
DF

QIOA:
Quantum Inspired
Optimisation Algorithm
A Tensor Network based quantum-inspired classical algorithm
for optimization problems

Master’s thesis in Erasmus Mundus Joint Masters in Nanoscience and Nanotechnology,
Specialising on Quantum Computing

Rishi Sreedhar

Department of Microtechnology and Nanoscience
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:MCCX04

QIOA
Quantum Inspired Optimisation Algorithm

A Tensor Network based approach to a Quantum Inspired Classical
Optimization Algorithm

RISHI SREEDHAR

DF

Department of Microtechnology and Nanoscience
Division of Applied Quantum Physics

Göran Johansson Group
Chalmers University of Technology

Gothenburg, Sweden 2020

QIOA: Quantum Inspired Optimisation Algorithm
A Tensor Network based approach to Quantum Inspired Classical Algorithms
RISHI SREEDHAR

© RISHI SREEDHAR, 2020.

Promoter: Prof Göran Johansson,
Department of Microtechnology and Nanoscience,
Chalmers University of Technology.

Co-Promoter: Prof Bart Sorée,
Department of Electrical Engineering,
Katholieke Universiteit Leuven.

Examiner: Prof Thilo Bauch,
Department of Microtechnology and Nanoscience,
Chalmers University of Technology.

Daily Supervisor: Andreas Josefsson Ask,
Department of Microtechnology and Nanoscience,
Chalmers University of Technology.

Master’s Thesis 2020:MCCX04
Department of Microtechnology and Nanoscience
Division of Applied Quantum Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A Hamming map of circuit-depth p vs Bond dimension Dmax showing the
number of character mismatches between predicted solution and actual solution.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

QIOA: Quantum Inspired Optimization Algorithm
A new Tensor Network based quantum inspired classical algorithm
to solve optimization problems

RISHI SREEDHAR
Department of Microtechnology and Nanoscience
Chalmers University of Technology &
Katholieke Universiteit Leuven

Abstract
The current era of Quantum computing has been aptly named Noisy Intermediate-
Scale Quantum era, or NISQ era [1], owing to the highly promising, yet still imperfect
state of available quantum hardware. The applicability of these NISQ devices avail-
able today is an area of research attracting increasing amounts of attention, as the
field of quantum computing grows in popularity. Quantum-classical variational algo-
rithms such as the Quantum Approximate Optimisation Algorithm [2], Variational
Quantum Eigensolver [3], and Variational Autoencoder [4] are promising attempts
in this direction, aiming to extract maximum value from NISQ devices. These al-
gorithms aim to minimise the number of operations on the quantum processor by
incorporating classical support-routine overheads.

The Quantum Approximate Optimisation Algorithm, also known as QAOA [2], is
one such hybrid algorithm designed to solve optimisation problems. In this thesis, we
study the QAOA using the framework of tensor networks and matrix product states
(MPS). We make approximations on the quantum aspects of QAOA by limiting
the amount of entanglement in QAOA circuits. Then, we analyse the effect of
these approximations on its performance, by applying this approximated method on
multiple Max-Cut and Exact-Cover problems of different sizes.

In the MPS formulation, it is the exponential increase of entanglement that makes
exact simulations of highly entangled quantum circuits, such as QAOA circuits, clas-
sically infeasible. Our results suggest that it could still be possible to extract the
solutions of the optimisation problems QAOA tries to solve, even from an approxi-
mated MPS-based QAOA-implementation with restricted entanglement. This added
restriction in entanglement growth makes our implementation classically tractable.
Hence, with this thesis, we propose a classical version of QAOA, which we are calling
Quantum Inspired Optimisation Algorithm, QIOA, that is inspired by the original
QAOA. We have validated the performance of QIOA on problems of small sizes, and
further studies are required to better understand its limitations.

Keywords: Tensor Networks, QAOA, Quantum-inspired algorithms, Optimisation
problems.

v

Acknowledgements
I am deeply grateful to my mentors Andreas Josefsson Ask and Pontus Vikstål for
their limitless support and countless discussions. I learned about Tensor Networks
from Andreas and QAOA from Pontus. Moreover, it was Pontus’s vector-matrix
implementation of QAOA that our tensor network-based calculations were bench-
marked against. We also sourced the optimum parameters used in chapter 9, Fig-
ure 3.1, and the different problem instances described in chapter 4, from Pontus. I
am also extremely grateful to my promoter Prof Göran Johansson for his invaluable
feedback. His insights helped immensely in not only getting more clarity on the data
obtained but also were pivotal in finding ways to improve upon the methods used.
I’m also indebted to Prof Giulia Ferrini, Shahnawaz Ahmed, Marika Svensson, Laura
García-Álvarez, the other master’s students and colleagues at AQP for the multi-
ple discussions and clarifications throughout last year. The entire Applied Quantum
Physics group members have been extremely kind to me, and I am thankful for their
support. Our program coordinator Prof Thilo Bauch has been an amazing pillar of
encouragement throughout this program. It is difficult to express how reassuring
it is to know that he is there to turn to when things go south. Thanks, Thilo. I
am also thankful to Prof Bart Sorée, Prof Guido Groeseneken, Elke Delfosse and
all other mentors and teachers from KU Leuven who have facilitated in helping me
be where I am today. I’m also thankful to the EU and their Erasmus+ program
for my scholarship, without which I couldn’t have attended this amazing master’s
program. I have also been fortunate to have made so many great friends here at
MC2 without whose support, encouragement, company and stimulating discussions,
this program would have been less colourful. Special thanks to Ananthu Pullukat-
tuthara Surendran for all his help throughout. My Erasmus batchmates have been
another source of constant encouragement, support and discussions that I’m really
grateful for. Also, thanks to David Frisk for the thesis template.

Finally, none of this would have been possible if not for the sacrifices and support
of my family, and no finite set of words will do justice to how grateful I am for that.
This thesis is dedicated to Eenippally.

Rishi Sreedhar, Gothenburg, October 2020

vii

Contents

List of Figures xiii

List of Tables xvii

I Introduction 1

1 Introduction 3

2 Tensor Networks 5
2.1 Tensors . 5
2.2 Pictorial Representation . 6
2.3 Tensor Operations . 7

2.3.1 Contraction . 7
2.3.2 Tensor Products . 8

2.4 Singular Value Decomposition . 8
2.5 Schmidt Decomposition . 9
2.6 Matrix Product States . 10

2.6.1 MPS Derivation . 11
2.6.2 Bond Dimension and Entanglement 13
2.6.3 Product States . 15

2.7 Matrix Product Operators . 16
2.8 Quantum Circuits as Tensor Networks 17
2.9 Reduced Density Matrix Calculations 18

3 QAOA 19
3.1 Quantum Adiabatic Algorithm . 19
3.2 QAOA Method . 20
3.3 QAOA and Tensor Networks . 22

II Methods 23

4 Instance Generation 25
4.1 Exact Cover . 25
4.2 Max-Cut . 26

4.2.1 Max-Cut Definition . 26

ix

Contents

4.2.2 Erdős - Rényi Graphs . 27
4.3 Nomenclature . 29

5 State Preparation 31
5.1 Initialization . 31
5.2 Gates Used . 31

5.2.1 Single Qubit Gates . 32
5.2.1.1 Rx Gates . 32
5.2.1.2 Rz Gates . 32

5.2.2 Two Qubit Gates . 33
5.2.2.1 Jij Gates . 33
5.2.2.2 SWAP Gates . 34

5.3 Truncation . 37
5.4 Cost Estimation . 38
5.5 Summary . 39

6 Training QAOA 41
6.1 Grid Search . 42
6.2 Optimisation Protocols . 42

7 QIOA 45
7.1 General Principle . 45
7.2 State Preparation . 47
7.3 Extraction from Product States: (Dmax = 1) 47
7.4 Extraction from Entangled States: (Dmax > 1) 48

7.4.1 Reduced Density Matrix Method 50
7.4.2 Reduced Density Matrix Method with Projections 51

7.5 Summary . 52

III Results & Discussion 55

8 Training Results and Discussions 57
8.1 Cost and Solution Landscapes . 59
8.2 Max-Cut Training Results . 60
8.3 Exact-Cover Training Results . 71

9 QIOA Results and Discussions 77
9.1 Inspiration . 77
9.2 Hamming Distance . 78
9.3 Black-box Picture of QIOA . 79
9.4 Plot Definitions . 80

9.4.1 Hamming Maps . 80
9.4.2 Confidence Plots . 80

9.5 Max-Cut QIOA Results . 82
9.6 Exact-Cover QIOA Results . 92
9.7 Outlier Instances . 95

x

Contents

9.7.1 Q12R4 Max-Cut . 95
9.7.2 Q25P8 Exact-Cover . 97

9.8 Trainability of QIOA . 98

IV Conclusion 99

10 Conclusion 101
10.1 Summary . 101

10.1.1 QAOA . 101
10.1.2 Training Results for p = 1 . 102
10.1.3 Sampling Results and QIOA 102

10.2 Applicability of QIOA method . 103
10.3 Future Work . 104

Bibliography 107

A Appendix 1 I
A.1 Function to create a QAOA MPS state I
A.2 Function to Calculate the Cost of a QAOA state II
A.3 QIOA Main Method . IV
A.4 PRDM Method code . X

xi

Contents

xii

List of Figures

2.1 Pictorial representation of Quantum states and Gates in Tensor Net-
work formalism. 6

2.2 Pictorial depiction of a contraction operation between two rank 6
tensors T and M to produce a new rank 10 tensor TM 7

2.3 Pictorial depiction of a Tensor Product operation between a rank 6
tensor T and a rank 4 tensor M to produce a new rank 10 tensor TM . 8

2.4 Pictorial depiction of SVD . 9
2.5 Conversion of a rank n Tensor into an n-register MPS. 13
2.6 Final representation of a matrix product state. Trivial bond intro-

duced for consistency shown in red. 16
2.7 Conversion of a rank 2n gate into an n-qubit MPO 16
2.8 An example of Tensor Network implementation of single and two

qubit gates on a 4 qubit matrix product state. a: single-qubit op-
erations. part b: two-qubit operation. Tensor contractions are per-
formed on indices encapsulated by red-dashed lines. 17

2.9 Generalised Tensor Network representation of Calculating the Re-
duced Density Matrix of qubits from k to l including k and l. a: The
Tensor Network Diagram. b: All contractable edges contracted to
give a rank 2(l − k + 1) tensor with each index of dimension 2. c:
All dangling edges compressed to give the 2(l−k+1) × 2(l−k+1) density
matrix ρk···l. 18

3.1 Full Schematic of QAOA with circuit depth p. Rx(2βi) here stems
from a decomposed UB(βi) (see subsection 5.2.1). 22

4.1 Example of a maximum cut (the dashed elliptic line) on a graph
with 6 nodes and 7 edges. The split edges are highlighted in blue. . . 27

4.2 An example of an Erdős–Rényi graph with 10 nodes 28

5.1 n Qubit MPS register in the uniform superposition state 31
5.2 Schematic showing an example implementation of one non-local J26

gate using SWAP Network I in an 8 qubit register. a: represents
applying 3 SWAP gates to bring qubit 6 to position 3. b: depicts the
application of gate J26 and c: represents swapping qubit 6 back to
position 6. 35

xiii

List of Figures

5.3 Schematic showing an example implementation of SWAP Network
II in a 5 qubit register. Each Layer facilitates interaction between
different pairs of qubits. Figure from reference [5] 36

5.4 Flowchart describing the truncation operation 37
5.5 Pictorial depiction of calculating single and two-qubit expectations

using matrix product states on an 8 qubit register. a: Expectation of
single-qubit σ̂z3. b: Expectation of two-qubit σ̂z2σ̂z6. 39

5.6 The actual Tensor Network circuit for preparing a generic 4 qubit
QAOA state for p = 1 without the truncation and contraction steps
being depicted. 40

6.1 Example of the Energy landscape C(γ,HC , β) for a 11 qubit MaxCut
instance for circuit depth p = 1. Number of grid points = 100× 100. . 43

7.1 Illustration of the |γopt, βopt〉Dmax state preparation pseudo-code. . . . 47
7.2 Single qubit reduced density matrix calculation of the kth qubit using

matrix product states . 50
7.3 An example of calculating the projected reduced density matrix of

qubit 6 in an n qubit register. Here, qubits 1 to 5 have already been
mapped onto ′00101′ . 52

7.4 All the 23 possible Projected density matrix implementation scenarios
depicted as a tree for the case of 3 qubits 53

8.1 An example of the azimuthal and top views of Cost and Solution
Landscape of a 10 qubit Max-Cut instance changing with represen-
tative Bond dimensions D = 32, 16, 8, 4, 2, and 1. For a 10-qubit
system, highest D = 2b10/2c = 32. 60

8.2 (γopt, βopt) , (γmax, βmax), and (∆γ,∆β) for
Dmax = 2, 3, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, and 32 63

8.3 Normalised Success rate obtained using the angles γopt(Dmax) and
βopt(Dmax) with respect to Dmax. 64

8.4 Calculated statistical behaviour of 8-qubit max-cut instances. 65
8.5 Calculated statistical behaviour of 9-qubit max-cut instances. 66
8.6 Calculated statistical behaviour of 10-qubit max-cut instances. 67
8.7 Calculated statistical behaviour of 11-qubit max-cut instances. 68
8.8 Calculated statistical behaviour of 12-qubit max-cut instances. 69
8.9 An example of the azimuthal and top views of Cost and Solution

Landscape of an 8 qubit Exact-Cover calculations over representative
Bond dimensions D = 16, 12, 8, 4, 2, and 1. For an 8-qubit system,
highest possible D = 2b8/2c = 16. 71

8.10 Calculated properties of instance Q8P5 for Dmax = 1 to 16. 73
8.11 Calculated statistical behaviour of 8-qubit exact-cover instances. . . . 74
8.12 Calculated statistical behaviour of 15-qubit exact-cover instances. . . 75

9.1 Calculated data of a 50-qubit Exact-Cover instance for Dmax = 16 . . 77

xiv

List of Figures

9.2 Hamming Maps of both DM and PRDM methods implemented on a
12 Qubit Max-Cut instance, Q12R5. Here, 1 ≤ Dmax ≤ 2b12/2c = 64
and 1 ≤ p ≤ 100. A black pixel corresponds with QIOA predicting
the correct solution for that (p,Dmax) pair. 82

9.3 Calculated Confidence plots for Q12R5. 85
9.4 Average Hamming maps of 8-qubit Max-Cut instances 87
9.5 Average Confidence Plots for 8 qubit Max-Cut instances. 87
9.6 Average Hamming maps of 9-qubit Max-Cut instances 88
9.7 Average Confidence Plots for 9 qubit Max-Cut instances. 88
9.8 Average Hamming maps of 10-qubit Max-Cut instances 89
9.9 Average Confidence Plots for 10 qubit Max-Cut instances. 89
9.10 Average Hamming maps of 11-qubit Max-Cut instances 90
9.11 Average Confidence Plots for 11 qubit Max-Cut instances. 90
9.12 Average Hamming maps of 12-qubit Max-Cut instances 91
9.13 Average Confidence Plots for 12 qubit Max-Cut instances. 92
9.14 Average Hamming maps for 8 qubit Exact-Cover instances. 92
9.15 Average Confidence Plots 8 qubit Exact-Cover instances. 93
9.16 Average Hamming maps for 15 qubit Exact-Cover instances. 93
9.17 Average Confidence Plots 15 qubit Exact-Cover instances. 94
9.18 Average Hamming maps for 25 qubit Exact-Cover instances. 94
9.19 Average Confidence Plots 25 qubit Exact-Cover instances. 95
9.20 Confidence Plots for Max-Cut instance Q12R4. 95
9.21 Hamming maps of the Max-Cut instance Q12R4 96
9.22 DM and PRDM Hamming maps for the Exact-Cover instance Q25P8 97

xv

List of Figures

xvi

List of Tables

xvii

List of Tables

xviii

Part I

Introduction

1

1
Introduction

" There’s Plenty of room at the Top [6]. "

The entire field of Quantum Computing is said to have been born from the now
ubiquitous lecture given in 1959 by the famous physicist Prof Richard Feynman,
titled "There is plenty of room at the bottom" [7]. While the ideas he had presented
during that talk may not have much correspondence with the field of quantum
information and quantum computing today [8], his 1984 conference paper titled
"Quantum Mechanical Computers" [9] holds many parallels with the field, and was
much ahead of its time. Quantum computing is considered by many as a complete
paradigm shift on how we process information. Quantum computers operate on
principles fundamentally different from digital transistor based classical computers
because, unlike classical computers, they make use of quantum mechanical principles
such as superposition and entanglement to directly work with information.

Arguably, the field of quantum computing only started getting wide-spread public
attention after the invention of the famous Shor’s Algorithm [10] in 1994. This
is a polynomial-time quantum algorithm for solving the integer factorization prob-
lem [11]. Until then, finding the factors of large numbers were considered to be
a computationally impossible problem, so much so that one of the most popular
encryption protocols used to safeguard almost all modern internet transactions, the
RSA protocol, was formulated based on this assumption [12]. Many believe this to
be just a glimpse into the disruptive potential of quantum technologies [13]. This
belief is further validated by recent breakthroughs in the field, such as the achieve-
ment of Quantum Supremacy by Google [14] where they performed a calculation
using their 53-qubit superconducting quantum processor that would have taken the
best classical supercomputing hardware existing today hundreds of years to com-
plete. However, since Google’s supremacy announcement, multiple research groups,
with IBM in the lead [15], have come up with counter-arguments to Google’s claims
that the said calculation would take hundreds of years when performed classically.
Nevertheless, everyone agrees that the future of quantum computing looks bright.

This constant tug between what is and is not feasible for quantum and classical
hardware has been characterised as one of the signatures of the NISQ era [1] that
we are in. This is because today, we are right at the quantum-classical boundary.
This is also evidenced by multiple occasions where a proposed quantum algorithm

3

1. Introduction

outperforms all existing classical algorithms for a while. However, this new algo-
rithm leads to more insights on the problem it is trying to solve, which inspires
better classical algorithms with improved performance which dethrone the initially
proposed quantum algorithm. The QAOA [2] itself, which is one of the main topics
of this thesis, has also been subject to this cycle (See chapter 3 for details). Another
instance is when, in 2018, Ewin Tang, a bachelor’s student then, came up with
a quantum-inspired classical algorithm [16] which provided the same exponential
speedup as a then-popular quantum algorithm for recommendation systems [17].
Since then, even just in the last two years, there have been multiple quantum in-
spired classical algorithms such as [18], [19], [20], [21], to name a few, that have
continued to push the quantum-classical boundary.

