%1 CHALMERS

0407 UNIVERSITY OF TECHNOLOGY

0 25 50 75 100 125
T index

Optimizing the Design of Nanofluidic Chips
with Graph Reinforcement Learning

A General Graph Attentional Framework Applied on Nanoscale
Catalytic Reactor Systems

Master’s thesis in Complex Adaptive Systems

MATTIAS ULMESTRAND

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

MASTER’S THESIS 2022

Optimizing the Design of Nanofluidic Chips with
Graph Reinforcement Learning

A General Graph Attentional Framework Applied on Nanoscale
Catalytic Reactor Systems

MATTIAS ULMESTRAND

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Physics
Chemical Physics
Langhammer Lab
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022

Optimizing the Design of Nanofluidic Chips with Graph Reinforcement Learning
A General Graph Attentional Framework Applied on Nanoscale Catalytic Reactor
Systems

MATTTAS ULMESTRAND

© MATTIAS ULMESTRAND, 2022.

Supervisors: Henrik Klein Moberg, Physics
Henrik Strom, Mechanics and Maritime Sciences
David Albinsson, Physics

Examiner: Christoph Langhammer, Physics

Master’s Thesis 2022

Department of Physics

Chemical Physics

Langhammer Lab

Chalmers University of Technology
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Experimental nanofluidic chip design with two types of reactivity sites, de-
signed with deep geometric reinforcement learning and ant colony optimization.

Typeset in BKTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2022

v

Optimizing the Design of Nanofluidic Chips with Graph Reinforcement Learning
A General Graph Attentional Framework Applied on Nanoscale Catalytic Reactor
Systems

MATTIAS ULMESTRAND

Department of Physics

Chalmers University of Technology

Abstract

Nanofluidic chips are devices where fluids are controlled at nanoscale. Langhammer
Lab at Chalmers University of Technology researches nanofluidic chips for cataly-
sis reactions. On these nanoscale reactors, catalysts are placed to maximize some
property such as the reactant conversion rate to product. However, to this point, no
framework exists for optimizing the design of the group’s nanofludic chips. Chips
are currently designed through laborious trial and error. In this master’s thesis, a
framework based on reinforcement learning with graph attentional neural networks is
presented and applied for optimizing the design of nanofludic chips. A reinforcement
learning agent is trained on a reward system based on computational fluid dynam-
ics (CFD) and consistently outperforms simulated manual designs. Additionally,
a considerably lighter reward system based on ant colony optimization (ACO) is
developed for placing catalysts and forming channels. The ACO reward system is
shown to be highly correlated with the CFD reward system, but requires some fur-
ther developement in order to achieve the same performance as the CFD reward
system.

Keywords: Reinforcement learning, graph convolutional networks, attention, com-
putational fluid dynamics, nanofluidics, stochastic optimization algorithms.

Acknowledgements

I would like to thank my main supervisor Henrik Klein Moberg for assisting me
during the entire project, discussing ideas and providing feedback for the project
progress. It impacts the work noticeably when you have a supervisor who is dedi-
cated and excited about the project, but also a good friend.

I also thank Henrik Strom for assisting me with all things related to fluid dynamics,
and for joining me in likely the longest running mail conversation known to man.
The thesis would have been near infeasible as a six month project without the Ansys
case files and reaction handling scripts provided by Strom.

Thanks to David Albinsson for providing feedback on the model progress and its
usability for designing chips.

Lastly, I thank Christoph Langhammer, the department of Chemical Physics and
Langhammer Lab for taking me in as a master’s thesis worker, giving me insight to
academic work and accepting me as a part of the crew. Mattias Ulmestrand,

Gothenburg, July 2022

vii

List of Acronyms

Below is a list of acronyms that have been used throughout this thesis listed in
alphabetical order:

ACO Ant Colony Optimization

CFD Computational Fluid Dynamics
DQN Deep Q-Network

GATConv Graph Attention Convolutional layer
GCN Graph Convolutional Network
GDL Geometric Deep Learning
GraphConv Graph Convolutional layer
GraphNorm Graph Normalization layer
LOC Lab-on-a-chip

PG Policy Gradient

PPO Proximal Policy Optimization

TRPO Trust Region Policy Optimization

ix

Contents

List of Acronyms ix
List of Figures xiii
List of Tables xix
1 Introduction 1
2 Theory 3
2.1 Nanofluidic chips 3
2.1.1 Catalysis.o 3

2.1.2 Reaction kineticso L 4

2.2 Policy Gradient 4
2.3 Advantage functions and actor-critic networks 5
2.4 Trust Region Policy Optimization 6
2.5 Proximal Policy Optimization 6
2.6 Sampling methods oo 7
2.6.1 Standard sampling 7

2.6.2 egreedy 7

2.6.3 Policy-informed e-greedy 8

2.7 Geometric Deep Learning 8
2.7.1 Graph Convolutional Networks 8

2.8 Ant Colony Optimization 10
2.9 Fluid Dynamics 10
2.10 Discrete blockages or continuous channels 11

3 Methodology 13
3.1 Model architecture oL 13
3.2 Supervised tuning of graph encoder 14
3.3 Model verification on toy systems 17
3.3.1 Comparison of sampling algorithms 17

3.3.2 Active components 18

3.3.3 Inhibitory components 18

3.3.4 Other toy systems 22

3.3.5 Adding Ant Colony Optimization 22

3.4 Reward systems for designing nanofluidic chips 23
3.4.1 Computational Fluid Dynamics 25

X1

Contents

3.4.2 Ant Fluid

4.1 Manual placements
4.2 Wide tunnel optimization
4.3 Narrow tunnel optimization
4.4 Ruthenium-iron reactor optimization
4.5 Designing geometries with Ant Fluid

4.5.1 Correlation between CFD and ACO rewards

4.5.2 Resulting chipdesign

5.1 Practical applicability 0.
52 CFDreward system

5.4 Other approaches for building obstacles
5.5 Discretized fluid simulations
5.6 Alternative reinforcement learning schemes

4 Results
5 Discussion

5.3 Ant Fluid
6 Conclusion
Bibliography
A Appendix 1

A.1 Custom colormap
B Appendix 2

xii

27
27
31
35
39
42
42
43

47
47
47
48
48
49
49

51

53

I11

2.1

2.2

3.1

List of Figures

The current state of a chip can be made up of placed components
along with the next component to be placed. The current node is
needed if more than one node species exist, since different components
may interact differently with one another. In this case, components
A interact mutually, whereas components B interact with component
A, but are not influenced by A. More on this in section 2.7.

A graph (a) with its associated adjacency matrix (b). Each node
has a set of features with identical schema. In this case, two node
species exist, with identifiers 1. The nodes also have positions as
features. The adjacency matrix is weighted, meaning that the con-
nection strength is included. In the displayed case, the connection
strength decreases with distance.

Network architecture of policy and value networks. Placed and un-
placed nodes are all included. Unplaced nodes are disjoint from the
graph and kept at the origin (0, 0). The current node to be placed
has its ID included as feature, whereas other unplaced nodes have no
ID. The GCN interprets the current graph and outputs an encoded
vector embedding of all nodes. Global mean pooling is then applied
on the graph to obtain a single vector representation for the entire
graph. For more than one species, the current node to be placed is
used to index the node embedding to get the embedded properties
of the current node. The current node ID is also passed through
a fully-connected layer to be used as query in multi-head attention.
The node embeddings are used as key and value. The mean-pooled
graph representation, attended graph and current node embedding
are then concatenated and passed to policy and value networks. The
policy network gives square-shaped output of placement logits. Illegal
placements are masked. The value network gives scalar output.

5

15

xiil

List of Figures

Xiv

3.2

3.3

3.4

3.5

3.6

Comparison of different architectures for the second supervised case
in section 3.2. (a) Three stacked GraphConv layers, each with output
shape 64, achieves the best final loss, but is also the most unstable
during training. (b) Only adding attention has no major impact.
(c) GraphNorm has significant impact on training. Two and three
stacked GraphConv layers followed by GraphNorm achieves one order
of magnitude lower loss than one layer. Two and three layers perform
similarly, but two layers is more stable. (d) Using both attention
and GraphNorm can further lower loss with one order of magnitude,
compared with (¢). Lo

Comparison of rewards between standard sampling (black line) and
policy-informed e-greedy (red line). (a) shows the average rewards
during training, and (b) shows the post-generational rewards with
argmax placements. The dotted lines show the maximum found re-
wards and are color coded according to sampling algorithm. e was
decreased linearly from 1.0 to 0.5 from generation 1 to 100. Policy-
informed e-greedy attained the highest rewards with deterministic
placements, but was found to be prone to collapses when e was de-
creased too much. In this example, such a collapse happens shortly
after generation 30. Lo Lo

The base function f(x,y) = 2sin(rz)” used in sections 3.3.2 and
3.3.3. The colorbar shows the values of the function. The custom
colormap is explained in greater detail in Appendix A.

The function seen in Figure 3.4 at 128 x 128 resolution. (a) shows the
unaltered function f(x,y), and (b) shows the values after a trained
agent has placed 10 active components. Active components are placed
evenly spaced along the two maxima, effectively dampening the mean
intensity. Edges are displayed with greater transparency the further
away the connected nodesare.

The function seen in Figure 3.4 at 128 x 128 resolution. (a) shows the
unaltered function f(x,y), and (b) shows the values after a trained
agent has placed 10 active and 10 inhibitory components. Inhibitory
components are clustered in a corner, where they affect the active
components minimally. Active components are placed evenly spaced
along the two maxima, effectively dampening the mean intensity.
Near the inhibitory components, active components are displaced
from the right maximum, to avoid being too affected by the inhibitory
components. A cluster of three active components is seen at this lo-
cation, intuitively because the flow intensity is greater there, and re-
quires more attention. Edges are displayed with greater transparency
the further away the connected nodes are.

List of Figures

3.7

3.8

4.1

4.2

4.3

4.4

Best found final solutions for a few toy reward systems. (a), (b)
minimizing average distance between all components in on a 32 x 32
grid and 128 x 128 grid, respectively. The solution in (a) appears to
be optimal because of the close approximation of a circle. The solu-
tion in (b) also appears near-optimal. (c), (d) maximizing distance
between components. Both solutions appear near-optimal. (e), (f)
minimizing distance between similarly colored components but max-
imizing distance between differently colored components. The best
found solution in (f) was found by sampling, thereby the slightly
higher distance between similarly colored components.

Placed active components in the toy model with added ant colony
optimization. Brighter tone indicates greater obstacle height. Path-
ways are clearly formed to the particles from the inlet at the western
face to the outlet at the eastern face. At this stage, however, heights
do not affect the reward system, and the toy model still lacks ties to

Reference designs (a)-(c) with corresponding kinetic rates of reaction
in kgmol/(ms?) (d)-(f). (a) is similar to the design by Fritzsche
et al. [41]. (b) was constructed with inspiration from (a). (c)
was constructed to give roughly the same flow through each of the
active sites. Placing particles in a column by the inlet was found to
give higher conversion rate compared with placing them towards the
outlet. In all cases, there is a pressure gradient between inlet and
outlet.

The dynamic pressure (kinetic energy per unit volume) is higher by
the turning points in the channel. The higher pressure may help
explain why the activity is higher by the active sites situated at the
turning points in Figure 4.1 (e). L.

(a) the static pressure is the highest by the inlet. Higher pressure can
lead to higher reaction rate, which explains the empirical observation
that active sites have higher activity closer to the inlet. (b) the
dynamic pressure is the highest by the edges of the inlet, which further
could explain the somewhat higher reactivity by the edges.

Statistics from training an agent to place 16 active sites on the same
geometry as in Figure 4.1 (c). (a) the average rewards from sampling
during training and the test rewards from placing active sites on the
highest policy values each step. (b) the policy “loss” LE™P from
equation (2.10) per generation. Note that LfLIP can be negative.
(c) the value network loss per generation. The loss quickly decreases
from the first few generations, after which it stays rather constant.
(d) the entropy of the network policy. The entropy decreases overall,
signaling that the policy becomes more and more deterministic. The
best chip placement from the training session was exactly the same
asin Figure 4.1 (c). Lo

31

XV

List of Figures

Xvi

4.5 (a) the best found placement through trial-and-error of 40 active
catalyst sites with molar reactant concentration and (b) the corre-
sponding kinetic rate of reaction. The reaction rate appears even over
the individual columns.o oo

4.6 (a) the best RL agent placement of 40 active catalyst sites with mo-
lar reactant concentration and (b) the corresponding kinetic rate of
reaction. The reaction rate is not as evenly distributed over all active
sites as the manual placement in Figure 4.5, and some middle sites
are particularly active. Lo

4.7 (a) the best RL agent placement of two columns of 16 active sites each
and one column of 8 active sites with molar reactant concentration.
(b) the corresponding kinetic rate of reaction. The reaction rate
surpasses the manual placement in Figure 4.5 by 0.7 %.

4.8 Statistics from training an agent to place 40 active sites on the same
geometry as in Figure 4.1 (c). (a) the average rewards from sam-
pling during training and the test rewards from placing active sites
on the highest policy values each step. Average training rewards are
mostly higher than test in this case, suggesting that sampling is more
successful than argmax placements. (b) LEMP from equation (2.10)
per generation. (c) the value network loss per generation. (d) the
entropy of the network policy.

4.9 Manual reference designs for narrow tunnel optimization. (a) a clus-
ter of active sites by the inlet. (a) a low-discrepancy Sobol sequence.
(c) evenly spaced columns of active sites.

