
Reliable Communication using
LoRaWAN for Industrial IoT devices

Master’s thesis in Computer science and engineering

Joar Blom Rydell

Oliver Otterlind

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021





Master’s thesis 2021

Reliable Communication using
LoRaWAN for Industrial IoT devices

Joar Blom Rydell
Oliver Otterlind

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021



Reliable Communication using LoRaWAN for Industrial IoT devices
Joar Blom Rydell
Oliver Otterlind

© Joar Blom Rydell, 2021.
© Oliver Otterlind , 2021.

Supervisor: Ismail Butun, Department of Computer Science and Engineering
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv



Reliable Communication using LoRaWAN for Industrial IoT devices
Joar Blom Rydell
Oliver Otterlind
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The Internet of Things (IoT) area is growing by the minute, with more and more de-
vices being connected to the internet. Long Range Wide Area Network (LoRaWAN)
is one technology that makes this possible. It is made to deliver long-range cover-
age while at the same time using low power. However, with the increasing demand
for low latency requirements on connected devices, the same requirements must be
fulfilled for the network technology. In particular, the Industrial Internet of Things
(IIoT) devices requires the network link to be of low latency and high reliability.

This thesis aims to evaluate LoRaWAN in terms of reliability. This evaluation
will be done by comparing the default reliability method against an alternative
method. In order to evaluate reliability, latency, Packet Delivery Rate (PDR) and
Packet Acknowledgment Rate (PAR) are important metrics to see how reliable the
communication is. Furthermore, having concrete values on these metrics will help
companies determine whether LoRaWAN is suitable for IIoT devices.

The proposed alternative reliability method is one found in the literature. It al-
ters the uplink and downlink windows of LoRaWAN by introducing a redundant
retransmission scheme. This scheme utilizes the Time-on-Air (ToA) of the previous
transmission for retransmissions instead of a static value LoRaWAN uses in the de-
fault protocol. It further adds a redundant retransmission step if the previous one
failed. This thesis shows that the alternative reliability method provides a signifi-
cant reduction in latency by 69%, an increase in PDR by 1.1% but at the cost of a
slightly lower PAR by 3%. Lower PAR is an indication of more network traffic and
power usage.

This thesis concludes that there are pros and cons to both methods. The default
method is better suited for dense networks with fewer requirements on latency and
higher requirements on battery power. In contrast, the alternative method is better
suited for less dense networks and higher latency requirements. These trade-offs are
ones the manufacturers need to consider when analyzing whether or not LoRaWAN
is suitable, that is, both in terms of the manufacturers’ environment requirements
but also the IIoT device requirements.

Keywords: Azure, Cloud, Gateway, IoT, IIoT, Latency, LoRa, LoRaWAN, LPWAN,
Reliability

v





Acknowledgements
First of all, we would like to thank our supervisor Ismail Butun for continuously
providing valuable support and feedback throughout our thesis work. We also want
to thank our examiner Marina Papatriantafilou for providing valuable input and
pointers throughout this thesis.

We want to thank the Department of Computer Science and Engineering for our
educations and support with the thesis. Special thanks to Lars Norén for helping
us acquire the necessary hardware that was needed to make this thesis doable.

Finally, we want to express our utmost gratitude to our friends and families for their
support throughout our years at Chalmers, as well as throughout this thesis. We
would not have succeeded if it was not for you. Thank you.

Joar Blom Rydell, Gothenburg, June 2021
Oliver Otterlind, Gothenburg, June 2021

vii





Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Background 5
2.1 Metrics and Reliability definition . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Packet Delivery Rate . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Packet Acknowledgment Rate . . . . . . . . . . . . . . . . . . 6
2.1.4 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 IoT central . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Azure Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 IoT Central Device Bridge . . . . . . . . . . . . . . . . . . . . 8

2.3 Signal theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Received Signal Strength Indicator . . . . . . . . . . . . . . . 8
2.3.2 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Tx-Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Spreading factor . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 Link Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6 Effective Radiated Power . . . . . . . . . . . . . . . . . . . . . 10
2.3.7 Modulation Techniques . . . . . . . . . . . . . . . . . . . . . . 10

2.3.7.1 Chirp Spread Spectrum . . . . . . . . . . . . . . . . 10
2.3.7.2 FDMA, TDMA, and OFDMA . . . . . . . . . . . . . 11
2.3.7.3 Phase shift keying . . . . . . . . . . . . . . . . . . . 11

2.3.8 Line-of-sight and Non-line-of-sight . . . . . . . . . . . . . . . . 11
2.4 LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 The LoRaWAN architecture . . . . . . . . . . . . . . . . . . . 12
2.4.2 Different device classes . . . . . . . . . . . . . . . . . . . . . . 13

ix



Contents

2.4.3 Duty Cycle and Data rates . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Default reliability in LoRaWAN . . . . . . . . . . . . . . . . . 15
2.4.5 Device join process . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.7 Payload and headers . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.7.1 Standard LoRaWAN . . . . . . . . . . . . . . . . . . 17
2.4.7.2 Adafruit CircuitPython RFM9x library . . . . . . . . 18

2.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Similar technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 SigFox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Weightless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.3 NB-IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Related Work 23
3.1 Adaptive Latency Reduction in LoRa for Mission Critical Communi-

cations in Mines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Allocation of Repetition Redundancy in LoRa . . . . . . . . . . . . . 24
3.3 High Reliability in LoRaWAN . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Improving Reliability and Scalability of LoRaWANs Through Lightweight

Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 DaRe: Data recovery through application layer coding for LoRaWAN 25
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Methods 27
4.1 Finding alternative reliability method for LoRaWAN . . . . . . . . . 27
4.2 The design of the testbed . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Azure IoT Central as back-end . . . . . . . . . . . . . . . . . 28
4.2.2 The set up of hardware . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 The testbed infrastructure . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.5 Data logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Physical testbed . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Test environments . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Design and Implementation 37
5.1 The network stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Implementing the underlying custom protocol . . . . . . . . . . . . . 38

5.2.1 Parts not implemented . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Parts implemented . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Implementing the alternative reliability method . . . . . . . . . . . . 42
5.4 Differences between the two reliability methods . . . . . . . . . . . . 44
5.5 Implementation challenges . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5.1 Hardware related challenges . . . . . . . . . . . . . . . . . . . 46
5.5.2 Azure related challenges . . . . . . . . . . . . . . . . . . . . . 46
5.5.3 Implementation difficulties . . . . . . . . . . . . . . . . . . . . 47

x



Contents

6 Results 49
6.1 Data collection on two different testbeds . . . . . . . . . . . . . . . . 49
6.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Packet Delivery Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1 Testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2 Testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Packet Acknowledgment Rate . . . . . . . . . . . . . . . . . . . . . . 56
6.4.1 Testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4.2 Testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.5 Received Signal Strength Indicator and Signal-to-noise ratio . . . . . 58
6.5.1 Testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.2 Testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 Comparison between Nessa et al.’s results and this thesis’s results . . 63

7 Discussion 65
7.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 LoRaWAN for IIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 The custom LoRaWAN infrastructure . . . . . . . . . . . . . . . . . . 69
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4.2 Latency with JS and NS . . . . . . . . . . . . . . . . . . . . . 70
7.4.3 Using a concentrator board for the gateway . . . . . . . . . . 71
7.4.4 Dynamic testing environment . . . . . . . . . . . . . . . . . . 71
7.4.5 Evaluate more methods . . . . . . . . . . . . . . . . . . . . . 71
7.4.6 Implement simulators . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusion 73

Bibliography 75

A Testbed 1 I

B Testbed 2 V

xi



Contents

xii



List of Figures

1.1 The network gap in which LoRaWAN and other LPWAN technologies
are trying to fill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Simple illustration of what is defined as latency in this thesis. . . . . 6
2.2 Example of different ways to display data on Azure IoT Central. In

the different graphs, the last 100 values are displayed for the respec-
tive metric and telemetry data. . . . . . . . . . . . . . . . . . . . . . 7

2.3 The LoRaWAN architecture. Image by Butun et al. [25]. . . . . . . . 13
2.4 Class A receive window diagram. . . . . . . . . . . . . . . . . . . . . 14
2.5 Class B receive windows. Contains a ping slot uplink and two receive

windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Class C receive window diagram. . . . . . . . . . . . . . . . . . . . . 15
2.7 One of six end-devices. Here, the Raspberry Pi, the LoRa RFM9x

module and the connector board are connected together. . . . . . . . 20
2.8 The RFM9x LoRa module. . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 An example of how Azure IoT central can be used to display the same
data in different ways. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The pin-outs on the LoRa module RFM9x and the Raspberry Pis. . . 31
4.3 One of the two testbeds containing two Pi 4 and one Pi 2B. . . . . . 32
4.4 The two testbeds and the distances that the end-devices had to their

gateway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 The network layers in the gateway as well as the end-devices. Impor-
tant to note is that the reliability is between the MAC-2 layers. The
arrows illustrate this communication. . . . . . . . . . . . . . . . . . . 38

5.2 Illustration of a log file. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Nessa et al.’s timing diagram. Image from their paper [6]. . . . . . . . 42
5.4 The two timing diagrams. One for the default method and one for the

alternative method, which is inspired by Nessa et al.’s timing diagram
[6]. Important to note here is that the ACK_TIMEOUT is of different
lengths in reality. In the alternative method, the ACK_TIMEOUT varies,
whereas, in the default, it is static. . . . . . . . . . . . . . . . . . . . 45

5.5 Simple flowchart showing what happens in the two different reliability
methods. Blue is the alternative method, and yellow is the default
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xiii



List of Figures

6.1 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . 52

6.2 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . 52

6.3 A scatter plot of the average latency value for each sample. Here,
both end-devices are shown for both reliability methods. The dotted
line is the average for all the samples combined. . . . . . . . . . . . . 53

6.4 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . 54

6.5 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . 54

6.6 A scatter plot of the average latency value for each sample. Here,
both end-devices are shown for both reliability methods. The dotted
line is the average for all the samples combined. . . . . . . . . . . . . 55

6.7 A scatter plot of the average PDR value for each sample on testbed
1. Here, both end-devices are shown for both reliability methods. The
dotted line is the average for all the samples combined. . . . . . . . . 56

6.8 A scatter plot of the average PDR value for each sample on testbed
2. Here, both end-devices are shown for both reliability methods. The
dotted line is the average for all the samples combined. . . . . . . . . 56

6.9 A scatter plot of the average PAR value for each sample. Here,
both end-devices are shown for both reliability methods. The dotted
line is the average for all the samples combined. . . . . . . . . . . . . 57

6.10 A scatter plot of the average PAR value for each sample. Here,
both end-devices are shown for both reliability methods. The dotted
line is the average for all the samples combined. . . . . . . . . . . . . 58

6.11 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . 59

6.12 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . 59

6.13 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . 60

6.14 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . 60

6.15 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . 61

xiv



List of Figures

6.16 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . 61

6.17 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . 62

6.18 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . 62

6.19 Nessa et al.’s average transmission delay versus the number of nodes
for confirmed packets. Image from their paper [6]. . . . . . . . . . . . 63

6.20 Nessa et al.’s DER (PDR) versus the number of nodes under different
kinds of traffic. Image from their paper [6]. . . . . . . . . . . . . . . . 64

A.1 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . I

A.2 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . II

A.3 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . II

A.4 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . III

A.5 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . III

A.6 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . IV

B.1 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . V

B.2 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
latency in seconds. Outliers have been removed from the box plot. . VI

B.3 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . VI

B.4 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
RSSI in dBm. Outliers have been removed from the box plot. . . . . VII

xv



List of Figures

B.5 A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . VII

B.6 A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is
SNR in dB. Outliers have been removed from the box plot. . . . . . VIII

xvi



List of Tables

2.1 The data rate for the EU433 band determined by the LoRa alliance
[16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The downlink message fields. . . . . . . . . . . . . . . . . . . . . . . 17
2.3 The uplink message fields. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The PHYPayload fields. The maximum MACPayload size is region

specific. Join-Accept is already an encrypted message, so MIC is
included in it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 The content of the MHDR field. . . . . . . . . . . . . . . . . . . . . 18
2.6 The eight different message types determined by the last three bits

in the MHDR field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 The 4-byte header used in the Adafruit library for the RFM9x module. 19
2.8 The 1 byte flag header-field. . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 The requirements that a possible reliability method had to fulfill. . . 27
4.2 The message payload that an end-device sends when trying to join

the gateway. S-Freq is the sending frequency, i.e., the speed at which
the end-devices sends telemetry data. . . . . . . . . . . . . . . . . . . 33

4.3 The message payload of the telemetry data that the end-devices send.
TransCount is the transmission counter of that particular message,
and the Time is the timestamp at which the message was sent. . . . . 33

5.1 Nessa et al.’s transmission parameters. . . . . . . . . . . . . . . . . . 43
5.2 The transmission parameters used in this thesis. . . . . . . . . . . . . 43
5.3 The key features for the two methods. . . . . . . . . . . . . . . . . . 44

6.1 The settings used for the five tests during the data collection. These
settings were used both for the default reliability method and the
alternative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 The latency results for the default and alternative method. It contains
both the results of this thesis as well as Nessa et al.’s [6]. . . . . . . . 63

6.3 The PDR results for the default and alternative method. It contains
both the results of this thesis as well as Nessa et al.’s [6]. . . . . . . . 64

7.1 All average PDR values for all end-devices for both methods and both
testbeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 All average PAR values for all end-devices for both methods on both
testbeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xvii



List of Tables

7.3 Average latency in milliseconds for all end-devices for both methods
and both testbeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4 Average RSSI in dBm for all end-devices for both methods and testbeds. 67
7.5 Average SNR in dB for all end-devices for both methods and testbeds. 68

xviii



List of Abbreviations

ABP Activation by Personalization
ACK Acknowledgment
ADR Adaptive Data Rate
AES Advanced Encryption Standard
ALOHA Additive Links On-line Hawaii Area
AM Alternative Method
AS Application Server
BPS Bits Per Second
BPSK Binary Phase Shift Keying
CR Coding Rate
CRC Cyclic Redundancy Check
CS Chip Select
CSS Chirp Spread Spectrum
DC Direct Current
DDR Data Delivery Rate
DM Default Method
EN Enable
ERP Effective Radiated Power
EIRP Effective Isotropic Radiated Power
E2E End-to-End
FDMA Frequency Division Multiple Access
FEC Forward Error Correction
GND Ground
GPIO General-Purpose Input/Output
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IIoT Industrial Internet of Things
JS Join Server
JSON JavaScript Object Notation
LoRa Long Range
LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Network
LTE Long-Term Evolution
mA milliampere
MAC Medium Access Control
MB/s Mega Byte per second
MHDR Message Header

xix



List of Abbreviations

MISO Microcontroller In Serial Out
MOSI Microcontroller Out Serial In
NS Network Server
OFDMA Orthogonal Frequency Division Multiple Access
OTAA Over the Air Activation
OSI Open Systems Interconnection
PAR Packet Acknowledgment Rate
PDR Packet Delivery Rate
PER Packet Error Rate
PHDR Packet Header
PHDR_CRC Packet Header_Cyclic Redundancy Check
PSK Phase Shift Keying
POC Proof-of-Concept
RDM Reliable Datagram Mode
RTT Round Trip Time
Rx Receiver
RSSI Received Signal Strength Indicator
RST Reset
SBC Single Board Computer
SCK Serial Clock
SF Spreading Factor
SNR Signal-to-noise ratio
SPI Serial Peripheral Interface
SSH Secure Shell
ToA Time-on-Air
ToF Time-of-Flight
TCXO Temperature Compensated Crystal Oscillator
Tx Transmitter
UI User interface
UNB Ultra Narrowband
VIN Voltage Input

xx



1
Introduction

The Internet of Things (IoT) is a growing area where many IoT devices are making
their way into people’s homes. It is a network of different types of devices connected
together, which in turn connects to other networks [1]. The concept of IoT devices
is to bring intelligent capabilities to otherwise basic devices, with the ultimate goal
to, as Perera et al. notes, "create a better world for human beings". This concept is
also starting to make its way into the industrial area called the Industrial Internet
of Things (IIoT). IIoT is about extending the internet to physical devices and also
connecting different parts of industrial assets. These devices include, for example,
information systems, control systems, and robotics [2].

IIoT devices connected to a network will commonly require the communication to
be, apart from secure, also reliable. This means that when data is sent, it is also re-
ceived, and in the best case, the sender is notified about a successful reception[3][4].
A problem with this is if the data in question is time-critical. Then the latency of
the communication is of interest as well. A real-world example would be a wireless
motion sensor sending data to a door. Here, the latency is of importance since it is
the time it takes for the data sent from the sensor to be received by the door. When
the motion sensor is triggered, this information needs to be transmitted to the door
to open. The data needs to be received, but the data is also time-critical because a
delay in opening the door is not acceptable.

Another aspect of IIoT devices is that some need to communicate long distances or
in environments that require specific types of communication methods. The com-
munication can be done using the Long Range Wide Area Network (LoRaWAN),
which has been developed and standardized by the LoRa Alliance [5]. LoRaWAN
is one of several Low Power Wide Area Network (LPWAN) technologies that exist
today and it can be used in many different scenarios. One example is in Nessa et
al.’s [6] paper, where they discuss using LoRaWAN in mines.

There exist already popular technologies that are deployed on a significant scale like
cellular networks. However, one main difference between LoRaWAN and cellular
networks is that LoRaWAN targets devices that are battery-powered and do not
need to transmit and receive a large amount of data. Since these devices that utilize
LoRaWAN usually run on a battery, long battery life is preferable (up to years)
while simultaneously being able to send data a long distance. Thus, LoRaWAN
aims to cover the part of the network topology where long range is sought, but a
high bit rate is not the primary aim. This network topology can be seen in Figure 1.1.

