

Vehicle Control Unit Security using Open
Source AUTOSAR
Master’s Thesis in Software Engineering

Anton Bretting & Mei Ha

Department of Computer Science and Engineering
Software Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Vehicle Control Unit Security using Open Source AUTOSAR

ANTON BRETTING
MEI HA

c© ANTON BRETTING, June 2015
c© MEI HA, June 2015

Examiner: Matthias Tichy
Supervisor: Riccardo Scandariato

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2015

Abstract

Security threats against software in cars could affect the safety of the vehicle as the num-
bers of computers and advanced functionality in cars increase. This thesis report presents
a case study where two variants of Microsoft’s threat modeling technique STRIDE are
applied to a limited part of the AUTOSAR platform. The two variants are performed
separately and the outcomes are compared to evaluate which STRIDE variant performs
better in an automotive environment by analyzing the false positives and true positives
found. It was found that STRIDE-per-element was a better STRIDE variant for the pur-
pose of the automotive domain. Moreover, the case study found that the SecOC module
mitigates most of the spoofing and tampering threats, and that the biggest group of
remaining threats is denial of service or flooding of the CAN network.

Keywords. AUTOSAR, Threat modeling, STRIDE, Security

Acknowledgements

We would like to thank our university supervisor Riccardo Scandariato for the valuable
feedback. Thanks Arccore for giving us the opportunity of doing this thesis and special
thanks to our supervisor Karl Erlandsson at Arccore, and other people in Arccore for
making the thesis possible.

Anton Bretting, Mei Ha, Gothenburg 4/6/15

Contents

1 Introduction 1
1.1 Delimitations . 2
1.2 Outline of the thesis . 2

2 Background 3
2.1 AUTOSAR . 3

2.1.1 Architecture . 3
2.1.2 Secure Onboard Communication 5

2.2 Threat modeling . 6
2.3 Threat modeling with STRIDE . 8

2.3.1 STRIDE-per-Element . 12
2.3.2 STRIDE-per-Interaction . 14

3 Related Work 16
3.1 Other threat modeling techniques . 16

3.1.1 Abuse cases . 16
3.1.2 Misuse cases . 17
3.1.3 Attack trees . 17
3.1.4 Goal-oriented threat modeling . 17

3.2 Risk assessment . 17
3.2.1 Trike . 18
3.2.2 CORAS . 18

3.3 Security & safety in automotive . 19

4 Research Approach 20
4.1 Research Purpose . 20
4.2 Research Questions . 20
4.3 Research Methodology . 21
4.4 Validity Threats . 21

4.4.1 External validity . 21

i

CONTENTS

4.4.2 Internal validity . 22
4.4.3 Construct validity . 22
4.4.4 Reliability . 22

5 Implementation 23
5.1 Overview . 23
5.2 Crypto Abstraction Layer (CAL) . 23

5.2.1 Message Authentication Code (MAC) 24
5.3 Secure Onboard Communication (SecOC) 25
5.4 Testing . 26

5.4.1 EmbUnit Tests . 26
5.4.2 Static code analysis . 27

6 Creation of the DFD model 28
6.1 Threat modeling process . 28
6.2 Define use Scenarios . 28

6.2.1 Verification successful . 29
6.2.2 Verification failed . 29

6.3 Gather a list of external dependencies . 31
6.4 Define security assumptions . 32
6.5 Create external security notes . 32
6.6 Create one or more DFD of the platform being modeled 32

6.6.1 Overview . 32
6.6.2 Application . 32
6.6.3 External user . 34
6.6.4 RTE . 34
6.6.5 COM . 34
6.6.6 PduR . 35
6.6.7 SecOC . 35
6.6.8 CanIf . 35
6.6.9 CAL . 37
6.6.10 CAN . 37

6.7 Delimitations . 39

7 Case Study 40
7.1 STRIDE-per-Element . 40
7.2 STRIDE-per-Interaction . 40
7.3 Comparison of the STRIDE variants . 41

7.3.1 Quantitative comparison . 41
7.3.2 Patterns . 41

ii

CONTENTS

8 Results 42
8.1 STRIDE comparison . 42

8.1.1 Quantitative comparison . 42
8.1.2 Patterns . 45
8.1.3 STRIDE evaluation . 45

8.2 Which variant of STRIDE (STRIDE-per-Element vs STRIDE-per-Interaction)
yields better results with regard to threat modeling? 47

8.3 What are the major security threats that SecOC mitigates? 47
8.3.1 Threats remaining . 48

9 Discussion 49
9.1 Implementation . 49

9.1.1 Problems with SecOC specification 49
9.2 DFD Creation . 49

9.2.1 Modeling . 49
9.3 Threats elicitation . 50

9.3.1 STRIDE variants challenges . 50
9.3.2 Threat modeling tools . 51

9.4 Future work . 52

Bibliography 55

A STRIDE-per-Element threats 56

B STRIDE-per-Interaction threats 76

iii

List of Figures

2.1 Overview of AUTOSAR Software Layers [4]. 4
2.2 Overview of BSW sub layers [4]. 4
2.3 Integration of the SecOC module with the rest of the AUTOSAR com-

munication stack [5]. 6
2.4 Security concepts and relationships [9]. 7
2.5 Example of an simple DFD model. 10

5.1 Example of how the MAC can be used. 24
5.2 The structure of a secured PDU [5]. 25
5.3 Message Authentication and freshness verification [5]. 26

6.1 Scenario when a packet is authenticated. 30
6.2 Scenario when a packet fails to be authenticated. 31
6.3 Overview of the system. 33
6.4 Detailed model of RTE module. 34
6.5 Detailed model of COM module. 35
6.6 Detailed model of PduR module. 36
6.7 Detailed model of SecOC module. 36
6.8 Detailed model of CanIf module. 37
6.9 Detailed model of CAL module. 38
6.10 Detailed model of CAN module. 38

8.1 Comparison of the distribution of precision across the STRIDE categories. 43
8.2 Comparison of True positives between STRIDE-per-element and STRIDE-

per-interaction. 44
8.3 Comparison of false positives between STRIDE-per-element and STRIDE-

per-interaction. 45

9.1 Reduced threat model. 50

iv

List of Tables

2.1 The STRIDE Threat types [32]. 9
2.2 Threat-Model Quality Guidelines [13]. 11
2.3 Mapping of STRIDE to DFD Element types [13]. 12
2.4 Elements from DFD in Figure 2.5. 13
2.5 Threats to the model in Figure 2.5. 13
2.6 STRIDE-per-Interaction table: Threat Applicability [32]. 14
2.7 STRIDE-per-Interaction (Example) [32]. 15

8.1 Descriptive statistics for STRIDE-per-element. 43
8.2 Descriptive statistics for STRIDE-per-interaction. 43
8.3 Time spent applying the STRIDE variants. 45
8.4 Advantages and disadvantages of the STRIDE variants 46
8.5 Comparison between per-element and per-interaction 47

A.1 Mapping of STRIDE to external entities [13]. 56
A.2 Mapping of STRIDE to processes [13]. 56
A.3 Mapping of STRIDE to data stores [13]. 57
A.4 Mapping of STRIDE to data flows [13]. 58
A.5 Elements with possible Spoofing threats. 59
A.6 Elements with possible Tampering threats. 59
A.7 Elements with possible Repudiation threats. 59
A.8 Elements with possible Information Disclosure threats. 60
A.9 Elements with possible Denial Of Service threats. 60
A.10 Elements with possible Elevation Of Privilege threats. 61
A.11 Spoofing threats against the system. 61
A.12 Tampering threats against the system, Part 1. 62
A.13 Tampering threats against the system, Part 2. 63
A.14 Tampering threats against the system, Part 3. 64
A.15 Tampering threats against the system, Part 4. 65
A.16 Tampering threats against the system, Part 5. 66

v

LIST OF TABLES

A.17 Tampering threats against the system, Part 6. 67
A.18 Repudiation threats against the system. 67
A.19 Information Disclosure threats against the system, Part 1. 68
A.20 Information Disclosure threats against the system, Part 2. 69
A.21 Denial of Service threats against the system, Part 1. 70
A.22 Denial of Service threats against the system, Part 2. 71
A.23 Denial of Service threats against the system, part 3. 72
A.24 Denial of Service threats against the system, Part 4. 73
A.25 Denial of Service threats against the system, part 5. 74
A.26 Denial of Service threats against the system, part 6. 75

B.1 STRIDE-per-Interaction table: Threat Applicability 76
B.2 STRIDE-per-Interaction Threats . 86

vi

Abbreviations

AUTOSAR Automotive Open System Architecture

BSW Basic Software

CAL Crypto Abstraction Layer

CAN Controller Area Network

CANIF CAN Interface

COM Communication

CSM Crypto Service Manager

DFD Data Flow Diagram

E2E End-to-end

ECU Electronic Control Unit

HMAC Hash-based message authentication code

MAC Message Authentication Code

MCU MicroController Unit

NvM Non-volatile Memory

PDU Protocol Data Unit

PduR PDU Router

RTE Runtime Environment

SDL Security Development Lifecycle

SecOC Secure Onboard Communication

vii

LIST OF TABLES

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,
Elevation of privilege

UML Unified Modeling Language

viii

1
Introduction

Safety has traditionally been regarded as one of the most important attributes in the
automotive industry. However, as the number of computers and advanced functionality
in cars increase, new challenges arise. Security threats, e.g. hacker attacks against the
software in cars could potentially affect the safety of the vehicle [17][6]. According to
Xiaoling [39], 60% of the cars worldwide will be connected to the internet by 2017, and
more car manufacturers allow third party developers to develop applications that connect
to the car systems. This opens up the cars to new threats, and the requirements for new
security features increase. The security becomes even more critical in the coming years
when self-driving cars will be introduced to public roads [1].

New devices such as the CANtact make it easier and cheaper to connect to the CAN
network in the car via the OBD-II port, and from there the functionality of the car can
be controlled [8].

The new threats to security and safety have led to an increase in research on software
security in cars. Projects such as EVITA and HEAVENS aim to identify vulnerabilities
in automotive software and to find ways to minimize or eliminate the vulnerabilities
[12][34].

To counter the growing threats against the automotive industry, a well-established
security technique from the IT industry will be evaluated. The technique that will be
used in this study is STRIDE, which is a threat modeling technique developed by Mi-
crosoft. STRIDE stands for Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service, and Elevation of Privilege and was developed to help identify the
different types of attacks against a system [32].

The largest software platform for the automotive industry is Automotive Open Sys-
tem Architecture (AUTOSAR) [2] and the focus of this thesis will therefore be to evaluate
the security of AUTOSAR using STRIDE.

AUTOSAR clearly defines layers to be able to fit into most modern Microcontroller
Units (MCUs) that are controlling the logic within the vehicle Electronic Control Units

1

1.1. DELIMITATIONS CHAPTER 1. INTRODUCTION

(ECUs). The AUTOSAR stack handles important aspects such as communication, di-
agnostics and most of the peripherals. The AUTOSAR Run Time Environment (RTE)
also allows for application software portability and re-use [2]. In the 4.2.1 release, AU-
TOSAR introduced a module called Secure Onboard Communication (SecOC), which is
supposed to add authentication mechanisms to AUTOSAR to counter the new threats.

The objective of the thesis is to compare two variants of STRIDE, namely STRIDE-
per-element and STRIDE-per-interaction to see which one yields the best result. The
comparison will be done by applying the STRIDE variants to AUTOSAR.

1.1 Delimitations

This thesis is delimited to only modelling a part of the platform of the AUTOSAR with
a reduced level of detail due to limited time. The limited part that will be focused on in
this thesis is shown in Figure 2.3. The AUTOSAR platform will be analyzed with two
variants of STRIDE; other methods of threat analysis will not be explored.

Implementation is a small part of the thesis, therefore only a subset of the CAL and
SecOC modules will be implemented. The focus will be to create a working example to
demonstrate.

1.2 Outline of the thesis

This thesis report is structured as follows: First, the background to the thesis will be
introduced, whereafter Chapter 3 discusses the related work. After that Chapter 4 will
introduce the research approach used in the thesis. Chapter 5 will describe the software
implementation. Then Chapter 6 will describe the process of creating the threat model.
The case study will be presented in Chapter 7. Chapter 8 will present the result of the
study. Lastly, Chapter 9 consists of discussion concerning the result and future work.

2

2
Background

This chapter gives a background to the thesis. First, AUTOSAR is introduced and
an overall description about the AUTOSAR architecture. Second, threat modeling is
described followed by STRIDE and last, a detailed description about two variants of
STRIDE: STRIDE-per-element and STRIDE-per-interaction.

2.1 AUTOSAR

AUTOSAR is an open software architecture for the automotive industry. It was created
2003 by a consortium of automotive manufacturers and suppliers. The purpose of AU-
TOSAR is to move the focus from a component-driven development process to a more
function-driven development process. The architecture is designed to allow manufactur-
ers to seamlessly move functionality between different ECUs and to reuse functionality,
in order to reduce the cost of development and to make it easier to perform software
updates over the vehicle lifetime [2]. Without AUTOSAR the software of every ECU has
to be tailored for the function that it is supposed to run, which makes it very time con-
suming to move functions from one ECU to another. This time is significantly reduced
with the introduction of AUTOSAR. The applications in AUTOSAR are completely
hardware independent [19]. Almost 80% of the car production in the world comes from
AUTOSAR partners [2].

2.1.1 Architecture

As shown in Figure 2.1 the AUTOSAR Platform uses a three layered software architec-
ture.

The top layer is the application layer. This layer contains the actual applications
that will run on the ECU, for example engine control or cruise control software. The ap-
plication layer is the only layer where the functionality is not specified by the AUTOSAR
standard. The second layer is the Run time Environment (RTE). This is an abstraction

3

2.1. AUTOSAR CHAPTER 2. BACKGROUND

layer between the AUTOSAR operating system in the Basic Software Layer and the
applications in the application layer. The last layer is the Basic Software (BSW), which
contains the AUTOSAR operating system. This includes diagnostic, memory, commu-
nication and system services. The three software layers run on a microcontroller as seen
in Figure 2.1. The BSW layer is further divided into four layers [4]. The layering of
AUTOSAR and the sub layers of the BSW can be seen in Figure 2.2.

Figure 2.1: Overview of AUTOSAR Software Layers [4].

Figure 2.2: Overview of BSW sub layers [4].

Application Layer

The application layer consists of AUTOSAR software components which are running
on the ECUs, e.g. the ABS functionality. The AUTOSAR applications are hardware

4

2.1. AUTOSAR CHAPTER 2. BACKGROUND

independent and can be moved between different ECUs without making changes to the
software[2].

Runtime Environment (RTE)

The RTE provides the AUTOSAR software components in the application layer to in-
teract with the basic software modules. The RTE is ECU-specific since it depends on
the specifications of the ECU to access the correct communication channels[2].

Basic Software (BSW)

The BSW layer provides system services to the application layer so that the applications
can perform their functionality. The BSW does not perform any functional jobs itself.

As seen in Figure 2.2, the four sub layers of the basic software are the Microcontroller
Abstraction Layer, the ECU Abstraction Layer, the Service Layer, and the Complex
drivers.

The Microcontroller Abstraction Layer (MCAL) is a microcontroller specific layer
that provides the rest of the BSW with a standardized interface to access the microcon-
troller [4].

The ECU Abstraction layer provides the BSW with a microcontroller and hardware
independent interface to peripherals and devices.

The Service layer is the highest layer in the BSW and provides basic services for
applications, RTE and BSW modules. The Service layer also offers [2]:

• Operating system functionality

• Diagnostic protocols and NVRAM management

• Cryptographic services

• Vehicle network communication (e.g. CAN, LIN, Flexray..)

The services provided by the service layer are mostly microcontroller and hardware
independent [4].

The last layer is the Complex Driver layer, which spans from the hardware to the
RTE. It provides the possibility to integrate drivers for special purpose devices, such
as devices with very strict timing constraints or devices and other drivers that are not
specified within AUTOSAR [2].

2.1.2 Secure Onboard Communication

In release 4.2, a module called Secure Onboard Communication (SecOC) was specified by
AUTOSAR [5]. This module was added to increase the security by adding authentication
mechanisms for critical data. The module was designed to be resource efficient and to
seamlessly integrate with the current communication systems in AUTOSAR.

5

2.2. THREAT MODELING CHAPTER 2. BACKGROUND

As shown in Figure 2.3, SecOC uses either the Crypto Service Manager(CSM) or the
Crypto Abstraction Layer(CAL) to provide cryptographic functions. The SecOC module
works by using either Message Authentication Codes (MAC) or digital signatures of the
messages to ensure that the received data is sent by the right ECU and contains the
correct data [5].

Figure 2.3 also shows how the SecOC module is connected to the AUTOSAR com-
munication systems. The SecOC module is located in the services layer. It connects
directly to the Protocol Data Unit (PDU) Router (PduR) to handle the security infor-
mation of the PDUs. When the PduR receives a message that is configured for SecOC,
the message is routed to the SecOC module. SecOC then processes the message and
hands it back to the PduR for further routing to the final destination [5].

Figure 2.3: Integration of the SecOC module with the rest of the AUTOSAR communica-
tion stack [5].

2.2 Threat modeling

As defined in ISO/IEC 27000:2014 [15] and shown in Figure 2.4, a threat is a potential
cause of an unwanted incident, which may result in harm to a system or organization.

One method to help with finding and evaluating threats to a system is threat model-
ing. Threat modeling has many application areas. It can be used as a requirement elic-
itation technique, to derive security test cases or as a design analysis technique [33][25].
This report will focus on the use of threat modeling as a design analysis technique.

Threat modeling can have different focus and different starting points. The three
main approaches according to Shostack [32] are attacker-centric, software-centric and
asset-centric.

6

2.2. THREAT MODELING CHAPTER 2. BACKGROUND

Figure 2.4: Security concepts and relationships [9].

In the Attacker-centric approach the starting point is the attacker; the evaluation
starts with the goals, the skills and the motivation of the attacker, and tries to find ways
the attacker can succeed with the goals [32]. The Attacker-centric approach often uses
techniques such as attack trees or attack nets.

The software-centric approach starts from the design of the system, then steps
through the system model and looks for threats against each element of the model.
This approach often uses data-flow diagrams and use case diagrams. One example of
this approach is STRIDE [32].

The Asset-centric approach starts from the assets of the system, e.g. confidential
business information or credit card numbers, and examines how an attacker can threaten
them [32]. This is often realized by creating attack trees or attack graphs. The Trike
framework has support for the Asset-centric approach in the form of attack trees [30].

A following step to the threat modeling is to evaluate the risk that the threat can
cause to the system, the probability of the occurrence of the threat have to be assessed, as
well as the severity of the harm the threat can cause to the system [14]. The intentions,
means and skill level of the attacker can be used to help with the assessment of the
probability of a threat occurring. The attacker, or threat agent, can be defined as any
type of individual, group or entity aiming to mount an attack against the system or
organization [9].

7

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

2.3 Threat modeling with STRIDE

STRIDE is a threat modeling technique developed by Microsoft. It was first proposed
in ”The Threats to Our Products (1999)” by Kohnfelder and Garg [16], and was later
released as a part of the Microsoft Security Development Lifecycle (SDL). STRIDE
is named after the six categories that the threats are divided into, namely Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of
Privilege [13][32]. Table 2.1 contains the definitions of the STRIDE threat categories
and what property of the system that the threats violate.

