

Generalizing Semantic
Bidirectionalization & Tracking
Generated Expressions
Master of Science Thesis in Computer Science

SHAYAN NAJD JAVADIPOUR

Chalmers University of Technology
University of Gothenburg
Department of Computer Science & Engineering
Gothenburg, Sweden Feb. 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Generalizing Semantic Bidirectionalization & Tracking Generated Expressions

Shayan Najd Javadipour
c© Shayan Najd Javadipour, February 2013.

Examiner: Professor Mary Sheeran

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Abstract

In programming, there are often pairs of functions running in opposite directions: the
domain of one is the codomain of the other. Their functionalities are so closely related
that it is possible to derive one from the implementation of the other. Bidirectionalization
techniques address this concern. This thesis studies some of the theoretical and practical
aspects of bidirectionalization.

As the theoretical part of this thesis, we generalize an existing bidirectionalization tech-
nique, known as semantic bidirectionalization. Our generalized algorithm scales well and
lifts some of the restrictions set by the original algorithm.

As the practical part of this thesis, we focus on the problem of tracking expressions in
the low-level generated code to their origins in the high-level code.

Acknowledgements

To begin with, I would like to thank Meng Wang for his immense support. He has always
been ready to answer and discuss my questions at any time of the day, even when resting
in a sauna after a long conference!

I would also like to express my deepest appreciations to Mary Sheeran for her invaluable
guidance throughout this thesis.

While working on the thesis, I had the chance to join the Feldspar research project as a
research assistant. Therefore, I would like to thank the members of the Feldspar project,
particularly Emil Axelsson, for their help with the practical part of the thesis.

As a project assistant, I worked under the supervision of Niklas Broberg and David
Sands. I am grateful for this experience, during which I learnt a great deal on imple-
mentation and transformation of programming languages. To Niklas, I owe my under-
standing of type systems.

I would like to offer my special thanks to Jean-Philippe Bernardy; the use of obsever
functions in my proposed algorithm is a result of long discussions with him.

I would like to thank all the members of Function Programming research group at
Chalmers. Especially, I would like to express my deepest gratitude to John Hughes for
all his support and inspiring suggestions.

Last but not least, I would like to express my most sincere appreciations to Anna who
never ceases to amaze me.

Shayan Najd, Gothenburg 2013/02/01

Contents

1 Introduction 1

1.1 Semantic Bidirectionalization Revisited 2

1.2 Tracking Generated Expressions . 4

2 Background 7

2.1 Invertible Programming . 8

2.1.1 Invertibility in Mathematics . 9

2.2 Bidirectional Programming . 10

2.2.1 Correctness Laws . 12

2.2.2 Lenses . 14

2.2.3 Bidirectionalization . 14

2.2.3.1 Syntactic-Bidirectionalization 14

2.2.3.2 Semantic-Bidirectionalization 16

2.2.3.3 Syntactic and Semantic Combined 18

3 Semantic Bidirectionalization Revisited 19

3.1 Parametricity and Polymorphism . 20

3.2 Original Algorithm . 20

3.2.1 Bidirectionalizing Fully Polymorphic Functions 21

3.2.2 Bidirectionalizing Functions with an Equality Constraint 25

vii

CONTENTS

3.2.3 Bidirectionalizing Functions with an Ordering Constraint 30

3.3 Generalized Algorithm . 32

3.3.1 Generalizing to Higher-Order Format 32

3.3.2 General Validity Check . 36

3.3.3 General Algorithm with Parametric Indexing 37

3.4 General Indexing Mechanisms . 40

3.4.1 Self-Indexing System . 41

3.4.2 Uniquely Self-Indexing System . 44

3.5 Arity of the Observer Function . 47

3.5.1 Arity-Generic Data Type . 48

3.5.2 Arity-Generic Observations . 50

3.5.3 Bidirectionalization with Arity-Generic Observations 52

3.6 Generics . 54

3.7 Demonstration . 58

3.8 Future Work . 59

4 Tracking Generated Expressions 61

4.1 Tracking Generated Expressions . 62

4.2 Annotations in Data . 65

4.3 Preserving the Annotations . 66

4.3.1 Towards Annotation Preservation 66

4.4 Injecting Annotations . 70

4.5 Demonstration . 72

4.5.1 Tracking Generated Expressions in Pico-Feldspar 72

4.5.2 Tracking Generated Expressions in Feldspar 72

4.6 Related and Future Work . 74

5 Conclusion 79

Bibliography 85

viii

CONTENTS

Appendices 89

Appendix A . 89

Appendix B . 94

Appendix C . 133

Appendix D . 141

ix

x

List of Figures

2.1 Invertible Programming . 8

2.2 Bidirectional Programming . 11

2.3 Consistency–PutGet Law . 13

2.4 Acceptability–GetPut Law . 13

2.5 Undoability–PutPut Law . 13

2.6 Semantic-Bidirectionalization, An Example 16

3.1 Prelude Functions . 59

3.2 Polymorphic Functions in Prelude . 59

4.1 Colored . 73

4.2 Grayscale . 73

4.3 B&W . 73

xi

xii

List of Tables

2.1 Function Pairings . 10

xiii

xiv

Chapter 1

Introduction

1

1.1. SEMANTIC BIDIRECTIONALIZATION REVISITED

In programming, there are often pairs of functions running in opposite directions: the
domain of one is the codomain of the other. Zipping and unzipping, compressing and
decompressing, serializing and deserializing, parsing and pretty printing are all instances
of such pairs [CFH+09]. Their functionalities are so closely related that it is possible
to derive one from the implementation of the other. Bidirectionalization techniques
address this concern. They have applications in a wide range of areas including software
engineering, databases and programming languages. This thesis studies some of the
theoretical and practical aspects of bidirectionalization.

As the theoretical part of this thesis, we generalize an existing bidirectionalization tech-
nique, known as semantic bidirectionalization. Our generalized algorithm scales well and
lifts some of the restrictions set by the original algorithm.

As the practical part of this thesis, we focus on the problem of tracking expressions in the
low-level generated code to their origins in the high-level code. Feldspar is a relatively
complex domain-specific language embedded inside Haskell which is translated into C
code. We apply the semantic bidirectionalization technique to enhance Feldspar with
the ability to track the expressions in the low-level generated C code all the way back
to their origins in the high-level Haskell code.

In this thesis, we first study the existing techniques (chapter 2) and contribute to the
theory behind one of the existing methods (chapter 3). Later, in a practical case study,
we apply bidirectional transformation (BX) techniques to design and implement a mech-
anism to track the expressions from the generated low-level code to their origin in the
high-level code (chapter 4).

1.1 Semantic Bidirectionalization Revisited

In programming languages research, there are three major approaches [FMV12] in design
and implementation of bidirectional transformations [CFH+09]: the language-based ap-
proach and two bidirectionalization techniques. The former demands the programmer to
code in a specific language designed to produce bidirectional programs; the existing pro-
grams should be rewritten in the new language. On the other hand, bidirectionalization
techniques do not limit the programmer to code in a specific language; the programmer
writes the program in the conventional language of choice and bidirectionalization mech-
anisms automatically derive the program in the opposite direction. There are two main
distinct approaches to bidirectionalization:

1. Syntactic-Bidirectionalization [MHN+07]: using the actual code describing the
function to derive the function in the opposite direction

2

CHAPTER 1. INTRODUCTION

2. Semantic-Bidirectionalization [Voi09]: using the information provided by the type
and run-time behavior of the function to derive the function in the opposite direc-
tion

The syntactic approach heavily depends on the actual syntax of the language that the
function is written in and cannot handle syntactically complex programs. However, the
semantic approach is decoupled from the syntax and it can bidirectionalize any function
of specific polymorphic type. In this thesis, theory and practice surrounding semantic
bidirectionalization are explored.

The original semantic bidirectionalization method [Voi09] can only bidirectionalize poly-
morphic functions with the following type signatures:

1. fully polymorphic

f :: ∀a.[a]→ [a]

2. polymorphic function constrained with equality constraint

f :: ∀a.Eq a ⇒ [a]→ [a]

3. polymorphic function constrained with an ordering constraint

f :: ∀a.Ord a ⇒ [a]→ [a]

It also employs generic programming techniques to generalize these functions to work on
algebraic data types in general [Voi09]:

class (Traversable k ,Foldable k ′,Zippable k ′)⇒ Generic k k ′ where { }

1. fully polymorphic

f :: ∀k k ′ a.Generic k k ′ ⇒ k a → k ′ a

2. polymorphic function constrained with equality constraint

f :: ∀k k ′ a.(Generic k k ′,Eq a)⇒ k a → k ′ a

3. polymorphic function constrained with an ordering constraint

f :: ∀k k ′ a.(Generic k k ′,Ord a)⇒ k a → k ′ a

3

1.2. TRACKING GENERATED EXPRESSIONS

For simplicity, in this thesis, we mainly explain the underlying theories and contributions
using lists; the above mentioned generalization is orthogonal to the algorithm itself and
can be applied at any stage.

The original method does not scale properly and provides a separate mechanism per
type signature. In the third chapter of this thesis, the theoretical part, we introduce
a new mechanism that generalizes the original semantic bidirectionalization technique.
Our system scales very well; it does not need to provide a separate mechanism per type
signature. Moreover, our system is general enough to bidirectionalize any higher-order
polymorphic function having observer functions as their function arguments. Observer
functions are polymorphic functions that have a monomorphic result type, e.g., ∀a.a →
a → Bool . For example, in addition to functions with all the above type signatures, our
system can bidirectionalize functions like the following:

filter :: ∀a.(a → Bool)→ [a]→ [a]
dropWhile :: ∀a.(a → Bool)→ [a]→ [a]
takeWhile :: ∀a.(a → Bool)→ [a]→ [a]
find :: ∀a.(a → Bool)→ [a]→ Maybe a
partition :: (a → Bool)→ [a]→ ([a],[a])

For instance, consider the function partition that takes a predicate (a predicate is a
function of the type a → Bool) and splits the input list into two parts: the elements
satisfying the predicate and the ones that do not. Given the input list as "shayan" and
the predicate as (<’j’), the output of the function would be ("haa","syn"):

ghci > partition (<’j’) "shayan"
("haa","syn")

Now, if one changes the output to ("eaa","smn"), by changing the characters ’h’ to ’e’

and ’y’ to ’m’, our algorithm (the function bff Par) would be able to map the changes
back to the original source by bidirectionalizing the function partition:

ghci > (bff Par partition (<’j’) "shayan") ("eaa","smn")
Right "seaman"

The expression (bff Par partition (<’j’) "shayan") can be seen as a partial function that
takes the two (potentially modified) parts and puts them together in the right order.

1.2 Tracking Generated Expressions

In the practical part of the thesis, we apply the semantic bidirectionalization techniques
to track expressions in the low-level generated code to their origins at the high-level code.
In particular, we enhance Feldspar [ACS+11] with the ability to track the expressions in
the low-level generated C code to their origins in the high-level Haskell code. Feldspar

4

CHAPTER 1. INTRODUCTION

is a relatively complex domain-specific language embedded inside Haskell ; it generates
C code to facilitate parallel programming for digital signal processing algorithms. A
simple program in Feldspar looks like the following:

01 :
02 : module TestFeldspar where
03 :
04 : import qualified Prelude
05 : import Feldspar
06 : import Feldspar .Compiler
07 :
08 : inc :: Data Int32 → Data Int32
09 : inc x = x + 1
10 :
11 : dec :: Data Int32 → Data Int32
12 : dec x = x − 1
13 :
14 : incAbs :: Data Int32 → Data Int32
15 : incAbs a = condition (a < 0) (dec a) (inc a)
16 :
17 : cCode :: IO ()
18 : cCode = icompile incAbs

It defines three functions using Feldspar ’s front-end (the imported module Feldspar):
a function to increase the value of the input by one (inc), a function to decrease the
value of the input by one (dec) and a function to increase the absolute value of the input
number by one (incAbs). Then using the Feldspar ’s back-end (the imported module
Feldspar .Compiler), it defines an expression named cCode that compiles the incAbs
function into the following C code:

01: /* The header files are ignored */

02:

03: void test(int32_t v0, int32_t * out)

04: {

05: if((v0 < 0))

06: {

07: (* out) = (v0 - 1);

08: }

09: else

10: {

11: (* out) = (v0 + 1);

12: }

13: }

5

1.2. TRACKING GENERATED EXPRESSIONS

It defines a function (named test) in C that accepts an integer (of type int32 t) as an
input and returns it with its absolute value increased by one. The body of the function
represents the expression incAbs in line 15 in the high-level Haskell code. Moreover, the
expression v0 − 1 in line 07 and v0 + 1 in line 11 of the low-level code represent the
body of the functions inc and dec in the high-level code correspondingly. So far, there
is no mechanism to indicate this connection. Therefore, if the generated C code, for
instance, generates an error at run-time, it is hard to find the problematic expression in
the high-level Haskell code.

As the practical part of this thesis (chapter 4), we make this connection explicit and
enhance Feldspar with the possibility to track the generated expressions to their ori-
gin in the high-level Haskell code. By adding the pragma {−#OPTIONS GHC − F −
pgmF qapp#−} at the top of the Haskell source code, the implemented tracking sys-
tem gets activated and it automatically annotates the generated expressions in the C
code with the exact source locations of the corresponding top-level expressions in the
Haskell code. For instance, by adding the mentioned pragma in the top of (line 01) the
TestFeldspar module in the above (being defined in the file “ /TestFeldspar.hs”), we get
the following C code (cCode):

/∗ The header files are ignored ∗/
void test (int32 t v0 ,int32 t ∗ out)
{
/∗ SrcLoc {srcFilename = "~/TestFeldspar.hs",

srcLine = 15,srcColumn = 1} ∗/
if ((v0 < 0))
{
/∗ SrcLoc {srcFilename = "~/TestFeldspar.hs",

srcLine = 12,srcColumn = 1} ∗/
(∗out) = (v0 − 1);
}
else
{
/∗ SrcLoc {srcFilename = "~/TestFeldspar.hs",

srcLine = 9,srcColumn = 1} ∗/
(∗out) = (v0 + 1);
}
}

In this C code, the connection between the expressions in the C code and their origin in
the Haskell code is explicitly mentioned in the annotations (declared via C comments):
the if block is annotated with a source location referring to the body expression of the
high-level binding incAbs, the body expression of the first branch is annotated with a
source location referring to the body expression of the high-level binding dec and the
body expression of the second branch is annotated with a source location referring to
the body expression of the high-level binding inc.

6

Chapter 2

Background

7

2.1. INVERTIBLE PROGRAMMING

2.1 Invertible Programming

Invertible programming techniques [MMHT10, MHT04b, Wan10, MHT04a, HMT04]
borrow the well-studied notion of invertibility from mathematics and use it to calculate
the inverse functions. This way, the programmer only implements a function (f) in
the desired direction and by calculating its inverse function (f −1), the function in the
opposite direction is derived.

f :: A→ B
f −1 :: B → A
[Left − Invertibility]
∀x :: A. (f −1 ◦ f) x = x
[Right − Invertibility]
∀x :: B . (f ◦ f −1) x = x

Figure 2.1: Invertible Programming

For example, in the following, the function unzipp is the inverse function of the function
zipp.

zipp :: ∀a b.([a],[b])→ [(a,b)]
zipp ([],[]) = []
zipp ((x : xs),(y : ys)) = let

ps = zipp (xs,ys)
in (x ,y) : ps

unzipp :: ∀a b.[(a,b)]→ ([a],[b])
unzipp [] = ([],[])
unzipp ((x ,y) : ps) = let

(xs,ys) = unzipp ps
in (x : xs,y : ys)

8

CHAPTER 2. BACKGROUND

Limitations

A function is invertible if and only if it is possible to define an inverse function for it.
Not all functions are invertible; there are fundamental restrictions for calculating the
inverse function. In the following, we study these restrictions in more detail.

2.1.1 Invertibility in Mathematics

In mathematics, a function f :: A→ B , either partial or total, can be categorized as:

1. Injective (one-to-one)

isInjective f : ∀x1 :: A. ∀x2 :: A. f x1 = f x2 ⇒ x1 = x2

2. Surjective (onto)

isSurjective f : ∀y :: B . ∃x :: A. f x = y

3. Bijective (both one-to-one and onto)

isBijective f : ∀x1 :: A. ∀x2 :: A. f x1 = f x2 ⇔ x1 = x2

4. Neither (non-injective non-surjective)

Among them, only injective functions are invertible: a function f :: A→ B is invertible
if and only if it is at least injective.

isInjective f ⇔ (∃f −1 :: B → A. (f −1 ◦ f) x = x)

Limitations

In practice, functions are often non-injective and therefore they cannot be used for in-
vertible programming. Fortunately, in some cases, bidirectional programming techniques
can be used to approximate the result. In the next section (section 2.2), we explore bidi-
rectional programming techniques.

Even if a function is not injective, it may be possible to define a partial inverse for it. This
can be done by restricting the input domain. For example, having f x = x2, by restricting
the domain to the positive numbers, we have a partial inverse f−1 x =

√
x. If we allow

multivalued inverse functions, it may be possible to define them without restricting the
domain. Outputs of such inverse functions are called inverse image (preimage) of their
corresponding value in the codomain of the original function. In a more general case,
the inverse function theorem gives sufficient conditions for a function to be invertible.
The invertibility of a binary relation is also a related concept in mathematics, since a
function is a special form of a binary relation.

9

2.2. BIDIRECTIONAL PROGRAMMING

Total Partial

Injective

1

2

3

A

B

C

D

1

2

3

A

B

C

D4

Surjective

1

2

3

A

B

C

4

1

2

3

A

4

B

Bijective

1

2

3

A

B

C

D4

1

2

3

A

B

C

4

None

1

2

3

A

B

C

D4

1

2

3

A

B

C

D
4
5

Table 2.1: Function Pairings

2.2 Bidirectional Programming

In bidirectional programming [CFH+09] terminology, the pair of functions consists of a
forward function (get) and a backward function (put). The input of the forward function
is called the source and the output is called the view.

Consider the function values ::∀a.[(String ,a)]→ [a] that returns the list of stored values
in the input lookup table:

values :: ∀a.[(String ,a)]→ [a]
values [] = []
values ((i ,x) : ps) = let

xs = values ps
in x : xs

10

CHAPTER 2. BACKGROUND

Figure 2.2: Bidirectional Programming

The function values can be viewed as the forward (get) function, a value of the type
[(String ,a)] as the source and a value of the type [a] as the view:

type Source a = [(String ,a)]
type View a = [a]

forward :: ∀a.Source a → View a
forward = values

source :: Source String
source = [("#01","Keyboard"),("#02","Mouse"),("#03","Monitor")]

view :: View String
view = ["Keyboard","Mouse","Monitor"]

If the view changes (view ′), bidirectional transformation can provide the backward func-
tion save ::∀a.[(String ,a)]→ [a]→ [(String ,a)] to save the changes to the values in the
original lookup table:

view ′ :: View String

view ′ = ["Keyboard", "Speaker" ,"Monitor"]

save :: ∀a.[(String ,a)]→ [a]→ [(String ,a)]
save source view ′ = zip (map fst source) view ′

backward :: ∀a.Source a → View a → Source a
backward = save

In comparison with the pair of zipp and unzipp, there are two points to notice:

11

2.2. BIDIRECTIONAL PROGRAMMING

Firstly, the values function is not injective, since at least two distinct values in the
domain are mapped to the same value in the codomain.

[("0",0)] 6= [("1",0)] ∧ values [("0",0)] = values [("1",0)] = [0]

Also, the backward function additionally takes a lookup table as its first argument (the
original source). The backward function uses this extra parameter to reconstruct (up-
date) the source corresponding to the input updated view. Thus, the result depends on
the input source.

source1 = [("0",0)]
source2 = [("1",0)]
view = [1]
result1 = backward source1 view = (1,1)
result2 = backward source2 view = (1,2)

Since the input original sources are different, for a single view, there are different results.

2.2.1 Correctness Laws

A bidirectional transformation is correct if the following properties hold [FMV12]:

Consistency–PutGet get (put s v) = v (figure 2.3)

Acceptability–GetPut put s (get s) = s (figure 2.4)

In addition to these laws, an optional undoability property is sometimes introduced:

Undoability–PutPut put (put s v ′) (get s) = s (figure 2.5)

Note that we assume that the property ∀x y .((x == y) = True) ⇔ (x = y) holds
throughout the thesis and the operator == is yet another Haskell function and does not
denote equality; the operator = is used to denote equality and binding.

Consistency property ensures that all the updates on a view are captured by the updated
source.

Acceptability property states if there are no changes to the view, only the original source
should be retrieved by the backwards function.

Undoability property states that the order of updates on a single source should not
matter.

In practice, it is often allowed for the backward function to fail on certain inputs
[FMV12]. In those cases, weakened versions of the consistency and undoability properties
are introduced (the hypotheses test the definedness of specific function calls):

12

CHAPTER 2. BACKGROUND

Figure 2.3: Consistency–PutGet Law

Figure 2.4: Acceptability–GetPut Law

Weakened Consistency–Partial PutGet (put s v)↓
get (put s v) = v

Weakened Undoability–Partial PutPut (put s v′)↓
put (put s v′) (get s) = s

Note that in all the mentioned properties, the input value of the forward function ranges
over the actual domain in which the forward function is total:

∀s.get s 6= ⊥

There are two main approaches to bidirectional programming [FMV12]:

1. lenses and other language-based approaches

2. bidirectionalization

Figure 2.5: Undoability–PutPut Law

13

2.2. BIDIRECTIONAL PROGRAMMING

2.2.2 Lenses

In a language-based approach [FGM+07], the programmer writes one single implemen-
tation in a special language and from that implementation both forward and backward
functions are derived. That is, the programmer, by writing code in that language, is
defining the forward and backward transformation at the same time.

Limitations

Although lenses are useful in practice, since they require the programmer to write the
program in a specific language rather than a conventional language of choice, their
application domain is limited. The existing programs written in conventional languages
should be rewritten in order to form lenses.

2.2.3 Bidirectionalization

By employing bidirectionalization techniques, the programmer writes the forward func-
tion in a conventional language of choice and the backward function is mechanically
derived.

There are two main distinct approaches to bidirectionalization:

1. Syntactic-Bidirectionalization: using the actual code describing the forward func-
tion to derive the backward function [MHN+07]

2. Semantic-Bidirectionalization: using the information provided by the type and
run-time behavior of the forward function to derive the backward function [Voi09]

Moreover, there is a technique that combines the two [VHMW10].

