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Mathematical function for predicting CFPP in diesel fuel blends
Using MLR and neural networks to derive a prediction function for the cold filter
plugging point in diesel fuel blends
Stefanus Ivarsson Bergenhem
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The goal of this thesis is to derive a mathematical function for predicting cold filter
plugging point (CFPP) in diesel fuel blends. The work is done at Preems refinery
in Lysekil, and the data used comes from laboratory test performed by Preem.
The problem is approached from a statistical point of view, using multiple linear
regression with and without mixture problem constraints as well as neural network
models.
Different sets of prediction variables are tried with varying success. All calculations
are done in Matlab, using inbuilt functions. The best result is a model based on cloud
point, cetane index, a distillation temperature and the amount of CFPP lowering
additive used, with a R2 = 0.93, RMSE = 1.58.
A general conclusion drawn is that the additive is the most relevant predictor, and
order to derive a better model additional information in the data is needed.
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1
Introduction

The goal of this thesis it to derive a prediction model for cold filter plugging point
(CFPP) in diesel fuel relevant enough to be used in a control algorithm. The thesis
project was located at Preem in Lysekil. The problem is approached from a sta-
tistical point of view, using data gathered from laboratory tests during the last 3
years.
In this chapter some background information to the problem is given. First is a
brief description of diesel and CFPP. Then comes a description of the problem from
a control system point of view, giving motivation as to why a model is needed.
Finishing this chapter are references to work with a similar problem description.
The theory for the methods used in this project is given in Chapter 2. Chapter 3
will give a description of the methods used. The results and discussion can be found
in Chapter 4 and conclusions will be given in Chapter 5.

1.1 Diesel and CFPP
Diesel is a product produced from crude oil. Crude oil is a highly viscous liquid
containing hydrocarbon chains of different lengths and forms. The crude oil can be
refined, using different methods such as distillation and cracking. When process is
complete all components of roughly the same shape and length have been split up
into separate component groups based on boiling point. The groups of interest in
this project are kerosene with a boiling point range of about 195-275 ◦C and diesel
fuel with a boiling point range of about 275-360 ◦C [7].
Components in these groups are mixed together to a final diesel product. This
product has to meet a large number of specifications regarding different properties
of the fuel. This covers properties such as density, flash point, kinematic viscosity,
cetane number, cloud point or CFPP [15].
For this thesis the focus is on CFPP. Citing the ASTM standard for measuring
CFPP, "The CFPP of a fuel is suitable for estimating the lowest temperature at
which a fuel will give trouble-free flow in certain fuel systems." [16].
When the temperature of the diesel is lowered some hydrocarbon chains will start
to form crystals. The temperature when the crystals starts to appear is called cloud
point (CP). Some crystals in the fuel is not a direct problem but as the temperature
is lowered more and more crystals will form. At some point there will be enough
crystals to clog a filter in a car. When this happens, no fuel will reach the combustion
area and the car will not be able to start. The temperature when there are enough
crystals to clog a filter is called the cold filter plugging point.
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1. Introduction

One way to counteract this effect is to add an additive to the mixture. The additive
will affect the formation and structure of the crystals which allows the fuel to reach
lower temperatures before plugging a filter [17].

1.2 Problem description
The goal of this thesis is to develop mathematical models predicting the CFPP
temperature. Such models may then be used in control algorithms. To better
motivate the use of a prediction model, consider the blending of a fuel tank from a
control system point of view.
Initially, there is an empty tank which will be filled up with diesel. The final product
should fulfil the given specifications, which can be seen as constraints. The goal is
to get the cheapest possible recipe given the constraints. This result in an initial
optimisation problem, were the variables are how much of each component and
additive that is used, i.e.

min cost = J(x)
s.t. g(x) ≤ specifications (1.1)

Solving the optimisation problem gives an initial recipe and the process can start.
As the tank starts to fill up, samples are taken and analyzed. As no model is
perfect and the world is not ideal there will probably be some specifications which
are not fulfilled. The remaining filling of the tank can then be seen as a control
problem, were the input to the tank is the control signal (u) and the properties
to be controlled are the states (x). In state space form the problem could be to
determine a controller for the model,

ẋ = f(x,u). (1.2)

The first model of interests is to predict the CFPP of a mixture based on the
components and additives used. This could be used both as a part of the initial
optimisation and the following control problem. The second model of interests is
an observer, predicting the CFPP in a mixture based on other properties in the
mixture. This second model is of interest since the standard measurement method
for CFPP can take up to 90 minutes to complete [16]. During this time filling of
the tank is stopped. An observer based on properties which are quicker to measure
could save time.
The data available were set as a boundary to the project. The focus of the project
is to attempt to derive a model based on the data given rather than designing new
experiments and looking into new tests.

1.3 Related work
Attempts to predict the CFPP in fuels has been done before. Al-Shanableh et al. has
developed models for predicting CFPP in bio-diesel from its fatty acid composition
using both artificial neural network (ANN) and Fuzzy logic. Both methods showed
promising results with R2 values of 0.96 and 0.98 [13, 14].

2



1. Introduction

Other report the use of ANN to develop a model. Wu et al. used ANN with
viscosity, density, refractivity intercept, CFPP of in-going component and weight
percentages of each component. They also developed a model for the case when a
specific amount of additive is included, but did not use the additive as a parameter.
Both models were tested in a refinery with acceptable result [19]. Weimin et al.
developed a ANN model for the blending of two components with CFPP and weight
percentages of both components as parameters [18].
Semwal et al. report a model based on CFPP and weight percentages which can be
used for any number of components [12]. Other authors report models for predicting
CFPP based on spectroscopy [1, 10].
There are also reports regarding prediction models for cold properties similar to
CFPP [6, 8, 11].
The difference between the reports just mentioned and this thesis is the variables
used. The data used in this thesis are the recipe and laboratory analysis result from
previous blends done at the refinery during the last 3 years.
Another difference is the additive. In the majority of blends the additive, which is
specifically bought is included. The additive has a significant impact on the resulting
CFPP any model not including this term will be lacking [2].
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2
Theory

The theory presented in Chapter is taken from the books Introduction to Regression
Analysis, Experiments with Mixtures, Linear regression analysis: theory and com-
puting and an online course in deep learning. The interested reader can find better
and more in-depth explanations there [3, 5, 9, 20].

2.1 Multiple linear regression
Multiple linear regression (MLR) is a method to determine the relationship between
a dependent (or response) variable y and a number of independent (or predictor)
variables x1, x2, ..., xk. The dependent variable y is treated as a random variable.
The general MLR model have the following form,

yi = β0 + β1x1i + β2x2i + ...+ βkxki + εi, (2.1)

were yi is the dependent variable, {x} are independent variables, {β} are regression
coefficients and {εi} are random error. The random errors εi are assumed to have
the expected value E(εi) = 0, variance V ar(εi) = σ2 for i = 1, 2, ..., n and to be
i.i.d. An MLR model is linear with respect to the regression coefficients, but the
predictor variables can take different forms e.g. x3 = ln(x2), x4 = x1 ∗ x2.
The MLR model can be expressed in matrix form,

y = Xβ + ε, (2.2)

were

X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
... ... ... . . . ...
1 xn1 xn2 · · · xnk

 , β =


β0
β1
...

βk−1

 , ε =


ε1
ε2
...
εn

 . (2.3)

The expected value E(y) = Xβ and V ar(y) = V ar(ε) = Iσ2. Giving the following
expression for the estimation of y.

ŷ = Xβ (2.4)
Using matrix format will ease calculations for estimation of β.
The true regression coefficients β will never be known, the goal is however to get a
estimate of these coefficients. This is done by the least squares principle:

b = argminβ[(y−Xβ)′(y−Xβ)], (2.5)

5



2. Theory

were b′ = (b0, b1, ..., bk−1)′ is an estimate of β′.
The least squares estimation of the regression coefficients is obtained by solving the
following equation:

∂

∂b
[(y−Xb)′(y−Xb)] = ∂

∂b
[y′y− 2y′Xb + b′X′Xb] = 0. (2.6)

Solving this equation gives X′Xb = X′y, and assuming that (X′X) is non-singular
it follows that:

b = (X′X)−1X′y, (2.7)

which gives the regression model
ŷ = xb. (2.8)

It can be shown that the estimator b is an unbiased estimator of β:

E(b) = E((X′X)−1X′y) = (X′X)−1X′E(y) = (X′X)−1X′Xβ = β (2.9)

The variance of b can be computed as follows:

V ar(b) = V ar((X′X)−1X′y)
= (X′X)−1X′V ar(y)((X′X)−1X′)′

= (X′X)−1X′Iσ2((X′X)−1X′)′

= (X′X)−1X′X(X′X)−1σ2 = (X′X)−1σ2

(2.10)

The variance σ2 is unknown and is thus replaced by an estimator. An unbiased
estimator for σ2 is given by,

s2 = σ̂2 = SSE

n− k
, (2.11)

were n is the number of observations, k is the number of regression coefficients and
SSE stands for the sum of squares of the residuals (error), which will be discussed
in the next section.
If the random error εi are i.i.d. normally distributed then the least squares estima-
tion and the maximum likelihood estimation are the same. If the errors do not have
normal distribution then this is no longer necessary true, the use of least squares
estimation is however still motivated by the Gauss-Markov theorem which say that
as long as the errors εi are uncorrelated and have the same variance then the least
squares estimation is the best linear unbiased estimation.

2.2 Model evaluation

2.2.1 Analysis of variance
Analysis of variance (ANOVA) is a way to investigate information about variation
in the data used for the model. This can be used to test if the fitted model is
statistically significant. It is common to display the information using an ANOVA
table, given in Table 2.1.

6
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Table 2.1: ANOVA table

Source of variation Degrees of freedom Sum of squares Mean square
Total N − 1 SST = ∑N

u=1(yu − ȳ)2

Regression p SSR = ∑N
u=1(ŷu − ȳ)2 SSR

p

Residual N − (p+ 1) SSE = ∑N
u=1(yu − ŷu)2 SSE

(N−p−1)

SST is the total sum of squares in the data and is computed by summing the squares
of the observed yu about the mean ȳ = (y1 + ... + yu + ... + yN)/N were N is the
total number of observations. SST has N − 1 degrees of freedom (d.o.f.).
SSR is the sum of squares due to regression and represent the portion of SST at-
tributed on the fitted model. SSR is therefor the difference between SST and SSE,

SSR = SST − SSE, (2.12)
with N−1− (N−p−1) = p degrees of freedom, were p is the number of coefficients
(not including the intercept).
SSE is the sum of squares of the residuals and is the sum of squares of the difference
between the observed yu and the predicted ŷu. There is N−p−1 degrees of freedom
associated with SSE.
SSE can be split into two parts, sum of squares for pure error (SSPE) and sum
of squares for lack of fit (SSLOF ). When an experiment is replicated, and the
replication, which have the same conditions gives different values, the sum of squares
for variation in these observations is SSPE. SSPE represents the unavoidable error
in the data. SSPE have degrees of freedom equal to the number of independent
replications.
Removing SSPE from SSE gives the portion of residual due to the model not fitting
the data perfectly, i.e.

