observing the
maximum u value (Fig. 4.1) it is noted that although there is quite a spread in the
data, the Gierer-Meinhardt patterns seems to be created faster when the domain
contain more holes. Furthermore, for both models it appears that poles with a
higher concentration can be created when the domain contains holes.
To investigate the shape of created pattern, four out of the 30 simulations for each
domain (zero, five and 20 holes), were plotted at the end time steady state for the
Gierer-Meinhardt model (Fig. 4.2). Starting with comparing the control case of
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Figure 4.1: The maximum concentration of u for zero, five and 20 holes for the
Gierer-Meinhardt and the Schnakenberg model. The data is generated from ten sim-
ulations with different random perturbations of the initial steady state. The lines
correspond to the median, and the bands to 5 % and 95 % quantiles.

−2

−1

0

1

2

−2 −1 0 1 2

x

y

2 4 6
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

2 4 6
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

2 4 6
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

2 4 6
u

(a) Zero holes

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0 2 4 6
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0 2 4 6
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0 2 4 6
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0.0 2.5 5.0 7.5 10.0
u

(b) Five holes

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0.0 2.5 5.0 7.5
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0 2 4 6
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0 2 4 6 8
u

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0.0 2.5 5.0 7.5
u

(c) 20 holes

Figure 4.2: The u value for zero, five and 20 holes for the Gierer-Meinhardt model
at τ = 2.0. The data is generated from four simulations with different random
perturbations of the initial steady state.
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zero holes with that of five holes, it appears that the holes have a small effect (Fig.
4.2a and 4.2b). The most noteworthy difference occurs in one of the cases with five
holes (the rightmost one) as a pole is formed in the dense hole region at a higher
concentration than the other poles. This indicates that on a domain with five holes,
sometimes poles can be created in the dense hole region. Furthermore, it appears
that if a pole is created in the dense hole region it can have a higher concentration
compared to the poles created on the zero holes domain. A more distinct difference
appears when comparing the zero and 20 holes cases (Fig. 4.2a and 4.2c). In the
case of 20 holes, a pole is always formed close to, or directly in, the region that is
dense in holes. In addition, in most cases when a pole is formed in the dense hole
region it has a higher concentration than the zero holes poles. To verify that this
behaviour was not due to chance, four other simulations for the 20 holes domain
were inspected at τ = 2.0. Overall, the same behaviour was observed (Fig. C.2).
For the Schnakenberg model a pole was created in connection to dense hole region
more frequently for the five holes domain. Besides this a rather similar result holds
(Fig. C.3). That is, for 20 holes a pole often seems to be formed close to, or
directly in, the region that is dense in holes and sometimes, although it does not
appear to be as frequent as for the Gierer-Meinhardt model, such a pole has a higher
concentration. Overall the results suggest that if the domain has a dense region of
many holes, such as 20 holes, the self-activating component u can accumulate in
that dense region. Furthermore, Fig. 4.1 suggests that poles sometimes are created
at a higher concentration if the domain contains holes.

4.2 Effects of controlling the initial steady state
To investigate if the poles could be spatially confined by disturbing the steady state
in a controlled manner, five experiments each were run on the domains with zero, five
and 20 holes. In each simulation the homogeneous steady state was kept unperturbed
everywhere, except in a small circle of radius 0.25 where it was randomly perturbed
with a positive noise. As the u-component of the models is self-activating (section
2.2.2) it was speculated that this procedure would result in the formation of a pole
in the disturbance zone, similar to what is observed in the one dimensional case
(Fig. 2.2).
To investigate the result from disturbing the steady state, four out of the five simu-
lations for each domain (zero, five and 20 holes) were plotted at the end time steady
state for the Gierer-Meinhardt model (Fig. 4.3). A prominent feature is that within
each domain, the same spatial patterns were formed1 (Fig. 4.3). Another feature
is that in the zero holes case, the formed poles overlap with the disturbance region
(Fig. 4.3a). However, for the five and 20 holes cases this does not hold, instead the
pole is formed a small distance away from the disturbed region (Fig. 4.3b and 4.3c).
As this result is rather surprising considering the one dimensional case (Fig. 2.2),
the simulations for the five holes domain were rerun using a mesh with lc = 0.02 in
order to exclude numerical errors as a potential influence. Making the mesh finer did
not have any effect (Fig. C.5). For the Schnakenberg model the created poles occupy

1This also holds for the other six cases not included in Fig. 4.3 (result not shown here).
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4. Result

a larger area. Besides this similar results hold (Fig. C.4). That is, the same spatial
pattern is formed within each domain and for the five and 20 hole cases the created
poles do not have their centre overlapping with the disturbed region. Overall, the
result suggests that perturbing the steady state in a small region results in the same
spatial pattern being generated. Furthermore, Fig. 4.3 and Fig. C.4 suggest that
for domains with many holes, disturbing the steady state fails to spatially confine a
pole to a specific region.
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Figure 4.3: The u value for zero, five and 20 holes for Gierer-Meinhardt model at
τ = 2.0 when the steady state was disturbed at a specific region (black circle). The
data is generated from four different simulations where the steady state only was
perturbed randomly within the black circle.