1



1. Introduction

With the increasing amount of IoT and IIoT devices, new types of communication
technologies like LoRaWAN emerge. With sometimes strict latency and reliability
constraints for the communication of these devices, there needs to be a way of
determining whether LoRaWAN is suitable for fulfilling these constraints. Thus
having numerical results on how LoRaWAN performs in terms of reliability and
latency, can be an indicator of how LoRaWAN performs for different IIoT device
settings. Therefore, this thesis aims to be a way for IIoT device manufacturers to
see if the numerical results fit their reliability and latency requirements.

Figure 1.1: The network gap in which LoRaWAN and other LPWAN technologies
are trying to fill.

1.1 Problem statement
The reason for evaluating LoRaWAN in terms of reliability and latency is because it
is a new technology. Combined with the fact that data is being sent a long distance
through radio signals, it can be significantly affected by outside interference [7].
Furthermore, IIoT devices require a more stable and reliable communication link
between transmitter and receiver due to their sometimes mission-critical deploy-
ment within the industry. Therefore, having numerical results on how LoRaWAN
performs in terms of latency, Packet Delivery Rate (PDR), and Packet Acknowledg-
ment Rate (PAR) will help companies determining if LoRaWAN is suitable for their
particular device use case.

Additionally, comparing the default reliability method in LoRaWAN to an alterna-
tive method can be used as an indicator to see if the default method can be improved.
With this said, this thesis aims to be a way for IIoT device manufacturers to see if

2



1. Introduction

LoRaWAN fits their reliability and latency requirements. It will also show if there
are improvements to be made to the default reliability method in LoRaWAN.

1.2 Method

To achieve these aims, the default reliability method in the LoRaWAN protocol
will be compared with an alternative method found in the literature. Both of these
methods are located in the upper part of the LoRaWAN MAC protocol. This will
be covered more in Section 5.1. Once the alternative method has been selected, the
evaluation will be done using several Single-Board Computers (SBC). It is then pos-
sible to imitate a LoRaWAN-network using dedicated Long Range (LoRa) modules.

Suppose one of the SBCs is an IIoT device with some sensor, for example, a tem-
perature or proximity sensor. When this sensor receives input, we want to send
this input through the LoRaWAN network in a reliable and low latency fashion.
During the transmission of the input data, it is then possible to monitor the latency.
Furthermore, it is also possible to monitor how many packets are delivered to the
recipient and the network traffic. Thus reliability in this thesis will be measured by
how many % of sent packets an end-device can deliver to its gateway.

1.3 Research questions

The following research questions have been answered in this thesis:

1. How does the default reliability method compare to an alternative reliability
method for LoRaWAN?

2. How do the default and alternative reliability methods affect the time it takes
for a message to be delivered to a gateway from an end-device?

3. What can the default and alternative reliability methods achieve in terms of
latency, PDR, and PAR for LoRaWAN?

1.4 Restrictions

This thesis work will be restricted to already existing reliability methods. This thesis
will not change the underlying original LoRaWAN protocol for reliability. Instead,
it is supposed to be an easy way to add the alternative reliability method to the
original protocol if desired. Furthermore, this thesis will not have security aspects
in it but instead focusing on making sure that there is a reliable communication link
and that the data is intact.

3



1. Introduction

1.5 Report structure
The following thesis is divided into eight chapters, structured as follows.

The first chapter introduces the reader to the thesis topic through the background,
problem, and aim sections.

The second chapter gives the reader a technical background on the topics related to
this thesis. It will begin with giving the necessary definitions for the metrics used in
this thesis for the evaluation. It will then give an overview of the cloud service Azure
and provide some signal theory that will give the reader the necessary knowledge for
the rest of the thesis. Finally, it will provide an in-depth look at how the LoRaWAN
network works.

The third chapter will cover the related work to this thesis, including which alter-
native reliability method is evaluated in this thesis.

The fourth chapter will define the methodology of how the thesis work has been
performed. It will begin with the requirements that a potential reliability method
needed to fulfill to be considered for evaluation. It will then give an in-depth look
into how the design of the physical testbed was done. The chapter is then concluded
with the evaluation methodology.

The fifth chapter will start with showing wherein the network stack the implemen-
tation took place. It will then go through the whole implementation phase of the
custom LoRaWAN protocol for the physical testbed. It will also cover the imple-
mentation of the alternative reliability and a comparison between the two methods.
The chapter is then concluded with the implementation challenges that came up
during the implementation phase.

The sixth chapter will showcase the results of the evaluated methods from the tests
done on the two physical testbeds. It will go through the numerical results collected
for this thesis. It will then conclude with a result comparison with Nessa et al.’s
results.

The seventh chapter will discuss different aspects of this thesis. First, it will go
through the obtained results from the tests and the custom-built LoRaWAN infras-
tructure. It will then conclude with some future work that can be performed on this
thesis.

Finally, the eighth chapter concludes this thesis.

4



2
Technical Background

This chapter will go through the technical aspects regarding the technologies used
in this thesis. The first section defines the most used metrics in this thesis and how
reliability is defined. The second section will give general insight into how the cloud
service Azure works. In the third section, some general signal theory is provided
that will cover the most relevant parts of this thesis. The fourth section will give
detailed information on how the LoRaWAN network works. The fifth section covers
the hardware used in this thesis. The chapter is then concluded with information
on other technologies that are similar to LoRaWAN.

2.1 Metrics and Reliability definition
To be able to conduct this thesis, there are a few metrics that are required for the
evaluation of the reliability methods. Furthermore, a definition of what reliability
means is essential to understand the following chapters. Therefore, this section will
explain each of these metrics and define what reliability means. The way each metric
will be evaluated will be covered later on in Section 4.2.4.

2.1.1 Latency
In general network terms, latency is the measured time it takes for a data packet or
a data request to go from sender to receiver. It is measured in milliseconds, and a
latency that goes towards zero is preferable. In the Transmission Control Protocol
(TCP), for example, acknowledgments are sent by the receiver to the sender to con-
firm that it has received the data. Therefore, the so-called Round Trip Time (RTT)
is an essential factor in the performance of a network. RTT is the time it takes for
a data packet to be sent to a receiver, plus the time it takes to acknowledge that
same packet to be received back at the sender.

In this thesis, latency is defined as the time it takes for an end-device to send its
data and it to be received by a gateway. This is also known as Time-on-Air (ToA)
or Time-of-Flight (ToF) for radio-sent data. A simple illustration of this can be seen
in Figure 2.1.

2.1.2 Packet Delivery Rate
Packet Delivery Rate (PDR) is a network performance metric to show how many %
packets a sender has sent and how many packets have been received by a recipient.

5



2. Technical Background

Figure 2.1: Simple illustration of what is defined as latency in this thesis.

In this thesis, this translates into how many % of packets have successfully been
transmitted from a LoRaWAN end-device to a LoRaWAN gateway. PDR can be
calculated by dividing the number of messages received by the number of messages
sent, as seen in Equation (2.1) where P are packets.

PReceived

PSent
= PDR (2.1)

2.1.3 Packet Acknowledgment Rate
Packet Acknowledgment Rate (PAR) is a metric to see how much the recipient suc-
cessfully acknowledges % of sent packages. The PAR can be calculated by dividing
the number of acknowledged packets by the number of received packets, as seen in
Equation (2.2) where P are packets.

PAcknowledged

PReceived
= PAR (2.2)

The PAR metric can be an indicator of how many packets are unnecessarily sent
but also an indicator of how much traffic the reliability method generates. This is
because a reliability method will continue to retransmit until either a specific time
threshold has passed or x retransmissions have occurred.

2.1.4 Reliability
The concept of general network reliability involves many things—everything from
network structure, tolerance against node - and link failures to the communication
protocol. In particular, communication is an important part. Reliable communica-
tion is communication where all sent application data is received intact and with no
duplicate data [3][4]. Therefore, a reliability protocol that performs at maximum ef-
ficiency will have a PDR of 100%. This means that measuring a reliability method’s
efficiency can be done with PDR.

2.2 Azure
Microsoft Azure is a cloud service with over 200 services, and products [8]. It
is a cloud platform where users can streamline application development and host

6



2. Technical Background

existing applications [9]. Azure also makes it easy to host small applications, with
the option to expand if necessary. Furthermore, Microsoft state that Azure offers
high availability, as well as reliability [8]. Azure has several services that can be
utilized for different purposes. The following section will cover IoT central, Azure
functions, and IoT Central Device Bridge.

2.2.1 IoT central
IoT Central is a platform that helps the user maintain, develop and manage IoT so-
lutions [10]. The IoT central has a web User Interface (UI) that lets the user manage
numerous devices, and create rules and handle the data that the devices produce
[10]. In the web UI, the user can define different types of devices that connect to the
user’s platform through device templates [11]. The device templates can be formed
using already implemented devices or created as a template for the development of
the device [10].

When a device starts sending telemetry data to the IoT Central, a device template
needs to be applied to this device. After the device has been assigned a device
template, the telemetry data from this device can be displayed in various ways. A
few of these graphical ways can be seen in Figure 2.2. Additionally, if the connected
devices support it, the IoT central can be used to control the connected devices as
well.

Figure 2.2: Example of different ways to display data on Azure IoT Central. In
the different graphs, the last 100 values are displayed for the respective metric and
telemetry data.

7



2. Technical Background

2.2.2 Azure Functions
Azure functions let the user create event handlers through Azure. It offers a server-
less way to write the code needed for an application, meaning that Azure can allocate
computing resources on demand. The functions’ code execution can be triggered by
so-called webhooks, which are methods that can alter either web pages or web appli-
cations. They can also be triggered by cloud service events or on a defined schedule
[9]. This means that as long as the user can, for example, make HTTP post requests,
the code can be coded in any programming language that supports HTTP requests.

2.2.3 IoT Central Device Bridge
An IoT Central Device Bridge is an open-source solution that utilizes the Azure
function to connect an IoT network to a user’s IoT Central [12]. It works by for-
warding the messages sent to it to the IoT Central. When a device bridge receives
a message from its network, it simply makes an HTTP post request and sends it to
the user’s Azure function. This Azure function is essential to making this work. The
data in the HTTP post request is in JSON format and can be seen in Listing 2.1.
When the Azure function receives this request, it forwards the ID and the telemetry
data to the IoT Central, where the device and its data appear.

{
" device ": {

" deviceId ": "lora -end -device -id"
},
" measurements ": {

" cputemp ": 40.31 ,
" latency ": 0.128 ,
"rssi ": -45,
"snr ": 6

}
}

Listing 2.1: The JSON-format of the HTTP-post request to the Azure function.

2.3 Signal theory
When it comes to LoRa and LoRaWAN, there are many types of signals and param-
eters that play a significant role in making sure messages can be sent and received.
Furthermore, there are many ways that data gets converted into signals before trans-
mission, known as modulation. This section will define some of the most important
parameters to know regarding reliability in LoRaWAN and signaling in general.
It will further go into different modulation techniques used by different LPWAN
technologies.

2.3.1 Received Signal Strength Indicator
The Received Signal Strength Indicator (RSSI) measures how strong the power is
in the signal. It is used as a way to see the quality of the received signal from an

8



2. Technical Background

end-device. It is measured in decibel milliwatts (dBm) and has a negative number
indicating the signal quality. A value that is approaching 0 is considered perfect,
while a signal lower than -100 is considered weak [13]. Thus, the RSSI value can
be used to determine the signal’s quality and can be used to estimate the distance
between receiver and transmitter.

2.3.2 Signal-to-noise ratio
The Signal-to-noise ratio (SNR) is defined as the ratio between the power of the
received signal and the power of all other signal interference, also known as the
noise floor power level [13]. It is measured in decibel (dB). A value greater than
0 dB is considered good since that means that there is more signal than noise and
that the signal is above the noise floor. Typical values in LoRa ranges from -20dB
to +10dB. The SNR value can be used as a first indicator to see how corrupted the
received signal is.

2.3.3 Tx-Power
Tx-Power is the power of the transmitted signal, and it is measured in dBm. This pa-
rameter can be manually set when configuring the LoRa transceiver module. Usual
limits in LoRaWAN are between 5-20, which corresponds to 5 to 20 dB gain in the
signal [13]. Thus, Tx-power will have an effect on the signal range and affect the
signal’s stability. However, it also affects the device’s battery life since a higher
Tx-power requires more power from the LoRa module.

2.3.4 Spreading factor
The Spreading factor (SF) is a way to decide the number of so-called chirps to be
sent per second [14]. These chirps are the data carriers when being sent from a
transmitter to a receiver. Hence, it decides the data rate of the link. In LoRaWAN,
the SF can be set to a value between 7 to 12. A low SF means more chirps can be
sent per second, and a high SF value means fewer can be sent. A low SF implies
that the transmission rate increases, meaning that more data can be sent at a given
time. However, sending data at a fast rate means less time for the receiver to sample
the signal, which means that noise can then affect the signal [14].

If a higher SF value is used, the transmission rate is lowered and increases the en-
ergy consumption since the module is active longer due to increased Time-on-Air
(ToA). However, there is more time to sample the signal, so the receiver’s ability to
distinguish the signal from noise increases. This also yields a more extended range
and hence increased network coverage [14].

The takeaway from this is that a lower SF should be used if the end-device is rather
close to its gateway. If the end-device is far away from the nearest gateway, a
higher SF is required for the data packet to be reached by the gateway. However,
as mentioned, this is at the cost of a lower data rate which will be covered more
in-depth in Section 2.4.3.

9



2. Technical Background

2.3.5 Link Budget
A link budget measured in dB can be used to determine the performance of the
entire network link. It consists of the sum between all the gains and the losses of
the link, i.e., from the transmitter, through the free air, and then to the receiver.
For example, LoRaWAN has a link budget of 154 dB, which is higher than any other
standardized communication technology [15].

2.3.6 Effective Radiated Power
When it comes to transmission power (Tx-power), there are a few variables that can
affect it. The Effective Radiated Power (ERP), measured in dB, is the total amount
of power that is radiated by a real antenna [13]. This value can be compared to a
theoretical value called Effective Isotropic Radiated Power (EIRP), also measured
in dB. The relation between ERP and EIRP is that an additional 2.15 dB is added
to the EIRP value. That is:

EIRP (dBm) = ERP (dBm) + 2.15 (2.3)

This is because, in ERP, the power from a real antenna is relative to a so-called half-
wave dipole instead of a theoretical isotropic one [13]. Thus, depending on which
type to use, either subtract 2.15 dB for ERP or add 2.15 dB for EIRP. Both of these
can be calculated as:

EIRP (dBm) = Tx power (dBm) + antenna gain (dB) − cable loss (dBm) (2.4)

The purpose of having ERP and EIRP is because there are regional regulations on
how high these values can be. For the 433 MHz bands, for example, the maximum
EIRP is 12.15dB [16].

2.3.7 Modulation Techniques
Modulation is how data bits are converted into electrical signals, done at the physical
layer of the OSI model or the data link layer if it is an access method. There
are many different types of modulation techniques for wireless transmissions, all
with their pros and cons. This subsection will outline some of the commonly used
techniques for LPWAN technologies.

2.3.7.1 Chirp Spread Spectrum

Chirp Spread Spectrum (CSS) modulation is a wideband technique and is used in
LoRaWAN. It is designed for LPWAN technologies to be able to send and receive
data at a long distance while at the same time using little power. By having a
variable bandwidth of 125kHz, 250kHz, and 500kHz, CSS uses this bandwidth along
with the SNR value to determine the optimal SF value to use [17]. This makes it able
to spread the signal over its entire bandwidth and is robust against noise interference.

10



2. Technical Background

2.3.7.2 FDMA, TDMA, and OFDMA

Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA),
and Orthogonal Frequency Division Multiple Access (OFDMA) are three types of
multiple-access techniques. Multiple-access means that multiple nodes can be con-
nected to the same communication channel and use it to transmit over.

The main difference between FDMA and TDMA is that FDMA’s bandwidth is di-
vided into multiple frequency bands used for transmission, where these bands usually
are reserved for a particular station to send and receive data. TDMA instead divides
its bandwidth into time slots given to each station to send and receive data. This
method, however, requires synchronization since every station needs to know the
beginning of its time slot [18].

OFDMA is the technique used in Long-Term Evolution (LTE) and 4G. It divides its
bandwidth into multiple narrow orthogonal bands, which are in turn divided into
thousands of sub-carriers. These sub-carriers are then assigned as a group to users.
All these bands are spaced in a way that they do not interfere with each other,
meaning that they are not prone to signal noise [18]. Both OFDMA and FDMA are
being used in another LPWAN technology, namely NB-IoT, which will be covered
later in Section 2.6.3.

2.3.7.3 Phase shift keying

Phase Shift Keying (PSK) is a modulation technique that performs changes to the
signal’s phase instead of changing the amplitude or the frequency like other tech-
niques. It works by changing the sine and cosine inputs of the fixed frequency signal
at a specific time. The most common one is the Binary Phase Shift Keying (BPSK)
and is being used by the LPWAN technology SigFox covered later in Section 2.6.1.

2.3.8 Line-of-sight and Non-line-of-sight

Line-of-sight (LOS) and Non-line-of-sight (NLOS) are two terms related to wireless
communication. It has to do with the fact whether the sender and receiver have a
clear and unobstructed LOS between them or not [19]. If there is an obstacle such
as a wall, a tree, or a building between them, there is an NLOS that can lead to
many things. Objects absorb the signal’s energy, hence lowering the effective range
of that signal and the ERP. This can be dealt with by using, for example, a better
antenna at both ends. Usually, however, there need to be alternative ways for the
signal to propagate due to path loss. This can be done with relays or by using the
so-called multipath method. This method involves the signal being sent in different
directions, meaning that many versions of the same signal can reach the receiver
but have taken different paths along the way. All these effects, however, ultimately
affect the total link budget.