2.2.3.1 Syntactic-Bidirectionalization

Syntactic-bidirectionalization [MHN+07] employs a syntax-directed transformation, over
the actual code describing the forward function, to derive the backward function. The
transformation is done in three steps:

1. The complement function – i.e. the function returning the parts of the input that
are discarded by the forward function – is calculated

2. The complement function is tupled with the forward function. The tupled function
is injective and hence invertible, since the information discarded by the forward
function is provided by the complement function

14

CHAPTER 2. BACKGROUND

3. the inverse function of the tupled function is calculated

Considering the function values from before as the forward function, syntactic bidirec-
tionalization results in the following:

comp values [] = []
comp values ((i ,x) : ps) = let

is = comp values ps
in i : is

tupl values [] = ([],[])
tupl values ((i ,x) : ps) = let

(is,xs) = tupl values ps
in (i : is,x : xs)

invs tupl values ([],[]) = []
invs tupl values (i : is,x : xs) = let

ps = invs tupl values (is,xs)
in (i ,x) : ps

backwardSyn :: ∀a.Source a → View a → Source a
backwardSyn source view ′ = invs tupl values (comp values source,view ′)

where comp values is the complement function and returns the list keys in the input
lookup table that are discarded by the forward function. The function tupl values tu-
ples the forward function with the complement function. By swapping the patterns and
corresponding expressions in tupl values the inverse function invs tupl values is pro-
duced. The backward function applies the inverse function invs tupl values to the view
and the complement that was discarded.

Limitations Since this technique involves calculation of the complement function and
the inverse function of the tupled function, it is highly coupled with the definition of the
language the program is written in [VHMW10, FMV12].

Quoting from [VHMW10]:

[Syntactic-Bidirectionalization] can only deal with programs in a custom first-
order language subject to linearity restrictions and absence of intermediate
results between function calls.

In a first-order language, functions are no longer first-class citizens; it is not possible to
abstract over functions. Linearity restriction (affine language) is a condition stating that
each variable should only be used at most once. It means the program cannot duplicate
values. For instance, it is impossible to define the function dup x = x ++ x . Absence
of intermediate results (treeless) is another well-known restriction, discussed in [Wad88]
for example.

15

2.2. BIDIRECTIONAL PROGRAMMING

2.2.3.2 Semantic-Bidirectionalization

Semantic-bidirectionalization [Voi09] technique targets polymorphic functions; it uses
polymorphism to assign a unique index to each element in the input (indexes the elements
of the input), executes the forward function over the indexed input and then studies the
output to mimic the behavior of the forward function. Having Haskell extended with the
support for rank-2 types, the corresponding backward function for a fully polymorphic
function f :: ∀a.[a]→ [a] is a higher-order function of the following type:

bff :: (∀a.[a]→ [a])→
(∀a.Eq a ⇒ [a]→ [a]→ [a])

The algorithm is best illustrated by an example. Considering the standard function
tail :: ∀a.[a] → [a] as the forward function with the original source [’c’,’a’,’a’,’b’]
and the modified view [’a’,’a’,’d’], the algorithm works as follows:

Figure 2.6: Semantic-Bidirectionalization, An Example

1. each element in the original source is uniquely indexed by numbers to form a
mapping, from the unique indices to their corresponding source elements, called
the source mapping.

[(1,’c’),(2,’a’),(3,’a’),(4,’b’)]

2. the indices are extracted from the mapping and the forward function is applied to
the indices

tail [1,2,3,4] = [2,3,4]

3. the resulting indices

[2,3,4]

16

CHAPTER 2. BACKGROUND

are zipped with the modified view

[’a’,’a’,’d’]

to form the view mapping

[(2,’a’),(3,’a’),(4,’d’)]

4. it checks duplication in the view mapping by checking if any index is repeated
more than once. If so, the corresponding values in the modified view should be the
same. The duplication check on the view mapping [(2,’a’), (3,’a’),(4,’d’)] finds no
duplication since no index is repeated more than once.

5. the view mapping

[(2,’a’),(3,’a’),(4,’d’)]

is overwritten on the source mapping

[(1,’c’),(2,’a’),(3,’a’),(4,’b’)]

and results in

[(1,’c’),(2,’a’),(3,’a’),(4,’d’)]

6. looking up the original indices

[1,2,3,4]

from the overwritten mapping

[(1,’c’),(2,’a’),(3,’a’),(4,’d’)]

results in the updated source

[’c’,’a’,’a’,’d’]

By generic programming, the algorithm can be extended to work for any algebraic data
types. [Voi09]

class (Traversable k ,Foldable k ′,Zippable k ′)⇒ Generic k k ′ where { }

bff :: ∀k k ′.Generic k k ′ ⇒
(∀a.k a → k ′ a)→
(∀a.Eq a ⇒ k a → k ′ a → k a)

For example, adopting the same technique for bidirectionalizing the function values from
before, we get the higher-order function with the following type as the first approxima-
tion:

backwardSem :: (∀a.[(String ,a)]→ [a])→
(∀a.Eq a ⇒ [(String ,a)]→ [a]→ [(String ,a)])

17

2.2. BIDIRECTIONAL PROGRAMMING

Limitations The original technique only works for polymorphic functions f with the
following types:

class (Traversable k ,Foldable k ′,Zippable k ′)⇒ Generic k k ′ where { }

1. fully polymorphic

f :: ∀k k ′ a.Generic k k ′ ⇒ k a → k ′ a

2. polymorphic function constrained with equality constraint

f :: ∀k k ′ a.(Generic k k ′,Eq a)⇒ k a → k ′ a

3. polymorphic function constrained with an ordering constraint

f :: ∀k k ′ a.(Generic k k ′,Ord a)⇒ k a → k ′ a

Moreover, semantic-bidirectionalization does not support shape change in the modified
view, e.g., considering the tail example above, if the length of the list in the modified
view changes, it cannot be bidirectionalized. The reason is the fact that mappings are
not of the same length, thus they cannot be zipped together. In the next chapter, we
generalize the underlying theory of semantic-bidirectionalization and, as a result, we
expand the application domain.

2.2.3.3 Syntactic and Semantic Combined

As mentioned in the previous section, semantic-bidirectionalization rejects any updates
to the shape of the view. This lack of ”updateability” can be compensated by com-
bining [VHMW10] the semantic-bidirectionalization with syntactic-bidirectionalization
techniques.

Limitations Since this technique is a combination of semantic and syntactic bidirec-
tionalization, it inherits limitations of both approaches. Therefore, in practice it has a
small application domain.

18

Chapter 3

Semantic Bidirectionalization
Revisited

19

3.1. PARAMETRICITY AND POLYMORPHISM

3.1 Parametricity and Polymorphism

The Abstraction theorem (Parametricity) [Rey83] was originally introduced to capture
the intuitive understanding that parametric polymorphic functions should behave inde-
pendently (abstracted) from the type assigned to the type variables. It can be used to
derive theorems (free theorems) for every function with a polymorphic type [Wad89].
For example, the function get :: ∀a.[a] → [a] should treat a list of Boolean values of
the type [Bool] in the same way as it treats a list of characters of the type [Char].
In other words, the function get has no information about the type of the elements of
the input list and this lack of information (the abstraction) limits the function in the
way it treats the argument; variables with parametric types cannot be generated and
cannot be observed (e.g. pattern matched over) except by the input function arguments
sharing the same type variables. To generate a value of the parametric type a inside a
parametric polymorphic function, the function argument should result in a value of the
same parametric type, i.e., the function argument should be of the type ...→ a. Such a
function is called the generator function [BJC10]. For example, the function argument
in scanr1 :: ∀a.(a → a → a)→ [a]→ [a] is a generator function.

Analogously, function arguments of type ... → X , where X is a (non-parametric)
monomorphic type, are called the observer functions since by applying them to vari-
ables of parametric type, a value with a concrete type is produced that can be observed
in the function. For example, the function argument in nubBy :: ∀a.(a → a → Bool)→
[a]→ [a] is an observer function.

3.2 Original Algorithm

According to the abstraction theorem (refer to the previous section), a parametric poly-
morphic forward function get :: ∀a.[a]→ [a], due to the lack of generator functions, can
only do the following actions with the elements of the input list [Wad89]:

1. Rearranging

2. Dropping

3. Duplicating

Semantic bidirectionalization uses this fact to simulate the behavior of the forward func-
tion get by running it on a list of unique integers with the same length and examining
the result. Each of the above mentioned effects of the function on the elements of the
input list is revealed as follows:

1. Rearranging : the rearrangement of the numbers in the resulting list of integers
with respect to the original list of integers

20

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

2. Dropping : missing numbers in the resulting list of integers with respect to the
original list of integers

3. Duplicating : multiple equal elements in the resulting list of integers

Consider the following function that concatenates the tail of the input list with the
mirror of its tail:

tailRevDup :: ∀a.[a]→ [a]
tailRevDup [] = []
tailRevDup x = let

t = tail x
in t ++ (reverse t)

Consider the following original source:

SourceChar = [’c’,’a’,’a’,’b’]
ViewChar = tailRevDup SourceChar

The resulting view ViewChar is "aabbaa". Now, we apply the function to a list of unique
numbers with the same size:

SourceInt = [1,2,3,4]
View Int = tailRevDup SourceInt

The resulting list of numbers View Int is [2,3,4,4,3,2]. The effect of the function tail-
RevDup on the source SourceChar is revealed by studying the resulting list of numbers
View Int:

1. Rearranging : the rearrangement of the numbers in View Int with respect to SourceInt

exactly shows how corresponding characters in SourceChar are rearranged.

2. Dropping : since number 1 is dropped, then it is possible to conclude the first
character ’c’ is dropped by the function.

3. Duplicating : recurrence of numbers 2,3 and 4 indicates duplication of characters
the first ’a’, the second ’a’ and ’b’.

3.2.1 Bidirectionalizing Fully Polymorphic Functions

In essence, the original semantic-bidirectionalization algorithm [Voi09] follows the above
mentioned approach to bidirectionalize polymorphic functions. The original algorithm
for bidirectionalizing fully polymorphic forward functions of type ∀a.[a] → [a] (e.g.
tailRevDup) can be implemented as the following higher-order rank-2 function that takes

21

3.2. ORIGINAL ALGORITHM

the forward function as a function argument and returns the backward function as the
result:

{-# LANGUAGE Rank2Types #-}
import Data.Maybe
import Control .Monad
import qualified Data.List
import Data.Function

bff :: (∀a.[a]→ [a])→
(∀a.Eq a ⇒ [a]→ [a]→ Either String [a])

bff get s v = do
-- Step 1

let ms = index s
-- Step 2

let is = fst ‘map‘ ms
let iv = get is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1
unless (check ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

As discussed before, it includes six steps (section 2.2.3.2). For a more illustrative and
self-contained explanation, we combine the description of each step, the corresponding
code and a step by step bidirectionalization of the function tail :: ∀a.[a] → [a] with
s = [’c’,’a’,’a’,’b’] as the original source and v = [’a’,’a’,’d’] as the modified
view (figure 2.6). The code is defined inside the do notation block to facilitate error
handling using Either Monad and the monadic function unless [Wad95, Wad92].

22

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

Step 1: Indexing
Each element in the original source is uniquely indexed by the integers to form the
source mapping.

index :: ∀a.[a]→ [(Int ,a)]
index s = zip [1 . . length s] s

In the example above, after step 1 we have:

ms = [(1,’c’),(2,’a’),(3,’a’),(4,’b’)]

Step 2: Calculating View of Indices
The indices are extracted from the mapping and forward function is applied to the
indices.

In the example above, after step 2 we have:

is = [1,2,3,4]
iv = [2,3,4]

Step 3: Associating
The resulting view of indices are zipped with the input modified view v to form
the view mapping. Since the two lists are zipped together, it is checked if they have
the same length. The standard zip function in Haskell, imported in the Prelude
module, can zip lists of different lengths; every element in the shorter list is paired
with a corresponding element (the same position) in the larger list and the rest of
the elements of the larger list are discarded. We expect all the elements in the two
lists to be paired up. Therefore, lists of different lengths cannot be zipped together
correctly.

assoc :: ∀a b.[a]→ [b]→ [(a,b)]
assoc = zip

In the example above, after step 3 we have:

(length v == length iv) = True
mv = [(2,’a’),(3,’a’),(4,’d’)]

Step 4: Duplication Check
The duplication check is performed to ensure that duplicated indices are assigned
to the same value. Since this check needs to compare the value of the elements
in the input modified view, the type of elements is constrained with an equality
constraint. For example, having the forward function get x = x ++x with the input
source "a", the modified view "ab" is indeed invalid since all the possible updates
of the source, namely "a" or "b", violate the consistency law.

23

3.2. ORIGINAL ALGORITHM

validAssoc :: ∀a b.(Eq a,Eq b)⇒ [(a,b)]→ Bool
validAssoc mv = and [¬ (i == j) ∨ x == y | (i ,x)← mv ,(j ,y)← mv]

In the example above, after step 4 we have:

validAssoc mv = True

Step 5: Union
The mappings are unified with the view mapping having the highest priority.

union :: ∀a b.Eq a ⇒ [(a,b)]→ [(a,b)]→ [(a,b)]
union = unionBy ((==) ‘on‘ fst)

In the example above, after step 5 we have:

ms ′ = [(2,’a’),(3,’a’),(4,’d’),(1,’c’)]

Step 5.1: Union Validity Checking
The output of the union is checked to be valid. In the fully polymorphic case
(bff), the check always passes. It is used as a place holder; soon, by extending the
algorithm to bidirectionalize polymorphic functions constrained with equality or
ordering, we need to introduce an actual validation phase here.

check :: ∀a b.[(a,b)]→ Bool
check = True

In the example above, after step 5.1 we have:

check ms ′ = True

Step 6: Looking Up
The actual updated source is formed by looking up the original indices from the
unified mapping.

lookupAll :: ∀a b.Eq a ⇒ [a]→ [(a,b)]→ [b]
lookupAll is mp = map (fromJust .flip lookup mp) is

Finally, in the example above, after step 6 we have:

result = [’c’,’a’,’a’,’d’]

24

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

Correctness

The bidirectionalization via the function bff forms a valid bidirectional transformation
with respect to BX laws:

Theorem 1 (Consistency of bff)

The bidirectional transformation formed by bff is consistent:

bff get s v = Right s ′ ⇒ get s ′ = v

�

Proof.

Refer to the proof of theorem 2 in the original paper [Voi09].

�

Theorem 2 (Acceptability of bff)

The bidirectional transformation formed by bff is acceptable:

bff get s (get s) = Right s

�

Proof.

Refer to the proof of theorem 1 in the original paper [Voi09].

�

3.2.2 Bidirectionalizing Functions with an Equality Constraint

The algorithm was originally extended [Voi09] to work for forward functions with an
equality constraint, namely bff Eq :

bff Eq :: (∀a.Eq a ⇒ [a]→ [a])→
(∀a.Eq a ⇒ [a]→ [a]→ [a])

25

3.2. ORIGINAL ALGORITHM

For example, in order to bidirectionalize the function nub :: Eq a ⇒ [a]→ [a], we have
to use bff Eq instead of bff . The function nub is imported from the module Data.List
in Haskell’s standard library and it removes duplication from the input list.

For a function like nub, it is not enough to use bff ; even the types do not match, since nub
has an equality constraint on its type. To illustrate the problem, we consider a version
of bff , with only its type changed to include the equality constraint for the function
argument:

bff v1 :: (∀a.Eq a ⇒ [a]→ [a])→
(∀a.(Eq a,Eq a)⇒ [a]→ [a]→ Either String [a])

The following example fails for bff v1 :

ghci > bff v1 nub "aa" "b"

Left "Modified view of wrong length!"

Here, the original view would be "a" and the user modified it to "b". bff v1 works as
follows:

Step 1

ms = [(1,’a’),(2,’a’)]

Step 2

is = [1,2]
iv = [1,2]

Step 3

(length v == length iv) = False

The length of the view of the indices (length 2) is not equal to the length of the
input modified view (length 1). It fails and returns the error message as the result
(wrapped by Left).

The main problem is that nub is capable of observing equality between the elements of
the input list (via the (==) operator provided by the witness of the equality constraint)
and hence behaves according to that observation. Naive indexing of original source
values with a list of unique numbers ignores the fact that some elements are equal to

26

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

each other and hence applying nub to a list of unique indices can no longer mimic its
effect on the actual source. In other words, if the equality of elements can be observed
in a mapping (mp), indices should be equal whenever their corresponding elements are
equal:

∀(i,x),(j,y) ∈ mp. i == j ⇔ x == y

To solve this issue, the original work [Voi09] uses the same algorithm as bff but with a
different indexing function (the function indexEq instead of index) and a stronger union
check checkEq .

The new indexing function indexEq assigns equal indices to equal elements; for example
having the source "caab", the new indexing function indexEq results in the following:

ghci > indexEq "caab"

[(1,’c’),(2,’a’),(2,’a’),(3,’b’)]

While the original indexing function results in a wrong mapping:

ghci > index "caab"

[(1,’c’),(2,’a’),(3,’a’),(4,’b’)]

The original work [Voi09], uses the State Monad [Wad92] to implement the new indexing
function indexEq . For simplicity of the presentation, we sacrifice efficiency and redefine
the original algorithm as follows:

indexEq :: ∀a.Eq a ⇒ [a]→ [(Int ,a)]
indexEq s = indexEq s [] 0

indexEq :: ∀a.Eq a ⇒ [a]→ [(Int ,a)]→ Int → [(Int ,a)]
indexEq [] mp = mp
indexEq (x : xs) mp i = let

(i ′,ix) = case (find ((== x).snd) mp) of
Just (j ,)→ (i ,j)
Nothing → (i + 1,i + 1)

in indexEq xs (mp ++ [(ix ,x)]) i ′

If an equal element is already indexed, then it assigns the same index, otherwise it assigns
a new index.

In addition to a new indexing function, we need to introduce a new mechanism to
check validity of the mapping after union. First, let us demonstrate the necessity by an
example.

Considering bff v2 being the same as bff v1 but with the new indexing function indexEq ,
we have:

ghci > bff v2 nub "ab" "aa"

"aa"

27

3.2. ORIGINAL ALGORITHM

It certainly violates the PutGet law (section 2.2.1):

nub (bff v2 nub "ab" "aa") = "a" 6= "aa"

It boils down to the very same fact that in presence of an equality operator as an observer
function, equal elements in the mappings should have equal indices and vise versa. So
far, we enforced this property in generating mappings (indexEq); we also need to make
sure this correspondence between indices and values in the mapping still holds after
union. We encourage the reader to refer to the original paper [Voi09] in which, as a part
of the proof of consistency of the bidirectionalization formed via bff Eq , the necessity of
this correspondence is explained.

To validate the unified mapping (the mapping after the union), we provide a new function
checkEq :

checkEq :: ∀a.Eq a ⇒ [(Int ,a)]→ Bool
checkEq mp = and [(i == j) == (x == y) | (i ,x)← mp,(j ,y)← mp]

Replacing the old validity check function check in bff v2 with the new version checkEq , we
finally get bff Eq to bidirectionalize polymorphic functions of type ∀a.Eq a ⇒ [a]→ [a]:

bff Eq :: (∀a.Eq a ⇒ [a]→ [a])→
(∀a.Eq a ⇒ [a]→ [a]→ Either String [a])

bff Eq get s v = do

-- Step 1

let ms = indexEq s

-- Step 2
let is = fst ‘map‘ ms
let iv = get is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1

unless (checkEq ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

28

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

By running bff Eq with the invalid modified view from the example above, this time, we
get an error message which correctly stops us from updating the source with an invalid
change:

ghci > bff Eq nub "ab" "aa"

Left "Invalid modified view!"

Correctness

The bidirectionalization via the function bff Eq forms a valid bidirectional transformation
with respect to BX laws:

Theorem 3 (Consistency of bff Eq)

The bidirectional transformation formed by bff Eq is consistent:

bff Eq get s v = Right s ′ ⇒ get s ′ = v

�

Proof.

Refer to the proof of theorem 4 in the original paper [Voi09].

�

Theorem 4 (Acceptability of bff Eq)

The bidirectional transformation formed by bff Eq is acceptable:

bff Eq get s (get s) = Right s

�

Proof.

Refer to the proof of theorem 3 in the original paper [Voi09].

�

29

3.2. ORIGINAL ALGORITHM

3.2.3 Bidirectionalizing Functions with an Ordering Constraint

To bidirectionalize a forward function with an ordering constraint, i.e. a function of type
∀a.Ord a ⇒ [a] → [a], the original paper introduces a third function bff Ord . Like for
bff Eq , bff Ord needs to have its own separate mechanism for indexing (indexOrd) and
checking the validity of the unified mapping (checkOrd). A function of type ∀a.Ord a ⇒
[a]→ [a] can check for ordering of two elements in its arguments via the operator (6).
In addition, it can check for equality via (==). That is because the type class Eq is
defined as a super-class of the type class Ord :

class Eq a ⇒ Ord a where ...

The function compare introduced by an ordering constraint Ord can check both equality
and ordering of the elements.

With such a powerful observational ability, it is more tricky for the indexing algorithm
to calculate indices that follow the same ordering as their corresponding elements. For
example, indexing [’c’,’a’,’a’,’b’] with [1,2,2,3] is not correct anymore, since for the
elements ’b’ and ’c’ the function can observe ’b’ < ’c’ while for their corresponding
indices (3 and 1 respectively), the function observes otherwise, i.e., 3 ≮ 1. A correct
indexing for [’c’,’a’,’a’,’b’] would be [3,1,1,2]. The original paper uses Applicative
Functors [MP08] to implement such an indexing system. For simplicity, we redefine it
as follows:

indexOrd :: ∀a.Ord a ⇒ [a]→ [(Int ,a)]
indexOrd s = let

s ′ = sort s
mp = indexEq s ′

in [(fst .fromJust $ find ((== e).snd) mp,e) | e ← s]

It first sorts the source list, employs indexEq for indexing the sorted list and then
assigns indices to the elements of the original source (unsorted list) by looking up indices
associated with each element in the mapping of the sorted list.

The same story repeats for checking validity of the mapping after union. The algorithm
should check that indices compare to each other in the same way as their corresponding
elements do.

checkOrd :: ∀a.Ord a ⇒ [(Int ,a)]→ Bool
checkOrd mp = and [compare i j == compare x y | (i ,x)← mp,(j ,y)← mp]

30

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

Finally, bff Ord
1 is formed by modifying the type of bff to include Ord constraint,

replacing index with indexOrd and check with checkOrd :

bff Ord :: (∀a.Ord a ⇒ [a]→ [a])→
(∀a.(Eq a,Ord a)⇒ [a]→ [a]→ Either String [a])

bff Ord get s v = do
-- Step 1

let ms = indexOrd s

-- Step 2
let is = fst ‘map‘ ms
let iv = get is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1

unless (checkOrd ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

Correctness

The bidirectionalization via the function bff Ord forms a valid bidirectional transforma-
tion with respect to BX laws:

Theorem 5 (Consistency of bff Ord)

The bidirectional transformation formed by bff Ord is consistent:

bff Ord get s v = Right s ′ ⇒ get s ′ = v

�

1The type classOrd inherits the type class Eq . Therefore, we could reduce the constraint (Eq a,Ord a)
to Ord a.