SSLOF = SSE − SSPE. (2.13)
The degrees of freedom for SSLOF is the d.f. for SSE minus d.f. for SSPE

2.2.2 F-test & t-test
When a model has been fitted it is important to test if it is statistically significant.
This can be done by an overall F-test. The hypothesis to be tested is if at least
one of the coefficients βi, 1 ≤ i ≤ m in the regressed model differs from zero. That
would imply that at least one variable is useful in describing the variation of y. This
hypothesis is written as follows:

H0 : β1 = β2 = · · · = βm = 0 (2.14)

against
H1 : At least one βi 6= 0, 1 ≤ i ≤ m. (2.15)

The ANOVA approach to doing this test is to look at the ratio between the mean
of SSR devided by the mean of SSE.

F = SSR/m

SSE/(n−m− 1) (2.16)
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This ratio has an F-distribution, which can be derived from the assumptions made
about the error for the general linear model, Equation (2.1). The F-value from
Equation (2.16) is compared to table values for the F-distribution, fα,m,n−m−1. If
F > fα,m,n−m−1 then H0 can be rejected in favor of H1, i.e. at least one βi 6= 0, with
a α level significance.
When doing F-test and t-test in a statistical software there is usually a p-value
included instead of a table value for fα,m,n−m−1 or tn−m−1,α/2. The p-value is a
measure of the α level certainty of the test. For example, if the F-test given in
Equation (2.16) has a corresponding p-value p = 0.001, then the F-value is significant
at a 0.001 ∗ 100% = 0.1% level. This means that probability of H0 being true is
0.1%.
An F-test can also be done for lack of fit, testing the hypothesis H0: Lack of fit for
the model being equal to zero.

FLOF = SSLOF/d.f.LOF
SSPE/d.f.PE

(2.17)

If FLOF is larger than the corresponding F-distribution table value for the given
degrees of freedom and significance, then H0 is rejected and the conclusion is that
the model has lack of fit.
Another common test is the t-test, used to test significance of specific coefficients.
Let δj denote the jth diagonal element of (X′X)−1 and s =

√
s2, were s2 is the

unbiased estimator of σ2 given in Equation (2.11). Then it can be shown that

T = bj − βj
s
√
δj

(2.18)

has a t-distribution with n−m− 1 degrees of freedom. Based on this it is possible
to test

H0 : βj = 0 (2.19)
against

H1 : βj 6= 0. (2.20)
This is done by calculating

T = bj

s
√
δj
, (2.21)

and comparing T with tn−m−1,α/2, a table value for t-distribution with n − m − 1
degrees freedom and α confidence level. If |T | > tn−m−1,α/2 then H0 can be rejected
with α level confidence.
There is a weakness in the t-test. When the test is repeated for a large number of
coefficients then the chance for Type 1 error, rejecting H0 when H0 is true, increases.
To avoid this, it is possible to use a higher level of confidence test, or to just use the
F-test for general significance of regression testing.

2.2.3 Coefficient of multiple determination
One way to measure the goodness of fit of a regression model is to use the coefficient
of multiple determination R2, also known as the squared multiple correlation. R2 is
defined as follows

8
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R2 = SSR

SST
= 1− SSE

SST
, (2.22)

were the second equality comes from Equation (2.12). The R2 value can be inter-
preted as the proportion of the total variation in the observations explained by the
model.
There is a possible drawback with using the R2 value. For a set number of N
observations, the R2 value will increase with increasing numbers of parameters. This
can be understood by looking at last term in Equation (2.22). SST is fixed for the
data set but SSE = (y−Xb)′(y−Xb). As shown in Equation (2.5), the b vector
is chosen in order to minimise SEE, When the number of parameters increase the
solutions to Equation (2.5) becomes better, SSE will decrease and R will increase.
An adjusted R2, denoted R2

A, which takes the addition of new variables into account
can be calculated as follows,

R2
A = 1− SSE/(N − p)

SST/(N − 1) . (2.23)

In R2
A the degrees of freedom is considered, which punishes the addition of unnec-

essary parameters.

2.2.4 Predicted residual error sum of squares (PRESS)
Another common way to evaluate the model is the Predicted residual error sum of
squares (PRESS) statistic. The PRESS residual can be seen as the leave-one-out
residual. When looking at the ith observation, the residual is ei = yi− ŷi. But if the
ith observation is left out when doing the linear regression and then using the new
model to predict the y value in the ith (left-out) observation, it gives an estimated
y value denoted ŷ(i). The PRESS residual can then be defined as follows:

e(i) = yi − ŷ(i). (2.24)

After doing this for every observation it is possible to calculate the sum of squared
PRESS residuals, called PRESS statistics,

PRESS =
N∑
i=1

e2
(i). (2.25)

The PRESS statistics can be used as a measure of how well the model can predict
new data as well as a measure of stability for the model. A small value indicates
that the model is less sensitive to each sample which is the goal of a good regression
model, while a large number could indicate that the model needs to be reworked.
A simpler way to calculate the PRESS statistic, not requiring to keep doing new
regressions, is

PRESS =
N∑
i=1

(
ei

1− hii

)2
, (2.26)

were hii is the ith diagonal element in the hat matrix H = X(X ′X)−1X.
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A R2 like statistic based on PRESS can be calculated as follows,

R2
PRESS = 1− PRESS

SST
, (2.27)

which gives a value more easily compared to R2 and R2
A.

2.2.5 MAE & RMSE
Two common ways to evaluate models are to look at the mean absolute error (MAE),

MAE =
N∑
i=1

|ei|
N
, (2.28)

and the root-mean-squared-error (RMSE),

RMSE =

√√√√ N∑
i=1

(ŷi − yi)2

N
. (2.29)

Both MAE and RMSE fills a similar function, a way to describe how much the
estimated value ŷ will deviate from the true value y.

2.2.6 Outliers
Given the assumption that the regression model is correctly specified, any individual
observation that deviate significantly from the corresponding model value could be
considered an outlier.
One way to detect outliers in a vector with random data is to compare each value
to the Median absolute derivation (MAD),

MAD = b ∗median(|εi −median(ε)|), (2.30)
were b = 1.4826 given the assumption of normal distribution [4]. The criterion to
remove an outlier is if

εi < M − 3 ∗MAD or εi > M + 3 ∗MAD (2.31)
were M is the median of the error vector ε.

2.3 Modelling of mixtures
Combining different components to create a product is a mixture problem. When
dealing with a mixture problem the model is built around the fractions of each
component included in the product. If there are q tanks, then the model will be
built around x1, x2, ..., xq, were xi is the fraction of component i. This will lead to a
constraint,

q∑
i=1

xi = 1, xi ≥ 0, (2.32)

representing that the product is a mixture of the components. This new constraint
calls for some adjustments to the original linear regression model given in equation
(2.1) since the parameters β are no longer unique.
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2.3.1 Canonical Polynomials for mixtures
Going back to the original first order polynomial,

y = β0 +
q∑
i=1

βix1 + ε, (2.33)

and using the identity (2.32) gives the following expression,

ŷ =
q∑
i=1

β0xi +
q∑
i=1

βixi =
q∑
i=1

β∗i xi, (2.34)

were β∗i = β0 + βi. A similar derivation can be done for second order polynomials.
Using the identity given in Equation (2.32), a second order term for component xi
can be written as

x2
i = xi(1−

q∑
j=1,j 6=i

xj). (2.35)

Using the two constraints given in Equations (2.32) and (2.35), the canonical second
order model can be written as

ŷ =
q∑
i=1

β∗i xi +
q∑
i=2

i−1∑
j=1

βijxixj (2.36)
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2.4 Neural net fitting

This section will explain the basic concept of neural networks. During the project
the modelling was done using the Neural network toolbox 9.1 in Matlab, using only
shallow networks with 1 hidden layer. The Matlab algorithm is more advanced that
the basic concept explained here.
Neural network is a modelling technique which is loosely based on how the human
brain works. A network of artificial neurons is set up. A matrix of data is passed
through the network and get processed by the nodes in the network and generates
an estimation. The estimation is then compared with the observation in each data-
point and the difference is used to update the weights in the network.

Figure 2.1: Neural network with 1 hidden layer containing 3 nodes.

2.4.1 Forward propagation

Figure 2.1 shows an example of a neural network with 3 nodes in a hidden layer.
Each circle represents a node. The nodes are split into vertical columns. Above and
below each column there is a number. Each column represents a layer. The number
above the column is the number of each layer and the number below is the number
of nodes in the layer.
The last layer, [2], is the output layer and the layer in the middle, [1], is the hidden
layer. To the left are x1, ..., x4, the predictors used. The layer with predictors is
called the input layer and is the 0:th layer.

12
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Figure 2.2: The third node in the first layer of the network illustrated in Figure
2.1.

Figure 2.2 shows a node in the hidden layer. The node is split up into two parts,
first a linear combination z[1] then a nonlinear activation a[1]. The superscript [1]
represent that it is a node in the first layer. wi and b are weights and bias in the
linear combination.
g[1] is called activation function. In the hidden layer the activation function used
during the project is,

g[1](z[1]) = sigmoid(z[1]) = 1
1− e−z[1] . (2.37)

For the output layer the activation is linear, g[2](z[2]) = z[2]. The same calculations
are done in each node, but each node has an individual set of weights and bias.
To ease calculations vectorization and matrix form can be used. The whole first
layer can be calculated as follows,

z[1] = W [1]a[0] + b[0] (2.38)
a[1] = g[1](z[1]), (2.39)

were

z[k] =


z

[k]
1
...
z[k]
nk

 , a[k] =


a

[k]
k
...
a[k]
nk

 , W [k] =


w

[k]
1,1 · · · w

[k]
1,nk−1... . . . ...

w
[k]
nk,1 · · · w[k]

nk,nk−1

 (2.40)

and b[k] = (b[k]
1 , ..., b

[k]
nk)T . nk is the number of activations (nodes) in the k:th layer.