The STRIDE Threat-Modeling Process consists of several high-level steps for creating
a threat model. These steps do not require much security expertise. By following
the threat-modelling process steps, a systematic review of the system is performed and
appropriate mitigations can be determined. The steps are as follows: [13]

1. Define use scenarios.

The team determines the key scenarios which are within the scope of the specific
project.

2. Gather a list of external dependencies.

The application might use a database or server, which makes it important to list
all other code the application depends on.

3. Define security assumptions.

Making inaccurate security assumptions would incorrectly define the application
as insecure, which makes it even more critical to define true security assumptions.

4. Create external security notes.

External security notes would help users or other application designers to under-
stand the security boundaries and how the security of the application could be
maintained by using the application.

5. Create one or more Data Flow Diagrams (DFD) of the application being
modeled.

DFDs are created for the application, and it is important to create a correct DFD
already in the beginning, otherwise the rest of the threat modeling process will be
wrong.

6. Determine threat types.

Microsoft uses STRIDE to determine threat types. The different types are de-
scribed in Table 2.1.

7. Identify the threats to the system.

The DFD elements are then listed, and depending on the STRIDE variant the
different STRIDE threat types are applied to the elements.

8

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

8. Determine risk.

The risk for each threat found in the previous step is determined by using numeric
calculations and then prioritized from low risk to high risk.

9. Plan mitigations.

There are some mitigation strategies that Howard and Lepner [13] provide. The
first one is do nothing, which could be applied for low-risk threats. The second
one is remove the feature, which would reduce the risk to zero. The third one is
about turning off the feature, which should only be used to reduce the risk further.
Warn the user is the fourth strategy, since some non-technical users make poor
trust decisions. Lastly, countering threats with techniques is the most common
strategy. Techniques such as authentication could be used to solve specific issues.

Table 2.1: The STRIDE Threat types [32].

Threat type Property
violated

Threat
definition

Spoofing Authentication Pretending to be something or
someone other than yourself.

Tampering Integrity Modifying something on disk,
on a network, or in memory.

Repudiation Non-Repudiation Claiming that you didn’t do
something, or were not re-
sponsible. Repudiation can be
honest or false, and the key
question for system designers
is, what evidence do you have?

Information
disclosure

Confidentiality Providing information to
someone not authorized to
see it.

Denial of
Service

Availability Absorbing resources needed to
provide service.

Elevation of
Privilege

Authorization Allowing someone to do some-
thing they’re not authorized
to do.

When modelling the system, modeling smaller functional entities is often more ef-
ficient than modeling the entire software. A person of the design group, such as the
architect, program manager or analyst usually owns the threat-model process. So, the
person with the most security knowledge is the most appropriate for having the role of

9

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

building the threat model, while other engineers provide important design information
[13].

STRIDE uses data flow diagrams (DFD) to model the system. A DFD contains
four types of elements. The elements are External entities, Data flows, Data stores, and
Processes. When the DFD is used for threat modeling, there is one more element to
keep track of, which is the trust boundary. The trust boundary represents data moving
from a high trust to low trust, or vice versa. The different elements are susceptible to
different threats, so not all categories of STRIDE can be applied to them [13]. Figure
2.5 shows a simple example of a DFD model of a web server that receives commands
from a user, gets data from a database and sends a response to the user. The dotted
red line in the figure is the trust boundary, and denotes when the data leaves the high
trust of the server to the low trust of the user. The DFD diagrams are then used to
either by hand or with the help of a tool evaluate the threats to the system. This part
is described further in Chapter 2.3.1 and Chapter 2.3.2.

Figure 2.5: Example of an simple DFD model.

Howard and Lepner [13] describe that it is hard to determine whether the threat
model is good, because it is rather subjective what is a good model. To counter this,
Microsoft started using the metric Threat-Model Quality Guidelines to be able to sepa-
rate the good from the not-so-good threat models in a more objective way [13]. As seen
in Table 2.2, the quality guidelines give a clear way to determine the quality of a threat
model. At a minimum all threat models should be rated ”OK” [13].

Shostack [32] describes two ways to judge if the threat modeling process is done. The
first and easiest way is to see if a threat of each STRIDE category has been found. The
second way is to see if a threat for each element in the DFD has been found. However,
having met these criteria are not a guarantee that all threats to the model have been
found. So, if these criteria are not met, the threat modeling process is not done [32].

The outcome of the threat modeling process is a set of documents that consists of
background information on the application, data flow diagrams, which are used to define

10

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

Table 2.2: Threat-Model Quality Guidelines [13].

Rating Comments

No threat model No threat model is in place. This is not acceptable
because it indicates that no threats are being consid-
ered.

Not acceptable Threat model is out of date if:
• Current design is significantly different from

model.
• Data in model is more than 12months old.

OK
• A data flow diagram or a list of the following

exists:
– Assets (processes, data stores, data flows,

external entities)
– Users
– Trust boundaries

• At least one threat is detailed for each software
asset.
• Model is current.

Good
• Threat model meets all definitions of ”OK”

threat models.
• Anonymous, authenticated, local, and remote

users are all shown on the DFD.
• All S, T, I, and E threats have been identified

and classified as either mitigated or accepted.

Excellent
• Threat model meets all definitions of ”Good”

threat models.
• All STRIDE threats have been identified and

have mitigations, external security notes, or de-
pendencies acknowledged.
• Mitigations have been identified for each threat.
• External security notes include a plan to create

customer-facing documents that explain how to
use the technology safely and what the trade-offs
are.

11

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

the high-level application model, but also a list of assets and threats that are ranked by
risk. In many cases there is also a list of mitigations to the found threats [13].

2.3.1 STRIDE-per-Element

The first version of STRIDE that Microsoft released was the STRIDE-per-Element vari-
ant. In this variant, every element in the DFD is evaluated for threats.

Table 2.3 shows a mapping between the different elements of the DFD and the differ-
ent categories in STRIDE. It can be seen that not all types of elements are susceptible
to every type of threats.

Table 2.3: Mapping of STRIDE to DFD Element types [13].

DFD Element Type S T R I D E

External Entity X X

Data Flow X X X

Data Store X X1 X X

Process X X X X X X

1 If the Data Store contains logging or audit data,
repudiation is a potential threat, because if the
data is manipulated, the attacker could cover his
or her tracks [13].

After the DFD model of the system has been created, a list of all the elements in the
diagram has to be created. Table 2.4 show the list of elements created from the DFD in
Figure 2.5.

Once the list of DFD elements is done, STRIDE will be applied to each element in
the list. However, not all types of threats have to be applied to all types of elements. To
help with this, Table 2.3 can be used. In Table 2.5, the result of the STRIDE-per-element
analysis can be seen. The threats have been grouped after the STRIDE categories. After
STRIDE has been applied to the list of elements, it is time to calculate the risk attached
to each threat.

The advantage of STRIDE-per-element is that it is prescriptive; it helps to identify
what to look for without having a checklist. When STRIDE-per-element is used by an
experienced user, it can be useful for finding new types of weaknesses in components,
but can also find many common issues even though novices use it [32].

One weakness of STRIDE-per-element is that the same issue shows up in in several
places in a model, for example if several elements are a part of the same attack. Another
weakness is that STRIDE-to-DFD mapping might be too general and not represent the
issues in the specific project [32].

12

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

Table 2.4: Elements from DFD in Figure 2.5.

DFD Element Type DFD Item Numbers

External Entity User (1.0)

Data Flow User command & response (1.0 Ö 2.0)1

Web configuration & results (2.0 Ö 3.0)1

Data Store Data (3.0)

Process My Process (2.0)

1 To reduce the number of entities in the list, the request and re-
sponse have been combined. This can be done since the Data
Flows is between the same elements and cross the same trust
boundaries.

Table 2.5: Threats to the model in Figure 2.5.

Threat
Type(STRIDE)

DFD Item Numbers

Spoofing External entities: (1.0)

Processes: (2.0)

Tampering Processes: (2.0)

Data Stores: (3.0)

Data Flows: (1.0 Ö 2.0), (2.0 Ö 3.0)

Repudiation External entities: (1.0)

Processes: (2.0)

Data Stores: (3.0)

Information disclosure Processes: (2.0)

Data Stores: (3.0)

Data Flows: (1.0 Ö 2.0), (2.0 Ö 3.0)

DoS Processes: (2.0)

Data Stores: (3.0)

Data Flows: (1.0 Ö 2.0), (2.0 Ö 3.0)

EoP Processes: (2.0)

13

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

2.3.2 STRIDE-per-Interaction

The STRIDE-per-interaction approach was developed by Larry Osterman and Douglas
MacIver. The meaning of this approach is that threat enumeration consider tuples
such as origin, destination, interaction and the threats are enumerated against them.
This approach had another goal during its development, that is to reduce the number
of things that a modeler would have to consider [32]. However, according to Shostack
[32], STRIDE-per-element and STRIDE-per-interaction are expected to lead to the same
number of threats, but according to Shostack [32], the threats may be easier to under-
stand with the STRIDE-per-interaction approach.

The STRIDE threats that are applicable to the interaction are also shown in the
Table 2.6. In Table 2.7, an example of the threats described in plain text for each threat
category is shown.

The difference between the two STRIDE variants are that the STRIDE-per-interaction
approach is too complex without a reference chart handy, especially compared to STRIDE-
per-element where the chart is easy enough to memorize and the approach, easy for
beginners to understand [32].

Table 2.6: STRIDE-per-Interaction table: Threat Applicability [32].

ELEMENT INTERACTION S T R I D E

1 Process Process has outbound
data flow to data store

X X

2 Data Flow
(commands/responses)

Crosses machine bound-
ary

X X X

3 Data Store
(database)

Process has outbound
data flow to data store

X X X X

4 External Interactor
(browser)

External interactor
passes input to process.

X X X

14

2.3. THREAT MODELING WITH STRIDE CHAPTER 2. BACKGROUND

Table 2.7: STRIDE-per-Interaction (Example) [32].

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

1
P

ro
ce

ss
P

ro
ce

ss
h
a
s

ou
t-

b
o
u
n
d

d
at

a
fl
ow

to
d
at

a
st

o
re

”D
a
ta

b
as

e”
is sp

o
of

ed
,

a
n
d

C
o
n
to

so
w

ri
te

s
to

th
e

w
ro

n
g

p
la

ce
.

P
2:

C
on

to
so

w
ri

te
s

in
fo

rm
a-

ti
o
n

in
”d

at
ab

as
e

w
h
ic

h
sh

ou
ld

n
o
t

b
e

in
”d

at
ab

as
e”

2
D

at
a

F
lo

w
(c

o
m

m
a
n
d
s/

re
sp

on
se

s)

C
ro

ss
es

m
a
ch

in
e

b
o
u
n
d
ar

y
D

at
a

fl
ow

is
m

o
d
i-

fi
ed

b
y

an
at

ta
ck

er
.

T
h
e

co
n
-

te
n
ts

of
th

e
d
at

a
fl
ow

ar
e

sn
iff

ed
on

th
e

w
ir

e

T
h
e

d
at

a
fl
ow

is
in

-
te

rr
u
p
te

d
b
y

an
ex

te
rn

al
en

ti
ty

(e
.g

.
m

es
si

n
g

w
it

h
T

C
P

se
q
u
en

ce
n
u
m

b
er

s.
)

3
D

at
a

S
to

re
(d

a
ta

b
a
se

)
P

ro
ce

ss
h
a
s

ou
t-

b
o
u
n
d

d
at

a
fl
ow

to
d
at

a
st

o
re

D
at

ab
as

e
is

co
r-

ru
p
te

d
.

C
on

to
so

cl
ai

m
s

n
ot

to
h
av

e
re

ad
fr

om
”d

at
ab

as
e”

D
at

ab
as

e
re

ve
al

s
in

fo
rm

a-
ti

o
n
.

D
at

ab
as

e
ca

n
n
ot

b
e

w
ri

tt
en

to
.

4
E

x
te

rn
al

In
te

ra
ct

o
r

(b
ro

w
se

r)

E
x
te

rn
al

in
te

ra
c-

to
r

p
as

se
s

in
p
u
t

to
p
ro

ce
ss

.

C
o
n
to

so
is

co
n
-

fu
se

d
a
b

o
u
t

th
e

id
en

ti
ty

o
f

th
e

b
ro

w
se

r

C
on

to
so

cl
ai

m
s

n
ot

to
h
av

e
re

ce
iv

ed
th

e
d
at

a

P
2:

p
ro

-
ce

ss
n
ot

au
th

o
-

ri
ze

d
to

re
ce

iv
e

th
e

d
at

a
(W

e
ca

n
’t

st
op

it
)

15

3
Related Work

This chapter presents literature related to the thesis. First, other threat modeling tech-
niques are presented. Second, risk assessment techniques are described. Last, security
and safety in automotive are presented.

3.1 Other threat modeling techniques

This section describes the different threat modeling techniques such as abuse cases,
misuse cases, attack trees and goal-oriented threat modeling. Descriptions of how to use
the different threat modeling techniques are also included in this section.

3.1.1 Abuse cases

Abuse cases is a form of use cases that are specialized in capturing and analyzing security
requirements for a system [23]. It was designed by John McDermott and Chris Fox in
1999. The technique is focused on how the system can be abused by malicious users. As
stated by McDermott and Fox [23], abuse cases can be useful in requirements elicitation,
design, and testing of systems. It can increase the awareness and understanding of the
different security threats to a system since they can be made simple and abstract enough
for a wide range of users and customers.

An abuse case is a specification of the interactions between a system and one or
more actor where the end result is harmful to the system or one of the actors. They
can be described by the same methods as use cases, use case diagrams and use case
descriptions. Abuse cases use the same symbols as use cases, therefore, normal Unified
Modeling Language (UML) tools can be used to create the diagrams [23].

16

3.2. RISK ASSESSMENT CHAPTER 3. RELATED WORK

3.1.2 Misuse cases

Misuse cases is a description of the malicious behavior of an unwanted user by using
use cases which are helpful to describe the functional requirements of a system [10].
According to Opdahl and Sindre [26], there are a few comparative evaluations of misuse
cases. One of the evaluations is about comparing misuse cases with two other threat
modeling techniques for the same realistic example. Opdahl and Sindre [26] also state
that the misuse cases technique was easy to learn and use, but the produced output
could be hard to analyze afterwards.

3.1.3 Attack trees

Attack trees represent the security of the system being modeled, by using a tree structure
where the goal is the root node where the leaf nodes represent different ways of achieving
that root node goal. According to Schneier [31], the possible attack goals should be
identified in order to create the attack tree, where each goal forms a separate tree even
though they might share nodes and subtrees [31].

In sum, an attack tree is useful for finding threats if the attack tree is relevant to
the system. Once the system is modeled with a DFD or other diagram, an attack tree
is used to analyze it. Eliciting the attacks will require iteration over each node in the
attack tree and consider whether the issue impacts the system [32].

3.1.4 Goal-oriented threat modeling

Goal-oriented threat modeling is a framework where the treat models are obstacle mod-
els, the reason being that the threats are obstacles to security goals. The attackers have
their own anti-goals that need to be satisfied by the intentional threat obstacles [36].
According to Van Lamsweerde et al. [36], an anti-goal is what an attacker may want to
achieve. The goal-oriented threat analysis works as follows: firstly, the initial goals, in
this case anti-goals and classes of attackers should be identified. For each initial anti-goal
and attacker class, an anti-goal refinement/abstraction graph is built to show how the
anti-goals can be satisfied in view of the attacker’s knowledge and capabilities. When
the leaf conditions that meet the attacker’s capabilities are reached, the refinement ter-
minates. Secondly, new security goals are derived as countermeasures to counter the leaf
anti-goals from the threat graphs [36].

3.2 Risk assessment

Risk assessment is used when threats are identified and need to be prioritized. One way
to prioritize threats is to use two factors: damage and likelihood. The overall risk factor
for each threat needs to be calculated, then the threat list will be sorted by decreasing
order of risk. The prioritized threats can then be addressed starting at the top of the
list [25].

17

3.2. RISK ASSESSMENT CHAPTER 3. RELATED WORK

3.2.1 Trike

Saitta et al. [30] describe that Trike is a framework for security auditing through gen-
erations of threat models, which is also associated with a tool that is still under devel-
opment. Threat modeling approached from the Trike perspective is also different from
other threat modeling techniques since it focuses on a defensive perspective instead of
an attackers perspective [30].

When generating a Trike threat model, four things need to be considered:

1. Ensure that the system entails to each asset is acceptable to all stakeholders, with
help from the system stakeholders.

2. Be able to tell whether this has been done

3. Communicate what has been done and its effect to the stakeholders.

4. Reduce the risks to all the stakeholders implied by their actions within their do-
mains by making the stakeholders understand those risks.

According to Saitta et al. [30], much of the work in threat modeling should be au-
tomated and the trike methodology is designed to support automation, which allows
quicker results from less initial information and more complete results with the same
amount of effort, compared to other methodologies.

Trike is a particularly good communication device since all the threats to the system
and the associated risks are put up in a clear and easy way for the stakeholders to
understand without a security background.

3.2.2 CORAS

According to Lund et al. [21], CORAS is a security risk analysis method that consists
of three artifacts which are a language, a tool and a method. Compared to other threat
modeling methods that use different tree based notation for the analysis, CORAS is
according to Lund et al. [21], more general than the tree based notation. The difference
is that tree-based notations focus on more specific and limited parts of the analysis
while the CORAS language is designed to support all phases of analysis process and is
integrated in the risk analysis method [21]. All kind of the tree-based notifications can be
simulated with the CORAS language since CORAS is flexible with respect to the level of
abstraction in the analysis and is used for risk modelling, where simple graphic symbols
and relations between these are used. Since CORAS is a diagrammatic language, the
graphic relations make it easier to read the diagrams. The CORAS tool is a graphical
editor that supports the CORAS language [21]. It can be used for making any kind of
CORAS diagrams.

18

3.3. SECURITY & SAFETY IN AUTOMOTIVE CHAPTER 3. RELATED WORK

3.3 Security & safety in automotive

According to Lemke et al. [20], a requirement such as IT security is necessary for future
automotive applications but also for the cars that exist today which use IT technology.
The IT technology is not the only thing that requires security, the electronic devices
have also been feasible targets for attacks or manipulation. Lemke et al. [20] also de-
scribed that it is hard to implement security in the vehicular area because of insufficient
cryptographic knowledge, a multitude of involved parties but also that communication
between controllers in the automotive is unencrypted , something that increases the risk
of serious attacks.

According to Koscher et al. [17], the automotive industry has always considered
safety as a critical engineering concern and showed that with the access to the OBD-II
port and the CAN network, all the ECUs of the car could be accessed and the behaviour
could be manipulated, e.g. the engine could be stopped and the doors locked. As more
sophisticated services and communications features are integrated into the vehicle, the
attack surface of the automobiles will increase [17].

One of the challenges concerning security in the automotive is that the standard
access controls are weak, Koscher et al. [17] discovered that the controls that existed
were not used frequently. For example, a firmware could be loaded onto some key ECUs
without any authentication, which makes it easier for attackers to attack the automobile.

19

4
Research Approach

The purpose of the research, the research questions, the methodology, and finally the
validity threats are described in this chapter.

4.1 Research Purpose

The purpose of this study is to compare two variants of STRIDE by applying them to
the AUTOSAR platform. As a prerequisite to this, modeling of the AUTOSAR platform
is done and also implementation of the SecOC module. The implementation is done to
add support for basic security in AUTOSAR.