31

3.3. GENERALIZED ALGORITHM

Proof.

Refer to the proof of theorem 6 in the original paper [Voi09].

�

Theorem 6 (Acceptability of bff Ord)

The bidirectional transformation formed by bff Ord is acceptable:

bff Ord get s (get s) = Right s

�

Proof.

Refer to the proof of theorem 5 in the original paper [Voi09].

�

3.3 Generalized Algorithm

As discussed in the previous section, the original technique is heavily based on a mech-
anism to generate unique indices and for every different type signature (different con-
straint) it has to provide a new indexing mechanism and a new validity checking function.
Hence, the original method does not scale properly; it fails to bidirectionalize functions
such as filter :: ∀a.(a → Bool)→ [a]→ [a].

3.3.1 Generalizing to Higher-Order Format

In order to gain generality, we rewrite constrained polymorphic functions as their equiv-
alent high-order functions where constraints are translated to dictionaries. Dictionaries
are normal function arguments witnessing the constraints.

For example, a function with equality constraint can be rewritten as follows:

f :: ∀a.Eq a ⇒ T ↪→ f ′ :: ∀a.(a → a → Bool)→ T
f = f ′ (==)

In the same way, a function with an ordering constraint can be rewritten as follows:

f :: ∀a.Ord a ⇒ T ↪→ f ′ :: ∀a.(a → a → Ordering)→ T
f = f ′ compare

32

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

A more general form that subsumes the two (and much more) can be expressed as the
following, where ψ denotes a type class constraint that introduces (only) binary observer
functions and its corresponding monomorphic type X which contains the sum of every
possible observation:

f :: ∀a.ψ a ⇒ T ↪→ f ′ :: ∀a.(a → a → X)→ T

For example, a function with an ordering constraint can also be rewritten as follows:

f :: ∀a.Ord a ⇒ T ↪→ f ′ :: ∀a.(a → a → (Bool ,Bool))→ T
f = f ′ (λx y → (x == y ,x < y))

Now, we try to rewrite the existing algorithms from the previous section into this general
form.

For example, bff Ord can be rewritten as follows:

bff OrdBy :: (∀a.(a → a → Ordering)→ [a]→ [a])→
(∀a.Eq a ⇒ (a → a → Ordering)
→ [a]→ [a]→ Either String [a])

bff OrdBy getBy obsX s v = do

-- Step 1

let ms = indexOrdBy obsX s

-- Step 2
let is = fst ‘map‘ ms

let iv = getBy compare is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1

unless (checkOrdBy obsX ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

Firstly, the type of the function is modified so that the observer function is passed as
an explicit function argument (obsX). Note that the observer function for indices is
the compare function provided by the instance declaration of the type class Ord for

33

3.3. GENERALIZED ALGORITHM

the type Int in the module Prelude. For simplicity, the equality constraint required for
duplication checking is not rewritten. All the other (internal) functions that share the
same constraint (Ord) are rewritten accordingly, namely:

1. get ↪→ getBy

2. indexOrd ↪→ indexOrdBy

3. checkOrd ↪→ checkOrdBy

In the same way, bff Eq , indexEq , indexOrd , checkEq and checkOrd are rewritten as
follows:

bff EqBy :: (∀a.(a → a → Bool)→ [a]→ [a])→
(∀a.Eq a ⇒ (a → a → Bool)
→ [a]→ [a]→ Either String [a])

bff EqBy getBy obsX s v = do

-- Step 1

let ms = indexEqBy obsX s

-- Step 2
let is = fst ‘map‘ ms

let iv = getBy (==) is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1

unless (checkEqBy obsX ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

indexEqBy :: ∀a.(a → a → Bool)→ [a]→ [(Int ,a)]

indexEqBy obsX s = indexEqBy obsX s [] 0

indexEqBy :: ∀a.(a → a → Bool)→ [a]→ [(Int ,a)]
→ Int → [(Int ,a)]

34

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

indexEqBy [] mp = mp
indexEqBy obsX (x : xs) mp i = let

(i ′,ix) = case (find ((obsX x).snd) mp) of

Just (j ,)→ (i ,j)
Nothing → (i + 1,i + 1)

in indexEqBy obsX xs (mp ++ [(ix ,x)]) i ′

indexOrdBy :: ∀a.(a → a → Ordering)→ [a]→ [(Int ,a)]
indexOrdBy obsX s = let

s ′ = sortBy obsX s

mp = indexEqBy (λx y → obsX x y == EQ) s ′

in [(fst .fromJust $

find ((λx → obsX e x == EQ).snd) mp,e)

| e ← s]

checkEqBy :: ∀a.(a → a → Bool)→ [(Int ,a)]→ Bool
checkEqBy obsX mp = and

[(i == j) == (obsX x y) | (i ,x)← mp,(j ,y)← mp]

checkOrdBy :: ∀a.(a → a → Ordering)→ [(Int ,a)]→ Bool
checkOrdBy obsX mp = and

[compare i j == obsX x y | (i ,x)← mp,(j ,y)← mp]

Correctness

Since we followed the standard dictionary translation that is automatically done by
Haskell compilers (for more details refer to the theory of qualified types [Jon95]), the
rewriting should not have changed the behavior of the functions:

Theorem 7 (Equivalence of bff Eq and bff EqBy)

For every function obsX :: a → a → Bool such that ∀x y .obsX x y = x == y and for
every pair of functions f :: Eq a ⇒ [a] → [a] and fBy :: (a → a → Bool) → [a] → [a]
such that ∀x .f x = fBy obsX x , the following property holds:

∀s v .bff Eq f s v = bff EqBy obsX fBy s v

�

35

3.3. GENERALIZED ALGORITHM

Proof.

No proof is included, as this transformation (dictionary translation) is well-known and
standard; for more details refer to [Jon95].

�

Theorem 8 (Equivalence of bff Ord and bff OrdBy)

For every function obsX :: a → a → Ordering such that ∀x y .obsX x y = compare x y
and for every pair of functions f ::Ord a ⇒ [a]→ [a] and fBy :: (a → a → Ordering)→
[a]→ [a] such that ∀x .f x = fBy obsX x , the following property holds:

∀s v .bff Ord f s v = bff OrdBy obsX fBy s v

�

Proof.

No proof is included, as this transformation (dictionary translation) is well-known and
standard, for more details refer to [Jon95].

�

3.3.2 General Validity Check

Intuitively, by comparing the definitions of checkEqBy and checkOrdBy , we can derive
a more general property:

checkEqBy :: ∀a.(a → a → Bool)→ [(Int ,a)]→ Bool
checkEqBy obsX mp = and

[(==) i j == obsX x y | (i ,x)← mp,(j ,y)← mp]

checkOrdBy :: ∀a.(a → a → Ordering)→ [(Int ,a)]→ Bool
checkOrdBy obsX mp = and

[compare i j == obsX x y | (i ,x)← mp,(j ,y)← mp]

36

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

Condition 1 (Map Invariant)

A valid mapping mp :: [(I ,X)] must satisfy the following property:

∀(i1,x1), (i2,x2) ∈ mp. obsX x1 x2 = obsI i1 i2

where obsX :: X → X → Z is the observer function for the elements provided as an
input and obsI :: I → I → Z is the equivalent observer function for indices that are
provided by the indexing mechanism.

�

It can be implemented as follows:

check IBy :: ∀x i a.Eq x ⇒
(i → i → x)→ (a → a → x)→ [(i ,a)]→ Bool

check IBy obsI obsX mp = and
[(i ‘obsI ‘ j) == (x ‘obsX ‘ y) | (i ,x)← mp,(j ,y)← mp]

For example, the validity check in presence of an order constraint (checkOrd) can be
implemented using check IBy :

checkOrd :: ∀a.Ord a ⇒ [(Int ,a)]→ Bool
checkOrd = check IBy compare compare

3.3.3 General Algorithm with Parametric Indexing

In the same fashion, it is possible to abstract over the indexing function. The mappings
produced by this function should respect the Map Invariant. Also, the produced map-
pings should respect the rule of valid association (validAssoc); otherwise an unchanged
view may fail the valid association test and hence violate the GetPut law.

Since the sole functionality of the indexing function is to assign indices to the elements of
the input list, we expect the produced mappings to contain the elements of the original
source without any change. We capture this property as follows:

Condition 2 (Input Preservation of Indexing Functions)

A valid indexing function index must satisfy the following property:

∀s. map snd (index s) = s

�

37

3.3. GENERALIZED ALGORITHM

Combining all the three mentioned validity properties for an indexing function, we define
the condition for a valid indexing function as follows:

Condition 3 (Valid Indexing Function)

A valid indexing function index must satisfy all of the following properties:

1. all the mapping ms = index s generated by the valid indexing function index should
respect the Map Invariant condition

2. all the mapping ms = index s generated by the valid indexing function index should
pass the association validity check

3. the valid indexing function index should respect the Input Preservation condition

�

A function to check this condition can be implemented as follows:

validIndexing :: ∀x a i .(Eq x ,Eq a,Eq i)⇒
((a → a → x)→ [a]→ [(i ,a)])→
(i → i → x)→ (a → a → x)→ [a]→ Bool

validIndexing indexBy obsI obsX s = let
ms = indexBy obsX s
in (check IBy obsI obsX ms) ∧

(validAssoc ms) ∧
(map snd ms == s)

By abstracting over the indexing function in bff OrdBy (or bff EqBy), replacing the check
function check IBy and putting a guard to check the validity of the mapping produced
by the indexing function, we derive the following function:

bff IBy :: ∀x i .(Eq x ,Eq i)⇒ (i → i → x)→
(∀a.(a → a → x)→ [a]→ [(i ,a)])→
(∀a.(a → a → x)→ [a]→ [a])→
(∀a.Eq a ⇒

(a → a → x)→ [a]→ [a]→ Either String [a])
bff IBy obsI indexBy getBy obsX s v = do

-- Step 1

let ms = indexBy obsX s

unless (validIndexing indexBy obsI obsX s)

$ Left "Invalid indexing!"

38

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

-- Step 2
let is = fst ‘map‘ ms

let iv = getBy (obsI) is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1

unless (check IBy obsI obsX ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

This function subsumes bff ,bff Eq and bff Ord (in the higher-order equivalent format),
given the appropriate indexing functions.

Correctness

So far, we have rewritten the algorithm in a way that it is only parametric on the index-
ing function. It should work flawlessly with fully polymorphic functions, polymorphic
functions constrained with an equality or ordering constraint (in the higher-order equiv-
alent format). Now, the main concern is whether this algorithm works correctly with all
the other functions with the type signature ∀a.(a → a → X) → [a] → [a]. In order
to prove that the bidirectional transformation formed via the function bff IBy respects
the BX laws (section 2.2.1), we adopt the proof technique proposed in the original pa-
per [Voi09]. It uses free theorems (refer to [Wad89] and [Voi09]) to reason about the
functions. The only difference between the original system and our system is that in the
original system the free theorem for functions explicitly specifies the observer functions
(==) and (6) in its body whereas our system uses a function parameter that could be
instantiated to (==), (6) or any other observer function. In the following, we prove
that the bidirectional transformation formed via bff IBy respects the GetPut law. We
omit the proof for the PutGet law, since it follows the same style of reasoning (refer to
appendix A in the original paper [Voi09]); it introduces no new proof techniques and it
involves more steps of trivial reasoning.

39

3.4. GENERAL INDEXING MECHANISMS

Theorem 9 (Consistency of bff IBy)
Given a valid indexing function, the bidirectional transformation formed by bff IBy is

consistent:

(validIndexing indexBy obsI obsX s)⇒
bff IBy obsI indexBy getBy obsX s v = Right s ′ ⇒ getBy obsX s ′ = v

�

Proof.

We omit the proof for the PutGet law, since it follows the same style of reasoning as the
GetPut law, theorem 10 (also, refer to appendix A in the original paper [Voi09]).

�

Theorem 10 (Acceptability of bff IBy)

Provided a valid indexing function, the bidirectional transformation formed by bff IBy is
acceptable:

(validIndexing indexBy obsI obsX s)⇒
bff IBy obsI indexBy getBy obsX s (getBy obsX s) = Right s

�

Proof.

Refer to the Appendix A.

�

3.4 General Indexing Mechanisms

So far, we studied rewriting by which we could abstract over the indexing function and
we offered a uniform way of checking validity of mappings. In this section, we introduce
a general algorithm to produce correct mappings in presence of an arbitrary observer
function.

40

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

3.4.1 Self-Indexing System

Integers could be easily used to index elements with a polymorphic type constrained by
Eq or Ord , since the type Int itself is an instance of Eq and Ord type classes. Numbers
cannot be used to index elements in presence of a constraint which the type Int does not
instantiate. The main quest is to find the proper index type that works in presence of
an arbitrary constraint (an arbitrary observer function). One more obvious answer is to
use the elements to index themselves. Such an indexing function can simply be defined
as follows:

indexGS :: ∀a.[a]→ [(a,a)]
indexGS s = zip s s

Unfortunately, we cannot define the new algorithm (bff GS) using bff IBy :

bff GS getBy f s v 6= bff IBy f (const indexGS) getBy f s v

The type of the new indexing function const indexGS is too specific. Rewriting its type
using the equality constraint [SPJCS08], we get the following type:

const indexGS :: ∀a b.b → [a]→ [(a,a)]
=

const indexGS :: ∀a b i .(i∼a)⇒ b → [a]→ [(i ,a)]

That is while the expected type can be viewed as a type equivalent to ∀a b i .b → [a]→
[(i ,a)]. The two types do not unify since the actual type has the extra equality constraint
i∼a indicating the type of the index is the same as the type of the element.

This type mismatch is not an issue at all; we just need to manually put the new index
function inside bff IBy and set the observer function for indices (obsI) equal to the
observer function for the elements (obsX), i.e. let obsI = obsX . We remove the
valid indexing-function check validIndexing , since the indexing function index is a valid
indexing function and the output of the check validIndexing would always pass:

bff GS :: ∀x .(Eq x)⇒
(∀a.(a → a → x)→ [a]→ [a])→
(∀a.Eq a ⇒

(a → a → x)→ [a]→ [a]→ Either String [a])
bff GS getBy obsX s v = do

let obsI = obsX
-- Step 1

let ms = indexGS s

-- validIndexing is removed
-- Step 2

let is = fst ‘map‘ ms

41

3.4. GENERAL INDEXING MECHANISMS

let iv = getBy obsI is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1
unless (check IBy obsI obsX ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

Correctness

Since bff GS is built on top of bff IBy , to prove its correctness we need to prove that its
indexing function indexGS is a valid indexing function:

Theorem 11 (Validity of indexGS)

The indexing function indexGS is a valid indexing function:

validIndexing (λ → indexGS) obsX obsX s = True

�

Proof.

validIndexing (λ → indexGS) obsX obsX s
= {-definition of validIndexing -}

(check IBy obsX obsX (zip s s)) ∧
(validAssoc (zip s s)) ∧
(map snd (zip s s) == s)

= {-specification of zip -}
(check IBy obsX obsX (zip s s)) ∧
(validAssoc (zip s s))

= {-specification of validAssoc -}
(check IBy obsX obsX (zip s s))

42

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

= {-specification of checkIBy -}
True

�

Theorem 12 (Consistency of bff GS)

The bidirectional transformation formed by bff GS is consistent:

bff GS getBy obsX s v = Right s ′ ⇒ getBy obsX s ′ = v

�

Proof.

By theorems 9 and 11, we conclude the bidirectional transformation formed by bff GS

is consistent.

�

Theorem 13 (Acceptability of bff GS)

The bidirectional transformation formed by bff GS is acceptable:

bff GS getBy obsX s (getBy obsX s) = Right s

�

Proof.

By theorems 10 and 11, we conclude that the bidirectional transformation formed by
bff GS is acceptable.

�

Unfortunately, bff GS does not respect the undoability (PutPut) law 2.

2The undoability law is often considered [FMV12] an optional property of a bidirectional transforma-
tion.

43

3.4. GENERAL INDEXING MECHANISMS

Consider the following example where the bidirectional transformation formed via bff GS

breaks the undoability law:

ghci > :{
ghci | let get = tail
ghci | put = bff GS (const get) (const $ const ())
ghci | s = [0,1,2]
ghci | v = [0,0]
ghci | Right put s v = put s v
ghci | get s = get s
ghci | in put (put s v) (get s) == Right s
ghci | :}
False

Where put s v has the value of [0,0,0], get s has the value of [1,2] and put (put s v)
(get s) has the value of Left "Inconsistent duplicated values!".

The main problem is due to the fact that the equal indices originating from the different
positions in the source are indistinguishable from the equal indices from the same origin.
For example, having the source "aa" and the view "aa", in a system in which values index
themselves, we can assign two indistinguishable, yet different, semantics to the forward
function, namely reverse or id . Therefore, the duplication check rejects inconsistent
changes to equal values, whether or not they are from the same origin. Arguably, we
would like to keep track of the origin of the elements. In the next section, we enhance
bff GS with the ability to track the origin of the elements.

3.4.2 Uniquely Self-Indexing System

In this system, like the system described in the previous section, each element indexes
itself. In addition, each element is indexed with a unique number which makes it possible
to keep track of the origin of the elements. The system can be viewed as a combination
of the indexing function index , borrowed from bff , and using the corresponding original
values themselves in observations, borrowed from bff GS . The observer function for
indices is implemented as follows:

obsI = obsX ‘on‘ (fromJust .(flip lookup ms))

where ms is the source mapping.

Putting these all together, bff GUS is implemented by rewriting bff IBy as follows:

bff GUS :: ∀x .(Eq x)⇒
(∀a.(a → a → x)→ [a]→ [a])→
(∀a.Eq a ⇒

(a → a → x)→ [a]→ [a]→ Either String [a])

44

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

bff GUS getBy obsX s v = do

-- Step 1

let ms = index s

let obsI = obsX ‘on‘ (fromJust .(flip lookup ms))

-- validIndexing is removed
-- Step 2

let is = fst ‘map‘ ms
let iv = getBy obsI is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1
unless (check IBy obsI obsX ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

Having each element additionally indexed with its position, we expect the new system
to respect the undoability law. We can try the counter-example from before:

ghci > :{
ghci | let get = tail
ghci | put = bff GUS (const get) (const $ const ())
ghci | s = [0,1,2]
ghci | v = [0,0]
ghci | Right put s v = put s v
ghci | get s = get s
ghci | in put (put s v) (get s) == Right s
ghci | :}
True

Where put s v has the value of [0,0,0], get s has the value of [1,2] and emphput (put s v)
(get s) has the value of Right [0,1,2].

Correctness

Since bff GUS is built on top of bff IBy , to prove its correctness we need to prove that
its indexing function index is a valid indexing function:

45

3.4. GENERAL INDEXING MECHANISMS

Theorem 14 (Validity of index)
The indexing function index in bff GUS is a valid indexing function:

validIndexing (λ → index) obsI obsX s = True

where

obsI = obsX ‘on‘ (fromJust .(flip lookup (index s)))

�

Proof.

validIndexing (λ → index) obsI obsX s
= {-definition of validIndexing -}

(check IBy obsI obsX (zip [1 . . length s] s)) ∧
(validAssoc (zip [1 . . length s] s)) ∧
(map snd (zip [1 . . length s] s) == s)

= {-specification of zip -}
(check IBy obsI obsX (zip [1 . . length s] s)) ∧
(validAssoc (zip [1 . . length s] s))

= {-specification of validAssoc -}
check IBy obsI obsX (zip [1 . . length s] s)

= {-definition of obsI and Index -}
check IBy (obsX ‘on‘ (fromJust .(flip lookup (zip [1 . . length s] s))))

obsX (zip [1 . . length s] s)
= {-definition of checkIBy -}

True

�

Theorem 15 (Consistency of bff GUS)

The bidirectional transformation formed by bff GUS is consistent:

bff GUS getBy obsX s v = Right s ′ ⇒ getBy obsX s ′ = v

�

Proof.

By theorems 9 and 14, we conclude the bidirectional transformation formed by bff GUS

is consistent.

�

46

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

Theorem 16 (Acceptability of bff GUS)

The bidirectional transformation formed by bff GUS is acceptable:

bff GUS getBy obsX s (getBy obsX s) = Right s

�

Proof.

By theorems 10 and 14, we conclude the bidirectional transformation formed by bff GUS

is acceptable.

�

3.5 Arity of the Observer Function

So far, we only considered the forward function with an observer function of the type
a → a → X where a is the polymorphic type of the elements of the source and X is
a concrete type. Our algorithm can also work for observer functions of any fixed arity
denoted as a → ... → a → X . The conditions necessary for a valid indexing function
remain the same with the difference that now the map invariant (check IBy) has to check
the correspondence between indices and the elements slightly differently:

Condition 4 (Arity-Generic Map Invariant)

A valid mapping mp :: [(I ,X)] must satisfy the following property:

∀(i ,x) ∈mp. obsX x = obsI i

where obsX :: X → X is the observer function for the elements provided as an input and
obsI :: I → X is the equivalent observer function for indices provided by the indexing
mechanism.

�

For example, the equivalent version of check IBy for observer functions of arity one can
be implemented as follows:

check1
IBy :: ∀x i a.Eq x ⇒

(i → x)→ (a → x)→ [(i ,a)]→ Bool

check1
IBy obsI obsX mp = and

[(obsI i) == (obsX x) | (i ,x)← mp]

47

3.5. ARITY OF THE OBSERVER FUNCTION

3.5.1 Arity-Generic Data Type

In order to implement an arity-generic version of check IBy , we first need to model the
types of the form a → ... → a → X . As the first step, we rewrite the type in the
uncurried format (a, ... ,a)→ X . The type (a, ..., a)︸ ︷︷ ︸

×n

forms a homogeneous tuple of arity

n. A homogeneous tuple is a tuple whose every element has the same type and it is
isomorphic to a vector of length n whose elements are of the polymorphic type a. A
vector is a finite list whose length is known at the type level. For example, the type (a,a)
is isomorphic to a vector of length 2 with elements of type a, denoted as Vect 2 a. In
order to express length of a vector at the type level, we use Peano encoding, expressed
as the following simple ADT declaration:

data Nat =
Zero
| Succ Nat

For example, using the Peano encoding, number 2 is encoded as Succ (Succ Zero) and
the type Vect 2 a is rewritten as Vect (Succ (Succ Zero)) a. Cognoscenti will recognize a
problem here–the data constructors Zero and Succ are used as type constructors! Thanks
to a recent extension to Haskell (via the flag −XDataKinds in GHC) [YWC+12], it is
possible to promote simple ADT declarations to the type level, i.e., the data constructors
in an ADT are promoted to act as type constructors and the type constructor of an ADT
is promoted to act as a kind constructor. Consider the following definition of vectors
using generalized algebraic data types (GADTs):

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}

infixr 5 :::
data Vect :: Nat → ∗ → ∗where

Nil :: Vect Zero a
(:::) :: a → Vect n a → Vect (Succ n) a

In the above, the first parameter of the type Vect is set to be of the (promoted) kind
Nat .

