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RF Pulse Shaping of Radar Transmitters
Compensation of Memory Effects through Digital Pre-distortion
LOWISA HANNING
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The introduction of gallium nitride (GaN) power amplifiers (PAs) in the transmitter
chain of pulsed radar architectures has proved to be advantageous compared to the
previously used gallium arsenide (GaAs) PAs. However, it has also introduced new
challenges in the system design due to thermal and electrical memory effects which
leads to transients in the amplitude of the PA output.

It is therefore of interest to pre-compensate for the memory effects such that a
desired shape of the pulse is maintained. This thesis evaluates the possibilities to
use an iterative learning control scheme (ILC) to improve the shape of the pulse.
The research is built upon measurements the PA output, where the PA is turned on
and off in between the RF pulses. Two different pulse widths (PW) are evaluated, 10
µs and 100 µs. Black box modelling are performed to be able to test the algorithm
offline, but also to understand the behaviour of the transients. Thereafter the ILC
algorithm is implemented both in simulation and experiments.

Measurements showed that there were mainly two behaviours to compensate for
in the PA output, first one oscillating transient and thereafter a decaying behaviour.
Black box modelling showed that different model structures were needed for pulses of
different duration. When implementing the ILC algorithm, it was possible to fully
compensate for all undesired effects in simulation. In experiments the oscillating
transient was not possible to fully compensate for whereas the decaying behaviour
was eliminated.

Keywords: digital pre-distortion, PA modelling, pulse shaping, radar transmitters,
memory effects, system identification, iterative learning control, Gallium Nitride.
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1
Introduction

This chapter will give a background to why pulse shaping techniques for radar
transmitters are relevant and a short review of the concept will be given. The
chapter also serves a short review of previous research within the area. This is
followed by a summary of the contribution of this thesis and the most important
results are reviewed.

1.1 Background
Many radar systems that need to determine both position and speed use pulse
timing techniques, where the time elapsed to receive an echo is used to determine
the distance to an object and the Doppler effect of the returned signal is used to
determine its velocity [1]. The shape of the transmitted pulse is relevant for both the
performance of the radar, as well as it directly determines the frequency spectrum of
the signal. In terms of radar performance, the range which the radar system is able
to see depends on several parameters, but for instance the power of the transmitted
pulse [2]. Other important characteristics are the pulse repetition frequency, duty
cycle and pulse width (PW).

A power amplifier (PA) is used in the transmitter chain to amplify the signal to
a level suitable for transmission. The introduction of gallium nitride (GaN) PAs
has proven to be advantageous compared to the previously gallium arsenide (GaAs)
PAs. Higher output power, higher efficiency and the ability to operate at higher
temperatures [3], [4] are some of the beneficial characteristics just to mention a few.
Implementation of GaN PAs has shown, despite its promising properties, that new
challenges also are introduced [5]. One challenge is memory effects which leads to
transients in amplitude and phase of the PA output, both in one single pulse but
also from pulse-to-pulse [6], meaning that the output amplitude and/or phase differs
from one pulse to another. This is a result of for instance temperature changes due
to self heating of the device [7], [8]. Other sources to memory effects that have been
discussed are the biasing network which actuates the system [9] and electron traps
which leads to a decrease in maximum current and lower maximum output power
and efficiency [10].

For the processing in pulsed radar, the pulse-to-pulse stability is of certain in-
terest. Specifically it is of interest that each pulse within a coherent processing
interval (CPI) has the same characteristics [1]. The introduction of memory effects
might therefore influence the radar performance negatively, and it is of interest to
pre-compensate for the memory effects such that each pulse within a CPI achieves

1



1. Introduction

the same amplitude. The use of pre-compensation techniques are usually referred to
as digital pre-distortion (DPD) and the concept is to introduce a block in the chain
which contains the inverse behaviour of the PA. Thereby, the desired shape of the
output signal can be fed to the DPD, which outputs a predistorted signal which is
used as input to the PA. This concept is illustrated in Figure 1.1. The initial PA
output is shown in Figure 1.1a, where a transient in the PA output is present. In
Figure 1.1b the DPD has been implemented and a predistorted input signal is sent
to the PA, which in turn gives a desired shape of the PA output.

PA

Input Output

(a) PA response

DPD PA

InputDesired
output

Output

(b) PA response with DPD

Figure 1.1: The idea of using pulse shaping techniques to pre-compensate for undesired
memory effects.

DPD techniques are commonly used within communication systems, but in such
applications the main focus is to reduce spectral regrowth due to the strict re-
quirements for the allowed spectral leakage into neighbouring channels [11]. Such
applications therefore often aims at compensating for the nonlinear distortion. In
[12], an iterative learning control (ILC) scheme was presented, which is an itera-
tive process to find the optimal input signal that drives the system to a desired
output response. One disadvantage discussed is that the algorithm requires that
the same desired output response must be used for each iteration. In communi-
cation systems, where the signals are constantly changing, this is not suitable and
the algorithm is proposed to be used to gain knowledge of the optimal input signal.
Thereafter that knowledge can be used to design more advanced algorithms. For
radar systems, where the desired output signal is pre-defined and not constantly
changing, the algorithm can be used to find an input signal which compensates for
the introduced memory effects. Implementation of more advanced algorithms are
thereby not needed.

Another pre-compensation technique is presented in [13], where the DPD algo-
rithm compensates for memory effects in pulsed radar systems. A GaN PA was
biased with constant gate- and drain voltage and the system was thereafter excited
with a train of RF pulses. The proposed DPD technique successfully compensates
for differences in average amplifier gain for individual pulses within a CPI. One dis-
advantage with using constant gate- and drain voltage is that it further increases
self heating and in order to avoid this phenomena, the PA should be turned off in
between the RF pulses.

2



1. Introduction

1.2 Thesis contribution
In this thesis, an evaluation of using DPD techniques to pre-compensate for memory
effects such as self heating and transients from the biasing network is presented. In
contrast to the study presented in [13], this research uses pulsed biasing which means
that the transmitting PA is turned off between the pulses. This reduces self heating
since the thermal dissipation is reduced when the PA is off. Another difference is
that the goal in this research is to achieve a desired shape for a single pulse whereas
the DPD in [13] compensates such that the same average gain for pulses within one
CPI is achieved.

This research is built upon measurements of the PA output, where pulses with
PW 10 µs and 100 µs each have been measured. Black box modelling of the relation-
ship between the PA input and output has been performed for two main purposes.
The first purpose is to be able to test DPD algorithms offline and get an estimate
of how the shape of a pulse can be improved. The second purpose is to achieve
a deeper understanding for the behaviour of the memory effects, and what model
structure that is needed for pulses of different duration. With a suitable model,
the ILC algorithm from [12] is implemented first in simulation and thereafter in
experiments.

Results from measurements show that there are two characteristic behaviours
that is of interest to compensate for in the PA output. First there is an oscillating
behaviour and thereafter a decaying behaviour leading to a reduced transmitted
power. In the black box modelling it could be concluded that a finite impulse
response (FIR) model is sufficient for the testing DPD algorithms. Other model
structures were however also studied and it showed that a nonlinear Wiener model
is needed to achieve good simulations for a 100 µs pulse whereas for the 10 µs
pulse a linear output error (OE) model is sufficient. The implementation of the ILC
algorithm in simulation successfully eliminated the memory effects and a desired
pulse shape could be achieved. In experiments it was possible to compensate for the
decaying behaviour but the initial oscillations remained, which were due to problems
with unknown delays and timing of instruments in the laboratory.

1.3 Thesis outline
The chapters in this thesis will be organized as follows. Chapter 2 serves an intro-
duction to the system under investigation, namely the pulsed radar system. Further,
this thesis focuses on the transmitter, and therefore a review of the transmitter chain
is given. Chapter 3 presents the measurements used to capture memory effects. The
measurement setup is explained and some challenges, such as synchronization of in-
struments and time alignment of data, are reviewed. Chapter 4 presents the black
box modelling of the input-output relationship of the PA. Thereafter, in Chapter 5,
the ILC scheme is explained and implemented both in simulation and experiments.
Chapter 6 concludes the thesis by giving a summary of the results and in the last
chapter future research questions are proposed.
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2
System description

This chapter gives a brief review of the pulsed radar system and its transmitter
chain. Some microwave components and characteristics for a pulsed radar signal are
introduced. Mathematical description for the radar signal are also given, both for
the radio frequency (RF) signal and its baseband equivivalent representation.