11



2. Technical Background

2.4 LoRaWAN
LoRaWAN is a network protocol meant for Low Power Wide Area Network (LP-
WAN), and it is designed for long-range wireless communication over large areas.
The first section will start by going through the network architecture of LoRaWAN.
The second section will go through the different kinds of device classes that exist
and what they mean in terms of usage. The third section covers the meaning of hav-
ing a duty cycle and variable data rates. The fourth section will go through what
reliability is for LoRaWAN specifically. The fifth and sixth sections will cover the
device join process and security aspects in the LoRaWAN protocol. Finally, the last
section defines the different message structures used in both standard LoRaWAN
and custom implementations.

2.4.1 The LoRaWAN architecture
LoRaWAN is a Media Access Control (MAC) protocol that builds on top of the
LoRa physical layer since LoRa lacks the link and network layer. This means that
LoRaWAN is defined for the second and third layers of the OSI model. Therefore,
it gives LoRaWAN the means to act as a routing protocol, handling communication
between gateways and connected devices. The transmission and receipt of data are
done via radio frequencies using LoRa modulation, and depending on where the
devices are located, different frequencies are allowed. For example, in Europe, the
433 MHz and 863-870 MHz can be used. For the United States, Canada, and South
America, the range is between 902-928 MHz [20].

The entire network is built using a star-of-stars network topology, and it consists of
the end-devices, gateways, Network Servers (NS), Join Server (JS), and Application
Server (AS) [21]. These five device types serve different purposes in the LoRaWAN
network, and they are illustrated in Figure 2.3. The end-devices are typically a form
of sensor device and can be connected to multiple gateways. They send and receive
data to and from the gateways through LoRa modulation. These gateways then
relay the data from the end-devices to the NS, and they are also responsible for
sending data back to the end-devices if so needed. The communication between the
gateways and the NS is done via an established medium like fiber, Ethernet, Wi-Fi,
or satellite through TCP/IP [22].

The NS is the brain of the network. Since the end-devices are usually battery-
powered, all power-consuming tasks like packet-filtering and security checks are done
at the NS. It is also responsible for managing all the gateways and ensuring that
all connected devices are running at their optimum settings. This involves the NS
continuously checking and adjusting the end-devices different parameters like its
SNR value, SF, Tx-power, and frequency sub-channels. Since an end-device located
closer to the gateway does not need to have a high SF or high Tx-power, that saves
both air time and energy. This is what is called Adaptive Data Rate (ADR) [23].

In the scenarios where the NS cannot control and send ADR instructions to the

12



2. Technical Background

end-devices, the end-device’s application layer should instead take care of the SF
and Tx-power [21]. In this case, the application layer should try to minimize the
ToA but maximize the data rate for the network setting. Another role of the NS
is to route data from the gateways to the AS, which can, for example, be an Azure
function. It also relays the join procedure between the end-devices and the JS when
the end-devices connect to the LoRaWAN network.

As mentioned, LoRaWAN is a star-of-stars network topology, meaning that the NS
is in the absolute center of the network with gateways connecting to them. In turn,
all of the gateways have their star topology, with them being in the center and all
end-devices connecting to them. Hence, the star-of-stars topology. Using this kind
of topology has its advantages and disadvantages. Firstly, compared to another typ-
ical topology like the mesh network, where all nodes are connected together [24], the
end-devices do not constantly have to be in listening mode. This is because they
only need to send data to the gateways and not relay data to other end-devices.
This, in turn, yields low energy consumption, which is desirable.

Secondly, as previously mentioned regarding power-consuming tasks, the end-devices
do not need routing since they only communicate with the gateways. The result of
this is that the end-devices do not have to be complex, making them cheap to man-
ufacture.

Figure 2.3: The LoRaWAN architecture. Image by Butun et al. [25].

2.4.2 Different device classes
There are different classifications on the end-devices in LoRaWAN. This comes from
the fact that end-devices have diverse requirements and are used for different types of
applications [26]. Class A is the base class and has to be fulfilled by all end-devices.
It is for battery-powered sensors with high energy efficiency with the possible need
for bi-directional communication. The end-device opens two short downlink receive

13



2. Technical Background

windows after transmitting the data uplink, after which it then stops listening for
incoming messages. This bi-directional communication has slight variations based
on a random time basis, originating from the Additive Links On-line Hawaii Area
(ALOHA) protocol. If the Class A device is supposed to receive data, then the data
must be sent after the Class A device has initiated an uplink transmission. See
Figure 2.4 for an illustration of the transmission windows.

Figure 2.4: Class A receive window diagram.

Class B works in the same way as a Class A device, implementing all of its fea-
tures. It also has extra scheduled receive windows, and these slots are decided and
synchronized with the connected gateway [26]. This synchronization is done using
beacon messages that are sent out to the end-devices. This can be seen in Figure 2.5.

Figure 2.5: Class B receive windows. Contains a ping slot uplink and two receive
windows.

The final Class C can receive continuously except for when it is transmitting data.
See Figure 2.6 for an illustration of its transmission windows.

2.4.3 Duty Cycle and Data rates
The duty cycle exists to reduce the risk of messages colliding, often leading to packet
loss. This is a common occurrence in radio communication [27]. To cope with this,
LoRaWAN uses duty cycles that specify how much an end-device is allowed to
transmit within a period. It should be lower than 10%, usually around 1%. This
means that if a 1% duty cycle is used, an end-device is only allowed to transmit
during a one-time unit for every 100th. This, along with the allowed data rate and

14



2. Technical Background

Figure 2.6: Class C receive window diagram.

bit rate, depends on the country and used frequency. In Sweden, 433MHz can be
used since it is license-free. This thesis also uses LoRa modules that can only operate
at 433MHz. The values can be seen in Table 2.1.

Table 2.1: The data rate for the EU433 band determined by the LoRa alliance
[16].

Data rate Spreading factor Bit rate [bits/s]
0 SF12 250
1 SF11 440
2 SF10 980
3 SF9 1760
4 SF8 3125
5 SF7 5470

2.4.4 Default reliability in LoRaWAN
In Section 2.1.4, the general definition of reliability in networks was defined. This
subsection defines the default reliability method specifically used in LoRaWAN. The
LoRaWAN specification states that there should be two types of data messages; one
that has to be acknowledged and one that does not. Because of this, a receiver has
to respond to a data packet with the ACK bit set in the header. If the receiver
is an end-device, this response can either be sent directly with an empty packet or
piggyback its subsequent transmission. The gateways, however, will try to send an
acknowledgment when the sender has a receive window open [21].

The default reliability method in LoRaWAN uses a field called nb-Trans that ADR
sets. This field is the number of transmissions that should be done for an acknowl-
edged, or non-acknowledged packet [21]. This field can assume the values between
[1 − 15]. When retransmissions occur, the end-device should perform frequency
hopping between retransmissions. That is, the end-device should use a new sub-
frequency within its range between the retransmissions. After each retransmission,
the device should wait to retransmit until the receive window has closed. Other-
wise, the delay between the retransmissions is decided by the end-device and may

15



2. Technical Background

be different for different end-devices [25].

As mentioned in 2.4.1, the NS cannot send ADR instructions. It is up to the end-
device’s application layer to configure the spreading factor and Tx-power. Thus, the
default reliability protocol can utilize SF, Tx-power, nb-trans, and retransmission
delay with the application layer controlling these attributes.

2.4.5 Device join process
The end-devices need to be added to the LoRaWAN network before they can start
using the network. This process is done using either the so-called Over the Air Ac-
tivation (OTAA) or Activation by Personalization (ABP) [21]. However, these two
differ in how they perform the join process to the network.

In OTAA, each end-device has two root keys that exist throughout the lifetime of
the device. They are the Network Key, which is known to the NS, and the Applica-
tion Key, which is known to the AS. They are used to establish the connection to
the network and create the necessary session keys for that particular connection [28].

The end-devices start by communicating to the NS that they want to join the net-
work. This is done with a join request message. This message contains which net-
work the end-device wants to join (AppEUI), its unique identifier called DevEUI,
along with a hash of the network key, join request, and the DevEUI. This request
is then signed using the Message Integrity Code (MIC). With this, the NS can then
forward this request to the JS, verifying the signed request and returning a join
answer to the NS if the verification went well. This join-accept message contains all
the necessary information for the end-device to generate the session keys needed.

In ABP, the end-devices instead has all of the required root and session keys, as well
as the required information to join a specific network from the start [28]. However,
this means that joining a non-predefined network can not be done on the fly. This is a
more straightforward method than OTAA, but it makes the devices more restrained
as to which network they can join.

2.4.6 Security
Butun et al. [29] discuss in their paper how the security in LoRaWAN improved
from the initial release of version 1.0 to version 1.1. The underlying security in Lo-
RaWAN 1.1 uses the 128-bit cryptography standard Advanced Encryption Standard
(AES-128) and is applied on the network and application levels [30]. In addition,
mutual authentication is performed on the network level. This means that all the
devices connected to the network are authenticated and validated during the join
process. LoRaWAN MAC and application messages are origins authenticated, en-
suring that the traffic is legit and has not been tampered with. Furthermore, on the
application layer, confidentiality is applied since LoRaWAN uses End-to-End (E2E)
encryption on the payload sent from end-device to the application server.

16



2. Technical Background

Every end-device in the LoRaWAN network has its private key called an AppKey
along with a globally unique identifier DevEUI [30]. Both of these are used during
the authentication process of the end-device. When an end-device has successfully
joined the LoRaWAN network, each message sent through it is encrypted. Two
security steps are taken for each message. Firstly, the message payload from the
end-device to the application server is encrypted using the Application session key,
established during the join process. Secondly, a Message Integrity Check (MIC)
needs to be performed. It is calculated using the encrypted message and the net-
work session key, which is also generated during the join process. This makes sure
that the message is protected against outside listeners.

2.4.7 Payload and headers
In this thesis, two types of message formats can be mentioned. The first one is the
LoRaWAN specific, and the second one is Adafruit’s message format. These will be
discussed in this section.

2.4.7.1 Standard LoRaWAN

In the standard LoRaWAN network, there are two types of messages. All of these
are defined by the LoRa Alliance in their specification document for version 1.1 of
LoRaWAN [21]. The first one is an uplink message: the message sent from an end-
device to the NS using the gateway as a relay. The other one is a downlink message:
the message sent from the NS to the end-device using the gateway as a relay.

Both these messages contain the fields Preamble, Physical Header (PHDR), the
Physical Header Redundancy Check (PHDR_CRC) as well as a PHYPayload. Ta-
ble 2.2 shows the downlink message structure. For the uplink message, an additional
field called Cyclic Redundancy Check (CRC) is added to protect the integrity of the
message payload, which can be seen in Table 2.3.

Table 2.2: The downlink message fields.

Preamble PHDR PHDR_CRC PHYPayload

Table 2.3: The uplink message fields.

Preamble PHDR PHDR_CRC PHYPayload CRC

The PHYPayload field in both of these messages contains a Message Header (MHDR)
field, a data field that depends on the type of message sent, and a Message Integrity
Check (MIC) field. Table 2.4 shows the PHYPayload message structure. There are
three types of PHYPayload, and the MHDR determines these. The MHDR field, in
turn, has a total of eight bits. Three are used to determine different message types,

17



2. Technical Background

three are reserved for future potential use, and two are used to signal the format of
the messages. These can be seen in Table 2.5.

Table 2.4: The PHYPayload fields. The maximum MACPayload size is region
specific. Join-Accept is already an encrypted message, so MIC is included in it.

Bytes 1 7..Maximum 4
PHYPayload type 1 MHDR MACPayload MIC
PHYPayload type 2 MHDR Join-Request or Rejoin-Request MIC
PHYPayload type 3 MHDR Join-Accept X

Table 2.5: The content of the MHDR field.

Bit 7..5 4..2 1..0
MHDR Message Type Reserved For Future Use Major Version

The last three bits in the MHDR field determine eight different types of messages,
which can be seen in Table 2.6. As can be seen, when comparing it with Table 2.4,
the PHYPayload type one corresponds to the Confirmed and Unconfirmed message
types. The difference between them is that Confirmed requires the receiving end
to acknowledge the data. PHYPayload type two corresponds to bit values 000 and
110, and PHYPayload type three corresponds to bit value 001. As for bit value 111,
which is the proprietary message type, it can be used as a non-standard message
format. It is still required, however, that all devices understand the standard format.

Table 2.6: The eight different message types determined by the last three bits in
the MHDR field.

Bit value Message Type
000 Join-Request
001 Join-Accept
010 Unconfirmed Data Up
011 Unconfirmed Data Down
100 Confirmed Data Up
101 Confirmed Data Down
110 Rejoin-Request
111 Proprietary

2.4.7.2 Adafruit CircuitPython RFM9x library

In this thesis, the LoRa module RFM9x is used. This module has its own MAC
layer library made in Python1, which is needed to use the module. This library has
all functionality needed, with functions to send, receive and change parameters. In

18



2. Technical Background

Listing 2.2, the functions of interest are defined.

# Reliable Datagram mode
def send_with_ack (self , data)

def send(self , data , *, keep_listening =True , destination =
None , node=None , identifier =None , flags=None)

# inputs of interest : flags

def receive (self , *, keep_listening =True , with_header =False
, with_ack =False , timeout =None)

# inputs of interest : with_header , with_ack and timeout

def spreading_factor (self , val)

def rssi(self)

def snr(self)

Listing 2.2: Functions used from the Adafruit RFM9x library.

The library implements a reliability method called Reliable Datagram Mode (RDM).
This can be utilized by the functions send_with_ack and receive, which can
be seen in Listing 2.2. For the receive function, RDM is activated by setting
with_ack=True whereas when sending, send_with_ack is simply called along with
the data to send. The send_with_ack function follows the LoRa specification ex-
cept that it does not use frequency hopping. The parameter nb-trans is by default
set to five but can be changed if necessary. The ACK_TIMEOUT is set to 0.5 seconds.

Table 2.7: The 4-byte header used in the Adafruit library for the RFM9x module.

Bytes 1 1 1 1
Header-fields Destination Sender Identifier Flags

The function receive responds directly with an ACK if not specified otherwise.
Thus, it does not follow the LoRa specifications. This is bypassed by instead han-
dling the sending of an ACK in the application layer. By calling the receive
function with with_header=True, the application layer can decide when to send
the ACK, as this returns a read packet with its header and the flags in the header.
The contents of the header can be found in Table 2.7, and the different flags can be
found in Table 2.8. The input timeout to the function receive is used to specify
how long the function should listen for a packet.

Table 2.8: The 1 byte flag header-field.

Bits 7-4 3-0
Flags Proprietary Reliable Datagram Mode

1https://github.com/adafruit/Adafruit_CircuitPython_RFM9x

19



2. Technical Background

2.5 Hardware
The hardware used in this thesis work consists of the SBCs Raspberry Pi 2B and
4. One of these SBCs can be seen as an end-device in Figure 2.7. These two SBCs
have different specifications but essentially the same functionality. Pi 4 has 4GB
of ram and a clock frequency of 1.5GHz, while Pi 2B has 1GB of ram and a clock
frequency of 0.9 GHz [31]. Although there is a difference in RAM and core speed,
this does not make a big difference since they all use the same LoRa module. The
reason for choosing the Raspberry Pi’s is because of their ease of use, and because
of the GPIO pins, it is easy to connect external sensors and modules.

Figure 2.7: One of six end-devices. Here, the Raspberry Pi, the LoRa RFM9x
module and the connector board are connected together.

The LoRa modules SX1276 with RFM9x radio chips are used for the LoRa commu-
nication. The modules have pins compatible with the Raspberry Pi’s pins, making
them easy to install and program. Furthermore, they are relatively cheap, making
it a reasonable way to achieve LoRa communication quickly. See Figure 2.8 for an
illustration of the module.

However, there are limits to these RFM9x modules: they only provide a single chan-
nel, meaning that the chip cannot send and receive data simultaneously. Therefore,
both the end-devices and the gateways can only use one channel. This, in turn,
means that the gateway cannot serve more than one end-device at any given time.

Apart from the Pi’s and the LoRa modules, some basic electrical components are
needed, like wiring, resistors, lights, and buttons. Once installed on a connector
board, the boards can connect to the Pi’s General-Purpose Input/Output (GPIO)
pins. These lights and buttons are used for message checking and errors during the

20



2. Technical Background

Figure 2.8: The RFM9x LoRa module.

transmission and receipt of messages.

2.6 Similar technologies
There are a few LPWAN technologies similar to LoRaWAN that are deployed and
in use. Although they all are LPWAN technologies, there are differences in how
they function. The following section will go through some of them.

2.6.1 SigFox
SigFox is a service that offers end-to-end (E2E) LPWAN connectivity by letting
SigFox Network Operators deploy base stations. These base stations have IP capa-
bilities and can therefore serve as a way for the end-devices to reach the backend.
The devices in SigFox utilize the Binary Phase Shift Keying (BPSK) modulation
technique through Ultra Narrowband (UNB). It operates in a SUB-GHz ISM band
carrier, within the 863 to 870 MHz frequencies in Europe. Using UNB gives SigFox
the ability to efficiently use bandwidth and experience very low noise levels. This, in
turn, leads to low power consumption, high receiver sensitivity, and a more straight-
forward antenna design. However, there is a downside to these benefits since the
data rate is limited to between 100 to 600 bps [32].