The new AUTOSAR security modules are evaluated via threat analysis, which is
performed with two variants. The threat analysis is done to examine whether the security
of the Arccore AUTOSAR platform increases by implementation of the modules. The
results of the two variants of STRIDE are evaluated to see whether the SecOC module
follows its specification claim.

The new security modules are largely untested and little to no research has been
done in the area. That is the reason why this area needs to be evaluated in order to see
if threats can be reduced enough or if there is need for more security features.

4.2 Research Questions

To reach the goals of the thesis, the following questions are to be answered:

• RQ1: Which variant of STRIDE (STRIDE-per-Element or STRIDE-
per-Interaction) yields better results with regard to threat modeling?
STRIDE has a known problem called threat explosion, meaning that it can find
too many threats to a system and it can be hard to go through the results and
find the real threats among all the threats discovered. This study will explore the

20

4.3. RESEARCH METHODOLOGY CHAPTER 4. RESEARCH APPROACH

differences between the two variants and analyze which one yields the best results
in the automotive domain. In this case, best results such as fewer false positives,
less time and easier to apply the STRIDE variant. True and false positives refer to
the number of identified threats that were correct and incorrect, respectively [27].

• RQ2: What security threats does SecOC mitigate? As the amount of ad-
vanced functionality in cars increases, the security of the cars needs to be increased
as well. This study examines what security threats the AUTOSAR module SecOC
mitigates. Does SecOC mitigate the threats it was designed to mitigate, or are
more security measures needed?

4.3 Research Methodology

This thesis reports on a 6 month (January 2015 - June 2015) case study. The thesis was
conducted as a single case study at a company called Arccore. The key characteristics of
a case study is that its conclusions are based on evidence and adds existing knowledge
based on previously established theory or by building theory [29]. The study focuses on
finding out which variant of STRIDE performs better in an automotive environment, as
well as finding what threats the addition of SecOC mitigates. Each person will perform
the same task, but with a different variant of STRIDE.

According to Runeson and Höst [29], different research methodologies serve different
purposes. Robson [28] describes four different types of purposes for research, Exploratory,
Descriptive, Explanatory and Improving. This study will be descriptive and explanatory,
meaning that it will describe the situation, as well as seek an explanation of the situation
[29].

To compare the two variants of STRIDE, several measurements will be used: the total
number of threats found, the number of false positives found, the time spent performing
the STRIDE analysis, and the similarities and differences in the true positives found.
These measurements are used to answer RQ1.

To answer RQ2, the lists of the threats found will be used. The lists will be used
both to answer what threats remain, as well as to see what types of threats that are
mitigated by the addition of SecOC.

4.4 Validity Threats

This study has adopted four aspects of validity, which are external validity, internal
validity, construct validity and reliability in order to denote the trustworthiness of the
results [29]. This section discusses these four aspects and to what extent the results are
true.

4.4.1 External validity

The external validity aspect is, according to Runeson and Höst [29], about to what
extent it is possible to generalize the findings and how the findings are of interest to

21

4.4. VALIDITY THREATS CHAPTER 4. RESEARCH APPROACH

other people outside the investigated case. The outcome of the two treatments are not
generalizable since it is specific to the AUTOSAR platform, which is a threat to external
validity.

4.4.2 Internal validity

Internal validity refers to the concern when casual relations are examined. For instance,
when the researcher is investigating whether one factor affects an investigated factor then
there is a risk that the investigated factor is also affected by factor B. There is a threat
to the internal validity if the researcher does not know to what extent the investigated
factor affects [29]. There is an internal validity threat for the productivity due to the use
of tool in one of the two treatments, which was STRIDE-per-interaction. Since both of
the treatments were done in the same area and the experience of applying the treatments
were shared with the same supervisior. So, the practitioners could have influenced each
other, which is a threat to the internal validity.

4.4.3 Construct validity

Construct validity reflect to what extend the operational measures that are studied
represent what the researcher has in mind and what is investigated according to the
research questions [29]. The tool that was used for STRIDE-per-element was not working
as it should so the threat analysis was executed in an another way of than the researcher
was prepared for in the beginning, which is a threat to the construct validity.

4.4.4 Reliability

The reliability concerns how the data and the analysis depends on the researchers that
performed the experiment [29]. Another researcher should be able to perform the same
experiment and get the same result.

The single researcher bias threat has been reduced since this case study has been
done by two researchers. In addition, all research findings and each step has been peer
reviewed by an external researcher (domain expert in Arccore).

The modeling of AUTOSAR was done by the researcher that did not have any
expertise within the domain area, but the model has been reviewed by both a domain
expert as well as a university supervisor to reduce the threat.

The STRIDE-per-element was done mostly with brainstorming, this is a concern
when it comes to repeatability since the result of the STRIDE analysis is dependent on
the person who performs it. To reduce this threat discussions with a domain expert was
done to increase the understanding of the likely threats to the platform.

STRIDE-per-interaction was compared to STRIDE-per-element done in a tool, which
reduced the threat for reliability since the tool always gave the same outcome if the same
model from AUTOSAR was used.

22

5
Implementation

This chapter concerns the implementation of Crypto Abstraction Layer (CAL) and Se-
cure Onboard Communication (SecOC) modules. There is a section on the testing that
was done to ensure the quality of the implementation.

5.1 Overview

The focus of the implementation was to get runnable and testable code early. With
that in mind, the first thing that was implemented was the CAL and the Cryptographic
Primitive Library (CPL). This module is testable on its own and does not have connec-
tions to any other module. When the implementation of the CAL module was done, the
focus switched to the SecOC module. This module is much larger and is integrated with
several other modules, including CAL. An overview of the system, and how SecOC is
connected to the other AUTOSAR modules can be seen in Figure 2.3.

5.2 Crypto Abstraction Layer (CAL)

After discussion with the supervisor at Arccore, it was decided to implement the CAL
module instead of the CSM module and to limit the implementation to only a subset
of the supported encryption algorithms. The algorithm selected for implementation was
the Message Authentication Code (MAC). This algorithm was selected because it was
the algorithm primarily used by the SecOC module [5]. The MAC is explained in Section
5.2.1.

CAL have interfaces for cryptographic library modules, called Cryptographic Primi-
tive Library (CPL), which contain the cryptographic functionality [3]. CAL only provides
a standardized interface to CPL encryption functions for other AUTOSAR software to
use. This layered structure allows for changing of the underlying implementation of CPL

23

5.2. CRYPTO ABSTRACTION LAYER CHAPTER 5. IMPLEMENTATION

without having to change the overlying code. This is useful, since many manufactur-
ers have their own cryptographic libraries, and this design allows them to easily switch
libraries.

5.2.1 Message Authentication Code (MAC)

A Message Authentication Code (MAC) is a piece of information that is used to ensure
the integrity and authenticity of a message. To perform this the MAC often uses a
cryptographic hash function or a block cipher. It is also possible to combine two or more
cryptographic methods when creating the MAC, this allows the MAC to be secure even
if one of the cryptographic methods is found to be vulnerable. The version of MAC that
was selected for this project is called Hash-based message authentication code (HMAC).
This is described in more detail in the following section.

The way MAC works is by creating a MAC tag for the message, which is sent together
with the message to the receiver. The receiver then creates its own MAC tag for the
message. The two tags are then compared to verify that the message has not been
tampered with. Figure 5.1 shows how the MAC can be used to verify the authenticity
and integrity of a message.

MAC:

Message Authentication Code

If the same MAC is found: then

the message is authentic and

integrity checked

Else: something is not right.

MAC

MAC

Algorithm
Key (K)

RECEIVER

MESSAGE

=?

MAC

Algorithm
Key (K)

MESSAGE

MESSAGE

MAC

MAC MAC

SENDER

Figure 5.1: Example of how the MAC can be used.

Hash-based message authentication code (HMAC)

The HMAC is a version of MAC that uses a cryptographic hash function together with
a cryptographic key to ensure the integrity and authenticity of a message. Any crypto-
graphic hash function can be used, for example MD5 or SHA-1 [18]. The design goals
of HMAC has to be able to use existing hash functions without any modifications, to
preserve the performance of the function and to allow easy replacement of the function.

24

5.3. SECURE ONBOARD COMM.. CHAPTER 5. IMPLEMENTATION

The quality of the HMAC output depends on the selected hash function. For this
project the selected function is SHA2. It was selected because of relatively low memory
usage and because it is a fast algorithm [7]. SHA-1 and MD5 was rejected because of
known security flaws [37][35][38]. The version of SHA2 that was selected was SHA256,
because it is secure enough while still keeping the MAC value short and the calculation
of SHA256 is faster than the SHA512 version.

5.3 Secure Onboard Communication (SecOC)

The SecOC module as described in Section 2.1.2 provides necessary functionality for
secure communication between ECUs within the vehicle architecture [5]. One of the
objectives of the SecOC module is practicable authentication mechanisms for critical
data on the level of the PDUs. According to the SecOC specification [5], symmetric and
asymmetric methods for authenticity and integrity protection are supported.

SecOC uses either CSM (Crypto Service Manager) or CAL (Crypto Abstraction
Layer) to provide cryptographic functions. The SecOC module works by using either
Message Authentication Codes (MAC) or digital signatures of the messages to ensure
that the received data contains the correct data [5]. To verify that the message is sent
by the right ECU SecOC uses a freshness value. This can be either a counter or a
timestamp. When a ECU sends or receives a packet the freshness value is updated.

SecOC defines two types of packets that are used throughout the module. They are
called Authentic PDU and Secured PDU. The first one, the authentic PDU, is a message
that requires protection from SecOC. The second one, the secured PDU, is a message
that has a freshness value and a MAC value attached. This structure can be seen in
Figure 5.2.

Figure 5.2: The structure of a secured PDU [5].

When SecOC receives an authentic PDU, it attaches the freshness value and then
sends the PDU to the CAL module to calculate the MAC value. When that is done, the
MAC value is attached to the message. It is now called a secured PDU, that is ready
to be sent over the CAN network. When the receiving ECU gets the secured PDU, it
is stripped into the original PDU, the freshness value and the MAC value. A new MAC
value is then calculated and compared with the attached MAC value. If the two MAC
values match and the freshness value is correct, the packet is verified, and the PDU is
sent to the application. This flow can be seen in Figure 5.3.

25

5.4. TESTING CHAPTER 5. IMPLEMENTATION

Figure 5.3: Message Authentication and freshness verification [5].

The implementation of SecOC was limited to a minimum working set, with only the
basic functionality implemented, as a proof of concept. The implemented functionality
is to send and receive messages but without support for transport protocol support and
freshness value timestamps. This reduces the protection of the SecOC module to only
verifying that the message is correct but not that it arrives in the correct order. This
reduction in scope was done to be able to have a functional prototype working at the
end of the thesis.

5.4 Testing

Testing is a large part of the implementation since it is necessary to show that the code
actually works, for example to get the correct output. It is also a way of showing the
quality of the code. The testing tool that is used for writing test cases is EmbUnit which
is described in this section. In addition to the unit testing static code analysis was used
to increase the quality of the code.

The Cal and SecOC test cases are implemented according to the requirements spec-
ified in AUTOSAR [2] and [5], where all of the possible outputs were tested to check if
the functions passed or failed in a correct way.

5.4.1 EmbUnit Tests

EmbUnit Testing is an unit testing tool for embedded software for testers and developers
that develop the software in C or C++ [11], which is used to write test cases for the
implementation of CAL and SecOC modules.

The difference between EmbUnit and other unit testing tools is that the unit tests

26

5.4. TESTING CHAPTER 5. IMPLEMENTATION

in EmbUnit use a simple set of language constructs; it is also possible to generate code
automatically from the test cases. In this case, all the test cases are written by hand
depending on the features that need to be tested in the code. Standard libraries are not
used in EmbUnit, which makes it optimal for small embedded systems since the small
embedded systems usually have tight constrains on code and memory [11].

5.4.2 Static code analysis

To further increase the quality of the code, static code analysis in the form of PC LINT
was used to analyse the code to verify if it followed the guidelines set by MISRA (Motor
Industry Software Reliability Association) [24]. The aim is to increase the portability,
safety and reliability of code in the embedded environment. The analysis focused on the
code coverage on the unit tests, the complexity of the functions, as well as how the code
was written. This was in order to remove bad coding practices and insecure code.

27

6
Creation of the DFD model

This chapter describes the process that is used to create the DFD. This part is done
together and used as a starting point for both variants of STRIDE to avoid bias.

6.1 Threat modeling process

The threat modeling process that is used in this thesis is described in Section 2.3, which
is a step by step guide to the STRIDE process. In this chapter step one to five will be
covered.

Firstly, the key threat scenarios were defined. One example of a scenario is when the
user tries to send unsafe packages through the CAN module by faking the authorization.

A list of external dependencies was then listed. The externals for this model is the
applications that run on top of the communication stack and other devices connected to
the CAN network that communicates with the ECU.

In this case, an initial model of a limited part of the AUTOSAR was created, this
model is described later in section 6.6. Afterwards, the DFDs for the scenarios were
created that are used for the STRIDE-variants and the threats are identified based on
the variants.

To help with the creation of the model and to keep the model on the relevant parts
of the platform, discussions with a domain expert were held. After the model was done,
it was validated with the domain expert as well, to make sure that it was correct.

6.2 Define use Scenarios

The first step of the threat modeling process is to define which key scenarios are within
the scope. There are two main scenarios, firstly, a packet arriving at the ECU and is
successfully verified and sent to the application. Secondly, a packet arriving and followed
by a failed verification and dropping of the package.

28

6.2. DEFINE USE SCENARIOS CHAPTER 6. DFD MODEL

6.2.1 Verification successful

The first scenario is when a packet arrives from another ECU and is sent to SecOC for
authentication and passed on to the Application. This can be seen in Figure 6.1. The
packet arrives at the CAN driver and is stored in a buffer. The Can interface module
then reads the packet and converts it from a CAN packet to a PDU packet, which can be
used by AUTOSAR. CanIF sends the packet through the PDU router, which transfers
the packet to SecOC for verification. The verification in turn is performed by the SecOC
module, which returns the result of the verification to SecOC, which then sends the PDU
back to the PDU router for delivery to the COM module. In the COM module the PDU
packet is converted into signals which are then transmitted through the RTE and to the
destination application.

6.2.2 Verification failed

In the scenario where the verification of the incoming packet fails, the route of the
packet will start out the same as in the successful scenario. The difference occurs when
the packet reaches the CAL module. CAL will see that the packet is invalid and sends a
negative response to SecOC. SecOC will then proceed to drop the packet. This can be
seen in Figure 6.2.

29

6.2. DEFINE USE SCENARIOS CHAPTER 6. DFD MODEL

Figure 6.1: Scenario when a packet is authenticated.

30

6.3. GATHER A LIST OF EXTERNAL.. CHAPTER 6. DFD MODEL

Figure 6.2: Scenario when a packet fails to be authenticated.

6.3 Gather a list of external dependencies

After defining the key scenarios, a list of external dependencies was gathered. As de-
scribed in section 1.1, only a limited part of the AUTOSAR platform was used for threat
modeling and the external dependencies for those are:

• Data stores, in form of buffers for each element.

• An external, user which could affect the AUTOSAR platform through different
actions.

• An external ECU, which sends packages to the system.

• Application that communicates with the AUTOSAR platform by End-to-End (E2E)
modules.

31

6.4. DEFINE SECURITY ASSUMPTIONS CHAPTER 6. DFD MODEL

6.4 Define security assumptions

Defining security assumptions is critically important because inaccurate security assump-
tions will make the result of the STRIDE analysis meaningless [13]. The first security
assumption is that the module SecOC that is implemented, ensures that the communica-
tion between the ECUs is secure by providing an authentication mechanism. The second
assumption is that the implementation of the authentication mechanism is correct, and
that there are no flaws in the authentication mechanism. The third assumption is that
all ECUs have SecOC enabled and are using it for all communication.

6.5 Create external security notes

External ECUs that communicate with the AUTOSAR platform are secured by an au-
thentication mechanism provided by SecOC since all ECUs will have SecOC imple-
mented.

6.6 Create one or more DFD of the platform being mod-
eled

This section describes the creation of the initial DFD model that is used for both
STRIDE-per-element and STRIDE-per-interaction.

As a starting point for the modeling work, the AUTOSAR architecture was used,
and especially the figure that shows the integration of SecOC into the other parts of
AUTOSAR. The integration can be seen in Figure 2.3. This was decided after discussion
with the supervisor at Arccore. To get the details of each module, the specifications of
the modules were studied and experts of each module were asked.

6.6.1 Overview

Figure 6.3 shows the initial threat model for the communication subsystem that was
chosen for this study. The focus of the model is the modules located in the Basic
Software (BSW). The external entities in the model are: the Application, that connects
to the RTE module, the Non-volatile Memory (NvM) that connects to the SecOC module
and lastly another ECU that is connected via the CAN network to the CAN module.

The subcomponents of the model are described in more detail in the coming sections.

6.6.2 Application

The Application can be divided into two different classes, one that uses the AUTOSAR
E2E protection, and one that does not. The E2E protection adds a Cyclic Redundancy
Check (CRC) value and a counter to the message sent by the application, to increase
the fault tolerance in the transmission. Even though the E2E protection is designed to
increase the fault tolerance, it also adds a layer of security, since it makes modification

32

6.6. CREATE ONE OR MORE DFD.. CHAPTER 6. DFD MODEL

Figure 6.3: Overview of the system.

33

6.6. CREATE ONE OR MORE DFD.. CHAPTER 6. DFD MODEL

of the information sent harder. Any modification of the data must generate the same
CRC value as the original message.

6.6.3 External user

There are two different categories of users that can communicate with the system over
the CAN network. The first category is a normal ECU that sends packets to the system.
An example of this could be the engine control unit or the brake system. The other
category is an external user. This is something that is connected to the CAN network
by someone else than the manufacturer. One example could be that the owner of the
car wishes to increase the power of the engine and installs a new ECU to manipulate
the engine control unit in order to increase the power of the engine.

6.6.4 RTE

Figure 6.4 shows the RTE part of the model. The RTE does not have any buffers except
for the case when a transform function should be applied to the data sent from the RTE.
For all other cases, the RTE relies on the modules of the layers above or below, in this
case the Application and the COM module, to provide buffers for the data transfer.

Figure 6.4: Detailed model of RTE module.

6.6.5 COM

The Communication (COM) module is layered between the RTE and PduR modules as
shown in Figure 6.5. COM provides signal oriented data for the RTE, but also packs the
AUTOSAR signals into PDU packets for transmission to lower layer modules through
the PduR. The COM module contains four types of buffers. The transmit buffer is used
to store PDU packets that are to be transmitted to the lower layers. The shadow buffers
are used to group signals. The I-PDU and L-PDU buffers store the corresponding PDU
type for further handling.

34

6.6. CREATE ONE OR MORE DFD.. CHAPTER 6. DFD MODEL

Figure 6.5: Detailed model of COM module.

6.6.6 PduR

The PduR module is responsible for routing of incoming and outgoing PDU packages
which are shown in Figure 6.6. In this model it is connected to the CanIF, SecOC and
the COM module. The PduR has one buffer, the I-PDU buffer, that is used when the
PduR is used as a gateway between different networks, for example if the PduR is used
to gateway messages between two different CAN networks.