2.1 Pulsed radar
A simplified block diagram of a radar system is depicted in Figure 2.1. An analogue
baseband signal x is generated by the digital-to-analogue converter (DAC). The
signal is thereafter up-converted to carrier frequency by a mixer which multiplies
the baseband signal with a sinusoidal signal generated by a local oscillator. The
RF signal x̃ is amplified by the PA to a level suitable for transmission, where the
amplified RF signal is denoted ỹ. After the amplification the antenna allows the
signal to propagate in space and if a target is present the antenna receives energy
of a returned echo. The signal received is often weak, and is therefore amplified
before any processing or decisions regarding detection. Since the detection is noise
sensitive, this amplification is done by a low noise amplifier (LNA) which operation
adds little noise. Before any processing and decisions whether a target is present,
down-conversion back to digital baseband form is done. The mixer and the local
oscillator converts the signal z̃ back to analogue baseband z and the analogue-to-
digital converter (ADC) converts the baseband signal to digital domain. [2]

DAC

ADC

PA

LNA

Transmitted signal
Returned echo

Antenna

x x̃ ỹ

Transmitter

Receiver

z̃z

Amplifier

Mixer

Local oscillator

Antenna

Figure 2.1: Block diagram of a pulsed radar architecture and explanation of symbols
corresponding to common microwave components.

An increased transmitted power implies longer detection range, but it might also
cause nonlinear distortion depending on the maximum output power of the PA,
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2. System description

which in turn leads to deterioration of the signal and spectral regrowth. Using
high power for the transmitted signal also requires that it is possible to isolate the
receiver, this is usually done by switches [1]. When the system switches to receiving
mode the transmitting PA should be turned off in order to save energy and prevent
heating. According to the radar range equation, the maximum range Rmax will be
proportional to the fourth root of the transmitted peak power Ppk, given by

Rmax ∝
4

√
Ppk.

Therefore, it is desired to have a high peak power of the transmitted pulse. It is
however noteworthy that in order to double the maximum range the transmitted
peak power must be increased with a factor 16.

2.2 The transmitter chain
It is known that RF transmitters suffer from memory effects and also nonlinear
distortion. All hardware parts in its chain have imperfections which affects the
transmitted signal. Memory effects such as self heating occurs due to heat dissipation
[14], and the main source is the PA due to its high power operation. For modelling of
memory effects and nonlinear distortion, often a baseband version of the transmitter
chain is used. This is possible since the envelope of the transmitted signal contains
all useful information and the up-conversion is performed to allow the signal to
be transmitted [15]. The whole transmitter chain and its equivivalent baseband
representation are depicted as block diagrams in Figure 2.2. The pulses into the PA
represents that the PA is turned on/off in between the RF pulses.

DAC PA
x x̃ ỹ

(a) Pulsed radar transmitter chain.

PA
x y

(b) Baseband equivivalent
transmitter chain.

Figure 2.2: Transmitter chain and its equivalent form commonly used for modelling of
memory effects and nonlinear distortion. For the whole chain, the baseband signal x is
up-converted to its the carrier waveform x̃ where its amplified by a PA. Its equivivalent
baseband form neglects the up-conversion.

A time domain representation of a radar pulse is shown in Figure 2.3. The figure
shows the envelope and the upconverted RF pulse. The figure also denotes the
on/off periods for the transmitter and the receiver, where Tx = 1 and Tx = 0 means
that the transmitter is on and off respectively. The same logic holds for the receiver,
Rx, and as can be seen the receiver is off when the transmitter is on and vice versa.
The pulse repetition interval (PRI) is shown, which is the time elapsed from one
pulse to another. Another pulse characteristic is pulse width (PW), denoted τ . A
CPI consists of a set of pulses with the same characteristics.
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PRI, Tr PW, τ

Envelope

RF pulse

Time

Tx = 1
Rx = 0

Tx = 0
Rx = 1

Figure 2.3: Radar pulse in time domain.

The upconverted RF signal can be described using the following identity

x̃(t) = A(t) cos(ωct+ θ(t)), (2.1)

where ωc is the angular carrier frequency and A(t) is an amplitude modulation and
θ(t) is a phase modulation of the RF signal [15]. Using trigonometric identities on
(2.1) the following description is achieved

x̃(t) = A(t) cos(θ(t))︸ ︷︷ ︸
I(t)

cos(ωct)− A(t) sin(θ(t))︸ ︷︷ ︸
Q(t)

sin(ωct), (2.2)

where I(t) and Q(t) is called the in-phase and quadrature (IQ) components respec-
tively. Further, (2.1) can be written in complex form according to

x̃(t) = <{A(t)ejωctejθ(t)} = <{x(t)ejωct}. (2.3)

In (2.3), x(t) is the baseband signal, often called complex envelope. As mentioned,
the baseband signal contains all useful information whereas the RF signal allows it
to be transmitted. The baseband signal is often written in terms of the inphase and
quadrature components, according to

x(t) = I(t) + jQ(t). (2.4)

In DPD the aim is thereby to pre-compensate for memory effects such that a desired
shape of the envelope of the signal at the PA output y is achieved. This signal will
thereafter be the signal that propagates in space and hence it determines the radar
performance.
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3
Measurements

This chapter presents the measurements that have been performed to capture the
memory effects that are of interest to compensate for. First the setup and its
synchronization are presented, thereafter the initial experiments that were performed
to be able to model the system are shown.

3.1 Measurement setup
The device under test (DUT) is the transmitter GaN PA on a transceiver. A Rohde
& Schwarz SMU200A vector signal generator (VSG) is used to generate the baseband
input signal. It has a frequency range from 100 kHz to 6 GHz and can be remotely
controlled through Matlab and SCPI1 commands. It is also possible to generate
an arbitrary digital baseband IQ signal and upload it to the VSG which thereafter
converts the signal to analogue domain and up-converts it to carrier frequency. The
output signal from the DUT is measured by an Agilent N9030A PXA vector signal
analyzer (VSA). The VSA has a frequency range from 3 Hz to 50 GHz and is also
possible to remotely control through Matlab and SCPI commands. The DUT uses
a DAC with on/off control for the bias supply in order to turn the PA on and off
in between the RF pulses. Communication with the DAC is done with I2C protocol
and a programming card are used to perform this. Thereby, both the DAC and the
DUT needs several power supplies. The DAC also needs a pulse generator to switch
between on and off mode. A simplified block diagram of the setup are depicted in
Figure 3.1 and the equipment are shown in Figure 3.2.

In order for the experiments to be repetitive, the instruments needs to be syn-
chronized. When a new period of the input signal is started, a trigger is sent to the
pulse generator which allows the pulse generator to set Tx = 1 and its bias supply
is activated. Another trigger is sent to the VSA which starts to measure the PA
output signal. The trigger signal is however not instantaneous and there occurs a
delay both until the the VSA starts to measure the signal and until the PA is turned
on.

The VSG, the VSA and the bias pulses are assumed to be ideal which implies
that all deterioration of the signal arises from imperfections in the PA. I.e. the
assumptions made are that a perfect bias pulse is generated by the DAC and that
the mixer that upconverts the signal to RF is ideal. This is motivated by the fact
that the PA is the main cause for the memory effects, and even if other components in
its chain also affects, the main contribution will be from the PA. This also enables

1SCPI = Standard Commands for Programmable Instruments
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3. Measurements

the possibility to use the baseband equivivalent representation of the transmitter
chain in the modelling.

Computer VSG

VSA

PA
x x̃

ỹy

Bias pulse

Figure 3.1: Block diagram of measurement setup. A computer generates the IQ-
baseband input signal x which thereafter is upconverted to carrier frequency x̃ by a VSG.
The signal is amplified by the PA and its RF output signal ỹ is measured and down-
converted to baseband form y by a VSA. The PA is turned on and off by using pulsed
bias.

Figure 3.2: Measurement setup in laboratory, consisting of (1) DUT, (2) VSA, (3)
VSG, (4) pulse generator, (5) power supplies, (6) programming card, (7) Matlab to
communicate with VSA and VSG and (8) GUI to communicate with the programming
card.