4.10 Kinetic rates of reaction (a)-(c) for designs shown in Figure 4.9 along
with molar fraction of reactant (d)-(f).

4.11 Catalyst site placements in a narrow channel by the RL agent with
16 active sites. (a) an example of site placement with tendencies of
clustering. (b) a better found placement with 31 % higher reactant
conversion rate than (a). (c) active site placements under the con-
straint that sites are placed in columns. (d) active site placements
with added obstacles (white squares). Designs (b)-(d) surpass all
designs in Figure 4.9 in conversion rate.

4.12 Kinetic rates of reaction (a)-(d) for designs shown in Figure 4.11
along with molar fraction of reactant (e)-(h).

4.13 Active site placements from Figure 4.11 (d) with dynamic pressure in
the background. Active sites are mostly placed at areas of increased
dynamic pressure. . . .o ..o e

4.14 Placements of ruthenium- and iron-like active sites in narrow tunnels.
(a) manual placement made as a baseline. (b), (c) RL agent place-
ments without and with added obstacles, respectively. Both (b) and
(c) outperform (a).

4.15 Kinetic rates of reaction (a)-(c) for ruthenium-like sites and (d)-(f)
iron-like sites for the designs shown in Figure 4.14.

4.16 Molar fractions of reactant for the designs shown in Figure 4.14, re-
spectively.

42

List of Figures

4.17 Comparison of rewards from the ant fluid reward system (ACO) and

4.18

4.19

Al

A2

the CFD-based reward system (CFD). The rewards were standard-
ized by subtracting their means and dividing by standard deviation.
The Pearson correlation coefficient for the two reward series is 0.907,
suggesting a strong positive correlation. Since the rewards from ant
fluid correlate well with the rewards from the CFD-based reward sys-
tem, the optimization tasks are similar and motivates the use of the
much more computationally efficient ant fluid.
Statistics from training an agent with the ant fluid reward system with
20 ruthenium-like active sites and 20 iron-like active sites. (a) the
average rewards from sampling during training and the test rewards
from placing active sites on the highest policy values each step. (b)
LEYP from equation (2.10) per generation. (c) the value network
loss per generation. (d) the entropy of the network policy. The
entropy decreases overall, signaling that the policy becomes more
and more deterministic. The best chip placement from the training
session increased reactant conversion rate by 39 % compared with the
first generation of training.
(a) manual design of a ruthenium-iron reactor and (b) a design where
the geometry and active sites have been decided by the RL agent.

Intensity profiles for red, green and blue channels along with total
intensity and luminance for the “cold blooded” colormap.
The profile from values 0 (left corner) to 1 (right corner) for the
“cold blooded” colormap along with its grayscale counterpart. Both

versions are perceptually sequential and no visible artifacts are present. II

Xvil

List of Figures

xviii

4.1

4.2

B.1

B.2

List of Tables

Comparisons of conversion rates relative to Figure 4.9 (a). All three
best-found RL agent placements in Figure 4.11 are highlighted in bold
text and outperform the manual reference placements in Figure 4.9.
The designs in Figure 4.1 are also included to compare with a few
different geometries. Out of the designs in Figure 4.1, (a) performs
the best.
Reactant conversion rates for placements in Figure 4.14, relative to
4.14 (a). (b) and (c) are 6.5 % and 6.7 % better than (a), respec-
tively. . . . e

Most frequently used neural network and PPO parameters. Some
deviations from below setting occur in the methodology chapter, but
all of the main results were acquired with these settings.
Used hardware specification for training the RL agent and running
various simulations. Lo Lo

Xix

List of Tables

XX

1

Introduction

A lab-on-a-chip (LOC) is a device capable of performing experiments and analysis
on miniature scale. Over the last years, such chips have quickly gathered atten-
tion from researchers in for example biology, chemistry and medical sciences, [1],
2], [3]. One instance of a LOC is the nanofluidic chip, where fluids are controlled
on nanoscale. Langhammer Lab at Chalmers University of Technology conducts
research on nanofluidic chips. The chips are used for investigating catalysis of par-
ticles. Specifically, it is of high interest to investigate single particle catalysis, since
this avoids averaging effects otherwise seen when investigating an ensemble of par-
ticles, see Levin et al. [4]. Single particle catalysis allows researchers to better
understand the properties of specific particles.

The nanofluidic chips used for catalysis research require specialized design in or-
der to meet research goals. The chip components along with their effect on reactant
and product flow form a complex system which is difficult to manually optimize.
For example, maximizing the reactant conversion rate to product depends on sev-
eral aspects such as pressure, reactant concentration and flow speed. The group’s
nanofluidic chips are currently designed through laborious trial and error. A frame-
work capable of automatizing the design process would therefore be a powerful tool
in aiding research. Additionally, since the prevalence of LOCs is growing quickly
in many fields, the framework should desirably be easily applicable to other chip
systems. This thesis aims to optimize the design of nanofluidic chips with easy
transferability to similar systems, using machine learning (ML) techniques.

A promising indicator for use of ML in nanofluidic chip design is Mirhoseini et
al., where deep reinforcement learning and graph neural networks were used to op-
timize the design of Google’s TPU chips [5]. The approach was able to match or
outperform previous techniques, in a much smaller time scale. The goal of this thesis
is to employ a similar policy gradient (PG) technique to optimize the reactant con-
version rate of nanofluidic chips. A major benefit of using reinforcement learning
over supervised learning is that no previously gathered database of training data
is required. Instead, training data is sampled in a simulation environment during
training. Another similar work is the model PrefixRL by Roy et al., where prefix
circuits were optimized with deep Q-networks (DQN) [6]. Optimization of LOCs
with ML, however, appears to be an unexplored field prior to this thesis.

1. Introduction

2

Theory

In the following sections, the theory behind policy gradient (PG) algorithms and ant
colony optimization (ACO) is briefly explained, and nanofluidic chips are introduced.

2.1 Nanofluidic chips

A nanofluidic chip is a surface where a fluid is pumped through nanoscale channels
and undergoes a reaction. The fluid is driven by applying a pressure gradient across
the chip outlet and inlet. One example of a phenomenon that can be studied on a
nanofluidic chip is catalysis. A nanofluidic catalytic reactor chip consists of channels
to direct the current, and sites of reactivity which act as catalysts. The sites and
channels investigated at Langhammer lab are typically approximately of order 100
nm in cross section, while the channel lengths can be of order 10-100 pgm. At the 100
nm scale, the fluid flow may be analyzed with continuum dynamics [7]. The discrete
nature of the reactant fluid is evident in nanofluidic chips, however, using continuum
dynamics has still been found to accurately describe the fluid dynamics [8]. In order
to simulate the flow through nanofluidic chips, computational fluid dynamics (CFD)
can then be used. Ansys® Fluent is an example of commercial hardware where CFD
is used and can be extended with chemical reaction simulations.

2.1.1 Catalysis

Catalysis is the process of increasing the rate of a reaction through addition of a
catalyst. A perfect catalyst only accelerate reactions without being altered or de-
pleted itself. In practice, however, there are several complications that may arise
with catalysts.

One example of a reaction which can be accelerated with catalysts is the synthesis of
ammonia from hydrogen and nitrogen, the so called Haber-Bosch process [9]. Am-
monia is a widely produced chemical used for fertilizers, various nitrogen-containing
compounds, and can also be used as a renewable energy transportation media [10],
[11]. The Haber-Bosch process made it feasible to produce ammonia on an industrial
scale [12]. The reaction is as follows,

[ron-based catalysts are often used in ammonia synthesis, but have been challenged
by the higher activity of ruthenium-based catalysts [9]. A problem with ruthenium-
based catalysts, however, is that they can suffer catalyst poisoning, meaning reduced

2. Theory

activity in the presence of a chemical. Ruthenium-based catalysts can specifically
be affected by hydrogen poisoning as well as ammonia poisoning [13]. Hydrogen
poisoning is difficult to combat by nanofluidic chip planning, but ammonia poisoning
could be reduced by placing active sites such that the product flow is redirected from
other downstream active ruthenium sites. Hybrid chips could also be developed,
where the high activity of ruthenium catalysts are complemented by the insensitivity
to poisoning of iron catalysts.

2.1.2 Reaction kinetics

A first-order reaction depends linearly on the concentration of only one reactant.
The reaction rate for a reactant A is then given by
d[4]

- = = k(4] (2.2)

where [A] is the concentration of the reactant and k is the reaction rate coefficient.
This is the differential equation of an exponential function for reactant concentration.
The reactant concentration is then given by

[A] = [AJoe™, (2.3)

where [A]y is the initial reactant concentration. If a reactant undergoes a first-order
reaction, the concentration will decrease exponentially. The maximum conversion to
product thus happens in the beginning of the reaction. At this stage, some intuition
can be found about the problem of placing catalysts optimally. It would likely not
be beneficial to place a catalyst right after another one, since reactant concentration
is likely to be low after a catalyst site. A better solution may be to place another
catalyst further downstream, where reactant concentration may be higher due to
fluid mixing.

2.2 Policy Gradient

A policy is a principle of action. Given the state of some system, the policy describes
what action to take next in order to maximize some objective. In the context of
nanofluidic chips, the chip canvas along with placed chip components can be seen as
a state. The next component to be placed can also be added to make out the state,
see Figure 2.1. This is beneficial if not all chip components are identical. The state
can then be interpreted by some function, which provides a policy. The policy in
turn provides which position to place the next component. Taking an action accord-
ing to the policy creates a new state. This chain of states is repeated until reaching
a termination condition, for example a maximum number of placed components.

The policy is typically given by an artificial neural network. With a neural net-
work, the policy takes the form of a mapping of ()-values assigned to each action.
In order to optimize the mapping, PG utilizes the policy gradient theorem [14], [15].
One formulation of the theorem is as follows:

VoJ(m9) = Esepr gmm, [Volog mp(als)Q (s, a)] . (2.4)

2. Theory

. Component A
. Component B

z Yy id

Placed components Next component

Figure 2.1: The current state of a chip can be made up of placed components
along with the next component to be placed. The current node is needed if more
than one node species exist, since different components may interact differently with
one another. In this case, components A interact mutually, whereas components B
interact with component A, but are not influenced by A. More on this in section
2.7.

The left-hand side is the performance gradient Vy.J(my) of the policy my over neu-
ral network parameters #. According to the theorem, this gradient is equal to the
expectation value Ey.,x or, of the gradient of the logarithmized policy multiplied
by the @-values Q™(s,a). The @Q-values are typically estimated by a given reward
function which rewards the agent based on its performance. The subscripts in the
expectation value represents that the state s is sampled from the state distribution
p™, and the action is sampled from the policy mg.

Contrary to many other machine learning standards, PG utilizes gradient ascent
instead of gradient descent. The objective is to maximize expected returns, instead
of minimizing a loss function. As such, the optimization problem can be written as

max%)mize E: [Vglogm(ar|s:) Q" (s¢, ar)], (2.5)

where subscripts ¢ have been added to emphasize that states and actions are depen-
dent on the time step. With nanofluidic chips, the time step corresponds to how
many components have been placed. Note that the notation for the expectation
value has been simplified for convenience. The simplified notation will henceforth
be used.

2.3 Advantage functions and actor-critic networks

Continuous action problems are often hard to optimize. To ease optimization, the
Q-values Q™ (sy, a;y) in equation (2.5) may be substituted for the advantage function,
first presented by Gu et al. [16]:

A" (51, a1) = Q7 (81, a) — V7 (s, an). (2.6)

5

2. Theory

V™ (s, a;) is the value function, which is typically estimated by another neural net-
work [16], [17]. This forms the actor-critic scheme, where the actor network learns
the policy mg(as|s;), and the critic network learns the estimate V”(st, a;). The critic
network is sometimes also referred to as baseline network. This designation speaks
more of the critic’s purpose — it acts as a point of reference, suggesting which di-
rection to update the policy [18]. The optimization objective with the advantage
function is written as

maxgmize E, [log 7T9(at|8t)/it} , (2.7)

where A, is the estimated advantage at time step t.

2.4 Trust Region Policy Optimization

As an alternative to the standard actor-critic formulation in equation (2.7), Schul-
man et al. [19] proposed trust region policy optimization (TRPO). The optimiza-
tion algorithm has guaranteed monotonic improvement. The surrogate objective in
TRPO takes the appearance

7o (az|st) fl}

7 A

7T901d(at|3t) (28)
subject to [E; [DKL (Weold('\st)yﬂe(‘fst))] <9,

maxiamize E, [

where 7y, (a¢|s¢) is the policy in the current iteration before having taken any steps
of gradient ascent. The constraint enforces that the average Kullback-Leibler diver-
gence Dy, over all actions is less than a hyperparameter §. The objective can be
efficiently solved through approximations and the use of conjugate gradients [20].
TRPO often outperforms the standard objective [19], [20]. However, according to
Schulman et al. [20], TRPO is undesirably complicated and cannot be used with
noise-inducing layers such as dropout. Additionally, parameters cannot be shared
between the policy and value function. The shortcomings of TRPO thus lead to the
next proposed learning algorithm, proximal policy optimization (PPO).