We also derive the type class Functor for the type Vect as follows:

instance Functor (Vect n) where
fmap Nil = Nil
fmap f (x ::: xs) = f x ::: fmap f xs

Now, the size of a vector is only accessible at the type level. In order to be able to use
this value at the term level, we use singleton types [EW12]. A singleton type has only

48

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

one (besides bottom) inhabitant. A singleton for the Peano numeric type Nat can be
expressed as follows:

data SingNat :: Nat → ∗where
ZeroSing :: SingNat Zero
SuccSing :: SingNat n → SingNat (Succ n)

We also derive the type class Show for this type.

In order to get values of the type Nat out of the singleton type SingNat , we de-
fine the following overloaded function using scoped type variables (via the extension
−XScopedTypeV ariables in GHC) [PJS04]:

{-# LANGUAGE ScopedTypeVariables #-}

class SingI (n :: Nat) where
sing :: SingNat n

instance SingI Zero where
sing = ZeroSing

instance SingI n ⇒ SingI (Succ n) where
sing = let

n = (sing :: SingNat n)
in SuccSing n

Consider the following examples where the overloaded function sing is used to get the
value of a singleton type:

ghci> sing :: SingNat ’Zero

SZero

ghci> sing :: SingNat (’Succ ’Zero)

SSucc SZero

Prefixing a constructor with a single quote is used for explicit promotion.

Now, we are ready to model the isomorphism with vectors by the following type class:

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}

49

3.5. ARITY OF THE OBSERVER FUNCTION

class (SingI (Size t))⇒ VectIso (t :: ∗ → ∗) where
type Size t :: Nat
toVect :: ∀a.t a → Vect (Size t) a
fromVect :: ∀a.Vect (Size t) a → t a

Besides the size of the isomorphic vector, the isomorphism provides the pair of functions
toVect and fromVect to handle conversions in either direction. Since, the relation is
isomorphism3, the functions should be each other’s inverse functions:

Condition 5

For all members of the type class VectIso , the function toVect is an inverse function of
fromVect and vice versa (left and right invertibility):

toVect ◦ fromVect = fromVect ◦ toVect = id

�

The isomorphism states that during the conversions no information is lost, i.e., a type
carries exactly the same information as its isomorphic vector does.

Using the singleton type SingNat , we can demote (bringing a value from the type level
to the term level) the type-level information about the size of a vector to the term level:

size :: ∀a t .(SingI (Size t),VectIso t)⇒
t a → SingNat (Size t)

size = sing

3.5.2 Arity-Generic Observations

In order to implement an arity-generic version of check IBy , we need to compute a
matrix in n dimensions, containing all the possible combinations of n copies of the
source mapping where n is the arity of the observer function. Since the only source
of values of the polymorphic type is the source list, this matrix forms all the possible
permutations of the inputs that the observer function can get. By applying the pair of
the observer function for indices (obsI) and the observer function for elements (obsX)
to the pairs in elements of the matrix, we get a matrix filled with Boolean values. A
mapping is valid if all of the elements of this Boolean matrix are of the value True.

3isomorphism is a bijective homomorphism relation

50

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

For example, consider the source list "ab" and the source mapping [(1,’a’),(2,’b’)].
With an observer function of arity one, the computed matrix would be the following:

[(1,’a’),(2,’b’)]

With an observer function of arity three, the computed matrix would be the following:

[[(1,’a’),[(1,’a’),[(1,’a’)]]]
,[(1,’a’),[(1,’a’),[(2,’b’)]]]
,[(1,’a’),[(2,’b’),[(1,’a’)]]]
,[(1,’a’),[(2,’b’),[(2,’b’)]]]
,[(2,’b’),[(1,’a’),[(1,’a’)]]]
,[(2,’b’),[(1,’a’),[(2,’b’)]]]
,[(2,’b’),[(2,’b’),[(1,’a’)]]]
,[(2,’b’),[(2,’b’),[(2,’b’)]]]]

We implement a function to calculate this matrix as follows:

perm :: SingNat (Succ m)→ [(i ,a)]→
[Vect (Succ m) (i ,a)]

perm (SuccSing ZeroSing) ms = (:::Nil) ‘map‘ ms
perm (SuccSing (SuccSing n)) ms = join

[((i ,x):::) ‘map‘ (perm (SuccSing n) ms) | (i ,x)← ms]

As the final step, we need to apply the resulting matrix to the pair of observer functions:

checkGBy :: ∀t a x s.
(VectIso t ,Size t∼Succ s,Eq x)⇒
(t Int → x)→ (t a → x)→ [(Int ,a)]→ Bool

checkGBy obsI obsX ms = let
vs = perm (size (⊥ :: t Int)) ms
in and

[obsI (fromVect (fmap fst z)) ==
obsX (fromVect (fmap snd z)) | z ← vs]

Here, we added the extra constraint Size t∼Succ s to make sure that the arity of the
observer function is at least one.

51

3.5. ARITY OF THE OBSERVER FUNCTION

3.5.3 Bidirectionalization with Arity-Generic Observations

In order to use the arity-generic function checkGBy in a version of bff GUS with arity-
generic observer functions, we need to provide an arity-generic version of the function
on defined in the module Data.Function:

onG :: VectIso t ⇒
(t b → c)→ (a → b)→ (t a → c)

onG f f ′ = f ◦ fromVect ◦ (fmap f ′) ◦ toVect

Finally, a version of bff GUS with an arity-generic observer function, denoted as bff a−∗
GUS ,

is implemented by replacing the functions on and check IBy with their equivalent arity-
generic versions, namely the functions onG and checkGBy :

bff a−∗
GUS :: ∀x t s.

(VectIso t ,Eq x ,Size t∼Succ s)⇒
(∀a.(t a → x)→ [a]→ [a])→
(∀a.Eq a ⇒
(t a → x)→ [a]→ [a]→ Either String [a])

bff a−∗
GUS getBy obsX s v = do

-- Step 1
let ms = index s

let obsI = onG obsX (fromJust .(flip lookup ms))
-- Step 2

let is = fst ‘map‘ ms
let iv = getBy obsI is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1

unless (checkGBy obsI obsX ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

To be able to bidirectionalize a function with bff a−∗
GUS , we need to derive the type class

VectIso . Unfortunately, due to lack of (closed-) type functions4 in Haskell, we cannot

4also, it is not possible to instantiate a type class with a partially applied type synonym

52

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

derive a constructor class (a type class with higher kind) [Jon93] for homogeneous struc-
tures. For instance, we cannot derive the type class Functor for homogeneous tuples;
we need something like the following pseudocode, where Λ introduces the type-level
abstraction:

instance Functor (Λ a → (a,a)) where
fmap (x1,x2) = (f x1,f x2)

To bypass this restriction, we wrap each tuple in a corresponding isomorphic newtype
declaration:

newtype ()1 a = ()1 a
newtype ()2 a = ()2 (a,a)
newtype ()3 a = ()3 (a,a,a)

-- ...

Now, we can derive the type class VectIso for these declarations:

instance VectIso ()1 where
type Size ()1 = Succ Zero
toVect (()1 x) = x ::: Nil
fromVect (x ::: Nil) = ()1 x

instance VectIso ()2 where
type Size ()2 = Succ (Succ Zero)
toVect (()2 (x1,x2)) =

x1 ::: x2 ::: Nil
fromVect (x1 ::: x2 ::: Nil) =

()2 (x1,x2)

instance VectIso ()3 where
type Size ()3 = Succ (Succ (Succ Zero))
toVect (()3 (x1,x2,x 3)) =

x1 ::: x2 ::: x 3 ::: Nil
fromVect (x1 ::: x2 ::: x 3 ::: Nil) =

()3 (x1,x2,x 3)

Using the homogeneous tuples, we can encode the original function bff GUS using the
function bff a−∗

GUS as follows:

uncurry ′ :: ∀a b.(a → a → b)→ (()2 a → b)
uncurry ′ f (()2 (x1,x2)) = f x1 x2

curry ′ :: ∀a b.(()2 a → b)→ (a → a → b)
curry ′ f x1 x2 = f (()2 (x1,x2))

53

3.6. GENERICS

´bffGUS :: ∀x .(Eq x)⇒
(∀a.(a → a → x)→ [a]→ [a])→
(∀a.Eq a ⇒

(a → a → x)→ [a]→ [a]→ Either String [a])
´bffGUS getBy obsX = let

´getBy :: ∀a.(()2 a → x)→ [a]→ [a]
´getBy f = getBy (curry ′ f)
´obsX = uncurry ′ obsX

in bff a−∗
GUS

´getBy
´obsX

In the same way, it is possible to define a version to bidirectionalize a forward function
with an observer function of arity one:

uncurry1 :: ∀a b.(a → b)→ (()1 a → b)
uncurry1 f (()1 x) = f x

curry1 :: ∀a b.(()1 a → b)→ (a → b)
curry1 f x = f (()1 x)

bff a−1
GUS :: ∀x .(Eq x)⇒

(∀a.(a → x)→ [a]→ [a])→
(∀a.Eq a ⇒

(a → x)→ [a]→ [a]→ Either String [a])

bff a−1
GUS getBy obsX = let
´getBy :: ∀a.(()1 a → x)→ [a]→ [a]
´getBy f = getBy (curry1 f)
´obsX = uncurry1 obsX

in bff a−∗
GUS

´getBy
´obsX

3.6 Generics

So far, for simplicity we used lists as the polymorphic data structures whose elements
change in the view and are put back by the backward function (put). The original
paper [Voi09] introduces a simple (data-) generic programming technique to apply the
bidirectionalization algorithm to put back changes to elements of any ADT (modulo
deriving specific type classes). In this section, for simplicity, we rewrite the original
generic algorithm [Voi09] in our own preferred style. We only study the generic algorithm
for bff and bff a−∗

GUS , as the same idea can simply be used for the other versions.

54

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

Having the type of a data structure deriving the Traversable type class, we will be
able to extract all the (polymorphic) elements of the data structure as a list by the
function toList . For example, in the following we define an ADT representing a poly-
morphic binary tree structure and we use the GHC extensions to automatically derive
the Traversable type class for us (and the other required super-classes, namely Functor
and Foldable):

{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}

data Tree a = Node a (Tree a) (Tree a)
| Leaf a
deriving (Functor ,Foldable,Traversable,Eq)

Consider the following example where applying the function toList extracts the elements
of the structure and returns them as a list:

ghci > toList (Node ’a’ (Leaf ’b’) (Leaf ’c’))
"abc"

Now, we define a generic function which replaces the polymorphic elements (elements
of the data structure that are of the polymorphic type) of a data structure with the
corresponding elements of the input list. Since the traversal scheme is fixed, the cor-
respondence is set by the order in which nodes are visited. The generic function first
assigns a running series of integers starting at zero to the polymorphic elements of the
structure and then uses the numbers as indices to extract the corresponding element
from the input list:

fromList :: ∀k a b.Traversable k ⇒ k a → [b]→ k b
fromList s lst = let

indices = do i ← Control .Monad .State.get
Control .Monad .State.put (i + 1)
return i

si = Control .Monad .State.evalState
(Data.Traversable.mapM indices s) 0

in fmap (lst !!) si

Consider the following example where applying the function fromList replaces the ele-
ments of the structure with the corresponding elements from the input list:

ghci > fromList (Node ’a’ (Leaf ’b’) (Leaf ’c’)) [1,2,3]
Node 1 (Leaf 2) (Leaf 3)

55

3.6. GENERICS

We also define a generic function to compare (the shape of) two data structures regardless
of the value of their polymorphic elements. For that purpose, we set every element of
the structure to the same value and then check if they are equal:

(==Shape) :: ∀k a.(Eq (k a),Foldable k ,Functor k)⇒ k a → k a → Bool
(==Shape) x y = case (toList x) of

[]→ x == y
(a :)→ ((==) ‘on‘ fmap (const a)) x y

In the following example, we use the function (==Shape) to compare two data structures
regardless of the value of their polymorphic elements:

ghci > (==Shape) (Node ’a’ (Leaf ’b’) (Leaf ’c’))
(Node ’d’ (Leaf ’e’) (Leaf ’f’))

True

Now, we use these generic functions to define the generic version of bff . We need to
extract the polymorphic data from the data structures, let the original version bff take
care of the bidirectionalization and then put the updated source elements from the list
into the original data structure. There are also two subtle points to notice. First, the
forward function get works on specific polymorphic data structures that can be anything
other than lists. Therefore, we need to pass the shape of the original structure as an
additional parameter (can be viewed as context) to the forward function (hence s in the
expression get (fromList s x) is fixed). Also, since we consider any polymorphic data
structure, the equality of length no longer guarantees equality of the shape of the data
structures (as it did for lists), therefore we have to add an additional check to reject the
modified view with shape changes.

bff d−∗ :: ∀k k ′.
(Functor k ′,Foldable k ′,Traversable k)⇒
(∀a.k a → k ′ a)→
(∀a.(Eq a,Eq (k ′ a))⇒ k a → k ′ a → Either String (k a))

bff d−∗ get s v = do

let slist = toList s

let vlist = toList v

let getlist :: ∀a.[a]→ [a]

getlist x = toList $ get (fromList s x)
unless ((==Shape) (get s) v)

$ Left "Modified view off wrong shape!"

ślist ← bff getlist slist vlist

return $ fromList s ślist

Likewise, we extend our generalize function bff a−∗
GUS using generic programming tech-

niques:

56

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

bff
a/d−∗
GUS :: ∀x k k ′ t s.

(VectIso t ,Functor k ′,Foldable k ′

,Size t∼Succ s,Traversable k ,Eq x)⇒
(∀a.(t a → x)→ k a → k ′ a)→
(∀a.(Eq a,Eq (k ′ a))⇒

(t a → x)→ k a → k ′ a →
Either String (k a))

bff
a/d−∗
GUS getBy obsX s v = do

let slist = toList s

let vlist = toList v

let get listBy :: ∀a.(t a → x)→ [a]→ [a]

get listBy obs x = toList $ getBy obs (fromList s x)

unless ((==Shape) (getBy obsX s) v)

$ Left "Modified view off wrong shape!"

ślist ← bff a−∗
GUS get listBy obsX slist vlist

return $ fromList s ślist

In the same way, we can extend the function bff a−1
GUS using generic programming tech-

niques:

bff
a−1/d−∗
GUS :: ∀k k ′ x .

(Functor k ′,Foldable k ′,Traversable k ,Eq x)⇒
(∀a.(a → x)→ k a → k ′ a)→
(∀a.(Eq a,Eq (k ′ a))⇒

(a → x)→ k a → k ′ a → Either String (k a))

bff
a−1/d−∗
GUS getBy obsX s v = do

let slist = toList s

let vlist = toList v

let getlist :: ∀a.(a → x)→ [a]→ [a]

getlist obs x = toList $ getBy obs (fromList s x)

unless ((==Shape) (getBy obsX s) v)

$ Left "Modified view off wrong shape!"

ślist ← bff a−1
GUS getlist obsX slist vlist

return $ fromList s ślist

To enable bidirectionalization of functions like partition :: ∀a.(a → Bool) → [a] →
([a],[a]), we need to modify the function bff

a−1/d−∗
GUS slightly. That is because the type

([a],[a]) cannot derive the type classes Functor and Foldable directly.

data PairList a = PairList ([a],[a])
deriving (Functor ,Foldable,Eq)

57

3.7. DEMONSTRATION

bff Par :: ∀k x .
(Traversable k ,Eq x)⇒
(∀a.(a → x)→ k a → ([a],[a]))→
(∀a.(Eq a)⇒

(a → x)→ k a → ([a],[a])→ Either String (k a))
bff Par getBy obsX s v = let

getPL
By :: ∀a.(a → x)→ k a → PairList a

getPL
By obs x = PairList $ getBy obs x

v PL = PairList v

in bff
a−1/d−∗
GUS getPL

By obsX s v PL

To see other examples of how these functions are used in practice, refer to the next chap-
ter where we use these generic functions to bidirectionalize code generating functions.

In general, we can bidirectionalize any function with a type signature isomorphic to

the type of the function argument in the function bff
a/d−∗
GUS . For example, an uncurried

forward function can be bidirectionalized by the following:

uncurBff
a/d−∗
GUS :: ∀x k k ′ t s.

(VectIso t ,Functor k ′,Foldable k ′

,Size t∼Succ s,Traversable k ,Eq x)⇒
(∀a.((t a → x),k a)→ k ′ a)→
(∀a.(Eq a,Eq (k ′ a))⇒

(t a → x)→ k a → k ′ a →
Either String (k a))

uncurBff
a/d−∗
GUS uncurGetBy = let

getBy :: ∀a.(t a → x)→ k a → k ′ a

getBy = curry uncurGetBy

in bff
a/d−∗
GUS getBy

3.7 Demonstration

In order to measure how well our algorithm performs in practice, we consider the total
number of functions in the Prelude module of Haskell 2010 that our algorithm can
bidirectionalize. The figure 3.1 displays the distribution of all the functions in the Prelude
module based on their types; the methods of the type classes are excluded. The data for
the following graphs are attached as an appendix (Appendix C).

Our algorithm can bidirectionalize 40% of the polymorphic functions in the Prelude
module (figure 3.2). It is 20% improvement in the total number of the functions bidirec-
tionalizable by our algorithm compared to the original algorithm [Voi09]. In total, we
can bidirectionalize 30% of all the functions defined in the Prelude module.

58

CHAPTER 3. SEMANTIC BIDIRECTIONALIZATION REVISITED

Constant Functions

9%

Monomorphic Functions

17%

Polymorphic Functions

74%

Figure 3.1: Prelude Functions

Polymorphic Output Only
2%

Higher Kinded

6%

Polymorphic Input Only

12%

Accepted by the Algorithm

40%

Other

40%

Figure 3.2: Polymorphic Functions in Prelude

Our algorithm can bidirectionalize polymorphic forward functions with 20% of the type
classes declared in the Prelude module.

3.8 Future Work

One potential improvement to the system is to extend the algorithm to bidirectionalize
the higher-order functions with generator functions, e.g. a function argument of the type
a → a → a. In fact, we already have sketched an algorithm that does this for us. The
key idea is to keep track of the origin of the generated elements. For example, having the
generator function (++), we force the underlying algorithm to use the generator function
λ(i ,x) (j ,y)→ (i : + : j ,x ++ y) where the constructor : + : allows us to store the indices
of the elements forming generated elements.

59

3.8. FUTURE WORK

The other potential extension is to combine our work with the syntactic-bidirectionaliz-
ation approach (section 2.2.3.1) in the same way as the original semantic-bidirectional-
ization algorithm was combined with syntactic-bidirectionalization (section 2.2.3.3).

Theoretically, it is interesting to find the limitations of semantic-bidirectionalization
formally. Also, how this approach relates to the other existing BX techniques is a
question worth investigating.

60

Chapter 4

Tracking Generated Expressions

61

4.1. TRACKING GENERATED EXPRESSIONS

4.1 Tracking Generated Expressions

In order to track generated expressions, we employ the semantic-bidirectionalization
technique. The idea of applying bidirectionalization techniques to put back the results
of analyses on the generated expressions was originally proposed in Wang ’s Ph.D. thesis
(section 4.4 of [Wan10]). However, he applied syntactic bidirectionalization [MHN+07].
As described before (section 2.2.3.1), syntactic bidirectionalization limits the program-
mer to program in a syntactically restricted language. Hence, in this thesis, we propose
applying semantic bidirectionalization technique to lift these restrictions.

The problem of tracking generated expressions can be modeled as follows:

The transformation function of type Exp↑ → Exp↓ transforms the values of type Exp↑
representing the high-level abstract syntax tree (AST) to the values of type Exp↓ rep-
resenting the low-level AST. Having a high-level expression exp↑ :: Exp↑ and the corre-
sponding low-level expression exp↓ :: Exp↓, we want for every subexpression sub↓ of exp↓
to be able to find the subexpressions of exp↑ that sub↓ is originally derived from.

Our solution can be sketched as the following steps:

1. the expressions in the high-level are initially annotated with a Boolean flag of the
value False

2. the annotations are preserved throughout the transformations, from the high-level
to the low-level

3. whenever we want to find the origin of an expression, we change its annotation flag
to the value True

4. we use semantic-bidirectionalization to automatically track and update the anno-
tation flags of the corresponding expressions in the high-level code

For example, consider two languages: untyped lambda calculus as the low-level language
and untyped lambda calculus extended with let expressions (a syntactic sugar) as the
high-level language. The abstract syntax of the two languages (with annotations) are
presented as the following algebraic data type declarations:

data Exp↑ ann =

Var↑ String
| Abs↑ String (Exp↑ ann)

| App↑ (Exp↑ ann) (Exp↑ ann)

| Ann↑ ann (Exp↑ ann)

| Let String (Exp↑ ann) (Exp↑ ann)

deriving (Functor ,Foldable,Traversable,Eq)

62

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

data Exp↓ ann =

Var↓ String
| Abs↓ String (Exp↓ ann)

| App↓ (Exp↓ ann) (Exp↓ ann)

| Ann↓ ann (Exp↓ ann)

deriving (Functor ,Foldable,Traversable,Eq)

The transformation function (desugar) simply desugars the let expressions:

desugar :: ∀ann.Exp↑ ann → Exp↓ ann

desugar (Var↑ x) = Var↓ x
desugar (Abs↑ x e) = Abs↓ x (desugar e)
desugar (App↑ e1 e2) = App↓ (desugar e1) (desugar e2)

desugar (Ann↑ a e) = Ann↓ a (desugar e)
desugar (Let x e1 e2) = App↓ (Abs↓ x (desugar e2)) (desugar e1)

In the following, in order to improve clarity of the presentation, we use quasiquotations
[Mai07]. The text wrapped in the Oxford brackets [qType | term |] is interpreted as a
term of the type Type. Annotations are presented as superscripts, where the annotation
False is presented as an empty circle ◦ and True as a filled circle •.