3.2 Data collection
For the data collection, the baseband signal x was generated with a clock frequency
of 100 MHz, which is the maximum clock frequency for the VSG. The sampling
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frequency for the VSA should be selected such that it is equal to or a multiple of the
clock frequency for the VSG. The maximum sampling frequency was 175 MHz, and
therefore it was selected to be equal to the clock frequency, i.e. 100 MHz. In order
to reduce some complexity for the measurements, the baseband input signal was set
to a constant value, and only the on/off control of the PA was used to achieve a
pulsed input signal to the PA. Another possibility would be to use a pulsed baseband
input signal and the on/off control, but this would require more knowledge about
timing and synchronization of the system. The inphase component was set to 0.71
V for each time instance and the quadrature component was set to 0 V. Assuming a
system with 50 Ω impedance, this leads to a power level of 7 dBm which allows the
PA to operate in its linear regime. The carrier frequency was selected to 5.9 GHz.
Two different pulse widths of the bias pulse have been evaluated, one with a 10 µs
duration and one with a 100 µs duration. The input signals are depicted in Figure
3.3 below. Note that in the figure the bias pulses starts at τ instead of 0, this is to
show that there is a short delay from when the trigger reaches the pulse generator
and the PA is turned on.

Figure 3.3: Input signals used for the data collection. Top figure shows the baseband
signal x. As can be seen the baseband signal have been selected to constant values. In
the middle figure the bias pulse with 10 µs pulse width are shown and the bottom figure
shows the bias pulse with 100 µs pulse width. The VSG generates a sequence that is 1 ms
long, and thereafter it repeats the same sequence. Every time a new period is started for
the VSG a trigger is sent to the pulse generator which in turn generates the bias pulses.

11
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When the input signals are programmed and uploaded to their respective instru-
ment, the VSG starts to repetitively play the same sequence. As seen in Figure 3.3,
the sequence is repeated after 1 ms and the PA is on for 10 µs or 100 µs, followed
by a period when the PA is off and consequently there is no output from the PA.
A command is sent to the VSA to start collect data, which then waits for a new
trigger from the VSG. When the trigger is received, the VSA starts to measure the
PA output baseband signal y for 1 ms which is the PRI. Figure 3.4 and 3.5 shows
measurements of 100 pulses with PW 10 µs and PW 100 µs respectively, where a)
shows the whole pulse, b) shows the response when the PA is turned on and c)
shows some oscillations that were present in the output. As can be seen, there is a
short initial delay until a step in the output occurs. The 100 measurements shows
that the behavior is repetitive and will therefore also be predictive. One observation
that can be made is that there are some problem with the timing since the rise of
the pulse do not occur exactly at the same time, this can be seen in the bottom left
figures b). Another observation that can be made is that the mean amplitude for
the 100 µs pulse differs from the amplitude for the pulse with 10 µs PW. The reason
is that the second pulse is kept on for a longer period, hence its heat dissipation is
increased and it has less time to cool down in between the pulses.

In order to increase the comparability of the pulses, a time alignment of the data
was performed. The data was upsampled such that more samples were generated
and then the data was shifted such that the rise of each pulse occurred at the
same sample. After the alignment, the data was downsampled back to the original
sampling frequency. The time aligned pulses are shown in Figure 3.6 and 3.7.

For both the 10 µs pulse and the 100 µs it is clear that there are some undesired
behaviour for the PA output. There are some initial oscillating transients that
probably occur due to imperfections in the biasing network. It can also be observed
that there are a decaying behaviour due to heating which is more obvious for the
pulse with longer duration.

12



3. Measurements

Figure 3.4: Measurements of 100 pulses with 10 µs pulse width. The figures have
different ranges for the time axis, where a) shows whole pulse, b) shows the output response
when the PA is turned on and c) the oscillating transients.
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3. Measurements

Figure 3.5: Measurements of 100 pulses with 100 µs pulse width. The figures have
different ranges for the time axis, where a) shows whole pulse, b) shows the output response
when the PA is turned on and c) the oscillating transients.
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3. Measurements

Figure 3.6: Time aligned data of 100 pulses with 10 µs pulse width. The figures have
different ranges for the time axis, where a) shows whole pulse, b) shows the output response
when the PA is turned on and c) the oscillating transients.
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3. Measurements

Figure 3.7: Time aligned data of 100 pulses with 100 µs pulse width. The figures
have different ranges for the time axis, where a) shows whole pulse, b) shows the output
response when the PA is turned on and c) the oscillating transients.
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4
Power amplifier modelling

This chapter presents the modeling approach used to describe the input-output
relationship for the measurements presented in Chapter 3. First the aim with the
modelling is presented, followed by a presentation of the input and output signals
that have been used. Thereafter some commonly used model structures and the
methodologies used to estimate their parameters will be reviewed. Performance
evaluation of the models are introduced which is followed by a presentation of some
estimated models.

4.1 Modelling aim
There are mainly two purposes with the modelling. Firstly, a model is needed to test
and evaluate DPD algorithms. This will enable the possibility to simulate the system
such that a new input signals can be tested and its response can be evaluated before
applying it in experiments. Secondly, a deeper understanding for the dynamics of
the system is also desired. The model should describe the relationship between the
measured baseband output signal y and the baseband input signal x, i.e. y = f(x).
Black box models and system identification are used, where a set of input-output
measurements are used to characterize their relationship, hence no internal structure
or physical parameters of the system are taken into consideration [16]. Some model
structures might be good for making predictions, where measurements are utilized to
predict how the system will behave k-steps ahead. In this case no new measurements
will be available, and instead a model performing good in simulation is needed.

4.2 Input and output signals
The models will later be used to test DPD algorithms on, where the purpose is to
compensate for effects when the PA is on, thus a model performing well during that
period is desired. It is thereby not necessary to model the period when the PA is off
and it is sufficient to instead model a step and cut the data from where the PA is
turned off. Using the step response also enables the possibility to directly estimate
the impulse response through differentiation.

The baseband input signal x has in the modelling part been considered to be 0
when the amplifier is off, and A for the period when its on, where A is its voltage
level which depends on the selected power level. The power level of the input signal
was set to 7 dBm in the measurements which gave a voltage level of A = 0.71 V
for a source impedance of 50 Ω. As shown in the previous chapter, the baseband
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4. Power amplifier modelling

signal was set to a constant in the measurement, however when the PA is off no
input is present and hence it must be 0 in the modelling. The signals that have
been considered as input and output are shown in Figure 4.1a and 4.1b.

Estimating models from one single measurement proved to be challenging due
to sensitivity to noise. Hence, a mean value from all 100 measurements has been
used to estimate all models except from the finite impulse response (FIR) where
another approach has been used. This results in less noise in the output which can
be motivated using the block diagram in Figure 4.2. The block diagram consists of
a transfer function G, an input x, process noise e1, measurement noise e2 and the
measured output y. The process noise and the measurement noise is stochastic and
therefore their contribution to the measured output will be at different frequencies
for each measurement. Provided that the same input signal x is used for each
measurement, one will get more information at the distinct frequencies which the
true plant output consists of, whereas the noise will contribute with components at
different frequencies.

(a) 10 µs pulse (b) 100 µs pulse

Figure 4.1: Input and output signals that have been used in the modelling.

e1 e2

Gx y++

Figure 4.2: Block diagram illustrating the plant, with input x, process noise e1, mea-
surement noise e2 and measured output y.

4.3 Model structures
This section will give a brief review of some standard models used for black box
modelling. The models will in this thesis be used to simulate the PA output with
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new input signals.
One model taken into consideration is the finite impulse response (FIR). The

output signal is then represented as a sum of current and previous input signals
times their corresponding coefficients, according to

y(n) =
nh−1∑
i=0

hix(n− i). (4.1)

The FIR filter (4.1) includes no feedback since there is no terms including previous
values of the output. It is thereby an all zero model and the filters are uncondition-
ally stable. [17]

Another class of models, which incorporates both poles and zeros, are time series
models where the ARMAX1 is one important family of model structures [18]. An
ARMAX model have the following structure

A(q)y(n) = q−dB(q)x(n) + C(q)e(n). (4.2)
where A, B, C are polynomials according to

A(q) = 1 + a1q
−1 + . . .+ anaq

−na , (4.3)

B(q) = b0 + b1q
−1 + . . .+ bnb

q−nb , (4.4)
C(q) = 1 + c1q

−1 + . . .+ cncq
−nc , (4.5)

d is an input time delay, e(n) is a white noise stochastic process and q is the time
shift operator2. The goal is then to estimate the unknown parameters a, b and c.

One important special case of the ARMAX model structure is the ARX3 model,
written

A(q)y(n) = q−dB(q)x(n) + e(n). (4.6)
This structure enables the possibility to reformulate the model such that linear
regression can be utilized to estimate the parameters.