2.5 Proximal Policy Optimization

PPO takes inspiration from TRPO by altering the objective in equation (2.8). A
similar constraint is used, but instead incorporated in the objective. Setting

mo(adsy) _ r(0), (2.9)

TOo1a (at|5t)

the main term in PPO takes the form
LEMP(0) = B, [min(ry(0) Ay, clip (r,(0),1 — €, 1+) A))] (2.10)

where € is a hyperparameter, usually set to 0.1 or 0.2 according to Schulman et al.
[20]. The penalization is added to ensure that the policy update is not excessively

6

2. Theory

large. In addition to LEYP (), two more terms are added. The first is LT (6), which
is the value function loss, given by mean squared deviation from returns. The second
term is the entropy of the policy, S[mg](s;), which is added to promote exploration.
The full optimization problem is then given by

maximize E, [LfLIP(Q) —aLYF(0) + CQS[T(@](St)jl : (2.11)

where ¢; and ¢y are hyperparameters controlling the influence of entropy and value
function loss. PPO is meant to emulate the monotonic improvement of TRPO,
under arguably simpler conditions. In addition, PPO has been found to have better
empirical sample complexity than the alternatives [20].

2.6 Sampling methods

In order to improve the policy, it first needs to be evaluated in some manner. Eval-
uating the policy is suitably done by sampling from it. Sampling avoids the need
of evaluating all actions, while still giving a fair representation of the policy. The
sampling algorithms that were tested during the thesis are elaborated below.

2.6.1 Standard sampling

The policy given as output from a neural network cannot directly be interpreted
as a probability distribution, as the ()-values are not non-negative and do not sum
to 1. Normalization can be done by applying the softmax function on the entire
policy. To get a representative image of the policy, its corresponding probability
distribution can simply be sampled from a certain number of times. In the context
of nanofluidic chips, one complete sample from the policy is interpreted as placing
all available components on the chip surface according to the state-dependent prob-
ability distribution.

It is desirable to be able to use the policy neural network for giving definite predic-
tions by placing components at the locations with maximal policy values. Standard
sampling could lead to a good average performance, whereas individual runs may
fail, and argmax placements may not succeed. It could therefore be beneficial to
use a sampling scheme which gives better performance for deterministic placements,
leading to the next proposals.

2.6.2 e-greedy

The e-greedy scheme mixes exploration with exploitation by choosing a; as

ti ith probabilit
0 = {any action with probability e, (2.12)

argmax mg(-|s;) with probability 1 — e.

To promote exploration, € can be chosen near 1 at first. Letting € decay each
generation lets the agent exploit the learned policy more. By choosing the action
with the best predicted outcome, the agent is trained in a more deterministic manner
than with standard sampling.

2. Theory

Y i BERE RN,
0.7|0.6[-1 1[09] [00]|[09]
{lo4]
0.2/0.1|+1
r y id
(a) (b)

Figure 2.2: A graph (a) with its associated adjacency matrix (b). Each node has
a set of features with identical schema. In this case, two node species exist, with
identifiers +1. The nodes also have positions as features. The adjacency matrix is
weighted, meaning that the connection strength is included. In the displayed case,
the connection strength decreases with distance.

2.6.3 Policy-informed e-greedy

A variant of the e-greedy scheme is to combine both above approaches by choosing
a; as

(2.13)

sampled from policy with probability e,
ar =
' argmax mg(-|s;) with probability 1 — e.

By decaying e each generation, the agent is first primarily trained to optimize its
average performance, while converging to a maximized deterministic performance.
Sampling instead of choosing actions at random restricts the agent to making more
informed decisions, while still exploring the search space.

2.7 Geometric Deep Learning

Geometric deep learning (GDL) (see for example Bronstein et al. [21]) leverages
geometries and relations between objects. A subfield of GDL is deep learning on
graphs. In graph learning, graph convolutional networks (GCN:s) have lately become
a popular approach [21]. A chip canvas with placed components can be modeled as a
graph, where chip components are nodes. The graph representation allows a manner
of modeling particle-to-particle interactions by propagating messages through edges.
Edges may be weighted, for example depending on the distance between nodes, see
Figure 2.2.

2.7.1 Graph Convolutional Networks

GCN:s have been applied successfully in a wide variety of scenarios, see the overview
by Bronstein et al. [21] and Zhou et al. [22]. Some examples include molecular

8

2. Theory

property identification [23], text classification [24], combinatorial optimization [25]
and much more. A promising indicator for usage of GCN:s on nanofluidic chips is
Mirhoseini et al. [5], where Google’s TPU chips were optimized with GCN:s and
reinforcement learning. An advantage over many other neural network architectures
is that GCN:s are not specific to a specific number of nodes. The number of nodes
can be changed without changing the network architecture.

Several graph convolutional operations have emerged over the years. A simple ver-
sion is presented in Morris et al. [26], named GraphConv by PyTorch Geometric
standard (PyG) [27]:
X;=01x;+ 0, Y e X, (2.14)
FEN(9)

where x is a batch of node features and ®; and ©, are weight matrices. ej; denotes
the edge weight from node j to i. N(i) is the neighborhood of node i, meaning
the node indices which connect from node i. The operation (2.14) is an extension
of a fully-connected layer, where additionally the neighboring nodes are weighted,
summed and propagated through a fully-connected layer.

Edge features may also need to be multi-dimensional, for example if several dif-
ferent particle-to-particle interactions exist. With multi-dimensional edge features,
one possibility is to use the graph attentional layer defined in Velickovié et al. [28],
named GATConv in PyG:

X; = aii(-)xi -+ Z C(ij@Xj, (215)
JEN(4)
where the attention coefficients ay; are calculated as
Cij
V==,
2okeN (i)u{i} Cik (2.16)
Cij = exp (LeaukyReLU(aT [©x; || ©x; || @eeij])),

where a is a weight vector, ® and ©, are weight matrices, and || is the concatena-
tion operation. With both above layers, the order of nodes does not matter. This
property can make the search space much smaller than for example encoding node
features as inputs to a fully-connected neural network.

Additionally, normalizing layer outputs can noticably speed up training. The most
effective type of normalization varies on application. For graphs, Cai et al. [29]
found the following normalization to be beneficial, named GraphNorm:

;L x — a0 E[x|
\/Var[x —aOEx]]+e

X

O+ B. (2.17)

The parameters a, 8 and -y all represent learnable parameters, € is a small parameter
added for numerical stability, and © is the Hadamard product.

2. Theory

2.8 Ant Colony Optimization

Ant colony optimization (ACO) is a stochastic optimization algorithm inspired by
biological ants. When biological ants forage, they leave a trail of pheromones. The
pheromone trail has been noted in some ant species to be volatile [30]. The volatile
trail of pheromones tends to attract ants, following the path and further intensifying
it.

The volatile trails and the tendency to follow pheromones is mimicked in ant colony
optimization. A colony of usually hundreds or thousands of ants is modeled, wherein
each ant can take one action at each time step. The problem statement naturally
forms a graph formulation. Each action leads to a location and is weighted according
to the amount of pheromones deposited on the edge connecting the two locations.
Each edge also has a desirability associated with it. The desirability can for example
be the inverse distance required to travel between locations. The probability of the
k™ ant to traverse the edge e;; given pheromone concentration 7;; and desirability
n;; is then given by
S

ZIEA«; Tz’? ’ 7757
where A; is the set of allowed actions to take at location ¢ and « and [are parameters
controlling the influence of pheromones and desirability. Trails are usually updated
when all ants have completed their solution. The update typically takes the shape

pk(eij) = (2.18)

N
Ty (1= p)7i; + > AT, (2.19)
k

where p is the pheromone evaporation coefficient, N is the number of ants and AT-[]I-C]

is the amount of pheromones deposited by the £*" ant.

ACO has achieved world-class performance in several tasks such as sequential order-
ing, scheduling, assembly-line balancing, the traveling salesperson problem, DNA-
sequencing and much more, see for example the overview by Dorigo and Stiitzle [31].
For an introduction to ant colony optimization, see Wahde [32, chapter 4], which
has been used as basis for this section.

2.9 Fluid Dynamics

The Reynolds number is the ratio of inertial forces to viscous forces and is given by

the expression

L
Re = 2% (2.20)
i

where p is the fluid density [kg/m?], u is the flow speed [m/s], L is a characteristic
length scale [m] which depends on the geometry, and u is the dynamic viscosity
[kg/(ms)]. The Reynolds number is helpful for predicting flow patterns. The num-
ber is dimensionless, meaning that none of the scales matter by themselves, as the

10

2. Theory

fluid will behave the same for a constant Reynolds number. For example, decreasing
the flow speed can be countered by increasing characteristic length scale by the same
factor, giving the same Reynolds number and the same flow behavior. Fluids with
Reynolds numbers above about 2300 are typically regarded as turbulent, although
exceptions can occur where turbulence is seen in microfluidics for lower Reynolds
numbers [33]. Micro- and nanofluidics are typically characterized by low Reynolds
numbers Re < 1 [34, chapter 2], [35], [36].

Another fluid dynamical quantity of importance for chemical transport phenomena
is the Schmidt number,

1

Sc = — 2.21
where D is the mass diffusivity [m?/s]. The Schmidt number is also dimensionless
and describes the ratio between momentum diffusivity and mass diffusivity [37]. The
Schmidt number is usually approximately of order 1000-10000 for nanofluidics [34,
chapter 7.

2.10 Discrete blockages or continuous channels

Ant colony optimization can be used to form channels to the active sites of reac-
tivity placed by the deep learning agent. The agent can alternatively place pieces
of obstacles one by one to direct the fluid. Obstacles may then be represented as
component B in Figure 2.1, while active sites are of type A. The advantage of us-
ing ACO instead could be that channels are more easily formed, and the agent not
needing to place as many particles. ACO would be particularly beneficial on very
fine resolutions where a large amount of obstacle parts need to be placed to have a
significant effect on the fluid.

On the other hand, it is not certain whether channels are the most beneficial to
maximize reaction rate. One possible disadvantage of forming channels is that the
speed of the current gets higher due to the narrower paths. There is more reactant
flowing through the reactive sites when forming tight channels to the particles, but
the trade off between reactant amount and speed is not known in detail. Placing ob-
stacle pieces at discrete locations may bring some advantages over more well defined
channels.

11

2. Theory

12

3

Methodology

This chapter describes the methodology employed during the thesis. The chapter
firstly includes the model architecture. Secondly, testing of the GCN part in a
supervised setting is described, as well as testing the entire model on simpler test
cases. Some results for the preliminary test cases are presented here, as they are
not strictly part of the aim of the thesis.

3.1 Model architecture

The architecture is inspired by Mirhoseini et al. [5]. Instead of the Edge-GNN
presented in the paper, the graph encoder consists of cascaded graph convolutional
layers, either GraphConv or GATConv, each followed by GraphNorm layers. The
node embeddings obtained from the GCN can then be processed in three different
ways, depending on the problem statement. If only one node species is present,
applying global pooling on the node embeddings is sufficient to obtain an expressive
enough representation for the upsampling cascade.

If more than one node species exist, the node embedding can additionally be used
as key and query in a series of multi-head attention layers, while an embedding of
the current node species is used as query. Each node embedding is then viewed as
a point in a series — a database which is queried by the current node ID. Lastly, the
index of the current node can be used to retrieve the embedding of the current node
from the node embeddings.

The three constituents — graph mean, attended graph and current node embed-
ding — relay similar semantics, but in different orders of specificity. The graph mean
is an average over all node embeddings, describing the graph on a general level. The
attended graph is a weighted mean, with more attention focused on the parts of the
graph that are most important for the query node. Lastly, the current node em-
bedding is a node-specific bias, further accentuating information about the specific
node to be placed.

An important difference from Mirhoseini et al. is that every instance of the 2D
deconvolutional layers was changed to bilinear upsampling followed by reflection
padding and one 2D convolutional layer. Upon visual inspection of heatmaps of
network policies, this variant produced much smoother policies. Deconvolutional
layers tended to produce a “checkerboard” effect, where the policy values varied

13

3. Methodology

greatly while still displaying the same general distribution properties. These arti-
facts tend to occur when the kernel size is not divisible by the strides, see Odena
et al. [38]. Some works within super-resolution avoid the checkerboard problem by

instead using upsampling followed by convolutional layers, see for example Dong et
al. [39].

The number of upsampling layers is variable, depending on the desired output shape.
The output shape can be chosen in powers of 2. During testing, the output shape
32 x 32 was used to speed up training. To get a higher resolution and more realistic
simulations after testing the model, the output shape 128 x 128 was used. See Figure
3.1 an overview of the network architecture.

3.2 Supervised tuning of graph encoder

To specifically tune the architecture of the graph encoder part of the neural network,
two distinct test cases were investigated, each with two node species. In both cases,
the graph was formed by connecting all nodes of the same species with unit connec-
tion strength. The first case is only dependent on placed nodes, not the properties

of the current node. The target position of the next node in the first case is given
by

I (&0
XNt-H:ﬁt in _ZF) (3.1)

where N, = t(l) + Nt(Q) is the current number of placed components and xgl) is the
i:th component of the first kind. The vector division is element-wise. The GCN
was found to best solve this problem with two graph convolutional layers, where
the number of inputs was set to 64 in both layers. The readout layer was set as
a global mean pool followed by a linear output layer. GraphConv and GATConv
performed similarly, with a mean-squared error of about 10~°. The initial positions
in the graph were chosen at random in the interval [0,1), with between 5 to 20
placed nodes with node species chosen with equal probability.

The target position in the second test case is given by the average position of the
placed components belonging to its own species. In this case, information about the
current node has to be added to the graph encoder for the predictions to be accu-
rate. The model architecture is the same as in Figure 3.1, but with the policy and
value network instead replaced by a fully connected feedout layer with two neurons,
representing x and y position components.

The GCN architecture was tested with only GraphConv layers, with added Graph-
Norm and with an added single layer multi-head attention. A comparison of perfor-
mances for said cases is seen in Figure 3.2. Using both GraphNorm and attention
as in Figure 3.2 (d) was the most efficient, and was found to lower the loss with
about two orders of magnitude compared with the base case in Figure 3.2 (a).