Consider the following high-level expression:

exp↑ :: Exp↑ Bool

exp↑ = [qExp↑ | λx → let id = (λy → y) in id x |]

It represents a function that takes an input and then applies the identity function, defined
in the local let binding, to the input. Applying the transformation function desugar to
the high-level expression exp↑ results in the following low-level expression:

exp↓ :: Exp↓ Bool

exp↓ = [qExp↓ | λx → (λid → id x) (λy → y) |]

For tracking back the low-level subexpression [qExp↓ | λy → y |], our algorithm works
as the following steps:

1. every subexpression in the high-level expression exp↑ is annotated with the Boolean
value False:

expAnn
↑ :: Exp↑ Bool

expAnn
↑ = [qExp↑ |
λ◦ x →

let◦

id = λ◦ y → y◦

in (id◦ x ◦)◦ |]

63

4.1. TRACKING GENERATED EXPRESSIONS

2. the annotations are preserved throughout the transformations, from the high-level
to the low-level and result in the following low-level expression:

expAnn
↓ :: Exp↓ Bool

expAnn
↓ = [qExp↓ |
λ◦ x →

((λid →
(id◦ x ◦)◦)
(λ◦ y → y◦))◦ |]

3. we set the annotation of the subexpression that we want to track (the whole subex-
pression on the last line) to True:

expAnn
↓ :: Exp↓ Bool

expAnn
↓ = [qExp↓ |
λ◦ x →

((λid →
(id◦ x ◦)◦)
(λ• y → y◦))◦ |]

4. we use the generic function bff Gen (section 3.6) to automatically update the cor-
responding annotations in the high-level expression:

ghci > bff Gen desugar expAnn
↑ expAnn

↓
Right [qExp↑ |
λ◦ x →

let◦

id = λ• y → y◦

in (id◦ x ◦)◦ |]

The Boolean flag of the corresponding subexpression (the third line) is updated.

Semantic-bidirectionalization requires the transformation function to be polymorphic on
the type of the annotations. It is a natural demand, as we do not expect the transfor-
mation function to be able to generate or observe the annotations; the content of the
annotations should be kept abstract and the transformation function should be agnos-
tic towards the annotations. The original proposal [Wan10] requires the transformation
function and the data types to be polymorphic on the type of the annotations from the
beginning; it is well-suited for fresh developments. In the following sections, we explore
the design space and propose solutions to bypass this restriction.

Another difficulty in tracking generated expressions in Feldspar is to locate the exact
source location of the high-level expressions. Since Feldspar is an embedded domain

64

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

specific language, there is no corresponding parse tree for an abstract syntax tree and
hence there is no explicit connection between the expressions and the actual code in a
source file. Later in this chapter, we describe the framework that we have designed to
address this problem.

4.2 Annotations in Data

We enumerate three distinct ways to store annotations in an ADT declaration, based on
where in an ADT 1 annotations are stored:

1. Product-Annotations: each node in the ADT contains an annotation, e.g.:

data Exp ann = Var ann String
| Abs ann String (Exp ann)
| App ann (Exp ann) (Exp ann)
| Let ann String (Exp ann) (Exp ann)

2. Sum-Annotations: annotations are carried in a separate wrapper node, e.g.:

data Exp ann = Var String
| Abs String (Exp ann)
| App (Exp ann) (Exp ann)
| Let String (Exp ann) (Exp ann)
| Ann ann (Exp ann)

3. Recursion-Annotations: each recursion is annotated, e.g.:

type Exp ann = (ann,Exp′)
data Exp′ ann = Var String
| Abs String (ann,Exp′)
| App (ann,Exp′) (ann,Exp′)
| Let String (ann,Exp′) (ann,Exp′)

The original proposal [Wan10] uses mutually recursive definitions which is equivalent to
recursion-annotations:

1An ADT can be viewed as recursive sum of products

65

4.3. PRESERVING THE ANNOTATIONS

type Exp ann = (ann,Exp′)
data Exp′ ann = Var String
| Abs String (Exp ann)
| App (Exp ann) (Exp ann)
| Let String (Exp ann) (Exp ann)

Using product-annotations and recursion-annotations, the annotations are scattered all
over the ADT, while, in sum-annotations, annotations are all carried in separate nodes;
the definition of the other language constructs are not polluted by the annotations. Also,
product-annotations and recursion-annotations, unlike sum-annotations, come with the
guarantee that every expression in the abstract syntax is annotated; using product-
annotations and recursion-annotations, it is impossible to construct an expression with-
out providing an annotation for it.

4.3 Preserving the Annotations

Regardless of the way annotations are stored in the data types, we expect the transfor-
mation function to preserve the annotations. The original proposal [Wan10] does not
specify the preservation formally. Therefore, we propose the following simple condition:

Condition 6 (Annotation Preservation)

Whenever a value of an annotated type (e.g. Exp ann) is deconstructed by pattern-
matching, the annotations should be transferred (injected) to the value of the selected
expression (e.g. the body expression of a case or function alternative).

�

Consider the function desugar from the previous section where sum-annotations are used.
Due to the following function alternative, the function desugar satisfies the condition:

desugar (Ann↑ a e) = Ann↓ a (desugar e)

4.3.1 Towards Annotation Preservation

The original proposal [Wan10] expects all the functions and the data types related to the
transformation to be able to preserve and carry the annotations. We propose a simple
algorithm based on sum-annotations to transform an incapable system to be able to
preserve and carry the annotations.

66

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

First, we define a type class to model data types that can store annotations:

{-# LANGUAGE TypeFamilies #-}

class Inj t where
type Ann t
inj :: Ann t → t → t

class Inj t ⇒ Annotatable t where
prj :: t → Maybe ((Ann t ,t))

Members of this type class should respect the following condition:

Condition 7 (Valid Annotatable Type)

For the type T to be a valid instance of the Annotatable type class the following property
should hold:

∀t :: T . ∀ann :: Ann T . proj (inj ann t) = Just ann

For example, consider the two data types Exp↑ and Exp↓ from before. They can be valid
members of the Annotatable type class:

instance Inj (Exp↑ ann) where

type Ann (Exp↑ ann) = ann

inj = Ann↑

instance Inj (Exp↓ ann) where

type Ann (Exp↓ ann) = ann

inj = Ann↓

instance Annotatable (Exp↑ ann) where

prj (Ann↑ x e) = Just (x ,e)
prj = Nothing

instance Annotatable (Exp↓ ann) where

prj (Ann↓ x e) = Just (x ,e)
prj = Nothing

67

4.3. PRESERVING THE ANNOTATIONS

We also define the function preserve to preserve annotation through a given transforma-
tion:

preserve :: (Annotatable t↑,Inj t↓,Ann t↑∼Ann t↓)⇒
t↑ → (t↑ → t↓)→ t↓

preserve e↑ f = case prj e↑ of
Just (ann,é↑)→ inj ann (f é↑)
Nothing → f e↑

The first input of the function preserve is the scrutiny and the second input is the body
of the case expression abstracted over its scrutiny.

To transform an incapable system to be able to preserve and carry the annotations, we
sketch our algorithm as the following steps:

1. for each related data type, following the sum-annotation style, we add a new sep-
arate data constructor to carry the annotations

2. for each data type, we derive the type class Annotatable

3. to get rid of nested patterns, we apply the standard transformations defined in
Haskell’s language report to flatten nested patterns (a necessary step for most
Haskell compilers) and transform all the other possible syntactic forms of pattern
matchings to case expressions

4. we apply the function preserve anywhere a value of the annotated type is decon-
structed

These transformations are simple enough that they can be done automatically by a
preprocessor.

For example, consider the following optimization function that transforms application of
an identity function to any expression e to the expression e itself.

data Exp′ =
Var ′ String
| Abs ′ String Exp ′

| App′ Exp′ Exp′

opt :: Exp′ → Exp′

opt (App′ (Abs ′ x1 (Var ′ x2)) e) | x1 == x2 = e
opt e = e

68

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

Our algorithm works as the following steps:

Step 1: Making data annotatable

data Exp′ ann =
Var ′ String
| Abs ′ String (Exp′ ann)
| App′ (Exp′ ann) (Exp′ ann)
| Ann ann (Exp′ ann)
deriving (Functor ,Foldable,Traversable,Eq)

Step 2: Deriving Annotatable type class

instance Inj (Exp′ ann) where
type Ann (Exp′ ann) = ann
inj = Ann

instance Annotatable (Exp′ ann) where
prj (Ann x e) = Just (x ,e)
prj = Nothing

Step 3: Flattening the nested patterns

opt ′ :: Exp′ → Exp′

opt ′ e0 = case e0 of
App ′ e1 e → case e1 of

Abs ′ x1 e2 → case e2 of
Var ′ x2 → if (x1 == x2)

then e
else e0
→ e0
→ e0
→ e0

69

4.4. INJECTING ANNOTATIONS

Step 4: Applying preserve

opt ′ :: Exp′ ann → Exp′ ann
opt ′ e0 = preserve e0 $ λ x 0 → case x 0 of

App′ e1 e → preserve e1 $ λ x 1 → case x 1 of
Abs ′ x1 e2 → preserve e2 $ λ x 2 → case x 2 of

Var ′ x2 → if (x1 == x2)
then e
else e0
→ e0
→ e0
→ e0

4.4 Injecting Annotations

In standalone (non-embedded) languages, while parsing, we can gather source location
information corresponding to each node inside the AST. In embedded languages, there is
no parsing phase and therefore, the information about the exact location of expressions
in the original source code is lost. To avoid this problem and to recover the lost infor-
mation, we add a preprocessing phase to inject this information inside the data object
representing the embedded program. Proprecessing embedded DSL seems unnecessary,
since it violates the very reason for embedding in the first place; one of the main reasons
behind embedding is to avoid writing parsers, pretty printers and the like but using a
preprocessor forces us to do so. Anyhow, since we are dealing with the standard Haskell
code itself, there are standard parsers that can be borrowed. Arguably, preprocessing an
object language embedded in a host language seems reasonable if the standard parser of
the host language itself is borrowed. It does not add any unnecessary burden.

For this purpose, we developed a tool named QuickAnnotate 2. QuickAnnotate can be
used by adding the pragma {−#OPTIONS GHC − F − pgmF qapp#−} at the top
of the source file in GHC Haskell and it automatically injects the source locations to
expressions in the top-level bindings. The injection is done by applying the overloaded
function injLoc :: ∀a.Locatable a ⇒ Loc → a → a to the corresponding source location
and the top-level expressions. For example, having the following code:

1 :
2 : module Test where
3 : exp1 = "test"

4 : exp2 = Just 1

2http://hackage.haskell.org/package/QuickAnnotate

70

http://hackage.haskell.org/package/QuickAnnotate

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

After the preprocessing, we get the following code where the body expression of every
top-level biding is annotated with the source location:

1 :
2 : module Test where
3 : exp1 = injLoc (SrcLoc {srcFilename = "~/Test.hs"

,srcLine = 03,srcColumn = 1}) $ "test"
4 : exp2 = injLoc (SrcLoc {srcFilename = "~/Test.hs"

,srcLine = 04,srcColumn = 1}) $ Just 1

The injLoc function is overloaded and uses the following GHC extensions to provide
default instances:

{−#LANGUAGE FlexibleInstances#−}
{−#LANGUAGE IncoherentInstances#−}
{−#LANGUAGE OverlappingInstances#−}

It is defined by the following type class:

class Locatable a where
injLoc :: Loc → a → a

Then we set the overloaded function injLoc to act as the identity function for the default
cases:

instance Locatable a where
injLoc = id

In case, injLoc is applied to a function, we wrap the function in a way that only the
output of the function is annotated.

instance Locatable b ⇒ Locatable (a → b) where
injLoc l f = λx → injLoc l (f x)

Finally, to make it actually inject annotations into values of a specific type, we need to
provide an instance of Locatable type class for that specific type. For example in the
above, if we would like to inject source locations into top-level expressions of type String ,
it can be achieved as follows:

instance Locatable ([Char]) where
injLoc loc d = d ++ " at " ++ (show loc)

Using this simple type-level programming, the programmer can customize the way Quick-
Annotate annotates each type. For example, consider the data type Exp′ from the pre-
vious section. In order to inject the source locations into the top-level expression of type
Exp′, derive the type class Locatable as follows:

instance Locatable (Exp′ Loc) where
injLoc loc e = inj loc e

71

4.5. DEMONSTRATION

4.5 Demonstration

4.5.1 Tracking Generated Expressions in Pico-Feldspar

In order to demonstrate how our solution enables tracking the generated expressions
in EDSLs, we have developed the EDSL Pico-Feldspar in Haskell from scratch. Pico-
Feldspar is translated to C. We have developed Pico-Feldspar initially without annota-
tions and then refactored the code using our algorithm to enhance the system with the
ability to carry and preserve annotations. Then, we applied semantic bidirectionalization
to track the generated expressions. The code is attached (Appendix B) with the exact
refactorings highlighted in gray.

Pico-Feldspar, as the name suggests, is a tiny subset of Feldspar that, unlike Feldspar,
uses normal GADTs to define the data types, including the abstract syntax tree. Feldspar
uses the library Syntactic [Axe12] to define extensible data types [Swi08]. Having ex-
tensible data types, the task of introducing and preserving annotations is trivial [BH11].
Not all EDSLs in Haskell are implemented via extensible data types. Therefore, to have
a realistic demonstration of our algorithm, it was critically important to experiment with
an EDSL without extensible data types.

4.5.2 Tracking Generated Expressions in Feldspar

We also applied our technique to enhance Feldspar with the ability to track the ex-
pressions in the low-level generated C code all the way back to their origins at the
high-level Haskell code. Starting from the version 0.5.0.1, our system has been part
of the Feldspar ‘s official released version. In Feldspar, the emphasis in the implemen-
tation of the tracking system has been on simplicity and usability. It is often enough
to push down the source-locations of the top-level bindings from the high-level Haskell
code to the low-level C code. Also, it is not often necessary to annotate every single
subexpression in the C code; often one annotation per block of code suffices.

One of the main application domains of Feldspar is digital signal processing. Therefore,
to demonstrate some of the main features of Feldspar in interaction with our tracking
system, we implemented a simple image processing algorithm in Feldspar. The algorithm
first converts the input colored image to a grayscale image and then converts the grayscale
image to a black-and-white (binary) image.

72

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

Figure 4.1: Colored Figure 4.2: Grayscale Figure 4.3: B&W

For example, the figure 4.2 and the figure 4.3 illustrate the grayscale and black-and-white
versions of the photo in the figure 4.1, correspondingly.

The code for the algorithm is as follows:

{−#OPTIONS GHC − F − pgmF qapp#−}
module IP where

import qualified Prelude as P

import Feldspar
import Feldspar .Vector

-- Conversion from grayscale to black and white
toBW :: Vector (Data Int32)→ Vector (Data Int32)
toBW = map (λx → condition (x < 127) 1 0)

-- threshold is set to 127

-- The standard red channel grayscale coefficient
redCoefficient :: Data Float
redCoefficient = 0.30

-- The standard green channel grayscale coefficient
greenCoefficient :: Data Float
greenCoefficient = 0.59

-- The standard blue channel grayscale coefficient
blueCoefficient :: Data Float
blueCoefficient = 0.11

-- Conversion from RGB to grayscale
rgbToGray :: Data Int32 → Data Int32 →

Data Int32 → Data Int32
rgbToGray r g b = truncate $

(i2f r) ∗ redCoefficient
+ (i2f g) ∗ greenCoefficient
+ (i2f b) ∗ blueCoefficient

73

4.6. RELATED AND FUTURE WORK

-- Conversion from colored to grayscale
toGray :: Vector (Data Int32)→ Vector (Data Int32)
toGray v = forLoop ((length v) ‘div ‘ 3) Empty

(λi acc → let
b = i ∗ 3
in acc ++ indexed 1

(const $ rgbToGray (v ! b) (v ! (b + 1)) (v ! (b + 2))))

-- Conversion from colored to black and white
fromColoredtoBW :: Vector (Data Int32)→

Vector (Data Int32)
fromColoredtoBW = toBW .toGray

A colored image is modelled as a vector of integers in which every three consecutive
number represent the color of a single pixel in the RGB (Red-Green-Blue) format. We
use Netpbm format to store images 3. To transform the input image to the grayscale
format, the function toGray uses the function rgbToGray to compute the weighted sum of
each pixel’s color channels. The weights are the standard constant grayscale coefficients,
representing human perception of colors. In order to transform a grayscale image into
the black-and-white format, we do thresholding by a fixed threshold. Our threshold is
fixed and suitable for photos with rather low lightness. This way, if the grayscale value of
a pixel is less than the threshold, its color is set to black and otherwise to white. Notice
that our preprocessor is enabled by the pragma at the first line. When we compile the
function fromColoredtoBW , we get the C code where code blocks are annotated with
source-locations of their origins (refer to Appendix D). Although parts of the code are
fused together, the result of our tracking system is reasonably acceptable.

4.6 Related and Future Work

Traditionally, in order to track generated expressions, some of the nodes in the high-level
AST have been annotated with source location information and the main transforma-
tion has been designed, with some ad-hoc heuristics, to preserve and transfer these
annotations from the input to the output. For instance, Haskell-Src-Exts4 [Bro12], in
its interface AST (Language.Haskell .Exts.Syntax), carries source location information
for top-level declarations, bindings and lambda expressions. This solution also is used
in tracking changes made by macros in Lisp, Scheme and Racket [CF07, THSAC+11].
They may assign hash codes to some nodes and use hash tables to store the related in-
formation. We considered the existing techniques “ad-hoc”, as they do not provide clear
specifications by which validity of an implemented transformation could be verified; they
do not give clear answers to some key questions facing the implementors:

3http://netpbm.sourceforge.net/doc/ppm.html
4the most popular package for parsing and manipulating Haskell code extended with GHC and other

extensions [BFS04, Bro05]

74

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

1. what should be the information that the nodes in the high-level AST are annotated
with? It is practically impossible to annotate every single node in the high-level
AST with its own specific source location information.

2. which nodes in the high-level AST should be annotated?

3. what should be done with the annotations during the forward transformation? how
is this behavior specified?

4. how should the generated nodes be annotated?

5. what happens if a node is removed?

6. what should be done if a node is duplicated?

7. what happens to the annotations, if two or more nodes in the high-level AST are
combined to form one or more nodes in the low-level AST?

8. when we want to track a node in the low-level AST, how do we use its annotation
to find the related nodes in the high-level AST?

9. how do we guarantee that we are tracking back to the right origins?

10. what should be done if an annotation is not valid or understandable by the tracking
algorithm?

As was originally mentioned in the GRACE meeting notes [CFH+09], questions of this
kind are the subject of the interdisciplinary study bidirectional transformations (BX).
We modeled the problem of tracking generated expressions as a BX system and proposed
a solution by employing the semantic bidirectionalization technique. The laws govern-
ing validity of a bidirectional transformation (mainly acceptability) provide a form of
specification to steer our design. Our implementation respects these laws (chapter 3).
In addition, we force the annotations to be kept polymorphic (abstract) and as we dis-
cussed before (sections 3.1 and 3.2), this will provide us with the additional guarantee
that the annotations cannot be generated or observed arbitrarily. Finally, we specified
a simple and practical condition for the transformation to preserve the annotations and
we designed an algorithm to transform an existing system to a system satisfying this
condition.

Now, we can answer the above questions as follows:

1. We use Boolean values to annotate every single node in an AST and we exactly
know which nodes are selected. Hence, we know the exact origins. If the system
requires extra information available only for a few nodes, e.g. source-locations for
the top-level bindings, and if an origin node lacks the information, we move up in
the tree to find the first node with the required information. It is an approximation
method to compensate for the lack of information and in our experiments with
Feldspar, this method seems to work well in practice.

75

4.6. RELATED AND FUTURE WORK

2. In our solution, every single node in the high-level AST should be annotated with
Boolean values.

3. We specified the condition of annotation preservation and also designed an algo-
rithm (section 4.3.1) to transform forward functions to respect this condition.

4. Since we keep the annotations abstract during the forward transformations, the
generated nodes cannot have annotations. If they are generated by pattern match-
ing on values of annotated data types, then our algorithm wraps the generated
nodes in a node carrying the annotations of deconstructed values.

5. If the node is not destructed, its annotation is lost as expected. It is not possible to
select a removed node, hence its annotation is not needed. Note that this behavior
still satisfies the annotation preservation condition, since the removed node is not
destructed. If the node is destructed, then its annotation is injected into the
selected expression.

6. Semantic-bidirectionalization can detect duplication. What to do in that case is
a design decision that should be made depending on the use-case scenario. One
solution is to give priority to the value True, i.e., even if only one single node of
many duplicated ones is selected, the system assumes the others selected.

7. The resulting node is wrapped in a node carrying the annotations of the ones that
are deconstructed. The others carry their own annotations and are copied as is.

8. We set its annotation to True and let the semantic-bidirectionalization algorithm
put back the changes in the source. In this updated source, the annotation of the
origins are set to True.

9. The BX laws governing the semantic-bidirectionalization provides us with the guar-
antee.

10. Since we keep the annotations abstract, it is impossible to come up with new and
not understandable annotations.

The work [Wan10] has been one of our main inspirations. However, in [Wan10], the
syntactic approach has been used to map back the error messages referring to gener-
ated expressions. As mentioned earlier, the syntactic approach can only bidirectionalize
functions in a restricted subset (section 2.2.3.1) of a functional language, Haskell in par-
ticular. The author in [Wan10] argues that these restrictions are not too restrictive in
practice. Our solution employs the semantic approach. One point in using the semantic
bidirectionalization is that the technique does not need to access the source code of the
forward function. While our solution uses the semantic bidirectionalization technique,
the annotation preservation algorithm needs to access and transform the source code of
the forward function. Nevertheless, unlike the syntactic bidirectionalization [MHN+07],
our algorithm does not set restrictions on the language under transformation. In fact,

76

CHAPTER 4. TRACKING GENERATED EXPRESSIONS

our algorithm can work with any program written in Haskell. For example, a solution
based on syntactic bidirectionalization cannot (while our solution can) track the out-
put of a compile function that duplicates an expression; a duplicating function is not
affine (section 2.2.3.1). One instance of such a duplicating compile function is one that
compiles case expressions5.

Our algorithm transforms a system with closed data type; there are solutions based on
open [Swi08, Axe12, BH11] data types demanding much less effort and changes to the
existing code. For instance, if the code is written in their proposed encoding [BH11],
the annotations are carried in an orthogonal procedure, i.e., the main transformation is
totally agnostic towards the annotations.

It would be interesting to use code profilers for the generated C code and use our system
to track this data to profile the high-level Haskell code. These feedback information
would help the programmers to refine their high-level code without the need to examine
the generated spaghetti code.

One other interesting potential is to use our mechanism to make programs resource-
aware. That is, we pass the feedback information to the program itself, a subject related
to the study of self-optimizing code and incremental computing [Car02, Aca05, WGW11].

5for instance refer to the rule g of the section 3.17.3 of the language report of Haskell-2010

77

78

Chapter 5

Conclusion

79

CHAPTER 5. CONCLUSION

Semantic-bidirectionalization was originally introduced as three distinct higher-order
functions that could bidirectionalize forward functions with specific type signatures.
We started by refactoring the original algorithm in order to unify these mechanisms.
In the process, we identified the conditions that should be respected to form a lawful
bidirectional transformation. We introduced an abstract system parametric over the
indexing function and proved the soundness of the system with respect to BX laws.
Then, we introduced a general indexing function working in the presence of an arbitrary
observer function. At the end, we applied generic programming techniques to extend our
system to bidirectionalize forward functions with arbitrary polymorphic data structures
as the source and the view. We demonstrated that our algorithm can bidirectionalize
40% of the functions defined in the Prelude module. We had 20% improvement compared
to the original technique.