The inputs are denoted as x = a[0]

So far only a forward propagation for a single observation x(i) has been considered.
When training a neural network there will be a large number of observations which
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all will be taken through the network in each iteration. To ease these calculations
additional vectorization is used, e.g.

Z [k] = (z[k],(1), · · · , z[k],(i), · · · , z[k],(N)) A[k] = (a[k],(1), · · · , a[k],(i), · · · , a[k],(N)),
(2.41)

where N is the number of data points. The linear combination and activation for
the entire data set can then be calculated simultaneously using matrix calculations,

Z [k] = W [k]A[k−1] +B[k] (2.42)
A[k] = g[k](Z [k]). (2.43)

One thing to notice here is that B[k] is an nk × N matrix, but the columns are all
identical, that is,

B[k] = (b[k], b[k], ..., b[k]). (2.44)
This expansion is done in order to match the dimensions of all matrices in Equation
(2.42).

2.4.2 Cost function
Initially the weights and biases are given small random values. The network is
then trained over a number of iterations. The training is done by evaluating a
cost function in each iteration and then change the weights and biases according to
gradient decent. In this case the mean sum of squared errors is used as cost function,
i.e.

J(y, a[2]) = 1
m

m∑
i=1

(a[2](i) − y(i))2

2 = 1
2m(A[2] − Y )(A[2] − Y )T . (2.45)

where Y is a matrix of measurement data. The goal of the training is to reduce the
cost of the model.

2.4.3 Back propagation
Calculating the gradient of each weight and bias starts from the cost function.
Taking the derivative of the cost function (2.45) with respect to the final activation
gives

∂J

∂A[2] = 1
m

(A[2] − Y ). (2.46)

Next step is to get the partial derivative of the cost function with respect to the
linear combination in the output node, Z [2], which turns out to be the same as the
partial derivative of the activation since the activation is linear,

∂J

∂Z [2] = ∂J

∂A[2]
∂A[2]

∂Z [2] = ∂J

∂A[2] ∗ 1̂ = 1
m

(A[2] − Y ). (2.47)

1̂ represent a matrix of ones with the same dimensions as Z [2] and the asterisk
(∗) represent element-wise multiplication. Here the chain rule is used, where the
function A[2] = g(Z [2]) is the one given in Equation (2.43).
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From Equation (2.47) it is easy to calculate the derivative of the weights in the
output layer. Using the chain rule,

∂J

∂W [2] = ∂J

∂Z [2]
∂Z [2]

∂W [2] = 1
m

(A[2] − Y )A[1]T , (2.48)

where Z [2] is from Equation (2.42). The partial derivative with respect to the bias
in the third layer can be calculated in a similar way, first by calculating

∂J

∂B[2] = ∂J

∂Z [2]
∂Z [2]

∂B[2] = ∂J

∂Z [2] = 1
m

(A[2] − Y ). (2.49)

The columns in ∂J
∂B[2] are then summed in order to get ∂J

∂b[2] ,

∂J

∂b[2] = 1
m

∑
columns

(A[2] − Y ). (2.50)

With this the output layer is completed, and the weights and biases for the hidden
layer can be calculated. The calculations for the remaining layers are the same as
for the output layer, with two differences. As activation function sigmoid is used
instead of the linear combination, and the first step ∂J

∂A[1] is different.
The complete algorithm for calculating the derivative of weights and biases in a
layer l looks as follows:

∂J
∂A[l] = W [l+1]T ∂J

∂Z[l+1]

∂J
∂Z[l] = ∂J

∂A[l] ∗ g[l]T (Z [l])

∂J
∂W [l] = ∂J

∂Z[l]A
[l]T

∂J
∂b[l] = ∑

columns
∂J
∂Z[l]

(2.51)

2.4.4 Updating parameters
The final step of a iteration is to update the weights and biases by gradient decent,
i.e.

W [l] = W [l] − α ∂J

∂W [l] (2.52)

b[l] = b[l] − α ∂J
∂b[l] (2.53)

where α is the learning rate, a design parameter adjusting how quickly the system
parameters change. A high α gives a faster learning but might cause instability,
while a low value of α gives a more stable and slower learning.

2.4.5 Splitting data into sets
Before a network is trained the data is split into 3 parts, a training set, a valida-
tion/development set and a test set. The training set is used to train the system. In
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each iteration when the parameter has been updated based on the training set the
model is then tested using the validation set. If the model works sufficiently well
on the validation set the training is stopped and the model is complete, else a new
iteration starts.
When the network training stops, the model is tested on the test set. This is to
get an unbiased estimation of how the model preforms, since both the training and
development sets are included in the training.
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Method

3.1 Data
The data used are some of the blends preformed during the last 3 years, 485 blends
in total. With each blend comes laboratory results from the components used,
the recipe used and laboratory results from the product. Table 3.1 shows all the
information available.

Table 3.1: The information available from a single blend (data point/sample).

Tank Tank 1 · · · Tank m Product
Density (dens.) [kg/m3] XXX · · · XXX XXX
Cloud point (CP) [◦C] XXX · · · XXX XXX
Flash point (FLP) [◦C] XXX · · · XXX XXX
Viscosity at 40 ◦C [mm2

s
] (visk40) XXX · · · XXX XXX

Cetane index [no unit] (CI) XXX · · · XXX XXX
Cetane number [no unit] (CN) XXX · · · XXX XXX
vol% recoverd at 250 ◦C (R250) [%] XXX · · · XXX XXX
vol% recoverd at 350 ◦C [%] XXX · · · XXX XXX
Temperature when 95% recovered (95Rec) [◦C] XXX · · · XXX XXX
CFPP [◦C] XXX · · · XXX XXX
Fraction used (recipe) [%] XXX · · · XXX
Additive [ppm] XXX

Tank 1,..., Tank m, represents the components used in a specific blend, all compo-
nents are stored in a tank. XXX represents that a value for this tank component
is available. The data comes from 485 tables like this, one for each blend. The
following list will give a short clarification of what some of these properties means.

• Cloud point, as mentioned in the background, is the temperature when the
first crystals start to appear when cooling the liquid down.

• Flash point is the lowest temperature at which the vapours will ignite given
an ignition source.

• Cetane number is measure of the liquids combustion speed and pressure needed
to ignite.

• Cetane index is an estimation of cetane number calculated from the density
and distillation range.
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• Volume-% recovered is how much of the original liquid volume is recovered if
the liquid is heated to a specific temperature and the vapor is collected.

• Fraction used is how much of each tank that was used in the recipe, given in
%.

• Additive says how much additive, in parts per million, that was used in the
recipe.

There are some possible sources of variation and outliers in the data. First of all is
the fact that all properties measured by laboratory tests performed after a standard
[15]. The standard tests for these are not perfect and allow for some variance. When
it comes to the measurement of CPFF there is an occurrence called "false CFPP",
which is when the crystals fall out at a temperature 10-15 degrees higher than they
"should". When this happens, there is no repetition of the test according to the
ASTM standard, so the false CFPP is documented.
The exact amount of additive used in each blend is hard to know. In practice, the
mixing of component and additives to create a product is done in large quantities.
The components and additive are pumped from large component tanks and mixed
together in a pipe. The samples are then taken from this pipe.
This gives two sources of possible variance. First is the assumption of ideal mixing,
that the sample contains the exact composition that was given as a set-point to
the pumps. This might not always be true. Secondly, the pumps have a set-point,
but in practice the flow is approximately normally distributed around this set-point.
Looking at data from the additive tank, if the set-point is at 400 PPM, the actual
concentration can typically vary from 350 to 450. The exact value of the sample is
not analysed. Instead, the set-point is used as the value.
Finally, is the matching of data. The data came from different databases with
different notations, so matching a complete data-point was done by hand. While
most should be correct there is always the possibility of mistakes.

3.2 Multiple linear regression
All calculations were performed in Matlab. The linear regression, including mod-
els with the mixture constraints, were calculated using the Matlab function fitlm.
ANOVA were calculated using the Matlab function anova. The R2

PRESS was not
found in the anova function and was therefore calculated separately.

3.2.1 Outliers
Handling possible outliers is a sensitive matter. An observation which deviates
significantly from the predicted value might be an outlier, but it might also be an
indication that the model is not correctly specified. The correct detection of an
outlier should be a combination of statistics and understanding of the data. Given
the sources of possible outliers mentioned in the previous section, especially the
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"false CFPP" and the possible mismatch of data, there is a potential for outliers.
However, to be careful not to exclude any "false outliers", any exclusions of outliers
will be denoted as possible outliers, and ANOVA for each model when no potential
outliers have been removed from the data is given in Appendix.
Possible outliers were detected and removed using the following method.

1. Model is regressed.

2. Check for and remove potential outliers using Equation (2.31)

3. Repeat until no more potential outliers are found

3.3 Neural network
Neural networks with one hidden layer was tried as prediction function. The mod-
eling was done using the neural network toolbox 9.1 in Matlab. For each set of
prediction variables different sizes of network were evaluated, from 1 to 15 nodes in
the hidden layer.
Each network setup was trained 10 times with different initial values of weights and
biases. The training of a network might get stuck in a local minimum and give
a misleading result. Repeating the training 10 times from different initial condi-
tions should give a more representative result. Sigmoid function was used as ac-
tivation function and Levenberg-Marquardt back-propagation was used as training
algorithm. The data is randomly split 70/15/15 into training, validation and test
set before each training of a network.
The evaluation of each network was done based on R2, RMSE and MAE as defined
in Chapter 2.
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4
Results and discussion

4.1 Correlation matrix

The first step is to investigate if there are any correlations between CFPP and each
of the other properties. This is done by investigate a correlation matrix for the data,
looking for linear correlations.