14

3. Methodology

Policy network

Current graph: I Upsampling
Node features + >

adjacency matrix

T e oo S@%@ﬁ.#ﬁm
‘ b FC N\
ol

Current node id Value network

@ Index

AN

Mask

Fully Global Current node
connected pooling Attention embed

Legend
—

Figure 3.1: Network architecture of policy and value networks. Placed and un-
placed nodes are all included. Unplaced nodes are disjoint from the graph and kept
at the origin (0, 0). The current node to be placed has its ID included as feature,
whereas other unplaced nodes have no ID. The GCN interprets the current graph
and outputs an encoded vector embedding of all nodes. Global mean pooling is then
applied on the graph to obtain a single vector representation for the entire graph.
For more than one species, the current node to be placed is used to index the node
embedding to get the embedded properties of the current node. The current node
ID is also passed through a fully-connected layer to be used as query in multi-head
attention. The node embeddings are used as key and value. The mean-pooled graph
representation, attended graph and current node embedding are then concatenated
and passed to policy and value networks. The policy network gives square-shaped
output of placement logits. Illegal placements are masked. The value network gives
scalar output.

15

3. Methodology

4 g
104 10
3]
10% 10
.
107 10
|
a i %1014 |
1]
RN kK
100] 104
10 g 1074
AR Y
= Ty ——— 1024
10724 ' ' ' ' :
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch
(a) No attention or GraphNorm (b) Added attention
H 10-11 ii Graph layers
10714 1 Y L
$ —— 2
3t A
| Y Q
“» —2
2 2 1072 % &}
Q (@}
2 1072 E#* ?‘i '] —
* ?‘ @
M ; 10—ZL
| R
10724
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

(c) Added GraphNorm

(d) Added GraphNorm and attention

Figure 3.2: Comparison of different architectures for the second supervised case
in section 3.2. (a) Three stacked GraphConv layers, each with output shape 64,
achieves the best final loss, but is also the most unstable during training. (b) Only
adding attention has no major impact. (c) GraphNorm has significant impact on
training. Two and three stacked GraphConv layers followed by GraphNorm achieves
one order of magnitude lower loss than one layer. Two and three layers perform
similarly, but two layers is more stable. (d) Using both attention and GraphNorm
can further lower loss with one order of magnitude, compared with (c).

16

3. Methodology

............. R —
0- \(
8- 9
0
F b
% 7 (b)
8 4
~ 6-
51 —— Only sampling
74 —— Argmax + sampling
441 , , , , , , , , . . .
0 20 40 60 80 100 0 20 40 60 80 100
Generation

Figure 3.3: Comparison of rewards between standard sampling (black line) and
policy-informed e-greedy (red line). (a) shows the average rewards during training,
and (b) shows the post-generational rewards with argmax placements. The dotted
lines show the maximum found rewards and are color coded according to sampling
algorithm. € was decreased linearly from 1.0 to 0.5 from generation 1 to 100. Policy-
informed e-greedy attained the highest rewards with deterministic placements, but
was found to be prone to collapses when € was decreased too much. In this example,
such a collapse happens shortly after generation 30.

3.3 Model verification on toy systems

A major part of the methodology was to verify and tweak the entire model on simple
test cases. Some tests were invented to loosely emulate the behavior of interacting
components on a nanofluidic chip. With this approach, lengthy CFD simulations
were avoided and instead replaced with simpler and more easily verified reward
functions. In this section, some of these test cases are described. Note that these
cases do not describe the actual physical cases of interest in the thesis, and are
rather used for verifying the model.

3.3.1 Comparison of sampling algorithms

The three sampling methods mentioned in section 2.6 were tested in a simple setting
were an agent was given higher rewards the lesser the mean distance is between
placed components. The basic e-greedy scheme was found the least useful in all
aspects. The standard sampling algorithm gave the best long-term average rewards.
The policy-informed e-greedy scheme more quickly gained higher average rewards
and achieved the highest rewards with argmax placements. However, the scheme
was found to be prone to collapses in rewards after having decreased € to a certain
point. Figure 3.3 compares the rewards between standard sampling and policy-
informed e-greedy. Both schemes have advantages and disadvantages, and the best
choice largely depends on if components are sought to be placed by sampling or on
argmax policy values.

17

3. Methodology

3.3.2 Active components

To emulate interacting components and to attempt to solve a light problem where
a graph formulation is beneficial, a test case was invented where some function is to
be dampened by placing active components. The investigated function is given by

: 2
f(z,y) = 2sin(mx) (3.2)
T,y € [_]‘7 1]7
meaning that it initially has two distinct peaks in x and is uniform in y, see Figure
3.4. One type of component exists, which dampens the flow with decreasing effect
depending on the distance to the particle. The altered intensity of any point in the

flow in the presence of an active site is given by

Joew(z,y) = (1 — exp(—c . d2)) [z, y), (3.3)

where c is a constant determining the locality of the active site, and d is the distance
to the active site. The function f(z,y) is updated whenever an active site is placed.
The reward R is given at the last stage of the graph depending on how high the
mean squared intensity is in the end,

R=10- exXp (_]]_]- Z fﬁnal(xh yj)Q) ; (34)

/[:7j

where N is the number of grid points and fg,.1 is the final intensity resulting from all
placed active sites. The factor 10 was heuristically added and appears to make the
learning objective easier. To form the input for the graph encoder, node features
were set as the component positions. All placed components are connected with
edge weights exponentially decreasing with distance between components. In this
way, nodes can effectively exchange information of which positions are occupied.
Since the active components locally decrease the function intensity, the information
exchange can be thought to decide where to place the next node at a more beneficial
position.

To test the model solely on placing active components, an agent was trained to
place 10 active components 128 x 128 approximation of the flow function in Figure
3.4. The components form a fully-connected graph with edge weights decaying ex-
ponentially with distance. The results in Figure 3.5 show that the agent has learned
to place components evenly along the two maxima to dampen the mean intensity.
The solution is in line with intuition and gets a reward of 9.54, where 10.00 is the
maximum with particles placed on all positions.

3.3.3 Inhibitory components

To model interactions between different types of components, the test case explained
in section 3.3.2 was extended with another component type. The new component
type locally inhibits the effect of active sites. The final intensity at any point x =

18

3. Methodology

1.0

0.5

—0.5

—1.0
—1.0 —0.5 0.0 0.5 1.0

X

Figure 3.4: The base function f(z,y) = 2sin(rz)? used in sections 3.3.2 and 3.3.3.
The colorbar shows the values of the function. The custom colormap is explained
in greater detail in Appendix A.

19

3. Methodology

> 0

(a) (b)

Figure 3.5: The function seen in Figure 3.4 at 128 x 128 resolution. (a) shows
the unaltered function f(x,y), and (b) shows the values after a trained agent has
placed 10 active components. Active components are placed evenly spaced along the
two maxima, effectively dampening the mean intensity. Edges are displayed with
greater transparency the further away the connected nodes are.

(x,y) is then given by

Nact
fﬁnal(x) - Z [1 - aj_l exp(_cact ' d2<X7 Xact,j))} ' f(X)

Ninn
2
Qj = 1+ Z exp(_cinhd (Xact,j7 Xinh,k))u
k

(3.5)

where d?(-,) is the squared Euclidean distance and subscripts “act” and “inh” im-
plies active and inhibitory components, respectively. The same function f(x) as
before was used, ¢, was set to 8 and ¢;,, was set to 4. Rewards are given as in
equation (3.4)

An agent was trained to place 10 active and 10 inhibitory components on a 128 x 128
approximation of the function in Figure 3.4 such that the mean squared intensity
in equation (3.5) is minimized. The state is represented effectively as in Figure 2.1,
where active components are type A and inhibitory components are type B. Sim-
ilarly to the Figure 2.1, type B component send messages to type A, but do not
receive messages. The results in Figure 3.6 show that the agent is capable of placing
active components in a near-optimal way along the function peaks, while still taking
into account the presence of inhibitory components. The reward in Figure 3.6 was
8.79. As expected, the reward is somewhat lower than before since the inhibitory
components affect the active components.

20

3. Methodology

B Active
0 Inhibitory

(a) (b)

Figure 3.6: The function seen in Figure 3.4 at 128 x 128 resolution. (a) shows
the unaltered function f(x,y), and (b) shows the values after a trained agent has
placed 10 active and 10 inhibitory components. Inhibitory components are clustered
in a corner, where they affect the active components minimally. Active components
are placed evenly spaced along the two maxima, effectively dampening the mean
intensity. Near the inhibitory components, active components are displaced from
the right maximum, to avoid being too affected by the inhibitory components. A
cluster of three active components is seen at this location, intuitively because the
flow intensity is greater there, and requires more attention. Edges are displayed
with greater transparency the further away the connected nodes are.

21

3. Methodology

o
=]
=]

(=]

(a) (e)

101

y index
S
~~
o
N’
S

y index
y index

o
(=]

301 30 . . 301 ‘

0 10 20 30 0 10 20 30 0 10 20 30
2 index z index x index
0 0 0
mE
(b) = & i
e od
251 251 25 8
(d) ;
% 50 % 50 % 50 ()
[[[
S g g
= = =
= 751 = 751 = 751
1001 100 100 =
2] 5]
P atg g
125 ‘ ‘ ‘ ‘ ‘ 125"‘ ‘ ‘ ‘ ‘ 1251 ‘ ‘ Lol ‘
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
z index z index z index

Figure 3.7: Best found final solutions for a few toy reward systems. (a), (b)
minimizing average distance between all components in on a 32 x 32 grid and 128 x
128 grid, respectively. The solution in (a) appears to be optimal because of the
close approximation of a circle. The solution in (b) also appears near-optimal. (c),
(d) maximizing distance between components. Both solutions appear near-optimal.
(e), (f) minimizing distance between similarly colored components but maximizing
distance between differently colored components. The best found solution in (f) was
found by sampling, thereby the slightly higher distance between similarly colored
components.

3.3.4 Other toy systems

A few other reward systems were tested to see how the RL agent performs in differ-
ent scenarios. For example minimizing distance and maximizing distance between
components were tested. Some results are shown in Figure 3.7, all of which the
RL agent was able to find near-optimal solutions for. Especially (a) appears to be
optimal.

3.3.5 Adding Ant Colony Optimization

As mentioned in section 2.8, ant colony optimization can be used to form channels
on a chip canvas. To form channels, an extra step can be added after having sampled
graphs in the policy gradient algorithm as in Algorithm 1. Ants are rewarded if they
encounter an active site of reactivity, allowing them to deposit more pheromones.
After all ants have deposited pheromones, heights are taken as the exponentiated
negative pheromone levels. As such, fluid may flow freely through particles, but tra-

22

3. Methodology

Reward: 4.67 Reward: 8.27 Reward: 9.35

50

100

0 50 100 0 50 100
(a) Generation 1 (b) Generation 10 (c) Generation 50
Reward: 9.46 Reward: 9.49 Reward: 9.49

(d) Generation 100 (e) Generation 190 (f) Generation 240

Figure 3.8: Placed active components in the toy model with added ant colony
optimization. Brighter tone indicates greater obstacle height. Pathways are clearly
formed to the particles from the inlet at the western face to the outlet at the eastern
face. At this stage, however, heights do not affect the reward system, and the toy
model still lacks ties to reality.

jectories where no active site is encountered receive high obstacle heights because
of pheromone dissipation. In a setting where CFD simulations are run, ant colony
optimization will thus alter the rewards by redirecting the current.

To test the scheme in a simple setting, Algorithm 1 was added to the reward system
in section 3.3.2. In this setting, heights do not change the rewards, but nonetheless
form clear paths from the inlet at the western face to the outlet at the eastern face,
passing through the active sites. Since the policy exhibits high entropy in the be-
ginning of training, active sites of reactivity will at first be sampled spuriously. As
the policy becomes more certain, the ACO channels become more well-defined. See
Figure 3.8 for a test case where ACO is added to the toy model.

3.4 Reward systems for designing nanofluidic chips

To simulate the functionality of nanofluidic chips, two reward systems were designed.
The first one is based on CFD simulations to calculate the percentage of reactant

23

3. Methodology

Algorithm 1 Retrieving heights from ACO. Ants are sampled according to the
inlet fluid mass distribution (usually uniform) and travel from inlet to outlet. At
each time step, ants travel one step in the principal direction of the flow (z), but
a variable amount of steps perpendicular to it (y). Ants can for example, at each
time step, travel straight forward, diagonally left and diagonally right, or some other
set of actions. Heights are taken as the exponentiated negative pheromone levels.
The number § can for example be 1/(N - Aparticie), Where Apaice is the area of
the encountered particle as the product of the amount of indices in the x and y
directions. p € [0, 1] is the pheromone evaporation rate.

Inputs: Set of graphs G and a d x d pheromone matrix 7;; describing the
pheromones at positional indices (x,y) = (i, 7).
Outputs: Heights h;;.

1. Initialize A7;; as a matrix of zeros.

2. For each graph G € G, initialize a colony of N ants with positions sampled
according to the inlet fluid mass distribution.
2.1. Let ant n travel between (x,y) = (i — 1, 7) to (i, k) with probability

Tik

k) = .
pli. k) 2ieATil

2.2. If ant n encounters an active site in G, increase its pheromones by 9.
2.3. If ant n has reached the end of the outlet, deposit pheromones on A7;;
for all visited indices (7, j). Otherwise, repeat steps 2.1-2.2.