6.6.7 SecOC

Figure 6.7 shows that the SecOC module is connected to the RTE, CAL, NvM, and
PduR modules. The connection to the RTE is used for key and counter management.
SecOC uses the CAL module to perform the MAC calculations. It is also connected to
the NvM for storage of values when the ECU is powered down. Lastly, the PduR is used
to route the packets to and from SecOC to the correct modules. SecOC has two buffers,
one for packets that are waiting to be verified and sent to the application, and one buffer
for packets that are waiting to be authenticated and sent to another ECU.

6.6.8 CanIf

The CAN Interface module provides the services of the CAN driver to the upper layer
communications, shown in Figure 6.8. It converts CAN frames into PDU packets which
the rest of AUTOSAR can use. It has one transmit buffer used to store packets that is
to be sent, in the event that the CAN module is busy and is unable to handle the packet
immediately.

35

6.6. CREATE ONE OR MORE DFD.. CHAPTER 6. DFD MODEL

Figure 6.6: Detailed model of PduR module.

Figure 6.7: Detailed model of SecOC module.

36

6.6. CREATE ONE OR MORE DFD.. CHAPTER 6. DFD MODEL

Figure 6.8: Detailed model of CanIf module.

6.6.9 CAL

The CAL module is divided into two parts, firstly the CAL module, and then the CPL
module. They are located in the same diagram since they are specified in the same
specification and are dependent on each other. Along the two modules, there is a buffer
that is used by both modules to store temporary data used during the calculations of
the cryptographic functions. This can be seen in Figure 6.9. The only external module
that CAL communicates with is the SecOC module, which uses CAL to generate and
verify MAC values.

6.6.10 CAN

The Controller Area Network (CAN) driver is part of the lowest layer, which performs
the hardware access to the upper layer, shown in the Figure 6.10. The CAN mod-
ule is independent from the hardware and provides services for callback functions and
transmission initializations of the CanIF module for notifying events.

37

6.6. CREATE ONE OR MORE DFD.. CHAPTER 6. DFD MODEL

Figure 6.9: Detailed model of CAL module.

Figure 6.10: Detailed model of CAN module.

38

6.7. DELIMITATIONS CHAPTER 6. DFD MODEL

6.7 Delimitations

The model used is limited to a small part of the AUTOSAR model. The decision was
made to focus on the communication stack and the communication over the CAN net-
work. The focus is on the CAN network since CAN has become the dominant communca-
tion network for in-car communications since 2008 [17]. It is also in the communication
stack that the SecOC module is located and that made it a natural point of interest
for the study. The model is also focused only on the BSW and will not include the
application more than as an external interactor.

39

7
Case Study

This chapter provides information about the case study of this thesis work.
The study is about two individuals each applying one of the two variants of STRIDE

to the initial model of AUTOSAR described in Chapter 6 and then comparing the
variants to see what the differences are. The application of the two STRIDE variants
will perform step six and seven from the STRIDE process described in Section 2.3.
Alongside the comparison of the two variants of STRIDE the security of AUTOSAR will
be evaluated as well, in order to analyze which security problems exist in AUTOSAR.

This study will not include step eight, determine the risk, and step nine, plan mit-
igations, from the aforementioned STRIDE process since the focus of this study is to
investigate the differences between the STRIDE variants and evaluate the SecOC mod-
ule.

7.1 STRIDE-per-Element

The base for the STRIDE-per-Element analysis was the initial model described in Chap-
ter 6. The threat modeling process described in Howard and Lepner [13] was then applied
to the model. The first plan was to use the SDL threat modeling tool to create the model
as well as to perform the STRIDE analysis, but the tool proved to be very unstable so
the analysis was performed by hand without tool support.

7.2 STRIDE-per-Interaction

The initial model was imported into the Microsoft Threat Modeling Tool 2014. The
suggested threats relative to the model were shown by switching to the analysis view in
the tool.

The tool provides a description of each threat and, eventually, how it could be miti-
gated. The threats that were mitigated by SecOC were removed from the table.

40

7.3. COMPARISON OF THE STRIDE VARIANTS CHAPTER 7. CASE STUDY

The result of the STRIDE-per-interaction analysis was then filled in the Table B.1
to show what threats apply to each interaction. These threats were derived from most
of the suggested threats from the tool. The description of the threat per interaction is
shown in Table B.2. The tables were then used for the comparison of STRIDE variants.

7.3 Comparison of the STRIDE variants

This section describes the factors that will be analysed for the comparison of the STRIDE
variants.

7.3.1 Quantitative comparison

The comparison was divided into several different categories. The number of relevant
threats found was compared, as well as the number of irrelevant threats found, and the
precision. The distribution of the threats into the STRIDE categories was also covered.

In addition, the time spent performing the two variants of STRIDE was compared
as well.

Precision is a measure of how good the STRIDE evaluation corresponds with the re-
ality, i.e., what fractions of the threats found are relevant [22]. The precision is calculated
with Equation 7.1 where TP stands for the true positives and FP, false positives.

P =
TP

TP + FP
(7.1)

7.3.2 Patterns

The threats found by the two variants of STRIDE was compared to find similarities and
differences in the threats found. Patterns in the threats found was investigated. Both
the true positives and the false positives was be compared.

Similarities & differences in True Positives and False Positives

This comparison is done by assembling a list of the advantages and disadvantages of the
variants and comparing them with each other. The list contains the experiences of the
two practitioners of STRIDE.

41

8
Results

This chapter presents the result of the case study of the STRIDE variants analysis.
The structure of this chapter is divided with the aim of answering the research questions
based on the results. First, the STRIDE comparison is described, where calculations and
findings are shown in tables and described. Second, the first research question defined in
section 4 is answered based on the STRIDE comparison results. The last section answers
the second and last research question.

8.1 STRIDE comparison

In this part the result of the comparison between STRIDE-per-element and STRIDE-
per-interaction is presented.

8.1.1 Quantitative comparison

As shown in Table 8.1, a total of 99 threats were found with STRIDE-per-element. 45 of
the threats were false positives and 54 threats were true positives. Overall the precision
was 54,55%. The main part of the threats was found in the Tampering and Denial of
service categories, while no threats were found in the Elevation of privilege category.

The result of STRIDE-per-interaction is shown in Table 8.2, 114 threats were found
in total. 83 threats were false positive while 31 threats were true positive. Total precision
was 27,19% and threats were found for each category but no true positive threats were
found in Elevation of privilege.

Based on the above results, STRIDE-per-element and STRIDE-per-interaction find
about the same amount of threats, but STRIDE-per-element has significantly higher
precision.

In Figure 8.1 the precision of STRIDE-per-element and STRIDE-per-interaction is
compared. It can be seen that in STRIDE-per-element, most threats were found in the

42

8.1. STRIDE COMPARISON CHAPTER 8. RESULTS

Table 8.1: Descriptive statistics for STRIDE-per-element.

S T R I D E Total

Total threats 3 31 4 16 45 0 99

False Positive 0 30 2 13 0 0 45

True Positive 3 1 2 3 45 0 54

Precision 100,00% 3,23% 50,0% 18,75% 100,0% 100,00% 54,55%

Table 8.2: Descriptive statistics for STRIDE-per-interaction.

S T R I D E Total

Total threats 20 6 8 26 21 33 114

False Positive 18 5 2 22 4 33 84

True Positive 2 1 6 4 17 0 30

Precision 10,00% 16,67% 75,00% 15,38% 80,95% 0,00% 26,32%

S T R I D E

0

20

40

60

80

100

P
re

ci
si

on
in

%

STRIDE-per-element STRIDE-per-interaction

Figure 8.1: Comparison of the distribution of precision across the STRIDE categories.

43

8.1. STRIDE COMPARISON CHAPTER 8. RESULTS

denial of service category. In STRIDE-per-interaction, the threats were more evenly
spread, but still with a large amounts of threats in the denial of service category.

S T R I D E

0

10

20

30

40
T

ru
e

p
os

it
iv

es

STRIDE-per-element STRIDE-per-interaction

Figure 8.2: Comparison of True positives between STRIDE-per-element and STRIDE-per-
interaction.

As shown in Figure 8.2, the overall precision is low for most categories. The most
outstanding categories are spoofing(in the case of STRIDE-per-element), repudiation and
denial of service where the precision is high. The category with the biggest differences
between the two STRIDE variants is spoofing and elevation of privilege, where STRIDE-
per-element have 100% while STRIDE-per-element have 10% and 0%.

Figure 8.3 compares the distribution of false positives between the two STRIDE
variants. This is the category where the biggest difference between the two variants
can be found. STRIDE-per-interaction found much more false positives in all cate-
gories except tampering. The false positives found by STRIDE-per-element was almost
exclusively found in the tampering and information disclosure categories, while STRIDE-
per-interaction had its false positives mostly in the spoofing, information disclosure and
elevation of privilege categories.

44

8.1. STRIDE COMPARISON CHAPTER 8. RESULTS

S T R I D E

0

10

20

30

F
a
ls

e
p

os
it

iv
es

STRIDE-per-element STRIDE-per-interaction

Figure 8.3: Comparison of false positives between STRIDE-per-element and STRIDE-per-
interaction.

Time consumption

Based on the result of the time spent on applying the STRIDE variants shown in Table
8.3, applying STRIDE-per-element takes less time than STRIDE-per-element.

Table 8.3: Time spent applying the STRIDE variants.

STRIDE-per-element STRIDE-per-interaction

26 h 32,5 h

8.1.2 Patterns

The patterns when comparing the STRIDE variants are described in this section. The
similarities and differences are shown.

8.1.3 STRIDE evaluation

Based on the results of applying the STRIDE variants shown in Table 8.4, STRIDE-
per-interaction is better if the outcome needs to be understood by non security experts
but there is limited information about this variant and no other examples to follow than
the book written by Shostack [32]. It is also time consuming and complex to apply
STRIDE-per-interaction since each interaction to be filled into a table.

45

8.1. STRIDE COMPARISON CHAPTER 8. RESULTS

Table 8.4: Advantages and disadvantages of the STRIDE variants

STRIDE-per-element STRIDE-per-interaction

Advantages Disadvantages Advantages Disadvantages

• Much training in-
formation available

• Unusable tool • Easy to under-
stand the threats

• Time-consuming

• Relatively easy
to perform

• Rely on the ex-
perience of the user

• Easy-to-use tool • Limited docu-
mentation

• Complex to ap-
ply to bigger sys-
tem

Similarities & differences in True Positives and False Positives

The threat descriptions are similar in both STRIDE variants even though STRIDE-per-
element is based on brainstorming and STRIDE-per-interaction is based on the Microsoft
Threat Modeling Tool 2014.

True positive

The true positives were similar between the two STRIDE variants. Most of the true
positives threats were focused on the access to the memory, to read or change the keys
used for the SecOC authentication mechanism, or to overburden the ECU to make it
crashes.

False positive

The biggest difference between the two STRIDE variants is where the false positives were
found. For STRIDE-per-element, the bulk of the false positives were found in the tam-
pering and information disclosure categories, while STRIDE-per-interaction had most
of the false positives in the spoofing, information disclosure and elevation of privilege
categories.

The types of threats found differed as well. In the information disclosure category,
the threats found by STRIDE-per-element were focused on disclosure of the key used for
the SecOC authentication mechanism, while STRIDE-per-interaction had a more broad
view and the threats were concerning all types of information handled by the ECU.

46

8.2. WHICH VARIANT OF STRIDE YIELDS BETTER... CHAPTER 8. RESULTS

8.2 Which variant of STRIDE (STRIDE-per-Element vs
STRIDE-per-Interaction) yields better results with re-
gard to threat modeling?

This section answers the first research question that is defined in section 4.
Based on the statistics and the advantages & disadvantages, STRIDE-per-element

was found to be better suited for use in the automotive domain and AUTOSAR. The
precision for STRIDE-per-element is 54,55% compared to 26,32% for STRIDE-per-
interaction. Table 8.5 shows which STRIDE variant that had the best values for each
category.

Table 8.5: Comparison between per-element and per-interaction

STRIDE-per-element STRIDE-per-interaction

True positives X

False positives X

Precision X

Time spent X

8.3 What are the major security threats that SecOC mit-
igates?

The addition of SecOC to AUTOSAR mitigates most Tampering and Spoofing threats
to the system.

The threat from tampering is reduced with the help of SecOC. The major tampering
threat comes from an attacker changing the messages that is sent over the CAN network
as well as tampering with the memory of the ECU. The tampering on the CAN network is
mitigated by the MAC added by SecOC. Tampering with the memory via e.g. Universal
Measurement and Calibration Protocol (XCP) could allow an attacker to read or change
the keys used by the MAC. This would however require that the attacker knows the
memory address where the key is stored.

The spoofing threats to the AUTOSAR communication stack come from two direc-
tions. First from the application side, this threat is however deemed to be unlikely
to happen since the applications are statically linked to the system and are developed
and/or integrated by the manufacturer of the vehicle. The other threat comes from the
CAN network, which is the threat that SecOC mitigates. The addition of authentication
removes the threat from other ECUs spoofing their identity.

47

8.3. WHAT ARE THE MAJOR SECURITY THREATS THAT SECOC
MITIGATES? CHAPTER 8. RESULTS

8.3.1 Threats remaining

The remaining threats to AUTOSAR after the addition of SecOC is mainly coming
from two categories. The first is different types of attacks against the memory, to get a
hold of the encryption keys used by SecOC and therefor circumvent the security mecha-
nisms added by SecOC. The other is Denial of service attacks and flooding of the CAN
network.

48

9
Discussion

This chapter discusses the results presented in Chapter 8 and connects them to the
theory presented in Chapter 2 and challenges in finding those results.

9.1 Implementation

The implementation of the SecOC and CAL modules were implemented by following the
specifications provided by AUTOSAR [2]. As described earlier in Section 2.1.2, SecOC
was released with the release of AUTOSAR 4.2.1 and this meant that the specification
was untested and few had implemented it. This led to the specification being very fuzzy
on some details and maybe not tested completely. This in turn led to the time spent on
the implementation was longer than planned and the scope of the implementation had
to be reduced.

9.1.1 Problems with SecOC specification

The SecOC specification contains a list of configurations parameters used in the imple-
mentation, but the problem was that there were no descriptions about the use of these
configurations. In conclusion, the lack of information of the SecOC specification made
it hard to finalize the implementation of the whole module and as described previously,
the scope of the implementation was reduced more than initially planned.

9.2 DFD Creation

9.2.1 Modeling

This section discusses how to create a good model of the AUTOSAR platform and a
reduction of the model created in this thesis could be used instead.

49

9.3. THREATS ELICITATION CHAPTER 9. DISCUSSION

Creating a good model of the AUTOSAR platform

AUTOSAR is a platform software developers can build their system upon, and with-
out having the full system implementation, making a model of the system can be a
problem. The AUTOSAR platform is highly configurable and the threats against the
system depends on how it is configured. This makes the modelling a challenge since the
configuration and use of the platform can change a lot between different projects.

Reduction of the model

The threats that were found by the STRIDE variants were evaluated, it was mainly in
the interfaces to the applications and the CAN network that the threats were found.
With this in mind, the model might have been overly detailed. The model could has
been reduced by joining the communication stack to one element and still get the same
results. The reduced model can be seen in Figure 9.1. The only part where the full
model generated more useful threats is in the denial-of-service case, but that is mostly
because it is unclear which part of the system is the bottle neck and would stop working
first. The evaluation of that could be performed as a separate investigation and might
not be the focus for the STRIDE process.

Figure 9.1: Reduced threat model.

9.3 Threats elicitation

9.3.1 STRIDE variants challenges

One of the purposes of the thesis is to evaluate the security by using two variants of
STRIDE. Therefore, this section discusses the challenges of applying the variants of
STRIDE to the AUTOSAR platform.

50

9.3. THREATS ELICITATION CHAPTER 9. DISCUSSION

The low precision and high amount of false positives found by the two STRIDE
variants could be the result of that STRIDE is a more focused application development
outside the embedded environment, such as web development, and therefore is focused
on the wrong type of threats for the automotive and AUTOSAR environment.

STRIDE-per-Element

The amount of threats found and the quality of the threats found relies largely on the
participants of the STRIDE process, therefore it can be challenging to perform STRIDE-
per-element the first times, especially without the help of the SDL threat modeling tool,
which unfortunately was too unstable to be relied on. The tool was prone to crashing,
and the model created was corrupted making the tool unable to load the model.

Most of the examples and instructions that exist for STRIDE-per-element are focused
on web applications, and they do not seem to be of much use for adaptation into the
embedded environment.

STRIDE-per-Interaction

Even though the STRIDE-per-interaction tool could generate a full report of each threat
for each interaction, it was quite hard to just have a quick look of the report to get an
idea of what the major threats of the system were. The STRIDE-per-interaction was
done manually by filling out the threat applicability table based on the outcome from the
tool. It was both time consuming and complicated but it was easier to understand the
threats of the whole system by looking at the table after filling out the threats manually.

There is limited information about the STRIDE-per-interaction, since this variant
was released one year ago. It was quite challenging to figure out if STRIDE-per-
interaction variant is done in a correct way since there are no other examples or in-
formation about it except in the book written by Shostack [32].

Time consumption

The reason that STRIDE-per-interaction took more time to perform was that it is more
complex to fill the tables manually even though the tool worked perfectly. In compar-
ison, the STRIDE-per-element is easier to use and takes less time than STRIDE-per-
interaction.

9.3.2 Threat modeling tools

The tools provided by Microsoft to assist with the modeling and the STRIDE analysis
are very immature, especially the SDL threat modeling tool that was to be used for the
STRIDE-per-element modeling. The tool was abandoned and the analysis was performed
without tool support. This made the STRIDE analysis harder and more time consuming
that it would have been with the help of the tools.

The tool used for STRIDE-per-interaction (Microsoft Threat Modeling Tool 2014)
was compared to the tool used for STRIDE-per-element quite straight forward to use.

51

9.4. FUTURE WORK CHAPTER 9. DISCUSSION

The outcome of the initial model was as expected easy to understand. As Shostack [32]
describes, the threats are easier to understand with this variant because the tool gave
both explanation of each threat and suggestions of mitigations for each threat, which
was very useful.

9.4 Future work

This section discusses possible future work that extends the work done in this thesis.
Further study on how to create a good model of a system could be conducted. This

field is hard, since there is no way to say if the model of the system is good. This is
especially hard in the case of the AUTOSAR platform since there is only a platform
and not a complete system. The high configurability of AUTOSAR also increases the
challenge of creating a model of the platform.

This case study focused on a small part of the AUTOSAR platform, since as described
in section 1.1, only a limited part of the AUTOSAR platform was focused. Further study
with STRIDE on an extended model of the AUTOSAR platform would be interesting
to see what types of threats will be found when larger parts of AUTOSAR is included
in the model.

Finally, a larger study with several participants performing the same tasks as this
study to see whether the differences observed will be confirmed would be interesting.

52

Bibliography

[1] Automotive News. (2015) Volvo to unleash self-driving cars on swedish
roads. [Online]. Available: http://www.autonews.com/article/20150301/OEM06/
303029948/volvo-to-unleash-self-driving-cars-on-swedish-roads

[2] AUTOSAR. (2015) AUTOSAR home. [Online]. Available: http://www.autosar.
org/

[3] ——, Specification of Crypto Abstraction Library.

[4] ——, Layered Software Architecture.

[5] ——, Specification of Module Secure Onboard Communication.