In this thesis, we propose one such quantum inspired algorithm, called Quantum
Inspired Optimisation Algorithm, or QIOA, that is inspired by the original QAOA.
QIOA is born from tensor network based simulations of the original QAOA. Using
tensor networks, we studied the performance of an approximated version of QAOA
where the amount of entanglement within the quantum register is limited from grow-
ing exponentially. In the framework of matrix product states (MPS), which is the
class of tensor networks we use, it is an exponential growth of entanglement within
the registers that makes exact simulations of quantum circuits classically intractable.
Our results show that in the instances we simulated, one is able to extract the solu-
tions of problems QAOA is trying to solve, even from an approximated MPS based
version of QAOA in which the entanglement has no exponential growth. This hints
at the possibility that our MPS based implementation of QAOA is a new classical
algorithm that takes inspiration from QAOA. However, at this point, QIOA is still
only a promising avenue of exploration, and more extensive studies on bigger system
sizes are required before making definitive claims.

Finally, this puts into perspective the epigraph used in this introduction, "There’s
Plenty of room at the Top [6]". This is the title of a paper discussing the future
of classical algorithms in the face of a quantum future and a future of stalling
advances in classical hardware developments. In this paper, the authors claim that
the advances in classical computing would be at the top of the stack and quantum
inspired classical algorithms are sure to carve a niche for themselves in this stack.

4

2
Tensor Networks

This introductory chapter gives a brief insight into the vast field of tensor networks.
Note that this chapter only attempts to introduce the readers to the minimum
amount of knowledge required to follow the methods and results discussed in this
thesis. Most of the material presented in this chapter is sourced from extensive
papers on the field such as [22], [23], [24], [25], [26]. Especially from [22] by Prof.
Ulrich Schollwöck.

2.1 Tensors
We begin by describing a tensor, which is the most basic unit of a tensor network.
There exist multiple, equally correct interpretations of a tensor, where each definition
corresponds with the application they are used for. However, one common feature
among all these definitions is the concept of tensor rank r, which is a number
associated with all tensors. Some of the most popular and useful definitions of a
tensor are listed below:

1. As High Dimensional Matrices: In this perspective, a tensor of rank r is
an r−dimensional matrix. Hence, a rank 0 tensor is a scalar, rank 1 tensor a
vector, rank 2 tensor a matrix and so on.

2. As an element of an r-dimensional vector space: Here, an r ranked
tensor is treated as an element of an r dimensional vector space. Hence, if
we denote our tensor as T , then T ∈ C d1×d2×...dr where di is the size of the
ith dimension. Now, if we represent the basis vectors of each dimension di as
{|li〉}, then, we can expand our tensor T using these bases as follows:

T =
∑

∀ l1,l2,...lr

Tl1,l2,l3...lr × |l1〉|l2〉 . . . |lr〉. (2.1)

This is the perspective we use when describing the wavefunctions of quantum
states, as a tensor. This is pretty straight forward because Equation 2.1 looks
exactly like the expansion of a wavefunction in some basis. For us, this would
mean that a quantum state |ψ〉 which represents the wavefunction of an n-qubit
quantum register would be a tensor of rank n. This is because |ψ〉 ∈ (H2)⊗n,
where H2 is a single-qubit Hilbert space.

3. As a set of Linear maps from one space to another: One way to define
a linear map between two spaces, is to define how the basis states of the first

5

2. Tensor Networks

space, get mapped onto the basis states of the second space. Using the same
mathematical definitions used in point 2, we can hence see a tensor T of rank r
as a linear map from C d1×d2×...dk =⇒ C dk+1×dk+2×...dr for any k ∈ {1, 2, . . . r}.

T (|l1〉|l2〉 . . . |lk〉) =
∑

∀ l1,l2,...lk,lk+1,...lr

Tl1,l2,...lk,lk+1,...lr ×|lk+1〉|lk+2〉 . . . |lr〉. (2.2)

Here, the tensor T maps basis states |l1〉, . . . |lk〉 to basis states |lk+1〉, . . . |lr〉
through the scalar Tl1,l2,...lk,lk+1,...lr . Depending on the number k separating the
two spaces, T can simultaneously define a total of r−1 linear maps and hence
is seen as a set of linear maps. In our case, we can use such a perspective
to represent quantum gates. An n-qubit quantum gate acts on an n-qubit
quantum register o produce another n-qubit quantum register. Thus, such
a gate can be viewed as a rank 2n tensor mapping one rank n tensor onto
another rank n tensor.

2.2 Pictorial Representation
Tensor Networks is a complete pictorial representation of many-body quantum sys-
tems, and other highly correlated systems. Here, continuing from point 2 and 3 from
the above discussion, we present the pictorial representation of quantum states and
quantum gates when viewed as a tensor. Any tensor T of rank r can be pictured
as a closed shape with r legs sticking out of it. Each leg corresponds with labels
pointing to their own respective spaces, where the labels take values from 1, . . . di,
where di is the dimension of that subspace.

(a) An n-qubit Quantum State as a tensor.

(b) An n-qubit Quantum Gate as a tensor.

Figure 2.1: Pictorial representation of Quantum states and Gates in Tensor
Network formalism.

6

2. Tensor Networks

In Figure 2.1a, each leg indexed by σi is called a physical index, and correspond to
the state of the ith qubit. This is also another advantage of tensor representations
where we have means of directly addressing individual qubits in the full register.
In an equivalent vector representation of an n-qubit register with a 2n × 1 vector,
addressing individual qubits are not that straightforward. Figure 2.1b depicts a rank
2n tensor which pictorially represents an n-qubit quantum gate. Here, this rank 2n
tensor maps the set of physical indices σ1, σ2, σ3, . . . σn to a possibly different set
σ”

1, σ
”
2, σ

”
3, . . . σ

”
n. A 2-qubit gate would hence be a rank 4 tensor, in this perspective.

2.3 Tensor Operations
In this section, we briefly go over the two basic tensor operations, both mathemati-
cally, and pictorially.

2.3.1 Contraction
A contraction between indices of two tensors is a generalisation of matrix multipli-
cation in higher dimensions. Mathematically, if we have two tensors T and M of
ranks r and k respectively, then contracting a pair of indices, one from each tensor,
would result in a new tensor TM with a rank of r+k−2. The contracted indices are
completely summed over and no longer a part of this new tensor TM . Furthermore,
both the indices have to be of the same dimension for a contraction to be possible.
Mathematically this is explained in Equation 2.3 where s is the common index to
be contracted in both T and M . An example is depicted pictorially in Figure 2.2
where both T and M are rank 6 tensors

T =
∑

∀ l1,l2,...s,...lr
Tl1,l2...s,...lr × |l1〉|l2〉 . . . |s〉 . . . |lr〉

M =
∑

∀ q1,q2,...s,...qk

Mq1,q2,...s,...qk
× |q1〉|q2〉 . . . |s〉 . . . |qk〉

TM =
∑

∀ l1,l2,...lr
∀ q1,q2,...qk

(∑
s

Tl1,l2...s,...lr ×Mq1,q2,...s,...qk

)
× |q1〉 . . . |qk〉 × |l1〉 . . . |lr〉.

(2.3)

Figure 2.2: Pictorial depiction of a contraction operation between two rank 6
tensors T and M to produce a new rank 10 tensor TM .

7

2. Tensor Networks

Both Equation 2.3 and Figure 2.2, convey exactly the same idea. Nevertheless,
comparing between them we can see how much more simple and easy it is to handle
high-dimensional data by using tensor network notations. One just needs to contract
over the common edges, and represent a new tensor with all the other remaining
edges on it.

2.3.2 Tensor Products
Tensor Product operations are imperative in Quantum Mechanics and allow the
Hilbert space of a multi-partite system to be expressed in terms of Hilbert spaces
of its individual components. In the language of tensors, a tensor product between
tensors T and M of ranks r and k results in a new tensor TM who has rank = r+k

T =
∑

∀ l1,l2,...lr
Tl1,l2,...lr × |l1〉|l2〉 . . . |lr〉

M =
∑

∀ q1,q2,...qk

Mq1,q2...qk
× |q1〉|q2〉 . . . |qk〉

TM =
∑

∀ l1,l2,...lr
∀ q1,q2,...qk

Tl1,l2,...lr ×Mq1,q2,...qk
× |q1〉 . . . |qk〉 × |l1〉 . . . |lr〉.

(2.4)

Figure 2.3: Pictorial depiction of a Tensor Product operation between a rank 6
tensor T and a rank 4 tensor M to produce a new rank 10 tensor TM .

2.4 Singular Value Decomposition
The singular value decomposition method, SVD for short, from linear algebra, is
arguably the most important method required in the construction of an MPS rep-
resentation of a quantum state |ψ〉. For any rectangular m × n matrix A, SVD
guarantees that there exists a decomposition of A such that:

A = U · S · V †.
The dimensions of matrices U , S, and V are (m × min(m,n)), (min(m,n) ×
min(m,n)), and (min(m,n)×n), where min(m,n) represents the minimum number
between m and n. Matrix S here is a singular matrix with all other elements are

8

2. Tensor Networks

equal to 0 except the non-negative diagonal entries saa, also known as singular values.
The singular values are generally arranged from increasing to decreasing order in S.
That is, S11 > S22 > S33 · · · > Srr. The number of non-zero singular values in S
is also called the Schmidt rank of the original matrix A. Also, if m < n, then the
matrix U is unitary, that is U · U † = I and V is a rectangular matrix. If instead
m > n, then V is a unitary. Both U and V are unitaries if m = n. This is depicted
in Figure 2.4

Figure 2.4: Pictorial depiction of SVD

Singular value decomposition is of significant practical importance in scenarios where
one is interested in finding the most optimal approximation of matrix A with Schmidt
rank r, by another matrix A′ with a lower Schmidt rank r′. In that case, one can
calculate A′ by first calculating the SVD of A, and then replacing the original
singular matrix S, whose Schmidt rank is r, with an approximated singular matrix
S ′ which is the same as S with the only difference that all but the largest r′ singular
values are set to 0. Hence,

A′ = U · S ′ · V †.

2.5 Schmidt Decomposition

The theorem for Schmidt decomposition implies that for any composite quantum
state |ψ〉 that is an element of a tensor product space HA⊗HB can be expressed as

|ψ〉 =
r∑

a=1
λa · |ua〉 ⊗ |va〉.

where { |u1〉, |u2〉, . . . |ur〉 } are orthonormal sets ⊂ HA and { |v1〉, |v2〉, . . . |vr〉 }
are orthonormal sets ⊂ HB. Here, r is the Schmidt rank associated with this
quantum state |ψ〉. This can be easily derived as shown below using the singu-
lar value decomposition described above. Any pure state |ψ〉 ∈ HA ⊗ HB can be
expanded using tensor products of the respective bases in HA and HB. Then, we
could perform an SVD on the resultant coefficient matrix Ψij and finally obtain the
transformed bases {|ua〉} and {|va〉}, along with the singular values sa. That is,
|ψ〉 = ∑

i,j Ψij × |iA〉 ⊗ |jB〉, where, Ψij = ∑min(NA,NB)
a Ui,a · Saa · V †a,j. Now,

9

2. Tensor Networks

|ψ〉 =
∑
i,j

min(NA,NB)∑
a

Ui,a · Saa · V †a,j

× |iA〉 ⊗ |jB〉
=

min(NA,NB)∑
a

Saa ·
(∑

i

Ui,a · |iA〉
)
⊗

∑
j

V †a,j · |jB〉

=
min(NA,NB)∑

a=1
λa · |ua〉 ⊗ |va〉.

(2.5)

Here, NA and NB are the dimensions of HA and HB respectively. From Equation 2.5
we see that the Schmidt rank [27] of a bi-partite quantum state |ψ〉 is the same as
the Schmidt rank of the coefficient matrix Ψij. Moreover, the Schmidt coefficients
{λa} are nothing but the singular values of Ψij. The Schmidt coefficients {λa} is
used as a measure of how entanglement one part of the system is with another. One
such measure, the von Neumann entropy is defined as:

EntropyA|B(|ψ〉) = −
r∑

a=1
|λa|2 log2(|λa|2).

Main insights derived from the above discussion are:

1. The maximum possible Schmidt rank for a bipartite quantum state is the
minimum of the dimensions of the two partitions. That is, r = min(NA, NB).
This point will be of significance when we are talking about bond-dimensions
below in subsection 2.6.2.

2. If Schmidt rank r = 1, we only have a product state with no entanglement.
Having r > 1 is a necessary and sufficient condition for having an entangled
state.

3. To obtain a less entangled state |ψ′〉 which is the closest approximation to
state |ψ〉, one only need to reduce the Schmidt rank of |ψ〉 from r to r′ by
setting the smallest r − r′ Schmidt weights, λr′+1, . . . λr, to 0.

2.6 Matrix Product States
Intuitively, we know that a product state of n qubits, only require at max 2n pa-
rameters to define it. However, when representing states as vectors, we would still
require to have a 2n × 1 vector to define any quantum state, irrespective of its na-
ture of entanglement. Intuitively, we can see that this is an overkill. Matrix product
states, among other things, are a way of mathematically capturing that intuition.

A matrix product state, or MPS for short, is a linearized representation of a many-
body quantum state. Although any quantum state can be represented exactly as

10

2. Tensor Networks

an MPS, the number of parameters required to express fully entangled systems
grows exponentially with system size. (This will be proved below.) However, there
exist analytical proofs that the ground states of one-dimensional quantum systems
with gapped Hamiltonians (Hamiltonians with a finite energy difference between the
ground state and first excited state) having only local interactions, can be efficiently
represented as an MPS [28]. In this section, we briefly go over its derivation and de-
scribe how an MPS representation can give insights into the nature of entanglement
in quantum systems.

2.6.1 MPS Derivation

Any quantum state |ψ〉 composed of n qubits can be expanded using a basis which
is the tensor product of the individual local site bases {|σi〉}. That is,

|ψ〉 =
∑

σ1,σ2,...σn

Cσ1,σ2,σ3,...σn × |σ1〉 ⊗ |σ2〉 ⊗ |σ3〉 ⊗ · · · ⊗ |σn〉.

Since we are dealing with qubits here, each local space {|σi〉} is of dimension 2
(simply replace 2 by d when dealing with qudits with d levels). Hence, the full
coefficient vector has an exponentially growing length of 2n components. We can
reshape this 2n× 1 coefficient vector into a 2× 2n−1 matrix and call it Ψ such that:

Ψ(σ1),(σ2,σ3,...σn) = Cσ1,σ2,σ3,...σn .

Next, we perform an SVD on this 2×2n−1 matrix Ψ and absorb the singular matrix
S into V † to obtain Ca1,(σ2,σ3,...σn).

Cσ1,...σn = Ψ(σ1),(σ2,σ3,...σn)

=
r1∑
a1

Uσ1,a1 ·
(
Sa1,a1 · V

†
a1,(σ2,σ3,...σn)

)

=
r1∑
a1

Uσ1,a1 ·
(
Ca1,(σ2,σ3,...σn)

)
.

(2.6)

Here r1 is the Schmidt rank of the bipartition of (H2)⊗n into (H2)⊗(H2)⊗(n−1). Now
we proceed exactly the same way by reshaping Ca1,(σ2,σ3,...σn) into an (r1 · 2)× (2n−2)
matrix Ψ(a1,σ2),(σ3,σ4,...σn), and perform an SVD on that. After that, we absorb the
Singular matrix S into V † again, and repeat this process till the last node. That is,

11

2. Tensor Networks

Cσ1,...σn =
r1∑
a1

Uσ1,a1 ·
(
Ca1,(σ2,σ3,...σn)

)

=
r1∑
a1

r2∑
a2

Uσ1,a1 · Ua1,σ2,a2 ·
(
Sa2,a2 · V

†
a2,(σ3,σ4,...σn)

)

=
r1∑
a1

r2∑
a2

Uσ1,a1 · Ua1,σ2,a2 ·
(
Ca2,(σ3,σ4,...σn)

)
...

=
r1∑
a1

r2∑
a2

· · ·
rn−1∑
an−1

Uσ1,a1 · Ua1,σ2,a2 . . . Uan−2,σn−1,an−1 ·
(
Can−1,(σn)

)
.

(2.7)

Finally, we see that the tensors U are all rank 3 tensors (after assigning dummy
indices of dimension 1 to the first and last tensors), where the indices σi are called
physical indices, as they point to the respective local Hilbert spaces. The indices ak
are referred to as virtual indices, as they exist only within the MPS representation.
To further clarify this distinction, we reshape Uai−1,σi,ai

into a set of 2 ai−1 × ai
matrices indexed by σi, such that Uai−1,σi,ai

= Mσi
ai−1,ai

. Finally putting everything
together,

Cσ1,...σn =
∑

a1,a2,...an−1

Mσ1
1,a1 ·M

σ2
a1,a2 ·M

σ3
a2,a3 . . .M

σn
an−1,1

= Mσ1 ·Mσ2 ·Mσ3 . . .Mσn ,

(2.8)

which gives,

|ψ〉 =
∑

σ1,σ2,...σn

Mσ1 ·Mσ2 . . .Mσn × |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σn〉. (2.9)

Equation 2.8 is also from where Matrix Product States get their name, as each
state coefficient Cσ1,...σn is expressed as a product of matrices Mσi

ai−1,ai
in an MPS.

While the mathematical derivations provided above are cumbersome, they provide
exact insights onto the inner workings of matrix product states. However, the same
derivation can also be expressed pictorially, using the tensor network notations in-
troduces above. Recall that an n-qubit quantum register is a rank n tensor and
represented as shown in Figure 2.1a. Thus, the operations depicted in Equation 2.6
and Equation 2.7 are represented using Tensor Network notations in Figure 2.5.
Here, however, unlike in the derivation, we have not absorbed the singular matrices
S into the V † as was done in the mathematical derivations. They have been left
as is, in the form of red diamonds, in the figure. This is because although in the
above discussions, and in Figure 2.5, we have started performing the SVD operation
from the left, we could have just as correctly started these operations from the right,

12

2. Tensor Networks

by absorbing the singular matrices S into U . In the former case, we are left with
what is called left-canonicalised MPS, while the latter leaves us with right-canonical
MPS. The choice between left and right canonicalization is arbitrary and related to
gauge-freedoms.