3. After having applied step 2 for all graphs, update 7;; as
N
Tij < (1= p)7ij + Z ATi[;ﬂ-
n=1

4. Set h;; = exp(—T;5)

24

3. Methodology

undergoing reaction. The second one is a more computationally efficient and novel
approach based on ACO, named ant fluid. The rewards in ant fluid are based on
the amount of fluid units passing through active sites of reactivity.

3.4.1 Computational Fluid Dynamics

To simulate the fluid dynamics of a nanofluidic chip, the Ansys software Fluent was
used [40]. Fluent can output several different quantities, but the most interesting
quantities is the amount of fluid through the outlet and inlet. These quantities
makes it possible to define the reactant conversion rate,
Tin — T
Repp = C - ——%, (3.6)
Tin
where x;, is the amount of reactant through the inlet and x., is the amount of
reactant flowing through the outlet. The factor C' was added to scale the rewards
to approximately the range 0 to 10, and was typically chosen as 100.

The CFD reward system should approximately simulate the actual fluid dynam-
ics of a nanofluidic chip, as it operates with continuum dynamics which was men-
tioned section 2.1. The reward system takes as input a list of indices corresponding
to which discretized faces are active of the bottom chip wall. If a fluid element
passes over an active face, it experiences a first-order reaction. In addition to the
list of active face indices, the reward system also takes as input a list of inactive
volume indices, which can range from fully blocked to completely free from blockage.

The main disadvantage of using the CFD reward system is that it introduces a
significant computational overhead, far greater than sampling graphs and training
the reinforcement learning agent. To combat the difficulties introduced by the CFD
solver, the lighter reward system ant fluid, based on ACO, was also developed.

3.4.2 Ant Fluid

The ant fluid reward system envisions ants as individual units of reactant. Rewards
are based on how many ants pass through an active site of reactivity. Ant fluid
attempts to optimize the chip such that all possible fluid paths reach as many ac-
tive sites as possible, under some movement constraints. Additionally, in a system
such as an ammonia synthesis reactor with ruthenium and iron catalysts, ants in-
dividually keep count of how many catalysts they have reached. If an ant reaches
a ruthenium-type catalyst, it receives a higher score than if it reaches an iron-type
catalyst, but with diminishing returns depending on how many catalysts it has pre-
viously reached. This is to emulate the behavior of ammonia lowering the activity
of a ruthenium catalyst. The pipeline is shown in greater detail in Algorithm 2.

As before, obstacle heights are retrieved as h;; = exp(—7;;) after having applied
the algorithm to all sampled graphs. With a C-compiled implementation, the re-
ward system introduces no major computational overhead, even for thousands of
ants.

25

3. Methodology

Algorithm 2 The ant fluid algorithm for rewarding a single sampled graph. Ants
are sampled uniformly over the inlet and travel from inlet to outlet. Ants can for
example travel straight forward, diagonally left and diagonally right, or some other
set of actions. Ants always travel one step in the principal direction of the flow
(), but a variable amount of steps perpendicular to it (y). After having run the
algorithm for all sampled graphs, obstacle heights are taken as the exponentiated
negative pheromone levels. The number § can for example be 1/(N - Aparticte), Where
Aparticle 15 the area of the encountered particle as the product of the amount of indices
in the z and y directions. p € [0, 1] is the pheromone evaporation rate, and a > 1
controls how much higher the activity of a ruthenium-type particle is compared to
an iron-type particle.

Inputs: A sampled graph G and a d x d pheromone matrix 7;; describing the
pheromones at positional indices (x,y) = (i, 7).
Outputs: Reward R,..

1. Initialize A7;; as a matrix of zeros.

2. Initialize a colony of N ants with positions sampled according to the inlet fluid
mass distribution.
2.1. Initialize the product count ¢ = —1.
2.2. Let ant n travel between (z,y) = (i — 1,) to (i, k) with probability

Tik

SieaTil

p(% k) =

2.3. If ant n encounters an active site in G, increase ¢ by 1 and the ant’s
pheromones by

{a5 -e~¢, if the particle is ruthenium-like

0, if the particle is iron-like.

2.4. If ant n has reached the end of the outlet, deposit pheromones on A7;;
for all visited indices (i, j). Otherwise, repeat steps 2.2-2.3.

3. Set the reward R, as the average of all ants’ pheromone levels.

26

4

Results

In this chapter, resulting chip designs are presented. Designs are compared with
basic reference chips to obtain a baseline of performances and expected reactant
conversion rates. Firstly, agents are trained to place active catalyst sites on existing
geometries without any obstacles. Later, the RL agent is also trained to slightly
alter the chip geometry by placing obstacles. The agent is then also trained to place
both ruthenium-like and iron-like active sites along with blockages. Lastly, the agent
is trained with the ant fluid reward system to form channels and decide the chip
geometry completely, while placing active sites of both sorts.

For all tests, the edge weights between placed active sites of the same species are
set to exp(—d;;), where d;; is the distance between sites ¢ and j. If obstacles are
present, edge weights are defined from obstacles to active sites, again with weights
exponentially decreasing with distance. See also Appendix B for a detailed table of
used neural network and PPO parameters.

4.1 Manual placements

Three designs were manually created and are shown as Figures 4.1 (a)-(c). The
reactant conversion rates of these designs are not necessarily meant to be surpassed
since the conversion rate depends heavily on the chip geometry. The designs are
rather there to give a reasonable baseline for comparison and to attempt to find a
pattern in what constitutes a high quality chip. All designs feature 16 active cata-
lyst sites, to compare how geometry and placements affects conversion rate. Black

background signals non-obstructed volume, whereas white background means fully
blocked.

The reactant inlet is at the left face, and the outlet is at the right face. The actual
physical dimensions of the chips are not nanoscale, but the Reynolds and Schmidt
numbers were chosen to be representative of a nanofluidic system. The Reynolds
number was chosen to be Re =~ 0.1 and the Schmidt number as Sc ~ 1000. The grid
resolution is 3.125 - 10~° m and the average speed of solution on a non-obstructed
canvas was chosen as 0.001 m/s, meaning that a fluid element passes from inlet to
outlet in the 32 x 32 grid in one second. Chip designs were evaluated with Ansys
Fluent with a mesh resolution of 128 x 128 x 10 in x—, y— and z—coordinates. The
z—coordinate is perpendicular to the chip canvas and represents the depth of the
chip.

27

4. Results

The first design, (a), is similar to Fritzsche et al. [41], where gold antennas are
used as catalysts. As can be expected from decreasing amount of reactant in the
channels, the reaction rate is the highest by the earliest active sites. This behavior
is seen in Figure 4.1 (d).

The second design (b) was made with inspiration from (a) to investigate what
happens when all sites are connected in a long, meandering path. The same ten-
dency of decreasing reaction rate along the channel is seen in (e), but the reaction
rate also decreases for the middle sites, which are not situated in curvatures.

The third design (c) was created to supply a roughly even amount of reactant to
all active sites. Placing the column of active sites by the inlet was found to achieve
the highest conversion rate as opposed to placing it further downstream. The top
and bottom active sites appear to be slightly more reactive than the others as seen
in (f), which is likely due to a slight increase in pressure by the edges. The flow is
at first uniform over all indices, meaning that the channel ranging from y indices 8
to 24 immediately tightens the flow, which seemingly increases the pressure by the
edges.

28

4. Results

x10~*
0 4.470
(a)
10 7-:_:_:_:— '/,T
" o
= =
E 2.235 %
| Y Y Y E
=90 &
30l
0 10 2 30 0.000
 index
x10~*
0 2.250
(b)
10 =
” o
2 =
= 1125 =
= 9
=90 e
30
0 10 20 30 0.000
2 index
x1074
0 474
(c) (f)
10 =
. .
= =
= 237 >
§= S
=904 5
30
0.00

10 20 30
2 index

o

Figure 4.1: Reference designs (a)-(c) with corresponding kinetic rates of reaction
in kgmol/(ms?) (d)-(f). (a) is similar to the design by Fritzsche et al. [41]. (b)
was constructed with inspiration from (a). (c) was constructed to give roughly the
same flow through each of the active sites. Placing particles in a column by the inlet
was found to give higher conversion rate compared with placing them towards the
outlet. In all cases, there is a pressure gradient between inlet and outlet.

29

4. Results

The increased activity for active sites situated by the turning points in Figure 4.1
(e) may be because of increased pressure by the turning points, see Figure 4.2. If
increased pressure leads to higher activity, placing obstacles at strategic locations
may also have a positive effect on reaction rate by forming points of increased
pressure near active sites.

Dynamic pressure [Pa]
0.000 3.105 6.210

— o <107

Figure 4.2: The dynamic pressure (kinetic energy per unit volume) is higher by
the turning points in the channel. The higher pressure may help explain why the
activity is higher by the active sites situated at the turning points in Figure 4.1 (e).

Increased pressure is also typically seen by the inlet, since the driving force of a
liquid is pressure difference. Figure 4.3 shows that the pressure is the greatest by
the inlet, where active sites were empirically found to have the highest activity as
shown by the placement in Figure 4.1 (c).

30

4. Results

Static pressure [Pa] Dynamic pressure [Pa]
0.00 1.09 2.18 0.000 2.625 5.250

-— i < 10" — ‘ o <107

(a) (b)

Figure 4.3: (a) the static pressure is the highest by the inlet. Higher pressure can
lead to higher reaction rate, which explains the empirical observation that active
sites have higher activity closer to the inlet. (b) the dynamic pressure is the highest
by the edges of the inlet, which further could explain the somewhat higher reactivity
by the edges.

4.2 Wide tunnel optimization

An agent was trained to place 16 active sites on the same geometry as in Figure 4.1
(c). Statistics from training are shown in Figure 4.8. The best chip placement from
the training session was exactly the same as in Figure 4.1 (c). In the simple case
where all active sites fit as a single column in a tunnel, the best solution thus appears
to be to place all of them by the inlet, as suggested by both empirical evidence and
findings of the RL agent.

31

4. Results

S P)
—0.021
% 1671 £ 0.03
g >
B 2 —0.041
14 A £
/ —— Training rewards —0.05 1
---- Test rewards
1245 : : : —0.06 1, :
0 10 20 30 0 10 20 30
60 (c) 00071 (d)
£10.006-
£ 401 2
E > 0.005
= 20 =
A~ 0.004 1
O- T
0 10 20 30 0 10 20 30

Generation

Figure 4.4: Statistics from training an agent to place 16 active sites on the same
geometry as in Figure 4.1 (c). (a) the average rewards from sampling during training
and the test rewards from placing active sites on the highest policy values each step.
(b) the policy “loss” LYMP from equation (2.10) per generation. Note that LE™MF can
be negative. (c) the value network loss per generation. The loss quickly decreases
from the first few generations, after which it stays rather constant. (d) the entropy of
the network policy. The entropy decreases overall, signaling that the policy becomes
more and more deterministic. The best chip placement from the training session
was exactly the same as in Figure 4.1 (c).

If not all active sites fit by the inlet, however, more intricate designs are needed. If,
for instance, 40 active sites need to be placed, the majority will need to be placed
away from the inlet. To avoid local droughts of reactant concentration, it may
additionally be beneficial to place sites with some distance apart from each other.
One solution would be to place one column by the inlet, one halfway to the outlet,
and half a column by the outlet, see Figure 4.5. This is slightly reminiscent of the
situation in Figure 4.1 (a), but with one wide tunnel and wider catalyst sites.

32

4. Results

x1072 -4
(a) (b) x10
1.0 3.6
101

" B
S é
e 0.5 18>
=)
201 =3

0.0 0.0

0 6 13 19 25 31 0 6 13 19 25 31
2 index x index

Figure 4.5: (a) the best found placement through trial-and-error of 40 active
catalyst sites with molar reactant concentration and (b) the corresponding kinetic
rate of reaction. The reaction rate appears even over the individual columns.

The solution found by the RL agent was slightly different. A column was placed
perfectly by the inlet. Two additional active sites were placed immediately after
the column by the edges, where the pressure is high. In the middle of the chip,
sites are placed porously but seemingly without clustering tendencies, similar to
a low-discrepancy sequence. The agent has also placed catalysts arranged almost
as a smaller column by the outlet. The agent was able to achieve 98.6 % of the
conversion rate that the manually constructed design did. The reaction rate over
each individual column seen in Figure 4.5 (b) is even, which is intuitively desirable
in order to evenly utilize all sites. The sites placed by the RL agent are not as evenly
active, but some sites in the middle are particularly active.

(a) by X0

L0 3.570
10 0 B
g 1 05 2B 1785 S
20 1 20 22

0.0 0.000

: =4
0 6 13 19 25 31 0 6 13 ' 19 25 31
2 index index

Figure 4.6: (a) the best RL agent placement of 40 active catalyst sites with
molar reactant concentration and (b) the corresponding kinetic rate of reaction.
The reaction rate is not as evenly distributed over all active sites as the manual
placement in Figure 4.5, and some middle sites are particularly active.

Placing sites in columns thus seems like a good strategy in the case of wide channels,
and the RL agent is almost able to reach the same performance. Additionally, the RL
agent can be used to fine-tune the currently best found design under the constraints
of active sites being placed in columns. Sites can then be modeled as three elongated

33

4. Results

single sites, which the RL agent is tasked to place. An agent was trained to place
two columns of 16 active sites each and one column of 8 active sites. The agent was
able to achieve 100.07 % of the reaction rate as the manual placement in Figure
4.5. The optimization is quite minuscule, and the manual placement seems close to

optimal.