1.0 0.27 0.6 0.18 1.7 · 10−5 −0.11 −0.3 −0.053 0.41 0.046 0.054
0.27 1.0 0.4 0.14 0.46 0.17 −0.12 −0.045 0.52 −0.17 0.53
0.6 0.4 1.0 0.18 0.46 0.33 −0.22 −0.03 0.22 0.12 0.12
0.18 0.14 0.18 1.0 0.16 0.047 −0.086 −0.021 0.14 0.098 6.4 · 10−3

1.7 · 10−5 0.46 0.46 0.16 1.0 0.56 −0.17 −0.07 0.25 0.06 0.25
−0.11 0.17 0.33 0.047 0.56 1.0 −0.095 0.066 −0.016 0.03 0.094
−0.3 −0.12 −0.22 −0.086 −0.17 −0.095 1.0 0.024 −0.12 −0.019 −0.082
−0.053 −0.045 −0.03 −0.021 −0.07 0.066 0.024 1.0 −0.095 0.049 −0.051

0.41 0.52 0.22 0.14 0.25 −0.016 −0.12 −0.095 1.0 −0.33 0.35
0.046 −0.17 0.12 0.098 0.06 0.03 −0.019 0.049 −0.33 1.0 −0.76
0.054 0.53 0.12 6.4 · 10−3 0.25 0.094 −0.082 −0.051 0.35 −0.76 1.0



(4.1)

The properties of this correlation matrix can be found in Table 4.1

Table 4.1: Properties (variables) of the correlation matrix (4.1)

x1 = dens x2 = CLP x3 = FLP x4 = V isk40 x5 = CI x6 = CN
x7 = R250 x8 = R350 x9 = 95Rec x10 = Additive x11 = CFPP

The properties that are somewhat correlated to CFPP are CP, CI, 95Rec and addi-
tive, underlined in the correlation matrix (4.1). This does only show linear correla-
tions, possible nonlinear correlations might still exist.

4.2 MLR based on properties in the diesel prod-
uct

Looking at the correlation matrix shows that CP, CI, 95 Rec and additive are most
(linearly) correlated to CFPP. A first order linear regression model was therefor set
up with these as predictors.
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4.2.1 First order linear model based on properties in the
diesel product

Equation (4.2) shows a first order polynomial regression model based on the predic-
tors given in Table 4.2.

ŷ = 61.93 + 1.16x1 + 0.71x2 − 0.29x3 − 0.0235x4 (4.2)

Table 4.2: Independent variables based on properties in the diesel product.

x1 = CP x2 = CI x3 = 95Rec x4 = additive

This model suggests that CFPP will increase with increasing CP and CI while
decreasing with increasing 95Rec and concentration additive used. The ANOVA
table for the model is given in Table 4.3.

Table 4.3: ANOVA table for the first order linear model (4.2) with the predictors
given in Table 4.2.

Variation d.f. Sum of squares Mean square F-score p-value
Total 484 SST = 18493
Regression 4 SSR = 14257 3564.3 403.87 4.56e-152
Residual 480 SSE = 4236.1 8.8252
LOF 479 SSLOF = 4236.1 8.8252 inf 0
PE 1 SSPE = 0 0
R2 = 0.771 R2

A = 0. = 0.769 R2
PRESS = 0.762

RMSE = 2.97 MAE = 2.31

The F-test for regression and corresponding p-value shows that the regression is
significant with high probability. The R2 value indicate that 77% of the variance in
the data is covered by the model. R2

A and R2
PRESS are close to R2 indicating that

the R2 value can be trusted. The F-test for lack of fit and corresponding p-value
indicates that the model can be improved. While this conclusion might be true,
the F-test in this case is questionable given that there is only one replication, and
knowing the measurement methods the pure error should be nonzero.
The algorithm given for detecting and removing outliers revealed 15 potential out-
liers in this case. Removing the potential outliers gave the following model:

ŷ = 86.019 + 1.0082x1 + 0.94537x2 − 0.38838x3 − 0.027104x4. (4.3)

Overall the coefficients are of the same size, indicating that no major change in
trends has happened. The ANOVA for this model is given in Table 4.4.
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Table 4.4: ANOVA table for first order linear model (4.3) with the predictors given
in Table 4.2. 15 outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 469 SST = 16754
Regression 4 SSR = 13890 3472, 6 563.78 8.48e-177
Residual 465 SSE = 2864.1 6.16
LOF 464 SSLOF = 2864.1 6.17 inf 0
PE 1 SSPE = 0 0
R2 = 0.829 R2

A = 0.828 R2
PRESS = 0.825

RMSE = 2.48 MAE = 2.02

The ANOVA for the model when the outliers have been removed shows an im-
provement. The F-score and R2 values has increased and RMSE/MAE has also
decreased.

4.2.2 Second order polynomial model based on properties
in the diesel product

A second order polynomial was investigated, using the predictors given in Table 4.2,
i.e.

ŷ = β0 +
4∑
i=1

βixi +
4∑
i=1

4∑
j=i

βijxixj (4.4)

It turns out that the matrix (X′X)−1, which is a part of the linear regression (Equa-
tion (2.7)), was close to singular, so the results cannot be completely trusted. How-
ever, looking at the t-statistics for the coefficients (found in Appendix Table A.3) the
t-score for coefficients for terms including additive has a higher certainty compared
to others.

4.2.3 Second order model with respect to additive and in-
teractions with additive based on properties in the
diesel product

Inspired by the t-statistics for the second order polynomial model, given in Appendix
Table A.3, a model with second order term for additive and interactions between
additive and other parameters were set up. This model looks as follows,

ŷ = β0 +
4∑
i=1

βixi +
4∑
i=1

βi4xix4, (4.5)

with the predictors are given in Table 4.2.
The resulting ANOVA after 22 potential outliers have been removed is given in Table
4.5. The ANOVA table for the model with no outliers removed from the data can
be found in Appendix, Table A.4.
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Table 4.5: ANOVA table for the model (4.5) with predictors given in Table 4.2.
22 outliers have been removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 462 SST = 17755
Regression 8 SSR = 16539 2067.4 771.81 7.94e-259
Residual 454 SSE = 1216.1 2.6796
LOF 453 SSLOF = 1216.1 2.6796 inf 0
PE 1 SSPE = 0 0
R2 = 0.932 R2

A = 0.93 R2
PRESS = 0.928

RMSE = 1.64 MAE = 1.26

The F-test and corresponding p-value indicates that the regression is significant.
The R2 indicates that the model covers 93% of the variance in the data and R2

A and
R2
PRESS are close to R2 indicating that the R2 value can be trusted.

Looking at the t-statistics for the coefficients (Appendix, Table A.5) the values of
β0, β2 and β3 are not certain to be different from zero. Removing these terms gives
the following reduced model,

ŷ = β1x1 + β4x4 +
4∑
i=1

βi4xix4. (4.6)

The ANOVA for the reduced model (4.6) can be found in Table 4.6. 26 potential
outliers has been removed from the data, ANOVA for the model with no outliers
removed can be found in appendix Table A.6.

Table 4.6: ANOVA table for the reduced second order model (4.6) with predictors
given in Table 4.2. 26 potential outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 459 SST = 17387
Regression 6 SSR = 16249 2708.2 1078.6 1.29e-264
Residual 453 SSE = 1137.4 2.5108
LOF 414 SSLOF = 1112.3 2.6867 4.1704 4.16e-7
PE 39 SSPE = 25.125 0.644
R2 = 0.933 R2

A = 0.933 R2
PRESS = 0.931

RMSE = 1.58 MAE = 1.23

The F-score and corresponding p-value indicate that the regression is significant.
The R2, R2

A and R2
PRESS values indicates that the model covers 93% of the total

variation in the data. The F-score for lack of fit and corresponding p-value indicates
that the model can be improved. The reason for a reasonable PE value appearing
in this model is that for some blends there is no additive added. This makes all the
predictors except CP equal to zero in the model (Equation (4.6)). For a number of
these the CP is the same, which gives replications to calculate PE.
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T-statistics for the coefficients indicates that all coefficients are different from zero
with high probability (Appendix, Table A.7).
Comparing the ANOVA of the reduced model (Table 4.6) with the complete model
(Table 4.5) shows that both have similar R2 and RMSE values, indicating a similar
performance. A difference to be found is the p-value related to F-score for regression.
The value for the reduced model is about 104 times smaller, indicating a more
significant model. Given this and the fact that all the coefficients in the reduced
model are significant, the reduced model seems better.
Some time was spent on improving this model, but with no success. This model
could be used as an observer, but cannot easily be used to predict the CFPP in
a product based on components. This because the predictors are properties in the
already finished product, not based on components and their properties.

4.3 Mixture models

The diesel blending is a mixture of different components. Regarding the problem
as a mixture brings the mixture constraint, Equation (2.32), and corresponding
models. An assumption in this case is that a given component tank always contains
the same kind of oil, i.e. no variation over time. The predictors in this case are the
fractions of each component. The additive is seen as a component in this case. The
assumption can be checked by looking at the properties in each tank over time, as
they stay more or less the same this assumption has been taken.
There is one component tank which has only been used in two blends. These two
blends have therefore been removed from the data used in the mixture models and
the remaining 483 blends are used as the data-set.

4.3.1 First order canonical mixture model
The first order canonical mixture model looks as follows,

ŷ =
9∑
i=1

βixi. (4.7)

The predictors for this model are given in Table 4.7.

Table 4.7: Predictors used in mixture model. xi represents the fraction of tank i
used in the blend.

x1 = tank 1 x2 = tank 2 x3 = tank 3 x4 = tank 4 x5 = tank 5
x6 = tank 6 x7 = tank 7 x8 = tank 8 x9 = additive

The ANOVA for this model is given in Table 4.8. 8 possible outliers have been
removed, ANOVA table for model based on the complete set can be found in Ap-
pendix, Table A.8
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Table 4.8: ANOVA table for first order mixture (4.7) with predictors given in Table
4.7. 8 potential outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 475 SST = 16636
Regression 9 SSR = 12246 1360.6 144.43 9.2e-129
Residual 466 SSE = 4390 9.42
LOF 431 SSLOF = 4333.9 10.06 6.256 4.86e-9
PE 35 SSPE = 56.167 1.605
R2 = 0.736 R2

A = 0.731 R2
PRESS = 0.724

RMSE = 3.07 MAE = 2.44

The F-score value and corresponding p-value for regression indicate that the re-
gressed model is significant. The R2, R2

A and R2
PRESS values indicate that the model

covers 73% of the variance in the data. The F-score and corresponding p-value for
lack of fit indicate that the model can be improved.
After looking at the t-statistics (Appendix, Table A.9) it is reasonable to suspect
that the coefficients β1, β2 and β6 might not differ from zero. However, given the
mixture constraint (2.32) just straight removing these terms from the model is not
recommended. The workaround will be shown in the next section.

4.3.2 First order mixture model based on reduced mixture
components

As some coefficients in the model given in Equation (4.7) might be equal to zero the
model can be simplified by removing these. This is done by first assuming,

β1 = β2 = β6 = β̄, x̄ = x1 + x2 + x6 (4.8)

Using the mixture constraint x̄ can be replaced,

x̄ = 1− x3 − x4 − x5 − x7 − x8 − x9. (4.9)

This yields the following first order reduced mixture model,

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6. (4.10)

with predictors given in Table 4.9. To keep things clear, the mixture models when
the 3 tanks have been removed will be called reduced mixture model.