2.6.2 Weightless
Weightless is a set of LPWAN technologies made by a particular interest group
that proposed three LPWAN standards. These three standards provide different

21



2. Technical Background

features, but all of them can operate in licensed spectrum as well as license-free [32].
Weightless has two variants of its physical layer: low data rates and high data rates.
Some of the technologies and techniques that both variants use are spreading factor,
forward error correction, interleaving, and PSK control. Transmission rates of the
protocol can vary from 125 Kbps to 16 Mbps [33].

Weightless-N is one of theWeightless standards based around UNB for one-directional
communication. This communication goes from end-devices to base stations and
then to the backend. The utilization of UNB lets Weightless-N have a better power
efficiency and lower cost than Weightless’s other standards. Weightless-N utilizes
a form of BPSK modulation technique called Differential-BPSK [32]. With a focus
on lower energy consumption and smaller distances, Weightless-N has data rates
ranging from 30 Kbps up to 100 Kbps [33].

However, if different bandwidths and signals are of interest, then Weightless-P could
be an alternative. With several multiple access technologies, Weightless-P can
achieve 4923 bps for Narrow Band (NB), 1404 bps for UNB, and finally 93 bps
for spread spectrum. In addition, it does not require the Temperature Compen-
sated Crystal Oscillator (TCXO) that the W and N standard requires. This makes
P somewhat cheaper and less vulnerable to de-synchronization that is dependent on
the TCXO [33].

Weightless-W works in the television white space spectrum (470-490Mhz) and is
bidirectional communication technology. Using frequency hopping and TDMA, it
can coordinate and separate the uplink and downlink intervals. As a result, the
Weightless-W can achieve a data range from 1 Kbps to 10MB/s [33].

2.6.3 NB-IoT
Narrowband IoT (NB-IoT) is another popular LPWAN technology, which operates
in the licensed frequency spectrum of LTE [5]. Therefore, it can utilize the same
infrastructure as cellular. Since NB-IoT is an LPWAN technology, it is similar to
LoRaWAN, but there are differences. Firstly, since it uses the same frequency spec-
trum as LTE, it uses Frequency Division Multiple Access (FDMA) for transmission
and Orthogonal FDMA (OFDMA) when receiving. This is compared to CSS for
LoRaWAN.

Secondly, NB-IoT does not use a duty cycle, meaning that if devices require fre-
quent transmission and receiving, then NB-IoT is more suitable. However, being
a synchronous protocol means that more power is consumed when communicating
since it is full-duplex, and both ends have to synchronize between them. This, in
turn, means that it is also more costly since the hardware requires more complex-
ity [5]. On the other hand, the benefits are that it is a fast and reliable way of
communication. LoRaWAN, on the other hand, is an asynchronous protocol.

22



3
Related Work

There has been much research on how to improve the reliability part of the Lo-
RaWAN technology. This chapter will present some of the related work that is
connected to this thesis. It will further mention the papers with reliability methods
that are potential candidates for evaluation in this thesis.

3.1 Adaptive Latency Reduction in LoRa for Mis-
sion Critical Communications in Mines

Nessa et al. [6] propose a type of enhanced redundant retransmission scheme based
on the original protocol in LoRaWAN. The original employs retransmission of the
previous data frame if the end-device has not received an acknowledgment (ACK)
from the receiver. If that retransmission fails as well, then the end-device increases
its SF. However, this is not the optimal solution as the authors argue that it will
reduce the data rate, and more packet loss will occur due to collisions.

The LoRa Alliance specifies that there should be a random delay called ACK_TIMEOUT
[21] before retransmission, which does not depend on the air time of the previous
transmission. The authors instead propose that the ACK_TIMEOUT should depend
on the air time of the previous transmission. If an end-device does not receive an
ACK, it waits for ACK_TIMEOUT before initiating retransmission of the frame twice
using the same SF. The time between the first retransmission and the second one
is a random time the authors call "Arbitrary spacing between retransmission and re-
dundant retransmission" (ASRTX_TIMEOUT). If the end-device still has not received
an ACK after these two retransmissions, it increases its SF by one and enters a new
stage. This process is then done again until a set transmission limit or a maximum
tolerable delay has been reached.

The authors used a simulator called LoRaSim when running their tests. They eval-
uated their solution based on the Data Extraction Rate (DER), another term for
PDR, and the average delay per confirmed packet. The authors also simulated mul-
tiple end-devices, upwards of 500 end-devices in total. The author’s simulations
show that their proposed method reduces the average transmission delay signifi-
cantly compared to the original LoRaWAN method. Furthermore, their DER is
close to 100% even with an increasing number of end-devices. They also achieve
substantially lower average latency compared to the original LoRaWAN method.

23



3. Related Work

3.2 Allocation of Repetition Redundancy in LoRa
In Borkotoky et al.’s paper [34], the authors mean to improve LoRa sensor networks
reliability without using ACKs. They propose sending several measurements in a
frame. This results in several copies of sensor data being sent in different frames.
How many measurements that go into a frame are decided with a strategy that
considers interference and fading. Using the simulator LoRaSim, their proposed
method was compared to a method that utilized maximum redundancy delay and
duty cycling constraints. After this comparison, the authors concluded that their
method achieves a 30% energy reduction to ensure sensor data is received by a gate-
way.

The authors cite that it is essential to look at redundancy without ACKs because
LoRa end-devices of a specific class can only listen for ACKs during a particular time
window. Because of this, a gateway can respond with an ACK, but the end-device is
not listening. Furthermore, the authors argue that if many end-devices need ACK,
this is infeasible. Thus they opt for a method that does not rely on ACKs.

3.3 High Reliability in LoRaWAN
Coutand et al. [35] propose in their paper a protocol that enhances the Adaptive
Data Rate (ADR) algorithm in LoRaWAN, which they argue will make LoRaWAN
more reliable. As mentioned in 2.4.1, the ADR exists to change different parameters
for optimal transmission dynamically. The authors first evaluated the legacy ver-
sion of ADR in LoRaWAN, and with those results, then created and evaluated their
enhanced ADR method. The authors used a physical testbed and ran tests while
randomizing the different transmission parameters like Tx-power, SF, and channel
frequency.

The authors evaluated their result based on how SNR and Tx-power affect the
Packet Delivery Rate, which showed that although Tx-power and SF significantly
impact reliability, they can not be relied on for everything. A maximum of 85% in
Data Delivery Rate (DDR) was obtained during these tests. To enhance the legacy
ADR, the authors used more precisely calculated values for the PDR boundaries
than those used in the legacy ADR algorithm. This, along with Forward Error
Correction (FEC), yielded the authors a maximum DDR or 98%.

3.4 Improving Reliability and Scalability of Lo-
RaWANs Through Lightweight Scheduling

Reynders et al. [36] propose in their paper a new MAC layer for LoRa, called RS-
LoRa. It is a distributed and two-step lightweight scheduling method that is done
in two steps. Firstly, the gateway schedules nodes using a coarse-grained manner
which specifies the Tx-power and SF end-devices can use. Secondly, the end-devices

24



3. Related Work

will then use this information to set their own Tx-power, SF, as well as when and on
which channel it can transmit on. Finally, all end-devices are then grouped based
on their Tx-power to better handle the capture effect, which is the phenomenon
that only the strongest signal gets demodulated at the receiver. The authors claim
that the overall network reliability and scalability are increased by doing this due
to better capture effect and reduced packet loss.

The authors evaluated their method in the network simulator NS-3, in which they
created their module for the new MAC layer RS-LoRa. Their result shows that
their method can reduce Packet Error Rate (PER) by up to 20%. However, since
a big part of their method is also about increasing the scalability of LoRaWAN,
this method is difficult to evaluate on a physical testbed. Nevertheless, the NS-3
module is a good complement to test implementations since the authors have also
implemented a legacy version of LoRaWAN and made it open source.

3.5 DaRe: Data recovery through application layer
coding for LoRaWAN

Marcelis et al. [37] propose a redundancy method in their paper, that sends previous
data with every frame. The amount of redundant data in the frame is decided by
the coding rate. The redundant data is selected with fountain coding in combination
with convolution coding achieved with sliding window size. The authors argue for
this solution because they want gateways to remain unchanged and avoid downlink
communication with acknowledgments.

The author’s method was tested in three different scenarios: end-devices on cars,
bicycles, and stationary end-devices. ADR was active during their data collection.
However, 95% of their data was collected with a spreading factor of 12. The max
distance to a gateway for all of the scenarios was 7.5 km. After the authors had
analyzed their data, they claim that their method can successfully recover 99% of
all lost data. This is achieved with a coding rate of 1/2 and when transmissions had
a 10% erasure probability [37].

3.6 Conclusion
Following the related work, it can be concluded that there has been much work done
to make LoRaWAN a more reliable protocol. There are plenty of different methods
available that can be evaluated. The proposed method by Nessa et al. is the one
that was evaluated in this thesis. This method was picked because it satisfies all of
the requirements defined in Table 4.1 in the coming chapter. It was also possible
to compare their results on the simulator with this thesis’s results on the physical
testbed, which will be covered later on in Chapter 6.

25



3. Related Work

26



4
Methods

This chapter will explain the different methods related to this thesis. The first sec-
tion will go through methods of finding reliability methods in literature and the
criteria for them to be relevant for evaluation. The second section will explain how
the physical testbed was designed and set up and how the telemetry for the data
collection was collected. The chapter then concludes with the evaluation method-
ology for the physical testbed and the testing environments in which the tests were
performed.

4.1 Finding alternative reliability method for Lo-
RaWAN

The first step to find a suitable reliability method that could potentially be im-
plemented in LoRaWAN was to look at published articles from authors within the
network field. IEEE and Google Scholar are good platforms for this since they are
easy to use and search for relevant keywords. The words searched for were gen-
eral network-related ones relevant to prior university courses and the relevant words
already mentioned in this thesis, like latency, PDR, PAR, congestion, and reliability.

The second step was to sift out the most relevant papers from all the possible ones
found. To do this, a set of requirements had to be determined. These requirements
that determine whether or not a method was worth evaluating can be seen in Table
4.1. A method had to fulfill all these requirements to be evaluated.

Table 4.1: The requirements that a possible reliability method had to fulfill.

R1 Is the method implemented in LoRaWAN or in another technology?
R2 Does the method in question improve latency when reliability is active?

R3
Does the method according to its source improve the reliability of

LoRaWAN?
R4 Is it a reasonable method for implementation given the time frame?
R5 Is the reliability method targeted for specific types of end devices?

R6

Besides being feasible analytically, the method should be shown to
be deployable and able to achieve the desired goals in actual system

settings.

27



4. Methods

As mentioned in Section 3.6, the method made by Nessa et al. is the method that
was evaluated in this thesis. After studying the author’s paper, it checked all of the
requirements in Table 4.1. The paper is about reducing the latency in LoRaWAN
using a redundant retransmission scheme. Their simulation test results show that
the method improves both the latency and the overall reliability for LoRaWAN.

The method did not seem to be an overly complicated solution, meaning that it
would be possible to implement it in a reasonable time frame. The authors imple-
mented their reliability method on a simulator. However, investigating a possible
implementation on a physical testbed, it was concluded that it would be doable.

Another method mentioned in Section 3.6 was Coutandet et al.’s, which also seemed
to fulfill all the requirements upon studying their paper. However, they are using
ADR in their method, which would be a large time investment to implement. There-
fore, it did not fulfill the requirement R4.

Reynders et al.’s proposed method has a large emphasis on the scalability of nodes in
the LoRaWAN network. Furthermore, since the authors have implemented a whole
new MAC layer in the NS-3 simulator, it would take too long to implement another
whole MAC layer on the physical testbed. Hence, it did not fulfill the requirement
R4.

Marcelis et al.’s proposed method is a relatively simple yet effective method, where
sending the previous data with every subsequent data frame. However, their testing
method involves ADR, which would be a too big time investment to implement for
this thesis. Hence, it did not fulfill the requirement R4.

In Borkotoky et al.’s proposed method, the authors argue about the infeasibility of
using ACKs in LoRaWAN. However, the author’s method does not take latency into
account, meaning that there is no way of knowing whether their method improves
on latency or not before implementation. Hence, it did not fulfill the requirement
R2.

4.2 The design of the testbed
To evaluate the default reliability method and the alternative as realistically as
possible and to fulfill the aim posed in Section 1.1, a physical testbed was needed.
Therefore, a whole LoRaWAN infrastructure had to be implemented. The following
subsections will go through each of the different components of the testbed used in
this thesis.

4.2.1 Azure IoT Central as back-end
When the tests had been performed, a suitable solution was needed to handle the
collected telemetry data and display the information needed, such as the PDR, PAR,

28



4. Methods

latency, and other measurements. In this work, Azure IoT Central was used. This
was used to show that it was both doable for LoRa devices to be connected to the
cloud and an effective yet simple way to display data. An example of how data can
be displayed can be seen in Figure 2.2, and also in Figure 4.1 where the same data
is displayed in four different ways.

Figure 4.1: An example of how Azure IoT central can be used to display the same
data in different ways.

When the small LoRa network was connected to Azure, it was believed that it had
to go through The Things Network. However, this step could be bypassed entirely
by using an Azure IoT Central device bridge and Azure IoT Central, which was
discovered early on in the development phase. This made it possible to set up an
Azure function that could then be used to post data to Azure IoT Central. As soon as
the function receives a data request, the data will be forwarded to Azure IoT Central,
which can then be displayed. Once data could be uploaded, functionality for this
was implemented into the physical testbed to collect valuable sensor telemetry data.
After this, device templates were created to fit the properties of the end-devices.

29



4. Methods

4.2.2 The set up of hardware
In order to set up the physical testbed, a few things had to be done. Firstly, the
LoRa modules did not have compatible pins with the GPIO pins on the Pis installed
from the factory, which meant they had to be soldered before use. The RFM9x mod-
ule has a total of nine pins. Three are power pins, and the remaining six are used
for the Serial Peripheral Interface (SPI). All pins serve a different purpose, defined
as follows:

• Voltage Input (VIN): Is the power input. This supports 3.3 to 6.0 V Direct
Current (DC) and has a peak current of 150 milliamperes (mA).

• Ground (GND): Ground pin needed for the logic and power.

• Enable (EN): Enables the regulator on the module and can be used as a
power switch of the module. It is set to high for the VIN by default, and if it
is set to low, it cuts the power to the module.

• G0: Is the module’s GPIO 0 pin and is used for the interrupt request noti-
fication from the radio to the connected microcontroller. In this case, to the
Raspberry Pi.

• Serial Clock (SCK): Used as an input pin to the chip.

• Microcontroller In Serial Out (MISO): Used for data sent from the mod-
ule to the connected microcontroller. In this case, to the Raspberry Pi.

• Microcontroller Out Serial In (MOSI): Used for data that is sent from
the connected microcontroller to the module. In this case, from the Raspberry
Pi.

• Chip Select (CS): Used as an input pin to the chip. It needs to be set to
low to start an SPI transfer.

• Reset (RST): Used as a reset pin for the module. It is set to high by default
which translates to reset. If it is set to low, it turns on the module.

.
As for the Raspberry Pi’s, they have 40 GPIO pins divided into two rows. The
corresponding pins between the LoRa module and the Pis can be seen in Figure 4.2.

In addition to the pin soldering, an antenna also needed to be soldered on. For this,
a basic copper wire was used. The quality and type of antenna are important factors
when taking measurements of RSSI and SNR since they can affect the total ERP.
However, for this thesis, a basic quarter-wave whip antenna is sufficient due to the
compact test environments, which will be covered in Section 4.3.2. Furthermore,
the length and positioning of the wire are important. For a module operating at

30



4. Methods

433 MHz, the length of the wire can be calculated from the following equation:

wave velocity in air (m/s)
frequency (Hz) = wavelength (m) (4.1)

Since the antenna is a quarter-wave antenna, 1/4 of the wavelength is sufficient:

wave velocity

frequency ∗ 4 = 1 / 4 wavelength (4.2)

This then yields the following length of the wire:

299792458
433000000 ∗ 4 ≈ 0.173 m = 17.3 cm (4.3)

From [38], it is recommended to use an approximated length of 16.5 cm which was
used in this thesis. As for the positioning of the wire antenna, the ideal way is to
have it pointed upwards for the best overall coverage.

Figure 4.2: The pin-outs on the LoRa module RFM9x and the Raspberry Pis.

In order to have an easy way of knowing that things are functioning the way they
should, a connector board with lights and buttons was set up. For this, an electrical
kit from ELEGOO was used that contained everything needed. Each Pi has its
connector board with three buttons that can easily be programmed to do different
tasks if needed. There are also five lights used as different indicators when the
devices are operational.

31



4. Methods

4.2.3 The testbed infrastructure

As mentioned in Section 2.5, the whole testbed consists out of a total of six Pi’s; five
Pi 4 and one Pi 2B. Each is equipped with its own LoRa module and its connector
board with lights and buttons. This solution is a specifically designed infrastructure
based on the budget available. It would have been possible to go with a pre-built
solution, but it would have been harder to make the necessary changes. The eval-
uated alternative method is supposed to be easy to implement to real production
versions later on. All the parts of LoRaWAN that were implemented and were not
implemented will be covered more in-depth in the next chapter.

Figure 4.3: One of the two testbeds containing two Pi 4 and one Pi 2B.

A set of two testbeds was used on two different locations with different environ-
ments while still having the possibility of combining them later on if that would be
desirable. One of the testbed setups can be seen in Figure 4.3. A custom protocol
solution for the gateway and the end-devices was implemented, based on Adafruit’s
library2. This customization was necessary so that the end-devices could communi-
cate with the gateways and vice versa and with Azure.