%1072 x107%
(a) (b)
= = 1.0 3.6
101 - 10
b v o
3} S g
= 05 EU 18>
201 20 &
L 1 oo 0.0
0 6 13 19 25 31 0 6 13 19 25 31
 index

z index

Figure 4.7: (a) the best RL agent placement of two columns of 16 active sites each
and one column of 8 active sites with molar reactant concentration. (b) the corre-
sponding kinetic rate of reaction. The reaction rate surpasses the manual placement

in Figure 4.5 by 0.7 %.

32.5 (b)
N2, _'—"l\“'”'ﬁ_"'"—‘i »n —0.021
g %00 @ |4
3 >
£2751 A1 £ 0,04
~ 1 o
~
25.01 'll —— Training rewards
295 I“l' -==-- Test rewards —0.06 1
0 20 40 60 80 0 20 40 60 80
0.007 4
200 () (d)
% 1501 £ 0.006 1
=} =
© g
Z 1001 £ 0.005
= e
50 ~
o ,L ' ' ' ' 0.0041_ | | | |
0 20 40 60 80 0 20 40 60 80
Generation

Figure 4.8: Statistics from training an agent to place 40 active sites on the same
geometry as in Figure 4.1 (c). (a) the average rewards from sampling during training
and the test rewards from placing active sites on the highest policy values each step.
Average training rewards are mostly higher than test in this case, suggesting that
sampling is more successful than argmax placements. (b) LEMF from equation
(2.10) per generation. (c) the value network loss per generation. (d) the entropy
of the network policy.

34

4. Results

4.3 Narrow tunnel optimization

Agents were trained to place 16 active sites on a narrow geometry where only y-
indices 15-18 are free. A few manual reference designs are shown in Figure 4.9, for
comparison with reactant conversion rates. (a) features all active sites by the inlet,
where the pressure is the highest. (b) is a low-discrepancy Sobol sequence meant
to counteract low concentrations of reactant reaching active sites. The third design,
(c), features evenly spaced columns of active sites, to attempt to gain high reactant
concentrations due to even spacing, but also an even flow to all sites.

(a)

—
CO~JOHO1

y index

)

z index

y index
— =
CO~JOHTt

)
—_
)

20 30
x index

g

£}

=770 10 20 30
x index

Figure 4.9: Manual reference designs for narrow tunnel optimization. (a) a cluster
of active sites by the inlet. (a) a low-discrepancy Sobol sequence. (c) evenly spaced
columns of active sites.

Kinetic rates of reaction along with molar fraction of reactant for the designs in
Figure 4.9 are shown in Figure 4.10. Almost only the outer catalysts are active for
the first design, which is shown in (a). As can be seen in (d), the molar fraction
of reaction is low at the inner catalysts, which likely causes the low reactivity. The
catalysts in the Sobol sequence are more evenly active as seen in (b), and the fraction
of reactant just before the catalysts is typically higher, as shown in (e). The design
with catalysts in columns also has a more even reactivity which is shown in (c),
but the top and bottom catalysts appear more active. The higher reactivity also
coincides well with the reactant fraction, which is higher before the top and bottom

35

4. Results

catalysts, see (f). High reactant fraction should naturally be expected to give higher
reactivity, since more reactant particles can reach the catalysts. From the results
in Figure 4.10, some conclusions can be drawn. Firstly, it is not preferable to place
catalysts in clusters, since this immediately introduces low reactant concentration
for the innermost catalysts. Secondly, catalysts placed in columns are again found
to be favorable designs. Sparsely distributed catalysts such as in Figure 4.10 (b)
are favored over clusters, but do not outperform the column design. The differences
in conversion rate are seen in Table 4.1.

0.0 2.4 4.8 0.0 0.5 1.0
B (<0 W I <10
s @ 17 ()
g %g
= 10 20 30 185 10 20 30
0.00 1.98 3.96 0.0 0.5 1.0)
B (<0 I <10
bS]
B R cci— ©
.C: 1 - -
= 15 - -
=70 10 20 30 0 10 20 30
0.0 2.4 4.8 0.0 0.5 1.0

— <10

- ‘
| [T

z index index

Figure 4.10: Kinetic rates of reaction (a)-(c) for designs shown in Figure 4.9 along
with molar fraction of reactant (d)-(f).

Some designs made by the RL agent are shown in Figure 4.11. (a) is an early
generational design. (b) is a later design and accomplishes a significant 31 % higher
conversion rate than (a). The higher rate could be due to lesser degree of clustering,
as (b) appears more porous, allowing fewer droughts of reactant concentration. (c)
features elongated columns of sites, effectively consisting of 16 single active sites.
The setup was made to fine-tune the design in Figure 4.9 (c¢). (d) features volume
blockages shown as white squares. Designs (b)-(d) outperform all manual designs
in Figure 4.9, see Table 4.1.

Catalyst reaction rates and molar fractions of reactant for the RL agent placements
in Figure 4.11 are shown in Figure 4.12. All reaction rates (b)-(d) appear to be
quite even, but the reaction rates in the early generational placements in (a) are
not as even and generally lower. The reaction rates are again reflected by the molar
fractions of reactant in (e)-(h).

36

4. Results

x index

0 10 20 30
z index

Figure 4.11: Catalyst site placements in a narrow channel by the RL agent with
16 active sites. (a) an example of site placement with tendencies of clustering.
(b) a better found placement with 31 % higher reactant conversion rate than (a).
(c) active site placements under the constraint that sites are placed in columns.
(d) active site placements with added obstacles (white squares). Designs (b)-(d)
surpass all designs in Figure 4.9 in conversion rate.

37

4. Results

[kgmol/(m?s)]
0.000 2.205 4.410

[e U

| T——

10 20 30

y index
y index

y index
it
o~
.|
~
=3

N

y index

0.0 2.4 4.8 0.0 0.5 1.0

B [x! |- : I <102
: e
0 10 20

T

30

y index
N,
o~
~
o
N
y index

0.00 2.33 4.66 0.0 0.5 1.0

I <10 | I <107
. -, — - e (h)
CEss e~ A

0 20 30

0 1
2 index x index

y index
(AN,
oo~

~
o
N
y index
2l

Figure 4.12: Kinetic rates of reaction (a)-(d) for designs shown in Figure 4.11
along with molar fraction of reactant (e)-(h).

Table 4.1: Comparisons of conversion rates relative to Figure 4.9 (a). All three
best-found RL agent placements in Figure 4.11 are highlighted in bold text and
outperform the manual reference placements in Figure 4.9. The designs in Figure
4.1 are also included to compare with a few different geometries. Out of the designs
in Figure 4.1, (a) performs the best.

Chip design || Relative conver-
(Figure number) || sion rate
4.1 (a) 1.707
4.1 (b) 1.437
4.1 (c) 1.378
4.9 (a) 1.000
4.9 (b) 1.457
4.9 (c) 1.604
4.11 (a) 1.258
4.11 (b) 1.646
4.11 (c) 1.663
4.11 (d) 1.651

Upon investigation of the site placements with included volume blockages, active
sites appear to be placed mostly at areas of increased dynamic pressure. The ones
at the inlet are an exception, as the static pressure is the highest at the inlet, and
seems to contribute more than dynamic pressure. Figure 4.13 shows the active site
placements in Figure 4.11 (d) with dynamic pressure in the background.

38

4. Results

Summarizing the results in section 4.3, the RL agent is able to outperform all nar-
row tunnel reference designs. Additionally, it outperforms the designs in Figure 4.1
(b) and (c), but not (a). 4.1 (a) and (b) have the same catalyst placements, but
not the same geometries. Evidently, the geometry alters the relative conversion rate
significantly from 1.437 to 1.707. The four-tunnel design in Figure 4.1 (a) may be
especially suited from supplying a high amount of reactant to all catalysts, while
not building up too high droughts of reactant such as design 4.1 (b) due to placing
all catalysts after each other. Narrower tunnels appear especially apt at achieving
high conversion rate, but the geometry of the tunnel plays an important role as well.

However, the Reynolds number also changes the conversion rate. It was found
that lowering the Reynolds sufficiently made the conversion rate of design 4.1 (b)
higher than (a). This could for example be due to better mixing in design 4.1 (b),
or it could be an artifact of the CFD simulation. Figure 4.2 shows an increased
dynamic pressure between for example the top-left catalyst and the top-middle-left
catalyst. This could indicate leakage from the tunnel into the fully blocked area,
which physically cannot happen but would nevertheless likely lower conversion rate.

Dynamic pressure [Pa]
0.00 0.92 1.84

E I <107

T index

Figure 4.13: Active site placements from Figure 4.11 (d) with dynamic pressure
in the background. Active sites are mostly placed at areas of increased dynamic
pressure.

4.4 Ruthenium-iron reactor optimization

To test the RL agent in a more complex scenario, it was trained to place 20
ruthenium-like and 20 iron-like active sites. The best found placement is seen in
Figure 4.14 (b). Additionally, it was trained to also place 10 obstacles. The best
found placement with obstacles is seen in (c) A manual placement was also made
for comparison, which is seen in (a). The RL agent outperformed the manual place-
ment in both cases, see Table 4.2. Interestingly, the agent had quite the different
approach from the manual placement. The manual placement was made to not ac-
cumulate product for the ruthenium-like active sites by placing them early. The RL
agent instead tends to place ruthenium-like sites after iron-like sites.

39

4. Results

(a)

3 15
< 16
S 17
18
> 0 10 20 30
T Index
v (b)
S 15-
< 16 -
=y
18
> 0 10 20 30
T index
« - (C)
< 16
S 17
18
> 0 10 20 30
x index

B Iron-like
B Ruthenium-like
O Obstacle

Figure 4.14: Placements of ruthenium- and iron-like active sites in narrow tunnels.
(a) manual placement made as a baseline. (b), (c¢) RL agent placements without
and with added obstacles, respectively. Both (b) and (c) outperform (a).

Table 4.2: Reactant conversion rates for placements in Figure 4.14, relative to 4.14
(a). (b) and (c) are 6.5 % and 6.7 % better than (a), respectively.

Chip design || Relative conver-
(Figure number) || sion rate

4.14 (a) 1.000

4.14 (b) 1.065

4.14 (c) 1.067

The differences in conversion rate in Table 4.2 are not significant, but the agent was
only tested against a design similar to previously high-performant designs, such as
Figure 4.9 (c). Additionally, the chosen reactivities for ruthenium- and iron-based
catalysts were chosen heuristically. As argued in more detailed in section 5, increas-

40

4. Results

ing the overall reactivity could also increase differences in conversion rate. Still, even
small increases in conversion rate could potentially make a significant economical
difference in an industry such as ammonia synthesis.

Kinetic rates of reaction for the designs are shown in Figure 4.15. The column
design is again less active for the middle catalyst sites. The RL agent designs are
moderately even in site reactivities and feature an overall increase in reactivity.

[kgmol/(m?s)]
0.000 2.655

0.000 1.645 3.290

e A U

R
0 10 20 30
x index

y index

[kgmol/(m*s)]
1.26,

0.000 i} 2.530

x1074

(d)

[
Co~JOt

0 10 20 30
0.0 2.4 48
x107*

(e)

b
Co~IOUt
| !

o

10 20 30

0.00 2.37 4.74

<0

I ®
17
18
0 10 20 30
 index

Figure 4.15: Kinetic rates of reaction (a)-(c) for ruthenium-like sites and (d)-(f)
iron-like sites for the designs shown in Figure 4.14.

Additionally, molar fractions of reactant are shown in Figure 4.16.

41

4. Results

0.0 0.5 1.0

 — | I <10

0 10 20 30
x index

Figure 4.16: Molar fractions of reactant for the designs shown in Figure 4.14,
respectively.

The molar fractions of reactant for the RL agent placements are overall more even
than the manual placement. The manual placement suffers from a drought from
index 20 and onward. The more even molar fraction of reactant may explain the
better conversion rate in the RL-designed chips.

4.5 Designing geometries with Ant Fluid

The final test was to design channels and place active sites simultaneously using ant
fluid. One test case was investigated, where an agent was given the task to place 20
ruthenium-like and 20 iron-like active sites.

4.5.1 Correlation between CFD and ACO rewards

To motivate the use of ant fluid over CFD simulations, it has to be sufficiently
correlated with the CFD simulations. Otherwise, the optimization tasks may be
too far apart and optimizing ant fluid rewards may not lead to an increase in CFD
rewards. Figure 4.17 shows a comparison of ant fluid rewards with CFD rewards.
During training, ant fluid was used. After training, CFD was used on checkpoints

42

4. Results

0 25 50 75 100 125 150 175
(Generation

Figure 4.17: Comparison of rewards from the ant fluid reward system (ACO) and
the CFD-based reward system (CFD). The rewards were standardized by subtracting
their means and dividing by standard deviation. The Pearson correlation coefficient
for the two reward series is 0.907, suggesting a strong positive correlation. Since the
rewards from ant fluid correlate well with the rewards from the CFD-based reward
system, the optimization tasks are similar and motivates the use of the much more
computationally efficient ant fluid.

of particle placements to evaluate the quality of the placements. The Pearson corre-
lation coefficient between the two series is 0.907, suggesting a quite strong positive
correlation.

The heights extracted from ant fluid affect the CFD reward system by restricting
the flow to pass via the channels. Roughly the same proportion of fluid should pass
through the active sites as the proportion of ants, which may explain the correlation
between the reward systems.