Table 4.9: Predictors used in reduced mixture models.

x1 = tank 3 x2 = tank 4 x3 = tank 5
x4 = tank 7 x5 = tank 8 x6 = additive

Anova for the first order reduced mixture model (4.10) is given in Table 4.10. 8
possible outliers have been removed. ANOVA for regression with no outliers removed
can be found in Appendix, Table A.10.
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Table 4.10: ANOVA table for the first order reduced mixture model (4.10) with
the predictors given in Table 4.7. 8 potential outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 474 SST = 16636
Regression 6 SSR = 12239 2039.8 217.12 8.89e-132
Residual 468 SSE = 4396.8 9, 3949
LOF 433 SSLOF = 4340.6 10.03 6.256 5.07e-9
PE 35 SSPE = 56.167 1.605
R2 = 0.736 R2

A = 0.732 R2
PRESS = 0.727

RMSE = 3.07 MAE = 2.44

The F-score and corresponding p-value for regression indicates that the model is
significant. The R2, R2

A and R2
PRESS values indicates that this model covers about

73% of the variance in the data. The F-score and corresponding p-value for lack of
fit indicates that the model can be improved.
Comparing this reduced mixture model (Equation (4.10)) with the canonical model
(Equation (4.7)) shows that both have similar R2, RMSE and lack of fit. A dif-
ference can be found in the p-values corresponding to the F-score for regression in
both models. The reduced mixture model has a smaller value, indicating a more
significant regression. This is the result of both models preforming equally well, but
the reduced mixture model is simpler having 3 terms less.

4.3.3 Second order polynomial reduced mixture model
A second order polynomial model for the reduced mixture component is set up,

ŷ = β0 +
6∑
i=1

βixi +
6∑
i=1

6∑
j=i

βijxixj. (4.11)

The independent variables are given in Table 4.9. ANOVA for this model is given
in Table 4.11 with 9 potential outliers removed. The ANOVA table for the model
with no outliers removed from the data is given in Appendix, Table A.12

Table 4.11: ANOVA table for the second order mixture model (4.11) with predic-
tors given in Table 4.9. 9 potential outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 473 SST = 16299
Regression 27 SSR = 13454 498.3 78.13 1.53e-150
Residual 446 SSE = 2844.7 6.38
LOF 411 SSLOF = 2788.6 6.79 4.23 1.27e-6
PE 35 SSPE = 56.167 1.605
R2 = 0.825 R2

A = 0.815 R2
PRESS = 0.800

RMSE = 2.53 MAE = 1.95
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The F-score and corresponding p value indicate that the model is significant. The
R2, R2

A and R2
PRESS values indicate that this model covers about 81% of the variance

in the data. Looking at the t-statistics for the coefficients, given in appendix Table
A.13, most of the coefficients seems to be not significantly different from zero. That
indicates that the model should probably not be completely trusted and there might
be unnecessary terms in the model.
After some investigation it became clear that the only added term that significantly
improved the results was the second order additive term. The final model for the
reduced mixture predictors then looks as follows,

ŷ = β0 +
6∑
i=1

βixi + β7x
2
6, (4.12)

with the independent variables given in Table 4.9. ANOVA for this model is given
in Table 4.12 with 14 potential outliers removed. ANOVA for the model when no
outliers are removed from the data is given in Appendix, Table A.14.

Table 4.12: ANOVA table for the model (4.12) with predictors given in Table 4.9.
14 potential outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 468 SST = 15949
Regression 7 SSR = 12852 1836 273.3 1.26e-159
Residual 461 SSE = 3097.3 6.72
LOF 426 SSLOF = 3041.1 7.14 4.45 6.28e-7
PE 35 SSPE = 56.167 1.605
R2 = 0.806 R2

A = 0.803 R2
PRESS = 0.798

RMSE = 2.59 MAE = 2.01

F-score and corresponding p-value for regression indicate that the model is signifi-
cant. The R2, R2

A and R2
PRESS indicate that the model covers 80% of the variation

in the data. F-score and corresponding p-score value indicate that the model can
be improved.
Comparing this model (Equation (4.12)) with the complete second order model
(Equation (4.11)). The complete model has a bit higher R2 and a bit lower RMSE.
However, looking at the t-statistics for this model (Appendix, Table A.15) all coeffi-
cients, with the possible exception of the intercept, are relevant with high probability.
This fact outweighs a minor loss in RMSE/R2.

4.4 Simplified mixture components
In total 8 different component tanks (given in Table 4.7) have been used in the
blends during the last 3 years. Some of these tanks have somewhat varying content
during this time. There are also some tanks with similar content and could therefore
be considered as a group. This motivates an attempt to group the component tanks
by their CFPP.
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A histogram showing the CFPP measured in the component tanks before each blend
on the x-axis and the number of time each CFPP has been measured on the y-axis
is given in Figure 4.1. The large number of measurements does not mean that there
are many component tanks, just that the existing tanks are frequently measured.

Figure 4.1: Histogram showing the CFPP measured in all component tanks before
each blend for the entire data set. The x-axis shows the CFPP measured and the -
axis shows how many times each CFPP have been measured.

Figure 4.1 shows 4 clear groupings,

• G1: CFPP ∈ (−53,−48)

• G2: CFPP ∈ (−27,−14)

• G3: CFPP ∈ (−12,−2)

• G4: CFPP ∈ (0, 10)

A part of the data with CFPP ∈ (−47,−30) is not included in the given groups
and are left out of the modelling in the attempt to derive a functional, if a bit more
narrow, model. The left-out part corresponds to 40 blends out of 485, resulting in
445 data points to be used in total.
A first order mixture model based on component groupings just described was de-
rived,

ŷ =
5∑
i=1

bixi, (4.13)

with the independent variables given in Table 4.13. Models based on these predictors
will be called simplified components mixture models.
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Table 4.13: Predictors for the simplified mixture component models

x1 = G1 x2 = G3 x3 = G3 x4 = G4 x5 = additive

A model evaluation is given in Table 4.14. 3 possible outliers have been removed.
ANOVA for the model with no outliers removed can be found in Appendix, Table
A.17.

Table 4.14: ANOVA table for the first order simplified components mixture model
(4.13) with predictors given in Table 4.13. 3 possible outliers removed from the
data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 442 SST = 15215
Regression 5 SSR = 10711 2142.2 207.87 4.366e-113
Residual 437 SSE = 4503.6 10.306
LOF 404 SSLOF = 4449.5 11.014 6.71 5.07e-9
PE 33 SSPE = 54.167 1.614
R2 = 0.704 R2

A = 0.701 R2
PRESS = 0.696

RMSE = 3.21 MAE = 2.58

The F-score value and corresponding p-value given in Table 4.14 indicates that the
regression is significant with a high degree of probability. The R2, R2

A and R2
PRESS

indicates that the model covers about 70% of the variation in the data.
Comparing this model to the reduced component linear mixture model given in
Equation (4.10), R2 and RMSE are a slightly better in the reduced components
compared to simplified components.
The strength of the simplified components grouping is that it does not require the
assumption that a specific tank always contain the same kind of oil, but is instead
based on a property of the oil. This makes the model more flexible to use. The
chosen grouping by CFPP value in components is simple, and an improved way of
grouping could probably be found.

4.4.1 Simple components, second degree additive model
In an attempt to improve the simple components model (Equation (4.13)) a second
order additive term is added to the model. According to the mixture constraint
given in Equation (2.35) the new model can be written as follows,

ŷ =
5∑
i=1

bixi +
4∑
i=1

bi5xix5. (4.14)

A model evaluation is given in Table 4.15. 6 possible outliers have been removed.
ANOVA for the model when no outliers have been removed is given in Appendix,
Table A.18
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Table 4.15: ANOVA table for the simplified components mixture model with sec-
ond order additive term (4.14) with predictors given in Table 4.13. 6 possible outliers
removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 439 SST = 14757
Regression 9 SSR = 11727 1303 184.91 8.814e-142
Residual 430 SSE = 3030.2 7.05
LOF 397 SSLOF = 2976 7.5 4.567 9.255e-7
PE 33 SSPE = 54.167 1.614
R2 = 0.795 R2

A = 0.791 R2
PRESS = 0.784

RMSE = 2.64 MAE = 2.08

The F-score value and corresponding p-value given in Table 4.15 indicate that the
regression is significant with a high degree of probability. The R2, R2

A and R2
PRESS

indicates that the model covers about 79% of the variation in the data.
Looking at the coefficients for variables interacting with and including additive, see
Table A.19 in the appendix, they are all of similar size. A simplification can be
made, i.e.

b5 ≈ −b15 ≈ −b25 ≈ −b35 ≈ −b45 = b̄. (4.15)

Using the approximation given in Equation (4.15) and the mixture constraint given
in Equation (2.32) the model can be simplified to

ŷ =
4∑
i=1

bixi + b̄x2
5 (4.16)

4.5 Neural network

4.5.1 Network based properties in the product

The predictors used for these networks, given in Table 4.16 are the same as used in
MLR model based on properties in the product, Equation (4.2). The data-set now
consists of 485 samples.

Table 4.16: Independent variables used for training neural networks

x1 = CP x2 = CI x3 = 95Rec x4 = additive

The networks were trained as described in method. The network with highest R2

values of the 10 replications were then saved. A graph displaying the R2 values of
these networks against the number of nodes in the hidden layer can be found in
Figure 4.2.
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Figure 4.2: The figure shows the R2 values for different network setup. Top left
shows values for training set, top right shows values for validation (development)
set, bottom left shows values for independent test set and bottom right shows values
for the complete data set. Properties in the diesel product are used as predictors,
Table 4.16.

Looking at Figure 4.2 the network with 10 hidden units is considered the best. This
is because the R2 values in all data-sets are both high and reasonable close to each
other, with the independent test set having the highest R2 value. Table 4.17 shows
the RMSE, MAE and R2 values for the network with 10 hidden nodes.

Table 4.17: RMSE, MAE and R2 values for network with 10 hidden nodes. Pre-
dictors used can be found in Table 4.16.