4.3 Effects of different parameters in a sub-region
To investigate if the poles could be spatially confined by using varying parameters,
many different experiments were conducted where the parameters had different val-
ues within a small circular sub-region of radius = 0.25. The first of these experiments
focused on changing the a and d parameters within the Turing space. In these at-
tempts the a-parameter, which dictates the constant production of u, was increased

20



4. Result

for both models within the limits of the Turing spaces. Based on the intuitive ex-
planation in (section 2.2.2) it was hypothesised that if the self-activating component
u had a larger constant production in a small region, a pole should be confined to
that region. In addition to increasing a, the relative diffusion d was also increased
in some attempts. As the faster diffusion of v is responsible for confinement of u
(section 2.2.2), it was hypothesised that a larger diffusion within a sub-region might
result in u being more easily confined to that region. Overall, all the attempts of
changing a and d within the Turing space for a small circular sub-region yielded,
for the five hole domain2, similar results to the case where the initial steady state
was controlled (Fig. 4.3b). That is, the same spatial patterns are created in each
run, but the final pole appears at a small distance away from the region with, in
this case, a larger a and d value. It should be noted that the b-parameter was not
changed in these attempts, as the shape of the Turing space (Fig. 2.3) makes it
unfeasible to change b if a is changed.
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Figure 4.4: The u value for five, seven and 20 holes for Gierer-Meinhardt model at
τ = 2.0 when the parameters have values outside the Turing space in a subdomain
(black circle). The data is generated from four simulations with different random
perturbations of the initial steady state over the entire domain.

2These computationally demanding approaches were only attempted on the five holes domain,
in order to allow for more parameter combinations to be attempted.
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Considering that changing parameters within the Turing space in a sub-region failed
to control the pole formation, it was attempted to instead use parameters outside
of the Turing space. The feasibility of this approach has been suggested in the
litterature, where in the one dimensional case poles have been spatially confined
using parameters outside the Turing space [10]. For the Gierer-Meinhardt model,
a was increased and b was decreased outside of the Turing space. The motivation
for also changing b, which controls the degradation of u, is the same as for changing
a; if more u is produced in a region the chance of a pattern being confined in that
region should increase. For the Schnakenberg model similar changes were applied,
increasing a and decreasing b. The motivation for decreasing b, which controls
constant production of v, is that in the Schnakenberg model an increase in u and a
decrease in v are both responsible for creating the pole (section 2.2.2).
For the Gierer-Meinhardt model changing a and b outside of the Turing space re-
sulted in the pole being confined within the desired sub-region for each simulation
on the five holes domain (Fig. 4.4a). To ensure that this was not due to the geom-
etry of the domain, the analysis was also performed on a domain with seven and 20
holes. It can be observed that changing the domain did not have any effect on the
confinement of the pole to the desired region (Fig. 4.4b and 4.4c). Changing a and
b outside the Turing space for Schnakenberg model yielded similar result (Fig. C.6).
That is, the pole is centred in the region with different parameters. A difference
however, is that the pole of the Schnakenberg model occupies a larger surface area,
resulting in the pole not being solely confined to the sub-region. Overall, the result
suggests that changing parameters outside the Turing space in a sub-region can be
an efficient method for spatially confining the centre of a pole to a certain a region.
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In this thesis, the impact of holes (Fig. 1.1c) on pattern formation was examined for
the Gierer Meinhardt model (2.6), and the Schnakenberg model (2.8). Furthermore,
approaches for spatially confining poles (regions of high concentration) to a specific
region were investigated.
For both models, the presence of small densely packed holes sometimes resulted in
the creation of poles with higher concentration (Fig. 4.1). Furthermore, for the
five holes domain and especially for the 20 holes domain, poles had a tendency
to be created close to, or directly in, the region dense with holes (Fig. 4.2 and
C.3). This localisation of the poles might be due to the self-activating component
u, especially in the case with many holes, more easily starting to accumulate in the
diffusion-restricted region between holes compared to the rest of the domain. In
addition, an accumulation in a diffusion restricted region might explain the faster
pole creation time and higher pole-concentration for the Gierer-Meinhardt model,
since more u is available in a small region for boosting the self-enhancement. Why
the pattern creation time did not also decrease for the Schnakenberg model is not
known, but it might be due that in the Schnakenberg model u inhabits its activator
v (section 2.2.2). Consequently, although more u might be available in small region
to sometimes yield a higher pole concentration, the dependency on v slows down
the pole creation time. However, it should be noted that this is only speculations
based on the result in section 4.1.
Changing parameter values outside the Turing space in a sub-region proved to be the
most efficient method for spatially confining poles in both models (Fig. 4.4 and C.6).
Although not as successful, disturbing the steady state in a sub-region, or changing
the parameters within the Turing space in a sub-region, proved able to confine poles
close to that sub-region. Overall, this suggests that different parameters in a sub-
region, or a controlled disturbance of the steady state, might be the explanation
behind a scenario where a pole always is formed in, or close to, a specific region.
Though successful, it should be noted that the action of changing parameters, or
controlling the initial disturbance, in a sub-region for a model poses a new question.
That is, how did the parameters achieve a different value in a sub-region, or why is
the steady state disturbed differently in a sub-region? If these questions cannot be
answered, changing the parameters or controlling the initial disturbance will result
in a model where the underlying model assumptions cannot be properly motivated.
Although attempts at controlling pole formation worked relatively well, it should
be noted that only two models were investigated. Consequently, as future work it
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5. Discussion