Figure 2.5: Conversion of a rank n Tensor into an n-register MPS.

2.6.2 Bond Dimension and Entanglement
Till now, it may not seem like we have done much to our original quantum state other
than some heavy mathematical operations. However, putting together the above
three discussions, section 2.4 on SVD, section 2.5 on the Schmidt decomposition,
and subsection 2.6.1 on MPS derivation, we can now get a much clearer picture.

Firstly, note that in Equation 2.6, r1 is the Schmidt rank of the bipartition of (H2)⊗n
into (H2) ⊗ (H2)⊗(n−1). Hence, from section 2.5, we know that r1 ≤ min(NA, NB),
where partition A = H2 and partition B = (H2)⊗(n−1). This makes NA = 2 and
NB = 2n−1, making r1 ≤ 2. Choosing r1 = 2 would mean using all available degrees
of freedom from the Hilbert space of partition A. Proceeding onward with SVD
along the chain, we can see that r2 ≤ 2r1, r3 ≤ 2r2r1 and so on, until one reaches
the middle of the chain. The Schmidt rank increases till the middle because till
then, when starting from the left, NA < NB. Furthermore, note that the Schmidt
rank ri is also the number of retained Singular values from the Singular matrix Si

13

2. Tensor Networks

appearing on creating a partition between physical indices σi and σi+1. Recalling
from section 2.5, this is of particular physical relevance because the retained singular
values dictate the amount of retained entanglement within the bipartition.

This Schmidt rank ri is also known as the Bond-Dimension di between the tensors
representing qubits i and i+1. The term bond-dimension would be used throughout
the rest of this thesis and is one of the most important ideas raised in this chapter.
Bond-dimensions are so named because the virtual index connecting the tensors of
the two qubits i and i+ 1 is also known as a bond in tensor network notation. Fur-
thermore, the bond-dimensions connecting two bipartitions also tell us the number
of correlated degrees of freedom within them. How well a matrix product state can
represent a given quantum state also depends a lot on the nature of these bond-
dimensions. For instance, continuing from the above discussion on the growth of
Schmidt ranks ri (or equally the growth of bond-dimension di), we see that in a case
where we do not make any approximations, di grows exponentially along the chain.
That is, d1 = 2, d2 = d1× 2 = 22, d3 = d2× 2 = 23 etc. This goes on till one reaches
the middle of the chain. Here, depending on if the chain has an odd or even number
of qubits, we see different behaviour. That is,

1. If we have an even-numbered qubit register where n = 2m for some m ∈ N,
then the largest possible Schmidt rank is obtained through an equal partition
of the full Hilbert space (H2)⊗2m into (H2)⊗m ⊗ (H2)⊗m. In such a case, the
maximum possible bond dimension is held by bond dm which is the bond
connecting the two partitions of equal size m, and dm = 2m which is also to
say, dm = 2n/2. Also note that there is only one bond dm that holds this
highest value, as there is only one such possible partition.

2. Now on the other hand if we had an odd number of qubits in our register such
that n = 2m + 1 for some m ∈ N, then we no longer have a single bond with
the highest possible bond-dimension. This is because in this scenario, there
exists a central tensor, and partitions on both the left and right of that node
provide the highest bond-dimensions. Here too the maximum bond-dimension
is equal to 2m. However, there are now two bonds who have this dimension,
dm and dm+1.

The significance of this above discussion on odd and even qubit registers will become
clear in chapter 9, section 9.5, when describing some results for odd numbered qubit
registers. In both case of odd and even n, we see that the maximum bond-dimension
is the same, and proportional to 2m, where m is as defined above. The mathematical
operation that allows one to extract m from n is to take the floor value of n/2. The
floor of a number n, denoted by bnc is the largest integer below that number. For
instance, b1.89c = 1. Thus, for both odd and even cases, m = bn/2c. Thus the
highest possible bond-dimension of an n qubit MPS register is given by,

Dhighest = 2bn/2c. (2.10)

14

2. Tensor Networks

Here it is very important to notice that exact representations of highly entangled
n-body quantum states need at-least one of the bonds to have this highest dimension
of 2bn/2c. In that case, using matrix product states are inefficient, and in fact, more
expensive than normal vector representation which only uses one 2n × 1 vector.
This is because the highest sized tensor itself need 2×

(
2bn/2c × 2bn/2c

)
parameters

in addition to the other tensors.

However, the bond-dimension di is the number of Schmidt coefficients obtained
from a bipartition between qubit i and i+1, and it is these Schmidt coefficients that
characterise the amount of entanglement between the two partitions. Hence, using
insights derived from section 2.5, one of the most straightforward ways to approx-
imate a given quantum state |ψ〉 is by limiting the number of Schmidt coefficients
that exist in any bi-partition pairs in that state. Matrix product states provide an
extremely straightforward way to do this, as in an MPS, one could easily do this by
setting upper bound Dmax on all the bond-dimensions. Moreover, matrix product
states are ideal ansatz candidates to represent quantum states where we know that
the entanglement, and hence the bond-dimension, does not scale exponentially with
system size. Ground states for local and gapped Hamiltonians, of 1D-systems espe-
cially, fall under this category. There even exist analytical proofs which show the
efficacy of MPS in these scenarios [28].

Currently, there exist no analytical proofs on how good a matrix product state ansatz
is in capturing the essence of all to all connected systems, such as QAOA circuits
described in chapter 3. This is the primary question we are trying to answer with
this thesis, and our findings described in chapter 8 and chapter 9 show promising
prospects on the applicability of MPS in these scenarios too.

2.6.3 Product States
In this section, we talk about the extreme case obtained when the maximum bond-
dimension Dmax within the full matrix product state register is set to 1. Do note
that, although 2bn/2c is the highest possible bond-dimension in an n-qubit matrix
product register, it does not mean that all one needs such high bond-dimensions to
describe all quantum states. For instance, a pure quantum state that is already a
product state can be represented exactly by using an MPS with Dmax = 1. This is
because product states are composed of un-correlated individual systems and hence
have all bipartitions Schmidt rank = 1. Also, the ith tensor within the matrix
product state has a dimension of di−1 × 2× di. Since i product states all di = 1, all
the tensors within a product states are 1 × 2 × 1 tensors, requiring only a total of
2n parameters. This proves the intuition that was introduced at the beginning of
this section.

Here, it is also worth noting that bonds with a dimension of 1 are considered as
trivial bonds because they represent a tensor product between two un-correlated
parts of the system. It is also in this regard that dummy indices of dimension 1 were

15

2. Tensor Networks

introduced to the matrices Mσ1
1,a1 and Mσn

an−1,1 in Equation 2.8. Finally, Figure 2.6
shows the pictorial depiction of a matrix product state where σi denotes the ith
physical index, and di, the ith bond-dimension. The trivially introduced bond of
dimension 1 is shown in red. However, do note that it is only here in our system
where this bond is only introduced for consistency reasons. Matrix product states
used to represent periodic systems have a bond-dimension > 1, for this bond.

Figure 2.6: Final representation of a matrix product state. Trivial bond
introduced for consistency shown in red.

2.7 Matrix Product Operators
Figure 2.1b presents a rank 2n tensor that is an n-qubit gate. It takes a rank n tensor
as input, by which we mean that it performs contractions over the corresponding
edges, and gives another rank n tensor as output. One can perform exactly the same
set of operations that were performed onto a rank n tensor (Figure 2.1a) to convert
it into an n register matrix product state (Figure 2.6), also onto this rank 2n gate
to obtain an n-qubit matrix product operator, or MPO for short. The benefit of
using an MPO is that it preserves the structure of an MPS even after gate operation.
That is, an MPO takes an MPS as input, and provides another MPS as output.

Figure 2.7: Conversion of a rank 2n gate into an n-qubit MPO

16

2. Tensor Networks

Figure 2.7 depicts the formation of an n-qubit MPO through multiple SVD oper-
ations performed on the original rank 2n tensor. Here too, the bond-dimension di
gives insights into the entangling power of the gate. If di = 1, then that particular
gate will create no added entanglement between qubits i and i+1. Note that in this
thesis, we have only employed single-qubit gates and nearest neighbour two-qubit
gates. See chapter 5, section 5.2 for further details on the gates used.

2.8 Quantum Circuits as Tensor Networks
With this, we have all the required tools to represent Quantum circuits as tensor
networks. We use matrix product states to represent our quantum register, and
since we are only employing nearest neighbour gates in this thesis, we have not
resorted to using MPOs. Operating a gate onto a particular set of qubits would be
performed through a contraction between the physical indices of those qubits, and
the corresponding input indices of that gate.

Figure 2.8: An example of Tensor Network implementation of single and two
qubit gates on a 4 qubit matrix product state. a: single-qubit operations. part b:
two-qubit operation. Tensor contractions are performed on indices encapsulated by
red-dashed lines.

In Figure 2.8, part a: depicts the action of 4 single-qubit gates, (shown in blue),
acting on all the qubits in a 4 qubit MPS register. section 2.8 also presents a full
tensor network diagram of the QAOA algorithm, for circuit depth p = 1, without
representing any of the contraction and truncation operations. Do note that single-
qubit gates are incapable of changing the amount of entanglement in the quantum
state, and hence do not alter the bond-dimension of the MPS.

Next, part b: shows the action of a two-qubit gate on qubits 2 and 3. In this thesis,
since we are using only nearest neighbour gates, (non-local gates are implemented

17

2. Tensor Networks

via SWAP networks as described in subsubsection 5.2.2.2) we do not represent the
gates as MPOs. All the bond-indices within the red-dashed lines are contracted
to obtain a combined rank 4 tensor shown in magenta. Next, we perform an SVD
along the dotted lines to return the register back to being a matrix product state.
Note that two-qubit gates have the capability of creating entanglement, and hence,
change the bond-dimension across the bonds they act on. If left unchecked, this
could lead to an exponential rise in the bond-dimension, and hence, we can set a
cap on the bond-dimensions by setting a limit Dmax and keeping only the largest
Dmax singular values after performing each SVD. This is explained more in detail in
chapter 5, section 5.3.

2.9 Reduced Density Matrix Calculations

Figure 2.9: Generalised Tensor Network representation of Calculating the Reduced
Density Matrix of qubits from k to l including k and l. a: The Tensor Network
Diagram. b: All contractable edges contracted to give a rank 2(l − k + 1) tensor
with each index of dimension 2. c: All dangling edges compressed to give the
2(l−k+1) × 2(l−k+1) density matrix ρk···l.

We end this chapter by providing a way to calculate the reduced density matrix ρk···l
of qubits from and including k to l from an n qubit matrix product state register in
Figure 2.9. Reduced density matrix calculations are imperative in this thesis, as the
QIOA method described in this thesis depend heavily on calculating them. Kindly
turn to chapter 7 for more details on this. Further tensor network operations will be
introduced in the following chapters upon requirement. For instance, expectation
value calculations will be discussed in chapter 5, Figure 5.5.

18

3
QAOA

The Quantum Approximate Optimization algorithm, more commonly referred to as
QAOA, is a hybrid quantum-classical algorithm proposed by Farhi et al. in late
2014 [2]. Although for a short while, QAOA was the best performing algorithm
that solved constraint satisfaction problems [11], by showing that QAOA can beat
random guessing [29], this was soon outperformed by a new classical algorithm
proposed by Barak et al. [30]. Next, in 2016, Farhi et al. proved that it is classically
impossible to sample from the output of a QAOA circuit even for the smallest circuit
depth unless the polynomial hierarchy collapses, and P = NP [31]. This point will
be discussed more in detail towards the end of this chapter, as we want to establish
that although QIOA is a classical algorithm based on QAOA, it is not performing
exact classical sampling of QAOA circuit outputs. Hence, our results do not violate
any of the already existing literature. Furthermore, the quantum supremacy result
by Farhi et al. could easily be intuitively understood using the tensor network
framework that was explained in the previous chapter (chapter 2). Before revisiting
these points, it could be instructive to briefly go over the original QAOA method
through the next section. Also, please note that after the introduction of the original
QAOA by Farhi et al., many other flavours of QAOA were introduced, such as Tree-
QAOA [32], re-interpreted QAOA [33], Grover-QAOA [34] and many more, all of
which are still quantum-classical hybrid algorithms based upon the original. In this
light, the consensus is to call the original flavour of QAOA as vanilla-QAOA, which
we too follow.

3.1 Quantum Adiabatic Algorithm
QAOA is a heuristic algorithm that has undoubtedly drawn considerable attention
to the field of quantum-classical hybrid algorithms, especially because of the poten-
tial of these algorithms to be NISQ [1] accessible. The main idea behind QAOA
was however inspired from a preexisting quantum algorithm called the Quantum
Adiabatic Algorithm (QAA), also proposed by Farhi et al. [35]. Hence, before
going over the original QAOA method, it could be beneficial to review the QAA
algorithm. The QAA makes use of the adiabatic theorem in quantum mechanics.
This theorem states that a quantum system which is initially in the ground state
of a starting Hamiltonian, will remain in the lowest possible energy state even if
the system Hamiltonian varies to another, given that the time T over which this
variation happens is slow enough. In the infinite limit, when T −→ ∞, the system
always exactly remains in the ground the state. That is, if we have a time varying

19

3. QAOA

Hamiltonian,

HQAA(t) = HC

(
t

T

)
+HB

(
1− t

T

)
.

Here, HB is the Hamiltonian at time t = 0, whose ground state is easy to prepare
and hence is the state used to initialise the system with. HC is the final Hamiltonian
which encodes the problem we would like to solve and whose ground state is what
we are interested in finding. However, an issue here is that this method calls for
large evolution time T to work in practice, which would correspondingly require long
coherence times for the quantum computers. Hence it is not NISQ accessible.

3.2 QAOA Method
QAOA was proposed as a solution to this problem of needing qubits with long
coherence times. It is essentially a trotterised version of QAA. From the Schrödinger
equation, we know that the time evolution of a Hamiltonian Ĥ(t) is given by the
operator e−iĤ(t). Also, the “Suzuki-Trotter expansion” states that

eA1+A2+...Ap = lim
n→∞

(
e

A1
n · e

A2
n · e

A3
n · · · · · e

Ap
n

)n
(3.1)

On applying Equation 3.1 to the time evolution of the QAA Hamiltonian, we obtain,

e−iĤQAA(t) = e−i(ĤC(t
T)+ĤB(1− t

T))

= lim
p→∞

e−iĤC(t
T)

p · e
−iĤB(1− t

T)
p

p (3.2)

The genius of Farhi et al. was in replacing the factor 1
p
occurring in both the

exponents of e
−iĤC(t

T)
p and e

−iĤB(1− t
T)

p with two mutually independent sets of pa-
rameters {γi} and {βi} respectively, where i stands for the ith repetition of thee−iĤC(t

T)
p · e

−iĤB(1− t
T)

p

 block. This is also the step that makes QAOA a heuristic

algorithm, unlike QAA, as there are no standardised proofs yet on how well QAOA
works. With this step, they replaced the original QAA evolution with this modified
evolution unitary UQAOA for a finite p such that,

UQAOA =
(
e−i·HC ·γ1 × e−i·HB ·β1

)
×
(
e−i·HC ·γ2 × e−i·HB ·β2

)
,

×
(
e−i·HC ·γ3 × e−i·HB ·β3

)
× · · · ×

(
e−i·HC ·γp × e−i·HB ·βp

)
.

(3.3)

Furthermore, in the infinite limit, when p → ∞, both QAA evolution, and QAOA
evolution converge. We now divide each block into two commuting unitaries UC(γ)
and UB(β) such that,

20

3. QAOA

UC(γi) = e−i·HC ·γi

UB(βi) = e−i·HB ·βi .
(3.4)

Please turn to chapter 5, section 5.2 for more details on UC(γi) and UB(βi). Substi-
tuting Equation 3.4 into Equation 3.3, we get,

UQAOA = [UB(βp) · UC(γp)]×· · ·×[UB(β2) · UC(γ2)]×[UB(β1) · UC(γ1)] . (3.5)

The order is reversed when represented as a Unitary, because [UB(β1) · UC(γ1)]
gets applied first. Now, the full QAOA evolution unitary UQAOA presented in Equa-
tion 3.3 is applied onto the n-qubit uniform superposition state |+〉⊗n, where,

|+〉⊗n = 1√
2n

 ∑
z∈{0,1}n

|z〉

 ,
to obtain a parametrized state |γ, β〉. Here, γ = {γ1, γ2, . . . , γp} and β stands for
{β1, β2, . . . , βp}. Finally,

|γ, β〉 = [UB(βp) · UC(γp)]× · · · × [UB(β1) · UC(γ1)] · |+〉⊗n. (3.6)

The number of [UB(βi) · UC(γi)] blocks applied is defined as the circuit depth p.
Now, the energy expectation value of this |γ, β〉 with respect to the cost Hamiltonian
HC , is defined as the cost function C(γ, β,HC). That is,

C(γ, β,HC) = 〈 β, γ | HC | γ, β 〉. (3.7)
Next, we use the parameters γopt, βopt, corresponding to the global minima of the
cost function C(γ, β,HC), to create a |γopt, βopt〉 state. The idea is that after having
enough circuit depth p, the population of the solution state |gs〉 we are interested
in, increases in the full |γopt, βopt〉 state, and hence can be obtained by sampling this
final state repeatedly.

Throughout this discussion and in this thesis, we have not focused much on how the
problem instances have been mapped onto the cost Hamiltonian HC . The key point
to note here is that we map the optimisation problems we are interested in solving
onto the Ising Hamiltonian described below,

HC =
n∑
i=1

hiσ̂
z
i +

n∑ n∑
j<i

Jijσ̂
z
i σ̂

z
j , (3.8)

where σ̂zi is the Pauli Z operator. This is made possible because of the work of
Lucas et al. [36] which describes ways to map NP hard problems onto this Ising
Hamiltonian. For more discussions on the nature of the Hamiltonian, and gates used,
please turn to chapter 5, section 5.2. We also discuss how the different instances
used in this were generated, in chapter 4.

21

3. QAOA

level p = 1 level p = p

. . .

. . .

...
. . .

|0〉⊗n

H

e−iγ1ĤC

Rx(2β1)

e−iγpĤC

Rx(2β1)

Optimize
〈~γ, ~β|Ĉ|~γ, ~β〉

H Rx(2β1) Rx(2βp)

H Rx(2β1) Rx(2βp)

Update variational parameters (~γ, ~β)

Figure 3.1: Full Schematic of QAOA with circuit depth p. Rx(2βi) here stems
from a decomposed UB(βi) (see subsection 5.2.1).