RMSE MAE R2

Training set 1.952 1.371 0.895
Validation set 2.199 1.573 0.895
Test set 1.671 1.257 0.925
Complete set 1.952 1.384 0.900

The R2 values for the test set and complete set are similar, with the independent
test set having a higher value. This indicates that R2 value for the complete set can
be trusted, the model covers 90% of the variation in the data.
Comparing this model to the second order additive MLR model based on the same
predictors (Equation (4.6)) and the corresponding ANOVA (Table 4.6), the RMSE,
MAE and R2 values are slightly better for the MLR model. The MLR model is also
simpler, having only 6 coefficients.
In the MLR model 24 possible outliers have been removed from the data, which is
not the case for the network model. A more suitable comparison might therefore be
with the ANOVA for the MLR model when no outliers have been removed (Appendix
Table A.6). In this case the network model preforms slightly better.
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4.5.2 ANN models based on component fractions

For these networks the predictors are the fractions from each component tank used
in the blends (Table 4.18), the same as used for the first order canonical mixture
model (Equation (4.7)). The data-set contains 483 data points.

Table 4.18: Predictors used in ANN network for component fractions.

x1 = tank1 x2 = tank2 x3 = tank3
x4 = tank4 x5 = tank5 x6 = tank6
x7 = tank7 x8 = tank8 x9 = additive

The networks were trained as described in Chapter 3. The network with highest
R2 values of the 10 replications were then saved. A graph displaying the R2 values
of these networks against the number of nodes in the hidden layer can be found in
Figure 4.3.

Figure 4.3: The figure shows the R2 values for different network setup. Top left
shows values for training set, top right shows values for validation (development)
set, bottom left shows values for independent test set and bottom right shows values
for the complete data set. Fractions of each tank are used as predictors, Table 4.18.

Looking at Figure 4.3, the network with 5 hidden units is considered the best. This
is due to all R2 values being comparably high and the number of nodes is low.
Simpler is better, if given the choice. Table 4.19 shows the RMSE, MAE and R2

values for the network with 5 hidden nodes.
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Table 4.19: RMSE, MAE and R2 values for network with 5 hidden nodes. Predic-
tors used can be found in Table 4.18.

RMSE MAE R2

Training set 2.4947 1.9034 0.8233
Validation set 2.6260 2.1290 0.8286
Test set 2.7651 2.0048 0.8279
Complete set 2.5565 1.9522 0.8252

The R2 values for the independent test set and the R2 values for the complete set are
similar, indicating that the R2 value for the complete set can be trusted. Comparing
this network with the result for the second order additive reduced mixture model
given in Equation (4.12), and corresponding ANOVA given in Table 4.12. The
network shows a slightly better performance in terms of RMSE, MAE and R2. The
MLR model is however much simpler, only containing 8 coefficients in total while
the network model has 61.
In the case of the MLR model 14 possible outliers for the model has been removed. A
more fair comparison might be to look at the ANOVA for the case when no outliers
has been removed, appendix Table A.14. In this case the difference in performance
is larger, with the network preforming better.

4.5.3 Neural networks based on simplified mixture compo-
nents

These network models are based on the simplified mixture components used in
Equation (4.13). The predictors are given in Table 4.20. The complete data set
consists of 445 samples.

Table 4.20: Predictors used for neural network models.

x1 = G1 x2 = G2 x3 = G3
x4 = G4 x5 = additive

The networks were trained as described in method. The network with highest R2

values of the 10 replications were then saved. A graph displaying the R2 values of
these networks against the number of nodes in the hidden layer can be found in
Figure 4.4.
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Figure 4.4: The figure shows the R2 values for different network setup. Top left
shows values for training set, top right shows values for validation (development)
set, bottom left shows values for independent test set and bottom right shows values
for the complete data set. Fractions of each tank used as predictors, Table 4.20.

Looking at Figure 4.2 the network with 13 hidden units is considered the best. This
is because the R2 values in all data-sets are both high and of reasonably close to
each other. Table 4.21 shows the RMSE, MAE and R2 values for the network with
13 hidden nodes.

Table 4.21: RMSE, MAE and R2 values for network with 13 hidden nodes. Pre-
dictors used can be found in Table 4.20.

RMSE MAE R2

Training set 2.5932 1.9801 0.7917
Validation set 2.2687 1.7223 0.8586
Test set 2.7378 2.0342 0.8251
Complete set 2.5697 1.9494 0.8105

Looking at the R2 values for the different sets given in Table 4.21, we see that the
R2 value for the independent test set is close to the R2 value of the complete set,
indicating that the R2 value for the complete set can be trusted.
Comparing this network model with the simplified components mixture model with
second order additive term based on same predictors (Equation (4.14)) and the
corresponding ANOVA (Table 4.15), the RMSE, MAE and R2 values are slightly
better in the network model. The difference in parameters are rather large. With
13 hidden nodes the network model has 65 weights and 14 biases, compared to the
MLR model which can be reduced to 5 coefficients. The ANOVA given in Table 4.15
is based on the case when 6 possible outliers have been removed. Another relevant
comparison is therefore with the ANOVA for the MLR model when no outliers has
been removed, given in Appendix Table A.18. The difference between the network
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model and mixture model is slightly larger in this case with the network showing
the best performance.
Comparing this network based on simplified components with the network based
on normal mixture components given in the previous section, the network with
normal mixture component preforms slightly better and has fewer nodes in the
hidden layer. However, given the generality of the simplified components compared
to the assumption that components stay the same in the case of normal mixture
model the difference is not as large as one could expect.

4.6 MLR Model based only on additive
Given all the results so far it is reasonable to suspect that additive is by far the
most influential predictor. To investigate further a model only based on additive is
set up,

ŷ = β0 + β1x+ β2x
2, (4.17)

were x = additive. ANOVA for this model is given in Table 4.22 for the case when
no outliers have been removed and in Table 4.23 when 17 possible outliers have been
removed.

Table 4.22: ANOVA table for model based only on additive given in Equation
(4.17). No outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 484 SST = 18493
Regression 2 SSR = 11417 5708.5 388.84 2.83e-101
Residual 482 SSE = 7076.2 14.61
LOF 19 SSLOF = 786.1 41.38 3.056 1.94e-5
PE 463 SSPE = 6290.1 13.59
R2 = 0.617 R2

A = 0.616 R2
PRESS = 0.612

RMSE = 3.83 MAE = 2.72

Table 4.23: ANOVA table for model based only on additive, given in Equation
(4.17). 17 possible outliers removed from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 467 SST = 15432
Regression 2 SSR = 11084 5542 592.7 1.24e-128
Residual 465 SSE = 4348 9.35
LOF 19 SSLOF = 772.63 9.35 5.08 5.21e-11
PE 446 SSPE = 3575.2 8.02
R2 = 0.718 R2

A = 0.717 R2
PRESS = 0.714

RMSE = 3.06 MAE = 2.37
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4. Results and discussion

Looking at the ANOVA for these two it is reasonable to assume that additive is by far
the most influential predictor. Comparing the R2 value of this model for R2 values
based on mixture models, both reduced and simplified components, it seems that
the additional predictors in the mixture models does not have a huge impact. This
might be an explanation to the fact that the models based on reduced components
and models based on simplified components do not differ much in performance.
Comparing this model to that based on properties in the product, there is a signifi-
cant impact when the other predictors are added. This is likely, in large, because of
the CP term included in those models. By definition the cloud point in diesel is the
temperature when crystals start to appear, while CFPP is the temperature when
the crystals clog a filter, so CFPP must always happen after CP.
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5
Conclusions and Discussion

First of all, it is important to point out that any statistical model is based on the
data used to derive it. Any conclusions drawn based on the data used in this project
might not be true for another set of data. However, since the data used in this case
comes from analysis of actual laboratory test on regular blends done at Preem, it
is fair to say that the conclusions regarding the data should be applicable for this
given process.
A general conclusion is that the additive is by far the most influential parameter,
almost surprisingly so given that it is only included in the blends at PPM levels.
The goal of creating an observer model based on other properties in the diesel prod-
uct was the most successful one. The model given in Equation (4.6) has R2 = 0.93,
RMSE = 1.58 andMAE = 1.23 in the case when 26 potential outliers are removed
and R2 = 0.88, RMSE = 2.18 and MAE = 1.54 when none have been removed.
Given that measuring CFPP can take over an hour, a quicker estimate based on
this model could be useful. The reason for this model being more appropriate as an
observer is that the predictors are other properties (not CFPP) in the product, not
based on properties in the individual components (tanks).
The attempts to derive a model which could be used for optimisation or in a control
algorithm were less successful. The best model for this purpose were the second
order additive reduced mixture model given in Equation (4.12) with an R2 = 0.81,
RMSE = 2.59 andMAE = 2.01 in the case when 14 potential outliers are removed
and R2 = 0.74, RMSE = 3.07 and MAE = 2.44 with nothing removed. Neither
the case with potential outliers removed or the one with none removed shows a
promising model and is probably not good enough to use in a control algorithm.
The algorithm used to remove potential outliers is likely too aggressive. As most 26
potential outliers were detected and removed, in the model mentioned above. In a
set of 485 blends this represents a bit over 5%. While a few could be expected, over
5% is a bit excessive. Another way of looking at it is that for the region spanned by
the remaining 95 % there is a well preforming model which can be utilised. There
is also the potential for someone with a deeper chemical understanding to study the
difference between what was removed and what was kept.
The grouping of components based on CFPP was somewhat successful. The per-
formance of the models based on the simplified components is comparable to the
performance of the reduced mixture models. The simplified component setup is
more flexible and less potential outliers were found for these models. What should
not be forgotten is that 40 blends were removed when regressing models based on
the simplified components, and the reason why comparably few outliers were found
for these models might be because "difficult" blends were removed. Looking further
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into a more advanced system of dividing the components into groups could be of
interest.
The neural networks models performed better in general compared to the MLR
models, given that no outliers were removed for these models. It is possible that
the performance could be improved further by additional nodes in the hidden layer.
The question is if it is possible/desirable to implement such a model in a control
algorithm. Depending on the software used this might be a problem because of the
more complicated terms in the neural network model compared to the MLR models.
During the project other sets of predictors have been investigated in the attempt to
find a better model, but with equal or less success to the results given in this report.
Given this set of data it seems unlikely that the "perfect model" can be found. Some
additional predictor(s), containing new information, are probably needed.
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A
Appendix 1

A.1 Models based on properties in the diesel prod-
uct

A.1.1 First order linear model based on properties in the
diesel product

Table A.1: Coefficient statistics for first order linear model based on properties in
the diesel product. Model given in Equation (4.2) and independent variables given
in 4.2. No outliers removed

Estimate SE tStat pValue
(Intercept) 61.9346 18.9175 3.2739 0.0011

x1 1.1630 0.0768 15.1495 0.0000
x2 0.7061 0.1250 5.6470 0.0000
x3 -0.2856 0.0504 -5.6712 0.0000
x4 -0.0235 0.0007 -31.6853 0.0000

Table A.2: Coefficient statistics for first order linear model based on properties in
the diesel product. Model given in Equation (4.2) and independent variables given
in 4.2. 15 potential outliers removed.