As the practical part, we started with the problem of tracking generated expressions. We
applied semantic-bidirectionalization techniques to track the expressions from the AST
of the generated code to the AST of the original code. Our algorithm required the system
to preserve and carry annotation data. First, we specified what we meant by preservation
of the annotation data and then we sketched an algorithm to transform an incapable
system to be able to preserve and carry the annotations. Since in embedded languages,
the parsing phase is omitted, the information about the exact location of expressions in
the original source code is lost. In order to track generated expressions in an embedded
language all the way up to their exact source location in the high-level source file, we
needed to recover this lost information. For this purpose, we developed a preprocessor
(QuickAnnotate) to inject the source location information into the expressions of the
right type using type-level programming. For testing and demonstrating our solution,
we developed Pico-Feldspar. Finally, we enhanced Feldspar language with the ability to
track the generated C expressions to their origins in the Haskell code; this mechanism
is fully implemented and now it is a part of the released version of Feldspar.

It was a long journey; the student learned a great deal on subjects surrounding bidirec-
tional transformation, language transformations and equational reasoning. The student
studied some of the well-respected bidirectionalization techniques and improved one of
these by designing a new algorithm; designed and developed tools to transform programs;
and finally he practiced equational reasoning by proving correctness of his proposed al-
gorithm. By working closely on the Feldspar project, the student had the opportunity to
study the novel embedding techniques in the project. More noticeably, through this the-
sis, the student improved his skill in technical writing and critical thinking; the student
learnt how to patiently observe an existing model, extract the underlying properties,
formulate them and refine the model based on these newly found properties.

80

Bibliography

[Aca05] Umut A Acar. Self-adjusting computation. PhD thesis, Princeton Univer-
sity, 2005.

[ACS+11] Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David
Engdal, and Anders Persson. The design and implementation of feldspar
an embedded language for digital signal processing. In Proceedings of
the 22nd International Conference on Implementation and Application of
Functional Languages, IFL’10, pages 121–136, Berlin, Heidelberg, 2011.
Springer-Verlag.

[Axe12] Emil Axelsson. A generic abstract syntax model for embedded languages.
In Proceedings of the 17th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’12, pages 323–334, New York, NY, USA,
2012. ACM.

[BFS04] Niklas Broberg, Andreas Farre, and Josef Svenningsson. Regular expres-
sion patterns. In Proceedings of the ninth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’04, pages 67–78, New
York, NY, USA, 2004. ACM.

[BH11] Patrick Bahr and Tom Hvitved. Compositional data types. In Proceedings
of the seventh ACM SIGPLAN Workshop on Generic Programming, WGP
’11, pages 83–94, New York, NY, USA, 2011. ACM.

[BJC10] Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing poly-
morphic properties. In Proceedings of the 19th European Conference on
Programming Languages and Systems, ESOP’10, pages 125–144, Berlin,
Heidelberg, 2010. Springer-Verlag.

[Bro05] Niklas Broberg. Haskell server pages through dynamic loading. In Pro-
ceedings of the 2005 ACM SIGPLAN Workshop on Haskell, Haskell ’05,
pages 39–48, New York, NY, USA, 2005. ACM.

81

BIBLIOGRAPHY

[Bro12] Niklas Broberg. haskell-src-exts: Manipulating Haskell source: abstract
syntax, lexer, parser, and pretty-printer. http://hackage.haskell.org/
package/haskell-src-exts, September 2012.

[Car02] Magnus Carlsson. Monads for incremental computing. In Proceedings
of the seventh ACM SIGPLAN International Conference on Functional
Programming, ICFP ’02, pages 26–35, New York, NY, USA, 2002. ACM.

[CF07] Ryan Culpepper and Matthias Felleisen. Debugging macros. In Proceed-
ings of the 6th International Conference on Generative Programming and
Component Engineering, GPCE ’07, pages 135–144, New York, NY, USA,
2007. ACM.

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy
Schürr, and James F. Terwilliger. Bidirectional transformations: A cross-
discipline perspective. In Proceedings of the 2nd International Conference
on Theory and Practice of Model Transformations, ICMT ’09, pages 260–
283, Berlin, Heidelberg, 2009. Springer-Verlag.

[EW12] Richard A. Eisenberg and Stephanie Weirich. Dependently typed program-
ming with singletons. In Proceedings of the 2012 Symposium on Haskell
Symposium, Haskell ’12, pages 117–130, New York, NY, USA, 2012. ACM.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bidirectional tree transforma-
tions: A linguistic approach to the view-update problem. ACM Transac-
tions on Programming Languages and Systems, 29(3), May 2007.

[FMV12] Nate Foster, Kazutaka Matsuda, and Janis Voigtländer. Three com-
plementary approaches to bidirectional programming. In Proceedings of
the 2010 International Spring School Conference on Generic and Indexed
Programming, SSGIP’10, pages 1–46, Berlin, Heidelberg, 2012. Springer-
Verlag.

[HMT04] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable
editor for developing structured documents based on bidirectional trans-
formations. In Proceedings of the 2004 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation, PEPM
’04, pages 178–189, New York, NY, USA, 2004. ACM.

[Hug95] John Hughes. The design of a pretty-printing library. In Advanced Func-
tional Programming, First International Spring School on Advanced Func-
tional Programming Techniques-Tutorial Text, pages 53–96, London, UK,
UK, 1995. Springer-Verlag.

82

http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/haskell-src-exts

BIBLIOGRAPHY

[Jon93] Mark P. Jones. A system of constructor classes: overloading and implicit
higher-order polymorphism. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture, FPCA ’93,
pages 52–61, New York, NY, USA, 1993. ACM.

[Jon95] Mark P. Jones. Qualified types: theory and practice. Cambridge University
Press, New York, NY, USA, 1995.

[Mai07] Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for haskell.
In Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop,
Haskell ’07, pages 73–82, New York, NY, USA, 2007. ACM.

[MHN+07] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana, and
Masato Takeichi. Bidirectionalization transformation based on automatic
derivation of view complement functions. In Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’07, pages 47–58, New York, NY, USA, 2007. ACM.

[MHT04a] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic ap-
proach to bi-directional updating. In Programming Languages and Sys-
tems, volume 3302 of Lecture Notes in Computer Science, pages 2–20,
Berlin, Heidelberg, 2004. Springer-Verlag.

[MHT04b] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective lan-
guage for reversible computation. In In Seventh International Confer-
ence on Mathematics of Program Construction, MPC 2004, pages 289–313,
Berlin, Heidelberg, 2004. SpringerVerlag.

[MMHT10] Kazutaka Matsuda, Shin-Cheng Mu, Zhenjiang Hu, and Masato Take-
ichi. A grammar-based approach to invertible programs. In Proceedings of
the 19th European Conference on Programming Languages and Systems,
ESOP’10, pages 448–467, Berlin, Heidelberg, 2010. Springer-Verlag.

[MP08] Conor Mcbride and Ross Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13, January 2008.

[PJS04] S. Peyton Jones and M. Shields. Lexically-scoped type variables. Submitted
to ICFP, 2004.

[Rey83] J.C. Reynolds. Types, abstraction and parametric polymorphism. Pro-
ceedings of the IFIP 9th World Computer Congress, pages 513–523, 1983.

[SPJCS08] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In Proceedings of the
13th ACM SIGPLAN International Conference on Functional program-
ming, ICFP ’08, pages 51–62, New York, NY, USA, 2008. ACM.

83

BIBLIOGRAPHY

[Swi08] Wouter Swierstra. Functional pearl: Data types a la carte. Journal of
Functional Programming, 18(4):423, 2008.

[THSAC+11] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. Languages as libraries. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 132–141, New York, NY, USA, 2011.
ACM.

[VHMW10] Janis Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, and Meng Wang.
Combining syntactic and semantic bidirectionalization. In Proceedings of
the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’10, pages 181–192, New York, NY, USA, 2010. ACM.

[Voi09] Janis Voigtländer. Bidirectionalization for free! (pearl). In Proceedings
of the 36th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’09, pages 165–176, New York, NY, USA,
2009. ACM.

[Wad88] Philip Wadler. Deforestation: transforming programs to eliminate trees. In
Proceedings of the 2nd European Conference on Programming Languages
and Systems, ESOP’88, pages 231–248, Amsterdam, The Netherlands,
1988. North-Holland Publishing Co.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the fourth Interna-
tional Conference on Functional Programming Languages and Computer
Architecture, FPCA ’89, pages 347–359, New York, NY, USA, 1989. ACM.

[Wad92] Philip Wadler. The essence of functional programming. In Proceedings
of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’92, pages 1–14, New York, NY, USA, 1992.
ACM.

[Wad95] Philip Wadler. Monads for functional programming. In Advanced Func-
tional Programming, First International Spring School on Advanced Func-
tional Programming Techniques-Tutorial Text, pages 24–52, London, UK,
UK, 1995. Springer-Verlag.

[Wan10] Meng Wang. Bidirectional Programming and its application. PhD thesis,
University of Oxford, 2010.

[WGW11] Meng Wang, Jeremy Gibbons, and Nicolas Wu. Incremental updates for
efficient bidirectional transformations. In Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’11, pages 392–403, New York, NY, USA, 2011. ACM.

84

BIBLIOGRAPHY

[YWC+12] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving haskell a promo-
tion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in
Language Design and Implementation, TLDI ’12, pages 53–66, New York,
NY, USA, 2012. ACM.

85

86

Appendices

87

Appendix A

Proof.[Acceptability of bff IBy (theorem 10)]

bff IBy obsI indexBy getBy obsX s (getBy obsX s)

= {-definition of bff IBy and the premiss -}
do

let ms = indexBy obsX s
unless (length (getBy obsX s) ==

length (getBy obsI (fst ‘map‘ ms)))

$ Left "Modified view of wrong length!"

let mv = zip (getBy obsI (fst ‘map‘ ms))

(getBy obsX s)

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

let ms ′ = union mv ms
unless (check IBy obsI obsX ms ′)

$ Left "Invalid modified view!"

return $ lookupAll (fst ‘map‘ ms) ms ′

= {-lemma 1, premiss (input preservation) and specification of unless -}
do

let ms = indexBy obsX s
let mv = zip (getBy obsI (fst ‘map‘ ms))

(getBy obsX s)

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

let ms ′ = union mv ms
unless (check IBy obsI obsX ms ′)

$ Left "Invalid modified view!"

return $ lookupAll (fst ‘map‘ ms) ms ′

= {-lemma 2, premiss (input preservation) -}

89

do
let ms = indexBy obsX s
let mv = getBy (obsX ‘on‘ snd) ms

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

let ms ′ = union mv ms
unless (check IBy obsI obsX ms ′)

$ Left "Invalid modified view!"

return $ lookupAll (fst ‘map‘ ms) ms ′

= {-replacing mv everywhere with its definition -}
do

let ms = indexBy obsX s
unless (validAssoc (getBy (obsX ‘on‘ snd) ms))

$ Left "Inconsistent duplicated values!"

let ms ′ = union (getBy (obsX ‘on‘ snd) ms) ms

unless (check IBy obsI obsX ms ′)
$ Left "Invalid modified view!"

return $ lookupAll (fst ‘map‘ ms) ms ′

= {-lemma 3, premiss (validAssoc ms = True) and specification of unless -}
do

let ms = indexBy obsX s
let ms ′ = union (getBy (obsX ‘on‘ snd) ms) ms

unless (check IBy obsI obsX ms ′)
$ Left "Invalid modified view!"

return $ lookupAll (fst ‘map‘ ms) ms ′

= {-lemma 4 and replacing ms’ everywhere with its definition -}
do

let ms = indexBy obsX s
unless (check IBy obsI obsX ms)

$ Left "Invalid modified view!"

return $ lookupAll (fst ‘map‘ ms) ms
= {-premiss (map invariant) -}

do
let ms = indexBy obsX s
return $ lookupAll (fst ‘map‘ ms) ms

= {-lemma 5 and premiss (input preservation) -}
Right s

�

90

Lemma 1 Let X , A and I be types; let getBy ::∀t .(t → t → X)→ [t]→ [t], obsX ::A→
A→ X and obsI :: I → I → X be functions; and let s :: [A] and ms :: [(I ,A)]. If we have
s = map snd ms (input preservation), then

(length (getBy obsX s) == length (getBy obsI (fst ‘map‘ ms))) = True

�

Proof.

length (getBy obsX s) ==

length (getBy obsI (fst ‘map‘ ms))

= {-premiss (input preservation) -}
length (getBy obsX (snd ‘map‘ ms)) ==

length (getBy obsI (fst ‘map‘ ms))

= {-free theorem -}
length (getBy obsX (snd ‘map‘ ms)) ==

length (map fst (getBy (obsX ‘on‘ snd) ms))

= {-free theorem -}
length (map snd (getBy (obsX ‘on‘ snd) ms)) ==

length (map fst (getBy (obsX ‘on‘ snd) ms))

= {-free theorem (length x = length (map g x)) -}
length (getBy (obsX ‘on‘ snd) ms) ==

length (map fst (getBy (obsX ‘on‘ snd) ms))

= {-free theorem (length x = length (map g x)) -}
length (getBy (obsX ‘on‘ snd) ms) ==

length (getBy (obsX ‘on‘ snd) ms)

=
True

�

Lemma 2 Let X , A and I be types; let getBy ::∀t .(t → t → X)→ [t]→ [t], obsX ::A→
A→ X and obsI :: I → I → X be functions; and let s :: [A] and ms :: [(I ,A)]. If we have
s = map snd ms (input preservation), then

zip (getBy obsI (fst ‘map‘ ms)) (getBy obsX s) = getBy (obsX ‘on‘ snd) ms

�

91

Proof.

zip (getBy obsI (fst ‘map‘ ms))

(getBy obsX s)

= {-premiss (input preservation) -}
zip (getBy obsI (fst ‘map‘ ms))

(getBy obsX (snd ‘map‘ ms))

= {-free theorem - two times -}
zip (map fst (getBy (obsX ‘on‘ snd) ms))

(map snd (getBy (obsX ‘on‘ snd) ms))

= {-specification of zip -}
{-i.e. zip (map fst x) (map snd x) = x -}
getBy (obsX ‘on‘ snd) ms

�

Lemma 3 Let X , A and I be types; let getBy :: ∀t .(t → t → X) → [t] → [t] and
obsX ::A→ A→ X be functions; and let ms :: [(I ,A)]. If we have validAssoc ms = True,
then

validAssoc (getBy (obsX ‘on‘ snd) ms) = True

�

Proof.

By free theorems and the premiss validAssoc ms = True

�

Lemma 4 Let X , A and I be types; let getBy :: ∀t .(t → t → X) → [t] → [t] and
obsX :: A→ A→ X be functions; and let ms :: [(I ,A)]. We have

union (getBy (obsX ‘on‘ snd) ms) ms = ms

�

Proof.

By free theorems and the specification of union

�

Lemma 5 Let A and I be types; and let ms :: [(I ,A)]. For some s :: [A], if s =
map snd ms (input preservation), then we have

lookupAll (fst ‘map‘ ms) ms = s

�

92

Proof.

lookupAll (fst ‘map‘ ms) ms
= {-Specification of lookupAll -}

snd ‘map‘ ms
= {-premiss (Input Preservation) -}

s

�

93

94

Appendix B

Module Feldspar

This module is used as a front-end to the Feldspar language. It re-exports from the
internal modules.

{-# LANGUAGE DataKinds #-}
module Feldspar (module Feldspar .FrontEnd .Interface
,Data,Int32 ,Num (. .),String) where

import qualified Prelude
import Prelude (String ,Num (. .))

import Feldspar .FrontEnd .Interface
import qualified Feldspar .FrontEnd .AST as AST
import qualified Feldspar .Types as Types

import Feldspar .Annotations ()

type Data a = AST .Data a (String)

type Int32 = Types.Int32

Module Annotations

The module containing the type classes and the functions defined in chapter 4 (refer to
4) to facilitate injecting, projecting and preserving the annotations.

95

{-# LANGUAGE TypeFamilies #-}
module Annotations where

import qualified Prelude
import Prelude (Maybe (. .))

-- injecting annotations into data
class Inj t where

type Ann t
inj :: Ann t → t → t

-- projecting the stored annotations
class Inj t ⇒ Annotatable t where

prj :: t → Maybe ((Ann t ,t))

-- preserving the annotations
preserve :: ∀ t↑ t↓.

(Annotatable t↑,Inj t↓
,Ann t↑∼Ann t↓)⇒
t↑ → (t↑ → t↓)→ t↓

preserve e↑ f = case prj e↑ of
Just (ann,é↑)→ inj ann (f é↑)
Nothing → f e↑

Module BX

This module contains the code for our semantic bidirectionalization algorithm, described
in the chapter 3 (refer to 3).

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}

96

module BX where

import Data.Foldable (Foldable (. .),toList)
import Data.Traversable (Traversable (. .))
import Control .Monad (unless,join)
import qualified Prelude
import Prelude (String ,Bool (. .),Int ,Eq (. .),Either (. .)
,Functor (. .),Monad (. .),Maybe (. .),($),(!!),(∨),(+),(.)
,¬,fst ,⊥,snd ,map,lookup,length,and ,zip
,const ,flip,mapM)

import Control .Monad .State (get ,put ,evalState)
import Data.Function (on)
import Data.List (unionBy)

fromJust :: Maybe a → a
fromJust (Just x) = x
fromJust Nothing = ⊥

index :: ∀ a.[a]→ [(Int ,a)]
index s = zip [1 . . length s] s

assoc :: ∀ a b.[a]→ [b]→ [(a,b)]
assoc = zip

validAssoc :: ∀ a b.(Eq a,Eq b)⇒
[(a,b)]→ Bool

validAssoc mv = and
[¬ (i == j) ∨ x == y | (i ,x)← mv ,(j ,y)← mv]

union :: ∀ a b.Eq a ⇒
[(a,b)]→ [(a,b)]→ [(a,b)]

union = unionBy ((==) ‘on‘ fst)

lookupAll :: ∀ a b.Eq a ⇒
[a]→ [(a,b)]→ [b]

lookupAll is mp = map (fromJust .flip lookup mp) is

data Nat =
Zero
| Succ Nat

97

infixr 5 :::
data Vect :: Nat → ∗ → ∗where

Nil :: Vect Zero a
(:::) :: a → Vect n a → Vect (Succ n) a

instance Functor (Vect n) where
fmap Nil = Nil
fmap f (x ::: xs) = f x ::: fmap f xs

data SingNat :: Nat → ∗where
ZeroSing :: SingNat Zero
SuccSing :: SingNat n → SingNat (Succ n)

class SingI (n :: Nat) where
sing :: SingNat n

instance SingI Zero where
sing = ZeroSing

instance SingI n ⇒ SingI (Succ n) where
sing = let

n = (sing :: SingNat n)
in SuccSing n

class (SingI (Size t))⇒ VectIso (t :: ∗ → ∗) where
type Size t :: Nat
toVect :: ∀ a.t a → Vect (Size t) a
fromVect :: ∀ a.Vect (Size t) a → t a

size :: ∀ a t .(SingI (Size t),VectIso t)⇒
t a → SingNat (Size t)

size = sing

perm :: SingNat (Succ m)→ [(i ,a)]→
[Vect (Succ m) (i ,a)]

perm (SuccSing ZeroSing) ms = (:::Nil) ‘map‘ ms
perm (SuccSing (SuccSing n)) ms = join

[((i ,x):::) ‘map‘ (perm (SuccSing n) ms) | (i ,x)← ms]

98

checkGBy :: ∀ t a x s.
(VectIso t ,Size t∼Succ s,Eq x)⇒
(t Int → x)→ (t a → x)→ [(Int ,a)]→ Bool

checkGBy obsI obsX ms = let
vs = perm (size (⊥ :: t Int)) ms

in and
[obsI (fromVect (fmap fst z)) ==

obsX (fromVect (fmap snd z))
| z ← vs]

onG :: VectIso t ⇒
(t b → c)→ (a → b)→ (t a → c)

onG f f ′ = f .fromVect .(fmap f ′).toVect

newtype ()1 a = ()1 a
newtype ()2 a = ()2 (a,a)
newtype ()3 a = ()3 (a,a,a)

instance VectIso ()1 where
type Size ()1 = Succ Zero
toVect (()1 x) = x ::: Nil
fromVect (x ::: Nil) = ()1 x

instance VectIso ()2 where
type Size ()2 = Succ (Succ Zero)
toVect (()2 (x1,x2)) =

x1 ::: x2 ::: Nil
fromVect (x1 ::: x2 ::: Nil) =

()2 (x1,x2)

instance VectIso ()3 where
type Size ()3 = Succ (Succ (Succ Zero))
toVect (()3 (x1,x2,x 3)) =

x1 ::: x2 ::: x 3 ::: Nil
fromVect (x1 ::: x2 ::: x 3 ::: Nil) =

()3 (x1,x2,x 3)

99

fromList :: ∀ k a b.Traversable k ⇒
k a → [b]→ k b

fromList s lst = let
indices = do

i ← get
put (i + 1)
return i

si = evalState
(Data.Traversable.mapM indices s) 0

in fmap (lst !!) si

(==Shape) :: ∀ k a.(Eq (k ()),Foldable k ,Functor k)⇒
k a → k a → Bool

(==Shape) = (==) ‘on‘ fmap (const ())

bff a−∗
GUS :: ∀ x t s.

(VectIso t ,Eq x ,Size t∼Succ s)⇒
(∀ a.(t a → x)→ [a]→ [a])→
(∀ a.Eq a ⇒
(t a → x)→ [a]→ [a]→ Either String [a])

bff a−∗
GUS getBy obsX s v = do

-- Step 1
let ms = index s
let obsI = onG obsX (fromJust .(flip lookup ms))

-- Step 2
let is = fst ‘map‘ ms
let iv = getBy obsI is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v
-- Step 4

unless (validAssoc mv)
$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1
unless (checkGBy obsI obsX ms ′)

$ Left "Invalid modified view!"

-- Step 6
return $ lookupAll is ms ′

100

bff
a/d−∗
GUS :: ∀ x k k ′ t s.

(VectIso t ,Functor k ′,Foldable k ′,Eq (k ′ ())
,Size t∼Succ s,Traversable k ,Eq x)⇒
(∀ a.(t a → x)→ k a → k ′ a)→
(∀ a.(Eq a)⇒

(t a → x)→ k a → k ′ a → Either String (k a))

bff
a/d−∗
GUS getBy obsX s v = do

let slist = toList s

let vlist = toList v

let get listBy :: ∀ a.(t a → x)→ [a]→ [a]

get listBy obs x = toList $ getBy obs (fromList s x)

unless ((==Shape) (getBy obsX s) v)

$ Left "Modified view of wrong shape!"