3.3 QAOA and Tensor Networks
From Equation 3.8, we can see that the term representing two-body interactions, Jij,
is not restricted to nearest neighbour entities, and assumes an all to all connectivity
among the qubits. Such an architecture can be implemented on a linear chain
of qubit register, such as a matrix product state using SWAP gates, and this is
explained in great detail in subsubsection 5.2.2.2. Hence, in this section, we focus
on the implications of this all to all connectivity, from a tensor network perspective.

As already stated in the introductory paragraph of this chapter there exists proofs
on how difficult it is to classically sample from the output of a QAOA circuit, that
is from a |γ, β〉 state even for the smallest circuit depth p = 1. From the discus-
sions on matrix product states and bond-dimensions, in chapter 2, subsection 2.6.2,
and section 2.8, we already know that the highest possible bond-dimension grows
exponentially with system size n (Equation 2.10), as a result of un-approximated
applications of all to all coupled entangling gates. This means that for exactly repre-
senting such highly-entangled states, one would require an exponentially increasing
number of parameters, which quickly makes it impossible for classical hardware to
keep up. Thus, the supremacy result of QAOA [31] could be understood straight-
forwardly from a tensor network perspective.

However, in QIOA, to keep the parametrised quantum states |γ, β〉 classically man-
ageable, we introduce approximations by introducing a maximum limit of Dmax on
the bond dimensions throughout the evolution, by only keeping the largest Dmax
singular values. The rest of the Schmidt coefficients are discarded. This is a highly
non-unitary and irreversible operation, after which one foregoes all hopes of exactly
sampling from the original full |γ, β〉 state. All we are doing with QIOA is extract-
ing the basis state |s〉 that holds the highest weight in a truncated QAOA state
|γ, β〉Dmax . We then compare to see if this state |s〉 is indeed the ground state |gs〉
of the problem we are interested in solving. However, this implementation gives
no assurances on exactly representing what this population is in the original |γ, β〉
state, and hence does not violate the supremacy result from Farhi et al.

22

Part II

Methods

23

4
Instance Generation

From chapter 3, we know that the type of problems QAOA tries to handle are opti-
mization problems that are hard for today’s classical hardware even using the best
classical algorithms. The field of computer science groups different problems into
complexity classes based on how hard they are to tackle. Problems that are easy for
classical computers to solve are all grouped under the class polynomial time, also
called P, as the time it takes to solve this problem only scales polynomially with
the problem size. Those problems that are expected to be beyond the capabilities
of classical hardware now and in the future, are grouped under class NP, or non-
deterministic polynomial time algorithms. Although it is still an open question if
P is the same as NP, that is, if the problems in NP are hard only because we are
yet to come up with an efficient algorithm to solve that problem, the most popular
opinion is that these classes are different. More details on complexity classes and
their properties can be found at this great textbook on the topic by Dr Boaz Barak
and Dr Sanjeev Arora [11].

Furthermore, in complexity theory, decision problems are those problems that can be
expressed as a "yes" or "no" question based on the inputs provided. For example, the
question if a natural number provided as input is prime or not is a decision problem.
Another class of problems that are closely related to decision problems, and are quite
relevant in the field are optimization problems. Unlike decision problems where the
output answer is a binary yes or no, these problems are committed to finding the best
possible solution to a given problem. The fabled travelling salesperson problem [11]
is an optimization problem example: given a set of cities, and their pairwise inter-
city distances, what is the shortest routes covering all cities avoiding any repetition.
In this thesis, we look at two different types of optimization problems, namely the
Exact-Cover problem, and the Max-Cut problem.

4.1 Exact Cover

Mathematically, a cover of a given setX is a collection of sets S whose union contains
X as a subset. An Exact Cover is a variation of a cover, where the elements of the
total collection S are subsets of X, and there exists a sub-collection S† of S such
that there are no common elements among the members of S†, and the union of
elements in S† covers the full set X. The Exact Cover decision problem is one which
queries given the set X and the collection of subsets of X, ≡ S, if there exists an

25

4. Instance Generation

exact cover for X. For instance, given the set X = {2, 3, 5, 6}, and the collection
S = {A,B,C,D} such that A = {}, B = {2, 5}, C = {3, 5} and D = {3, 6}. The
sub-collection S†1 = {B,D} is an exact cover of X because they have no elements in
common, and their union covers the entire set X. Sub-collection S†2 = {A,B,D} is
also an exact cover of X as adding the null set A, does not change the above picture.
However, the sub-collection S†3 = {B,C} is not an exact cover as the sets B and C
have a non-null intersection of {5}. Furthermore, elements of S†3 also does not span
the full set X. The optimization version of the exact cover problem is where given
the set X and the collection S, one has to find the smallest sub-collection S† that
exactly covers X.

When we started working on this thesis, colleagues at the Applied Quantum Physics
lab were already working on using QAOA to help solve the airline routing problem for
Jeppesen [37], an airline route optimization company involved in route optimization.
They are interested in solving the tail assignment problem [38] where the markers on
the tail of each aeroplane, and hence that aeroplane is assigned to multiple routes.
This was done by mapping the tail assignment problem onto exact cover instances.
To make this problem accessible for today’s NISQ era [1], they had taken real-world
problems and truncated them to fit small enough quantum computers of sizes 8, 15,
and 25 qubits. While details on how they performed this mapping can be found here
[39], for the purpose of this thesis, we treat Jeppesen as a black box providing real-
world optimization problems already mapped onto Ising Spin Glass Hamiltonians.

4.2 Max-Cut
While tackling real-world problems using QIOA, the main algorithm proposed by
this thesis, is exciting and relevant as is, to compare between QIOA and QAOA we
wanted to also look at QIOA’s performance on more standardised problems such as
the Max-Cut instances. We choose Max Cut for this because works on benchmarking
QAOA using max cut [40] and studies on the performance of QAOA on max cut
[41] already exists in the literature. In this thesis, we explore using QIOA to solve
randomly generated Erdős–Rényi graphs [42]. With the next two subsections, we
shall go over the Max-Cut problem definition, and the family of Erdős–Rényi graphs.

4.2.1 Max-Cut Definition
In the field of graph theory, a cut is any partition of the full set of vertices of a graph
into two subsets which fully covers the set of vertices, that is, have no elements in
common, and fully spans the original set. A maximum cut of any graph is then
any cut of that graph where each of the partition is at least the size of all other
cuts in the partition. Simply put, this means partitioning the full set of vertices V ,
into two complementary subsets S and T such that the number of edges between
the two sub-sets is as large as possible. The problem of finding the maximum cut
of a given graph is hence rightly named, the Max-Cut problem. A more general
version of this problem, where each edge is associated with a weight, is known as

26

4. Instance Generation

Figure 4.1: Example of a maximum cut (the dashed elliptic line) on a graph
with 6 nodes and 7 edges. The split edges are highlighted in blue.

the weighted max-cut problem. Here, the objective is to maximise the weight of the
edges between the two bipartitions. In this thesis, however, we are only concerning
ourselves with the regular max-cut problem where all edge weights = 1.

Figure 4.1 depicts a max-cut instance solved pictorially. While creating a bipartition
of a graph S and T , each of the nodes in the graph can be assigned to either S or
T . Hence, we can map any partition of the graph of n nodes onto an n bit string
accounting for each of the 2n−1 bipartitions, by assigning either ′0′ or ′1′ for a node
in set S and the complementary bit for a node in set T . However, the total number
of partitions = 2n−1 and not 2n because of the bit symmetry in the system as any
bit-string and its bit-flipped version points to the same partition. The maximum
cut, which is also a partition is hence a member of the total 2n−1 possible partitions.
Here, it is interesting and important to re-iterate that the assignment of ′0′ or ′1′ to
either of the sets is completely arbitrary, and should not affect if a cut is maximum
or not. Hence, any bit-string s and its bit-flipped string s−1, both point to the
same partition. Now while mapping the max-cut problem onto a Hamiltonian, if
we encode how good a cut is, by assigning it an energy, then all states, including
the ground state will not only be doubly degenerate but also entangled. Degenerate
because both s and s−1 point to the same partition, and entangled because any
superposition state s+ s−1 is a maximally entangled state.

4.2.2 Erdős - Rényi Graphs
Erdős–Rényi graphs are one of the most popular class of random graphs where there
exists a fixed probability for the existence or non-existence of an edge between any
two nodes in the graph. In this thesis, we have been dealing with the G(n, p) model

27

4. Instance Generation

of Erdős–Rényi graphs [42] where n stands for the number of nodes and p is the
fixed probability on if an edge exists or not. For our work, we have chosen p = 0.5,
where it is equally likely for an edge to either exist or not exist.

Mathematically, one of the most straightforward ways of representing a graph is
using an Adjacency Matrix [43]. The adjacency matrix A of a graph G with n
nodes, is an n × n matrix where each element aij of the ith row and jth column of
A represents the weight of the edge between nodes i and j. If aij = 0, then there
is no edge between the nodes i and j. In this framework, it is easy to see that all
the diagonal elements aii = 0, because an edge needs at least two nodes to exist.
Furthermore, since we are interested in non-weighted graphs, all non-zero elements
aij = 1. So one easy way to create random Erdős–Rényi graphs is to create random
adjacency matrices. For this, we first create a random matrix R where each element
rij is a uniformly sampled value between 0 and 1. Next, when p is the probability
of an edge existing or not, we set all elements rij < p to 0, and all elements rij ≥ p
to 1. Also, since we have a non-directed graph where it does not matter if node i is
connected to node j or vice versa, the adjacency matrix needs to be symmetric, that
is, aij = aji. Hence, we only choose the upper triangular part of our random matrix
R and set the lower half to zero. Finally, we set all diagonal elements also to zero,
and we have a randomly generated Erdős-Rényi Graph. Figure 4.2 is an example of
an Erdős–Rényi graph with 10 nodes created using the method described here.

Figure 4.2: An example of an Erdős–Rényi graph with 10 nodes

28

4. Instance Generation

4.3 Nomenclature
Before moving onto describing the state-preparation, training of QAOA/QIOA and
the actual QIOA algorithm methods, it may be beneficial to briefly go over the
nomenclature used to refer to problem instances in this thesis. We started our work
by modelling the original QAOA algorithm using Tensor Networks to try and solve
the Exact Cover problem described above. For this purpose, we looked at ten 8-qubit
instances, 9 15-qubit instances, ten 25 qubit instances and one 50-qubit instance.
Furthermore, we also looked at ten each of 8, 9, 10, 11, and 12-qubit instances of the
max cut problems on randomly generated Erdős–Rényi graphs. In the remainder of
this text, we will be referring to these instances using the code name QnPi where
Qn stands for n number of qubits, ′P ′ is to signify that these instances are obtained
from Jeppesen, and i, refers to the index ranging from 0 to 9. Similarly, instances
of the max cut problems will be referred to as QnRi where ′R′ is used to point
that these are randomly generated instances, and rest remains the same. Hence, for
example, Q10R3, which is, in fact, the instance shown in Figure 4.2, is the 10−qubit
max cut instance number 3, whereas Q15P8 is the 15−qubit exact cover instance
number 8 obtained from Jeppesen.

29

4. Instance Generation

30

5
State Preparation

This chapter talks about the methodology implemented in preparing a parametrized
state |γ, β〉. We first describe the creation of the initial state as an MPS, describe
the single and two-qubit gates used as MPOs, and finally put them all together to
implement the QAOA algorithm.

5.1 Initialization
We start off with the n qubit register all in the uniform superposition state, where all
the 2n basis states of an n qubit Hilbert space is in a uniform superposition each with
weight equal to 1/2n. This state is also called the plus state and it is an eigenvector
of mixer Hamiltonian UB used in QAOA. The Plus state is also a product state
with no entanglement as it is just a single tensor product state. While there exist
multiple implementations of modified QAOA where different mixers and starting
points are considered [33], we do not consider them in this study. As described in
chapter 2, a product state with no entanglement are trivially connected by bonds of
dimension of 1 throughout, and all the n qubit tensors are of dimension 1 × 2 × 1.
Figure 5.1 below represents schematically what the MPS looks like.

Figure 5.1: n Qubit MPS register in the uniform superposition state

5.2 Gates Used
This section introduces the different single and two-qubit parametrized and non-
parametrized gates that are used for simulating QAOA. As described in chapter 2,
the different gates are treated as Matrix Product Operators in the Tensor Network
framework.

31

5. State Preparation

5.2.1 Single Qubit Gates
This section describes all the single-qubit gates used in the circuit simulation.

5.2.1.1 Rx Gates

Again, in this implementation of QAOA, we use a mixer Hamiltonian which is just
the single-qubit Pauli X gate (σ̂x) applied to all the n qubits. Hence, as detailed
in chapter 3,

HB =
n∑
i=1

σ̂xi (5.1)

UB(β) = e−iβHB

= e−iβ
∑n

i=1 σ̂
x
i

=
n∏
i=1

e−iβσ̂
x
i .

(5.2)

The unitary e−iβσ̂x
i is the single-qubit rotation (Rx(2β)) applied to qubit i around

the X-axis by an angle 2β. Hence,

UB(β) = (Rx(2β))⊗n. (5.3)

In the Tensor Network notation, Rx(2β) is a rank 2 tensor with two indices, one for
input and one for output of dimensions 2 each

Rx(2β) =
[

cos(β) −i sin(β)
−i sin(β) cos(β)

]
≡ .Rx(2β) (5.4)

5.2.1.2 Rz Gates

Since the aim of this thesis is to solve optimisation problems, the Cost Hamiltonians
we use is the Ising Spin Glass model. As a reminder, this is because finding the
ground state of a general Ising Spin Glass is an NP-hard problem, and all problems
within the class NP-hard is reducible to all other problem with only a polynomial
overhead. What this means that if we knew the solution to a problem A that
we know is in the class NP-hard, then we would be able to find the solution of
another problem B in the same class by using the algorithm to solve A as a sub-
routine. Further, reference [36] gives detailed information on how to find the Ising
formulations of many Np-hard problems. Thus the cost function has the form as
given by Equation 5.5,

HC =
n∑
i=1

hiσ̂
z
i +

n∑ n∑
i=1 i 6=j j=1

Jijσ̂
z
i σ̂

z
j . (5.5)

32

5. State Preparation

UC(γ) = e−iγHC

= e−iγ
∑n

i=1 hiσ̂
z
i +

∑n∑n

i6=j
Jij σ̂

z
i σ̂

z
j

= e−iγ
∑n

i=1 hiσ̂
z
i × e−iγ

∑n∑n

i6=j
Jij σ̂

z
i σ̂

z
j

=
n∏
i=1

e−iγhiσ̂
z
i ×

n∏
i 6=j

e−iγJij σ̂
z
i σ̂

z
j

=
n∏
i=1

U i
C1(γ, hi) ×

n∏
i 6=j

U ij
C2(γ, Jij)

= UC1(γ) × UC2(γ)

(5.6)

Hence we see that the unitary UC(γ) (defined in Equation 3.3) is composed of two
separate unitary operations UC1(γ) and UC2(γ). The two respective unitaries can
be again taken to be tensor products of single and two-qubit gates U i

C1(γ, hi) and
U i,j
C2(γ, Jij) respectively

U i
C1(γ) = e−iγhiσ̂

z
i , (5.7)

U i,j
C2(γ, Jij) = e−iγJij σ̂

z
i σ̂

z
j . (5.8)

Here, U i
C1(γ, hi) is the single-qubit Z rotation (Rz(2γhi)) applied to qubit i around

the z-axis by an angle 2γhi. On the other hand, U i,j
C2(γ, Jij) is the two-qubit gate

that is responsible for creating entanglement within the system, and is described in
the next section. Hence,

UC1(γ) = Rz(2γh1)⊗Rz(2γh2)⊗⊗Rz(2γhn). (5.9)

Again, in the Tensor Network notation, Rz(2γhi) is a rank 2 tensor with input and
out index each of dimension 2

Rz(2γhi) =
[
e−iγhi 0

0 e+iγhi

]
≡ Rz(2γhi) (5.10)

5.2.2 Two Qubit Gates
We now move on to describing the two-qubit gates used in the circuit simulation.
See chapter 2, section 2.8, for a detailed description of how two-qubit gates can be
applied to an MPS while keeping the MPS-form.

5.2.2.1 Jij Gates

Continuing from subsubsection 5.2.1.2, it was noted that gates U i,j
C2(γ, Jij) are the

two-qubit gates that are responsible for creating entanglement, or correlations in
the circuit system. After a bit of algebra, it can be shown that:

33

5. State Preparation

U i,j
C2(γ, Jij) = e−iγJij σ̂

z
i σ̂

z
j

= cos (γ, Jij)× (I ⊗ I) − i sin (γ, Jij)× (σ̂zi ⊗ σ̂zj)

=

e−iγJij 0 0 0

0 e+iγJij 0 0
0 0 e+iγJij 0
0 0 0 e−iγJij

 .
(5.11)

From now on, we refer to the two-qubit gate U i,j
C2(γ, Jij) as simply the Jij gate for

ease of reference. Equation 5.11 however is in the vector-matrix notation where an
n qubit register is taken to be a single 2n × 1 vector, a single-qubit gate is a 2 × 2
matrix, and a two-qubit gate is a 4× 4 matrix. To convert our Jij gate into tensor
network notation, we reshape the 4× 4 matrix into a 2× 2× 2× 2 tensor of rank 4;
with 2 input and output indices each.

5.2.2.2 SWAP Gates

Recalling from chapter 2, the Matrix Product State is also aptly called as a Tensor
Train, as the different tensors representing the qubit registers are connected only
linearly like the compartments in a train. This means that one qubit is only con-
nected to its nearest neighbours in the MPS architecture, while the cost function of
QAOA calls for an all to all connected framework in the most general case. Thus
to implement non-local two-qubit gates in a linear architecture, we make use of the
swap gates. While the no-cloning theorem prohibits making copies of qubits, we can
still use swap gates to transfer quantum information from one qubit to another. In
the matrix notation, the SWAP gate is given as:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (5.12)

As before, to convert this into a Matrix Product Operator, we reshape this 4 ×
4 matrix into a 2 × 2 × 2 × 2 tensor, with 2 input and output indices each of
dimension 2. We have tried two different SWAP networks that result in a net all-
to-all connectivity.