Estimate SE tStat pValue
(Intercept) 86.0190 16.5720 5.1906 0.0000

x1 1.0082 0.0699 14.4161 0.0000
x2 0.9454 0.1089 8.6835 0.0000
x3 -0.3884 0.0446 -8.7118 0.0000
x4 -0.0271 0.0007 -39.7902 0.0000
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A.1.2 Second order model based on properties in the diesel
fuel product

Table A.3: Coefficient statistics for second order polynomial model based on prop-
erties in the diesel product. Model given in Equation (4.4) and independent variables
given in 4.2. No outliers removed

Estimate SE tStat pValue
(Intercept) -1720.3540 967.1779 -1.7787 0.0760

x1 -1.3248 4.7786 -0.2772 0.7817
x2 31.1687 8.8893 3.5063 0.0005
x3 4.9291 5.1289 0.9610 0.3371
x4 0.3556 0.0551 6.4562 0.0000

x1:x1 -0.0078 0.0112 -0.6975 0.4858
x1:x2 0.1100 0.0330 3.3357 0.0009
x1:x3 -0.0103 0.0134 -0.7662 0.4440
x1:x4 0.0014 0.0002 5.8730 0.0000
x2:x2 0.0174 0.0449 0.3870 0.6989
x2:x3 -0.0909 0.0253 -3.5921 0.0004
x2:x4 0.0016 0.0004 3.8492 0.0001
x3:x3 -0.0002 0.0071 -0.0226 0.9820
x3:x4 -0.0014 0.0001 -9.2076 0.0000
x4:x4 4.23e-05 0.0000 25.9757 0.0000

A.1.3 Second order additive terms model based on prop-
erties in the diesel fuel product

Table A.4: ANOVA table Second order additive terms model based on properties
in the diesel fuel product. Model given in Equation (4.5) and predictors given in
Table 4.2. No outliers removed.

Variation d.f. Sum of squares Mean square F-score p-value
Total 484 SST = 18493

Regression 8 SSR = 16241 2030.2 429.17 3.50e-212
Residual 476 SSE = 2251.7 4.73
LOF 475 SSLOF = 2251.7 4.74 inf 0
PE 1 SSPE = 0 0
R2 = 0.878 R2

A = 0.876 R2
PRESS = 0.872

RMSE = 2.17 MAE = 1.54
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Table A.5: Coefficient statistics for second order additive model based on proper-
ties in the diesel product. Model given in Equation (4.5) and independent variables
given in 4.2. 22 possible outliers removed from the data.

Estimate SE tStat pValue
(Intercept) -3.7412 18.1926 -0.2056 0.8372

x1 0.9249 0.0650 14.2231 0.0000
x2 0.2624 0.1274 2.0594 0.0400
x3 -0.0305 0.0527 -0.5788 0.5630
x4 0.2920 0.0554 5.2754 0.0000

x1:x4 0.0016 0.0002 7.5458 0.0000
x2:x4 0.0013 0.0004 3.4270 0.0007
x3:x4 -0.0011 0.0001 -7.6840 0.0000
x4:x4 4.188-05 0.0000 25.1883 0.0000

A.1.4 Reduced second order additive terms model based on
properties in the diesel fuel product

Table A.6: ANOVA table for reduced second order additive model given in Equa-
tion (4.6) based on predictors given in Table 4.2. No outliers removed from the
data

Variation d.f. Sum of squares Mean square F-score p-value
Total 485 SST = 19348

Regression 6 SSR = 17066 2844.3.2 596.93 1.09e-218
Residual 479 SSE = 2282.4 4.9093
LOF 414 SSLOF = 2155.2 4.909 1.544 0.046
PE 40 SSPE = 127.21 3.1802
R2 = 0.877 R2

A = 0.875 R2
PRESS = 0.872

RMSE = 2.18 MAE = 1.54

Table A.7: Coefficients and t-statistics for reduced second order additive model
given in Equation (4.6) based on predictors given in Table 4.2 with 26 possible
outliers removed.

Estimate SE tStat pValue
x1 1.0537 0.0301 35.0624 0.0000
x4 0.2922 0.0335 8.7329 0.0000

x1:x4 0.0010 0.0002 6.1610 0.0000
x2:x4 0.0023 0.0002 10.1872 0.0000
x3:x4 -0.0013 0.0001 -15.6263 0.0000
x4:x4 4.0989e-05 0.0000 28.5509 0.0000
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A.2 Mixture models

A.2.1 First order mixture model

Table A.8: ANOVA table for first order mixture model given in Equation (4.7)
based on predictors given in Table 4.7. No outliers removed from the data

Variation d.f. Sum of squares Mean square F-score p-value
Total 482 SST = 18055

Regression 9 SSR = 12291 1365.7 112.32 1.41e-111
Residual 474 SSE = 5763.5 12.159
LOF 438 SSLOF = 5706.8 13.03 8.278 3.99e-11
PE 36 SSPE = 56.67 1.57
R2 = 0.681 R2

A = 0.674 R2
PRESS = 0.66

RMSE = 3.49 MAE = 2.61

Table A.9: Coefficients and t-statistics for first order mixture model given in
Equation (4.7) with predictors given in Table 4.7. 9 possible outliers removed.

Estimate SE tStat pValue
x1 -3.6836 2.6388 -1.3959 0.1634
x2 -4.8698 1.9903 -2.4468 0.0148
x3 -6.4797 1.0051 -6.4471 0.0000
x4 -8.4947 0.9913 -8.5690 0.0000
x5 3.9855 1.0509 3.7923 0.0002
x6 -2.7039 1.5492 -1.7453 0.0816
x7 -12.0108 2.3312 -5.1521 0.0000
x8 -27.4492 2.6334 -10.4234 0.0000
x9 -26023.3445 751.0808 -34.6479 0.0000

IV



A. Appendix 1

A.2.2 Reduced first order mixture model

Table A.10: ANOVA table for the reduced first order mixture model given in
Equation (4.10) based on predictors given in Table 4.7. No outliers removed from
the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 482 SST = 18055

Regression 6 SSR = 12265 2044.1 168.02 3.74e-114
Residual 476 SSE = 5790.1 12.16
LOF 440 SSLOF = 5733.4 13.03 8.278 3.99e-11
PE 36 SSPE = 56.67 1.57
R2 = 0.679 R2

A = 0.675 R2
PRESS = 0.665

RMSE = 3.49 MAE = 2.60

Table A.11: Coefficients and t-statistics for the reduced first order mixture model
given in Equation (4.10) with predictors given in Table 4.7. 8 possible outliers
removed.

Estimate SE tStat pValue
(Intercept) -3.6174 1.1060 -3.2707 0.0012

x1 -2.8480 1.4411 -1.9763 0.0487
x2 -4.9142 1.4314 -3.4331 0.0006
x3 7.4369 1.3214 5.6282 0.0000
x4 -8.0393 2.7999 -2.8713 0.0043
x5 -23.5795 3.0790 -7.6581 0.0000
x6 -26042.6346 749.7306 -34.7360 0.0000

A.2.3 Second order polynomial reduced mixture model

Table A.12: ANOVA table for the second order polynomial reduced mixture model
given in Equation (4.11) based on predictors given in Table 4.9. No outliers removed
from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 482 SST = 18055

Regression 27 SSR = 14166 524.7 61.4 2.4e-133
Residual 455 SSE = 3888.4 8.5
LOF 419 SSLOF = 3831.7 9.1 5.8 9.4e-9
PE 36 SSPE = 56.67 1.57
R2 = 0.785 R2

A = 0.772 R2
PRESS = 0.745

RMSE = 2.92 MAE = 2.16
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Table A.13: Coefficients and t-statistics for the second order polynomial reduced
mixture model given in Equation (4.11) based on predictors given in Table 4.9. 9
possible outliers have been removed from the data.

Estimate SE tStat pValue
(Intercept) -10.5648 3.5510 -2.9752 0.0031

x1 12.0207 19.1026 0.6293 0.5295
x2 27.6351 11.6525 2.3716 0.0181
x3 -0.2774 9.4778 -0.0293 0.9767
x4 20.2683 18.0569 1.1225 0.2623
x5 30.8612 19.5315 1.5801 0.1148
x6 -46417.1363 5256.8061 -8.8299 0.0000

x1:x1 -9.6216 18.3710 -0.5237 0.6007
x1:x2 -46.2092 25.4033 -1.8190 0.0696
x1:x3 18.7066 24.4176 0.7661 0.4440
x1:x4 -61.3237 31.7796 -1.9297 0.0543
x1:x5 -26.3497 37.9431 -0.6945 0.4878
x1:x6 6848.8649 6878.1764 0.9957 0.3199
x2:x2 -24.2570 9.7601 -2.4853 0.0133
x2:x3 -21.2303 14.5252 -1.4616 0.1446
x2:x4 -21.4156 23.0795 -0.9279 0.3540
x2:x5 -80.7694 24.2254 -3.3341 0.0009
x2:x6 -2338.6010 7635.8656 -0.3063 0.7595
x3:x3 30.7913 8.5996 3.5805 0.0004
x3:x4 -38.6708 21.8795 -1.7674 0.0778
x3:x5 -18.7579 26.1585 -0.7171 0.4737
x3:x6 5897.6053 6769.1274 0.8713 0.3841
x4:x4 -31.8407 29.9456 -1.0633 0.2882
x4:x5 -45.9485 39.3019 -1.1691 0.2430
x4:x6 25012.8600 13075.3150 1.9130 0.0564
x5:x5 -45.8858 34.3070 -1.3375 0.1817
x5:x6 -30448.8207 13296.9357 -2.2899 0.0225
x6:x6 32396870.3958 2669515.1223 12.1359 0.0000

VI



A. Appendix 1

A.2.4 Second order additive reduced mixture model

Table A.14: ANOVA table for the second order additive reduced mixture model
given in Equation (4.12) based on predictors given in Table 4.9. No outliers removed
from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 482 SST = 18055

Regression 7 SSR = 13307 1901.1 190.22 2.05e-133
Residual 475 SSE = 4747.3 9.99
LOF 439 SSLOF = 4690.6 10.7 6.79 8.78e-10
PE 36 56.67 1.57
R2 = 0.737 R2

A = 0.733 R2
PRESS = 0.724

RMSE = 3.16 MAE = 2.27

Table A.15: Coefficients and t-statistics for the second order additive reduced
mixture model given in Equation (4.12) based on predictors given in Table 4.9. 14
possible outliers have been removed from the data.