[6] N. Beringer, “The connected car security boundaries,” ATZ worldwide, vol. 115,
no. 10, pp. 22–27, 2013. [Online]. Available: http://dx.doi.org/10.1007/s38311-
013-0111-x

[7] J. Bryson and P. Gallagher, “Secure hash standard (shs),” Federal Information Pro-
cessing Standards, FIPS PUB (180-4), 2012.

[8] CANtact. (2015) CANtact. [Online]. Available: http://cantact.io

[9] Common Criteria, “Common criteria for information technology security evaluation,
part 1: Introduction and general model,” 2012.

[10] M. H. Diallo, J. Romero-mariona, S. E. Sim, T. A. Alspaugh, and D. J. Richardson,
“A comparative evaluation of three approaches to specifying security requirements,”
in Proceedings of the Twelfth Working Conference on Requirements Engineering:
Foundation for Software Quality, 2006.

[11] EmbUnit. (2012) Embunit unit testing tool. [Online]. Available: http:
//www.embunit.com

[12] Fraunhofer SIT. (2015) E-safety vehicle intrusion protected applications. [Online].
Available: www.evita-project.org

53

http://www.autonews.com/article/20150301/OEM06/303029948/volvo-to-unleash-self-driving-cars-on-swedish-roads
http://www.autonews.com/article/20150301/OEM06/303029948/volvo-to-unleash-self-driving-cars-on-swedish-roads
http://www.autosar.org/
http://www.autosar.org/
http://dx.doi.org/10.1007/s38311-013-0111-x
http://dx.doi.org/10.1007/s38311-013-0111-x
http://cantact.io
http://www.embunit.com
http://www.embunit.com
www.evita-project.org

BIBLIOGRAPHY BIBLIOGRAPHY

[13] M. Howard and S. Lepner, The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software (Developer Best Practices). Mi-
crosoft Press, 2006.

[14] ISO, “26262, road vehicles–functional safety,” International Standard ISO/FDIS,
vol. 26262, 2011.

[15] ISO/IEC, “27000, information technology – security techniques – information se-
curity management systems – overview and vocabulary,” International Standard
ISO/IEC, 2014.

[16] L. Kohnfelder and P. Garg, “The threats to our products,” Microsoft Interface,
Microsoft Corporation, 1999.

[17] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham et al., “Experimental security analysis of
a modern automobile,” in Security and Privacy (SP), 2010 IEEE Symposium on.
IEEE, 2010, pp. 447–462.

[18] H. Krawczyk, M. Bellare, and R. Canetti, “Rfc 2104: Hmac: Keyed-hashing for
message authentication,” 1997.

[19] D. Kum, G.-M. Park, S. Lee, and W. Jung, “Autosar migration from existing auto-
motive software,” in Control, Automation and Systems, 2008. ICCAS 2008. Inter-
national Conference on. IEEE, 2008, pp. 558–562.

[20] K. Lemke, C. Paar, and M. Wolf, Embedded Security in Cars: Securing Current
and Future Automotive IT Applications. Springer-Verlag, 2006.

[21] M. S. Lund, B. Solhaug, K. Stølen, and S. (e-book collection), Model-driven risk
analysis: the CORAS approach. Berlin; London: Springer, 2010.

[22] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval.
Cambridge university press Cambridge, 2008, vol. 1.

[23] J. McDermott and C. Fox,“Using abuse case models for security requirements analy-
sis,” in Computer Security Applications Conference, 1999.(ACSAC’99) Proceedings.
15th Annual. IEEE, 1999, pp. 55–64.

[24] MISRA, “Guidelines for the use of the c language in critical systems.”

[25] S. Myagmar, A. J. Lee, and W. Yurcik, “Threat modeling as a basis for security
requirements,” in Symposium on requirements engineering for information security
(SREIS), vol. 2005, 2005, pp. 1–8.

[26] A. L. Opdahl and G. Sindre, “Experimental comparison of attack trees and mis-
use cases for security threat identification,” Information and Software Technology,
vol. 51, no. 5, pp. 916–932, 2009.

54

BIBLIOGRAPHY

[27] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation,” 2011.

[28] C. Robson, “Real world research. 2nd,” Edition. Blackwell Publishing. Malden, 2002.

[29] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study re-
search in software engineering,” vol. 14, no. 2, pp. 131–164, 2009.

[30] P. Saitta, B. Larcom, and M. Eddington, “Trike v. 1 methodology document [draft],”
URL: http://dymaxion. org/trike/Trike v1 Methodology Documentdraft. pdf, 2005.

[31] B. Schneier, “Attack trees,” Dr.Dobb’s Journal, vol. 24, no. 12, pp. 21–29, 12 1999.

[32] A. Shostack, Threat Modeling: Designing for Security. US: John Wiley & Sons
Ltd, 2014.

[33] ——, “Experiences threat modeling at microsoft,” in Modeling Security Workshop.
Dept. of Computing, Lancaster University, UK, 2008.

[34] SP. (2015) Heavens. [Online]. Available: www.sp.se/en/index/research/dependable
systems/heavens/Sidor/default.aspx

[35] M. Stevens, “On collisions for md5,” Master’s thesis, Eindhoven University of Tech-
nology, 2007.

[36] A. Van Lamsweerde et al., “Requirements engineering: from system goals to uml
models to software specifications,” 2009.

[37] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4, md5,
haval-128 and ripemd.” IACR Cryptology ePrint Archive, vol. 2004, p. 199, 2004.

[38] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in Advances
in Cryptology–CRYPTO 2005. Springer, 2005, pp. 17–36.

[39] C. Xiaoling, “The future of connected cars,” China Today, Feb 15 2013.

55

www.sp.se/en/index/research/dependable_systems/heavens/Sidor/default.aspx
www.sp.se/en/index/research/dependable_systems/heavens/Sidor/default.aspx

A
STRIDE-per-Element threats

The rows that are marked red are false positives threats.

Table A.1: Mapping of STRIDE to external entities [13].

External Entities S T R I D E

0.1 Application with e2e X X

0.2 Application without e2e X X

8.1 External User X X

8.2 Normal ECU X X

Table A.2: Mapping of STRIDE to processes [13].

Processes S T R I D E

1.1 RTE X X X X X X

2.1 COM X X X X X X

3.1 PduR X X X X X X

4.1 SecOC X X X X X X

5.1 CanIF X X X X X X

6.1 CAL X X X X X X

6.2 CPL X X X X X X

7.1 CAN X X X X X X

56

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.3: Mapping of STRIDE to data stores [13].

Data Stores S T R I D E

1.2 Transform Buffer X X X

2.2 Shadow Buffers X X X

2.3 I-PDU Buffer X X X

2.4 L-Pdu Buffer X X X

2.5 Transmit Buffer X X X

3.2 IPDU Buffer X X X

4.2 Input Buffer X X X

4.3 Output Buffer X X X

5.2 Transmit Buffer X X X

7.2 HW Buffer X X X

10.1 NvM X X X

57

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.4: Mapping of STRIDE to data flows [13].

Data Flows S T R I D E

0.1 ⇔ 1.1 X X X

0.2 ⇔ 1.1 X X X

1.1 ⇔ 2.1 X X X

1.1 ⇔ 1.2 X X X

1.1 ⇔ 4.1 X X X

2.1 ⇔ 2.2 X X X

2.1 ⇔ 2.3 X X X

2.1 ⇔ 2.4 X X X

2.1 ⇔ 2.5 X X X

2.1 ⇔ 3.1 X X X

3.1 ⇔ 3.2 X X X

3.1 ⇔ 4.1 X X X

3.1 ⇔ 5.1 X X X

4.1 ⇔ 4.2 X X X

4.1 ⇔ 4.3 X X X

4.1 ⇔ 10.1 X X X

4.1 ⇔ 6.1 X X X

5.1 ⇔ 5.2 X X X

5.1 ⇔ 7.1 X X X

6.1 ⇔ 6.2 X X X

6.1 ⇔ 6.3 X X X

6.2 ⇔ 6.3 X X X

7.1 ⇔ 7.2 X X X

7.1 ⇔ 8.1 X X X

7.1 ⇔ 8.2 X X X

58

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.5: Elements with possible Spoofing threats.

Threat Type Element Type DFD Item Numbers

Spoofing External entities (0.1), (0.2), (8.1), (8.2)

Processes (1.1), (2.1), (3.1), (4.1), (5.1),

(6.1), (6.2), (7.1)

Table A.6: Elements with possible Tampering threats.

Threat Type Element Type DFD Item Numbers

Tampering Processes (1.1), (2.1), (3.1), (4.1), (5.1),

(6.1), (6.2), (7.1)

Data stores (1.2), (2.2), (2.3), (2.4), (2.5),

(3.2), (4.2), (4.3), (5.2), (7.2),

(10.1)

Data flows (0.1 ⇔ 1.1), (0.2 ⇔ 1.1), (1.1 ⇔ 2.1),

(1.1 ⇔ 1.2), (1.1 ⇔ 4.1), (2.1 ⇔ 2.2),

(2.1 ⇔ 2.3), (2.1 ⇔ 2.4), (2.1 ⇔ 2.5),

(2.1 ⇔ 3.1), (3.1 ⇔ 3.2), (3.1 ⇔ 4.1),

(3.1 ⇔ 5.1), (4.1 ⇔ 4.2), (4.1 ⇔ 4.3),

(4.1 ⇔ 10.1),(4.1 ⇔ 6.1),(5.1 ⇔ 5.2),

(5.1 ⇔ 7.1), (6.1 ⇔ 6.2), (6.1 ⇔ 6.3),

(7.1 ⇔ 7.2), (7.1 ⇔ 8.1), (7.1 ⇔ 8.2)

Table A.7: Elements with possible Repudiation threats.

Threat Type Element Type DFD Item Numbers

Repudiation External entities (0.1), (0.2), (8.1), (8.2)

Processes (1.1), (2.1), (3.1), (4.1), (5.1),

(6.1), (6.2), (7.1)

59

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.8: Elements with possible Information Disclosure threats.

Threat Type Element Type DFD Item Numbers

Information

Disclosure
Processes (1.1), (2.1), (3.1), (4.1), (5.1), (6.1),

(6.2), (7.1)

Data stores (1.2), (2.2), (2.3), (2.4), (2.5), (3.2),

(4.2), (4.3), (5.2), (7.2), (10.1)

Data flows (0.1 ⇔ 1.1), (0.2 ⇔ 1.1), (1.1 ⇔ 2.1),

(1.1 ⇔ 1.2), (1.1 ⇔ 4.1), (2.1 ⇔ 2.2),

(2.1 ⇔ 2.3), (2.1 ⇔ 2.4), (2.1 ⇔ 2.5),

(2.1 ⇔ 3.1), (3.1 ⇔ 3.2), (3.1 ⇔ 4.1),

(3.1 ⇔ 5.1), (4.1 ⇔ 4.2), (4.1 ⇔ 4.3),

(4.1 ⇔ 10.1),(4.1 ⇔ 6.1),(5.1 ⇔ 5.2),

(5.1 ⇔ 7.1), (6.1 ⇔ 6.2), (6.1 ⇔ 6.3),

(7.1 ⇔ 7.2), (7.1 ⇔ 8.1), (7.1 ⇔ 8.2)

Table A.9: Elements with possible Denial Of Service threats.

Threat Type Element Type DFD Item Numbers

DoS Processes (1.1), (2.1), (3.1), (4.1), (5.1), (6.1),

(6.2), (7.1)

Data stores (1.2), (2.2), (2.3), (2.4), (2.5), (3.2),

(4.2), (4.3), (5.2), (7.2), (10.1)

Data flows (0.1 ⇔ 1.1), (0.2 ⇔ 1.1), (1.1 ⇔ 2.1),

(1.1 ⇔ 1.2), (1.1 ⇔ 4.1), (2.1 ⇔ 2.2),

(2.1 ⇔ 2.3), (2.1 ⇔ 2.4), (2.1 ⇔ 2.5),

(2.1 ⇔ 3.1), (3.1 ⇔ 3.2), (3.1 ⇔ 4.1),

(3.1 ⇔ 5.1), (4.1 ⇔ 4.2), (4.1 ⇔ 4.3),

(4.1 ⇔ 10.1),(4.1 ⇔ 6.1),(5.1 ⇔ 5.2),

(5.1 ⇔ 7.1), (6.1 ⇔ 6.2), (6.1 ⇔ 6.3),

(7.1 ⇔ 7.2), (7.1 ⇔ 8.1), (7.1 ⇔ 8.2)

60

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.10: Elements with possible Elevation Of Privilege threats.

Threat Type Element Type DFD Item Numbers

EoP Processes (1.1), (2.1), (3.1), (4.1), (5.1), (6.1),

(6.2), (7.1)

Table A.11: Spoofing threats against the system.

Element Preconditions Threat Impact

0.1 The application know
what other applica-
tions run on the ECU.

The application pre-
tends to be another
application to read the
information sent to it.

The application read
data that was meant
for another applica-
tion and the original
application might not
get the data.

0.2 The application know
what other applica-
tions run on the ECU.

The application pre-
tends to be another
application to read the
information sent to it.

The application read
data that was meant
for another applica-
tion and the original
application might not
get the data.

8.1 An attacker have con-
nected a external de-
vice to the CAN net-
work.

The external user pre-
tends to be another
ECU and send com-
mands to our ECU.

The ECU can be
tricked into perform-
ing actions that was
not intended.

8.2 Another ECU is com-
promised and the at-
tacker can control it.

The external ECU
pretends to be an-
other ECU and send
commands to our
ECU.

The ECU can be
tricked into perform-
ing actions that was
not intended.

61

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.12: Tampering threats against the system, Part 1.

Element Preconditions Threat Impact

1.1 A malicious user have
access to the RTE
module.

Tampering with the
RTE module could
lead to changes in
the received or sent
packets.

The application or an-
other ECU get the
wrong information.

2.1 A malicious user have
access to the COM
module.

Tampering with the
COM module could
lead to changes in the
received or sent pack-
ets.

The application or an-
other ECU get the
wrong information.

3.1 A malicious user have
access to the PduR
module.

Tampering with the
PduR module could
lead to changes in the
received or sent pack-
ets.

The application or an-
other ECU get the
wrong information.

4.1 A malicious user have
access to the SecOC
module.

Tampering with the
SecOC module could
lead to changes in the
received or sent pack-
ets.

The application or an-
other ECU get the
wrong information.

5.1 A malicious user have
access to the CanIF
module.

Tampering with the
CanIF module could
lead to changes in the
received or sent pack-
ets.

The application or an-
other ECU get the
wrong information.

6.1 A malicious user have
access to the CAL
module.

Tampering with the
CAL module could
lead to incorrect
authentication or
verification.

Incorrect packets get
verified and sent to
application or the
incorrect Authenti-
cation information is
attached to a packet.

62

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.13: Tampering threats against the system, Part 2.

Element Preconditions Threat Impact

6.2 A malicious user have
access to the CPL
module.

Tampering with the
CPL module could
lead to incorrect
authentication or
verification.

Incorrect packets get
verified and sent to
application or the
incorrect Authenti-
cation information is
attached to a packet.

7.1 A malicious user have
access to the CAN
module.

Tampering with the
CAN module could
make the ECU send
messages on the CAN
network.

The ECU could try
to manipulate another
ECU to perform some
action.

7.1 A malicious user have
access to the CAN
module.

Tampering with the
CAN module could
lead to changes in the
received or sent pack-
ets.

The application or an-
other ECU get the
wrong information.

1.2 A malicious user have
access to the Trans-
form buffer.

Tampering with the
Transform buffer
could allow an at-
tacker to change the
packets sent from the
ECU.

Packets that is to have
a transform applied
may be changed or re-
moved.

2.2 A malicious user have
access to the shadow
buffer.

Tampering with the
Shadow buffer could
allow an attacker to
change the message
sent to a signal group.

The attacker may
modify the messages
sent by the COM
module.

2.3 A malicious user have
access to the I-PDU
buffer.

Tampering with the I-
PDU buffer could al-
low an attacker to
change the message
sent from the module.

The attacker may
modify the messages
sent by the COM
module.

2.4 A malicious user have
access to the L-PDU
buffer.

Tampering with the
L-PDU buffer could
allow an attacker to
change the message
sent from the module.

The attacker may
modify the messages
sent by the COM
module.

63

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.14: Tampering threats against the system, Part 3.

Element Preconditions Threat Impact

2.5 A malicious user have
access to the Transmit
buffer.

Tampering with the
transmit buffer could
allow an attacker to
change the message
sent from the module.

The attacker may
modify the messages
sent by the COM
module.

3.2 A malicious user have
access to the IPDU
Buffer.

Tampering with the
IPDU buffer could
allow an attacker to
change the packets
that is being sent to
another network.

The messages that is
being sent through
the gateway may be
changed or corrupted.

6.3 A malicious user have
access to the CAL
buffer.

Tampering with the
CAL buffer could al-
low an attacker to ver-
ify packets that are
supposed to be re-
jected.

The verification of
packets that should
not be verified.

7.2 A malicious user have
access to the HW
buffer.

Tampering with the
hardware buffer could
allow an attacker to
modify packets sent to
or from the ECU.

The packets sent or
received by the ECU
may be changed by the
attacker.

7.2 A malicious user have
access to the HW
buffer.

Tampering with the
hardware buffer could
allow an attacker to
add packets to be sent
to or from the ECU.

The attacker could
add packets and send
to the CAN network,
or make it seem like
the ECU have re-
ceived packets that
the attacker added.

10.1 A malicious user have
access to the NvM
module.

Tampering with the
NvM could allow an
attacker to change the
freshness value.

This could allow an at-
tacker to easier manip-
ulate the MAC and al-
low for modification of

0.2 ⇔ 1.1 A malicious user have
access to the data flow
between the applica-
tion and the RTE.

Tampering with this
data flow could change
the data sent to or
from the application.

The application get or
send the wrong infor-
mation.

64

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.15: Tampering threats against the system, Part 4.

Element Preconditions Threat Impact

1.1 ⇔ 2.1 A malicious user have
access to the data flow
between the RTE and
COM.

Tampering with this
data flow could change
the data sent to or
from the application.

The application get or
send the wrong infor-
mation

1.1 ⇔ 1.2 A malicious user have
access to the data flow
between the RTE and
the transform buffer.

Tampering with this
data flow could allow
an attacker to change
the data that is sent
to the transform func-
tionality.

Packets that is to have
a transform applied
may be changed or re-
moved.

1.1 ⇔ 4.1 A malicious user have
access to the data flow
between the RTE and
SecOC.

Tampering with this
data flow could allow
an attacker to manip-
ulate the key that is
used for the MAC, as
well as the freshness
value.

The attacker may
modify the keys or
freshness value that
SecOC use for creating
the MAC value. This
could make it easier
to spoof messages.

2.1 ⇔ 2.2 A malicious user have
access to the data
flow between the
COM module and the
shadow buffer.

Tampering with this
data flow could allow
an attacker to change
the message sent to a
signal group.

The attacker may
modify the messages
sent by the COM
module.

2.1 ⇔ 2.3 A malicious user have
access to the data
flow between the COM
module and the I-PDU
buffer.

Tampering with this
data flow could allow
an attacker to change
the message sent from
the module.

The attacker may
modify the messages
sent by the COM
module.

2.1 ⇔ 2.4 A malicious user have
access to the data
flow between the COM
module and the L-
PDU buffer.

Tampering with this
data flow could allow
an attacker to change
the message sent from
the module.

The attacker may
modify the messages
sent by the COM
module.