ślist ← bff a−∗
GUS get listBy obsX slist vlist

return $ fromList s ślist

Module Feldspar.Compiler

This module is used as a front-end to the Feldspar compiler. It re-exports from the
internal modules.

module Feldspar .Compiler (icompile,scompile,IO) where
import Feldspar .Compiler .Compiler

Module Feldspar.Types

This module contains the declaration of the built-in types in Pico-Feldspar. It also
includes the code defining singlton types and the utility functions for promotion and
demotion of the built-in types.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ScopedTypeVariables #-}

module Feldspar .Types where

import qualified Prelude
import Prelude (Eq (. .))

101

-- the built-in types
-- it is usually used in the promoted form

data Types = Int32 | Bool
deriving Eq

-- a GADT representation of a singleton type for
-- the built-in types

data SingTypes :: Types → ∗where
SInt32 :: SingTypes Int32
SBool :: SingTypes Bool

-- overloaded function to demote singletons
class SingT (n :: Types) where

sing :: SingTypes n
instance SingT Int32 where

sing = SInt32
instance SingT Bool where

sing = SBool

-- coversion from singleton types to the original
toTypes :: SingTypes n → Types
toTypes SInt32 = Int32
toTypes SBool = Bool

-- overloaded function to demote singletons
-- to the original

getType :: ∀ k n a.SingT n ⇒ k n a → Types
getType = toTypes (sing :: SingTypes n)

-- an overloaded function to facilitate demotion
-- using the type of the argument of a function

getTypeF :: ∀ k n a r .SingT n ⇒
(k n a → r)→ SingTypes n

getTypeF = sing :: SingTypes n

102

Module Feldspar.Annotations

In this module, the type classes defined in the module Annotations are derived for the
main data types in Pico-Feldspar.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleInstances #-}

module Feldspar .Annotations
(module Annotations) where

import qualified Prelude as P
import Prelude (map,Int ,Maybe (. .),String)

import qualified QuickAnnotate as QA
import Feldspar .FrontEnd .AST
import Feldspar .BackEnd .AST
import Annotations (Inj (. .),Annotatable (. .),preserve)
import Feldspar .BackEnd .Pretty (Pretty (. .))

import Control .Monad .State
import Text .PrettyPrint (text)

instance QA.Annotatable (Data a String) where
annotate loc d = inj loc d

instance Inj (Data a ann) where
type Ann (Data a ann) = ann
inj x = Ann x

instance Annotatable (Data a ann) where
prj (Ann x e) = Just (x ,e)
prj = Nothing

instance Inj (Exp C ann) where
type Ann (Exp C ann) = ann
inj x = AnnExpC x

instance Annotatable (Exp C ann) where
prj (AnnExpC x e) = Just (x ,e)
prj = Nothing

103

instance Inj (Stmt ann) where
type Ann (Stmt ann) = ann
inj x = AnnStmt x

instance Annotatable (Stmt ann) where
prj (AnnStmt x e) = Just (x ,e)
prj = Nothing

instance Inj (Func ann) where
type Ann (Func ann) = ann
inj ann (Func x ps stmts) =

Func x ps (inj ann ‘map‘ stmts)

instance Inj t ⇒ Inj [t] where
type Ann [t] = Ann t
inj x = map (inj x)

instance (Inj t1 ,Inj t2 ,Ann t1∼Ann t2)⇒
Inj (t1 ,t2) where
type Ann (t1 ,t2) = Ann t1
inj x (e1,e2) = (inj x e1,inj x e2)

instance Inj t ⇒ Inj (State Int t) where
type Ann (State Int t) = Ann t
inj x = fmap (inj x)

instance Inj r ⇒ Inj (a → r) where
type Ann (a → r) = Ann r
inj ann f = λx → inj ann (f x)

instance Pretty String where
pretty = text

104

Module Feldspar.AnnotationUtils

This module provides a set of utilities to work with annotations, e.g., removing all the
annotations from an AST stripAnn or annotating every single node in an AST with the
value False.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE FlexibleInstances #-}

module Feldspar .AnnotationUtils where

import qualified Prelude as P
import Prelude (Maybe (. .),map,($),(.))

import Feldspar .FrontEnd .AST
import Feldspar .BackEnd .AST

import Annotations (Inj (. .))
import Feldspar .Annotations ()

-- removing all the annotations
stripAnn :: Data a ann → Data a ann ′

stripAnn (Var x) = Var x
stripAnn (Lit Int i) = Lit Int i
stripAnn (Lit Bool b) = Lit Bool b
stripAnn (Not e) = Not (stripAnn e)
stripAnn (Add e1 e2) =

Add (stripAnn e1) (stripAnn e2)
stripAnn (Sub e1 e2) =

Sub (stripAnn e1) (stripAnn e2)
stripAnn (Mul e1 e2) =

Mul (stripAnn e1) (stripAnn e2)
stripAnn (Eq Int e1 e2) =

Eq Int (stripAnn e1) (stripAnn e2)
stripAnn (LT Int e1 e2) =

LT Int (stripAnn e1) (stripAnn e2)
stripAnn (And e1 e2) =

And (stripAnn e1) (stripAnn e2)
stripAnn (If e1 e2 e3) =

If (stripAnn e1) (stripAnn e2) (stripAnn e3)
stripAnn (Ann e) = stripAnn e

105

-- annotating each node in the output with False

markAllF :: ∀ a ann ann ′ r .
(r ann ′ → r P .Bool)→
(Data a ann → r ann ′)→
(Data a P .Bool → r P .Bool)

markAllF markAllr f = markAllr .f .stripAnn

-- annotating each node with False

markAll :: ∀ a ann.Data a ann
→ Data a P .Bool

markAll (Var x) = Ann P .False $
Var x

markAll (Lit Int i) = Ann P .False $
Lit Int i

markAll (Lit Bool b) = Ann P .False $
Lit Bool b

markAll (Not e) = Ann P .False $
Not (markAll e)

markAll (Add e1 e2) = Ann P .False $
Add (markAll e1) (markAll e2)

markAll (Sub e1 e2) = Ann P .False $
Sub (markAll e1) (markAll e2)

markAll (Mul e1 e2) = Ann P .False $
Mul (markAll e1) (markAll e2)

markAll (Eq Int e1 e2) = Ann P .False $
Eq Int (markAll e1) (markAll e2)

markAll (LT Int e1 e2) = Ann P .False $
LT Int (markAll e1) (markAll e2)

markAll (And e1 e2) = Ann P .False $
And (markAll e1) (markAll e2)

markAll (If e1 e2 e3) = Ann P .False $
If (markAll e1) (markAll e2) (markAll e3)

markAll (Ann e) =
markAll e

-- helper function
annCond :: ∀ k .Inj k ⇒

Maybe (Ann k)→ k → k
annCond (Just ann) e = inj ann e
annCond Nothing e = e

106

-- pushing down the annotation, so the unannotated
-- nodes inherit the parent’s annotation

class PushDown t where
pushDown :: (Maybe (Ann t))→

t → t

-- pushing down the annotations for functions
instance PushDown r ⇒

PushDown (Data a ann → r) where
pushDown ann f = pushDown ann.f

-- pushing down the annotation for terms of
-- type Data a ann

instance PushDown (Data a ann) where
pushDown ann (Var x) = annCond ann $

Var x
pushDown ann (Lit Int i) = annCond ann $

Lit Int i
pushDown ann (Lit Bool b) = annCond ann $

Lit Bool b
pushDown ann (Not e) = annCond ann $

Not (pushDown ann e)
pushDown ann (Add e1 e2) = annCond ann $

Add (pushDown ann e1) (pushDown ann e2)
pushDown ann (Sub e1 e2) = annCond ann $

Sub (pushDown ann e1) (pushDown ann e2)
pushDown ann (Mul e1 e2) = annCond ann $

Mul (pushDown ann e1) (pushDown ann e2)
pushDown ann (Eq Int e1 e2) = annCond ann $

Eq Int (pushDown ann e1) (pushDown ann e2)
pushDown ann (LT Int e1 e2) = annCond ann $

LT Int (pushDown ann e1) (pushDown ann e2)
pushDown ann (And e1 e2) = annCond ann $

And (pushDown ann e1) (pushDown ann e2)
pushDown ann (If e1 e2 e3) = annCond ann $

If (pushDown ann e1) (pushDown ann e2)
(pushDown ann e3)

pushDown (Ann ann e) =
pushDown (Just ann) e

107

-- pushing down the annotation for terms of
-- type Exp_C ann

instance PushDown (Exp C ann) where
pushDown ann (VarC x) = annCond ann $

VarC x
pushDown ann (Num i) = annCond ann $

Num i
pushDown ann (Infix e1 x e2) = annCond ann $

Infix (pushDown ann e1) x (pushDown ann e2)
pushDown ann (Unary x e) = annCond ann $

Unary x (pushDown ann e)
pushDown (AnnExpC ann e) =

pushDown (Just ann) e

-- pushing down the annotation for terms of
-- type Stmt ann

instance PushDown (Stmt ann) where
pushDown ann (If C e stmts1 stmts2) = annCond ann $

If C (pushDown ann e) (pushDown ann ‘map‘ stmts1)
(pushDown ann ‘map‘ stmts2)

pushDown ann (Assign x e) = annCond ann $
Assign x (pushDown ann e)

pushDown ann (Declare t x) = annCond ann $
Declare t x

pushDown (AnnStmt ann stmt) =
pushDown (Just ann) stmt

-- pushing down the annotation for terms of
-- type Func ann

instance PushDown (Func ann) where
pushDown ann (Func x vs stmts) = Func x vs $

pushDown ann ‘map‘ stmts

Module Feldspar.BX

This module provides the necessary functions to bidirectionalize the transformation from
EDSL to C code by composing the bidirectionalization of each smaller transformations
in between.

108

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}

module Feldspar .BX where

import qualified Prelude as P
import Prelude (String ,Either (. .),Maybe (. .),Eq (. .)
,Read (. .),Monad (. .),map,zip,(.),($))

import Data.Foldable (toList)

import Feldspar .Types
import Feldspar .FrontEnd .AST
import Feldspar .Compiler .BXCompiler (BXable (. .))
import Feldspar .BackEnd .BXPretty (putPretty)
import Feldspar .Compiler .Compiler (toFunc,compile)
import Feldspar .BackEnd .Pretty (Pretty (. .))
import Feldspar .AnnotationUtils (PushDown (. .))
import Annotations (Inj (. .))

-- zipping similiar AST with different Annotations
class ZipData t t ′ where

zipData :: t → t ′ → [(Ann t ,Ann t ′)]
instance (SingT a,ZipData r r ′

,Ann r∼ann,Ann r ′∼ann ′)⇒
ZipData (Data a ann → r)

(Data a ann ′ → r ′) where
zipData f g = zipData

(f $ Var $ VarT "_x" sing)
(g $ Var $ VarT "_x" sing)

instance ZipData (Data a ann) (Data a ann ′) where
zipData d d ′ = zip (toList d) (toList d ′)

109

-- putting back changes up to the src-loc
putAnn :: ∀ t t ′.

(PushDown t ′,BXable t ,ZipData t t ′

,Ann t∼P .Bool)⇒
P .Bool → (t ′ → t)→ t ′ → String →
Either String [Ann t ′]

putAnn cn markA d src = do
let dS = pushDown Nothing d
let dM = markA d
dU ← put cn dM src
return [s | (b,s)← zipData dU dS ,b]

-- putting back changes up to the high-level AST
put :: ∀ b.

(Eq (Ann b),Read (Ann b),
Pretty (Ann b),BXable b)⇒
P .Bool → b → String →
Either String b

put b s v ′ = do
let s ′ = (toFunc.compile 0) s
let ps ′ = if b

then pushDown Nothing s ′

else s ′

v ← putPretty ps ′ v ′

putCompile 0 s v

Module Feldspar.FrontEnd.AST

This module, provides the type-safe representation (via GADTs) of the high-level lan-
guage.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}

module Feldspar .FrontEnd .AST where

import qualified Prelude as P
import Feldspar .Types

110

-- AST of the EDSL (high-level)
data Data (a :: Types) ann where

Var :: VarT a → Data a ann
Lit Int :: P .Int → Data Int32 ann
Add :: Data Int32 ann → Data Int32 ann → Data Int32 ann
Sub :: Data Int32 ann → Data Int32 ann → Data Int32 ann
Mul :: Data Int32 ann → Data Int32 ann → Data Int32 ann
EqInt :: Data Int32 ann → Data Int32 ann → Data Bool ann
LT Int :: Data Int32 ann → Data Int32 ann → Data Bool ann
LitBool :: P .Bool → Data Bool ann
Not :: Data Bool ann → Data Bool ann
And :: Data Bool ann → Data Bool ann → Data Bool ann
If :: Data Bool ann → Data a ann → Data a ann → Data a ann

Ann :: ann → Data a ann → Data a ann

-- Variables
data VarT t = VarT P .String (SingTypes t)

Module Feldspar.FrontEnd.Interface

This module, provides some utility functions to program in the high-level language.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE DataKinds #-}

module Feldspar .FrontEnd .Interface where

import qualified Prelude
import Prelude (Num (. .),Int ,($),Show ,String)
import Feldspar .FrontEnd .AST
import Feldspar .Types

instance Num (Data Int32 ann) where
fromInteger i = Lit Int $ fromInteger i
(+) = Add
(−) = Sub
(∗) = Mul
signum x = condition (x < 0)

(−1)
(condition (x == 0) 0 1)

abs x = (signum x) ∗ x

111

(==) :: ∀ ann .Data Int32 ann → Data Int32 ann →
Data Bool ann

(==) = EqInt

(<) :: ∀ ann .Data Int32 ann → Data Int32 ann →
Data Bool ann

(<) = LT Int

(>) :: ∀ ann .Data Int32 ann → Data Int32 ann →
Data Bool ann

e1 > e2 = ¬ $ e1 < e2

(6) :: ∀ ann .Data Int32 ann → Data Int32 ann →
Data Bool ann

e1 6 e2 = (e1 < e2) ∧ (e1 == e2)

(>) :: ∀ ann .Data Int32 ann → Data Int32 ann →
Data Bool ann

e1 > e2 = (e1 > e2) ∧ (e1 == e2)

true :: ∀ ann .Data Bool ann
true = LitBool Prelude.True

false :: ∀ ann .Data Bool ann
false = LitBool Prelude.False

¬ :: ∀ ann .Data Bool ann → Data Bool ann
¬ = Not

(∧) :: ∀ ann .Data Bool ann → Data Bool ann →
Data Bool ann

(∧) = And

(∨) :: ∀ ann .Data Bool ann → Data Bool ann →
Data Bool ann

x ∨ y = ¬ ((¬ x) ∧ (¬ y))

condition :: ∀ a ann .Data Bool ann → Data a ann →
Data a ann → Data a ann

condition = If

112

Module Feldspar.FrontEnd.Derivings

In this module, the type classes Functor , Foldable and Traversable are derived for the
high-level AST.

-- the code is omitted

Module Feldspar.Compiler.Compiler

This module, contains the main code for compiling the high-level AST to C code.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

module Feldspar .Compiler .Compiler where

import qualified Prelude as P
import Prelude ((.),Show (. .),putStrLn,IO
,Int ,String ,(++),(+),Monad (. .))

import Control .Monad .State (State,put ,get
,evalState)

import Feldspar .Types
import Feldspar .FrontEnd .AST
import Feldspar .BackEnd .AST
import Feldspar .BackEnd .Pretty

import Feldspar .Annotations

-- the monadic function to compile the
-- the high-level AST to a pair containing
-- an expression containing the returned
-- value and a list of statements; the
-- state contains a counter to generate
-- fresh variables

113

compileM :: SingT a ⇒ Data a ann →
State Int (ExpC ann ,[Stmt ann])

compileM (Var (VarT v)) =
return (VarC v ,[])

compileM (Lit Int x) =
return (Num x ,[])

compileM (LitBool P .True) =
return (VarC "true",[])

compileM (LitBool P .False) =
return (VarC "false",[])

compileM (Add e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "+" eC2

,st1 ++ st2)

compileM (Sub e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "-" eC2

,st1 ++ st2)

compileM (Mul e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "*" eC2

,st1 ++ st2)

compileM (EqInt e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "==" eC2

,st1 ++ st2)

114

compileM (LT Int e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "<" eC2

,st1 ++ st2)

compileM (And e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "&&" eC2

,st1 ++ st2)

compileM (Not e1) = do
(eC1,st1)← compileM e1
return (Unary "!" eC1

,st1)

compileM e@(If e1 e2 e3) = do
i ← get
put (i + 1)
let v = "v" ++ (show i)
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
(eC3,st3)← compileM e3
return

(VarC v
,st1 ++

[Declare (getType e) v
,If C eC1

(st2 ++ [Assign v eC2])
(st3 ++ [Assign v eC3])])

compileM e = preserve e compileM

115

-- overloaded function to compile
-- regardless of AST being parametric

class Inj t ⇒
Compilable t where
compileF :: ([Var],t)→

State Int
([Var],Types

,ExpC (Ann t)

,[Stmt (Ann t)])

-- a parametric AST is first applied to
-- a fresh variable with the right type
-- and then it is compiled

instance (SingT a,Compilable r)⇒
Compilable (Data a ann ′ → r) where

compileF (ps,f) = do
i ← get
put (i + 1)
let v = "v" ++ (show i)

a = Var (VarT v (getTypeF f))
r = f a

compileF ((ps ++ [(v ,getType a)]),r)

-- a non-parametric AST is compiled in
-- the normal way defined in compileM

instance SingT a ⇒
Compilable (Data a ann) where
compileF (ps,d) = do

(e,sts)← compileM d
return (ps,getType d ,e,sts)

-- coversion to Func

toFunc :: ([Var],Types,ExpC ann ,[Stmt ann])→
Func ann

toFunc (ps,ty ,expC ,stmts) =
Func "test" (ps ++ [("*out",ty)])
(stmts ++ [Assign "*out" expC])

116

-- running the state monad with a seed
compile :: Compilable a ⇒ Int →

a → ([Var],Types,ExpC (Ann a)

,[Stmt (Ann a)])
compile seed d = evalState (compileF ([],d)) seed

-- an interface to the compiler

scompile :: (Compilable a,Pretty (Ann a))⇒
a → String

scompile = show .pretty .toFunc.(compile 0)

-- an interface to the compiler

icompile :: (Compilable a,Pretty (Ann a))⇒
a → IO ()

icompile = putStrLn.scompile

Module Feldspar.Compiler.Compiler

This module, contains the main code for compiling the high-level AST to C code.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

module Feldspar .Compiler .Compiler where

import qualified Prelude as P
import Prelude ((.),Show (. .),putStrLn,IO
,Int ,String ,(++),(+),Monad (. .))

import Control .Monad .State (State,put ,get
,evalState)

import Feldspar .Types
import Feldspar .FrontEnd .AST
import Feldspar .BackEnd .AST
import Feldspar .BackEnd .Pretty

import Feldspar .Annotations

117

-- the monadic function to compile the
-- the high-level AST to a pair containing
-- an expression containing the returned
-- value and a list of statements; the
-- state contains a counter to generate
-- fresh variables

compileM :: SingT a ⇒ Data a ann →
State Int (ExpC ann ,[Stmt ann])

compileM (Var (VarT v)) =
return (VarC v ,[])

compileM (Lit Int x) =
return (Num x ,[])

compileM (LitBool P .True) =
return (VarC "true",[])

compileM (LitBool P .False) =
return (VarC "false",[])

compileM (Add e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "+" eC2

,st1 ++ st2)

compileM (Sub e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "-" eC2

,st1 ++ st2)

compileM (Mul e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "*" eC2

,st1 ++ st2)

118

compileM (EqInt e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "==" eC2

,st1 ++ st2)

compileM (LT Int e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "<" eC2

,st1 ++ st2)

compileM (And e1 e2) = do
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
return (Infix eC1 "&&" eC2

,st1 ++ st2)

compileM (Not e1) = do
(eC1,st1)← compileM e1
return (Unary "!" eC1

,st1)

compileM e@(If e1 e2 e3) = do
i ← get
put (i + 1)
let v = "v" ++ (show i)
(eC1,st1)← compileM e1
(eC2,st2)← compileM e2
(eC3,st3)← compileM e3
return

(VarC v
,st1 ++

[Declare (getType e) v
,If C eC1

(st2 ++ [Assign v eC2])
(st3 ++ [Assign v eC3])])

compileM e = preserve e compileM

119

-- overloaded function to compile
-- regardless of AST being parametric

class Inj t ⇒
Compilable t where
compileF :: ([Var],t)→

State Int
([Var],Types

,ExpC (Ann t)

,[Stmt (Ann t)])

-- a parametric AST is first applied to
-- a fresh variable with the right type
-- and then it is compiled

instance (SingT a,Compilable r)⇒
Compilable (Data a ann ′ → r) where

compileF (ps,f) = do
i ← get
put (i + 1)
let v = "v" ++ (show i)

a = Var (VarT v (getTypeF f))
r = f a

compileF ((ps ++ [(v ,getType a)]),r)

-- a non-parametric AST is compiled in
-- the normal way defined in compileM

instance SingT a ⇒
Compilable (Data a ann) where
compileF (ps,d) = do

(e,sts)← compileM d
return (ps,getType d ,e,sts)

-- coversion to Func

toFunc :: ([Var],Types,ExpC ann ,[Stmt ann])→
Func ann

toFunc (ps,ty ,expC ,stmts) =
Func "test" (ps ++ [("*out",ty)])
(stmts ++ [Assign "*out" expC])

120

-- running the state monad with a seed
compile :: Compilable a ⇒ Int →

a → ([Var],Types,ExpC (Ann a)

,[Stmt (Ann a)])
compile seed d = evalState (compileF ([],d)) seed

-- an interface to the compiler

scompile :: (Compilable a,Pretty (Ann a))⇒
a → String

scompile = show .pretty .toFunc.(compile 0)

-- an interface to the compiler

icompile :: (Compilable a,Pretty (Ann a))⇒
a → IO ()

icompile = putStrLn.scompile

Module Feldspar.Compiler.BXCompiler

This module contains the code to bidirectionalize the compile functions.