For simulations the OE model has proven to be advantageous since it is a pure
simulation model and cannot be used for predictions. The model structure is written
as

y(n) = q−dB(q)
F (q) x(n) + e(n), (4.7)

with F (q) = 1 + f1q
−1 + . . . + fnf

q−nf . An extension of the OE model is the
Wiener-Hammerstein class where the linear transfer function extended with an input
nonlinearity and/or an output nonlinearity. For a Wiener model a linear transfer
function of OE type is connected to a static output nonlinearity, according to Figure
4.3a. The Hammerstein model consists of a static input nonlinearity followed by a
linear transfer function of OE type, Figure 4.3b. Another possibility is a combination
of the two models with both input and output nonlinearities resulting in a Wiener-
Hammerstein model. [18]

1ARMAX = AutoRegressive Moving Average with eXogenous input
2q−1u(n) = u(n− 1)
3ARX = AutoRegressive with exogenous input
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F (·)G
x(n) ŷ(n)

(a) Wiener model

F (·) G
x(n) ŷ(n)

(b) Hammerstein model

Figure 4.3: Block diagrams of models with a linear transfer function G combined with
a static nonlinearity F (·).

All model structures except the Wiener-Hammerstin can then be written as

y(n) = G(q)x(n) +H(q)e(n), (4.8)

where G(q) explains that plant behaviour and H(q) determines how the process
noise enters the system.

4.4 Parameter estimation
The goal is to minimize the residuals ε, i.e. the distance between the measurement
and its estimate, given by

J(θ) = 1
2

N−1∑
n=1

ε2(n) = 1
2

N−1∑
n=1

(y(n)− ŷ(n))2, (4.9)

where y(n) is the measured output and ŷ is its estimate. For model structures
that are not linear in its parameters, the estimation of the model coefficients is
an iterative search for coefficients that minimizes the criterion given in (4.9). For
model structures that are linear in its parameters (FIR and ARX) the linear least
squares method can be utilized to estimate the parameters. The model estimated
from a data set of N samples can then be written in a regressor ϕ which includes
known signals times an unknown parameter vector θ with a white noise sequence
e(n) added.

y(n) = ϕT (n)θ + e(n) n = 1, ..., N (4.10)

Often (4.10) is written in vectors, according to
y(1)
...

y(N)


︸ ︷︷ ︸

Y

=


ϕT (1)

...
ϕT (N)


︸ ︷︷ ︸

Φ

θ +


e(1)
...

e(N)


︸ ︷︷ ︸

E

. (4.11)

Provided that e(n) is zero in mean, the best guess one can make for one sample is
to remove the noise, which gives the estimate Ŷ = Φθ, and 4.9 can then be written
as

J(θ) = 1
2(Y − Φθ)T (Y − Φθ). (4.12)
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The linear least squares solution for the coefficients θ̂LS, is then found setting the
derivative of (4.12) equal to zero, which gives the solution

θ̂LS = (ΦTΦ)−1ΦTY, (4.13)

where (.)T denotes the transpose and (.)−1 is the matrix inverse. In the ideal case
this would give the residuals ε to be equal to the white noise sequence e.

For the FIR model another approach can also be used to estimate the parameters.
When the data is cut such that a step response is considered instead of a pulse
response, the impulse response can easily be estimated by taking the first difference
of the data. This operation to find the impulse response coefficients can be written
as

h(i) = y(i)− y(i− 1), (4.14)
where h(i) denotes the impulse response coefficient at index i. The impulse response
will get a high number of coefficients, since the difference operation will give N − 1
coefficients for a data set of N points. By estimating the impulse response from
one measurement, a noisy estimate is achieved. Therefore, coefficients for all 100
measurements are derived, resulting in total 100× (N − 1) coefficients. Thereafter,
the impulse response model are found by taking the mean value for each coefficient.

4.5 Performance evaluation
When a model structure has been decided, its performance are evaluated by compar-
ing its simulated response with the measured response. In the decision of a model
structure, both its performance in terms of deviation from the measured response
and also the number of model coefficients should be taken into consideration. An
increased number of model coefficients gives an increased complexity in its practical
implementation. A block diagram illustrating the performance evaluation process is
shown in Figure 4.4.

Performance
evaluation

DUT

Model

u(n) y(n)

ŷ(n)

Figure 4.4: Block diagram describing how the performance evaluation for the black box
models will be performed. The same input signal will be fed to the DUT and the model
of the DUT. Thereafter their output responses will be compared and evaluated through
different performance evaluation metrics.

The performance evaluation metrics considered are the mean squared error (MSE)
and the normalized root mean squared error (NRMSE). These metrics evaluates how
much the model in time domain deviates from its measurement. Using time domain
metrics are motivated by the fact that the goal is to compensate for undesired effects
in time domain, hence it is important to have a model which makes good estimates
in time domain. How MSE and NRMSE are calculated are presented in Eq. 4.15
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and 4.16 respectively. It is often desired to have the MSE as small as possible
without overfitting the data. The NRMSE instead ranges between [1,−∞), where
1 implies perfect fit, 0 implies that the model fits the data no better than a straight
line through the data.

MSE = 1
N

N∑
n=1

(y(n)− ŷ(n))2 (4.15)

NRMSE = 1−

√∑N
n=1(y(n)− ŷ(n))2√∑N
n=1(y(n)− ȳ)2

(4.16)

In (4.16) ȳ denotes the the mean value.

The data are divided into intervals that the performance are evaluated for. Ob-
serving the data, three different characteristic behaviours could be distinguished.
First, there is a fast response when the step is applied. Thereafter, there is an oscil-
lating behaviour and after approximately 5 µs the dominating oscillations have died
out and there is instead a slowly decaying behaviour. The data are therefore divided
into these intervals and also the whole sequence are evaluated. This is summarized
in Table 4.1 and shown in Figure 4.5 for the 10 µs pulse. The 100 µs pulse are
divided into similar intervals, also summarized in Table 4.1 and shown in Figure
4.6. It is for instance more important to have a good fit in interval (c) and (d) than
interval (b). The initial fast response might be hard to compensate for in practice,
and it is more important to compensate for the decaying behaviour in the end.

Table 4.1: Intervals that the data are divided into for performance evaluation of
the models.

PW
Interval (a) (b) (c) (d)

10 µs 0-9.99 0.1-0.65 0.65-5 5-9.99
100 µs 0-99.99 0.1-0.65 0.65-5 5-99.99

22



4. Power amplifier modelling

Figure 4.5: Intervals of the 10 µs pulse that the performance of the models will be
evaluated for. The intervals in numbers are presented in Table 4.1.

Figure 4.6: Intervals of the 100 µs pulse that the performance of the models will be
evaluated for. The intervals in numbers are presented in Table 4.1.
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4.6 Estimated models 10 µs pulse
Four models has been estimated for the 10 µs pulse, one FIR model, one OE model,
one Wiener model and one ARX. The total number of coefficients for each linear
transfer function are presented in Table 4.2. Note that the Wiener model also
consists of a nonlinearity and some complexity is thereby added to the structure. In
this case a sigmoidnet consisting of 10 units has been used as nonlinearity.

There is no input delay, as can be seen in the Figure 4.1a (lower), hence the
delay d is 0 for all models. For the OE, 5 coefficients for the B polynomial are used,
nb = 5 and 4 coefficients for the F polynomial are used, nf = 4. This model will be
denoted OE/OE(5,4,0)4. The same structure for the linear transfer function in the
Wiener model has been used. For the ARX, 6 coefficients have been used for the
B polynomial, nb = 6, and 5 coefficients for the A polynomial, na = 5. This model
will be denoted ARX/ARX(5,6,0)5.

This section will first present simulations of the estimated models, shown together
with the mean value of the measurements. Simulations of each model presented
together with all measurements can be found in Appendix A. The simulations are
divided into the performance evaluation intervals presented in Table 4.1 and the
performance evaluation metrics are shown as bar graphs. In the bar graphs, a mean
value of each metric calculated from all 100 measurements are presented. Also some
characteristics of each model are also presented, e.g. pole/zero maps, partial transfer
functions and the nonlinearity of the Wiener model.

Table 4.2: Number of coefficients for linear transfer functions for the models esti-
mated for the 10 µs pulse.

Coefficients
Model FIR OE Wiener ARX

# 999 9 9 11

4.6.1 Simulations
Simulations of the whole step are shown in Figure 4.7 and the corresponding perfor-
mance evaluation metrics are shown in Figure 4.8. As can be seen, all models except
the ARX follows the oscillations (∼0-4 µs). The MSE is significantly higher for the
ARX than for the other models, Figure 4.8a. Despite this, all models achieves a
high NRMSE, Figure 4.8b.

Figure 4.9 and Figure 4.10 shows simulations and metrics for interval (b). Also
for this interval the performance of the ARX is worse than the other models. It
can further be seen that the performance of the OE and the Wiener model is sim-
ilar, whereas the FIR performs best both from the simulation and its performance
metrics.