The end devices will first send a form of join request to the gateway, where the
message payload can be seen in Table 4.2. If successfully added, the gateway will
respond with an ACK. If the end-device receives the ACK, it can then start sending
sensor telemetry to the gateway, which can be seen in Table 4.3. The gateway will
receive and decode the message and then relay it to the Azure function via HTTP
post requests.

2https://github.com/adafruit/Adafruit_CircuitPython_RFM9x

32



4. Methods

Table 4.2: The message payload that an end-device sends when trying to join the
gateway. S-Freq is the sending frequency, i.e., the speed at which the end-devices
sends telemetry data.

Bytes 4 8 8 8 8 8 8
Add-to-gateway Header Host DeviceID "ADD" Tx-power SF S-Freq

Table 4.3: The message payload of the telemetry data that the end-devices send.
TransCount is the transmission counter of that particular message, and the Time is
the timestamp at which the message was sent.

Bytes 4 8 8 8 8 8
Telemetry Header DeviceID CPU-temp CPU-freq TransCount Time

4.2.4 Data collection
The data collection will be done on the metrics mentioned in Section 2.1. The la-
tency of each message will be measured using the time since epoch method. The
end-device takes the time exactly when the data is about to be sent and appends
that to the payload. The gateway then decodes the payload, takes a new timestamp,
and takes the difference between them. This then gives the latency for each message
in seconds, from the actual time the message was sent through the air to when the
receiver actually received the data, i.e ToA or ToF.

For measuring packet loss, the end-device sends with each message a counter which
is incremented for each send. This is the total number of messages sent. The gate-
way also keeps a message counter for each end-device, which is incremented if it
successfully receives a message from an end-device. This is the total of received
messages. If a packet is lost during transmission from the end-device, then these
two counters will differ, and a % of packet loss can be calculated. This is what is
called Packet Delivery Rate (PDR).

The end-device also keeps a counter for acknowledgments, which it increments when
it successfully receives an ACK from the gateway. This counter is always contained
in each message sent by the end-device. Once the gateway receives the counter, it
can calculate a fraction. This fraction is what is called Packet Acknowledgment Rate
(PAR). Lastly, the RSSI and SNR values will be collected. They will, however, not
be used for the evaluation of the reliability method. Instead, they will be used to
see how the overall signal quality differs between the respective reliability methods.

4.2.5 Data logging
All the data results will be uploaded to Azure, but they will also be logged and
stored locally on the gateways. There are a few reasons for this. The first one is to
have a backup of all the tests in separate files if there is a problem with the HTTP
post requests up to Azure.

33



4. Methods

Another reason is, although Azure is good for displaying data fast, there is no pos-
sibility to choose the time frame of the data that should be displayed. This means
that Azure is limited to displaying the latest test data that has been sent to it, even
though it has stored all the previous test data. Therefore, to display all the test
data when all tests have been run, the log files are essential. However, with what
was mentioned in Section 4.2.1, it is proven that Azure is still a Proof-of-Concept
(POC) for the possibility of a cloud-based implementation for LoRaWAN.

When the log files were in place, it was easy to extract the relevant data fields
from the log files by using the Matplotlib library for Python. It is a large plotting
library designed for Python to make it easy to visualize large amounts of data in
different kinds of ways [39]. First simple graphs were made for latency on each log
file. However, it was decided that scatter plots, box plots, and violin plots would
be a better alternative since it is easy to compare different samples. These plots are
displayed in Chapter 6. Plots of latency, PDR, PAR, RSSI, and SNR were made
using these types of plots.

4.3 Evaluation methodology
This section will define how the evaluation of the methods was done regarding the
metrics defined. In addition, it will give an overview of the methodology for the
physical testbed and test environments in which the tests were performed.

4.3.1 Physical testbed
The evaluation of the default reliability method and the alternative was done in a
few steps. All of the Pi’s have Secure Shell (SSH) enabled to remotely control and
execute the respective program for the end-devices and the gateways. Both meth-
ods were evaluated the same way but with the duty cycle as the changed parameter.
This was because, since each physical testbed only contained two end-devices, there
needed to be some way to create congestion on the data link.

As mentioned in 2.4.3, the duty cycle exists to reduce the risk of messages colliding.
However, to evaluate the reliability methods, the duty cycle needed to be high to
simulate many end-devices sending to the gateway. This, in turn, was to be able
to evaluate each method on how they coped with congestion and therefore see how
latency, PDR, and PAR were affected. The RSSI and SNR values were taken to see
whether or not the signal quality became affected between the two methods.

The tests involved both end-devices sending a fixed amount of 1000 messages con-
taining telemetry data to the gateway, with Tx-power and SF set the same on all
devices. In order to handle data fluctuation, each test was performed five times in
the same testing round. Furthermore, the average between the two devices for all
five tests was calculated.

34



4. Methods

(a) Testbed 1 (b) Testbed 2

Figure 4.4: The two testbeds and the distances that the end-devices had to their
gateway.

This testing method was then performed on the respective implemented reliability
method. The same tests were performed on the two separate testbeds, which yielded
two separate data results to analyze later and compare. With the results at hand
containing the obtained data points, it will then be possible to draw conclusions and
answer this thesis’s aim, mentioned in Section 1.1.

4.3.2 Test environments
For the evaluation, two different environments were used on two separate locations,
which can be seen in Figure 4.4a. The first environment was an apartment with two
rooms and a 15cm thick concrete wall separating them. The gateway was located
in one room, and then the two end-devices were located in the other room. With
the wall between, the end-devices had NLOS to the gateway. How this affected the
signal when running the tests can later be seen by the RSSI and SNR values.

The second environment was an apartment with an open floor plan as can be seen
in Figure 4.4b. The gateway was located at one end of the room, and the two
end-devices were located at separate corners on the other side. This meant that all
end-devices had LOS to the gateway. How this affected the signal when running the
tests can later be seen by the RSSI and SNR values.

35



4. Methods

36



5
Design and Implementation

This chapter will present the work process of implementing the custom protocol for
LoRaWAN. It will go through the whole implementation process. Thus, this chapter
works as an in-depth version of Section 4.2. The first section will start by showing
wherein the network stack implementation has been performed. The second section
will then cover the underlying custom protocol for the physical testbed, including
Azure. The third section will go through the implementation of the alternative
reliability method. The fourth section will go through how the two methods differ
from each other in terms of functionality. Finally, the last section will cover different
challenges that came up during the implementation phase.

5.1 The network stack
To get a better picture of where in the LoRaWAN protocol the implementations
took place, understanding the network stack helps. The entire network stack of this
thesis is that of the gateways, the end-devices, and Azure. A figure of all the layers
can be seen in Figure 5.1. The stack starts with the application layer in the end-
device. This is because the telemetry data generated here should end up in Azure.
After this layer, the telemetry data generated need to be transmitted reliably to the
gateway. Thus the application layer communicates with the MAC-2 layer to send
the data. This layer implements the reliability methods by using the MAC-protocol
methods defined in the MAC-1 layer. This layer, in turn, communicates directly to
the physical layer and modulates the data into radio signals.

When the gateway receives these radio signals at its physical layer, it demodulates
the radio signals received back into data bits, which are then returned to the layer
above. The layer above is the MAC-1 layer which is utilized by the MAC-2 layer.
Thus, the data is passed from the physical layer to the MAC-1 layer, which is passed
to the MAC-2 layer.

From the MAC-2 layer, the telemetry data then needs to be sent to Azure through
HTTP post requests. This means that the gateway needs to use TCP/IP to forward
the telemetry data up to Azure. More importantly, however, is that in the MAC-2
layer, an ACK is created to be sent to the end-device that sent the data. Thus com-
munication occurs back and forth between the two MAC-2 layers on the gateway
and the end-device, respectively. This can be seen in Figure 5.1 by following the
black arrows between the layers.

37



5. Design and Implementation

To conclude, the telemetry data is generated at the end-devices, which are then
delivered to Azure in a reliable way made possible by the MAC-2 layer. That layer
makes sure that the data is both sent and acknowledged.

Figure 5.1: The network layers in the gateway as well as the end-devices. Im-
portant to note is that the reliability is between the MAC-2 layers. The arrows
illustrate this communication.

5.2 Implementing the underlying custom proto-
col

As mentioned in Section 2.4.7.2, the LoRa module RFM9x has a pre-built python
library1that implements a MAC-layer protocol. This library, however, does not im-
plement the MAC-layer protocol as the LoRa alliance has specified it. Because of
this, it had to be decided if the entire MAC protocol or parts of it would be im-
plemented. It was decided that only the most relevant parts for this thesis would
be implemented. The following subsections go through which parts were not imple-
mented and which ones were.

5.2.1 Parts not implemented
The following parts of the LoRa specification were not implemented:

1https://github.com/adafruit/Adafruit_CircuitPython_RFM9x

38



5. Design and Implementation

• Class types

• Adaptive Data Rate (ADR)

• Network server

• Join server

• Security

Firstly, class types were not implemented because the only thing it was considered
to add to the evaluation was when the different class types could respond to ac-
knowledged traffic with an ACK. Since the evaluation would take place between
end-devices and a gateway, it was decided that class types would be skipped.

Secondly, as mentioned in Section 2.5, the used LoRa module RFM9x is a one-
channel chip. Therefore, the gateway is unable to listen to different frequencies and
spreading factors at the same time. Because of this, Adaptive Data Rate (ADR) was
not implemented since the gateway is unable to listen to different end-devices with
different ADR settings. Furthermore, the evaluation would be on a small network.
All devices would be wall connected, so the dynamic features of ADR would not
yield any useful functionality to the testbed.

Thirdly, having the gateway be the last step before posting data to Azure was the
best choice for the physical testbed. With this, however, the gateway needed to keep
track of which end-device sent what data. Because of this, the gateways needed to
know and keep track of all of their end-devices. Thus it became a simple join-server
as well, albeit a custom one.

Lastly, implementing the security part of LoRaWAN would be another task on its
own. The security aspects in LoRaWAN have to do with the join-process to the
network. Since this was decided not to be implemented, then the security aspect
was not implemented either.

5.2.2 Parts implemented
The following parts were implemented for the underlying custom protocol:

• Sending and receiving data

• Join-to-gateway

• Default reliability method

• Azure integration

39



5. Design and Implementation

• Data collection

• Data visualization

• Alternative reliability method

With the parts not implemented clarified, the first step in the implementation phase
was to analyze the MAC-layer library for the LoRa module. It implements all the
basic functionality needed to get the LoRa module working to send and receive
messages. Once data could be sent and received between the end-devices and the
gateway, functionality for different message types and the custom join-process was
added.

The gateway needed a way to keep track of its connected end-devices to handle the
telemetry data that the end-devices send. Therefore, when each end-device starts,
they send a custom packet shown in the previous section in Table 4.2. The gateway
then reads this packet, checks if it has already added this end-device or not, and
responds with a reply whether or not the end-device got added. If successful, the
end-devices wait a certain random amount of time to comply with ALOHA before
sending telemetry to the gateway.

With the custom join procedure between the end-devices and the gateways in place,
the next step was to implement a way to keep track of the different telemetry data
an end-device had sent. The first iteration of this involved simply sending the CPU
frequency and the CPU temperature of the respective Raspberry Pi. When the gate-
way could successfully extract this data, more essential telemetry data was added.
Firstly, the number of messages an end-device has sent. This meant that the PDR
could be calculated at the gateway since it records the number of received messages.
The RSSI and SNR values of each uplink transmission were included as well.

Secondly was the latency of each message. Using the epoch method, this was done
by taking a timestamp before sending a message along with this timestamp in the
payload to the gateway. The gateway could then calculate the latency by taking
a new timestamp when receiving the message and take the difference between the
two. Lastly, the end-devices started recording how many acknowledgments they had
received from their gateway. Thus the last telemetry to be added to the payload
was PAR.

The next step was to integrate Azure with the physical testbed with the purpose of
both displaying data and as a Proof-of-Concept for cloud-based LoRaWAN. The in-
tegration started with an article2on how to connect LoRaWAN through The Things
Network to Azure. An IoT Central was created, as mentioned in the article. How-
ever, following the other steps in the article, the solution was ambitious for this
thesis purpose with Azure. This resulted in researching for an alternative solution.
The result was finding Azure IoT Central Device Bridge. This bridge made it pos-
sible to make an HTTP-POST request to post all the collected telemetry data to

40



5. Design and Implementation

Azure. The final JSON format used for posting can be seen in Listing 5.1.
json_data = {

" device ": {
" deviceId ": host

},
" measurements ": {

" cpuTemp " : cpu_temp ,
" cpuFreq " : cpu_freq ,
" transmissions " : transmissions_host ,
"rssi" : int(rssi),
"snr" : int(snr),
" latency " : latency ,
" transmissionsReceived ": received_transmissions

,
" transmissionsACKS " : receivedACKS

}
}

Listing 5.1: Final JSON-format for the HTTP-post request to the Azure function.

The final step before implementing the alternative reliability method was to add
the data logging and visualization. Since Azure became a Proof-of-Concept, there
needed to be another way of visualizing the telemetry data. Hence, a local data
logging method was implemented where all the devices on the physical testbed log
and saves everything they do each time they run their respective program. However,
the log files from the gateway are the important ones since it logs all the telemetry it
receives from its connected end-devices. The gateway is also the device responsible
for posting the data to Azure, so it made sense to log all the important telemetry
data on the gateway. See Figure 5.2 for an illustration of a log file.

When all tests had been run and all the log files were in place, the final step was to
script a solution for extracting all the data fields from the log files. This was done
with the Python library Matplotlib. Each row has the end-device name before the
telemetry data, which helped with categorizing each end-device’s telemetry data.
By looping through every log file, saving each telemetry field for each end-device
into their own lists, the results for every telemetry data could then be plotted.

Figure 5.2: Illustration of a log file.

2https://azure.microsoft.com/sv-se/blog/the-things-network-and-azure-iot-connect-lorawan-
devices/

41



5. Design and Implementation

5.3 Implementing the alternative reliability method
When the underlying protocol had been implemented, the implementation of the
alternative reliability method could start. The method from Nessa et al. was the
chosen method, as mentioned in Section 4.1. The underlying protocol was made to
make it easy to add additional methods to it without making significant changes in
the code. To easily switch between the original method and the alternative method
helps when performing the data collection. There are, however, a few changes made
to Nessa et al.’s method to be compatible with this thesis’s physical testbed, which
will be covered.

The first step was to analyze how the authors have defined their timing diagram
for uplink and downlink windows, which can be seen in Figure 5.3. The overall
functionality of their implementation has been discussed in Section 3.1. The au-
thors have added redundant retransmission for the transmission and receiving part
of LoRaWAN, divided into stages. These are different from the original LoRaWAN
protocol, but they can be seen as more additional parts rather than a total change
of the original. Realizing this made the initial implementation process more man-
ageable.

Figure 5.3: Nessa et al.’s timing diagram. Image from their paper [6].

The second step was to analyze and understand how the authors have defined their
bounds on the different timeouts used in their timing diagram. The main parameters
are the ACK_TIMEOUT and the Arbitrary Spacing Between Retransmission and Re-
dundant Retransmission (ASRTX_TIMEOUT). The ACK_TIMEOUT is dependent on the
ToA of the previous transmission, meaning that the latency of the previous trans-
mission determines the ACK_TIMEOUT. There needs to be an initial value, however,
which the authors set to four. Over time, if there are no successful transmission
and the contention stage increases, so will the ACK_TIMEOUT exponentially based on
the ToA value (latency). The ACK_TIMEOUT is calculated using the following formula:

ACK−TIMEOUTLb(i) = ACK−TIMEOUTUb(i−1)

ACK−TIMEOUTUb(i) = 2 × ACK−TIMEOUTUb(i−1)

(5.1)

This means that the lower and upper bounds on the ACK_TIMEOUT are re-calculated

42



5. Design and Implementation

in every ith contention stage using the previous value of ACK_TIMEOUT. This ensures
that the value of the ACK_TIMEOUT is never the same as the previous value. As for
the ASRTX_TIMEOUT, it is a randomly generated value used between every retrans-
mission and redundant retransmission. The values Nessa et al. used in their paper
can be seen in Table 5.1.

Table 5.1: Nessa et al.’s transmission parameters.

Parameter Settings
Tx-Power 18
Frequency and Bandwidth 915 and 125 BW
SF [7, 8, 9]
ACK_TIMEOUT min 4
ACK_TIMEOUT max 64
ACK_TIMEOUT Ub(0) ACK_TIMEOUT min

The third step was then to start implementing the method into the physical testbed.
It became apparent quite early on, however, that changes to the authors’ method
needed to be made to fit the physical testbed used in this thesis. One change was,
since the authors’ method is evaluated on a simulator with multiple end-devices,
their used parameter values could not be used. This is because they were too high
for only two end-devices. Furthermore, due to the limitations of the LoRa RFM9x
module, standard values for the SF had to be used, which meant leaving Tx-power
standard as well. Therefore, modified values had to be used, which can be seen in
Table 5.2.

Another change was related to the SF. The authors’ method increases the SF by
one for each contention stage. This was problematic for the physical testbed since,
as mentioned in Section 2.5, the LoRa module is only one channel. Therefore, this
functionality was not implemented.

Table 5.2: The transmission parameters used in this thesis.