4.5.2 Resulting chip design

The agent was able to improve conversion rate by 39 % compared to after the first
generation of training the agent. Here, one generation corresponds to sampling a
batch of chips and running PPO on them. However, when comparing with a manual
design where 20 ruthenium-like sites were placed by the inlet and 20 iron-like sites

43

4. Results

] (b)
9 0.0251
172]
58 £ 0.0001
g =
B 71 8 .
3 —0.025 +
~ g o
6 " —— Training rewards 5.
] A 4
Y ===- Test rewards 050
5 N i
0 50 100 150 0 50 100 150
(c) (d)
0.6 1 =
é g 0.008 -
< 0.41 g
a1 S 0.006
0 50 100 150 0 50 100 150
Generation

Figure 4.18: Statistics from training an agent with the ant fluid reward system with
20 ruthenium-like active sites and 20 iron-like active sites. (a) the average rewards
from sampling during training and the test rewards from placing active sites on
the highest policy values each step. (b) LEMP from equation (2.10) per generation.
(c) the value network loss per generation. (d) the entropy of the network policy.
The entropy decreases overall, signaling that the policy becomes more and more
deterministic. The best chip placement from the training session increased reactant
conversion rate by 39 % compared with the first generation of training.

were placed halfway to the outlet, the agent was found to give a conversion rate of
87.7 % of that of the manual design. Some similarities are prevalent in both designs,
such as the tendency to put active sites in columns, but also to place ruthenium

sites first, see Figure 4.19.

44

4. Results

0 25 50 75 100 125 0 25 50 75 100 125
z index x index

B Iron-like
B Ruthenium-like

Figure 4.19: (a) manual design of a ruthenium-iron reactor and (b) a design
where the geometry and active sites have been decided by the RL agent.

45

4. Results

46

O

Discussion

In this chapter, results are interpreted and alternative approaches and further devel-
opments are discussed. Additionally, the practical applicability of the framework is
discussed to put into perspective the challenges and limitations of using the frame-
work for design of real nanofluidic chips.

5.1 Practical applicability

The RL agent has been shown to be capable of optimizing simulated nanofluidic
chips in a variety of different situations. However, the model is not at its current
state fully mature for creating real nanofluidic chips optimized for high conversion
rate. Currently, it serves as a proof-of-concept to demonstrate that such a framework
is feasible for complex fluid dynamical optimization. The practical applicability is
mostly limited by lack of knowledge of physical quantities, as most quantities were
merely heuristically estimated in the simulations.

When applying the framework on real nanofluidic chips, it is important to approx-
imately know certain physical quantities of the chip, since the reward system must
accurately be able to simulate the environment to be useful. Some important quan-
tities are the Reynolds and Schmidt numbers, which affect the fluid dynamics. Addi-
tionally, catalyst reactivities in ANSYS Fluent should be motivated by experiments
or theory.

5.2 CFD reward system

The reward system is crucial for the success of the reinforcement learning agent. If
the CFD rewards do not accurately emulate the behavior of an actual nanofluidic
chip, the agent will likely not be useful in practice. Future work includes building
and testing the Al-designed nanofluidic chips to see if the conversion rates from the
CFD solver are correct. It would be especially relevant to try variations of narrow
chip designs and comparing with the RL agent chips, since the conversion rate ap-
pears to vary more dramatically in these settings. Additionally, wide chip canvases
with many catalysts could also be interesting to compare with RL agent-designed
chips, since these settings introduce more possible chip configurations and create
greater droughts of reactant fluid.

47

5. Discussion

While CFD likely is the currently most accurate way of simulating the nanoflu-
idic chip functionality, it enforces a major bottleneck when training a reinforcement
learning agent. For scalable training of RL agents, an efficient GPU implementation
may be beneficial for parallel computation on the fine computational mesh. All CFD
simulations were run on a single 6-core CPU, which is sub-optimal.

Reaction rates were kept quite low in the simulation tool. Higher reaction rates
caused instabilities, long simulation times and poor estimates of conversion rate. As
a result, about 4-10 % normally converted to product, which is moderately low. Op-
timizations may be greater if the reaction rate can be brought up, since for example
reactant droughts would be even larger and the placements by the RL agents could
have a more dramatic effect. For more realistic simulations of a nanofluidic chip en-
vironment, catalysts should also be given volumes, so that the catalysts themselves
may alter the flow to a greater extent. Currently, a segment of the bottom plate of
a simulated nanofluidic chip is activated if a catalyst is placed there, neglecting the
volume of the catalyst and viewing it as a surface element.

5.3 Ant Fluid

The ant fluid reward system conveniently optimizes the number of ants reaching
an active site, but it does not directly capture aspects such as pressure drop or
decreasing reactant concentration in the wake of an active site. When only iron-type
catalysts exist, there is a tendency of forming a single tunnel and placing particles in
a row. Such a solution is expected by use of the reward system, but is typically not
near-optimal. More useful solutions are typically acquired when both ruthenium-
like and iron-like sites exist, which is suggested from the strong correlation with
CFD rewards in Figure 4.17. A future development could be to make ant fluid more
realistic and to take into account pressure drop or similar effects.

5.4 Other approaches for building obstacles

The framework can readily assign heights to obstacles due to an additional neural
network with the same structure as the upsampling decoder in the policy network.
However, since the computational mesh is discretized in height, the heights given as
output from the network cannot vary continuously, posing problems during training.
As such, only total volume blockages were tested with CFD rewards.

Other stochastic optimization algorithms such as genetic algorithms can also be
used for producing obstacles with varying heights [32, chapter 3]. The canvas grid
could then be viewed as a two-dimensional chromosome in a genetic algorithm, where
each free cell is assigned a height after placing active sites. The genetic algorithm
could then be applied as a post-processing step, where the best found chip is chosen
and fine-tuned with obstacles. However, the described pipeline requires evaluating
the expensive CFD objective function again several times.

48

5. Discussion

5.5 Discretized fluid simulations

Using discretized particle simulations over CFD can in many situations be detri-
mental. With implementations such as k-d trees, the time complexity can be made
O(nlogn), where n is the number of particles [42], [43]. In macroscopic situations,
CFD may be a better choice since the amount of particles needed to accurately sim-
ulate fluid dynamics can make it infeasible to use discretized particle simulations.
However, since the discrete nature is more evident on the nanoscale, and because
the amount of particles involved in the flow is smaller, discretizing the simulations
may bring benefits.

One benefit with discretized particle simulations could be that catalyst poisoning is
more accurately replicated. The poisoning could then be reproduced by giving am-
monia particles a probability of sticking to ruthenium catalysts and blocking other
particles from sticking to them by taking up a part of the catalyst area. Because
of the probabilistic nature, these simulation would need to be averaged over time in
order to get accurate results. Depending on the number of particles used and the

number of averaging steps, the simulation could potentially be more computationally
efficient than CFD.

5.6 Alternative reinforcement learning schemes

Other reinforcement learning schemes than policy gradient have also been consid-
ered. One such approach would be a deep Q-network (DQN) in the setting of deep
Q-learning. The problem with DQN in this context, however, is the explosively large
action space.

One setting with DQN would be to form one new subgraph for each possible par-
ticle placement given a partially placed graph. The Q-network would then rate all
possible graphs. The graph corresponding to the highest Q-value is then chosen as
the next state. The task that the DQN is responsible for is then simply to recognize
how a well-performing graph is structured. With an example of 20 particles of a
single species and a 128 x 128 grid, the number of possible actions is approximately
(128 - 128)2°0 ~ 2 - 1034,

While deep Q-learning allows the use of a replay buffer, the buffer cannot nearly
be in the same order of magnitude as the number of states due to memory limita-
tions. The learning task itself may potentially be easier. A policy network outputs
128 x 128 individual numbers, whereas DQN would only need to output one number
per graph candidate. Policy gradient also does not allow a universal replay buffer,
since the policy continuously gets updated. The sampling efficiency may thus be
considerably lower for policy gradient, but it does not suffer from the same action
space difficulties that deep Q-learning does. Additionally, the implemented PPO
method appears capable of learning near-optimal solutions for a variety of different
graph problems.

49

5. Discussion

50

O

Conclusion

An environment based on deep reinforcement learning has been developed for opti-
mizing the design of fluidic reactor systems. Additionally, a minor investigation of
what makes a high-quality chip design was conducted, in order to interpret acquired
results. Findings point towards active catalyst sites placed at areas of high static
and dynamic pressure with well-mixed reactant solution having the highest reac-
tivity. Agents have been shown to successfully optimize fluid dynamical situations
corresponding to nanofluidic chips, often being able to balance high pressure with
high reactant concentration.

Agents were tested in a few feasible scenarios to showcase some use cases of the
framework, such as optimized catalyst placements in wide or narrow chip canvases.
Both scenarios are relevant since nanofluidic chips may take different shapes, caus-
ing different optimization tasks. The agent was the most successful in the narrow
chip scenario, where catalysts have to be more closely packed. Nanofluidic chips
optimized for high conversion rate could for example be used for increased synthesis
of ammonia or other desirable chemicals. While optimizing the conversion rate, the
framework could also remove part of the manual labor required to design nanoflu-
idic chips. Since chips are designed through trial-and-error, the framework may also
reduce material loss by instead simulating the chip environment. The next step is
to build actual nanofluidic chips suggested by the RL environment. If successful,
the environment can be used by Langhammer Lab for future design of nanofluidic
chips for better conversion rate or other desirable properties.

The framework itself is not specific to nanofluidic chip design and can be adapted
to other problems simply by changing the objective function. A few examples were
tested in order to showcase the generality of the framework, such as minimizing or
maximizing distance, or forming clusters of components. Clearly, these optimization
tasks are toy systems, but are widely different from the CFD-based reward system.
As the framework was designed to be generally applicable, it could hypothetically be
used for optimizing several other LOC systems, or even completely different scenar-
ios where different components need to placed in relation to each other to optimize
some quantity. As LOCs are increasingly used, the framework may find increasingly
more use cases.

Additionally, the ant fluid reward system was developed, where policy gradient and

ant colony optimization work in tandem. The reward system is considerably faster
during training compared with CFD simulations, but requires some development in

51

6. Conclusion

order to be useful for chip design. While this reward system likely would not find
uses in its current state, it is a first step for a computationally lighter reward system
and a novel application of ACO for CFD-based optimization tasks.

52

Bibliography

Y. C. Lim, A. Z. Kouzani, and W. Duan, “Lab-on-a-chip: A component view”,
Microsystem Technologies, vol. 16, no. 12, pp. 1995-2015, 2010.

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual
molecules”, Nanoscience and Technology: A Collection of Reviews from Nature
Journals, pp. 330-336, 2010.

D. Figeys and D. Pinto, Lab-on-a-chip: A revolution in biological and medical
sciences. 2000.

S. Levin, J. Fritzsche, S. Nilsson, A. Runemark, B. Dhokale, H. Strom, H.
Sundén, C. Langhammer, and F. Westerlund, “A nanofluidic device for paral-
lel single nanoparticle catalysis in solution”, Nature communications, vol. 10,
no. 1, pp. 1-8, 2019.

A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J.
Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong, K. Srinivasa,
W. Hang, E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho, R. Carpenter,
and J. Dean, Chip placement with deep reinforcement learning, 2020. DOTI:
10.48550/ARXIV.2004.10746. [Online|. Available: https://arxiv.org/abs/
2004.10746.

R. Roy, J. Raiman, N. Kant, I. Elkin, R. Kirby, M. Siu, S. Oberman, S. Godil,
and B. Catanzaro, “Prefixrl: Optimization of parallel prefix circuits using deep
reinforcement learning”, in 2021 58th ACM/IEEE Design Automation Con-
ference (DAC), 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021 .9586094.

H. Daiguji, “5.08 - nanofluidics”, in Comprehensive Nanoscience and Nan-
otechnology (Second Edition), D. L. Andrews, R. H. Lipson, and T. Nann, Eds.,
Second Edition, Oxford: Academic Press, 2011, pp. 207-228, 1SBN: 978-0-12-
812296-9. DOIL: https://doi.org/10.1016/B978-0-12-812295-2.00132-X.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/B978012812295200132X.

W. Sparreboom, A. van den Berg, and J. C. Eijkel, “Principles and applications
of nanofluidic transport”, Nature nanotechnology, vol. 4, no. 11, pp. 713-720,
20009.

J. M. Modak, “Haber process for ammonia synthesis”, Resonance, vol. 7, no. 9,
pp. 69-77, 2002.

53

https://doi.org/10.48550/ARXIV.2004.10746
https://arxiv.org/abs/2004.10746
https://arxiv.org/abs/2004.10746
https://doi.org/10.1109/DAC18074.2021.9586094
https://doi.org/https://doi.org/10.1016/B978-0-12-812295-2.00132-X
https://www.sciencedirect.com/science/article/pii/B978012812295200132X
https://www.sciencedirect.com/science/article/pii/B978012812295200132X

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

o4

J. Kim, H. J. Kim, and S. Chang, “Synthetic uses of ammonia in transition-
metal catalysis”, Furopean Journal of Organic Chemistry, vol. 2013, no. 16,
pp- 3201-3213, 2013.

S. Giddey, S. Badwal, C. Munnings, and M. Dolan, “Ammonia as a renew-
able energy transportation media”, ACS Sustainable Chemistry € Engineer-
ing, vol. 5, no. 11, pp. 10231-10239, 2017.