SWAP Network I: In this network, to apply a two-qubit gate between qubits i
and j, where we can take i < j without loss of generality, we first apply multiple

34

5. State Preparation

Figure 5.2: Schematic showing an example implementation of one non-local J26
gate using SWAP Network I in an 8 qubit register. a: represents applying 3 SWAP
gates to bring qubit 6 to position 3. b: depicts the application of gate J26 and c:

represents swapping qubit 6 back to position 6.

SWAP gates (j − i− 1 SWAP gates to be exact), to bring qubit j to position i+1.
Now the information previously contained in qubits i and j are now contained in
qubits i and i+1 making any subsequent interaction between them local in this new
configuration. Now we can apply our two-qubit gate Jij and SWAP the qubits back
to their original state by applying the (j−i−1) SWAP gates in reverse order. This
entire procedure is depicted schematically in Figure 5.2. Calculating the number of
SWAP gates in this implementation, we see that we need Ô(n3) SWAP gates where
n is the number of qubits. This is proved below. The basic idea is that there are
(n − 1) nearest neighbour two-qubit gates, (n − 2) next-nearest neighbour gates
needing 2 SWAP operations and so on. This mathematically translates to:

of SWAP gates ≡ S = 2×
n∑
i=1

(n− i)(i− 1)

= 2×
[
(n+ 1)×

n∑
i=1

i− n×
n∑
i=1

1−
n∑
i=1

i2
]

= n(n+ 1)2 − 2n2 − n(n+ 1)(2n+ 1)
3

= n3 − 3n2 + 3n− n
3

≡ Ô(n3).

35

5. State Preparation

Figure 5.3: Schematic showing an example implementation of SWAP Network II
in a 5 qubit register. Each Layer facilitates interaction between different pairs of

qubits. Figure from reference [5]

SWAP Network II: In the previous implementation, it is maybe possible to in-
tuitively understand that swapping each state back and forth is an overkill. The
question now is if one can make use of the intermediate SWAPS to apply two-qubit
gates, and if so, how? One way to formalise and implement this intuition was found
in a paper from the Aspuru-Guzik lab [5] where alternating SWAPS between odd
and even pairs of qubits were employed multiple times to bring about different con-
figurations where each qubit pair (i,j) existed as nearest neighbours in at least one
of the configurations. This is pictorially depicted in Figure 5.3 in the case of a 5
qubit system. Close observation reveals that all pairs of interactions are satisfied in
the set of all layers. For instance, layer 3 in the figure facilitates interaction between
qubits 2 & 4 and 1 & 5. Furthermore, we see that the information in the qubit
register gets reversed after the application of n layers. And seeing that we need
approximately n/2 SWAP gates in each layer, we can conclude that we only need
Ô(n2) number of SWAP operations in this network.

It is worth pointing out that the need for swapping operation is not just a quirk of
using matrix product states in our circuit simulation, but is physically the methods
used to apply non-local gates in qubit circuit architectures with only nearest neigh-
bour coupling among qubits. While finding efficient mappings of the given problem
on to what is physically feasible on the circuit connectivity at hand, is an entire
research field in itself, the main idea is to limit the number of SWAP operations as
it not only adds to the time complexity of the algorithm leading to needing qubits
with higher coherence times but also leads to loss of information resulting from the
lower fidelities of SWAP gates currently. Furthermore, since one of the main objec-

36

5. State Preparation

Figure 5.4: Flowchart describing the truncation operation

tives of this thesis is to find an efficient simulation of Variational Circuits, we shall
proceed with SWAP Network II in this thesis. We also tried out both methods, and
method II was significantly faster for larger systems as expected.

5.3 Truncation

While we can run exact simulations of Quantum Circuits using the toolsets we have
already developed, this soon becomes impractical due to an exponential increase
of quantum entanglement with the system size as a consequence of the all-to-all
connectivity paradigm we are working on. As detailed in chapter 2, subsection 2.6.2,
this increases the bond dimension of the matrix product state exponentially, leading
to an exponential rise in the number of parameters needed to describe the state,
making it intractable.

We can control the growing entanglement by setting an upper bound = Dmax to the
bond dimension, thus limiting the number of Schmidt coefficients and the size of the
tensors representing the qubits. While doing this helps make the system tractable,
the question now is if we can still extract useful information from this approximate
simulation of the Quantum Circuits. Before going to answer that in the results in
chapter 8 and chapter 7, we go over the truncation procedure here.

37

5. State Preparation

Single-qubit gates do not influence the amount of entanglement in the quantum
register. Hence we do not need to apply truncation after their operation. It is the
two-qubit gates that introduce entanglement in the system. Hence, one good way to
limit entanglement would be to apply Schmidt decomposition partitioning the two
affected qubits into separate bipartitions and limit the bond dimension to an upper
bound Dmax after the application of any two-qubit gate. This, however, doesn’t look
to be a correct strategy as this would call for a truncation even after application
of SWAP gates. SWAP gates are not part of the actual problem definition, and
hence truncations after SWAP would not only increase the time complexity of the
algorithm significantly but also result in spurious loss of information. Thus the
method employed in this thesis is to sweep through the n − 1 bond dimensions
in the matrix product state after the application of all Jij gates associated with a
particular layer as described in Figure 5.3. This entire procedure is diagrammatically
depicted using a flowchart in Figure 5.4.

5.4 Cost Estimation
With section 5.3, we have all the required tools to prepare an arbitrary |γ, β〉
state. Calculating the expectation value of the cost Hamiltonian ≡ C(γ, β) =
〈β, γ|ĤC |γ, β〉 (Equation 3.7) is the next step

C(γ, β) = 〈β, γ| ĤC |γ, β〉

= 〈β, γ|
n∑
i=1

hiσ̂
z
i +

n∑ n∑
i=1 i 6=j j=1

Jijσ̂
z
i σ̂

z
j |γ, β〉

=
n∑
i=1

hi 〈β, γ| σ̂zi |γ, β〉 +
n∑ n∑

i=1 i 6=j j=1
Jij 〈β, γ| σ̂zi σ̂zj |γ, β〉

=
n∑
i=1

hi × Expt(σ̂zi) +
n∑ n∑

i=1 i 6=j j=1
Jij × Expt(σ̂zi σ̂zj).

(5.13)

The Expt(Ô) operation in Equation 5.13 refers to the expectation function which
is defined as Expt(Ô) = 〈s| Ô |s〉 where Ô is the operator and |s〉 is a quantum
state. Hence, calculating the expectation of the entire cost Hamiltonian has been
broken down into calculating the expectation values of single and two-qubit oper-
ators σ̂zi and σ̂zi σ̂zj respectively. While this may seem trivial at first glance, this is
of great significance from a tensor network perspective. This is because the entire
Hamiltonian of an n qubit system is a rank 2n matrix product operator of dimension
2 × 2 × 2 × × 2, 2n times, needing 22n parameters. The size of the full Hamil-
tonian hence scales exponentially, and thus simulating more than 15 qubits would
be a hassle on most laptops. On the other hand, as iterated in subsection 5.2.1 and
subsection 5.2.2, the tensor representation of these single and two-qubit gates only
need 4 and 16 parameters respectively. The number of these operations also only
scales polynomially with system size n making the entire operation of cost calcu-
lation highly efficient on even most modern laptops. Figure 5.5 pictorially depicts

38

5. State Preparation

Figure 5.5: Pictorial depiction of calculating single and two-qubit expectations
using matrix product states on an 8 qubit register. a: Expectation of single-qubit

σ̂z3. b: Expectation of two-qubit σ̂z2σ̂z6.

how one could calculate the single and two-qubit expectation values mentioned in
Equation 5.13 using tensor networks.

5.5 Summary

With this, we now are equipped with efficient ways to

• Initialise the qubit register: section 5.1
• Apply single-qubit gates: subsection 5.2.1
• Apply local and non-local two-qubit gates effectively: subsection 5.2.2
• Truncate the |γ, β〉 state while retaining maximum information: section 5.3
• Calculate the expectation value of the full Cost Hamiltonian: section 5.4

and hence have set the stage for all further explorations. Figure 5.6 depicts how the
entire QAOA state preparation circuit looks like, minus the truncation and contrac-
tion, for a 4 qubit system, for p = 1. We see again that after the application of all
the gates, the qubit information order is reversed as noted in subsubsection 5.2.2.2.
This particular block can be repeatedly applied p number of times to increase the
circuit depth to p.

39

5. State Preparation

Figure 5.6: The actual Tensor Network circuit for preparing a generic 4 qubit
QAOA state for p = 1 without the truncation and contraction steps being depicted.

The next chapter (chapter 6) now talks about using all these tools to train QAOA,
and the chapter after that (chapter 7) would be about sampling from the optimum
|γ, β〉 state to obtain the correct solution to the optimisation problem at hand.

40

6
Training QAOA

QAOA is a variational algorithm where a classically-parametrized quantum state
ansatz is moulded to fit the problem specifications by varying the parameters. This
has a lot of parallels with Neural Network architectures, where the weights of a
neural network are varied to fit a high dimensional objective function that, say,
classifies between different entities. In both cases, this process of finding the right
parameters for the ansatz is referred to as the training phase. However, in the case of
neural networks, one trains the parameters in the network by optimising them over
different instances of training data and minimising a defined loss function. Whereas,
for variational quantum algorithms, we find the optimum parameters by directly
minimising the energy of the quantum state with respect to the Cost HamiltonianHC

without involving any "training" data. This energy minimization method is based
on the variational principle in quantum mechanics which states that the ground
state of a system has the least energy. Hence, minimising the energy of a system
eventually results in the system occupying the ground state. This is also from where
these variational algorithms get the first part of their name. The key difference
between classical neural networks and variational quantum algorithms is that while
both paradigms work by optimising a cost function, neural networks make use of
a generic cost function that most often does not encode any information about the
problem by itself (except in cases where additional constraints are used in the loss
function) [44]. On the other hand, the cost Hamiltonian HC used in variational
algorithms completely captures all essential details of the problem of interest.

The integral component for any training procedure in QAOA is a cost function
that accepts the cost Hamiltonian HC and 2p angles γ1, γ2, γ3, ..., γp, β1, β2, β3,, βp
≡ {γ, β}, to output a scalar that is the energy of the |γ, β〉 state with respect to
the cost Hamiltonian. From now on, we refer to this function as C(γ,HC , β). Also,
while referring to the cost landscape, we choose to omit HC as its role is implicitly
understood

QAOA Cost Function ≡ C(γ,HC , β). (6.1)

In this thesis, we create such a function using the tools developed in chapter 5. The
goal of the training procedure is to calculate the global minima of this function.
Finding the global minimum of a function while staying away from local minimas is
in itself a non-trivial task. Nevertheless, since the value of C(γ, β) corresponds to the
energy of the system, local minimas still correspond to angles which produce a state

41

6. Training QAOA

with lesser energy. Hence, one could still extract the solution, that is the ground
state if the minimas are deep enough. In this thesis, we have explored primarily
two methods of finding the minima of this function. The grid search method, and
off-the-shelf functional optimization tools such as Nelder-Mead [45].

6.1 Grid Search
This is one of the most straightforward search algorithms to find the global minima
of a smooth function. Grid searches work best for smooth functions because, in this
method, we essentially discretize our function to get insights about its landscape.
Hence, the method wouldn’t work if the landscape we obtain is highly jagged and
dependent on the grid sizes we use. In QAOA, we have some decent assurance that
the function is smooth, at least for a fixed circuit depth p that is independent of
system size n [2]. While there can be more sophisticated grid search implementations
which integrate coarse-graining into the search, we are not going to be discussing
that here. Those methods work by progressively choosing smaller and smaller search
domains around their minimas, while retaining the same number of points, effectively
zooming in on the minima. The original QAOA article [2] argues that for QAOA
functions handling combinatorial optimization problems of m clauses and n bits, all
the partial derivatives of C(γ, β) are bounded by Ô(m2 + mn). This implies that
the steepness of the function extremas will be bounded and hence by choosing a
threshold grid size, and lower sizes, one can efficiently find the minima. This is, of
course, assuming that the circuit depth p does not scale with the system size n. As
otherwise, one would have to search for a minima within an exponentially scaling
space (γ, β) ∈ [0, 2π]p × [0, π]p. Note that the range γi ∈ [0, 2π] and βi ∈ [0, π] is
valid when the Hamiltonian HC has integer eigenvalues. Figure 6.1 illustrates an
example of finding the minima using grid search when circuit depth p = 1.

6.2 Optimisation Protocols
While having figures as colourful as Figure 6.1 is a great way to visually study the
behaviour of the QAOA function C(γ, β), the grid search method becomes quickly
cumbersome for p > 1. This is because for p > 1 one has to search in a high
dimensional 2p space. Here, we also lose the advantage of visual inspection as
there is no straightforward method to visually represent a 2p + 1 dimensional fig-
ure. Furthermore, since we are only interested in a single point within this entire
[0, 2π]⊗p× [0, π]⊗p space, it is extremely wasteful to evaluate the value of C(γ, β) at
all the other points also. Hence, for a larger p, we opt to make use of numerical-
functional minimization methods such as Nelder-Mead [45]. In this study, we avoid
using methods such as gradient descent, which is the workhorse of the machine
learning community [44], as such optimization methods require one to calculate
the gradients of the function C(γ, β). This would possibly make the procedure more
cumbersome and error-prone, as we now could have added errors from the numerical
approximations of the gradient as well.

42

6. Training QAOA

Figure 6.1: Example of the Energy landscape C(γ,HC , β) for a 11 qubit MaxCut
instance for circuit depth p = 1. Number of grid points = 100× 100.

The chance of success, that is the probability of such optimisation protocols correctly
identifying the global minima, is highly dependent on the starting point we initialise
the protocol with. The further away this initial guess is from the actual global
minima, the higher are the chances of getting stuck in a local minimum. However,
although at first glance it may look like these methods have a very low success
probability, in practice, they work remarkably well. Numerical studies by Lukin et.
al. have also shown that the parameter angles γp+1 and βp+1 are dependent on all
the preceding angles γ1, γ2, γ3, . . . , γp and β1, β2, β3, . . . , βp respectively [46]. Hence
it is possible to extrapolate good initial guesses for finding the angles of circuit depth
p+ 1 from the parameters of circuit depth p.

In this thesis, we are using the optimal angle parameters calculated using a matrix-
vector implementation of the same problems by a colleague on Matlab. As a result,
do note that these parameters have been calculated using non-truncated |γ, β〉 states
having the highest possible bond-dimension. That is, Dmax = 2bn/2c. For higher p,
in both the tensor network and vector-matrix implementations, we treat the opti-
mization protocols used as a black-box which outputs the angles when provided with
the QAOA function C(γ, β), and initial guesses from the extrapolation algorithm,
obtained using [46]. In the next chapter, chapter 7, we go over the methodology
used to extract the ground state from a truncated matrix product state, which is
the essence of QIOA.

43

6. Training QAOA

44

7
QIOA

This chapter talks about implementational details behind the Quantum Inspired
Optimisation Algorithm, QIOA, that we are proposing with this thesis. Maybe,
you the reader, have already noticed that the name QIOA is a play on the original
QAOA [2] (please refer chapter 3 for more details). This is because QIOA is a clas-
sical quantum inspired algorithm that is inspired by QAOA. In vanilla QAOA, the
cost function is mapped onto a highly entangling all-to-all connected circuit. From
chapter 2, section 2.8, we know that such un-approximated applications of entan-
gling gates between all the qubits leads to an exponential increase in the amount
of entanglement among the qubits. It is this exponential increase that makes it
infeasible for classical computers to keep track of the created quantum states. This
is because the number of parameters required to represent such a highly entan-
gled state increases exponentially with system size, making it infeasible for classical
computers to keep up. The following lines describe the essence of QIOA.

It is already known that the original non-approximated vanilla-QAOA, (in which en-
tanglement scales exponentially [31], section 3.3), facilitates one to obtain solutions
to the problem of interest. The question that we are trying to answer with QIOA
is as follows. Would it still be possible to extract useful information from a trun-
cated implementation of QAOA, where the entanglement only scales polynomially
with system size?

It turns out that for many problems, we can still extract the solution even from
such truncated state implementations. A more detailed description of these results
on training and on extracting the solution can be found at chapter 8 and chapter 9
respectively. While in all the tests we have done so far we have not been able to
identify an example where QIOA fails, further studies are definitely required before
making conclusive remarks on its applicability. After describing the general principle
of QIOA in the next section, we move on to describe the implementation, first for
product states, and then for states with non-zero but possibly limited entanglement.

7.1 General Principle
Superposition and entanglement are two quantum mechanical phenomena that we
know are essential for having a quantum advantage. While it is still unclear if these
are the only two necessary requirements, we know for sure that just with quantum

45

7. QIOA

superposition, we cannot have any advantage. This can easily be proved by recalling
from chapter 2, subsection 2.6.3 where we have shown that representing a non-
entangled product state of an n qubit register requires only 2n complex parameters.
One each for representing the coefficients of the |0〉 state and the |1〉 state. This
representation only scales linearly with system size, making it easily tractable for
any classical hardware. The absence of any entangling gates also ensures that the
bond-dimension does not grow and stays at 1 during the state evolution, irrespective
of the other gates applied. The same idea can also be generalised to account for
states in which the entanglement does not scale exponentially with the system. Such
systems can be described using a matrix product state whose component tensor-
dimensions only grow polynomially [28]. Hence, we only need a polynomially scaling
number of parameters to describe these systems. Thus, any algorithm making use
of these ideas are classically tractable as they are polynomial scaling. However,
since these algorithms may still be making use of quantum mechanical ideas such as
the variational principle, entanglement, superposition etc., they would be classified
under the category of quantum inspired classical algorithms.