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}

module Feldspar .Compiler .BXCompiler where

import qualified Prelude as P
import Prelude (String ,Eq (. .),Either (. .),Int ,const
,Monad (. .),(.),tail ,Show (. .),(+)
,(++),($))

import BX
import Annotations
import Feldspar .Types
import Feldspar .BackEnd .AST
import Feldspar .FrontEnd .AST
import Feldspar .Compiler .Compiler
import Feldspar .FrontEnd .Derivings ()
import Feldspar .BackEnd .Derivings ()

121

-- overloaded function to bidirectionalize
-- instances of Compilable

class Compilable t ⇒ BXable t where
putCompile :: Eq (Ann t)⇒ Int →

t → Func (Ann t)→
Either String t

-- Bidirectionalization done by bff_GUS_G_Gen

instance SingT a ⇒ BXable (Data a ann) where

putCompile i = bff
a/d−∗
GUS

(const (toFunc.compile i))
(const () :: ∀ ann .()1 ann → ())

-- Bidirectionalization done manually
instance (SingT a,BXable r

,Ann r∼ ann ,Abstract r)⇒
BXable (Data a ann → r) where

putCompile i f (Func x ps stmts) = do
let n = "v" ++ (show i)
let vt = VarT n (getTypeF f)
let v = (Var vt)
let r = f v
r ′ ← putCompile (i + 1) r (Func x (tail ps) stmts)
return $ λvv → abstract vt vv r ′

-- overloaded function to abstract over
-- a variable and generate the parametric AST

class Abstract t where
abstract :: ∀ a.VarT a →

Data a (Ann t)→ t → t

instance Abstract r ⇒
Abstract (Data a ann → r) where
abstract vt d f = abstract vt d .f

122

instance Abstract (Data a ann) where
abstract (VarT v SBool) d

e@(Var (VarT x SBool))
| v == x = d
| P .True = e

abstract (VarT v SInt32) d
e@(Var (VarT x SInt32))
| v == x = d
| P .True = e

abstract e@(Var) = e

abstract (Lit Int i) =
Lit Int i

abstract (LitBool b) =
LitBool b

abstract v d (Not e) =
Not (abstract v d e)

abstract v d (Ann a e) =
Ann a (abstract v d e)

abstract v d (Add e1 e2) =
Add (abstract v d e1)

(abstract v d e2)

abstract v d (Sub e1 e2) =
Sub (abstract v d e1)

(abstract v d e2)

abstract v d (Mul e1 e2) =
Mul (abstract v d e1)

(abstract v d e2)

abstract v d (EqInt e1 e2) =
EqInt (abstract v d e1)

(abstract v d e2)

123

abstract v d (LT Int e1 e2) =
LT Int (abstract v d e1)

(abstract v d e2)

abstract v d (And e1 e2) =
And (abstract v d e1)

(abstract v d e2)

abstract v d (If e1 e2 e3) =
If (abstract v d e1)

(abstract v d e2)
(abstract v d e3)

Module Feldspar.BackEnd.AST

This module contains the declaration of the AST of the low-level language (C).

module Feldspar .BackEnd .AST where

import qualified Prelude
import Prelude (Int ,String)
import Feldspar .Types

-- variables
type Var = (String ,Types)

-- C function
data Func ann =

Func String [Var] [Stmt ann]

-- C statement
data Stmt ann =

If C (ExpC ann) [Stmt ann] [Stmt ann]
| Assign String (ExpC ann)
| Declare Types String

124

| AnnStmt ann (Stmt ann)

-- C expressions
data ExpC ann =

VarC String
| Num Int
| Infix (ExpC ann) String (ExpC ann)
| Unary String (ExpC ann)

| AnnExpC ann (ExpC ann)

Module Feldspar.BackEnd.Pretty

This module contains the code for pretty-printing the low-level AST. It uses John
Hughes’s and Simon Peyton Jones’s Pretty Printer Combinators [Hug95].

{-# LANGUAGE FlexibleInstances #-}
module Feldspar .BackEnd .Pretty where

import qualified Prelude
import Prelude (($),map,foldl1)
import Text .PrettyPrint (Doc,text ,int ,parens,semi ,space
,comma,lbrace,rbrace,vcat ,nest
,($ + $),($$),(<>),(< + >))

import qualified Data.List
import Feldspar .BackEnd .AST
import Feldspar .Types

class Pretty a where
pretty :: a → Doc

instance Pretty ann ⇒
Pretty (ExpC ann) where
pretty (VarC x) = text x
pretty (Num i) = int i
pretty (Infix e1 op e2) = parens (pretty e1

< + > text op
< + > pretty e2)

pretty (Unary op e) = parens (text op
< + > pretty e)

125

pretty (AnnExpC ann e) = text "/*"
< + > (pretty ann)< + >
text "*/"
< + > pretty e

instance Pretty ann ⇒
Pretty (Stmt ann) where

pretty (If C e1 e2 e3) = text "if"
< + > parens (pretty e1)
$ + $ lbrace
$ + $ nest 2 (vcat (map pretty e2))
$ + $ rbrace
$ + $ text "else"
$ + $ lbrace
$ + $ nest 2 (vcat (map pretty e3))
$ + $ rbrace

pretty (Assign v e) = text v < + > text "="
< + > pretty e <> semi

pretty (Declare t v) = pretty t < + > text v <> semi

pretty (AnnStmt ann st) = text "/*"
< + > (pretty ann)< + >
text "*/"
$$ pretty st

instance Pretty ann ⇒
Pretty (Func ann) where

pretty (Func name vs body) =
text "#include \"feldspar.h\""

$ + $ text "void"< + > text name
< + > parens (commaCat (map pretty vs))
$ + $ lbrace
$ + $ nest 2 (vcat (map pretty body))
$ + $ rbrace

126

instance Pretty Var where
pretty (v ,t) = pretty t < + > text v

instance Pretty Types where
pretty Int32 = text "int32_t"
pretty Bool = text "uint32_t"

commaCat :: [Doc]→ Doc
commaCat ds = foldl1 (<>) $

Data.List .intersperse (comma <> space) ds

Module Feldspar.BackEnd.Derivings

In this module, the type classes Eq ,Functor ,Foldable and Traversable is derived for the
AST of the low-level language.

-- the code is omitted

Module Feldspar.BackEnd.BXPretty

This module contains the code needed to bidirectionalize the pretty-printing transfor-
mation.

{-# LANGUAGE Rank2Types #-}
module Feldspar .BackEnd .BXPretty where

import qualified Prelude
import Prelude (Eq (. .),Show (. .),(.),Int ,id ,String
,Bool (. .),Functor (. .),Read (. .),Monad (. .),Maybe (. .)
,Either (. .),map,filter ,($),fst ,¬,splitAt ,read
,tail ,(+),length,(∧))

import Text .PrettyPrint (Doc,int ,text)
import Control .Monad (unless)
import Data.List (isPrefixOf ,stripPrefix)
import Data.Foldable (toList)
import Data.Traversable (Traversable)
import Data.Function (on)

127

import BX (fromJust ,fromList ,index ,assoc,validAssoc
,union,lookupAll)

import Feldspar .BackEnd .Pretty (Pretty (. .))

-- lexical tokens
data Token =

Ann String
-- the annotations (comments)

| Etc String
-- anything except annotations

deriving Show

-- tokens are compared ignoring space
-- and new-line characters

instance Eq Token where
(Ann s) == (Ann s ′) = ((==) ‘on‘

(filter (λx → (x/ = ’\n’) ∧
(x/ = ’ ’)))) s s ′

(Etc s) == (Etc s ′) = ((==) ‘on‘
(filter (λx → (x/ = ’\n’) ∧

(x/ = ’ ’)))) s s ′

== = False

-- checking if a token is an annotation
isAnn :: Token → Bool
isAnn (Ann) = True
isAnn = False

-- lexical tokenizer
tokenize :: String → Maybe [Token]
tokenize [] = Just []
tokenize (’/’ : ’*’ : ’ ’ : xs) = do

(before,after)← splitBy " */" xs
ts ← tokenize after
return $ (Ann before) : ts

tokenize (x : xs) = do
ts ← tokenize xs
return $ case ts of

[] → Etc [x] : ts
(Ann) : → Etc [x] : ts
(Etc y) : ts ′ → Etc (x : y) : ts ′

128

-- finding index of a string inside another string
infixAt :: Eq a ⇒ [a]→ [a]→ Maybe Int
infixAt needle haystack = infixAt ′ 0 needle haystack

where
infixAt ′ [] = Nothing
infixAt ′ i n hs
| n ‘isPrefixOf ‘ hs = Just i
| True = infixAt ′ (i + 1) n (tail hs)

-- spliting a string by the given key string
splitBy :: Eq a ⇒ [a]→ [a]→ Maybe ([a],[a])
splitBy infx s = do

i ← infixAt infx s
let (before,wafter) = splitAt i s
after ← stripPrefix infx wafter
return (before,after)

-- The format of the output string of
-- pretty printing us to extract the annotations
-- by 1.tokenizing the string 2.extracting the
-- the comments 3.parsing the strings to the
-- actual annotation values, hence the Read

-- constraint
toListDoc :: ∀ a.Read a ⇒ String → [a]
toListDoc d = [read s | Ann s ← fromJust $ tokenize d]

-- the shape of two output strings are
-- compared by ignoring the values in the
-- comments

eqShape Doc :: String → String → Bool
eqShape Doc = (==) ‘on‘

(fmap (filter (¬.isAnn))
.tokenize)

-- since pretty printing uses type classes for
-- overloading, we are no longer able to use
-- our generic function (bff); we have to change
-- the code slightly (as highlighted)

129

bxPP :: ∀ k .(Traversable k ,Pretty (k Doc))⇒
(∀ t .Pretty t ⇒

k t → String)→
(∀ a.(Read a,Eq a,Pretty a)⇒

k a → String →
Either String (k a))

bxPP get s v = do

let slist = toList s

let vlist = toListDoc v

let get listBy :: ∀ a.(Read a,Pretty a)⇒
[a]→ [a]

get listBy x = toListDoc $

get (fromList s x)

unless eqShape Doc (get s) v

$ Left "Modified view of wrong shape!"

ślist ← bff Pretty get listBy slist vlist

return $ fromList s ślist

-- the version of bff working with lists and
-- pretty printing constraint; it does not
-- check for validity of the mappings since
-- the type Doc is abstract and the exposed
-- observer functions by the module, namely
-- the functions show and render are not
-- used in our pretty printer

bff Pretty :: (∀ a.(Read a,Pretty a)⇒
[a]→ [a])→

(∀ a.(Eq a,Pretty a)⇒
[a]→ [a]→ Either String [a])

bff Pretty get s v = do
-- Step 1

let ms = index s
-- Step 2

let is = fst ‘map‘ ms
let iv = get is

-- Step 3
unless (length v == length iv)

$ Left "Modified view of wrong length!"

let mv = assoc iv v

130

-- Step 4
unless (validAssoc mv)

$ Left "Inconsistent duplicated values!"

-- Step 5
let ms ′ = union mv ms

-- Step 5.1
-- check is removed
-- Step 6

return $ lookupAll is ms ′

-- the put (backward) function that
-- bidirectionalizes the pretty printer

putPretty :: ∀ k a.
(Eq a,Read a,Traversable k
,Pretty (k Doc),Pretty a)⇒
k a → String → Either String (k a)

putPretty = bxPP (show .pretty .(fmap pretty))

instance Pretty Doc where
pretty = id

instance Pretty Int where
pretty = int

instance Pretty Bool where
pretty = text .show

Module Examples.TestFeldspar

This module contains an example program written in the high-level language.

{−#OPTIONS GHC − F − pgmF qapp#−}

module Examples.TestFeldspar where

import qualified Prelude
import Feldspar
import Feldspar .Compiler

inc :: Data Int32 → Data Int32
inc x = x + 1

131

dec :: Data Int32 → Data Int32
dec x = x − 1

incAbs :: Data Int32 → Data Int32
incAbs a = condition (a < 0) (dec a) (inc a)

cCode :: IO ()
cCode = icompile incAbs

C Code Examples.TestFeldspar

Listing 1: Pico-Feldspar/Examples/TestFeldspar.c

#inc lude ” f e l d s p a r . h”
void t e s t (i n t 3 2 t v0 , i n t 3 2 t ∗out)
{

/∗ False ∗/
i n t 3 2 t v1 ;
/∗ False ∗/
i f (/∗ False ∗/ (/∗ False ∗/ v0 < /∗ False ∗/ 0))
{

v1 = /∗ False ∗/ (/∗ False ∗/ v0 − /∗ False ∗/ 1) ;
}
e l s e
{

v1 = /∗ True ∗/ (/∗ False ∗/ v0 + /∗ False ∗/ 1) ;
}
∗out = /∗ False ∗/ v1 ;

}

Module Examples.BXTestFeldspar

module Example.BXTestFeldspar where

import Feldspar .AnnotationUtils (markAllF ,markAll)
import Feldspar .BX (putAnn)
import Examples.TestFeldspar (incAbs)
import Feldspar .Compiler .Compiler (scompile)

-- the location of the generated C code
c :: String
c = "Examples/TestFeldspar.c"

132

-- forward transformation from EDSL to C
forward :: IO ()
forward = writeFile c

(scompile ((markAllF markAll)
incAbs))

-- backward transformation from C to src-loc
backward :: IO ()
backward = do

cSrc ← readFile c
let r = putAnn False (markAllF markAll) incAbs cSrc
case r of

Right locs → putStrLn $ show locs
Left er → putStrLn er

133

134

Appendix C

Prelude Polymorphic Functions – Accepted by Our Algorithm (Part I)

Just :: a → Maybe a

Left :: a → Either a b

Right :: b → Either a b

fst :: (a,b)→ a

snd :: (a,b)→ b

id :: a → a

const :: a → b → a

asTypeOf :: a → a → a

seq :: a → b → b

(++) :: [a]→ [a]→ [a]

head :: [a]→ a

last :: [a]→ a

tail :: [a]→ [a]

init :: [a]→ [a]

(!!) :: [a]→ Int → a

reverse :: [a]→ [a]

concat :: [[a]]→ [a]

replicate :: Int → a → [a]

cycle :: [a]→ [a]

take :: Int → [a]→ [a]

135

Prelude Polymorphic Functions – Accepted by Our Algorithm (Part II)

drop :: Int → [a]→ [a]

splitAt :: Int → [a]→ ([a],[a])

repeat :: a → [a]

lookup :: Eq a ⇒ a → [(a,b)]→ Maybe b

maximum :: Ord a ⇒ [a]→ a

minimum :: Ord a ⇒ [a]→ a

filter :: (a → Bool)→ [a]→ [a]

takeWhile :: (a → Bool)→ [a]→ [a]

dropWhile :: (a → Bool)→ [a]→ [a]

dropWhile :: (a → Bool)→ [a]→ [a]

break :: (a → Bool)→ [a]→ ([a],[a])

span :: (a → Bool)→ [a]→ ([a],[a])

zip :: [a]→ [b]→ [(a,b)]

zip3 :: [a]→ [b]→ [c]→ [(a,b,c)]

unzip :: [(a,b)]→ ([a],[b])

unzip3 :: [(a,b,c)]→ ([a],[b],[c])

Prelude Polymorphic Functions – Polymorphic Output

error :: [Char]→ a

ioError :: IOError → IO a

Prelude Polymorphic Functions – Polymorphic Input

print :: Show a ⇒ a → IO ()

even :: Integral a ⇒ a → Bool

odd :: Integral a ⇒ a → Bool

any :: (a → Bool)→ [a]→ Bool

all :: (a → Bool)→ [a]→ Bool

elem :: Eq a ⇒ a → [a]→ Bool

notElem :: Eq a ⇒ a → [a]→ Bool

shows :: Show a ⇒ a → ShowS

print :: Show a ⇒ a → IO ()

null :: [a]→ Bool

length :: [a]→ Int

136

Prelude Polymorphic Functions – Higher Kinded

mapM :: Monad m ⇒ (a → m b)→ [a]→ m [b]

mapM :: Monad m ⇒ (a → m b)→ [a]→ m ()

sequence :: Monad m ⇒ [m a]→ m [a]

sequence :: Monad m ⇒ [m a]→ m ()

(=<<) :: Monad m ⇒ (a → m b)→ m a → m b

137

Prelude Polymorphic Functions – Not Accepted by Our Algorithm

maybe :: b → (a → b)→ Maybe a → b

either :: (a → c)→ (b → c)→ Either a b → c

curry :: ((a,b)→ c)→ a → b → c

uncurry :: (a → b → c)→ (a,b)→ c

subtract :: Num a ⇒ a → a → a

gcd :: Integral a ⇒ a → a → a

lcm :: Integral a ⇒ a → a → a

(↑) :: (Num a,Integral b)⇒ a → b → a

(↑↑) :: (Fractional a,Integral b)⇒ a → b → a

fromIntegral :: (Integral a,Num b)⇒ a → b

realToFrac :: (Real a,Fractional b)⇒ a → b

(.) :: (b → c)→ (a → b)→ a → c

flip :: (a → b → c)→ b → a → c

($) :: (a → b)→ a → b

until :: (a → Bool)→ (a → a)→ a → a

($!) :: (a → b)→ a → b

map :: (a → b)→ [a]→ [b]

foldl :: (a → b → a)→ a → [b]→ a

foldl1 :: (a → a → a)→ [a]→ a

foldr :: (a → b → b)→ b → [a]→ b

foldr1 :: (a → a → a)→ [a]→ a

sum :: Num a ⇒ [a]→ a

product :: Num a ⇒ [a]→ a

concatMap :: (a → [b])→ [a]→ [b]

scanl :: (a → b → a)→ a → [b]→ [a]

scanl1 :: (a → a → a)→ [a]→ [a]

scanr :: (a → b → b)→ b → [a]→ [b]

scanr1 :: (a → a → a)→ [a]→ [a]

iterate :: (a → a)→ a → [a]

zipWith :: (a → b → c)→ [a]→ [b]→ [c]

zipWith3 :: (a → b → c → d)→ [a]→ [b]→ [c]→ [d]

reads :: Read a ⇒ ReadS a

readParen :: Bool → ReadS a → ReadS a

read :: Read a ⇒ String → a

readIO :: Read a ⇒ String → IO a

readLn :: Read a ⇒ IO a

138

Prelude Monomorphic Functions

putChar :: Char → IO ()

putStr :: String → IO ()

putStrLn :: String → IO ()

interact :: (String → String)→ IO ()

readFile :: FilePath → IO String

writeFile :: FilePath → String → IO ()

appendFile :: FilePath → String → IO ()

(∧) :: Bool → Bool → Bool

(|) :: Bool → Bool → Bool

¬ :: Bool → Bool

and :: [Bool]→ Bool

or :: [Bool]→ Bool

lines :: String → [String]

words :: String → [String]

unlines :: [String]→ String

unwords :: [String]→ String

showChar :: Char → ShowS

showString :: String → ShowS

showParen :: Bool → ShowS → ShowS

lex :: ReadS String

userError :: String → IOError

139

Prelude Constant Functions

False :: Bool

True :: Bool

otherwise :: Bool

LT :: Ordering

EQ :: Ordering

GT :: Ordering

getChar :: IO Char

getLine :: IO String

getContents :: IO String

⊥ :: a

Nothing :: Maybe a

Type Classes Accepted by Our Algorithm

Eq

Ord

Show

Type Classes Not Accepted by Our Algorithm

Enum

Bounded

Num

Real

Integral

Fractional

Floating

RealFrac

RealFloat

Read

Monad

Functor

140

Appendix D

fromColoredtoBW.c

#include "fromColoredtoBW.h"

#include "feldspar_c99.h"

#include "feldspar_array.h"

#include "feldspar_future.h"

#include "ivar.h"

#include "taskpool.h"

#include <stdint.h>

#include <string.h>

#include <math.h>

#include <stdbool.h>

#include <complex.h>

void fromColoredtoBW(struct array * v0, struct array * out)

{

struct array v12 = {0};

uint32_t len0;

struct array v2 = {0};

uint32_t len2;

/* SrcLoc { srcFilename = "IP.hs"

, srcLine = 36, srcColumn = 1}

(vector length) */

len0 = (getLength(v0) / 3);

initArray(&v12, sizeof(int32_t), 0);

for(uint32_t v1 = 0; v1 < len0; v1 += 1)

{

141

int32_t v11;

uint32_t v10;

struct array e1 = {0};

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 29, srcColumn = 1} */

v10 = (v1 * 3);

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 16, srcColumn = 1} */

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 20, srcColumn = 1} */

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 24, srcColumn = 1} */

v11 = ((int32_t)(truncf((((

((float)(at(int32_t,v0,v10))) *

0.30000001192092896f) +

(((float)(at(int32_t,v0,(v10 + 1)))) *

0.5899999737739563f)) +

(((float)(at(int32_t,v0,(v10 + 2)))) *

0.10999999940395355f)))));

initArray(&e1, sizeof(int32_t), 1);

for(uint32_t v4 = 0; v4 < 1; v4 += 1)

{

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 29, srcColumn = 1} */

at(int32_t,&e1,v4) = v11;

}

initArray(&v2, sizeof(int32_t),

(getLength(&v12) + 1));

copyArray(&v2, &v12);

copyArrayPos(&v2, getLength(&v12), &e1);

initArray(&v12, sizeof(int32_t),

getLength(&v2));

copyArray(&v12, &v2);

}

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 36, srcColumn = 1}

(vector length) */

len2 = getLength(&v12);

initArray(out, sizeof(int32_t), len2);

for(uint32_t v5 = 0; v5 < len2; v5 += 1)

{

/* SrcLoc {srcFilename = "IP.hs",

142

srcLine = 11, srcColumn = 1}

(vector element) */

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 36, srcColumn = 1}

(vector element) */

/* SrcLoc {srcFilename = "IP.hs",

srcLine = 36, srcColumn = 1}

(vector length) */

if((at(int32_t,&v12,v5) < 127))

{

at(int32_t,out,v5) = 1;

}

else

{

at(int32_t,out,v5) = 0;

}

}

freeArray(&v12);

freeArray(&v2);

}

143

	Introduction
	Semantic Bidirectionalization Revisited
	Tracking Generated Expressions

	Background
	Invertible Programming
	Invertibility in Mathematics

	Bidirectional Programming
	Correctness Laws
	Lenses
	Bidirectionalization
	Syntactic-Bidirectionalization
	Semantic-Bidirectionalization
	Syntactic and Semantic Combined

	Semantic Bidirectionalization Revisited
	Parametricity and Polymorphism
	Original Algorithm
	Bidirectionalizing Fully Polymorphic Functions
	Bidirectionalizing Functions with an Equality Constraint
	Bidirectionalizing Functions with an Ordering Constraint

	Generalized Algorithm
	Generalizing to Higher-Order Format
	General Validity Check
	General Algorithm with Parametric Indexing

	General Indexing Mechanisms
	Self-Indexing System
	Uniquely Self-Indexing System

	Arity of the Observer Function
	Arity-Generic Data Type
	Arity-Generic Observations
	Bidirectionalization with Arity-Generic Observations

	Generics
	Demonstration
	Future Work

	Tracking Generated Expressions
	Tracking Generated Expressions
	Annotations in Data
	Preserving the Annotations
	Towards Annotation Preservation

	Injecting Annotations
	Demonstration
	Tracking Generated Expressions in Pico-Feldspar
	Tracking Generated Expressions in Feldspar

	Related and Future Work

	Conclusion
	 Bibliography
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D