For the oscillations in interval (c), depicted in Figure 4.11 one can further see
that the ARX does not achieve a desired behaviour. Again the FIR performs best,

4OE(nb,nf ,d)
5ARX(na,nb,d)
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according to the metrics presented in 4.12 and the performance of the OE and the
Wiener model are similar.

In Figure 4.13 the last part of the step is shown, namely interval (d). Here it
can be seen that the mean value includes more noise than could be distinguished for
the previous intervals. As can be seen, the FIR filter also follows the noise, which
however less than the noise present in one single measurement. Even though the
Wiener model achieves lower MSE and higher NRMSE than the OE model, one
can see from the simulation that neither of the models follow the mean value of the
measurements. Note however the range of the y-axis, which shows that the error in
magnitude however is small.

To summarize, the FIR model performed the best in terms of lowest MSE and
highest NRMSE for all intervals. An ARX model is not suitable for this application
which can be explained by the fact that such model focuses on minimizing the one
step prediction error and thereby is more suitable when it is desired to have a model
that performs good in predictions. The OE and the Wiener model had similar
performance, and hence it can be concluded that a linear OE model is sufficient and
the nonlinearity is not needed.

Figure 4.7: Simulated models together with mean value of the 100 measurements for
the 10 µs pulse in interval (a).
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(a) MSE (b) NRMSE

Figure 4.8: Mean value of performance evaluation metrics calculated from all 100
measurements for the 10 µs pulse for interval (a).

Figure 4.9: Simulated models together with mean value of the 100 measurements for
the 10 µs pulse in interval (b).
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(a) MSE (b) NRMSE

Figure 4.10: Mean value of performance evaluation metrics calculated from all 100
measurements for the 10 µs pulse for interval (b).

Figure 4.11: Simulated models together with mean value of the 100 measurements for
the 10 µs pulse in interval (c).
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(a) MSE (b) NRMSE

Figure 4.12: Mean value of performance evaluation metrics calculated from all 100
measurements for the 10 µs pulse for interval (c).

Figure 4.13: Simulated models together with mean value of the 100 measurements for
the 10 µs pulse in interval (d).
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(a) MSE (b) NRMSE

Figure 4.14: Mean value of performance evaluation metrics calculated from all 100
measurements for the 10 µs pulse for interval (d).

4.6.2 Characteristics of the models
In the implementation of DPD, zeros of the PA model is of specific interest since some
DPD algorithms analytically inverts the PA model to achieve the predistorted signal.
In this case, it can be observed that the inverse PA models would be unstable since
there are zeros outside the unit disc for all pole/zero maps in Figure 4.15. Hence,
such algorithms would not be suitable for these models. Complex conjugated poles
with a magnitude close to 1 will result in oscillations. From Figure 4.15b and 4.15c,
it can be seen that there are three poles and zeros located very close to each other
for both of the OE and the ARX. Comparing the values of the complex conjugated
poles, the distance from the origin to each complex conjugated pole for the ARX is
0.982 whereas 0.992 for the OE, which explains why the oscillations for the ARX
dies out faster.

(a) FIR (b) OE (c) ARX

Figure 4.15: Pole/zero maps of FIR, OE and ARX for 10 µs pulse. Linear transfer
function in Wiener model showed similar locations as the OE.

The transfer function of the OE is further investigated in by writing the expression
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as a sum of first and second order transfer functions using partial fraction expansions.
The first order transfer functions comes from poles with only real part, whereas
the second order transfer functions comes from complex conjugated poles. This
expansion enables the possibility to study different components the whole transfer
function consists of. In this case, it is desired to have at least one damped sinusoidal
component, one exponential leading to the decaying behaviour and one response
which gives the step. The partial fraction expansion lead to two second order transfer
functions, one first order transfer function and one static gain, which can be written
as

G(q) =

TF1︷ ︸︸ ︷
r1

1− p1q−1 +

TF2︷ ︸︸ ︷
r2,1 + r2,2q

−1

1− p2,1q−1 − p2,2q−1 +

TF3︷ ︸︸ ︷
r3,1 + r3,2q

−1

1− p3,1q−1 − p3,2q−1 +
TF4︷︸︸︷
k , (4.17)

where r and p are scalar values which determines the zeros and poles locations of
each transfer function and k is the static gain. In Figure 4.16 each transfer function
has been simulated with the step input. The first and second transfer function
shows an exponential and a damped sinusoidal, which was expected. Observing the
fourth and third transfer function, it looks like their responses cancel some part of
each other. However, when reducing the number of coefficients a good fit was not
achieved. Also, by increasing the number of coefficients a better fit was not achieved.
The same behaviours were achieved for the linear transfer function in the Wiener
model.

Figure 4.16: Partial transfer functions for the OE(5,4,0) simulated with the step input.
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For the Wiener model, its linear transfer function and the nonlinearity are in-
vestigated in which are shown in Figure 4.17. The region for which the input to
the nonlinearity varies between is marked with a rectangle. As can be seen, in that
region the nonlinearity does not change a lot, instead it results in an output from
the nonlinearity which is close to linear. Thereby it can further be concluded that
the nonlinearity in this case is not necessary and instead the linear OE(5,4,0) model
is sufficient.

(a) Linear transfer function (b) Nonlinearity

Figure 4.17: Characteristics of Wiener model for the 10 µs pulse. The rectangle in
4.17b shows in which region the input to the nonlinearity varies in between.

4.7 Estimated models 100 µs pulse
From the models for the 10 µs pulse it could be concluded that models of the ARX
type is not suitable for this application, since it is desired to have a model which
performs good in simulation. Thereby, no further investigation in ARX models were
performed for the 100 µs pulse. Instead three models has been estimated, one FIR
model, one OE model and one Wiener model. The total number of coefficients for
each linear transfer function are presented in Table 4.3. As can be seen, the number
of coefficients for the FIR model is significantly increased compared to the number
that was used for the 10 µs pulse.

Also here there is no input delay, as can be seen in the Figure 4.1b (lower) and
the delay d is therefore 0 for all models. The same number of coefficients have been
used for the OE and the Wiener model. For the Wiener model, a sigmoidnet with
10 units has been used as nonlinearity.

This section will go through the same evaluations for the models estimated for the
100 µs pulse as previously were performed for the 10 µs pulse. First simulations of
the estimated models are shown together with the mean value of the measurements.
Simulations of each model presented together with all measurements can be found in
Appendix A. The simulations are divided into the performance evaluation intervals
presented in Table 4.1 and the performance evaluation metrics are shown as bar
graphs. In the bar graphs, a mean value of each metric calculated from all 100
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measurements are presented. Additionally some characteristics of each model are
also presented, e.g. pole/zero maps, partial transfer functions and the nonlinearity
of the Wiener model.

Table 4.3: Number of coefficients for linear transfer functions for the models esti-
mated for the 100 µs pulse.

Coefficients
Model FIR OE Wiener

# 9999 9 9

4.7.1 Simulations

Simulations of the whole step are shown in Figure 4.18 and the corresponding per-
formance evaluation metrics are shown in Figure 4.19. In terms of performance
evaluation metrics it can be seen that the FIR performs the best. In contrast to the
models estimated for the 10 µs pulse, it can be seen that the Wiener model performs
much better than the OE for this pulse with longer duration.

Figure 4.20 and Figure 4.21 shows simulations and metrics for interval (b). The
performance of the models is very similar, but the FIR performs best both from the
simulation and the performance metrics.

For interval (c), depicted in Figure 4.22, it can be seen that the OE does not follow
the oscillations. After 5 µs the most dominant oscillations have died out, meaning
that only a minor part of the 100 µs data set includes the oscillations. Thereby
this behaviour might be hard for a model to capture. Again the FIR performs best,
according to the metrics presented in 4.23, but the performance of the Wiener model
is also good.

The last interval (d) of the step is shown in Figure 4.24. Here it can be seen that
the mean value from the measurements and the FIR is varying faster than the Wiener
model. The Wiener model manages to capture the dynamics of lower frequencies in
a desired way. The NRMSE and the MSE calculated from all measurements shows
similar metrics for the FIR and the Wiener model. The metrics are shown in Figure
4.25. Further it can be seen that the OE does not give a desired behaviour neither
in this interval.

To summarize, the FIR model performed the best in terms of lowest MSE and
highest NRMSE for all intervals. In contrast to the 10 µs pulse, the nonlinear
Wiener model is more suitable for this pulse whereas the OE did not achieve good
performance. This shows that different model structures are needed for different
PW.
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Figure 4.18: Simulated models together with mean value of the 100 measurements for
the 100 µs pulse in interval (a).