2.1 ⇔ 2.5 A malicious user have
access to the data
flow between the COM
module and the trans-
mit buffer.

Tampering with this
data flow could allow
an attacker to change
the message sent from
the module.

The attacker may
modify the messages
sent by the COM
module.

65

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.16: Tampering threats against the system, Part 5.

Element Preconditions Threat Impact

2.1 ⇔ 3.1 A malicious user have
access to the data flow
between the COM and
PduR module.

Tampering with this
data flow could change
the data sent to or
from the application.

The application get or
send the wrong infor-
mation.

3.1 ⇔ 3.2 A malicious user have
access to the data flow
between the PduR
module and the IPDU
buffer.

Tampering with this
data flow could allow
an attacker to manip-
ulate the message that
is sent to other net-
works.

Allow the attacker to
change messages that
is to be relayed to
other networks.

3.1 ⇔ 4.1 A malicious user have
access to the data flow
between the PduR and
SecOC module.

Tampering with this
data flow could change
the data sent to or
from the application.

The application get or
send the wrong infor-
mation.

4.1 ⇔ 4.3 A malicious user have
access to the data flow
between the SecOC
module and the out-
put buffer.

Tampering with this
data flow could allow
an attacker to change
the data that is sent
by the ECU.

The attacker could
modify the packet
before the authen-
tication information
is attached, mak-
ing the modification
undetectable.

4.1 ⇔ 10.1 A malicious user have
access to the data flow
between the SecOC
module and the out-
put buffer.

Tampering with this
data flow could allow
an attacker to change
the data that is stored
in persistent memory,
such as the freshness
value.

If the incorrect fresh-
ness value is stored
in the persistent mem-
ory, SecOC wont be
able to verify packets,
and other ECUs wont
be able to verify pack-
ets from this ECU.

4.1 ⇔ 6.1 A malicious user have
access to the data flow
between the CAL and
SecOC module.

Tampering with the
data flow from CAL to
SecOC could allow an
attacker to tell SecOC
to verify packets that
should not pass verifi-
cation.

Incorrect packets get
verified and sent to
application or the
incorrect Authenti-
cation information is
attached to a packet.

66

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.17: Tampering threats against the system, Part 6.

Element Preconditions Threat Impact

6.1 ⇔ 6.2 A malicious user have
access to the data flow
between the CAL and
CPL module.

Tampering with this
data flow could allow
an attacker to ver-
ify packets that should
not pass verification.

Incorrect packets get
verified and sent to
application or the
incorrect Authenti-
cation information is
attached to a packet.

6.1 ⇔ 6.3 A malicious user have
access to the data
flow between the CAL
module and the CAL
buffer.

Tampering with this
data flow could allow
an attacker to ver-
ify packets that should
not pass verification.

Incorrect packets get
verified and sent to
application or the
incorrect Authenti-
cation information is
attached to a packet.

6.2 ⇔ 6.3 A malicious user have
access to the data
flow between the CPL
module and the CAL
buffer.

Tampering with this
data flow could allow
an attacker to ver-
ify packets that should
not pass verification.

Incorrect packets get
verified and sent to
application or the
incorrect Authenti-
cation information is
attached to a packet.

Table A.18: Repudiation threats against the system.

Element Preconditions Threat Impact

0.1 The application can
send malicious data to
the RTE and deny do-
ing it.

The ECU have no way
to prove what applica-
tion sent the data.

0.2 The application can
send malicious data to
the RTE and deny do-
ing it.

The ECU have no way
to prove what applica-
tion sent the data.

8.1 The external user can
send malicious data to
the ECU and deny do-
ing it.

The external user can
send data to the ECU
and there is no way to
prove that it did.

8.2 Another ECU is com-
promised and the at-
tacker can control it.

Another ECU can
send malicious data
to the ECU and deny
doing it.

The ECU can send
data to the ECU and
there is no way to
prove that it did.

67

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.19: Information Disclosure threats against the system, Part 1.

Element Preconditions Threat Impact

4.1 A malicious user have
access to read the
information stored in
the SecOC module.

A malicious user read
the freshness values.

The user can eas-
ier spoof messages if
it knows the current
freshness values.

4.1 A malicious user have
access to read the
information stored in
the SecOC module.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

6.1 A malicious user have
access to read the
information stored in
the CAL module.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

6.2 A malicious user have
access to read the
information stored in
the CPL module.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

6.3 A malicious user have
access to read the
information stored in
the CAL buffer.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

6.3 A malicious user have
access to read the
information stored in
the CAL buffer.

A malicious user read
the freshness values.

The user can eas-
ier spoof messages if
it knows the current
freshness values.

10.1 The malicious user
have access to read the
non volatile memory.

A malicious user can
read the freshness val-
ues.

The user can eas-
ier spoof messages if
it knows the current
freshness values.

0.1 ⇔ 1.1 - A malicious user can
read the data sent
from the application.

The user can read data
that is sent to or from
the application.

0.2 ⇔ 1.1 - A malicious user can
read the data sent
from the application.

The user can read data
that is sent to or from
the application.

68

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.20: Information Disclosure threats against the system, Part 2.

Element Preconditions Threat Impact

1.1 ⇔ 4.1 The malicious user
have access to read
the data flow between
the RTE and SecOC.

A malicious user read
the freshness values.

The user can eas-
ier spoof messages if
it knows the current
freshness values.

1.1 ⇔ 4.1 The malicious user
have access to read
the data flow between
the RTE and SecOC.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

4.1 ⇔ 10.1 The malicious user
have access to read
the data flow between
the SecOC and NvM.

A malicious user read
the freshness values.

The user can eas-
ier spoof messages if
it knows the current
freshness values.

4.1 ⇔ 6.1 The malicious user
have access to read
the data flow between
the SecOC and CAL.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

6.1 ⇔ 6.2 The malicious user
have access to read
the data flow between
CAL and CPL.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

6.1 ⇔ 6.3 The malicious user
have access to read
the data flow between
CAL and CAL buffer.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

6.2 ⇔ 6.3 The malicious user
have access to read
the data flow between
CPL and CAL buffer.

A malicious user read
the encryption keys.

The user can spoof
messages and get them
authenticated and ver-
ified.

69

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.21: Denial of Service threats against the system, Part 1.

Element Preconditions Threat Impact

1.1 A malicious user flood
the RTE with mes-
sages from or to the
applications.

The RTE get over-
loaded and can’t han-
dle new requests.

None of the applica-
tions on the ECU will
work.

2.1 A malicious user flood
the COM module with
messages.

The COM module is
flooded with requests
and stops working.

The Applications will
not be able to com-
municate with other
ECUs.

3.1 A malicious user flood
the PduR with pack-
ets.

The PduR module is
flooded with requests
and stops working.

The Applications will
not be able to com-
municate with other
ECUs.

4.1 A malicious user flood
the SecOC with re-
quests.

The SecOC module is
flooded with requests
and stops working.

The ECU cant handle
packets that require
authentication or veri-
fication. The ECU can
only handle unsecured
packets.

5.1 A malicious user flood
the CanIF with pack-
ets.

The CanIF module is
flooded with requests
and stops working.

The Applications will
not be able to com-
municate with other
ECUs over CAN.

6.1 A malicious user flood
the CAL module with
requests.

The CAL module is
flooded with requests
and stops working.

The ECU cant handle
packets that require
authentication or veri-
fication. The ECU can
only handle unsecured
packets.

6.2 A malicious user flood
the CPL module with
requests.

The CPL module is
flooded with requests
and stops working.

The ECU cant handle
packets that require
authentication or veri-
fication. The ECU can
only handle unsecured
packets.

70

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.22: Denial of Service threats against the system, Part 2.

Element Preconditions Threat Impact

7.1 A malicious user flood
the CAN network with
packets, overloading
the CAN module.

The CAN network get
flooded with messages
and stops working.

The ECU wont be able
to communicate with
other ECUs or sensors
connected to the CAN
network.

1.2 A malicious user flood
the RTE with trans-
form requests.

The transform buffer
is flooded with data
and stops working.

The transform func-
tionality of the RTE
will fail.

2.2 A malicious user flood
the COM module with
messages.

The shadow buffer is
flooded with data and
stops working.

The Applications will
not be able to com-
municate with other
ECUs.

2.3 A malicious user flood
the COM module with
messages.

The I-PDU buffer is
flooded with data and
stops working.

The Applications will
not be able to com-
municate with other
ECUs.

2.4 A malicious user flood
the COM module with
messages.

The L-PDU buffer is
flooded with data and
stops working.

The Applications will
not be able to com-
municate with other
ECUs.

2.5 A malicious user flood
the COM module with
messages.

The Transmit buffer is
flooded with data and
stops working.

The Applications will
not be able to com-
municate with other
ECUs.

3.2 A malicious user flood
the PduR with pack-
ets.

The IPDU buffer is
flooded with data and
stops working.

The PduR can no
longer work as a gate-
way between different
networks.

4.2 A malicious ECU
flood the system with
packets to be verified.

The input buffer for
SecOC is flooded with
data and stops work-
ing.

SecOC can’t verify
any packets and the
incoming packets is
dropped.

4.3 A malicious applica-
tion flood the system
with packets to be au-
thenticated.

The output buffer for
SecOC is flooded with
data and stops work-
ing.

SecOC can’t authenti-
cate any packets and
the outgoing packets is
dropped.

71

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.23: Denial of Service threats against the system, part 3.

Element Preconditions Threat Impact

5.2 A malicious user flood
the CanIF with pack-
ets.

The Transmit buffer is
flooded with data and
stops working.

The ECU can no
longer send messages
on the CAN network.

6.3 A malicious user flood
the CAL module with
messages that over-
load the CAL buffer.

The CAL buffer is
flooded with data and
stops working.

The ECU cant handle
packets that require
authentication or veri-
fication. The ECU can
only handle unsecured
packets.

7.2 A malicious user flood
the CAN module
with messages that
overload the hardware
buffer.

The hardware buffer is
flooded with data and
stops working.

The CAN module
can’t write packets
to the buffer and will
stop working.

10.1 A malicious user flood
the NvM with requests
to overload it.

The NvM module is
overloaded and stops
handling requests.

SecOC can’t read or
write freshness values
to persistent memory.

0.1 ⇔ 1.1 A malicious user flood
the connection be-
tween the application
and the RTE.

The connection be-
tween the application
and the RTE get over-
loaded.

The specific applica-
tion will fail.

0.2 ⇔ 1.1 A malicious user flood
the connection be-
tween the application
and the RTE.

The connection be-
tween the application
and the RTE get over-
loaded.

The specific applica-
tion will fail.

1.1 ⇔ 2.1 A malicious user
flood the connection
between the RTE and
the COM.

The connection be-
tween the RTE and
the COM modules get
overloaded.

The ECU wont be able
to communicate with
other ECUs or sensors.

1.1 ⇔ 1.2 A malicious user flood
the RTE with trans-
form requests.

The connection be-
tween the RTE and
the transform buffer
get overloaded.

The transform func-
tionality of the RTE
will fail.

72

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.24: Denial of Service threats against the system, Part 4.

Element Preconditions Threat Impact

1.1 ⇔ 4.1 A malicious user flood
the RTE with SecOC
requests.

The connection be-
tween the RTE and
SecOC get overloaded.

The RTE wont be
able to provide Key &
counter management
services to the applica-
tions.

2.1 ⇔ 2.2 A malicious user flood
the COM module with
messages.

The connection be-
tween the COM mod-
ule and the shadow
buffer is overloaded.

The Applications will
not be able to com-
municate with other
ECUs.

2.1 ⇔ 2.3 A malicious user flood
the COM module with
messages.

The connection be-
tween the COM mod-
ule and the I-PDU
buffer is overloaded.

The Applications will
not be able to com-
municate with other
ECUs.

2.1 ⇔ 2.4 A malicious user flood
the COM module with
messages.

The connection be-
tween the COM mod-
ule and the L-PDU
buffer is overloaded.

The Applications will
not be able to com-
municate with other
ECUs.

2.1 ⇔ 2.5 A malicious user flood
the COM module with
messages.

The connection be-
tween the COM mod-
ule and the Transmit
buffer is overloaded.

The Applications will
not be able to com-
municate with other
ECUs.

2.1 ⇔ 3.1 A malicious user flood
the connection be-
tween the COM and
PduR module.

The connection be-
tween the COM and
PduR module is over-
loaded.

The ECU can no
longer send messages
on the CAN network.

3.1 ⇔ 3.2 A malicious user flood
the PduR with gate-
way requests.

The connection be-
tween the PduR and
the IPDU buffer is
overloaded.

The PduR can no
longer work as a gate-
way between different
networks.

3.1 ⇔ 4.1 A malicious user flood
the PduR with re-
quests to the SecOC
module.

The connection be-
tween the PduR and
SecOC modules is
overloaded.

The ECU cant handle
packets that require
authentication or veri-
fication. The ECU can
only handle unsecured
packets.

73

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.25: Denial of Service threats against the system, part 5.

Element Preconditions Threat Impact

3.1 ⇔ 5.1 A malicious user
flood the CanIF
with packets.

The connection be-
tween the PduR and
CanIF modules is
overloaded.

The ECU can no
longer send messages
on the CAN network.

4.1 ⇔ 4.2 A malicious user
flood SecOC with
messages to verify.

The connection be-
tween SecOC and
the input buffer is
overloaded.

SecOC can’t verify
any packets and the
incoming packets is
dropped.

4.1 ⇔ 4.3 A malicious user
flood SecOC with
messages to authen-
ticate.

The connection be-
tween SecOC and
the output buffer is
overloaded.

SecOC can’t authen-
ticate any packets
and the outgoing
packets is dropped.

4.1 ⇔ 10.1 A malicious user
flood SecOC with re-
quests to write/read
from NvM.

The connection be-
tween SecOC and
NvM is overloaded.

SecOC can’t
load/store the
freshness values
from the persistent
memory if this hap-
pens during start up
or shutdown.

4.1 ⇔ 6.1 A malicious user
flood SecOC with
messages to verify or
authenticate.

The connection be-
tween SecOC and
CAL is overloaded.

The ECU cant han-
dle packets that re-
quire authentication
or verification. The
ECU can only handle
unsecured packets.

5.1 ⇔ 5.2 A malicious user
flood CanIF with
messages to send.

The connection be-
tween CanIF and the
Transmit buffer is
overloaded.

The ECU can no
longer send messages
on the CAN network.

5.1 ⇔ 7.1 A malicious user
flood CanIF with
messages to send.

The connection
between CanIF and
CAN is overloaded.

The Applications
will not be able to
communicate with
other ECUs over
CAN.

74

APPENDIX A. STRIDE-PER-ELEMENT THREATS

Table A.26: Denial of Service threats against the system, part 6.

Element Preconditions Threat Impact

6.1 ⇔ 6.2 A malicious user flood
SecOC with messages
to verify or authenti-
cate.

The connection be-
tween CAL and CPL
is overloaded.

The ECU cant handle
packets that require
authentication or veri-
fication. The ECU can
only handle unsecured
packets.

6.1 ⇔ 6.3 A malicious user flood
SecOC with messages
to verify or authenti-
cate.

Connection between
the CAL module and
the CAL buffer is
overloaded.

The ECU cant autho-
rize or verify packets.

6.2 ⇔ 6.3 A malicious user flood
SecOC with messages
to verify or authenti-
cate.

Connection between
the CPL module and
the CAL buffer is
overloaded.

The ECU cant autho-
rize or verify packets.

7.1 ⇔ 7.2 A malicious user flood
the CAN module with
messages.

Connection between
the hardware buffer
and the CAN module
is overloaded.

The CAN module
can’t write packets
to the buffer and will
stop working.

7.1 ⇔ 8.1 A malicious user have
access to the CAN net-
work and flood it with
messages.

The CAN connection
from the ECU is over-
loaded.

The ECU can’t com-
municate with other
ECUs.

7.1 ⇔ 8.2 A malicious user have
access to the CAN net-
work and flood it with
messages.

The CAN connection
from the ECU is over-
loaded.

The ECU can’t com-
municate with other
ECUs.

75

B
STRIDE-per-Interaction threats

The cells that are marked grey are false positives threats.

Table B.1: STRIDE-per-Interaction table: Threat Applicability

ELEMENT INTERACTION S T R I D E

1 Process (7.1 CAN) Process sends output to
external interactor (8.1
External User)

2 Process receives input
to external interactor
(8.1 External User)

X X X X

3 Process sends output to
external interactor (8.2
ECU)

4 Process receives input
to external interactor
(8.2 ECU)

X X X X

5 Process has outbound
data flow to datastore
(7.2 HW buffers)

6 Process has inbound
data flow from datas-
tore (7.2 HW buffers)

76

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

7 Process has sends out-
put to another process
(5.1 CANIF)

X

8 Process has inbound
data flow from a process
(5.1 CANIF)

X

9 Data store (7.2 HW
Buffers)

Process has outbound
data flow to datastore
(7.2 HW buffers)

X

10 Process has inbound
data flow from datas-
tore (7.2 HW buffers)

X

11 Process (5.1 CANIF) Process has sends out-
put to another process
(7.1 CAN)

X

12 Process has sends out-
put to another process
(3.1 PduR)

X

13 Process has inbound
data flow from a process
(7.1 CAN)

X

14 Process has inbound
data flow from a
process(3.1 PduR)

X

15 Process has outbound
data flow to datastore
(5.2 Transmit buffer)

16 Process has inbound
data flow from data-
store (5.2 Transmit
buffer)

17 Data store (5.2 Trans-
mitBuffer)

Process has outbound
data flow to datastore
(5.2 Transmit buffer)

X

77

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

18 Process has inbound
data flow from data-
store (5.2 Transmit
buffer)

X

19 Process (3.1 PduR) Process has sends out-
put to another process
(5.1 CANIF)

X

20 Process has sends out-
put to another process
(4.1 SecOC)

X

21 Process has sends out-
put to another process
(2.1 COM)

X

22 Process has inbound
data flow from a
process(5.1 CanIf)

X

23 Process has inbound
data flow from a process
(4.1 SecOC)

X X

24 Process has inbound
data flow from a
process(2.1 COM)

X

25 Process has outbound
data flow to datastore
(3.2 I-PDU buffer)

X

26 Process has inbound
data flow from datas-
tore (3.2 I-PDU buffer)

X

27 Data store (3.2 I-PDU
Buffer)

Process has outbound
data flow to datastore
(3.2 I-PDU buffer)

X

28 Process has inbound
data flow from datas-
tore (3.2 I-PDU buffer)

X

78

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

29 Process (4.1 SecOC) Process has sends out-
put to another process
(3.1 PduR)

X X

30 Process has sends out-
put to another process
(6.1 CAL)

X X

31 Process has inbound
data flow from a
process(3.1 PduR)

X

32 Process has inbound
data flow from a process
(6.1 CAL)

X

33 Process has outbound
data flow to datastore
(4.2 Input Buffer)

34 Process has outbound
data flow to datastore
(4.3 Output Buffer)

35 Process has outbound
data flow to datastore
(10.1 NvM)

X X X

36 Process has inbound
data flow from datas-
tore (4.2 Input Buffer)

37 Process has inbound
data flow from data-
store (4.3 Output
Buffer)

38 Process has inbound
data flow from datas-
tore (10.1 NvM)

X X X X

39 Data store (10.1 NvM) Process has inbound
data flow from datas-
tore (10.1 NvM)

X

79

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

40 Process has outbound
data flow to datastore
(10.1 NvM)

X

41 Data store (4.2 Input
Buffer)

Process has outbound
data flow to datastore
(4.2 Input Buffer)