would be relevant to investigate if the approaches outlined in section 4.2 and 4.3
work for a broader class of RD-models, like the Thomas model [4], and/or the Gray-
Scott model [18]. Furthermore, as some real-life pattern materialise in systems that
are three dimensional, it is of relevance to investigate the impact of holes, and if
pole formation can be controlled, for a three dimensional domain. In particular,
as the polarisation site in S. cerevisiae appear close to holes (budding scars) [9],
a spherical surface-bulk RD-system [19], could be of extra interest to investigate.
Lastly it might, for both a two and three dimensional domain, be of relevance to
look into other hole structures, as small densely packed circular holes probably not
are the only holes to appear in biological systems.
If more simulations for a different model or domain are to be carried out, the runtime
of the PDE-solver should be improved. Currently, it takes relatively long time to
solve the PDE-system (12-20 minutes), and as several simulations are required to
understand the general impact of holes on a model or domain, the overall runtime
becomes substantial (chapter 3). An improvement in runtime could be achieved by
using an inhomogeneous grid with non-equidistant nodes. Currently the mesh is
very fine (lc = 0.04) over the entire domain, this is in order to control the numerical
error in the regions between the holes. It is likely that a courser grid suffices outside
the dense hole region, resulting in fewer nodes and thus a faster runtime. A mesh
with varying mesh-size is to be especially preferred if a three dimensional domain
with holes is considered, as the number of nodes in a mesh increases drastically with
an extra dimension.
Besides mesh density, an adaptive time-steeping procedure could improve the run
time. Currently, the time-step size ∆t is kept at a small constant value in order
to control the numerical error, however it is questionable if small time-steps are
required at each time point. It is probable that runtime could be improved by an
adaptive solver that takes large time steps in regions where a lot changes in the
system, but small time-steps when the system barely changes. Besides improving
runtime, such an adaptive step-length would remove the need of fine-tuning the
step-length for different models or domains. To obtain a suitable adaptive step-
length, the errors (residuals) obtained from solving the linear system that Eq. (3.5)
gives rise to could be used. Overall, if the mesh is made adaptive and an adaptive
time-stepping algorithm is implemented, it becomes more feasible to investigate the
impact of holes on other models and/or more realistic domains.
To conclude, the result suggests that small densely packed holes have an effect on
pattern formation (Fig. 4.2 and C.3). That is, on a domain with many holes, poles
have a tendency to accumulate close to, or directly in, the region dense in holes.
The exact reason behind this behaviour is not known, but it might be due to u being
confined to the diffusion-restricted region between holes. Regarding controlling pole
formation, changing parameters outside the Turing space in a sub-region proved
efficient for spatially confining poles to a specific region (Fig. 4.4 and C.6). Although
potentially useful for recreating observed patterns, it is important to note that this
method raises a new question; why are the parameter values different in a sub-
region? Lastly, it should be noted that this thesis also has demonstrated FEM as a
useful method for solving RD-systems on domains with complex geometries.
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A
Solution for a linear ODE-system