Parameter Settings
Tx-Power 13
Frequency and Bandwidth 433 and 125 BW
SF 7
ACK_TIMEOUT min 0.2
ACK_TIMEOUT max 6
ACK_TIMEOUT Ub(0) ACK_TIMEOUT min

When these steps were done, the final phase was to debug the solution. All the
parameters in Table 5.2 are the final ones used. However, these were determined
through extensive testing on the physical testbed. The values had to work with only
two end-devices, but they needed to work when simulated as multiple end-devices

43



5. Design and Implementation

with a high duty cycle. Nessa et al.’s values would not stress the reliability method
on the physical testbed at all, therefore not creating any congestion on the network
link. As for the timing diagram for the physical testbed, it remained the same as
Nessa et al.’s since the parameters for the send and receive windows were still used,
albeit smaller.

5.4 Differences between the two reliability meth-
ods

The two reliability methods are both similar and different from each other. The
alternative method is designed around the default method, altering the timing dia-
gram for the uplink and receive windows mentioned in the previous section. These
two different windows can be seen in Figure 5.4 with a flowchart in Figure 5.5. As
can be seen in Table 5.3, the alternative method adds features that are built on
top of the default ones. For example, the variable ACK-Timeout and the Redundant
Retransmission are not present in the default method. The nb-Trans exists in the
default method, which determines how many transmissions should be done for an
acknowledged and non-acknowledged packet. Since ADR sets the nb-Trans, this
feature does not exist in the alternative method.

Table 5.3: The key features for the two methods.

Feature Default method Alternative method
ACK-Timeout X X

Variable ACK-Timeout × X
Acknowledged Retransmission X X
Redundant Retransmission × X

nb-Trans X ×
Max-delay X X

ADR (if available) X ×

To conclude, the two methods share most of the features since the alternative method
is based on the default one. The main difference is how the methods handle the
retransmission of non-acknowledged messages.

44



5. Design and Implementation

Figure 5.4: The two timing diagrams. One for the default method and one for the
alternative method, which is inspired by Nessa et al.’s timing diagram [6]. Impor-
tant to note here is that the ACK_TIMEOUT is of different lengths in reality. In the
alternative method, the ACK_TIMEOUT varies, whereas, in the default, it is static.

Figure 5.5: Simple flowchart showing what happens in the two different reliability
methods. Blue is the alternative method, and yellow is the default method.

45



5. Design and Implementation

5.5 Implementation challenges
Throughout the development of the physical testbed, there were a few challenges
faced that had to be resolved. The following section will go through the encoun-
tered challenges by presenting the problem and then the solution used to tackle the
problem. It will begin with the hardware challenges that were faced. It will then
move on to the problems faced with Azure. Finally, this section is concluded with
implementation difficulties.

5.5.1 Hardware related challenges
The LoRa module RFM9x is, as previously mentioned, only one channel. Since
this means that a gateway can only handle one end-device at any given time, this
was not ideal for the physical testbed. This was, however, not a significant problem
since it could be solved by not implementing ADR and not using frequency hopping.

However, the initial plan related to the data collection was to change the value range
for Tx-power and SF and send all 1000 data messages as permutations of these set-
tings. The problem with this was that the SF did not want to cooperate with the
module. Although the settings could be changed and the module reported that it
had applied the SF, it was problematic to send and receive even the most minor
data between the devices. The SF was changed to the same values throughout the
end-devices, but it was still troublesome to get anything consistent when sending
and receiving.

Additionally, as mentioned in Section 2.3.4, the SF affects the data rate. Lower SF
means more data can be sent, but at the cost of a lower time for the receiver to
sample the signal and shorter range. Furthermore, the data rates, as shown in Table
2.1, are still valid up to SF 11 for the maximum payload the physical testbed sends,
which is 52 bytes or 416 bits. This meant that ultimately, the SF had to remain
at its standard value of seven, which in turn meant that following the reliability
method’s way of changing the SF for retransmission could not be done to a fault.

5.5.2 Azure related challenges
Azure was decided early on to be used as a form of easily visualize the telemetry
data. It took time to get it up and running, but when it was finished, it looked very
promising. However, as already touched upon in Section 4.2.5, Azure IoT Central
has no way of deciding the time span of when to show the posted telemetry data.
This lack of feature was critical in our case since this meant that there was no way
of displaying each of the test runs separately. Azure IoT Central can only show a
specific time window of data, namely the last 100 values, the last day, the last hour,
or the last 30 minutes. Thus visualizing older stored data was not possible. This
led to the Azure IoT Central implementation becoming a POC for a cloud-based
LoRaWAN. The solution was to instead store all the telemetry data locally through
log files and use Matplotlib to display the data.

46



5. Design and Implementation

5.5.3 Implementation difficulties
Although there were no major difficulties when programming the solution, the time
investment was higher than initially anticipated. This was because it was challeng-
ing to see if the implementations worked correctly and because reading literature
and specifications to implement the reliability methods took time.

Another aspect that was challenging with the implementation was the things that
were thought to be done with but needed to be changed. For instance, a boilerplate
was created for a LoRa-device. This boilerplate would then be used by both the
gateway and the end-devices. However, because of the boilerplate structure, if the
gateway needed a change in the boilerplate structure, then the end-devices would be
affected as well. This happened a few times but in smaller and different formats.

47



5. Design and Implementation

48



6
Results

This chapter will show the results obtained from all the tests done on the alternative
and default reliability methods. It will begin by presenting all the results as an
overview for both testbeds and reliability methods. It will then move on to the
results for each data field on each testbed, beginning with showing how the latency
is affected between the two reliability methods. It will then further look at how
the Packet Delivery Rate (PDR) is affected and the Packet Acknowledgment Rate
(PAR). It will then conclude with results on how the RSSI and SNR were affected,
along with a comparison of Nessa et al.’s results and this thesis’s results.

6.1 Data collection on two different testbeds
The data collection was done on two physical testbeds. This was done by running
ten tests with the settings in Table 6.1. Five of the tests were run with the default
reliability method, whereas the other five were run with the alternative method. Af-
ter the data had been collected, the average value over all the tests was calculated
for each end-device. The average was calculated for latency, PDR, PAR, RSSI, and
SNR. These averages can be seen in Listing 6.1 for both testbeds. Every data field
in these listings will be covered in its own sections in this chapter. All of the results
will then be discussed in detail in Chapter 7.

Table 6.1: The settings used for the five tests during the data collection. These
settings were used both for the default reliability method and the alternative.

Parameter Value
TX-Power 13

Spreading factor 7
Sending frequency 0.250 s

Time on air 0.160 s
Duty cycle 98.43%

Size of message (bytes) 52
Number of messages 1000

49



6. Results

######################### Testbed 1 #########################
Default | Alternative
Results for host: jo - raspb4 | Results for host: jo - raspb4

AVG latency : 1.063162 | AVG latency : 0.305565
AVG snr: 5.946608 | AVG snr: 6.085039
AVG rssi: -43.295624 | AVG rssi: -43.297718
PDR: 0.914000 | PDR: 0.937800
PAR: 0.886600 | PAR: 0.842400
AVG Runtime : 1841.2 s | AVG Runtime : 846.6 s

Results for host: jo - raspb2 | Results for host: jo - raspb2
AVG latency : 0.644878 | AVG latency : 0.256612
AVG snr: 4.811879 | AVG snr: 5.748439
AVG rssi: -39.739712 | AVG rssi: -40.405356
PDR: 0.986600 | PDR: 0.993200
PAR: 0.896000 | PAR: 0.870600
AVG Runtime : 1794.4 s | AVG Runtime : 758.8 s

For these hosts combined |For these hosts combined
the averages are: | the averages are:

AVG latency : 0.854020 | AVG latency : 0.281088
AVG snr: 5.379244 | AVG snr: 5.916739
AVG rssi: -41.517668 | AVG rssi: -41.851537
PDR: 0.950300 | PDR: 0.965500
PAR: 0.891300 | PAR: 0.856500
AVG Runtime : 1817 s | AVG Runtime : 802 s

######################### Testbed 2 #########################
Default | Alternative
Results for host: oli - raspold | Results for host: oli - raspold

AVG latency : 0.89286 | AVG latency : 0.218339
AVG snr: 6.082547 | AVG snr: 5.886245
AVG rssi: -53.300988 | AVG rssi: -48.713838
PDR: 0.911000 | PDR: 0.958200
PAR: 0.888400 | PAR: 0.879600
AVG Runtime : 1665.6 s | AVG Runtime : 688.6 s

Results for host: oli - raspuni | Results for host: oli - raspuni
AVG latency : 0.560309 | AVG latency : 0.209021
AVG snr: 5.803589 | AVG snr: 5.928913
AVG rssi: -40.850171 | AVG rssi: -48.183746
PDR: 0.991800 | PDR: 0.962200
PAR: 0.917200 | PAR: 0.884400
AVG Runtime : 1588.4 s | AVG Runtime : 684.4 s

For these hosts combined the |For these hosts combined
the averages are: | the averages are:

AVG latency : 0.726589 | AVG latency : 0.213680
AVG snr: 5.943068 | AVG snr: 5.907579
AVG rssi: -47.075580 | AVG rssi: -48.448792
PDR: 0.951400 | PDR: 0.960200
PAR: 0.902800 | PAR: 0.882000
AVG Runtime : 1627 s | AVG Runtime : 686 s

Listing 6.1: The results from running the default and the alternative reliability
methods for testbed 1 and testbed 2. Each method was run five times with 1000
transmissions.

50



6. Results

6.2 Latency
This section will present the results on how the latency is affected between the two
reliability methods. It is worth reminding that lower latency is preferable. The
results will be presented from both of the testbeds, respectively. One end-device
in each testbed will be presented with its own graphs, along with a scatter plot
containing both end-devices. The plots for the two other end-devices can be found
in the Appendix, with testbed 1 in Appendix A and testbed 2 in Appendix B.

6.2.1 Testbed 1
Testbed 1 was located in two separate rooms with a thick concrete wall between the
end-devices and the gateway. Figure 6.1 and Figure 6.2 contains a violin plot and a
box plot of the latency results for one end-device. The figures are results from the
alternative and default methods, respectively. When comparing these two figures,
it can be seen in the violin plot for the alternative method that its biggest density
is located lower on the Y-axis than for the default. Furthermore, the violin plot for
the alternative has lower outliers. This means that the alternative method both has
overall lower latency and lower individual latency points. It is worth noting that
looking at the box plots is that the alternative method is not as consistent with
the latency as the default one is. This behavior translates to the other end-device
raspb4 in the testbed as well, which can be seen in Figure A.1 and A.2 located in
Appendix A.

Looking at the scatter plot in Figure 6.3, it can be seen that the average latency
remains roughly the same for each end-device in each method. The figure also shows
that the alternative method has a lower average latency compared to the default
one. Another thing of interest is that raspb4 has a higher latency than raspb2 in
both the default method and the alternative, albeit a substantially larger difference
in the default method.

51



6. Results

Figure 6.1: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

Figure 6.2: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

52



6. Results

Figure 6.3: A scatter plot of the average latency value for each sample. Here,
both end-devices are shown for both reliability methods. The dotted line is the
average for all the samples combined.

6.2.2 Testbed 2
Testbed 2 was the one located in the open floor environment. The Figures 6.4 and
6.5 represent the latency for one end-device. These figures show latency for the end-
device in each sample for both the alternative and the default method. Starting with
the violin plots, it can be seen that the default method has a higher max latency
than the alternative. However, the box plots show that the alternative method has
a smaller spread with its latency than the default method.

When it comes to the other end-device in the testbed, raspuni, this spread is not
reproduced. This can be seen in Figure B.1 and B.2 located in Appendix B. In
these figures, there is a smaller difference between the two box plots. The violin
plots here, however, still show that the default method has a higher max latency.
It also shows a somewhat bigger concentration of values closer to 1 in the default
method than in the alternative method.

The scatter plot in Figure 6.6 shows that the average latency for each sample is
higher in the default method than it is in the alternative. Furthermore, it can be
seen that raspold has a higher latency in almost all samples for both the alternative
and the default method.

53



6. Results

Figure 6.4: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

Figure 6.5: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

54



6. Results

Figure 6.6: A scatter plot of the average latency value for each sample. Here,
both end-devices are shown for both reliability methods. The dotted line is the
average for all the samples combined.

6.3 Packet Delivery Rate
This section will present the results on how the PDR is affected by the two reliability
methods. The results will be presented from both of the testbeds, respectively. It
is worth reminding that a PDR that goes towards 100 % is preferable since that
means a method can successfully deliver more packets.

6.3.1 Testbed 1
In Figure 6.7, the PDR can be seen for both end-devices using both reliability
methods. The first thing to notice is that the raspb2 device is better in all samples
for PDR. However, looking at the scatter plot for both end-devices, both have a
higher PDR with the alternative method. This can also be seen in Listing 6.1.

6.3.2 Testbed 2
In Figure 6.8, the PDR can be seen for both end-devices using both reliability
methods. As can be seen, the default method has the highest average PDR for
raspuni. The default method also has the most consistent values. However, ignoring
the devices and only looking at the alternative compared to the default method, the
alternative method has a higher PDR value in all but one sample. For the respective
end-device, raspold has a better result with the alternative, whereas raspuni has
a better result with the default method.

55



6. Results

Figure 6.7: A scatter plot of the average PDR value for each sample on testbed
1. Here, both end-devices are shown for both reliability methods. The dotted line
is the average for all the samples combined.

Figure 6.8: A scatter plot of the average PDR value for each sample on testbed
2. Here, both end-devices are shown for both reliability methods. The dotted line
is the average for all the samples combined.

6.4 Packet Acknowledgment Rate

This section will present the results on how the PAR is affected by the two reliability
methods. The results will be presented from both of the testbeds, respectively.
Worth reminding is that a PAR that goes towards 100 % is preferable since that

56



6. Results

means more packets have been acknowledged.

6.4.1 Testbed 1
In Figure 6.9, the PAR can be seen for both end-devices using both reliability
methods. As can be seen, the default reliability method has a higher average PAR
compared to the alternative method. Worth noting is that it is raspb2 that once
again has the highest values both for the default and alternative method.

Figure 6.9: A scatter plot of the average PAR value for each sample. Here, both
end-devices are shown for both reliability methods. The dotted line is the average
for all the samples combined.

6.4.2 Testbed 2
In Figure 6.10, the PAR can be seen for both end-devices using both reliability
methods. Like for testbed 1, the default reliability method has a higher PAR on
this testbed than the alternative method. Comparing Figure 6.10 with Figure 6.8,
it can be seen that the PAR follows almost the same pattern as the PDR does for
the alternative method.

57



6. Results

Figure 6.10: A scatter plot of the average PAR value for each sample. Here,
both end-devices are shown for both reliability methods. The dotted line is the
average for all the samples combined.

6.5 Received Signal Strength Indicator and Signal-
to-noise ratio

This section will present how the RSSI and SNR are affected by the two reliability
methods. The results will be presented from both of the testbeds, respectively. One
end-device in each testbed will be presented with its own graphs. The plots for the
two other end-devices can be found in the Appendix, with testbed 1 in Appendix A
and testbed 2 in Appendix B.

Although the RSSI and SNR are not part of evaluating the reliability methods, it is
still important to see how they are affected by the two methods since they reflect the
overall signal quality. It is worth reminding that an RSSI value that goes towards
zero is preferable since that means that the signal is strong. For SNR, a value above
zero is preferable since that means more signal than noise in the signal.

6.5.1 Testbed 1
Starting with RSSI, comparing the violin plots in Figures 6.11 and 6.12, it can be
seen that both the default method and the alternative have a high density around
−41 dBm for raspb2. However, the big difference is the concentration of values
around −35 dBm for the default method. Here, it has a higher density of values
than the alternative method. This difference can also be confirmed when comparing
the two box plots.

58



6. Results

Figure 6.11: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

Figure 6.12: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

For the other end-device, raspb4, the RSSI is a bit higher where the density of the
values for both the default method and alternative method is centered around −43
dBm, and the highest value is −44 dBm. This can be seen in Figures A.3 and A.4.
Here both the violin plots and box plots are very similar.

59



6. Results

Moving on to SNR, Figures 6.13 and 6.14 show the SNR values for raspb2 with the
alternative and default method respectively. This follows almost the same pattern
as RSSI. In the violin plots, the largest density of the values is around 6 dB, but
that the default method also has some density of values around 1 dB. This can also
be confirmed by looking at the box plots.

Figure 6.13: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

Figure 6.14: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

For the other end-device, raspb4, its SNR values for the alternative method follows
the same patterns as for raspb2 which can be seen in Figure A.5. For the default
method however, the SNR values are a bit more consistent compared to raspb2.
Figure A.6 show that the largest density of the SNR values is at 6 dB.

60



6. Results

6.5.2 Testbed 2
Starting with RSSI, Figures 6.15 and 6.16 show the RSSI results for raspold. It
can be seen through both the violin and box plots that the alternative method is
closer to zero than the default method is. The largest density of the values for the
alternative method is above −50 dBm, whereas for the default method, they are
below −50 dBm. This can be seen in both the violin plots and box plots.

Figure 6.15: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

Figure 6.16: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

For the other end-device, raspuni, Figures B.3 and B.4 show that the default
method generally have lower RSSI values of than the alternative method. For the

61



6. Results

most part, the default method is around −43, whereas the alternative has the bulk
of its values just below −45.

Moving on to the SNR results, Figures 6.17 and 6.18 show that both of the methods
have almost all values around 6 dB. Neither method reaches a higher SNR than the
other, but the alternative has the lowest SNR values. This is somewhat replicated
for the other end-device raspuni, where both of them are centered around 6. This
can be seen in Figures B.5 and B.6, where all of the medians are at 6. However,
one thing that does differ is that the default method has a higher spread than the
alternative method.