QIOA is one such quantum inspired algorithm that takes a lion’s share of its inspi-
ration from vanilla-QAOA. The main idea behind increasing the circuit depth p in
vanilla-QAOA is to increase the population of the solution ground state, |gs〉, in the
full |γopt, βopt〉. Here, γopt and βopt are the 2p optimal parameters for the problem at
hand. This is explicitly stated in the original QAOA paper [2]. This means that,
given sufficient circuit depth p, the coefficient Cgs of the solution |gs〉 has the high-
est magnitude in the full |γopt, βopt〉 state. Conversely, this implies that if we are
able to extract the basis state |s〉 that has the maximum coefficient within the full
|γopt, βopt〉 state, then that has to be the ground state in vanilla QAOA. That is,

|γ, β〉 = Cgs|gs〉+
∑
i 6=gs

Ci |i〉

(γ, β) = (γopt, βopt) ⇐⇒ ‖Cgs‖ ≥ ‖Ci‖ ∀ |i〉.
(7.1)

QIOA explores if this idea of the solution having the maximum magnitude still holds
for a truncated state |γopt, βopt〉Dmax also. Here, Dmax refers to the defined upper
bound on the maximum bond dimension in the matrix product state representation
of the |γopt, βopt〉 state. QIOA then extracts the basis state having the maximum
magnitude from |γopt, βopt〉Dmax , and verifies if that is indeed the ground state |gs〉.
In all the problem instances we have simulated till now, this idea is valid and the
extracted state |s〉 = |gs〉.

The next section goes over how to implement the tools developed in chapter 5 to put
together the state |γopt, βopt〉Dmax . The section after that describes how to extract the
ground state from a maximally truncated |γopt, βopt〉 state ≡ |γopt, βopt〉Dmax=1, with
all entanglement removed. That is, from a product state. After that, this method-
ology used to extract the ground state from truncated states will be generalised to
handle entangled states also with Dmax > 1.

46

7. QIOA

Figure 7.1: Illustration of the |γopt, βopt〉Dmax state preparation pseudo-code.

7.2 State Preparation
Before diving into the actual method of solution extraction, it may be instructive to
go over the pseudo-algorithm we employed to create the state |γopt, βopt〉Dmax . For
this, we have coded for two functions. First is the main function that accepts the
Hamiltonian HC , the 2p optimum angles {γopt} and {βopt}, and the maximum bond
dimension Dmax. Second is a QAOA-block function that accepts an initial matrix
product state, and the relevant parameters as input, applies one QAOA block to the
input state, and returns that as the output state. Hence, the idea is that the main
function starts off with an initial |+〉⊗n state, and repeatedly calls the QAOA block
function p times, each time feeding the output of the preceding call as the input to
the next one. Figure 7.1 is a pictorial illustration of the applied algorithm.

7.3 Extraction from Product States: (Dmax = 1)
Recalling again from chapter 2, subsection 2.6.3, each tensor in an n qubit matrix
product state register, forDmax = 1, is a 1×2×1 matrix. Also, the two parameters in
these tensors correspond to the coefficients of the |0〉 state and the |1〉 state, hereby
referred to as αk and ζk respectively, for the kth qubit. At face value, one could
consider finding the maximum coefficient among all the 2n coefficients Ci for each
state |i〉, to be an exponentially hard problem. This is because although finding the
maximum in an array is a problem that scales linearly with the array size, the array
size itself grows exponentially, making the entire problem exponentially scaling.

47

7. QIOA

What is interesting, however, is to note that any coefficient Ci of any state |i〉 of the
entire qubit register, is a product of these {αk} and {ζk} for k = 1, 2, . . . , n. That
is,

∀ |i〉 = |k1k2 . . . kj . . . kn〉

Ci =
n∏
j=1

xkj

xkj
=

 αkj
if |kj〉 = |0〉

ζkj
if |kj〉 = |1〉.

(7.2)

The matrix product state framework allows us to isolate and inspect the state of
each qubit through its physical index (refer chapter 2, section 2.6). Hence, to find
which coefficient is the maximum, we do not need to search through the full Hilbert
space with 2n basis states. Instead, we only have to search in n independent Hilbert
spaces of dimension 21, as there is no entanglement and these are un-correlated
spaces. Mathematically, this is also because the product operation and maximum
operations commute, given the operands are independent. That is, the maximum
of products is the same as the product of maximums for independent scalars.

max (
n∏
k=1

xk) =
n∏
k=1

max(xk) ∀ xk ∈ C. (7.3)

Physically, this means that since there is no entanglement within the system, one
can independently sample from each n qubits to get information about the entire
register. Thus, to obtain the basis state with the highest population within the
|γopt, βopt〉Dmax=1 state, one only needs to find which is the highest coefficient among
the |0〉 and |1〉 state, and choose that to be included in the product. This is again be-
cause of Equation 7.3 and since the coefficient of that state is a product of individual
qubits’ |0〉 and |1〉 state probabilities.

Thus, the strategy now is to build the solution string of ’0s’ and ’1s’ bit by bit.
Assign ′0′ to the kth bit if αk ≥ ζk or ′1′, otherwise.

Solution = ”k1k2k3 . . . kn”

kj =

 ′0′ if αj ≥ ζj
′1′ otherwise.

(7.4)

7.4 Extraction from Entangled States: (Dmax > 1)
A matrix product state representation where the maximum bond-dimension limit
Dmax is set to 1 is the highest an entangled quantum state can be approximated to.

48

7. QIOA

In the framework of QIOA explained in section 7.3 where Dmax = 1, there is zero
entanglement within the register. This may be a needlessly stringent approximation
because for an algorithm to be classically tractable, it is still okay for the amount
of entanglement, and hence the bond-dimension, to scale polynomially with system
size [28]. Also, the entanglement within a register corresponds to correlations among
the qubits in the register. Hence, we may be able to extract better performance
from QIOA if we somehow manage to make use of these correlations. Heuristically,
we observed that product state QIOA can extract the solution of a problem after
sufficient circuit depth p really well, in the cases where there is a unique solution to
the problem at hand. Such as in exact-cover problems. That is, for problems where
the ground state of the cost Hamiltonian HC is non-degenerate and not entangled.

However, in the case of problems such as MaxCut [47] where a graph has to be
bi-partitioned into to two maximally disjoint sets, the two sets can arbitrarily be
assigned to be set ′0′ or set ′1′. Hence, for any solution string, its bit flipped version
would also be a solution (refer chapter 4, subsection 4.2.1 for more details). This
makes all the energy states of max-cut Hamiltonians, including the ground state, to
be not only degenerate but also maximally entangled. Thus, intuitively we could
hypothesise that removing absolutely all entanglement would prove to be detrimen-
tal for capturing the essence MaxCut problems. Moreover, we show in chapter 8,
section 8.2 that for circuit depth p = 1, a product state with Dmax = 1 is unable
to capture any information about the system for max-cut problems, confirming this
intuition. However, the essence of exact-cover instances with non-degenerate ground
states is still captured by states with Dmax = 1.

Hence, to also handle problems such as max-cut with maximally entangled energy
states, the QIOA method of extracting the state |s〉 with the highest population from
|γopt, βopt〉Dmax need to be generalised for handling Dmax > 1 as well. But applying
QIOA on entangled states is not as straightforward as it was in Equation 7.4. This is
because, while for product states, the |0〉 and |1〉 states were represented by scalars
αk and ζk, for higher bond-dimension, αk and ζk are matrices. When Dmax > 1 and
all Di ≤ Dmax for i ∈ {1, 2, . . . , n − 1} where Di is the ith bond-dimension, αk and
ζk are Dk−1 ×Dk matrices (except when k = 1 or k = n where they are 1×D1 and
Dn−1 × 1 matrices respectively). As a result, to compare between the |0〉 and |1〉
states, we need to find a way to compare between matrices. To this end, we tried
employing many mappings that convert matrices to scalars so as to compare between
them. We tried methods inspired from machine learning such as trace distance, and
determinants of the square matrix M ×M † where M † is the Hermitian conjugate of
matrixM , but none showed promising results. In the end, we came to the conclusion
that to also account for the correlations among qubits, we would have to use quantum
mechanical methods such as calculating reduced density matrices of the qubits to
extract the solution, and this worked. We have employed two such reduced density
matrix based algorithms to extract the solution. In the first one, we use the reduced
density matrices themselves directly. The second method, which we are referring to
as the projected reduced density matrix method, is specifically tailored to account

49

7. QIOA

Figure 7.2: Single qubit reduced density matrix calculation of the kth qubit using
matrix product states

for the qubit correlations through projection operations. Henceforth, these methods
would be called the DM, and PRDM methods respectively, for ease of reference.

7.4.1 Reduced Density Matrix Method
Solution = ”q1 q2 q3 . . . qk . . . qn”

qk =

 ′0′ if ρk00 ≥ ρk11
′1′ otherwise

∀ k ∈ {1, 2, . . . , n}.

(7.5)

The section 2.9 of chapter 2 talks about how to calculate a generalised density matrix
of multiple qubits using matrix product states. For this implementation, we use that
principle to generate the reduced density matrix of the kth qubit ≡ ρk by tracing
out all the other qubits. Hence, modifying Figure 2.9, we get Figure 7.2. Density
matrices are more generalised representations of quantum states that help us identify
the populations of states by directly reading off its elements. Furthermore, from the
single qubit reduced density matrix (Equation 7.6) of the kth qubit, we know that
ρk00 gives the probability of measuring qubit k to be in the state |0〉 while ρk11 is the
probability of measuring qubit k to be in the state |1〉. Note that since both ρk00 and
ρk11 are probabilities, they are both ∈ [0, 1] and ρk00 + ρk11 = 1.

ρk =
 ρk00 ρk01

ρk10 ρk11

 . (7.6)

Hence, a simple strategy to build the solution string of the problem encoded by the

50

7. QIOA

optimum parameters γopt, βopt, is by calculating ρk of the kth qubit, and assigning
character ′0′ to the kth bit of the solution if ρk00 ≥ ρk11. Otherwise, assign ′1′
to the kth solution bit. Refer Equation 7.5 for a mathematical illustration of this
discussion.

7.4.2 Reduced Density Matrix Method with Projections

Solution = ”q1 q2 q3 . . . qk . . . qn”

qk =

 ′0′ if ρkproj[0, 0] ≥ ρkproj[1, 1]
′1′ otherwise

∀ k ∈ {1, 2, . . . , n}.

(7.7)

Although the reduced density matrix method described above works well for Dmax >
1 as well, because we are tracing out the other qubits while considering the state of
a single qubit, we are not making use of the correlations in the system. Moreover, in
problems such as max-cut with maximally entangled solution states, both a bitstring
and its bit-flipped version, are equally likely solutions. Hence, when considered
individually, both ′0′ and ′1′ are equally correct possibilities for all qubits. Thus,
we proposed a modified method of solution state extraction that is based on the
reduced density matrix method.

The idea is that as we already know the states of qubits 1, 2, . . . , k − 1 before we
move on to calculate the state of qubit k, it makes sense to project the known qubits
to their respective states. This makes sense because now we are no longer be tracing
out the influence of the preceding qubits entirely. Instead, we would be retaining
and bringing to the forefront, the effects of the correlations among the qubits as a
result of Dmax > 1. Also, this is a simple fix to avoid the problem faced earlier by
the reduced density matrix where each qubit was equally likely to be ′0′ and ′1′ when
considered individually. This is because we are no longer deciding the state of qubit
k by considering it individually. Furthermore, the results described in chapter 9
shows that this method of projected reduced density matrix calculations requires
lesser circuit depth p to start working for a larger bond dimension D as expected.
This is because as D increases, the number of correlations also increase.

For this method to work, first, the entire matrix product state has to be left-
canonicalised, if we start building the solution string from the left, and right-
canonicalised if starting from the reverse. Now, both the expectation values obtained
after projecting the first qubit into the |0〉 state and the |1〉 state respectively, are
calculated. Now, depending on which is value is higher, we assign either bit ′0′ or
bit ′1′ to the first qubit. Next, since we already know the state of the first qubit, we
project the first qubit of the matrix product state on to the calculated state. Then
we move on to the next qubit, and so on using the same procedure. We shall call
the projected reduced density matrix of qubit k, where the qubits 1, 2, . . . , k− 1 are

51

7. QIOA

Figure 7.3: An example of calculating the projected reduced density matrix of
qubit 6 in an n qubit register. Here, qubits 1 to 5 have already been mapped onto
′00101′

all projected on to the calculated as ρkproj. Now, we repeat the same procedure as in
subsection 7.4.1 by comparing between ρkproj[00] and ρkproj[11] to assign either ′0′ or
′1′ depending on which is larger. Calculating the projected density matrix of qubit
6 when qubits 1 to 5 have already been mapped to ′00101′ from an n qubit matrix
product state is illustrated in Figure 7.3

This entire procedure is pictorially depicted in Figure 7.4 using a tree structure for all
the 23 possible scenarios of a 3 qubit instance. In this figure, the left branch always
assumes that ρkproj[00] > ρkproj[11] while the right branch assumes the opposite.
Do note that during an actual implementation, one would be able to make those
comparisons and hence would be traversing along one single branch along this tree.
Hence, although there are an exponential number of branches = 2n, traversing along
a single branch is a linear problem of Ô(n).

7.5 Summary
In this chapter, we have primarily gone through the implementation of QIOA, Quan-
tum Inspired Optimisation Algorithm. QIOA is a quantum inspired classical algo-
rithm derived from the original QAOA [2].

• section 7.1 describes the main essence behind QIOA.
• After that, we briefly go over the |γopt, βopt〉Dmax state preparation in sec-

tion 7.2.
• Now that we have the state |γopt, βopt〉Dmax prepared, we go over the method of

extracting the basis state with maximum probability from |γopt, βopt〉Dmax with
Dmax = 1. That is, a maximally approximated product state.

• Next, we extend this state extraction method for states having non-zero cor-

52

7. QIOA

Figure 7.4: All the 23 possible Projected density matrix implementation
scenarios depicted as a tree for the case of 3 qubits

relations using two different methods as described in subsection 7.4.1 and
subsection 7.4.2.

It is worth re-emphasising here that through QIOA, we are attempting to find out
which basis state from the computational basis holds the highest probability, in
the entire truncated |γopt, βopt〉Dmax . The primary idea behind the original QAOA
paper [2] is to increase the probability of measurement of the solution to a problem
which is encoded as the ground state of the cost Hamiltonian HC , by increasing
the circuit depth p. With increasing circuit depth, the entanglement among the
qubit registers increases exponentially, and this makes it intractable for classical
computers to simulate QAOA for large systems and depths.

A big part of this thesis tries to answer the question if the same behaviour persists,
that is, the probability of measurement of the ground state increases with increas-
ing p, even for truncated systems where either there are no entanglement, or the
entanglement only grows polynomially with system size.

Hence, we calculate the state holding the maximum probability of measurement in
the truncated state, and cross-verify if that is the solution to the problem we set
out to solve. Turns out, in many cases, (in all cases we simulated), the idea holds
and we can extract the solution from classically tractable |γopt, βopt〉Dmax state.

53

7. QIOA

54

Part III

Results & Discussion

55

8
Training Results and Discussions

In this chapter, we go over the results concerned with the training phase of QAOA.
Please revert to chapter 3 if you’d like to have a refresher on QAOA and to chapter 6
for the training methods employed. For these results, we shall be sticking to the
grid search method talked about in section 6.1 and a circuit of depth p = 1.

As a review, during the training phase, we first create a parametrized quantum state
|γ, β〉 starting from the uniform superposition state |+〉⊗n. We do this by applying
single and two qubit gates defined using the cost HamiltonianHC and the parameters
γ, β onto |+〉⊗n (refer chapter 5 for details). We also have an option to limit
the amount of entanglement in the system by setting a maximum bond-dimension
Dmax ≤ 2bn/2c (Equation 2.10) on all the bonds within the matrix product state
representation of the |γ, β〉. This results in a possibly truncated state ≡ |γ, β〉Dmax (
section 5.3). Here 2bn/2c is the highest possible bond-dimension in an n qubit MPS
register. Next, we calculate the expectation value of the cost Hamiltonian HC with
respect to this, possibly truncated, parametrized state |γ, β〉Dmax . This expectation
value is then defined as the cost C(γ, β,Dmax) associated with the angles γ, β and
bond-dimension Dmax. That is,

C(γ, β,Dmax) = Dmax〈 β, γ | HC | γ, β 〉Dmax . (8.1)

We then find the optimum parameters γopt(Dmax) and βopt(Dmax) that correspond
to the global minima of the cost function C(γ, β,Dmax) such that,

C(γopt, βopt, Dmax) ≤ C(γ, β,Dmax) ∀ (γ, β) ∈ [0, 2π]. (8.2)

It is this training phase that encompasses the variational aspect of QAOA. Here, the
idea is that the population of the ground state |gs〉 within the |γ, β〉Dmax state is max-
imum at the global minima of the cost function C(γ, β,Dmax) This is assured in the
original QAOA when Dmax = 2bn/2c, and in this chapter, we verify if this still holds
true for smaller Dmax as well. Further, we define the solution landscape, which is the
magnitude square of inner product between the ground state |gs〉 and the |γ, β〉Dmax

state represented in %, as S(γ, β,Dmax). This is also the same as the success proba-
bility of finding the solution state from the |γ, β〉Dmax upon sampling from it. In the
case where there exists multiple equally likely solutions |gs1〉, |gs2〉, . . . , |gsm〉, as
in max-cut problem instances, (section 4.2), the ground state |gs〉 is itself an equal

57

8. Training Results and Discussions

superposition of all the possible m solutions. In such cases, S(γ, β,Dmax) is the sum
of squares of individual inner-products times 100

|gs〉 = 1√
m
× (|gs1〉 + |gs2〉 + . . . + |gsm〉)

S(γ, β,Dmax) = || 〈 gs | γ, β 〉Dmax ||2 × 100

= 1
m
× (|| 〈 gs1 | γ, β 〉Dmax ||2 + || 〈 gs2 | γ, β 〉Dmax ||2 +

. . . + || 〈 gsm | γ, β 〉Dmax ||2) × 100.

(8.3)

In the framework of QAOA, due to the variational principle of quantum mechan-
ics, and the ground state being the solution to the problem encoded in HC , the
point corresponding to the global maxima of the solution function S(γ, β,Dmax) ≡
(γmax, βmax) corresponds with the global minima point of the cost function. The dif-
ference between these points (≡ ∆γ and ∆β) reduces with increasing circuit depth
p. In this sense, it is safe to say that during the training phase, all one cares about,
is finding the global minima of the cost function and if this minima corresponds
to a maxima in the solution landscape S(γ, β,Dmax). Hence, any approximation
made which preserves the position of the global minima of C(γ, β,Dmax) and its
correspondence with S(γ, β,Dmax) can be considered as a valid approximation.