(a) MSE (b) NRMSE

Figure 4.19: Mean value of performance evaluation metrics calculated from all 100
measurements for the 100 µs pulse for interval (a).
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Figure 4.20: Simulated models together with mean value of the 100 measurements for
the 100 µs pulse in interval (b).

(a) MSE (b) NRMSE

Figure 4.21: Mean value of performance evaluation metrics calculated from all 100
measurements for the 100 µs pulse for interval (b).
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Figure 4.22: Simulated models together with mean value of the 100 measurements for
the 100 µs pulse in interval (c).

(a) MSE (b) NRMSE

Figure 4.23: Mean value of performance evaluation metrics calculated from all 100
measurements for the 100 µs pulse for interval (c).
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Figure 4.24: Simulated models together with mean value of the 100 measurements for
the 100 µs pulse in interval (d).

(a) MSE (b) NRMSE

Figure 4.25: Mean value of performance evaluation metrics calculated from all 100
measurements for the 100 µs pulse for interval (d).

4.7.2 Characteristics of the models
From the pole/zero maps for the models estimated for the 100 µs pulse, similar
observations as for the 10 µs pulse can be made. The map is depicted in Figure
4.26. All models have zeros with magnitude greater than one, implying that their
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inverse would be unstable. Also, by observing the distance of the complex conjugated
poles from the origin of the OE and the Wiener, it could be seen that they have an
absolute value of 0.95 for the OE whereas the linear transfer function for the Wiener
model have an absolute value of 0.99. This again shows why the oscillations of the
OE dies out faster than the oscillations in the Wiener model.

The partial transfer functions of the linear transfer function of the Wiener model
showed similar behaviour as the the ones for the OE estimated for the 10 µs pulse,
with one transfer function leading to a damped sinusoidal behaviour, one decaying
function and then two steps. When decreasing the number of parameters in the
model the performance got worse.

(a) FIR (b) OE (c) OE in Wiener model

Figure 4.26: Pole/zero maps of FIR, OE and Wiener model for 100 µs pulse.

Simulations have shown that for a PW of shorter duration, it is sufficient to use
a linear OE model to describe the input-output relationship of a PA. For the longer
pulse of 100 µs PW, it could be observed that the linear model did not manage to
describe all dynamics that was of interest to capture. Instead, a nonlinear Wiener
model proved to give better performance.

In Figure 4.27 the linear transfer function and the static nonlinearity are shown.
By comparing the nonlinearity with its equivalent figure for the 10 µs pulse (Figure
4.17b), it can be seen that the 100 µs nonlinearity varies more depending on the
input. By focusing on the input range for the nonlinearity, three transitions could
be distinguished, where the nonlinearity goes from one input-output relation to
another. Theses regions are illustrated in Figure 4.28. In the beginning of the linear
transfer function the input to the nonlinearity is within the rectangle marked (1).
Thereafter the slope is decreased in region (2) and in the end it is increased again
in region (3).
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(a) Linear transfer function (b) Nonlinearity

Figure 4.27: Characteristics of Wiener model for the 100 µs pulse.

(2)

(1)

(3)

(a) Linear transfer function

(1)(1)
(1)

(2)

(3)

(b) Nonlinearity

Figure 4.28: Characteristics of Wiener model for the 100 µs pulse. The boxes illustrates
how the nonlinearity changes for the different values that the linear transfer function gives
as input to the nonlinearity. In the beginning of the linear transfer function the input to
the nonlinearity is within the rectangle marked (1). Thereafter the slope is decreased in
region (2) and in the end it is increased again in region (3).
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Digital pre-distortion

This chapter introduces the DPD technique that have been used to achieve a desired
output and compensate for the transients present in the PA output which could
be seen from measurements. First, the concept of DPD is reviewed. Thereafter,
the ILC scheme is introduced which is the DPD algorithm that has been imple-
mented. Performance evaluation for the DPD is introduced and the chapter ends
with results from when the DPD is implemented, first in simulation and thereafter
in experiments.

5.1 Concept of DPD
The idea with DPD and pulse shaping techniques are to pre-compensate for un-
desired behaviour by introducing a block in the chain which includes the inverse
behaviour of the system. Thereby the desired output signal can be sent to the
DPD, which in turn generates a predistorted input signal, resulting in a desired out-
put response from the PA. As could be seen from the measurements, when a pulse
was used as input to the PA its response included transients, similar to Figure 1.1a
in the Introduction. By implementing a DPD, another block will be introduced,
which will take the desired output response as input. The DPD then generates
the predistorted input that will drive the PA response to its desired shape. This is
depicted in Figure 1.1b.

DPD is well-used in communication system, commonly used to compensate for
the nonlinear distortion introduced. In such applications the PA is operating in its
nonlinear regime, hence a nonlinear model must be used for the PA. Inverting a
nonlinear model can be complex to perform analytically, and instead often system
identification tools are used to identify an inverse model of the PA [12]. Examples
of such algorithms are the indirect learning architecture (ILA) [19] and the model-
based indirect learning architecture (MILA) [20] where an inverse model of the PA is
estimated after an input has been fed to the PA and its response has been measured.
The goal is thereby to find x = f(y).

In this research, the PA has been operating in its linear regime focusing instead
on memory effects. From the modelling it could be seen that a nonlinear Wiener
model still might be needed for the 100 µs pulse. The other model structures that
were investigated in were linear, hence their inverse models are straight forward to
find. The only requirement is stability which means that the zeros of the PA model
must be within the unit circle, which would imply that the poles of its inverse model
is within the unit circle. In the modelling it could be seen that the models had zeros
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outside the unit disc, and thus it would not be possible to implement the inverse of
the estimated models as a predistorter.

As reviewed in the introduction, a DPD algorithm that focuses on compensating
for interpulse instabilities is presented in [13]. This algorithm is however not suitable
for this application since the focus here is to compensate effects in the pulse, whereas
the presented algorithm uses the mean value of the amplitude for each pulse to
achieve the same characteristics for every pulse within a CPI.

5.2 Iterative learning control
A DPD algorithm presented in [12] is the the ILC. The purpose of the implemen-
tation of a predistorter is to find the input signal that will drive the system to a
desired output yd. In ILC this optimal input signal is estimated through an iterative
process. The algorithm requires that the desired output response is the same for
each iteration, and for pulsed radar signals this is suitable.

A block diagram of the ILC scheme is shown in Figure 5.1, where n is the discrete
time index, k is the iteration of the algorithm, u is the predistorted input signal, y
is the PA output response, yd is the desired PA output response and e is the error
between actual and desired output response. The ILC algorithm uses the observed
error between the actual output and the desired output, and then updates the input
for the next iteration uk+1. The iterations continues until a desired behaviour for
the output is achieved.

Two different ILC algorithms have been proposed in [21], namely the gain based
and the linear. In this thesis the gain based schedule have been used. The ILC
algorithm then updates the input signal for the next iteration according to

uk+1(n) = uk(n) + g−1
k (n)ek(n), (5.1)

where gk(n) = yk(n)/uk(n) and ek(n) = yd(n)− yk(n).
Only the error that occurs when the PA is on is of interest and therefore the

input signal is only changed during that period. From the initial measurements in
Figure 3.6 and Figure 3.7, it could be observed that the pulse had reached its top
after approximately 0.17 µs and it ended after 9.99 µs for the 10 µs pulse and after
99.99 µs for the 100 µs pulse. Therefore the error will only be compared for this
time period, which implies that the baseband input signal only will be changed for
this period.

PA
yk(n)uk(n)

ek(n)
yd(n)

uk+1(n) ILC
algorithm

+
−

Figure 5.1: Block diagram illustrating the iterative learning control scheme.
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5.3 Performance evaluation

In order to evaluate the performance of the predistorter, MSE will be used. Its
mathematical formula can be found in (4.15). For the DPD, the evaluation will be
to compare the measured output response with the desired response as depicted in
Figure 5.2. The performance will not be evaluated for the whole pulse. Instead,
only the response for where the error is calculated will be taken into consideration,
since for all other time instances that PA is off. Similar as for the performance
evaluation for the modelling part, the response are divided into four intervals. The
only difference here is that the performance evaluation starts at time 0.17 µs since
the error will only be calculated from that time until the end of each pulse.

Performance
evaluation

DUT
u(n) y(n)

DPD
yd(n)

Figure 5.2: Performance evaluation for the DPD. The desired output response is fed
to the DPD which gives the predistorted input signal that is sent to the DUT. The output
response from the DUT and the desired output response is thereafter compared.