Assume a linear ODE-system on the form:

d(δx)
dt = J∗δx (A.1)

Where J∗ is the Jacobian matrix evaluated at the steady state. The general solution
to the system in Eq. (A.1) is [20]:

δx(t) = δx0 exp(tJ∗) (A.2)

Where the matrix exponential is defined as:

exp(tJ∗) =
∞∑
j=0

tj

j! (J
∗)j (A.3)

Evaluating the matrix exponential in Eq. (A.3) is generally a non trivial task.
However there are special cases where it can easily be evaluated. The one that
will be discussed here, and also the one that holds for J∗ in section 2.2, is when
J∗ is diagonalizable. This means that J∗ has n independent eigenvectors which
results in the matrix being expressible as J∗ = UDU−1, where the columns of U are
linearly independent eigenvectors and D is a diagonal matrix with the corresponding
eigenvalues. Given this, the matrix exponential in Eq. (A.3) can be evaluated by
first noting that:

(J∗)j = (UDU−1)j = (UDU−1)(UDU−1) · · · (UDU−1) = UDjU−1 (A.4)

Inserting this into the matrix exponential results in:

exp(tJ∗) =
∞∑
j=0

U
Djtj

j! U−1 = Uexp(Dt)U−1 (A.5)

As D is a diagonal matrix applying the matrix exponential simply results in:
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A. Solution for a linear ODE-system

exp(Dt) =


eλ1t 0 · · · 0
0 eλ2t · · · 0
... ... . . . ...
0 0 · · · eλnt

 (A.6)

So overall the general solution becomes:

δx(t) = Uexp(Dt)U−1x0 =
n∑
k=1

ckukeλkt (A.7)

Where λk is the eigenvalues of the matrix J∗ and uk are the eigenvectors.
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B
Parameter values for plots

The parameter values used for each plot in this report are presented in Tab. B.1.

Table B.1: Parameter values used for each plot presented in this report.

Figure Parameters big domain Parameters subdomain
a b γ d a b γ d

1.1a 0.2 2.0 10.0 100.0 - - - -
1.1b 0.5 2.0 20.0 50.0 - - - -
2.2a 0.5 2.0 20.0 50.0 - - - -
2.2b 0.5 2.0 5.0 200.0 - - - -

4.2(a-c) 0.5 2.0 20.0 50.0 - - - -
4.3(a-c) 0.5 2.0 20.0 50.0 - - - -
4.4(a-c) 0.5 2.0 20.0 50.0 2.0 0.5 20.0 50.0
C.3(a-c) 0.2 2.0 10.0 100.0 - - - -

C.4 0.2 2.0 10.0 100.0 - - - -
C.6 0.2 2.0 10.0 100.0 2.5 0.2 10.0 100.0
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C
Supplementary figures

C.1 Finite-element meshes
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Figure C.1: The finite element meshes. Each mesh has a lc = 0.08 for illustrative
purposes and only the rectangular base-domain meshes are displayed, as the circular
base-domain have the exact same hole-structure.
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C. Supplementary figures

C.2 Effect of holes

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0 2 4 6
u1

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0.0 2.5 5.0 7.5
u1

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0.0 2.5 5.0 7.5 10.0
u1

−2

−1

0

1

2

−2 −1 0 1 2

x

y

0 2 4 6 8
u1

Figure C.2: The u value for 20 holes for the Gierer-Meinhardt model at τ = 2.0.
The data is generated from four simulations with different random perturbations
compared to those in Fig. 4.2c of the initial steady state.
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Figure C.3: The u value for zero, five and 20 holes for the Schnakenberg model
at τ = 7.5. The data is generated from four simulations with different random
perturbations of the initial steady state.
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C.3 Effect of controlling initial steady state
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Figure C.4: The u value for zero, five and 20 holes for the Schnakenberg model at
τ = 7.5 when the steady state was disturbed at a specific region (black circle). The
data is generated from four different simulations where the steady state only was
perturbed randomly within the black circle.

Figure C.5: Controlling the initial steady state with a fine mesh (lc = 0.02) for
the Gierer-Meinhardt model. The data is generated the same way as in Fig. 4.3.
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C. Supplementary figures

C.4 Effect of different parameters in subregion
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Figure C.6: The u value for five, seven and 20 holes for the Schnakenberg model
at τ = 7.5 when the parameters have values outside the Turing-space in a subdomain
(black circle). The data is generated from four simulations with different random
perturbations of the initial steady state over the entire domain.
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