Recalling from subsection 2.6.2, in a non-truncated matrix product state the high-
est possible entanglement, and hence the maximum bond dimension Dmax, grows
exponentially with the system size along the n qubit register. This quickly makes it
intractable for classical hardware to keep track of the quantum state as n increases.
Thus, the questions we are answering through our work are twofold:

• Firstly, if one can still get the desired parameters γopt, βopt used in the original
QAOA, using a truncated state with an upper bound on the bond dimension
that does not scale exponentially with system size. That is, if

|| γopt(Dmax) − γopt(2bn/2c) || < ε

|| βopt(Dmax) − βopt(2bn/2c) || < δ

for Dmax � 2bn/2c,

(8.4)

where ε and δ are not too large. How large ε and δ can be depends on the dif-
ference between the success probability obtained using the original parameters
γopt(2bn/2c), βopt(2bn/2c) and the truncated parameters γopt(Dmax), βopt(Dmax).

• Secondly, if one could train the angles used in QIOA (chapter 7, section 7.2)
using the truncated | γ, β 〉Dmax state and C(γ, β,Dmax ≤ 2bn/2c), the cost
landscape associated with it.

58

8. Training Results and Discussions

This chapter goes over results addressing the first question raised above, and in the
next chapter we discuss results on the QIOA method while attending to the second
question. The following pages present multiple calculations of the cost and solution
landscapes C(γ, β,Dmax) and S(γ, β,Dmax) respectively, over varied maximum bond-
dimension Dmax of various Max-Cut (section 4.2) and Exact-Cover (section 4.1)
instances.

8.1 Cost and Solution Landscapes
One of the most curious things about the cost landscape C(γ, β), and hence the
solution landscape S(γ, β), is that it is quite independent of not only the particular
problem instance it is generated from but also the number of variables in that
instance. This essentially makes the whole landscape, instance independent and
has been already well documented by Fernando et. al. [48], with the creators of
the original QAOA. Here, they prove that if the parameters within the instance
definition are sourced from a reasonable distribution, then the values of C(γ, β) is
nearly the same for all these instances. In fact, they claim that it is even possible
to train QAOA on a smaller instance of a similar problem and use those angles for
bigger instances as a way to conserve resources. This is exactly what was observed
in all our calculations as all instances from the exact-cover problems had almost the
same cost landscape, and all instances from max-cut had very similar but different
from the exact-cover landscape. This is because as detailed in subsection 4.2.2, we
create our problem instances using a uniform probability distribution, which is one
of the well-behaved distributions Fernando talks about in their work.

We have observed that this same behaviour persists to a large extent even on trun-
cating the bond-dimension too. Reiterating chapter 2, subsection 2.6.2, one could
represent any quantum state exactly using matrix product states by letting the
maximum possible bond dimension Dmax to be 2bn/2c, for an n qubit register. Hence
we already know that MPS based calculations of QAOA with this highest possible
bond dimension will follow the characteristics described in the above paragraph. In
fact, this was how we benchmarked the code used in this thesis, and also how we
verified its validity. However, it was still an open question if the same characteristics
persist even after reducing the bond dimension by setting the maximum dimension
Dmax � 2bn/2c. Being able to obtain comparable results by reducing Dmax, which
originally scales exponentially with system size, to something that scales polynomi-
ally with n, would make the training phase classically tractable. This would then
suggest the possibility of eliminating the need for a quantum processing unit (QPU)
during the training phase. Previously this year, the Data Lab of Volkswagen Group
had published a paper on the possibility of training QAOA without using a QPU
[32]. While their method is also based on Tensor Networks, they employ tree tensor
networks which are fundamentally different from the MPS methods we use. Their
work also tries to handle the system exactly without making any approximations,
making these two approaches inherently different. Nevertheless, having the same
conclusion from a completely different perspective is highly encouraging.

59

8. Training Results and Discussions

8.2 Max-Cut Training Results

Figure 8.1: An example of the azimuthal and top views of Cost and Solution Land-
scape of a 10 qubit Max-Cut instance changing with representative Bond dimensions
D = 32, 16, 8, 4, 2, and 1. For a 10-qubit system, highest D = 2b10/2c = 32.

60

8. Training Results and Discussions

Because all the calculated cost and solution landscapes look extremely similar for all
the instances from within the same problem family, we will present representative
landscape images and all calculated plots for one from each max-cut and exact-cover
problems. Figure 8.1 presents the calculation results of a 10-qubit max-cut instance.
Also, the graph of this instance whose maximum cut we are trying to find is depicted
in Figure 4.2 as an example of a randomly generated Erdős–Rényi graph [42]. Each
of the 6 panels in that image presents the azimuthal and top views of both the cost
and solution landscapes for bond dimensions D = 32, 16, 8, 4, 2 and 1. Some of
the key points of interest about these figures are listed below:

• The most striking feature here is that, although we are making approxima-
tions to the system by truncating the bond dimension and limiting the net
entanglement in it, the cost and solution landscapes largely retain their form.
That is to say, although the magnitude does decrease, the position of the min-
imas and maximas largely remain unchanged. Recalling from the last section
discussing the cost and solution landscapes, since all one cares about is the
position of the global minima in the cost landscape, this strongly suggests that
one can still derive useful information from these approximated cost landscapes
C(γ, β,Dmax) also, even when Dmax � 2bn/2c.

• As seen in Figure 8.1, most cost landscapes have two minimas, one global and
one local, and many have two corresponding peaks in their solution landscapes
too. One subtle, but important point to be raised here is that having a min-
ima in the cost landscape need not always translate to having a peak in the
solution landscape. This is because in some cases, those minimas are created
by |γ, β〉Dmax states which are primarily populated by other low-energy states
like the first and second excited states. This is probably what is happening in
this particular instance too, as we can hardly observe a peak in S(γ, β,Dmax)
over the second minima in C(γ, β,Dmax).

• We can also see that the magnitude of the landscape peaks decreases consid-
erably by reducing bond dimensions. This is primarily because reducing the
bond dimension to Dmax is essentially throwing away all except the largest
Dmax Schmidt weights. As a result, the norm of the state |γ, β〉Dmax is no
longer equal to one. This is not a bug in the method and is in fact by design.
This is because normalising the state after each truncation introduces spurious
effects which alter the shape of the landscapes, which we want to avoid. The
introduction of these spurious effects is because the Schmidt weights are also
functions of γ and hence the approximations made are not uniform for all γ.

• Combining insights from the above two points, we see that for smaller bond-
dimensions, Dmax = 4 and Dmax = 2, although the overall magnitude of both
C(γ, β,Dmax) and S(γ, β,Dmax) decrease, the presence of the second peak in
S(γ, β,Dmax) becomes increasingly prominent. We have also observed that
there have been shifts between local and global maximas both in the cost and
solution landscapes too. While the exact reasons that govern these shifts are

61

8. Training Results and Discussions

yet to be studied, this could be because MPS based calculations preferentially
try to preserve the low-lying energy states. Hence, the other higher energy
states may have been subjected to larger reductions in magnitude via the ap-
proximations performed, making the ground state relatively more pronounced.

• The previous point sets the stage well for the next observation which is that the
landscape plots for smaller bond dimensions look grainy along the γ axis. Es-
pecially visible in the top-views of panels for Dmax = 8, 4, and 2 in Figure 8.1.
We also note that there is no such graininess along the β axis. This is exactly
because the Schmidt weights, which are representative of entanglement in the
system, are only functions of γ and hence does not depend on β. Furthermore,
the Schmidt weights are also observed to be periodic in γ, making some slices
along γ more truncated than others. It is also because of this non-uniform
truncation, that normalising the states introduces non-uniform un-warranted
effects.

• Next, it has already been proven that it is classically impossible to sample
from the output of a QAOA circuit of large system sizes n by Farhi et. al.
[31]. These landscape plots also corroborate that result as we see that infor-
mation about the actual magnitudes of the solution states is lost completely
upon truncation. This is to say that one cannot just simply sample from this
truncated state to obtain the solution state.

• Another surprising aspect of these landscape plots is the almost complete
lack of retrievable information from the fully truncated state with Dmax = 1.
We believe that this is because the state |γ, β〉Dmax=1 is a product state, and
since all the energy states associated with max-cut problem instances are at
least doubly-degenerate as explained in section 4.2, a parametrized state of
at least bond-dimension 2 is required to capture its essence. This is in stark
contrast with the results seen for similar Dmax = 1 landscapes of the exact-
cover instances where no such degeneracy exists, further supporting this claim.

• In QAOA, the main idea is to minimize the cost landscape, and not maximise
the solution landscape. In the infinite limit, when circuit depth p → ∞, a
minima in the cost landscape will undoubtedly correspond to a maxima in the
solution landscape, because in that limit, QAOA is the same as an infinite
run-time Quantum Annealing [2]. However, in the intermediate limit, in some
cases, a maxima in the solution landscape may correspond to a very shallow
minima, in the cost landscape. This is because the state created using those
particular parameters may have a significant population of a very high energy
state along with the ground state, giving net high energy, and thus a shallow
minima. This insight was primarily derived from [39].

Again, the most important aspect of a cost landscape C(γ, β,Dmax) is the position

62

8. Training Results and Discussions

(a) γopt(Dmax), βopt(Dmax) in blue
and γmax(Dmax), βmax(Dmax) in red

(b) ∆γ(Dmax) and ∆β(Dmax) in
top and bottom panels respectively.

Figure 8.2: (γopt, βopt) , (γmax, βmax), and (∆γ,∆β) for
Dmax = 2, 3, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, and 32

of the global minima and the corresponding point γopt(Dmax), βopt(Dmax). As we
are interested in studying the influence of truncating the bond-dimension on these
points, we calculated them for each bond-dimension Dmax and represented it as a
line plot in Figure 8.2a. Because these instances are small and we already know
their solutions, we also calculated the solution landscape S(γ, β,Dmax), and their
respective γmax(Dmax), βmax(Dmax) point corresponding to the global maxima. This
too was plotted along with γopt(Dmax), βopt(Dmax) to keep track of their co-evolution
with reducing bond-dimensions as shown in Figure 8.2a. We have also calculated the
difference between these two points, ≡ ∆γ(Dmax),∆β(Dmax) to explicitly see how
that evolves with Dmax and presented it in Figure 8.2b. The relevance of Figure 8.2b
will be discussed more in detail when talking about the trainability of QIOA in the
next chapter.

From Figure 8.2a, we see that there is a gradual shift in the angles γopt and βopt
on reducing the bond dimension. Recalling Equation 8.4, ε here = 11 × π/99 and
δ = 6 × π/99 where π/99 is the grid discretization used. As will be shown
later, this is one of the more radical changes, and the median change is around 6
and 2 grid points for ε and δ respectively. The question now is how useful these
angles γopt(Dmax) and βopt(Dmax) for small values of Dmax. To answer this, one can
substitute these angles into the original solution landscape S(γ, β,Dmax = 2b10/2c)
for the full bond dimension to calculate how well they perform. From Figure 8.2b,
we can see that even in the case when Dmax = 2b10/2c, that is, even when there is zero
approximations made, ∆γ and ∆β are not equal to zero. This is still okay because
the global maxima of S(γ, β,Dmax = 2b10/2c) is not a delta function and thus has
a gradual slope to it. Hence, the changing of angles γopt(Dmax) and βopt(Dmax) for
small values of Dmax could still be okay as long as we are still able to land along
the slope of the maxima. Although landing closer to the base will mean a lower
success rate. To make reasonable comparisons between instances, we normalise

63

8. Training Results and Discussions

Figure 8.3: Normalised Success rate obtained using the angles γopt(Dmax) and
βopt(Dmax) with respect to Dmax.

these probabilities by dividing it with the success rate obtained with no truncation.

Figure 8.3 depicts the normalized performances of the angles γopt(Dmax), βopt(Dmax)
for different values of Dmax. The idea is that we create a full |γopt(Dmax), βopt(Dmax)〉
state using the original QAOA circuit, and then sample from this state to calcu-
late the success probability. We now divide this obtained success probability with
the success rate obtained on using the original γopt, βopt, found by training vanilla-
QAOA. A value of 1 signifies that the angles γopt(Dmax) and βopt(Dmax) perform
as well as the the non-approximated angles γopt(Dmax = 2b10/2c) and βopt(Dmax =
2b10/2c) derived from the original QAOA. The two dashed lines represent 75% and
50% of relative performance when compared with the original QAOA. Here, we see
that even on making the biggest possible truncation, Dmax = 2, one is able to get a
performance little shy of 50% when compared to the vanilla QAOA. At this point
it is worth recollecting that the these results are for circuit-depth p = 1, and that
for p = 1, the maximum success rate is a little more than 3% here (Figure 8.1).
Thus a value of 1 in Figure 8.3 corresponds to having a success rate of 3%. The
primary difference here is that vanilla QAOA calculates the non-approximated op-
timum angles by repeatedly calling a QPU, while the approximated angles can be
easily calculated using classical hardware, as the truncated bond-dimension Dmax
does not scale exponentially.

Till now, we have been discussing the properties of a single max-cut instance Q10R3.
In addition to this single max-cut instance we have discussed so far, we have run
calculations for 49 other instances, all of which show similar behaviour. Hence, to
summarize their average behaviour, we present box-plots [49] which is a great way
to understand the overall statistical trend in the behaviour of the system at different
bond dimensions. Every above-mentioned calculation have been performed for each

64

8. Training Results and Discussions

of the 10 specimens for all the 8, 9, 10, 11, and 12 qubit max-cut instances to make
the statistical inferences composing of these box-plots.

(a) γopt(Dmax) and βopt(Dmax)
in top and bottom panels respectively.

(b) Normalised Success rate of 8-qubit
instances as a function of Dmax.

Figure 8.4: Calculated statistical behaviour of 8-qubit max-cut instances.

Figure 8.4 provides the average behaviour of all the 10 calculated 8-qubit instances.
The X-axis in all plots correspond to the maximum bond-dimensions Dmax, and
the black line in each plot connects the median behaviour of all the 10 instances
at the respective bond-dimensions. Note that in Figure 8.4b for Dmax = 2, there

65

8. Training Results and Discussions

is an outlier point (represented by a red cross) caused by a shift in the minima
angles. This is exactly what was mentioned previously where there is a relative
switch between local and global minimas in some instances. Figure 8.4b presents
the performance of the approximately calculated angles when used in the original
QAOA for all the 10 8-qubit instances. We see that even in the worst case, we
are still able to obtain a median performance of little less than 75% as good as a
full quantum processor. The outlier case, however, provides a considerably poorer
performance, but this can be resolved by choosing to sample over all minimas.

(a) γopt(Dmax) and βopt(Dmax)
in top and bottom panels respectively.

(b) Normalised Success rate of 9-qubit
instances as a function of Dmax.

Figure 8.5: Calculated statistical behaviour of 9-qubit max-cut instances.

66

8. Training Results and Discussions

Figure 8.5 depicts the training behaviour of 9-qubit max-cut instances averaged
over 10 examples. From Figure 8.5a, we can see that the maximum change in
median angles is by 5 grid points for γ and 4 grid points for β. Also, Figure 8.5b
shows that the worst median case behaviour is for Dmax = 3 with a worst-case
relative performance little less then 50%. This could again be because of the doubly
degenerate nature of max-cut as the performance improves for Dmax = 2.

(a) γopt(Dmax) and βopt(Dmax)
in top and bottom panels respectively.

(b) Normalised Success rate of 10-qubit
instances as a function of Dmax.

Figure 8.6: Calculated statistical behaviour of 10-qubit max-cut instances.

67

8. Training Results and Discussions

(a) γopt(Dmax) and βopt(Dmax)
in top and bottom panels respectively.

(b) Normalised Success rate of 11-qubit
instances as a function of Dmax.

Figure 8.7: Calculated statistical behaviour of 11-qubit max-cut instances.

Here too in Figure 8.6b, we see a dip in performance when Dmax = 3. This point,
that max-cut states seem to be subjected to higher approximations for odd bond-
dimension will be raised also in chapter 9 while discussing some of the plots presented
there.

68

8. Training Results and Discussions

(a) γopt(Dmax) and βopt(Dmax)
in top and bottom panels respectively.

(b) Normalised Success rate of 12-qubit
instances as a function of Dmax.

Figure 8.8: Calculated statistical behaviour of 12-qubit max-cut instances.

Figure 8.6, Figure 8.7 and Figure 8.8 present the average behaviour of 10, 11, and 12-
qubit instances averaged over 10 examples, respectively. As explained in the previous
cases, the (a) plot provides insight into how the global minima point γopt, βopt evolved
with the maximum bond-dimension Dmax and plot (b) shows the normalised success
rate of the angles γopt(Dmax) and βopt(Dmax) when used during the sampling phase
of the original QAOA. Key points of insights from these plots are listed below:

69

8. Training Results and Discussions

• As mentioned above, in some calculations, changing the bond-dimension also
introduces a switch between local and global minimas. This switch hap-
pens mostly in calculations of reduced bond-dimensions because higher-energy
states are subject to larger approximations compared to the ground state. In
such cases, substituting the changed global minima point into S(γ, β,Dmax =
2bn/2c) may not result in landing on a comparable peak. In this work, we have
only kept track of the global minimas of all the landscapes, and we believe
this is the reason why there are a few outlier and fringe cases with a poor rel-
ative performance for smaller bond-dimensions. This could easily be fixed by
taking into account not only the global minima but also all local minimas for
sampling and choosing the best relative performance for each bond-dimension.
Since the number of local-minimas is finite, this only adds a constant factor
to the problem scaling.

• Another aspect that could be leading to poor angle detection and possibly poor
trainability over the cost-landscape C(γ, β,Dmax) when Dmax)� 2bn/2c is the
graininess over the γ axis as seen in Figure 8.1, and described in the following
discussion. This could lead to multiple unintended small local minimas within
the full landscape, decreasing the chances of finding the true minimas. This
problem, however, could be overcome by using some smoothing function [50]
that helps to capture the essence of the landscape by avoiding falling into such
minimas. Such smoothing methods are routinely used in statistics to extract
relevant patterns in the data while minimising noise.

• Admittedly, the instances calculated till now are extremely small compared to
what is classically intractable today. Hence, currently, it is difficult to make
meaningful comparisons between polynomially scaling bond-dimensions and
exponentially scaling bond-dimensions. This is because the highest possible
bond dimension in an n-qubit register grows as 2bn/2c which is 64 for the 12-
qubit instance. For such small instances, n2 = 144 and hence it is difficult to
even look at if a bond-dimension that scales as Ô(n2) with system size n gives
a good performance. We can, however, make comparisons with a linearly
scaling bond-dimension and it can be seen that for such cases, the median
relative performance is around 0.65 in the 12-qubit instance.