X

42 Process has inbound
data flow from datas-
tore (4.2 Input Buffer)

X

43 Data store (4.3 Output
Buffer)

Process has outbound
data flow to datastore
(4.3 Output Buffer)

X

44 Process has inbound
data flow from data-
store (4.3 Output
Buffer)

X

45 Process (6.1 CAL) Process has sends out-
put to another process
(6.2 CPL)

X

46 Process has sends out-
put to another process
(4.1 SecOC)

X

47 Process has inbound
data flow from a
process(6.2 CPL)

X X

48 Process has inbound
data flow from a process
(4.1 SecOC)

X X

49 Process has outbound
data flow to datastore
(6.3 CalBuffer)

X X

50 Process has inbound
data flow from datas-
tore (6.3 CalBuffer)

X

80

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

51 Data store (6.3 Cal
Buffer)

Process has outbound
data flow to datastore
(6.3 CalBuffer)

X

52 Process has inbound
data flow from datas-
tore (6.3 CalBuffer)

X

53 Process (6.2 CPL) Process has sends out-
put to another process
(6.1 CAL)

X X

54 Process has inbound
data flow from a
process(6.1 CAL)

X

55 Process has outbound
data flow to datastore
(6.3 CalBuffer)

X X

56 Process has inbound
data flow from datas-
tore (6.3 CalBuffer)

X

57 Process (2.1 COM) Process has outbound
data flow to datastore
(2.2 ShadowBuffer)

X

58 Process has inbound
data flow from datas-
tore (2.2 ShadowBuffer)

X

59 Process has outbound
data flow to datastore
(2.3 I-PDU Buffer)

X

60 Process has inbound
data flow from datas-
tore (2.3 I-PDU Buffer)

X

61 Process has outbound
data flow to datastore
(2.4 L-PDU Buffer)

X

81

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

62 Process has inbound
data flow from data-
store (2.4 L-PDU
Buffer)

X

63 Process has sends out-
put to another process
(1.1 RTE)

X

64 Process has sends out-
put to another process
(3.1 PduR)

X

65 Process has inbound
data flow from a
process(1.1 RTE)

X

66 Process has inbound
data flow from a process
(3.1 PduR)

X

67 Process has outbound
data flow to datastore
(2.5 Transmit Buffer)

X

68 Process has inbound
data flow from data-
store (2.5 Transmit
Buffer)

X

69 Data store (2.5 Trans-
mitBuffer)

Process has outbound
data flow to datastore
(2.5 Transmit Buffer)

X

70 Process has inbound
data flow from data-
store (2.5 Transmit
Buffer)

X

71 Data store (2.2 Shadow
Buffers)

Process has outbound
data flow to datastore
(2.2 ShadowBuffer)

X

72 Process has inbound
data flow from datas-
tore (2.2 ShadowBuffer)

X

82

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

73 Data store (2.4 L-PDU
Buffer)

Process has outbound
data flow to datastore
(2.4 L-PDU Buffer)

X

74 Process has inbound
data flow from data-
store (2.4 L-PDU
Buffer)

X

75 Data store (2.3 I-PDU
Buffer)

Process has outbound
data flow to datastore
(2.3 I-PDU Buffer)

X

76 Process has inbound
data flow from datas-
tore (2.3 I-PDU Buffer)

X

77 Process (1.1 RTE) Process receives input
to external interactor
(0.1 E2E with protec-
tion)

X X X X X

78 Process receives input
to external interactor
(0.2 E2E without pro-
tection)

X X X X X X

79 Process sends output to
external interactor (0.1
E2E with protection)

X X

80 Process sends output
to external interactor
(0.2 E2E without pro-
tection)

X X

81 Process has sends out-
put to another process
(2.1 COM)

X

82 Process has inbound
data flow from a
process(2.1 COM)

83

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

83 Process has outbound
data flow to datastore
(2.5 Transform Buffer)

X

84 Process has inbound
data flow from data-
store (2.5 Transform
Buffer)

X

85 Data store (1.2 Trans-
form Buffer)

Process has outbound
data flow to datastore
(2.5 Transform Buffer)

X

86 Process has inbound
data flow from data-
store (2.5 Transform
Buffer)

X

87 External Interactor (0.1
Application with E2E
Protection)

External interactor gets
input from process.

X

88 External interactor
passes input to process.

X

89 External Interactor (0.2
Application without
E2E Protection)

External interactor gets
input from process.

X

90 External interactor
passes input to process.

X

91 External Interactor (8.1
External user)

External interactor gets
input from process.

92 External interactor
passes input to process.

93 External Interactor (8.2
ECU)

External interactor gets
input from process.

94 External interactor
passes input to process.

95 Data flow (Re-
quest/Receive data)

Crosses machine bound-
ary.

X

84

APPENDIX B. STRIDE-PER-INTERACTION THREATS

Table B.1: STRIDE-per-Interaction table: Threat Applicability (continued)

ELEMENT INTERACTION S T R I D E

96 Data flow (Com-
mands/Responses)

Crosses machine bound-
ary.

X X X

85

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

1
P

ro
ce

ss
(7

.1
C

A
N

)
P

ro
ce

ss
se

n
d
s

ou
tp

u
t

to
ex

te
r-

n
al

in
te

ra
ct

or
(8

.1
E

x
te

rn
al

U
se

r)

2
P

ro
ce

ss
re

ce
iv

es
in

p
u
t

to
ex

te
rn

al
in

te
ra

ct
or

(8
.1

E
x
te

rn
al

U
se

r)

D
at

afl
ow

is
ta

m
-

p
er

ed
b
y

an
at

ta
ck

er
w

h
ic

h
le

ad
to

in
-

fo
rm

at
io

n
d
is

cl
os

u
re

b
y

C
A

N
.

C
A

N
d
en

ie
s

ge
tt

in
g

d
at

a
fr

om
E

x
te

rn
al

U
se

r.

C
A

N
cr

as
h

es
/s

to
p
s

d
u

e
to

E
x
te

rn
al

U
se

r
in

-
te

ra
ct

io
n
.

C
A

N
im

-
p

er
so

n
a
te

E
x
te

rn
a
l

U
se

r
a
n
d

u
se

it
s

p
ri

v
il
eg

e.

3
P

ro
ce

ss
se

n
d

s
ou

tp
u
t

to
ex

te
r-

n
al

in
te

ra
ct

or
(8

.2
E

C
U

)

86

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

4
P

ro
ce

ss
re

ce
iv

es
in

p
u
t

to
ex

te
rn

al
in

te
ra

ct
or

(8
.2

E
C

U
)

D
at

afl
ow

is
ta

m
-

p
er

ed
b
y

an
at

ta
ck

er
w

h
ic

h
le

ad
to

in
-

fo
rm

at
io

n
d
is

cl
os

u
re

b
y

C
A

N
.

C
A

N
d
en

ie
s

ge
tt

in
g

d
at

a
fr

om
E

C
U

.

C
A

N
cr

as
h

es
/

st
op

s
d
u

e
to

E
C

U
in

te
ra

c-
ti

on
.

C
A

N
im

-
p

er
so

n
a
te

E
C

U
a
n

d
u
se

it
s

p
ri

v
il
eg

e.

5
P

ro
ce

ss
h

as
ou

t-
b

ou
n
d

d
at

a
fl

ow
to

d
at

as
to

re
(7

.2
H

W
b

u
ff

er
s)

6
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(7

.2
H

W
b

u
ff

er
s)

7
P

ro
ce

ss
h

as
se

n
d
s

ou
tp

u
t

to
an

-
ot

h
er

p
ro

ce
ss

(5
.1

C
A

N
IF

)

C
a
n
if

is
im

p
er

-
so

n
a
te

C
A

N
a
n
d

u
se

it
s

p
ri

v
il
eg

e.

87

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

8
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(5
.1

C
A

N
IF

)

C
A

N
is

im
p

er
-

so
n
a
te

C
a
n
if

a
n
d

u
se

it
s

p
ri

v
il
eg

e.

9
D

at
a

st
or

e
(7

.2
H

W
B

u
ff

er
s)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(7

.2
H

W
b

u
ff

er
s)

H
W

b
u

ff
er

ca
n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

10
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(7

.2
H

W
b

u
ff

er
s)

H
W

b
u

ff
er

s
re

ve
al

s
in

fo
rm

a-
ti

on
.

11
P

ro
ce

ss
(5

.1
C

A
N

IF
)

P
ro

ce
ss

h
as

se
n
d
s

ou
tp

u
t

to
an

-
ot

h
er

p
ro

ce
ss

(7
.1

C
A

N
)

C
A

N
im

-
p

er
so

n
a
te

C
a
n
if

a
n
d

u
se

it
s

p
ri

v
il
eg

e.

88

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

12
P

ro
ce

ss
h
as

se
n
d

s
ou

tp
u
t

to
an

-
ot

h
er

p
ro

ce
ss

(3
.1

P
d

u
R

)

P
d

u
R

im
-

p
er

so
n
a
te

C
a
n
If

a
n
d

u
se

it
s

p
ri

v
il
eg

e.

13
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(7
.1

C
A

N
)

C
a
n
if

im
-

p
er

so
n
a
te

C
A

N
a
n
d

u
se

it
s

p
ri

v
il
eg

e.

14
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(3
.1

P
d

u
R

)

C
a
n
if

im
-

p
er

so
n
a
te

P
d

u
R

a
n

d
u
se

it
s

p
ri

v
il
eg

e.

15
P

ro
ce

ss
h

as
ou

t-
b

ou
n
d

d
at

a
fl

ow
to

d
at

as
to

re
(5

.2
T

ra
n
sm

it
b
u

ff
er

)

16
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(5

.2
T

ra
n
sm

it
b
u

ff
er

)

89

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

17
D

at
a

st
or

e
(5

.2
T

ra
n

s-
m

it
B

u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(5

.2
T

ra
n
sm

it
b
u

ff
er

)

T
ra

n
sm

it
b
u

ff
er

ca
n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

18
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(5

.2
T

ra
n
sm

it
b
u

ff
er

)

T
ra

n
sm

it
b
u

ff
er

re
ve

al
s

in
fo

rm
a-

ti
on

.

19
P

ro
ce

ss
(3

.1
P

d
u
R

)
P

ro
ce

ss
h

as
se

n
d
s

ou
tp

u
t

to
an

-
ot

h
er

p
ro

ce
ss

(5
.1

C
A

N
IF

)

C
a
n
if

im
-

p
er

so
n
a
te

P
d

u
R

a
n

d
u
se

it
s

p
ri

v
il
eg

e.

20
P

ro
ce

ss
h

as
se

n
d
s

ou
tp

u
t

to
an

-
ot

h
er

p
ro

ce
ss

(4
.1

S
ec

O
C

)

S
ec

O
C

im
p

er
-

so
n
a
te

P
d

u
R

a
n

d
u
se

it
s

p
ri

v
il
eg

e.

90

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

21
P

ro
ce

ss
h
as

se
n
d

s
ou

tp
u
t

to
an

-
ot

h
er

p
ro

ce
ss

(2
.1

C
O

M
)

C
O

M
im

-
p

er
so

n
a
te

P
d

u
R

a
n

d
u
se

it
s

p
ri

v
il
eg

e.

22
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(5
.1

C
an

If
)

P
d

u
R

im
-

p
er

so
n
a
te

C
a
n
If

a
n
d

u
se

it
s

p
ri

v
il
eg

e.

23
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(4
.1

S
ec

O
C

)

T
h
e

co
n
te

n
ts

ca
n

b
e

re
ve

al
ed

in
ca

se
of

w
ea

k
au

th
en

-
ti

ca
ti

on
(e

as
il
y

gu
es

sa
b

le
cr

ed
en

-
ti

al
s)

P
d

u
R

im
-

p
er

so
n
a
te

S
ec

O
C

an
d

u
se

it
s

p
ri

v
i-

le
g
e.

91

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

24
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(2
.1

C
O

M
)

P
d

u
R

im
-

p
er

so
n
a
te

C
O

M
a
n
d

u
se

it
s

p
ri

v
il
eg

e.

25
P

ro
ce

ss
h

as
ou

t-
b

ou
n
d

d
at

a
fl

ow
to

d
at

as
to

re
(3

.2
I-

P
D

U
b
u

ff
er

)

I-
P

D
U

b
u

ff
er

is
sp

o
of

ed
,

an
d

P
d
u
R

w
ri

te
s

in
w

ro
n

g
p
la

ce
.

26
P

ro
ce

ss
h
as

in
b

ou
n

d
d

at
a

fl
ow

fr
om

d
at

as
-

to
re

(3
.2

I-
P

D
U

b
u

ff
er

)

I-
P

D
U

b
u

ff
er

is
sp

o
of

ed
,

w
ro

n
g

d
at

a
is

w
ri

tt
en

in
to

th
e

b
u

ff
er

.

27
D

at
a

st
or

e
(3

.2
I-

P
D

U
B

u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(3

.2
I-

P
D

U
b
u

ff
er

)

I-
P

D
U

b
u

ff
er

ca
n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

92

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

28
P

ro
ce

ss
h
as

in
b

ou
n

d
d

at
a

fl
ow

fr
om

d
at

as
-

to
re

(3
.2

I-
P

D
U

b
u

ff
er

)

I-
P

D
U

b
u

ff
er

re
ve

al
s

in
fo

rm
a-

ti
on

.

29
P

ro
ce

ss
(4

.1
S
ec

O
C

)

P
ro

ce
ss

h
as

se
n
d
s

ou
tp

u
t

to
an

-
ot

h
er

p
ro

ce
ss

(3
.1

P
d

u
R

)

T
h
e

co
n
te

n
ts

ca
n

b
e

re
ve

al
ed

in
ca

se
of

w
ea

k
au

th
en

-
ti

ca
ti

on
(e

as
il
y

gu
es

sa
b

le
cr

ed
en

-
ti

al
s)

P
d

u
R

im
-

p
er

so
n
a
te

S
ec

O
C

an
d

u
se

it
s

p
ri

v
i-

le
g
e.

93

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

30
P

ro
ce

ss
h
as

se
n
d

s
ou

tp
u
t

to
an

ot
h

er
p
ro

ce
ss

(6
.1

C
A

L
)

T
h
e

co
n
te

n
ts

ca
n

b
e

re
ve

al
ed

in
ca

se
of

w
ea

k
au

th
en

-
ti

ca
ti

on
(e

as
il
y

gu
es

sa
b

le
cr

ed
en

-
ti

al
s)

C
A

L
ca

n
im

p
er

-
so

n
a
te

S
ec

O
C

an
d

u
se

it
s

p
ri

v
i-

le
g
es

.

31
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(3
.1

P
d

u
R

)

S
ec

O
C

im
p

er
-

so
n
a
te

P
d

u
R

a
n

d
u
se

it
s

p
ri

v
il
eg

e.

32
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(6
.1

C
A

L
)

S
ec

O
C

im
p

er
-

so
n
a
te

C
A

L
a
n
d

u
se

it
s

p
ri

v
il
eg

e.

94

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

33
P

ro
ce

ss
h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(4

.2
In

p
u
t

B
u
ff

er
)

34
P

ro
ce

ss
h

as
ou

t-
b

ou
n
d

d
at

a
fl

ow
to

d
at

as
to

re
(4

.3
O

u
tp

u
t

B
u

ff
er

)

35
P

ro
ce

ss
h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(1

0.
1

N
v
M

)

N
v
M

d
en

ie
s

w
ri

ti
n
g

d
at

a
re

-
ce

iv
ed

fr
om

S
ec

O
C

.

T
h
e

d
at

a
fr

om
N

v
M

to
th

e
p
ro

ce
ss

is
sn

iff
ed

b
y

an
at

ta
ck

er
.

S
ec

O
C

is
co

rr
u

p
te

d
b
y

ac
ce

ss
d
en

ie
d

to
N

v
M

.

36
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(4

.2
In

p
u
t

B
u
ff

er
)

37
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(4

.3
O

u
tp

u
t

B
u
ff

er
)

95

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

38
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(1

0.
1

N
v
M

)

S
ec

O
C

d
en

ie
s

re
ce

iv
in

g
d
at

a
fr

om
N

v
M

.

T
h
e

co
n
te

n
t

of
N

v
M

to
S
ec

O
C

is
re

ve
al

ed
b

ec
au

se
of

im
p
ro

p
er

d
at

a
p
ro

-
te

ct
io

n
.

S
ec

O
C

is
co

rr
u

p
te

d
b
y

ac
ce

ss
d
en

ie
d

to
N

v
M

.

N
v
M

is
re

m
o
te

ly
ex

ec
u
ti

n
g

co
d
e

fo
r

S
ec

O
C

.

39
D

at
a

st
or

e
(1

0.
1

N
v
M

)
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(1

0.
1

N
v
M

)

N
v
M

is
co

r-
ru

p
te

d
.

40
P

ro
ce

ss
h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(1

0.
1

N
v
M

)

N
v
M

re
ve

al
s

in
fo

rm
a-

ti
on

.

41
D

at
a

st
or

e
(4

.2
In

p
u
t

B
u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(4

.2
In

p
u
t

B
u
ff

er
)

In
p

u
t

B
u
ff

er
ca

n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

96

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

42
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(4

.2
In

p
u
t

B
u
ff

er
)

In
p

u
t

B
u
ff

er
re

ve
al

s
in

fo
rm

a-
ti

on
.

43
D

at
a

st
or

e
(4

.3
O

u
tp

u
t

B
u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(4

.3
O

u
tp

u
t

B
u

ff
er

)

O
u

tp
u
t

B
u
ff

er
ca

n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

44
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(4

.3
O

u
tp

u
t

B
u
ff

er
)

O
u

tp
u
t

B
u
ff

er
re

ve
al

s
in

fo
rm

a-
ti

on
.

45
P

ro
ce

ss
(6

.1
C

A
L

)
P

ro
ce

ss
h

as
se

n
d
s

ou
tp

u
t

to
an

ot
h

er
p
ro

ce
ss

(6
.2

C
P

L
)

C
P

L
ca

n
im

p
er

-
so

n
a
te

C
A

L
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

97

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

46
P

ro
ce

ss
h
as

se
n
d

s
ou

tp
u
t

to
an

-
ot

h
er

p
ro

ce
ss

(4
.1

S
ec

O
C

)

S
ec

O
C

im
p

er
-

so
n
a
te

C
A

L
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

47
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(6
.2

C
P

L
)

T
h
e

co
n
te

n
ts

ca
n

b
e

re
ve

al
ed

in
ca

se
of

w
ea

k
au

th
en

-
ti

ca
ti

on
(e

as
il
y

gu
es

sa
b

le
cr

ed
en

-
ti

al
s)

C
A

L
ca

n
im

p
er

-
so

n
a
te

C
P

L
a
n

d
u
se

it
s

p
ri

v
il
eg

es

98

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

48
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(4
.1

S
ec

O
C

)

T
h
e

co
n
te

n
ts

ca
n

b
e

re
ve

al
ed

in
ca

se
of

w
ea

k
au

th
en

-
ti

ca
ti

on
(e

as
il
y

gu
es

sa
b

le
cr

ed
en

-
ti

al
s)

S
ec

O
C

im
p

er
-

so
n
a
te

C
A

L
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

49
P

ro
ce

ss
h

as
ou

t-
b

ou
n
d

d
at

a
fl

ow
to

d
at

as
to

re
(6

.3
C

al
B

u
ff

er
)

C
al

-
B

u
ff

er
is

sp
o
of

ed
an

d
C

A
L

w
ri

te
s

in
w

ro
n

g
p
la

ce
.