Estimate SE tStat pValue
(Intercept) -2.0668 0.9565 -2.1609 0.0312

x1 -3.7289 1.2278 -3.0369 0.0025
x2 -5.4860 1.2345 -4.4440 0.0000
x3 8.2475 1.1383 7.2453 0.0000
x4 -9.0567 2.3940 -3.7831 0.0002
x5 -20.6613 2.6581 -7.7730 0.0000
x6 -46693.6334 1769.1894 -26.3927 0.0000
x7 33725851.3910 2590273.6315 13.0202 0.0000

A.3 Simplified components

A.3.1 First order simplified components mixture model

Table A.16: Coefficient statistics for simple component linear mixture model given
in Equation 4.13. 3 possible outliers removed from the data.

Estimate SE tStat pValue
x1 -19.7830 1.8992 -10.4165 0.0000
x2 -6.8607 1.2616 -5.4380 0.0000
x3 -8.2822 0.8276 -10.0070 0.0000
x4 4.1923 1.0893 3.8486 0.0001
x5 -24958.0675 792.2473 -31.5029 0.0000
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Table A.17: ANOVA table for simple component linear mixture model given in
Equation 4.13. based on predictors given in Table 4.13. No outliers removed from
the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 445 SST = 15510

Regression 5 SSR = 10646 2129.2 192.63 2.22e-108
Residual 440 SSE = 4863.5 11.05
LOF 407 SSLOF = 4809.3 11.820 7.2 1.87e-9
PE 33 SSPE = 54.17 1.64
R2 = 0.687 R2

A = 0.684 R2
PRESS = 0.678

RMSE = 3.32 MAE = 2.65

A.3.2 Second order additives simplified mixture model

Table A.18: ANOVA table for second order additive simplified components mixture
model given in Equation (4.14). Predictors given in Table 4.13. No outliers removed
from the data.

Variation d.f. Sum of squares Mean square F-score p-value
Total 445 SST = 15510

Regression 5 SSR = 11933 1325.9 161.62 7.05e-133
Residual 436 SSE = 3576.8 8.2
LOF 403 SSLOF = 3522.6 8.74 5.33 1.22e-7
PE 33 54.17 1.64
R2 = 0.770 R2

A = 0.765 R2
PRESS = 0.756

RMSE = 2.86 MAE = 2.18

Table A.19: Coefficient statistics for second order additive simplified components
mixture model given in Equation (4.14). Predictors given in Table 4.13. 6 possible
outliers removed from the data.

Estimate SE tStat pValue
x1 -14.9126 2.3949 -6.2268 0.0000
x2 -8.4837 2.0534 -4.1316 0.0000
x3 -6.8318 1.0182 -6.7097 0.0000
x4 5.8877 1.3604 4.3278 0.0000
x5 36118128.0895 2770924.4882 13.0347 0.0000

x1:x5 -36185944.2049 2772523.0974 -13.0516 0.0000
x2:x5 -36158500.0206 2773049.3000 -13.0393 0.0000
x3:x5 -36171803.8897 2772721.3172 -13.0456 0.0000
x4:x5 -36150330.9086 2772652.6287 -13.0382 0.0000
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Table A.20: Coefficients and t statistics for model based only on additive given in
Equation (4.17). 17 possible outliers removed from the data.

Estimate SE tStat pValue
(Intercept) -5.0234 0.2971 -16.9073 0.0000

x1 -0.0423 0.0020 -20.8742 0.0000
x2 2.87e-05 0.0000 9.6739 0.0000

Table A.21: Coefficients and t statistics for model based only on additive given in
Equation (4.17). No outliers removed from the data.

Estimate SE tStat pValue
(Intercept) -5.1910 0.3696 -14.0455 0.0000

x1 -0.0419 0.0025 -16.6982 0.0000
x2 2.83e-05 0.0000 7.6890 0.0000

A.4 Relevant matlab code

A.4.1 MLR

%% General MLR f i t t i n g
% X i s a (N,m) matrix , N= #samples and m= #pr ed i c t o r s
% Y i s a (N, 1 ) matrix conta ing CFPP va lues
Model1m=f i t lm (X,Y)

%% Mixture models
Model1m=f i t lm (X,Y, ’ i n t e r c ep t ’ , f a l s e )
%% ANOVA
anova (Model1m , ’ summary ’ )

%% PRESS

H=X∗ inv (X’∗X)∗X’ ; %Hat matrix
E=Model1m . Res idua l s .Raw;
PRESS=0;
f o r i =1: l ength (E)

PRESS=PRESS+(E( i )/(1−H( i , i ) ) ) ^ 2 ;
end
R2_PRESS=1−PRESS/Model1m .SST

%% ou t l i e r d e t e c t i on / removeal
asd=1;
whi l e asd==1

keep=ones ( s i z e (Y) ) ;
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Model1m=f i t lm (X,Y) ;
o u t l i e r s=i s o u t l i e r (Model1m . Res idua l s . raw )
keep ( o u t l i e r s )=0;
X_temp=X( f i nd ( keep ==1) , : ) ;
Y=Y( f i nd ( keep==1));
X=X_temp ;
i f l ength (X)==length ( keep )

asd=0;
end

end

func t i on [ o u t l i e r s ] = i s o u t l i e r ( E )
% Detects o u t l i e r s based on Median abso lu t e d e r i v a t i on
% There i s a ac tua l matlab func t i on f o r th i s , with the same name .
%But I have a o ld e r v e r s i on o f matlab were i t i s not inc luded .

A=median (E) ;
b=1.4826;
MAE=b∗median ( abs (E−A) ) ;
o u t l i e r s=f i nd (E<A−3∗MAE|E>A+3∗MAE) ;

end

A.4.2 Neural networks

% X i s a (m,N) matrix , N= #samples and m= #pr ed i c t o r s
% Y i s a (1 ,N) matrix conta ing CFPP va lues

Node=15;% number o f nodes
rep=10; % number o f r e p e t i t i o n s
Networks= ShallowANN( X,Y, Node , rep ) ;

f unc t i on [ Tot_Networks ] = ShallowANN( X,Y,N, rep )
% X − input data .
% Y − t a r g e t data .
% N − Max nr l a y e r s
% rep − repeated t r i e s on each network
Tot_Networks=c e l l (1 ,N) ;

f o r i i =1:N
Networks=c e l l (1 , rep ) ;
f o r j j =1: rep

% X − input data .
% Y − t a r g e t data .
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x = X;
t = Y;
%
% Choose a Train ing Function
% For a l i s t o f a l l t r a i n i n g func t i on s type : he lp nntra in
% ’ trainlm ’ i s u sua l l y f a s t e s t .
% ’ t ra inbr ’ takes l onge r but may be be t t e r f o r cha l l e ng i ng problems .
% ’ t ra in s cg ’ uses l e s s memory . Su i t ab l e in low memory s i t u a t i o n s .

t ra inFcn = ’ trainlm ’ ; % Levenberg−Marquardt backpropagat ion .
%
% Create a F i t t i n g Network
hiddenLayerSize = i i ;
net = f i t n e t ( hiddenLayerSize , t ra inFcn ) ;
%
% Setup Div i s i on o f Data f o r Training , Val idat ion , Test ing
net . divideParam . t ra inRat i o = 70/100;
net . divideParam . va lRat io = 15/100;
net . divideParam . t e s tRat i o = 15/100;
% Choose a Performance Function
% For a l i s t o f a l l performance f unc t i on s type : he lp nnperformance
net . performFcn = ’mse ’ ; % Mean Squared Error
% Train the Network
[ net , t r ] = t r a i n ( net , x , t ) ;
%
% Test the Network
y = net (x ) ;
e = gsubt rac t ( t , y ) ;
performance = perform ( net , t , y ) ;

%===RMSE/MAE/R2====

% ===Train===
e_train=e((0== isnan ( t r . trainMask { 1 } ) ) ) ;
t_tra in=t((0== isnan ( t r . trainMask { 1 } ) ) ) ;
RMSE(1)= sq r t ( sumsqr ( e_tra in )/ l ength ( e_train ) ) ;
MAE(1)=sum( abs ( e_train ) )/ l ength ( e_tra in ) ;
SS_tot_train=sumsqr ( t_train−mean( t_tra in ) ) ;
R2(1)=1−sumsqr ( e_tra in )/ SS_tot_train ;

%=== Dev ===
e_dev=e((0== isnan ( t r . valMask { 1 } ) ) ) ;
t_dev=t((0== isnan ( t r . valMask { 1 } ) ) ) ;
% RMSE/MAE
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RMSE(2)= sq r t ( sumsqr ( e_dev )/ l ength ( e_dev ) ) ;
MAE(2)=sum( abs ( e_dev ) )/ l ength ( e_dev ) ;
SS_tot_dev=sumsqr ( t_dev−mean( t_dev ) ) ;
R2(2)=1−sumsqr ( e_dev )/ SS_tot_dev ;

% === Test ===
e_test=e((0== isnan ( t r . testMask { 1 } ) ) ) ;
t_test=t ((0== isnan ( t r . testMask { 1 } ) ) ) ;
% RMSE/MAE
RMSE(3)= sq r t ( sumsqr ( e_test )/ l ength ( e_test ) ) ;
MAE(3)=sum( abs ( e_test ) )/ l ength ( e_test ) ;
SS_tot_test=sumsqr ( t_test−mean( t_test ) ) ;
R2(3)=1−sumsqr ( e_test )/ SS_tot_test ;

%=== Total===
RMSE=ze ro s ( 4 , 1 ) ;
MAE=ze ro s ( 4 , 1 ) ;
R2=ze ro s ( 4 , 1 ) ;
% RMSE
RMSE(4)= sq r t ( sumsqr ( e )/ l ength ( e ) ) ;
MAE(4)=sum( abs ( e ) )/ l ength ( e ) ;
SS_tot=sumsqr ( t−mean( t ) ) ;
R2(4)=1−sumsqr ( e )/ SS_tot ;

%
Table_1=tab l e (RMSE,MAE,R2 , ’ VariableNames ’ , { ’RMSE’ , ’MAE’ , ’R2 ’ } , ’RowNames ’ , { ’ t ra in ’ , ’ dev ’ , ’ t e s t ’ , ’ t o ta l ’ } ) ;

Networks{ j j }=s t r u c t ( ) ;
Networks{ j j } . net=net ;
Networks{ j j } . t r=t r ;
Networks{ j j } . t ab l e=Table_1 ;

end
Tot_Networks{ i i }=Networks ;

end

end
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