Figure 6.17: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

Figure 6.18: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

62



6. Results

6.6 Comparison between Nessa et al.’s results and
this thesis’s results

In Nessa et al.’s paper [6], the authors use the Data Extraction Rate (DER) and the
average delay per confirmed packet as their two evaluation metrics. Here, DER is
another term for PDR. Worth noting again for their test setup is that they simulate
upwards of 500 end-devices on a software simulator. On the physical testbeds in this
thesis, the end-devices have a duty cycle of 98.43%. Assuming that an end-device
should send with 1% duty cycle, this results in the two end-devices simulating a
network of 196 end-devices. However, this number does not reflect reality because
when the reliability modes kick in, the sending frequency is haltered. With this
said, being conservative and estimating that the testbeds simulate 100 end-devices,
Figure 6.19 can be used to compare this thesis’s results with Nessa et al.’s results.

Figure 6.19: Nessa et al.’s average transmission delay versus the number of nodes
for confirmed packets. Image from their paper [6].

Table 6.2: The latency results for the default and alternative method. It contains
both the results of this thesis as well as Nessa et al.’s [6].

What result
This thesis

Testbed 1/Testbed 2 Nessa et al.
Number of nodes 100 100

Packet length (bytes) 52 10
Latency alternative 0.280s/0.214s ≈ 0.180 s
Latency default 0.850s/0.727s 0.500 s

63



6. Results

As can be seen in Table 6.2, Nessa et al.’s simulation resulted in lower latency values
for both the default and the alternative reliability methods. However, they use a
packet length of 10 bytes compared to this thesis, which impacts the latency due to
the packets spending less Time-on-Air.

In Figure 6.20, Nessa et al.’s PDR results can be seen. This figure can be used as
a rough comparison between this thesis and Nessa et al.’s results. However, they
specify different kinds of traffic, making the comparison not fully doable. Neverthe-
less, choosing their most prioritized data, i.e., the emergency data, the PDR differs
by around 4%. This comparison can be seen in Table 6.3.

Figure 6.20: Nessa et al.’s DER (PDR) versus the number of nodes under different
kinds of traffic. Image from their paper [6].

Table 6.3: The PDR results for the default and alternative method. It contains
both the results of this thesis as well as Nessa et al.’s [6].

What result
This thesis

Testbed 1/Testbed 2 Nessa et al
Number of nodes 100 100

Packet length (bytes) 52 10
PDR Alternative 96.6%/96.0% 100%
PDR default 95.1%/95.2% 87%

64



7
Discussion

This chapter discusses many aspects of this thesis. It will begin with an in-depth
analysis of all of the results presented in Chapter 6. The second section will discuss
the aspect of using LoRaWAN with IIoT devices. The third section contains com-
ments on the custom-built LoRaWAN infrastructure. The chapter then concludes
with a discussion on potential future work that can be performed on this thesis.

7.1 Discussion of the results
This section will analyze and discuss the obtained data results from Chapter 6. It
will give more insight into the presented results and discuss what stands out from
the results. It will also discuss what could have affected the results.

Starting with PDR, both testbeds had improved results with the Alternative Method
(AM) compared to the Default Method (DM). This can be seen in Table 7.1. One
thing that stands out with the averages is that the AM has a better average in all
cases except for raspuni.

Table 7.1: All average PDR values for all end-devices for both methods and both
testbeds.

End-device/testbed Default method Alternative method
raspb2 98, 7% 99, 3%
raspb4 91, 4% 93, 8%

Testbed 1 95, 1% 96, 6%
raspold 91, 1% 95, 8%
raspuni 99, 2% 96, 2%

Testbed 2 95, 2% 96, 0%
Both testbeds 95, 2% 96, 3%

This is thought to be the case because the end-devices compete for the gateways’
attention. On testbed 1, raspb2 is the device that gets the best PDR for both the
AM and DM in all samples. For testbed 2 it is instead raspuni for the DM. It is,
however, different from the AM on testbed 2. In Figure 6.8 for the AM, it looks
like raspuni has established a good communication connection with the gateway

65



7. Discussion

for samples [1, 2]. But in samples [4, 5], it is instead raspold with the good commu-
nication connection. Finally, in sample [3], it looks like both end-devices are sharing
the connection. Thus, even if raspuni performs worse in the AM compared to the
DM in some samples, it does so by giving increased PDR to raspold.

Concluding the PDR results, the AM generally performs better than the DM. From
our understanding, this is probably because of the redundant retransmission with a
pseudo-random value as a delay. Another factor could be the ACK_TIMEOUT based
on the ToA value in the AM compared to the static value in DM. The ACK_TIMEOUT
is of interest because two or more end-devices could start their retransmission at
the same time. That would mean that they would be somewhat synchronized and
that their retransmissions could cancel out each other. With a static ACK_TIMEOUT,
they could stay synchronized like this until they reach ACK_TIMEOUT_MAX and give
up on the transmission, or if one of them successfully retransmits. Because of this,
a non-deterministic ACK_TIMEOUT could stop the synchronization, whereas, with the
DM with static ACK_TIMEOUT, synchronized end-devices could take longer to become
asynchronous.

An indicator that the redundant retransmission is one improvement in PDR for the
AM is the PAR. The PAR metric indicates how many packets are acknowledged
and how much data traffic a reliability method generates. The results for PAR in
Section 6.4 showed that the PAR was lower for AM than it was for DM. Thus the
AM has a higher PDR but lower PAR. This is one of the costs of using the AM
compared to the DM. The results can be seen in Table 7.2.

Table 7.2: All average PAR values for all end-devices for both methods on both
testbeds.

End-device/testbed Default method Alternative method
raspb4 88, 7% 84, 2%
raspb2 89, 6% 87, 1%

Testbed 1 89, 1% 85, 7%
raspold 88, 8% 88, 0%
raspuni 91, 7% 88, 4%

Testbed 2 90, 3% 88, 2%
Both testbeds 89, 7% 87, 0%

Since this value should be high, it can be concluded that the AM generates more
data traffic than the DM on both testbeds. This applies to all end-devices both indi-
vidually and their averages on both testbeds. Worth noting is that if both methods
had the same PAR, the AM would still generate more data traffic. This has to do
with the fact that the AM utilizes redundant retransmissions.

Moving on from the PAR results and looking at Table 7.3, it can be concluded that
the AM has overall a better average latency. This reduction in latency is believed

66



7. Discussion

to be due to two factors in the AM. The first one is redundant retransmission, as
it occurs almost immediately after the first retransmission. Thus if the first one
is not received, then the redundant retransmission will be received instead. The
second factor is the ACK_TIMEOUT. As shown in Section 5.3, the ACK_TIMEOUT in the
AM starts as a small value and then grows exponentially. This, compared to the
static ACK_TIMEOUT in the DM, leads to the first retransmission stage being initiated
quicker in the AM compared to the DM.

Table 7.3: Average latency in milliseconds for all end-devices for both methods
and both testbeds.

End-device/testbed Default method Alternative method
raspb4 1063.2 305.6
raspb2 644.9 256.6

Testbed 1 854.1 281.1
raspold 892.9 218.3
raspuni 560.3 209.0

Testbed 2 726.6 213.7
Both testbeds 790.4 247.4

Following the latency results, the average RSSI values are displayed in Table 7.4.
The average RSSI between DM and AM is generally really close except for the end-
devices in testbed 2. Here, raspuni have a difference of 7.33 whereas raspold have
a difference of 4.59. Every end-device in both testbeds was stationary when the
tests were performed, along with the same SF and Tx-power settings. Therefore,
there should not be any major differences between the methods. The only theory
regarding these two end-devices is that their antenna position changed very slightly
during the data collection or temporary signal interference occurred from nearby
radio signals.

Table 7.4: Average RSSI in dBm for all end-devices for both methods and testbeds.

End-device/testbed Default method Alternative method
raspb4 -43.30 -43.30
raspb2 -39.74 -40.41

Testbed 1 -41.52 -41.85
raspold -53.30 -48.71
raspuni -40.85 -48.18

Testbed 2 -47.08 -48.45
Both testbeds -44.30 -45.15

As for SNR, Table 7.5 shows the average SNR values. SNR for testbed 1 is higher
with the AM, whereas on testbed 2, it is the other way around. Overall, the SNR

67



7. Discussion

does not differ that much between devices and methods except for raspb4 which
seems to have had a better signal compared to the other devices. Although the
raspb2 improved with almost 1 dB from the DM to the AM, it is marginal. How-
ever, these small variations could be caused by the same reasons as for RSSI since
both these metrics have to do with the signal quality.

Table 7.5: Average SNR in dB for all end-devices for both methods and testbeds.

End-device/testbed Default method Alternative method
raspb4 5.95 6.09
raspb2 4.81 5.75

Testbed 1 5.38 5.92
raspold 6.09 5.89
raspuni 5.80 5.93

Testbed 2 5.94 5.92
Both testbeds 5.66 5.92

Finally, to conclude the discussion of the results, the AM improves the PDR by a
small amount, 1.1%. The latency, however, has an improvement of 69% in reduction
between the DM and AM. Nonetheless, even though the PDR and the latency had
improvements with the AM, these improvements come with a cost. Firstly, more
traffic is generated with the AM because it uses redundant retransmissions. On top
of this, the AM also has a lower PAR which means that it will make more unneces-
sary retransmissions than the DM. This results in the AM generating more network
traffic and use more power to send than the DM. More power is because more traffic
is being sent, and therefore the LoRa module is operational longer time.

As for signal quality, there is not a big enough difference between the two methods
in terms of RSSI and SNR. In theory, both SNR and RSSI should remain the same
between the two methods since every parameter and placement of the testbeds re-
mained the same. However, since it is radio frequencies, outside interference can
affect these results.

The results are summarized as follows:

• PDR: The DM has an average of 95, 2%, whereas the AM has 96.3%. Thus
the AM is an improvement of 1.1% increase in PDR.

• Latency: The DM has an average of 790.35 ms, whereas the AM has 247.4
ms. Thus the AM is an improvement with 69% reduced latency.

• PAR: The DM has an average of 89.7%, whereas the AM has 87%. Thus the
AM is not an improvement and has a reduced PAR of 3%.

• RSSI/SNR: There is no significant difference between the two methods.

68



7. Discussion

7.2 LoRaWAN for IIoT
One of the primary goals of this thesis was to provide numerical results on how
reliable LoRaWAN is, to give manufacturers an indication of what LoRaWAN can
achieve in terms of reliable communication. There are, however, things to consider
when looking at this thesis’s results.

The data collection was done on only one spreading factor, which was 7. Regarding
how CSS modulation works, increasing the spreading factor will lead to a signal
less susceptible to interference and, therefore, higher reliability. This seems very
detrimental to the result of this thesis. However, the drawback of increasing the
spreading factor is the increase in latency. This can be seen by looking at the data
rate of the different spreading factors, shown in Table 2.1. Stepping from SF 7 (5470
bits/s) to SF 8 (3215 bits/s) leads to an increase in latency of 75%. Even if it would
be optimal to do the data collection on several different spreading factors, doing it
on the lowest spreading factor leads to a lower bound in latency and an indication
of a lower bound PDR.

Because of this, IIoT manufacturers can look at this thesis and look at the PDR
as a lower bound. This could potentially be improved by increasing the spreading
factor. Likewise, the latency can also be looked at as a lower bound, as long as it
is taken into account that it will change with distance, packet size, and reliability
method.

As for what reliability method to recommend, it depends on network size and density.
For denser networks, the recommendation would be the default method with a non-
deterministic but increasing ACK_TIMEOUT. This is because the network would benefit
from the lower latency from the AM and the decreased network traffic of the DM.
On the other hand, the AM would be recommended for less dense networks as this
increases the PDR and decreases the latency but with the cost of higher power usage
and increased network traffic.

7.3 The custom LoRaWAN infrastructure
The custom-built infrastructure for this thesis was the best that could be achieved
with the budget available and the project’s time frame. It was also a reasonable
choice to go with a custom solution to perform the necessary changes to make the
hardware work. Although it has succeeded in delivering the required functionality
for this thesis, it is still not optimal. As mentioned, the LoRa RFM9x modules have
their limits and problems like only being one channel and the problems with getting
the SF to work correctly. This is not ideal since the gateway can not handle more
than one device simultaneously and therefore does not comply with the LoRaWAN
specifications. Furthermore, it makes a potential ADR implementation difficult since
ADR adjusts SF, Tx-power, and sub frequencies for individual end-devices.

69



7. Discussion

With this hardware limitation, the adjustment of SF for retransmission could not
be made in either reliability method. This may have affected at least the compar-
ison with Nessa et al. since their simulator does use variable SF in the contention
stages. It is, however, not clear from their results whether or not any end-devices
entered contention stages since no data on increased SF is provided in their paper.
Nevertheless, between the two methods evaluated on the physical testbed in this
thesis, the results are comparable since neither method has dynamic SF.

Since the implemented protocol is a custom one, it does not entirely follow what
is described in the LoRa specification. The architecture, as shown in Figure 2.3,
is not the architecture for this thesis’s setup. Instead, this thesis opted to move
most of the functionality into the gateway. This is non-ideal, and a better solution
would be to implement it more according to the specification. With that said, the
measurements in this thesis occurred between gateway and end-device. The focus
was not between the JS or the NS. If one opted to look at the latency between the
end-device and AS, then the NS and the JS would need to be implemented.

7.4 Future Work
This section will go through and explain parts of this thesis work that can be ex-
tended and improved. It will cover additional parts that were chosen not to be
implemented in this thesis but can further benefit the evaluation of reliability meth-
ods.

7.4.1 Metrics
This thesis decided that PDR, PAR, and latency would be the primary metrics used
for evaluation. PDR was selected to measure the reliability methods’ effectiveness
and latency for seeing what use cases LoRaWAN enables. PAR was selected to be an
indicator of how much traffic was acknowledged and unnecessary generated. How-
ever, PAR does not give exact numbers on unnecessary traffic. An improvement to
this thesis and its results would be to see how many total transmissions were done.
That is, if the application layer sent 1000 data points, how many transmissions were
done in total on the MAC layer level.

With this metric, it would be possible to conclude the difference between methods
in both actual numbers of transmission and percentages. Thus, this would be a
more precise way of seeing how costly a method is in terms of network traffic.
Furthermore, one could argue more clearly about the power usage since the exact
number of transmissions is available.

7.4.2 Latency with JS and NS
This thesis had to limit itself to making sure that the necessary parts for evaluating
reliability were implemented. One addition could be implementing a JS and an NS

70



7. Discussion

to see how the join procedure affects the transmissions. Since this process involves
security, it could be interesting to see how encryption affects the latency, the PDR,
and PAR. The work done by Mårlind et al. [40] could be the first step of integration
since the hardware setup is similar to this thesis.

7.4.3 Using a concentrator board for the gateway
As discussed in Section 7.3, the LoRa modules are limited to what can be achieved
for a LoRaWAN network in terms of functionality. If instead a concentrator board
with multi-channel support was used for the gateway device, it would provide the
necessary functionality of supporting multiple end-devices simultaneously. Further-
more, this would mean that it could handle multiple SFs and sub-frequencies for
individual end-devices.

As a result, this would provide the ability to support changing the SF for retrans-
mission in both the AM and the DM. It would further then make sense to implement
Adaptive Data Rate (ADR) to fully take advantage of the concentrator board since
the dynamic transmission settings of ADR would then be a possibility. This would
be an interesting addition to see how the two reliability methods fair with these
dynamic transmission settings.

7.4.4 Dynamic testing environment
It is not uncommon that IoT and IIoT devices exist in scenarios where they are mov-
ing. As a result, these devices are at different distances from the closest gateway.
To improve this thesis work and make it more realistic for the industry, conducting
mobile tests could be one improvement. This would require first modifying the in-
frastructure a bit with portable power banks. It would also require automating the
programs to automatically start when the Raspberry Pis boot, alternatively making
sure that end-devices listen for commands on LoRaWAN to start data collection.
Azure could still be used as long as the gateways have an internet connection, either
Wi-Fi or cellular. If Azure is not wanted, then The Things Network could be a
potential candidate. Finally, if neither Azure nor The Things Network is possible
or wanted, local data logging on the gateways is also possible.

With this mobility, it would then be possible to make long-distance tests and see
how the reliability methods cope metrics-wise. Additionally, if a concentrator board
is used for the gateway, it opens up the ability to change parameters dynamically.
Especially the SF, since at a longer distance, the SF needs to be increased for the
gateways to have a chance of receiving data from the end-devices.

7.4.5 Evaluate more methods
As mentioned in Section 4.1, there were a few methods that were up for potential
evaluation in this thesis. Most of them did not meet the time requirement, however.
This made sense for this thesis since the underlying protocol had to be implemented

71



7. Discussion

as well. However, with that now in place, more focus could be put on evaluating
other methods. Those mentioned in related work in Chapter 3 are only a few of
those researched for this thesis. Reliability methods that are not centered around
ACKNOWLEDGED traffic are something that could be of interest since the DM and the
AM both contain ACKNOWLEDGED traffic.

7.4.6 Implement simulators
At the start of this thesis, the initial idea was to evaluate the reliability methods
both on the physical testbed and simulators. LoRaSim1, as used by Nessa et al. in
their work, or NS-32as used by Reynders et al., were two of the network simulators
that was considered to be used. This evaluation had to be skipped for this thesis due
to time constraints. Nevertheless, this would have been an interesting complement
to the physical testbed since the AM originates from the implementation done on
LoRaSim by Nessa et al.