C
re

-
d
en

ti
al

s
st

or
ed

in
C

al
B

u
ff

er
is

st
ol

en
b

ec
au

se
of

w
ea

k
cr

ed
en

ti
al

st
or

ag
e.

99

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

50
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(6

.3
C

al
B

u
ff

er
)

In
co

rr
ec

t
d
at

a
is

d
el

iv
er

ed
to

C
A

L
fr

om
sp

o
of

ed
C

al
-

B
u
ff

er
.

51
D

at
a

st
or

e
(6

.3
C

al
B

u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(6

.3
C

al
B

u
ff

er
)

C
al

b
u

ff
er

ca
n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

52
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(6

.3
C

al
B

u
ff

er
)

C
al

B
u
ff

er
re

ve
al

s
in

fo
rm

a-
ti

on
.

100

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

53
P

ro
ce

ss
(6

.2
C

P
L

)
P

ro
ce

ss
h

as
se

n
d
s

ou
tp

u
t

to
an

ot
h

er
p
ro

ce
ss

(6
.1

C
A

L
)

T
h
e

co
n
te

n
ts

ca
n

b
e

re
ve

al
ed

in
ca

se
of

w
ea

k
au

th
en

-
ti

ca
ti

on
(e

as
il
y

gu
es

sa
b

le
cr

ed
en

-
ti

al
s)

C
A

L
ca

n
im

p
er

-
so

n
a
te

C
P

L
a
n

d
u
se

it
s

p
ri

v
il
eg

es
.

54
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(6
.1

C
A

L
)

C
P

L
im

-
p

er
so

n
a
te

C
A

L
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

55
P

ro
ce

ss
h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(6

.3
C

al
B

u
ff

er
)

C
re

-
d
en

ti
al

s
st

or
ed

in
C

al
B

u
ff

er
is

st
ol

en
b

ec
au

se
of

w
ea

k
cr

ed
en

ti
al

st
or

ag
e.

C
al

b
u

ff
er

ca
n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

101

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

56
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(6

.3
C

al
B

u
ff

er
)

C
P

L
ge

ts
to

re
ad

th
e

in
fo

rm
a-

ti
on

fr
om

C
al

B
u
ff

er
it

’s
n

ot
au

th
o-

ri
ze

d
to

ge
t.

57
P

ro
ce

ss
(2

.1
C

O
M

)
P

ro
ce

ss
h

as
ou

t-
b

ou
n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.2
S
h

ad
ow

B
u
ff

er
)

S
h

ad
ow

-
B

u
ff

er
is

sp
o
of

ed
an

d
C

O
M

w
ri

te
s

in
w

ro
n

g
p
la

ce
.

58
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.2
S
h
ad

ow
-

B
u
ff

er
)

In
co

rr
ec

t
d
at

a
is

d
el

iv
er

ed
to

C
O

M
fr

om
sp

o
of

ed
S
h

ad
ow

-
B

u
ff

er
.

102

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

59
P

ro
ce

ss
h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.3
I-

P
D

U
B

u
ff

er
)

I-
P

D
U

b
u

ff
er

is
sp

o
of

ed
,

w
ro

n
g

d
at

a
is

w
ri

tt
en

in
to

th
e

b
u

ff
er

.

60
P

ro
ce

ss
h

as
in

b
ou

n
d

d
at

a
fl
ow

fr
om

d
at

as
-

to
re

(2
.3

I-
P

D
U

B
u
ff

er
)

In
co

rr
ec

t
d
at

a
is

d
el

iv
er

ed
to

C
O

M
fr

om
sp

o
of

ed
I-

P
D

U
B

u
ff

er
.

61
P

ro
ce

ss
h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.4
L

-P
D

U
B

u
ff

er
)

L
-P

D
U

B
u
ff

er
is

sp
o
of

ed
an

d
C

O
M

w
ri

te
s

in
w

ro
n

g
p
la

ce
.

103

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

62
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.4
L

-P
D

U
B

u
ff

er
)

In
co

rr
ec

t
d
at

a
is

d
el

iv
er

ed
to

C
O

M
fr

om
sp

o
of

ed
L

-P
D

U
B

u
ff

er
.

63
P

ro
ce

ss
h

as
se

n
d
s

ou
tp

u
t

to
an

ot
h

er
p
ro

ce
ss

(1
.1

R
T

E
)

R
T

E
im

-
p

er
so

n
a
te

C
O

M
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

64
P

ro
ce

ss
h
as

se
n
d

s
ou

tp
u
t

to
an

-
ot

h
er

p
ro

ce
ss

(3
.1

P
d

u
R

)

P
d

u
R

im
-

p
er

so
n
a
te

C
O

M
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

65
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(1
.1

R
T

E
)

C
O

M
im

-
p

er
so

n
a
te

R
T

E
a
n

d
u
se

it
s

p
ri

v
il
eg

es
.

104

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

66
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(3
.1

P
d
u
R

)

C
O

M
im

-
p

er
so

n
a
te

P
d

u
R

a
n

d
u
se

it
s

p
ri

v
il
eg

es
.

67
P

ro
ce

ss
h

as
ou

t-
b

ou
n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.5
T

ra
n
sm

it
B

u
ff

er
)

T
ra

n
sm

it
b
u

ff
er

is
sp

o
of

ed
,

an
d

C
O

M
w

ri
te

s
to

th
e

w
ro

n
g

p
la

ce
.

68
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.5
T

ra
n
sm

it
B

u
ff

er
)

In
co

rr
ec

t
d
at

a
is

d
el

iv
er

ed
to

C
O

M
fr

om
sp

o
of

ed
T

ra
n

sm
it

B
u
ff

er
.

69
D

at
a

st
or

e
(2

.5
T

ra
n

s-
m

it
B

u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.5
T

ra
n
sm

it
B

u
ff

er
)

T
ra

n
sm

it
B

u
ff

er
ca

n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

105

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

70
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.5
T

ra
n
sm

it
B

u
ff

er
)

T
ra

n
sm

it
B

u
ff

er
re

ve
al

s
in

-
fo

rm
at

io
n

71
D

at
a

st
or

e
(2

.2
S
h

ad
ow

B
u
ff

er
s)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.2
S
h

ad
ow

B
u
ff

er
)

S
h

ad
ow

B
u
ff

er
ca

n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

72
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.2
S
h
ad

ow
-

B
u
ff

er
)

S
h

ad
-

ow
B

u
ff

er
re

ve
al

s
in

-
fo

rm
at

io
n

73
D

at
a

st
or

e
(2

.4
L

-P
D

U
B

u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.4
L

-P
D

U
B

u
ff

er
)

L
-P

D
U

B
u
ff

er
ca

n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

106

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

74
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.4
L

-P
D

U
B

u
ff

er
)

L
-P

D
U

b
u

ff
er

re
ve

al
s

in
-

fo
rm

at
io

n

75
D

at
a

st
or

e
(2

.3
I-

P
D

U
B

u
ff

er
)

P
ro

ce
ss

h
as

ou
t-

b
ou

n
d

d
at

a
fl

ow
to

d
at

as
to

re
(2

.3
I-

P
D

U
B

u
ff

er
)

I-
P

D
U

B
u
ff

er
ca

n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

76
P

ro
ce

ss
h
as

in
b

ou
n

d
d

at
a

fl
ow

fr
om

d
at

as
-

to
re

(2
.3

I-
P

D
U

B
u
ff

er
)

I-
P

D
U

b
u

ff
er

re
ve

al
s

in
-

fo
rm

at
io

n

77
P

ro
ce

ss
(1

.1
R

T
E

)
P

ro
ce

ss
re

ce
iv

es
in

p
u
t

to
ex

te
r-

n
al

in
te

ra
ct

or
(0

.1
E

2E
w

it
h

p
ro

te
ct

io
n

)

In
fo

r-
m

at
io

n
d
is

cl
os

u
re

b
y

E
2E

w
it

h
p
ro

-
te

ct
io

n
w

h
en

R
T

E
is

sp
o
of

ed
.

D
at

a
fl

ow
ge

t
u
n

-
p
ro

te
ct

ed
si

gn
al

s
ta

m
p

er
ed

w
it

h
b
y

an
at

ta
ck

er
.

R
T

E
d
is

cl
ai

m
s

re
ce

iv
in

g
d
at

a
fr

om
”E

2E
w

it
h

p
ro

-
te

ct
io

n
”.

R
T

E
cr

as
h

es
/s

to
p
s

d
u

e
to

E
2E

w
it

h
p
ro

-
te

ct
io

n
in

te
ra

c-
ti

on
.

R
T

E
im

p
er

so
n
-

at
e

”E
2
E

w
it

h
o
u

t
p
ro

te
c-

ti
o
n

”
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

107

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

78
P

ro
ce

ss
re

ce
iv

es
in

p
u
t

to
ex

te
rn

al
in

te
ra

ct
or

(0
.2

E
2E

w
it

h
ou

t
p
ro

te
ct

io
n

)

In
fo

r-
m

at
io

n
d
is

cl
os

u
re

b
y

E
2E

w
it

h
ou

t
p
ro

te
c-

ti
on

w
h
en

R
T

E
is

sp
o
of

ed
.

D
at

afl
ow

ge
t

u
n

-
p
ro

te
ct

ed
si

gn
al

s
th

at
is

ta
m

p
er

ed
w

it
h

b
y

an
at

ta
ck

er
.

R
T

E
d
is

cl
ai

m
s

re
ce

iv
in

g
d
at

a
fr

om
”E

2E
w

it
h

ou
t

p
ro

te
c-

ti
on

”.

U
n
p

ro
te

ct
ed

si
gn

al
s

is
sn

iff
ed

b
y

an
at

ta
ck

er
.

R
T

E
is

in
te

r-
ru

p
te

d
of

an
”e

x
te

rn
al

ag
en

t”
.

R
T

E
cr

as
h

es
an

d
in

te
r-

ru
p
t

th
e

d
at

a
fl

ow
.

”E
2
E

w
it

h
o
u

t
p
ro

te
c-

ti
o
n

”
p
a
ss

es
d
a
ta

th
a
t

al
lo

w
it

to
ch

a
n

g
e

fl
ow

o
f

ex
ec

u
ti

o
n

of
R

T
E

.
R

T
E

a
ls

o
im

p
er

so
n
-

at
e

”E
2
E

w
it

h
o
u

t
p
ro

te
c-

ti
o
n

”
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

79
P

ro
ce

ss
se

n
d
s

ou
tp

u
t

to
ex

-
te

rn
al

in
te

ra
ct

or
(0

.1
E

2E
w

it
h

p
ro

te
ct

io
n

)

”E
2E

w
it

h
p
ro

-
te

ct
io

n
”

d
is

cl
ai

m
s

re
ce

v
in

g
d
at

a
fr

om
R

T
E

.

R
T

E
is

in
te

r-
ru

p
te

d
of

an
”e

x
te

rn
al

ag
en

t”
.

108

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

80
P

ro
ce

ss
se

n
d

s
ou

tp
u
t

to
ex

-
te

rn
al

in
te

ra
ct

or
(0

.2
E

2E
w

it
h

ou
t

p
ro

te
ct

io
n

)

R
T

E
is

in
te

r-
ru

p
te

d
of

an
”e

x
te

rn
al

ag
en

t”
.

C
O

M
im

-
p

er
so

n
a
te

R
T

E
a
n

d
u
se

it
s

p
ri

v
il
eg

es
.

81
P

ro
ce

ss
h

as
se

n
d
s

ou
tp

u
t

to
an

-
ot

h
er

p
ro

ce
ss

(2
.1

C
O

M
)

R
T

E
im

-
p

er
so

n
a
te

C
O

M
a
n
d

u
se

it
s

p
ri

v
il
eg

es
.

82
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
a

p
ro

ce
ss

(2
.1

C
O

M
)

83
P

ro
ce

ss
h

as
ou

tb
ou

n
d

d
at

a
fl
ow

to
d
at

as
to

re
(2

.5
T

ra
n
sf

or
m

B
u
ff

er
)

T
ra

n
s-

fo
rm

b
u

ff
er

is
sp

o
of

ed
an

d
R

T
E

w
ri

te
s

in
w

ro
n

g
p
la

ce
.

109

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

84
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.5
T

ra
n
sf

or
m

B
u
ff

er
)

In
co

rr
ec

t
d
at

a
is

d
el

iv
er

ed
to

R
T

E
fr

om
sp

o
of

ed
T

ra
n

s-
fo

rm
B

u
ff

er
.

85
D

at
a

st
or

e
(1

.2
T

ra
n

s-
fo

rm
B

u
ff

er
)

P
ro

ce
ss

h
as

ou
tb

ou
n

d
d

at
a

fl
ow

to
d
at

as
to

re
(2

.5
T

ra
n
sf

or
m

B
u
ff

er
)

T
ra

n
sf

or
m

B
u
ff

er
ca

n
n
ot

b
e

w
ri

tt
en

to
(d

ea
d

-
lo

ck
/t

im
eo

u
t)

.

86
P

ro
ce

ss
h
as

in
-

b
ou

n
d

d
at

a
fl

ow
fr

om
d
at

as
to

re
(2

.5
T

ra
n
sf

or
m

B
u
ff

er
)

T
ra

n
s-

fo
rm

B
u
ff

er
re

ve
al

s
in

fo
rm

a-
ti

on
.

110

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

87
E

x
te

rn
al

In
te

ra
ct

or
(0

.1
A

p
-

p
li
ca

ti
on

w
it

h
E

2E
P

ro
te

ct
io

n
)

E
x
te

rn
al

in
te

r-
ac

to
r

ge
ts

in
p

u
t

fr
om

p
ro

ce
ss

.

A
p
p

li
ca

-
ti

on
w

it
h

E
2E

P
ro

-
te

ct
io

n
is

co
n
fu

se
d

ab
ou

t
th

e
id

en
-

ti
ty

w
it

h
R

T
E

.

88
E

x
te

rn
al

in
te

ra
c-

to
r

p
as

se
s

in
p
u

t
to

p
ro

ce
ss

.

R
T

E
is

co
n
fu

se
d

ab
ou

t
th

e
id

en
ti

ty
of

th
e

A
p
-

p
li
ca

ti
on

w
it

h
E

2E
P

ro
te

c-
ti

on
.

111

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

89
E

x
te

rn
al

In
te

ra
ct

or
(0

.2
A

p
-

p
li
ca

ti
on

w
it

h
ou

t
E

2E
P

ro
-

te
ct

io
n
)

E
x
te

rn
al

in
te

r-
ac

to
r

ge
ts

in
p

u
t

fr
om

p
ro

ce
ss

.

R
T

E
is

co
n
fu

se
d

ab
ou

t
th

e
id

en
ti

ty
of

th
e

A
p
-

p
li
ca

ti
on

w
it

h
ou

t
E

2E
P

ro
-

te
ct

io
n
.

90
E

x
te

rn
al

in
te

ra
c-

to
r

p
as

se
s

in
p
u

t
to

p
ro

ce
ss

.

A
p
p

li
-

ca
ti

on
w

it
h
ou

t
E

2E
P

ro
-

te
ct

io
n

is
co

n
fu

se
d

ab
ou

t
th

e
id

en
-

ti
ty

w
it

h
R

T
E

.

91
E

x
te

rn
al

In
te

ra
ct

or
(8

.1
E

x
te

r-
n
al

u
se

r)

E
x
te

rn
al

in
te

r-
ac

to
r

ge
ts

in
p

u
t

fr
om

p
ro

ce
ss

.

92
E

x
te

rn
al

in
te

ra
c-

to
r

p
as

se
s

in
p
u

t
to

p
ro

ce
ss

.

112

APPENDIX B. STRIDE-PER-INTERACTION THREATS

T
a
b
le

B
.2

:
S
T

R
ID

E
-p

er
-I

n
te

ra
ct

io
n

T
h

re
a
ts

(c
o
n
ti

n
u

ed
)

#
E

L
E

M
E

N
T

IN
T

E
R

A
C

T
IO

N
S

T
R

I
D

E

93
E

x
te

rn
al

In
te

ra
ct

or
(8

.2
E

C
U

)

E
x
te

rn
al

in
te

r-
ac

to
r

ge
ts

in
p

u
t

fr
om

p
ro

ce
ss

.

94
E

x
te

rn
al

in
te

ra
c-

to
r

p
as

se
s

in
p
u

t
to

p
ro

ce
ss

.

95
D

at
a

fl
ow

(R
eq

u
es

t/
R

ec
ei

ve
d
at

a)

C
ro

ss
es

m
ac

h
in

e
b

ou
n
d

ar
y.

T
h
e

co
n
-

te
n
ts

of
th

e
d

at
a

fl
ow

ar
e

sn
iff

ed
on

th
e

w
ir

e.

96
D

at
a

fl
ow

(C
om

m
an

d
s/

R
es

p
on

se
s)

C
ro

ss
es

m
ac

h
in

e
b

ou
n
d

ar
y.

D
at

a
fl
ow

is
ta

m
p

er
ed

b
y

an
at

ta
ck

er
.

T
h
e

co
n
-

te
n
ts

of
th

e
d

at
a

fl
ow

ar
e

sn
iff

ed
on

th
e

w
ir

e.

T
h
e

d
at

a
fl
ow

is
in

-
te

rr
u

p
te

d
b
y

an
ex

te
rn

al
en

ti
ty

.

113

	Introduction
	Delimitations
	Outline of the thesis

	Background
	AUTOSAR
	Architecture
	Secure Onboard Communication

	Threat modeling
	Threat modeling with STRIDE
	STRIDE-per-Element
	STRIDE-per-Interaction

	Related Work
	Other threat modeling techniques
	Abuse cases
	Misuse cases
	Attack trees
	Goal-oriented threat modeling

	Risk assessment
	Trike
	CORAS

	Security & safety in automotive

	Research Approach
	Research Purpose
	Research Questions
	Research Methodology
	Validity Threats
	External validity
	Internal validity
	Construct validity
	Reliability

	Implementation
	Overview
	Crypto Abstraction Layer (CAL)
	Message Authentication Code (MAC)

	Secure Onboard Communication (SecOC)
	Testing
	EmbUnit Tests
	Static code analysis

	Creation of the DFD model
	Threat modeling process
	Define use Scenarios
	Verification successful
	Verification failed

	Gather a list of external dependencies
	Define security assumptions
	Create external security notes
	Create one or more DFD of the platform being modeled
	Overview
	Application
	External user
	RTE
	COM
	PduR
	SecOC
	CanIf
	CAL
	CAN

	Delimitations

	Case Study
	STRIDE-per-Element
	STRIDE-per-Interaction
	Comparison of the STRIDE variants
	Quantitative comparison
	Patterns

	Results
	STRIDE comparison
	Quantitative comparison
	Patterns
	STRIDE evaluation

	Which variant of STRIDE (STRIDE-per-Element vs STRIDE-per-Interaction) yields better results with regard to threat modeling?
	What are the major security threats that SecOC mitigates?
	Threats remaining

	Discussion
	Implementation
	Problems with SecOC specification

	DFD Creation
	Modeling

	Threats elicitation
	STRIDE variants challenges
	Threat modeling tools

	Future work

	 Bibliography
	STRIDE-per-Element threats
	STRIDE-per-Interaction threats