V. Smil, Enriching the earth: Fritz Haber, Carl Bosch, and the transformation
of world food production. MIT press, 2004.

Z. You, K. Inazu, K.-i. Aika, and T. Baba, “Electronic and structural pro-
motion of barium hexaaluminate as a ruthenium catalyst support for ammo-
nia synthesis”, Journal of Catalysis, vol. 251, no. 2, pp. 321-331, 2007, ISSN:
0021-9517. DOI: https://doi.org/10.1016/j.jcat.2007.08.006. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S50021951707003168.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation”, in Advances in
Neural Information Processing Systems, S. Solla, T. Leen, and K. Miiller,
Eds., vol. 12, MIT Press, 1999. [Online]. Available: https://proceedings.
neurips . cc / paper /1999 / file / 464d828b85b0bed98e80ade0abc43b0f -
Paper.pdf.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms”, in Proceedings of the 31st Inter-
national Conference on Machine Learning, E. P. Xing and T. Jebara, Eds.,
ser. Proceedings of Machine Learning Research, vol. 32, Bejing, China: PMLR,
22-24 Jun 2014, pp. 387-395. [Online|. Available: https://proceedings.mlr.
press/v32/silver14.html.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep g-learning
with model-based acceleration”, in Proceedings of The 33rd International Con-
ference on Machine Learning, M. F. Balcan and K. Q. Weinberger, Eds.,
ser. Proceedings of Machine Learning Research, vol. 48, New York, New York,
USA: PMLR, 20-22 Jun 2016, pp. 2829-2838. [Online]. Available: https :
//proceedings.mlr.press/v48/gul6.html.

J. Peters and S. Schaal, “Natural actor-critic”, Neurocomputing, vol. 71, no. 7,
pp- 11801190, 2008, Progress in Modeling, Theory, and Application of Com-
putational Intelligenc, 1SSN: 0925-2312. DOI: https://doi.org/10.1016/j.
neucom. 2007 . 11.026. [Online]. Available: https://www.sciencedirect .
com/science/article/pii/S0925231208000532.

D. Wierstra, A. Forster, J. Peters, and J. Schmidhuber, “Recurrent policy
gradients”, Logic Journal of the IGPL, vol. 18, no. 5, pp. 620-634, 2010.

J. Schulman, S. Levine, P. Moritz, M. 1. Jordan, and P. Abbeel, Trust re-
gion policy optimization, 2015. DOI: 10.48550/ARXIV.1502.05477. [Online].
Available: https://arxiv.org/abs/1502.05477.

https://doi.org/https://doi.org/10.1016/j.jcat.2007.08.006
https://www.sciencedirect.com/science/article/pii/S0021951707003168
https://www.sciencedirect.com/science/article/pii/S0021951707003168
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v48/gu16.html
https://doi.org/https://doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/https://doi.org/10.1016/j.neucom.2007.11.026
https://www.sciencedirect.com/science/article/pii/S0925231208000532
https://www.sciencedirect.com/science/article/pii/S0925231208000532
https://doi.org/10.48550/ARXIV.1502.05477
https://arxiv.org/abs/1502.05477

Bibliography

[21]

[22]

[23]

[20]

28]

[29]

[30]

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Prozimal
policy optimization algorithms, 2017. DOI: 10 . 48550/ ARXIV . 1707 . 06347.
[Online]. Available: https://arxiv.org/abs/1707.06347.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Ge-
ometric deep learning: Going beyond euclidean data”, IEEFE Signal Processing
Magazine, vol. 34, no. 4, pp. 18-42, 2017. DO1: 10.1109/MSP.2017.2693418.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M.
Sun, Graph neural networks: A review of methods and applications, 2018. DOT:
10.48550/ARXIV.1812.08434. [Online]. Available: https://arxiv.org/abs/
1812.08434.

P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from non-
enzymes without alignments”, Journal of Molecular Biology, vol. 330, no. 4,
pp. 771-783, 2003, 1sSN: 0022-2836. DOI: https://doi.org/10.1016/S0022-
2836(03) 00628-4. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0022283603006284.

L. Huang, D. Ma, S. Li, X. Zhang, and H. Wang, “Text level graph neural
network for text classification”, arXiv preprint arXiw:1910.02356, 2019.

Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Velickovi¢,
Combinatorial optimization and reasoning with graph neural networks, 2021.
DOI: 10.48550/ARXIV.2102.09544. [Online|. Available: https://arxiv.org/
abs/2102.09544.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural
networks”, CoRR, vol. abs/1810.02244, 2018. arXiv: 1810 .02244. [Online].
Available: http://arxiv.org/abs/1810.02244.

M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch
Geometric”, in ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
Graph attention networks, 2017. DOI: 10.48550/ARXIV.1710.10903. [Online]|.
Available: https://arxiv.org/abs/1710.10903.

T. Cai, S. Luo, K. Xu, D. He, T.-Y. Liu, and L. Wang, Graphnorm: A prin-
cipled approach to accelerating graph neural network training, 2020. DOI: 10.
48550/ ARXIV.2009.03294. [Online|. Available: https://arxiv. org/abs/
2009.03294.

J. Tumlinson, J. Moser, R. Silverstein, R. Brownlee, and J. Ruth, “A volatile
trail pheromone of the leaf-cutting ant, atta texana”, Journal of Insect Phys-
tology, vol. 18, no. 5, pp. 809-814, 1972, 1sSN: 0022-1910. DOI: https://
doi . org/10.1016/0022-1910(72) 90018~ 2. [Online|. Available: https :
//www.sciencedirect.com/science/article/pii/0022191072900182.

M. Dorigo and T. Stiitzle, “Ant colony optimization: Overview and recent
advances”, Handbook of metaheuristics, pp. 311-351, 2019.

95

https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.48550/ARXIV.1812.08434
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434
https://doi.org/https://doi.org/10.1016/S0022-2836(03)00628-4
https://doi.org/https://doi.org/10.1016/S0022-2836(03)00628-4
https://www.sciencedirect.com/science/article/pii/S0022283603006284
https://www.sciencedirect.com/science/article/pii/S0022283603006284
https://doi.org/10.48550/ARXIV.2102.09544
https://arxiv.org/abs/2102.09544
https://arxiv.org/abs/2102.09544
https://arxiv.org/abs/1810.02244
http://arxiv.org/abs/1810.02244
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.48550/ARXIV.2009.03294
https://doi.org/10.48550/ARXIV.2009.03294
https://arxiv.org/abs/2009.03294
https://arxiv.org/abs/2009.03294
https://doi.org/https://doi.org/10.1016/0022-1910(72)90018-2
https://doi.org/https://doi.org/10.1016/0022-1910(72)90018-2
https://www.sciencedirect.com/science/article/pii/0022191072900182
https://www.sciencedirect.com/science/article/pii/0022191072900182

Bibliography

[32] M. Wahde, Biologically inspired optimization methods: an introduction. WIT
press, 2008.

[33] G. Wang, F. Yang, and W. Zhao, “There can be turbulence in microfluidics
at low reynolds number”, Lab on a Chip, vol. 14, no. 8, pp. 1452—-1458, 2014.

[34] E. Michaelides, “Nanofluidics”, Cham: Springer International Publishing, 2014.

[35] R. D. Sochol, K. Iwai, J. Lei, D. Lingam, L. P. Lee, and L. Lin, “A single-
microbead-based microfluidic diode for ultra-low reynolds number applica-
tions”, in 2012 IEEFE 25th International conference on micro electro mechan-
ical systems (MEMS), IEEE, 2012, pp. 160-163.

[36] R. Fishler, M. K. Mulligan, and J. Sznitman, “Mapping low-reynolds-number
microcavity flows using microfluidic screening devices”, Microfluidics and nanoflu-
idics, vol. 15, no. 4, pp. 491-500, 2013.

[37] D. Camuffo, “Chapter 8 - dry deposition of airborne particulate matter: Mech-
anisms and effects”, in Microclimate for Cultural Heritage (Second Edition),
D. Camuffo, Ed., Second Edition, Boston: Elsevier, 2014, pp. 283-346, ISBN:
978-0-444-63296-8. DOIL: https://doi.org/10.1016/B978-0-444-63296-
8.00009-3. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780444632968000093.

[38] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard ar-
tifacts”, Distill, 2016. DOL: 10.23915/distill . 00003. [Online]. Available:
http://distill.pub/2016/deconv-checkerboard.

[39] C. Dong, C. C. Loy, K. He, and X. Tang, Image super-resolution using deep
convolutional networks, 2015. DOIL: 10 .48550/ARXIV. 1501 .00092. [Online|.
Available: https://arxiv.org/abs/1501.00092.

[40] ANSYS, Fluent - CFD Software, version R1, 2022. [Online|. Available: http:
//www.ansys.com/products/fluids/ansys-fluent.

[41] J. Fritzsche, D. Albinsson, M. Fritzsche, T. J. Antosiewicz, F. Westerlund, and
C. Langhammer, “Single particle nanoplasmonic sensing in individual nanoflu-
idic channels”, Nano letters, vol. 16, no. 12, pp. 7857-7864, 2016.

[42] D.-J. Kim, L. J. Guibas, and S.-Y. Shin, “Fast collision detection among
multiple moving spheres”, IEEE Transactions on Visualization and Computer
Graphics, vol. 4, no. 3, pp. 230-242, 1998.

[43] J. Schauer and A. Nichter, “Collision detection between point clouds using an
efficient kd tree implementation”, Advanced Engineering Informatics, vol. 29,
no. 3, pp. 440-458, 2015.

[44] M. Ulmestrand, Algorithmically perfect colormaps, Jul. 2022. [Online]. Avail-
able: https://github.com/m-ulmestrand/perfect-cmaps.

56

https://doi.org/https://doi.org/10.1016/B978-0-444-63296-8.00009-3
https://doi.org/https://doi.org/10.1016/B978-0-444-63296-8.00009-3
https://www.sciencedirect.com/science/article/pii/B9780444632968000093
https://www.sciencedirect.com/science/article/pii/B9780444632968000093
https://doi.org/10.23915/distill.00003
http://distill.pub/2016/deconv-checkerboard
https://doi.org/10.48550/ARXIV.1501.00092
https://arxiv.org/abs/1501.00092
http://www.ansys.com/products/fluids/ansys-fluent
http://www.ansys.com/products/fluids/ansys-fluent
https://github.com/m-ulmestrand/perfect-cmaps

A

Appendix 1

A.1 Custom colormap

A custom colormap has been used in Figures 3.4, 3.5 and 3.5. The colormap was de-
signed to be diverging, yet sequential, while being algorithmically perfectly linear in
intensity and nearly perfectly linear in luminance. Luminance means the perceived
intensity, where the red, green and blue channels are given different weights due to
the human eye having different sensitivity to each channel. The intensities for each
channel, total intensity and luminance are shown in Figure A.1. To demonstrate
the sequential structure of the colormap, Figure A.2 shows the colors given by the
colormap for inputs in the range 0 to 1 along with its grayscale-converted counter-
part. The colormap is nicknamed cold blooded because of the transition from blood
red to icy blue, see Ulmestrand [44].

A. Appendix 1

1.0+ Red

—— Green
0.81 —— Blue

---- Intensity
0.6+ —— Luminance
0.4 -
0.2 1
0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure A.1l: Intensity profiles for red, green and blue channels along with total
intensity and luminance for the “cold blooded” colormap.

Figure A.2: The profile from values 0 (left corner) to 1 (right corner) for the
“cold blooded” colormap along with its grayscale counterpart. Both versions are
perceptually sequential and no visible artifacts are present.

IT

B

Appendix 2

The most frequently used neural network and PPO parameters are given in Table

B.1.

Table B.1:

Most frequently used neural network and PPO parameters.

Some

deviations from below setting occur in the methodology chapter, but all of the main
results were acquired with these settings.

Neural network parameters

Parameter 32 x 32 128 x 128
Graph encoder layers 1 1
Graph encoder hidden neurons 512 512
Graph encoder output neurons 128 512
Attention layers 3 3
Attention layers heads 8 8
Upsampling layers 3)
Proximal policy optimization parameters
Parameter Value
Policy network learning rate 2.00-107°
Value network learning rate 1.00-107%
Value loss factor ¢; 0.75 - 10°
Entropy factor co 1.00-1073
Clip value € 2.00-1071

Additionally, the used hardware specification is given in Table B.2.

Table B.2: Used hardware specification for training the RL agent and running
various simulations.

Hardware specification
Hardware | Specification
GPU NVidia GeForce GTX 1080
CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70 GHz
RAM 16.0 GB

ITT

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden
www.chalmers.se

CHALMERS

UNIVERSITY OF TECHNOLOGY

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Theory
	Nanofluidic chips
	Catalysis
	Reaction kinetics

	Policy Gradient
	Advantage functions and actor-critic networks
	Trust Region Policy Optimization
	Proximal Policy Optimization
	Sampling methods
	Standard sampling
	-greedy
	Policy-informed -greedy

	Geometric Deep Learning
	Graph Convolutional Networks

	Ant Colony Optimization
	Fluid Dynamics
	Discrete blockages or continuous channels

	Methodology
	Model architecture
	Supervised tuning of graph encoder
	Model verification on toy systems
	Comparison of sampling algorithms
	Active components
	Inhibitory components
	Other toy systems
	Adding Ant Colony Optimization

	Reward systems for designing nanofluidic chips
	Computational Fluid Dynamics
	Ant Fluid

	Results
	Manual placements
	Wide tunnel optimization
	Narrow tunnel optimization
	Ruthenium-iron reactor optimization
	Designing geometries with Ant Fluid
	Correlation between CFD and ACO rewards
	Resulting chip design

	Discussion
	Practical applicability
	CFD reward system
	Ant Fluid
	Other approaches for building obstacles
	Discretized fluid simulations
	Alternative reinforcement learning schemes

	Conclusion
	Bibliography
	Appendix 1
	Custom colormap

	Appendix 2