5.4 ILC in simulation

The ILC algorithm was first tested in simulation, and thereafter implemented in
experiments. In the simulations, the impulse response models were used. The
other model structures were also tested, but since the FIR models achieved best
performance evaluation metrics they will be presented. Similar results were however
achieved for the other model structures as well. The desired output signal that have
been selected have an amplitude of 4.48 V for the 10 µs pulse and an amplitude of
4.28 V for the 100 µs pulse.

5.4.1 10 µs pulse

In Figure 5.4 four iterations with the ILC in simulation are shown. Each row repre-
sents a new iteration in the algorithm, and the columns represents different intervals
of the pulse. It can be seen that ILC manages to eliminate the undesired behaviour
after three iterations. In Table 5.1 the MSE is presented for each iteration and in-
terval. Here it can be seen that no further improvement after the third iteration. In
Figure 5.3 the adapted input signal are shown together with the error. The evolu-
tion of the input signal shows that in order to achieve a desired shape of the output
signal one must predistort the input signal such that its behaviour is out of phase
with the undesired transients.
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Table 5.1: MSE between desired output and simulated output for different intervals and
iterations for the 10 µs pulse in simulation. The values have been scaled with a factor 103

to increase readability.

Iteration
Interval 0.17-9.99 µs 0.17-0.65 µs 0.65-5 µs 5-9.99 µs

k = 1 2.38 17.12 3.45 0.07
k = 2 0.04 0.58 0.02 0.001
k = 3 0.01 0.29 0.0001 0.0002
k = 4 0.01 0.29 0.0001 0.0002

Figure 5.3: ILC in simulation for the 10 µs pulse, error observed between 0.17 and 9.99
µs. First column shows the input signal from ILC and second column shows the error
achieved between the desired output and measured output.
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Figure 5.4: ILC implemented in simulation for the 10 µs pulse. The first column shows
the whole pulse, in the middle the oscillating transients and the last column shows the
last part of the pulse. Each row represent a new iteration in ILC. The DPD manages
to successfully compensate for the undesired behaviour with three iterations. This can
be seen by observing the iterations in the second column where the simulated output
follows the desired output for iteration k = 3. Also it can be observed that no further
improvement is achieved after the third iteration.

5.4.2 100 µs pulse

In Figure 5.6 four iterations with the ILC in simulation are shown for the 100
µs pulse. Each row represents a new iteration in the algorithm, and the columns
represents different intervals of the pulse. Similar as for the 10 µs pulse, ILC manages
to eliminate the undesired behaviour after three iterations. In Table 5.2 the MSE
is presented for each iteration and interval. In Figure 5.5 the adapted input signal
are shown together with the error. The same observation as for the 10 µs pulse can
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be made.

Table 5.2: MSE between desired output and simulated output for different intervals and
iterations for the 100 µs pulse in simulation. The values have been scaled with a factor
103 to increase readability.

Iteration
Interval 0.17-99.99 µs 0.17-0.65 µs 0.65-5 µs 5-99.99 µs

k = 1 1.04 22.37 6.85 0.7
k = 2 0.001 0.06 0.02 0.0002
k = 3 0.0002 0.03 0.0001 0.0001
k = 4 0.0002 0.03 0.0001 0.0001

Figure 5.5: ILC in simulation for the 100 µs pulse, error observed between 0.17 and
9.99 µs. First column shows the input signal from ILC and second column shows the error
achieved between the desired output and measured output.
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Figure 5.6: ILC implemented in simulation for the 100 µs pulse. The first column shows
the whole pulse, in the middle the oscillating transients and the last column shows the
last part of the pulse. Each row represent a new iteration in ILC. The DPD manages
to successfully compensate for the undesired behaviour with three iterations. This can
be seen by observing the iterations in the second column where the simulated output
follows the desired output for iteration k = 3. Also it can be observed that no further
improvement is achieved after the third iteration.

5.5 ILC in experiments
When the ILC are implemented in experiments the algorithm will start to compen-
sate for the noise, meaning that the input signal will include more and more noise.
An attempt to first generate the optimal input signal in simulation and thereafter
apply that input in experiments was therefore performed. As could be seen from
the initial measurements the measurement did not start exactly at the same time
for every measurement. Thereby, when the optimal input signal was generated in
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simulation and applied on the real system further iterations were still needed to
compensate for the oscillating transients and it proved to be more successful to only
iterate in experiments. The gain can also differ depending on temperature etc. and
therefore the amplitude of the measured output can differ from the simulation which
made it more advantageous to directly iterate in the experiments. The model are
however still used in each iteration to check the expected output for the new input.
This way the risk of feeding an input signal that might damage any part in the setup
is minimized.

The same desired output signals as in simulation have been used, namely an
amplitude of 4.48 V for the 10 µs pulse and an amplitude of 4.28 V for the 100 µs
pulse.

5.5.1 10 µs pulse

Figure 5.8 shows four iterations with the ILC in experiments for a 10 µs pulse. By
observing the last column (5-9.99 µs) in Table 5.3 it can be seen that the measured
response includes more noise for iteration 4 than for iteration 3. This is because the
algorithm tries to compensate for the measurement noise, leading to a noisier input
signal. This can further be seen by observing the input signal used, presented in
Figure 5.7. Another observation that can be made is that the error from 0.17-0.65 µs
was increased for almost every iteration. This probably comes from problems with
timing. The time for which the error was calculated for was therefore decreased to
start at 0.33 µs instead, which improved the performance according to Table 5.4.
From the response depicted in Figure 5.9 it can be seen that it is not possible to
fully compensate for the oscillating transients, which also is due to timing problems.
Similar as in simulation no improvement is achieved after the third iteration. The
input signal used and the error achieved are shown in Figure 5.10.

Table 5.3: MSE between desired output and measured output for different intervals
and iterations when the error has been compared from 0.17-9.99 µs for the 10 µs pulse in
experiment. The values have been scaled with a factor 103 to increase readability.

Iteration
Interval 0.17-9.99 µs 0.17-0.65 µs 0.65-5 µs 5-9.99 µs

k = 1 2.51 17.25 3.70 0.10
k = 2 3.09 52.59 0.76 0.26
k = 3 2.81 51.47 0.51 0.04
k = 4 5.47 104.72 0.49 0.08
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Table 5.4: MSE between desired output and measured output for different intervals
and iterations when the error has been compared from 0.33-9.99 µs for the 10 µs pulse in
experiment. The values have been scaled with a factor 103 to increase readability.

Iteration
Interval 0.33-9.99 µs 0.33-0.65 µs 0.65-5 µs 5-9.99 µs

k = 1 1.99 16.06 3.21 0.07
k = 2 0.59 5.78 0.64 0.21
k = 3 0.28 2.90 0.38 0.03
k = 4 0.33 4.69 0.31 0.67

Figure 5.7: ILC in experiments for the 10 µs pulse, error observed between 0.17 and
9.99 µs. First column shows the input signal from ILC and second column shows the error
achieved between the desired output and measured output.
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Figure 5.8: ILC implemented in experiment for the 10 µs pulse where the error has
been evaluated at 0.17-9.99 µs. The first column shows the whole pulse, in the middle
the oscillating transients and the last column shows the last part of the pulse. Each row
represent a new iteration in ILC. It can be seen that the oscillating transients becomes
worse from the second column, but in the end of the pulse a desired amplitude of the pulse
is achieved which can be seen from iteration k = 3 in the last column, where the measured
output follows the desired output.
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Figure 5.9: ILC implemented in experiment for the 10 µs pulse where the error has
been evaluated at 0.33-9.99 µs. The first column shows the whole pulse, in the middle
the oscillating transients and the last column shows the last part of the pulse. Each row
represent a new iteration in ILC. Comparing the result with Figure 5.8 an improvement is
achieved for the oscillating transients, but there are still some undesired behaviour which
can be seen in the second column where the measured output does not follow the desired
output for any iteration. In the end of the pulse the desired amplitude is achieved which
is seen in the last column where the measured output follows the desired output after
iteration k = 3.
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Figure 5.10: ILC in experiments for the 10 µs pulse, error observed between 0.33 and
9.99 µs. First column shows the input signal from ILC and second column shows the error
achieved between the desired output and measured output.

5.5.2 100 µs pulse

Previous results have shown that no further improvement are achieved after three
iterations, thereby when evaluating the 100 µs pulse in experiments only three itera-
tions are shown. Also since the 10 µs pulse showed that it advantageous to compare
the error from 0.33 µs, this has been used here as well.