1https://www.lancaster.ac.uk/scc/sites/lora/lorasim.html
2https://github.com/networkedsystems/lora-ns3

72



8
Conclusion

The purpose of this thesis was to evaluate the reliability in LoRaWAN by investigat-
ing the default method in LoRaWAN and see if there exists an alternative method
that can be used as an improvement. This thesis has evaluated both the default re-
liability method and an alternative method found in the literature. This evaluation
was performed in terms of the primary metrics latency, PDR, and PAR. The goal
was to provide numerical results for manufacturers and companies to determine if
LoRaWAN is suitable for IIoT devices.

The evaluated alternative method alters the default method’s uplink and downlink
windows when sending and receiving data by introducing a redundant retransmission
scheme that uses the ToA value of the previous transmission. The primary evalu-
ation came from running tests that sent 1000 messages containing telemetry data.
These tests were performed multiple times for each end-device on both testbeds.
This made it possible to measure the latency, PDR, PAR, RSSI, and SNR values to
see how the two methods perform in terms of these metrics.

The results presented in this thesis show that the alternative method improves in
increased PDR and reduced latency. To have a high PDR, while at the same time
low latency for every message, makes it possible for LoRaWAN to be used for more
mission-critical tasks. The numerical results show that the default method has an
average PDR of 95.2% and the alternative method improves this with 1.1%. Fur-
thermore, latency has an average of 790.35 ms in the default method but is reduced
by 69% in the alternative method. The PDR and latency improvements of the
alternative method come at a cost, however, namely the cost of decreased PAR.
The average PAR for the default method is 89, 7% but is decreased by 3% with
the alternative method. This means that the alternative method can achieve better
results in terms of PDR and latency but at the cost of increased network traffic and,
therefore, power usage.

This thesis has discussed that both methods come with their respective pros and
cons. It has also shown that there can be improvements made to the default method.
It is ultimately up to the manufactures to determine whether the provided numerical
results for LoRaWAN fit with their specific device requirements and environmental
conditions.

73



8. Conclusion

74



Bibliography

[1] Charith Perera, Chi Harold Liu, and Srimal Jayawardena. “The emerging in-
ternet of things marketplace from an industrial perspective: A survey”. In:
IEEE Transactions on Emerging Topics in Computing 3.4 (2015), pp. 585–
598.

[2] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. “Industrial internet of things: Challenges, opportunities, and direc-
tions”. In: IEEE Transactions on Industrial Informatics 14.11 (2018), pp. 4724–
4734.

[3] John Michael Spinelli. “Reliable communication on data links”. In: (1988).

[4] Manoj Wadekar. Handbook of Fiber Optic Data Communication: Chapter 11.
InfiniBand, iWARP, and RoCE. Elsevier Inc. Chapters, 2013.

[5] LoRaWAN and NB-IoT : competitors or complementary. [Online]. Accessed
2021-03-15. url: https://lora-alliance.org/resource_hub/lorawan-and-nb-
iot-competitors-or-complementary/.

[6] Ahasanun Nessa, Fatima Hussain, and Xavier Fernando. “Adaptive Latency
Reduction in LoRa for Mission Critical Communications in Mines”. In: 2020
IEEE Conference on Communications and Network Security (CNS). IEEE.
2020, pp. 1–7.

[7] Radio interference. [Online]. Accessed 2021-05-05. url: https ://www.rsm.
govt.nz/business-individuals/interference/radio-interference/.

[8] What is Azure? [Online]. Accessed 2021-03-08. url: https://azure.microsoft.
com/sv-se/overview/what-is-azure/.

[9] Get started guide for Azure developers. [Online]. Accessed 2021-03-08. url:
https://docs.microsoft.com/sv-se/azure/guides/developer/azure-developer-
guide.

[10] What is Azure IoT Central? [Online]. Accessed 2021-03-08. url: https://docs.
microsoft.com/sv-se/azure/iot-central/core/overview-iot-central.

75

https://lora-alliance.org/resource_hub/lorawan-and-nb-iot-competitors-or-complementary/
https://lora-alliance.org/resource_hub/lorawan-and-nb-iot-competitors-or-complementary/
https://www.rsm.govt.nz/business-individuals/interference/radio-interference/
https://www.rsm.govt.nz/business-individuals/interference/radio-interference/
https://azure.microsoft.com/sv-se/overview/what-is-azure/
https://azure.microsoft.com/sv-se/overview/what-is-azure/
https://docs.microsoft.com/sv-se/azure/guides/developer/azure-developer-guide
https://docs.microsoft.com/sv-se/azure/guides/developer/azure-developer-guide
https://docs.microsoft.com/sv-se/azure/iot-central/core/overview-iot-central
https://docs.microsoft.com/sv-se/azure/iot-central/core/overview-iot-central


Bibliography

[11] Take a tour of the Azure IoT Central UI. [Online]. Accessed 2021-03-08. url:
https ://docs .microsoft . com/sv- se/azure/ iot - central/core/overview- iot -
central-tour.

[12] Build the IoT Central device bridge to connect other IoT clouds to IoT Central.
[Online]. Accessed 2021-03-10. url: https://docs.microsoft.com/sv-se/azure/
iot-central/core/howto-build-iotc-device-bridge.

[13] Eric B. LoRa. [Online]. Accessed 2021-03-04. url: https://lora.readthedocs.
io/en/latest/.

[14] How Spreading Factor affects LoRaWAN device battery life. [Online]. Accessed
2021-03-08. url: https://www.thethingsnetwork.org/article/how-spreading-
factor-affects-lorawan-device-battery-life.

[15] LoRa Alliance Technical Marketing Workgroup. A technical overview of LoRa
and LoRaWAN ™ What is it?” [Online]. Accessed December 6 2020. url:
https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf.

[16] RP2-1.0.2 LoRaWAN® Regional Parameters. [Online]. Accessed 2021-03-08.
url: https :// lora - alliance .org/resource_hub/rp2- 102- lorawan- regional -
parameters/.

[17] B. Reynders and S. Pollin. “Chirp spread spectrum as a modulation technique
for long range communication”. In: 2016 Symposium on Communications and
Vehicular Technologies (SCVT). 2016, pp. 1–5. doi: 10 .1109/SCVT.2016.
7797659.

[18] Lou Frenzel. Fundamentals of Communications Access Technologies: FDMA,
TDMA, CDMA, OFDMA, AND SDMA. [Online]. Accessed 2021-04-06. url:
https ://www.electronicdesign .com/technologies/communications/article/
21802209/fundamentals- of- co%20mmunications- access- technologies- fdma-
tdma-cdma-ofdma-and-sdma.

[19] LOS vs NLOS | Difference between LOS and NLOS wireless channels. [Online].
Accessed 2021-04-07. url: https://www.rfwireless-world.com/Terminology/
LOS-vs-NLOS-wireless-channel.html.

[20] Get started with LoRaWAN. [Online]. Accessed 2021-03-05. url: https://www.
thethingsnetwork.org/docs/lorawan/index.html.

[21] LoRaWAN® Specification v1.1. [Online]. Accessed 2021-03-15. url: https://
lora-alliance.org/resource_hub/lorawan-specification-v1-1/.

[22] LoRaWAN Architecture. [Online]. Accessed 2021-03-15. url: https://www.
thethingsnetwork.org/docs/lorawan/architecture/.

76

https://docs.microsoft.com/sv-se/azure/iot-central/core/overview-iot-central-tour
https://docs.microsoft.com/sv-se/azure/iot-central/core/overview-iot-central-tour
https://docs.microsoft.com/sv-se/azure/iot-central/core/howto-build-iotc-device-bridge
https://docs.microsoft.com/sv-se/azure/iot-central/core/howto-build-iotc-device-bridge
https://lora.readthedocs.io/en/latest/
https://lora.readthedocs.io/en/latest/
https://www.thethingsnetwork.org/article/how-spreading-factor-affects-lorawan-device-battery-life
https://www.thethingsnetwork.org/article/how-spreading-factor-affects-lorawan-device-battery-life
https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://lora-alliance.org/resource_hub/rp2-102-lorawan-regional-parameters/
https://lora-alliance.org/resource_hub/rp2-102-lorawan-regional-parameters/
https://doi.org/10.1109/SCVT.2016.7797659
https://doi.org/10.1109/SCVT.2016.7797659
https://www.electronicdesign.com/technologies/communications/article/21802209/fundamentals-of-co%20mmunications-access-technologies-fdma-tdma-cdma-ofdma-and-sdma
https://www.electronicdesign.com/technologies/communications/article/21802209/fundamentals-of-co%20mmunications-access-technologies-fdma-tdma-cdma-ofdma-and-sdma
https://www.electronicdesign.com/technologies/communications/article/21802209/fundamentals-of-co%20mmunications-access-technologies-fdma-tdma-cdma-ofdma-and-sdma
https://www.rfwireless-world.com/Terminology/LOS-vs-NLOS-wireless-channel.html
https://www.rfwireless-world.com/Terminology/LOS-vs-NLOS-wireless-channel.html
https://www.thethingsnetwork.org/docs/lorawan/index.html
https://www.thethingsnetwork.org/docs/lorawan/index.html
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://www.thethingsnetwork.org/docs/lorawan/architecture/
https://www.thethingsnetwork.org/docs/lorawan/architecture/


Bibliography

[23] Adaptive Data Rate. [Online]. Accessed 2021-03-15. url: https://www.thethingsnetwork.
org/docs/lorawan/adaptive-data-rate/.

[24] Difference between Star and Mesh Topology. [Online]. Accessed 2021-03-15.
url: https ://www.geeksforgeeks .org/difference- between- star - and-mesh-
topology/.

[25] Ismail Butun, Nuno Pereira, and Mikael Gidlund. “Security Risk Analysis
of LoRaWAN and Future Directions”. In: Future Internet 11.1 (2019). issn:
1999-5903. doi: 10 .3390/fi11010003. url: https ://www.mdpi .com/1999-
5903/11/1/3.

[26] Device Classes. [Online]. Accessed 2021-03-15. url: https://www.thethingsnetwork.
org/docs/lorawan/classes/.

[27] A complete guide to understanding, monitoring and fixing network packet loss.
[Online]. Accessed 2021-04-07. url: https://www.ir.com/guides/what- is-
network-packet-loss.

[28] LoRa – Device Activation Call Flow (Join Procedure) using OTAA and ABP.
[Online]. Accessed 2021-04-22. url: https://www.techplayon.com/lora-device-
activation-call-flow-join-procedure-using-otaa-and-abp/.

[29] Mohamed Eldefrawy, Ismail Butun, Nuno Pereira, and Mikael Gidlund. “For-
mal security analysis of LoRaWAN”. In: Computer Networks 148 (2019), pp. 328–
339.

[30] LoRaWAN SECURITY: FULL END–TO–END ENCRYPTION. [Online]. Ac-
cessed 2021-04-22. url: https://lora-alliance.org/wp-content/uploads/2020/
11/lorawan_security_whitepaper.pdf.

[31] Raspberry PI models comparison. [Online]. Accessed 2021-03-03. url: https:
//socialcompare.com/en/comparison/raspberrypi-models-comparison.

[32] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. “Low power wide
area networks: An overview”. In: IEEE Communications Surveys & Tutorials
19.2 (2017), pp. 855–873.

[33] Luiz Oliveira, Joel JPC Rodrigues, Sergei A Kozlov, Ricardo AL Rabêlo, and
Victor Hugo C de Albuquerque. “MAC layer protocols for Internet of Things:
A survey”. In: Future Internet 11.1 (2019), p. 16.

[34] Siddhartha Borkotoky, Christian Bettstetter, Udo Schilcher, and Christian
Raffelsberger. “Allocation of repetition redundancy in LoRa”. In: European
Wireless 2019; 25th European Wireless Conference. VDE. 2019, pp. 1–6.

77

https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate/
https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate/
https://www.geeksforgeeks.org/difference-between-star-and-mesh-topology/
https://www.geeksforgeeks.org/difference-between-star-and-mesh-topology/
https://doi.org/10.3390/fi11010003
https://www.mdpi.com/1999-5903/11/1/3
https://www.mdpi.com/1999-5903/11/1/3
https://www.thethingsnetwork.org/docs/lorawan/classes/
https://www.thethingsnetwork.org/docs/lorawan/classes/
https://www.ir.com/guides/what-is-network-packet-loss
https://www.ir.com/guides/what-is-network-packet-loss
https://www.techplayon.com/lora-device-activation-call-flow-join-procedure-using-otaa-and-abp/
https://www.techplayon.com/lora-device-activation-call-flow-join-procedure-using-otaa-and-abp/
https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_security_whitepaper.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_security_whitepaper.pdf
https://socialcompare.com/en/comparison/raspberrypi-models-comparison
https://socialcompare.com/en/comparison/raspberrypi-models-comparison


Bibliography

[35] Ulysse Coutaud, Martin Heusse, and Bernard Tourancheau. “High reliability in
lorawan”. In: 2020 IEEE 31st Annual International Symposium on Personal,
Indoor and Mobile Radio Communications. IEEE. 2020, pp. 1–7.

[36] Brecht Reynders, Qing Wang, Pere Tuset-Peiro, Xavier Vilajosana, and Sofie
Pollin. “Improving reliability and scalability of lorawans through lightweight
scheduling”. In: IEEE Internet of Things Journal 5.3 (2018), pp. 1830–1842.

[37] Paul Marcelis, Nikolaos Kouvelas, Vijay S Rao, and Venkatesha Prasad. “DaRe:
Data recovery through application layer coding for LoRaWAN”. In: IEEE
Transactions on Mobile Computing (2020).

[38] Lady Ada. Assembly. [Online]. Accessed 2021-04-30. url: https : / / learn .
adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-
breakouts/assembly.

[39] Matplotlib: Visualization with Python. [Online]. Accessed 2021-05-13. url:
https://matplotlib.org/.

[40] Fredrik Mårlind and Ismail Butun. “Activation of LoRaWAN End Devices by
Using Public Key Cryptography”. In: 2020 4th Cyber Security in Networking
Conference (CSNet). IEEE. 2020, pp. 1–8.

78

https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/assembly
https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/assembly
https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/assembly
https://matplotlib.org/


A
Testbed 1

This Appendix contains the latency results, RSSI results, and the SNR results from
both reliability methods for the second end-device raspb4 on testbed 1 .

Figure A.1: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

I



A. Testbed 1

Figure A.2: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

Figure A.3: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

II



A. Testbed 1

Figure A.4: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

Figure A.5: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

III



A. Testbed 1

Figure A.6: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

IV



B
Testbed 2

This Appendix contains the latency results, RSSI results, and the SNR results from
both reliability methods for the second end-device raspuni on testbed 2.

Figure B.1: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

V



B. Testbed 2

Figure B.2: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is latency in
seconds. Outliers have been removed from the box plot.

Figure B.3: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

VI



B. Testbed 2

Figure B.4: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is RSSI in dBm.
Outliers have been removed from the box plot.

Figure B.5: A violin plot and a box plot of the five samples when the alternative
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

VII



B. Testbed 2

Figure B.6: A violin plot and a box plot of the five samples when the default
reliability method was used. The metric measured and displayed is SNR in dB.
Outliers have been removed from the box plot.

VIII


	List of Figures
	List of Tables
	Introduction
	Problem statement
	Method
	Research questions
	Restrictions
	Report structure

	Technical Background
	Metrics and Reliability definition
	Latency
	Packet Delivery Rate
	Packet Acknowledgment Rate
	Reliability

	Azure
	IoT central
	Azure Functions
	IoT Central Device Bridge

	Signal theory
	Received Signal Strength Indicator
	Signal-to-noise ratio
	Tx-Power
	Spreading factor
	Link Budget
	Effective Radiated Power
	Modulation Techniques
	Chirp Spread Spectrum
	FDMA, TDMA, and OFDMA
	Phase shift keying

	Line-of-sight and Non-line-of-sight

	LoRaWAN
	The LoRaWAN architecture
	Different device classes
	Duty Cycle and Data rates
	Default reliability in LoRaWAN
	Device join process
	Security
	Payload and headers
	Standard LoRaWAN
	Adafruit CircuitPython RFM9x library


	Hardware
	Similar technologies
	SigFox
	Weightless
	NB-IoT


	Related Work
	Adaptive Latency Reduction in LoRa for Mission Critical Communications in Mines
	Allocation of Repetition Redundancy in LoRa
	High Reliability in LoRaWAN
	Improving Reliability and Scalability of LoRaWANs Through Lightweight Scheduling
	DaRe: Data recovery through application layer coding for LoRaWAN
	Conclusion

	Methods
	Finding alternative reliability method for LoRaWAN
	The design of the testbed
	Azure IoT Central as back-end
	The set up of hardware
	The testbed infrastructure
	Data collection
	Data logging

	Evaluation methodology
	Physical testbed
	Test environments


	Design and Implementation
	The network stack
	Implementing the underlying custom protocol
	Parts not implemented
	Parts implemented

	Implementing the alternative reliability method
	Differences between the two reliability methods
	Implementation challenges
	Hardware related challenges
	Azure related challenges
	Implementation difficulties


	Results
	Data collection on two different testbeds
	Latency
	Testbed 1
	Testbed 2

	Packet Delivery Rate
	Testbed 1
	Testbed 2

	Packet Acknowledgment Rate
	Testbed 1
	Testbed 2

	Received Signal Strength Indicator and Signal-to-noise ratio
	Testbed 1
	Testbed 2

	Comparison between Nessa et al.'s results and this thesis's results

	Discussion
	Discussion of the results
	LoRaWAN for IIoT
	The custom LoRaWAN infrastructure
	Future Work
	Metrics
	Latency with JS and NS
	Using a concentrator board for the gateway
	Dynamic testing environment
	Evaluate more methods
	Implement simulators


	Conclusion
	Bibliography
	Testbed 1
	Testbed 2