Similar as for the 10 µs pulse, the oscillating transients remains after applying
the algorithm as can be seen in Figure 5.11. However, the decaying behaviour is
successfully compensated for in this case. The MSE is presented in Table 5.5 and
the input signal and the error are depicted in Figure 5.12.
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Table 5.5: MSE between desired output and measured output for different intervals and
iterations for the 100 µs pulse in experiment. The values have been scaled with a factor
103 to increase readability.

Iteration
Interval 0.33-99.99 µs 0.33-0.65 µs 0.65-5 µs 5-99.99 µs

k = 1 0.96 27.61 9.34 0.49
k = 2 0.05 4.78 0.42 0.02
k = 3 0.05 2.30 0.39 0.03

Figure 5.11: ILC implemented in experiment for the 100 µs pulse where the error has
been evaluated at 0.33-9.99 µs. The first column shows the whole pulse, in the middle
the oscillating transients and the last column shows the last part of the pulse. Each
row represent a new iteration in ILC. Similar as for the 10 µs pulse there are still some
undesired behaviour which can be seen in the second column where the measured output
does not follow the desired output for any iteration. In the end of the pulse the desired
amplitude is achieved which is seen in the last column where the measured output follows
the desired output after iteration k = 2.
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Figure 5.12: ILC in experiments for the 100 µs pulse, error observed between 0.33 and
99.99 µs. First column shows the input signal from ILC and second column shows the
error achieved between the desired output and measured output.

52



6
Conclusion

This chapter will give a brief summary of the most important results and some
conclusions that can be drawn will also be presented. Also a proposal for how the
results from the research can be used in practical applications are given.

Measurements of the PA output in a transmitter have been performed, where the
PA is turned off between the pulses. Two different PWs for the PA input have been
used, 10 µs and 100 µs. The measurements showed that transients occur in the PA
output when it is turned on, and also that a decaying behaviour occurs due to self
heating, which was more apparent for the pulse with longer duration.

Black box modelling showed that different model structures are needed depending
on PW of the input signal, except from the FIR model which achieved good perfor-
mance for both pulses. Even though the PA has been operating in its linear regime,
the 100 µs pulse needed a nonlinear Wiener model to achieve a good performance.
For the shorter pulse, a linear OE model had good performance. The longer pulse
includes more thermal memory effects, since the heat dissipation is increased when
the PA is on for a longer period. By observing the static nonlinearity for the Wiener
model one could see that it switched between three regions. One explanation for
why a nonlinear model then is needed is that an increased amount of heating leads
to a nonlinear gain of the amplifier. Other important characteristics that could be
observed from the modelling is that the estimation of recursive models for the data
are very sensitive to noise. When trying to directly estimate the models from one
single measurement the simulated model did not follow the oscillations present in
the measured output. It proved to be very successful to instead use the mean value
from a set of measurements that had used the same input signal.

By studying partial transfer functions of for instance the OE models, one could
see that two of the partial transfer functions seemed to cancel some of each others
behaviour. Reducing the number of coefficients did not result in a good model.
Hence it is of interest to investigate in the possibilities to apply other techniques to
reduce the model order.

Implementation of DPD showed that it is possible to successfully compensate
for all undesired memory effects in simulation. However, in experiments it was not
possible to compensate for the oscillations in interval (c) in Figure 4.5 and 4.6.
This was probably not achievable due to problems with timing of the instruments
and unknown time delays. This problematic could already be seen in the initial
measurements where each pulse did not start at the same time instance. This can
be seen in Figure 3.4 and 3.5. From simulations it could be seen that in order
to achieve a desired shape of the PA response, the input signal must be out of
phase from the initial measured response. By ensuring perfect timing and gaining
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6. Conclusion

knowledge about the time delays until the trigger reaches the VSA and the pulse
generator, it would probably be possible to also compensate also for this behaviour
in experiments. From the measurements, it could be seen that the pulses started
approximately after 0.15 µs. As explained in Chapter 3 about Measurements, a
trigger from the VSG is sent both to the pulse generator and the VSA when a
new period for the input signal is started. It is however known that there will be
a short time delay until the VSA starts to measure and until the pulse generator
turns the PA on. By adapting the input signal as shown in Figure 5.10 and Figure
5.12, it is assumed the VSA starts to measure directly and the PA is turned on after
approximately 0.15 µs. However, the VSA most likely also introduces a delay and
thereby the input signal must be shifted in time.

Also, it is desired to iteratively find the optimal input signal in simulation and
thereafter apply that signal in experiments. However, the performance of the PA
differs depending on the ambient temperature and if the PA has been used prior
to the experiment. When the optimal input signal was found in simulation and
applied in experiments, an offset in amplitude was present. This was probably due
to a change in the ambient temperature from the initial measurements which the
modelling were performed on to when the DPD was tested in the laboratory. An-
other possibility is that the PA might have been used prior to the DPD experiments
which in turn changes the temperature of the device which affects the performance.
Further improvement would instead have been achieved by either controlling the am-
bient temperature or by incorporating a temperature dependence in the modelling.
Using an integrated temperature sensor on the device would enable the possibility
to extend the modelling with a temperature dependence. Then the temperature can
be measured before finding the optimal input signal in simulation.

When the offset in amplitude was observed, the approach used instead was to
iteratively find the optimal input signal directly in experiments. The disadvantage
with doing so is that the algorithm tries to compensate for the measurement noise
as well, meaning that the input signal includes more noise for each iteration which
leads to more noise in the measurement. One possible solution would be to low pass
filter the data before it is used in the ILC.

With the ILC scheme, it is possible to offline iterate and find the optimal input
signal that will result in a desired output response. Hence a suitable usage is to
define pulse characteristics for a set of pulses, which depends on for instance desired
detection range. Thereafter the corresponding optimal input signal for each pulse
characteristic is found and can be saved in a look-up table. Hence no calculations
will be needed in its practical implementation. Another possibility is to measure
the PA output in the practical implementation. Thereby the input signal can be
changed online such that the desired output signal is achieved. This however implies
that it must be possible to measure the PA output.
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7
Future work

There are several problems concerning modelling and measurements used for the
design of DPD that remained unsolved and are therefore proposed as future research
questions.

It was only investigated in when the PA was turned on with a constant RF signal.
In order to have a full description of how the PA behaves, measurements of when the
RF signal is varied are needed as well. Also measurements where the PA is turned
on and the RF signal is varied simultaneously are needed. This might require a dual
input model instead, where in this case it was possible to simplify it to a single input
model.

The PA was also only operating in its linear regime. It is of interest to extend
the work such that compensation of nonlinear distortion also is possible. The ILC
algorithm would still be possible to use, but the model structures would need to be
reconsidered.

Implementing the ILC in experiments did not successfully eliminate the oscillating
transients that occurred when the PA was turned on. This was probably due to
problems with unknown delays and timing of the instruments. From the initial
measurements it could also be seen that the PA was not turned on at the exact
same time instance for each measurement. Hence it is of interest to investigate
in how the timing can be improved and to gain knowledge of the delays in the
instruments which would give better result of the DPD.

It is also of interest to extend the work with a temperature dependence. In the
conclusion it was discussed that the performance differs depending on temperature.
If the practical implementation would be to save values of optimal input signals in
a look-up table, the temperature also needs to be taken into consideration. A study
of how sensitive the performance is to temperature changes is therefore needed and
thereafter the modelling and design of DPD can be extended with a temperature
dependence.
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A
Models and measurements

Figure A.1: Simulated FIR model for the 10 µs pulse together with measurement data
for 100 pulses divided into the four evaluation intervals.
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A. Models and measurements

Figure A.2: Simulated ARX(5,6,0) for the 10 µs pulse together with measurement data
for 100 pulses divided into the four evaluation intervals.
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A. Models and measurements

Figure A.3: Simulated Wiener model for the 10 µs pulse together with measurement
data for 100 pulses divided into the four evaluation intervals.
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A. Models and measurements

Figure A.4: Simulated OE(5,4,0) for the 10 µs pulse together with measurement data
for 100 pulses divided into the four evaluation intervals.
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A. Models and measurements

Figure A.5: Simulated FIR model for the 100 µs pulse together with measurement data
for 100 pulses divided into the four evaluation intervals.
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A. Models and measurements

Figure A.6: Simulated OE(5,4,0) for the 100 µs together with measurement data for
100 pulses divided into the four evaluation intervals.
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A. Models and measurements

Figure A.7: Simulated Wiener model for the 100 µs pulse together with measurement
data for 100 pulses divided into the four evaluation intervals.
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