• Nevertheless, even with these small instances, we can make constant order,
Ô(1) inferences, that is inferences on how the problems behave for a constant
bond-dimension, by looking at Dmax = 2. In all the cases, this is the maximum
useful approximation possible, and we see that the performance is comparable
with Ô(n) scaling of Dmax where the bond-dimension limit scales linearly with
system size.

• The big question is how these behaviours scale with both system size n and
circuit depth p. If we see that similar behaviour persists even for larger in-
stances and circuit depths, then it would call into question the need for a QPU
during the training phase of the original QAOA.

70

8. Training Results and Discussions

8.3 Exact-Cover Training Results

Figure 8.9: An example of the azimuthal and top views of Cost and Solution Land-
scape of an 8 qubit Exact-Cover calculations over representative Bond dimensions
D = 16, 12, 8, 4, 2, and 1. For an 8-qubit system, highest possible D = 2b8/2c = 16.

71

8. Training Results and Discussions

We performed the same set of calculations for all the examples at hand of 8, 15,
and 25 qubit instances of Exact-Cover problems sourced from Jeppesen. Figure 8.9
presents a representative calculation result of an 8-qubit instance which performed
the worst among all the others with respect to normalised success probability cal-
culations. Both the top and azimuth views of the cost and solution landscapes for
D = 16, 12, 8, 4, 2, and 1 are shown. Key insights derived from these calculations
are listed below:

• As observed for all the max-cut instances, the cost and solution landscapes
look eerily similar among all the exact-cover examples too, as it did for the
max-cut instances. While in this thesis we use them directly as provided by
Jeppesen without concerning ourselves with how they were exactly created
(see [39] for details on instance creation), it is safe to assume that this too is a
consequence of the behaviour noted by Fernando et al. in [48] and described
in section 8.1.

• A striking difference between the landscapes observed in exact-cover and max-
cut is how steep the extremas (both maximas and minimas) are in the case of
exact-cover instances. The actual cause of why such a difference in landscape
structure exists is not known yet. This may mean that the exact-cover minimas
are harder to detect and hence harder to train.

• Another surprising feature of the exact-cover instances is the existence of a
peak in the solution landscape at the position that corresponds to a maxima
in the cost landscape. This phenomenon is more pronounced in the higher
qubit count instances, and the reason for this is still unclear. Nevertheless,
although it is surprising, it does not violate any of the principles of QAOA, and
this could simply be an artefact of the fact mentioned in the discussion below
Figure 8.1. In QAOA, we focus on minimising the cost, and not maximising
the solution. This is of course for obvious reasons, as one needs to already
know the solution to operate over the solution landscape, and for practical
applications, we do not already know the solution.

• Another important difference between the two cases is the nature of the land-
scape for Dmax = 1. We can observe here that both the cost and solution
landscapes retain most of their structure even in the case of a product state
with Dmax = 1. This means that even a product state is able to capture and
retain some of the information about the problem at hand. As theorised be-
fore, this could be because all the states in the exact-cover instances are not
doubly degenerate as they are in the case of max-cut and hence a product
state could also hold some information.

• An additional interesting observation about exact-cover landscapes is that the
optimal γ value is negligibly small, ranging between 1 × π/99 and 2 × π/99.
This is also quite in contrast to the max-cut landscapes where γopt is roughly
an order of magnitude higher. Since γopt is the parameter characterising the

72

8. Training Results and Discussions

entanglement in the final |γopt, βopt〉 state, this may imply that final state for
max-cut holds more entanglement than exact-cover. Intuitively, this makes
sense, because all exact-cover energy levels have maximally entangled states.

(a) γopt(Dmax), βopt(Dmax) in blue
and γmax(Dmax), βmax(Dmax) in red.

(b) ∆γ(Dmax) and ∆β(Dmax) in
top and bottom panels respectively.

(c) Normalised Success rate obtained using the angles
γopt(Dmax) and βopt(Dmax) w.r.t Dmax.

Figure 8.10: Calculated properties of instance Q8P5 for Dmax = 1 to 16.

All the same calculations mentioned under section 8.2 discussing the max-cut in-
stances were also performed for the exact-cover examples. Figure 8.10 provide a
snap-shot of this performed on the landscape depicted in Figure 8.9. Here again,
∆γ(Dmax) and ∆β(Dmax) is the difference between the global minima point of the
cost landscape = (γopt(Dmax), βopt(Dmax)) and the global maxima point in the solu-
tion landscape given by γmax(Dmax), βmax(Dmax). We also note that although the

73

8. Training Results and Discussions

degree to which the angles γopt(Dmax) and βopt(Dmax) shift as a function of Dmax
is much less in the case of these exact-cover instances, the corresponding change is
relative success rate is profound. For example, in Figure 8.10a, when γ changes by
one grid point from Dmax = 5 onward, the corresponding change in Figure 8.10c
is by 50%. This is due to how steep the peaks and minimas are in the original
landscape. Also, an additional shift in β is observed commonly for Dmax = 1, which
further takes the relative success rate as seen in Figure 8.10c. Below, we present the
present box plots providing insights into the average behaviour of 8, and 15 qubit
exact-cover instances.

(a) γopt(Dmax) and βopt(Dmax)
in top and bottom panels respectively.

(b) Normalised Success rate of 8-qubit
instances as a function of Dmax.

Figure 8.11: Calculated statistical behaviour of 8-qubit exact-cover instances.

74

8. Training Results and Discussions

(a) γopt(Dmax) and βopt(Dmax)
in top and bottom panels respectively.

(b) Normalised Success rate of 15-qubit
instances as a function of Dmax.

Figure 8.12: Calculated statistical behaviour of 15-qubit exact-cover instances.

Figures Figure 8.11a and Figure 8.12a represent statistical box-plots of the optimum
angle evolution γopt(Dmax) and βopt(Dmax) for 8 and 15 qubit instances respectively.
As previously mentioned, we see a very tight bound in γopt(Dmax) in both cases.
However, the data in Figure 8.12 was quite surprising in two ways.

1. Firstly we see an extremely tight bound in γopt(Dmax) where the angles show
zero deviation with decreasing Dmax. This is surprising because γopt is the
parameter controlling entanglement in the final |γopt, βopt〉 state. So since we
are reducing the amount of entanglement in the state by reducing Dmax, one
would have intuitively expected γ to show changes.

75

8. Training Results and Discussions

2. Second surprising point is the more prominent shift in βopt with decreasing
Dmax all converging onto the same tight bound point for Dmax = 1.

Hence, it is also this drift in βopt that is leading to a decreasing normalised success
rate for the 15-qubit instances as shown in Figure 8.12b. However, it is still promising
to note that the median normalised success rate is around 50% when Dmax = 16,
which is in the range of a bond-dimension linearly increasing with system size.
Data on the optimum angle evolution with Dmax for the 25 qubit instances are still
being calculated, and hence not available for presentation yet. Nevertheless, from
preliminary observations, we note a much tighter bound over both γopt and βopt with
decreasing Dmax in them.

One big caveat we have to make here before concluding this chapter is that till now,
we have only shown that the landscape largely retains its structure even on decreas-
ing Dmax for circuit depth p = 1. Further calculations are required to investigate if
this behaviour persists for larger circuit depths, p < 1, as well. If we see that this
behaviour persists even for larger p, then even a normalised success rate performance
of 20% could be acceptable. This is because in that case, we only need to increase
the required circuit depth from p to 5× p, to make the algorithm work.

Another very interesting avenue of exploration would be to study if one could use the
angles sourced from training phases using the truncated cost landscapes for larger p
and smaller Dmax in the QIOA algorithm described in chapter 7. The next chapter,
chapter 9, discusses the extraction of the ground state |gs〉 even from truncated
|γopt, βopt〉 states, using the optimum parameters obtained from the original vanilla-
QAOA training.

76

9
QIOA Results and Discussions

While the last chapter (chapter 8) presented results hinting at the possibility of
classically calculating the optimum parameters required in the original QAOA, in
this chapter, we look at the possibility of classically extracting the solutions from
approximated QAOA states, |γopt, βopt〉. Today, there exist multiple flavours of the
originally proposed vanilla-QAOA [2], such as Tree-QAOA [32], proposed by the
Data lab of Volkswagen group, where also the possibility of training vanilla-QAOA
classically for max-cut on regular graphs was suggested, and QAOA variations such
as Grover-QAOA [34] etc. which modify vanilla-QAOA by proposing different mix-
ing gates. To the best of our knowledge, these, and other currently existing flavours
of QAOA, all agree that one needs access to a QPU for sampling the state |γopt, βopt〉
to find the solution |gs〉. This chapter, which presents our results on QIOA, goes
over if indeed there is a need for a QPU in all cases to extract the solution |gs〉.
Towards the end, there will also be a discussion on the trainability of QIOA, and
ways to potentially make it better.

9.1 Inspiration

(a) Cost landscape
C(γ, β,Dmax = 16).

(b) Solution landscape
S(γ, β,Dmax = 16).

Figure 9.1: Calculated data of a 50-qubit Exact-Cover instance for Dmax = 16

77

9. QIOA Results and Discussions

Figure 9.1 depicts the cost and solution landscape calculated for a 50-qubit exact-
cover instance for a maximum bond-dimension capped at Dmax = 16. This is the
largest system size we had looked at in this project, and it was interesting to see that
the cost landscape C(γ, β,Dmax) looks very similar to the other Exact-cover calcu-
lations presented in section 8.3. The maximum bond-dimension for a non-truncated
50-qubit state is 2b50/2c = 33554432, which is more than 33.55 million. Exact sim-
ulations of 50-qubit systems teeth at what is feasible for even most advanced high-
performance computing systems, as the matrices involved in such simulations would
be 33.55 million × 33.55 million. Hence, it was highly encouraging to see that com-
parable results could be obtained using matrix product states which only involved
16 × 16 matrices trivially handled by today’s laptops. However, do keep in mind
that we have only explored this for circuit depth p = 1, and need further studies to
test if the results described in chapter 8 hold for p > 1 as well. We also found the
calculated solution landscape to be equally intriguing. A careful study of Figure 9.1b
reveals that the scale on the Z-axis reads 10−10. Nevertheless, it was surprising to
note that even after making approximations worth 6 orders of magnitude to the
bond-dimensions, the relative form of the solution landscape remained intact. This
was one of the first signs that although reducing the bond-dimension leads to the
|γopt, βopt〉Dmax state being non-normalised and thus a reduction of the weights of
individual basis states within this full state, it still looked like their relative mag-
nitudes were preserved. To us this was a strong hint that it could be possible to
extract useful information about the ground state |gs〉 even from a highly truncated
|γopt, βopt〉Dmax state with Dmax ≪ 2bn/2c.

9.2 Hamming Distance
The QIOA method described in chapter 7, takes the cost Hamiltonian HC , maxi-
mum bond-dimension Dmax, and the 2p optimum parameters ~γopt, ~βopt as input, and
returns an n-bit bitstring as output. Now, we need a way to compare this output
string with the original solution string, to see how well QIOA performed. We chose
to use the Hamming distance to compare between two strings as it is one of the sim-
plest and most straight-forward protocols to implement [51]. The Hamming distance
is the total number of mismatched characters between two strings of equal length.
A distance of 0 would hence mean that both the strings are the same, which in our
case implies that the predicted bitstring is indeed the real solution. For example,
the Hamming distance between bitstrings ′000′, and ′001′, ′110′, and ′111′, are equal
to 1, 2, and 3 respectively. However, a problem with the Hamming distance is that
multiple pairs of bitstrings can have the same distance among them. For instance,
the Hamming distances between ′000′ and ′101′, and ′000′ and ′110′, are both =
2. This makes it almost impossible to pinpoint state pairs just from knowing the
Hamming distance between them.

In hindsight, an obvious way to get over this issue would have been to look at the
approximation ratio, that is the ratio of the energies corresponding to the predicted
state and the actual true ground state [52]. An approximation ratio of 1 would

78

9. QIOA Results and Discussions

mean that the predicted bitstring is indeed the solution. Moreover, further the
ratio is from one, poorer the predicted bitstring is in solving the problem. At the
moment though, we have only employed the Hamming distance to compare between
bitstrings, and the approximation ratio implementation is currently listed an easily
implementable future work.

9.3 Black-box Picture of QIOA
Equation 10 in the original vanilla-QAOA paper [2] explicitly state that in the
infinite limit, when p → ∞, the approximation ratio of the | ~γopt, ~βopt〉 state would
be equal to 1. Which is to say that at this limit, | ~γopt, ~βopt〉 state would exactly be
the ground state |gs〉 of the problem Hamiltonian HC . For all practical purposes,
however, infinities do not exist, and as long as the ground state |gs〉 holds the highest
weight within the full | ~γopt, ~βopt〉 state, one can easily sample form this to obtain the
solution. Hence, one way to look at vanilla-QAOA is as a black box with a tunable
parameter p that provides a particular state distribution when measured in the
computational basis. Also, with increasing p the state distribution changes such
that the weights Cgs of the ground state |gs〉 increases, and all the other weights Ci
decreases. Refer Equation 7.1 for a refresher on this. Do note that in this black-box
perspective of vanilla-QAOA where the focus is on tunable parameter p, the need for
calculating the 2p optimum angles γ1, γ2, γ3, . . . γp and β1, β2, β3, . . . βp, and the role
of the cost Hamiltonian HC are implicitly defined. Which is to say that although
their roles are not explicitly mentioned in this picture, they are still extremely vital.

The question we are trying to answer with QIOA is if the same nature persists even
for smaller bond-dimensions Dmax. That is, if the weight Cgs of the ground state
|gs〉 increases with circuit depth p even in a truncated state |γopt, βopt〉Dmax state
even for Dmax � 2bn/2c. By doing so, we introduce another tunable parameter Dmax
which is the maximum allowed bond-dimension in the full matrix product state
representation of all |γ, β〉Dmax states throughout their evolution. As a reminder, it
is the exponential growth of an un-checkedDmax, that leads to classical intractability
of any full |γ, β〉 state. A persistence of this behaviour of |γopt, βopt〉Dmax states with
increasing circuit depth p even for small Dmax would imply that using the highest
possible, exponentially scaling, bond dimension by setting Dmax = 2bn/2c may be an
unnecessary overkill.

Revert to chapter 7 for a refresher on how we extract the state with the highest
weight from a |γopt, βopt〉Dmax state. There, we have defined two methods used for
state extraction, the Reduced Density Matrix method (subsection 7.4.1), hereafter
referred to as the DM method, and the Projected Reduced Density Matrix method
(subsection 7.4.2), henceforth referred to as PRDM method. Hence, QIOA can now
be treated as another black-box, similar to QAOA, but with two tunable parameters
(p,Dmax), instead of the single tunable parameter p in QAOA. Here, each pair of
entry would produce an n-bit bitstring as output for both DM and PRDM meth-

79

9. QIOA Results and Discussions

ods, which can be compared with the original solution using the ideas presented in
section 9.2.

9.4 Plot Definitions
This section goes over the different tools used to not only study the performance of
QIOA but also gain insights to its inner workings and test our hypothesises.

9.4.1 Hamming Maps
Combining insights from the above two sections, one way to see how well QIOA per-
forms is by plotting a heat-map of Hamming distances for each (p,Dmax) pair, here-
after called as Hamming maps. Furthermore, since there may-be multiple equally
likely solution states, we choose to represent the minimum Hamming distance be-
tween all possible (predicted state, solution- state) pairs in the Hamming maps.
This is because the goal of solving the max-cut problem is to find at least one max-
imum cut of the graph, and not provide all possible maximum cuts. Such Hamming
maps would not only help gauge the efficacy of QIOA but also provide insights on
its underlying principles. They would also serve as an excellent tool to compare be-
tween DM and PRDM methods. Also, as stated in chapter 6, section 6.2, discussing
the training phase of QAOA, the 2p angles used in this thesis for the Hamming
maps have all been sourced by employing a combination of Nelder Mead [45], and
the heuristic developed by Lukin et al. [46]. These calculations, were performed on
non-truncated states using a vector matrix implementation of vanilla-QAOA and
hence have Dmax = 2bn/2c. For the Max-cut instances, we performed our calcula-
tions up to p = 100, while for the exact-cover problems, we have angles up to p = 20
for the 8 and 15 qubit instances and up to p = 11 for the 25 qubit examples.

9.4.2 Confidence Plots

Next, in QIOA, to infer the state of the kth bit in the full n-bit bitstring, we always
compare between two numbers. In the case of the DM method, we compare ρk00
with ρk11 , the 00th and 11th elements in the reduced density matrix of qubit k in the
full n-qubit register. We assign 0 to qubit k if ρk00 ≥ ρk11 and 1 otherwise. And
in the case of the PRDM method, we compare between ρkproj[0, 0] and ρkproj[1, 1]
using the same set of arguments as above. The only difference between DM and
PRDM being that in DM, ρk is the full reduced density matrix with all the other
qubits traced out, while in PRDM, ρkproj is the reduced density matrix of qubit k
with the previous k− 1 qubits projected onto their respective calculated states, and
the other n− k qubits fully traced out. An interesting question here is to ask how
far apart the two numbers corresponding to the 00th and 11th elements were in both
cases, and so in a sense, how confidently did QIOA make this choice between 0 and
1 for the kth qubit. We now define this quantity as Conf(p,Dmax, k)DM/PRDM. Also,
note that Conf(p,Dmax, k)DM/PRDM is something we have introduced in this thesis
for ease of reference. That is,

80

9. QIOA Results and Discussions

Conf(p,Dmax, k)PRDM = abs(ρkproj[0, 0] − ρkproj[1, 1])

Conf(p,Dmax, k)DM = abs(ρk00 − ρk11).

Finally, we also average over all the n qubits in the register to find a value that is
only a function of p and Dmax for both DM and PRDM methods.

Conf(p,Dmax)DM/PRDM = 1
n

(
n∑
k=1

Conf(p,Dmax, k)DM/PRDM
)

(9.1)

Both QAOA and QIOA use the uniform superposition state |+〉⊗n as their initial
state. At this stage, all of ρk00 , ρk11 , ρkproj[0, 0] , and ρkproj[1, 1] are all equal to 0.5
for all the k qubits in the register. Hence, for circuit depth p = 0, nothing has yet
been done to the initial state and we just have the superposition product state with
Dmax = 1. In this case, Conf(p = 0, Dmax = 1, k)DM/PRDM = 0 ∀ k ∈ {1, 2, . . . , n},
both for DM and PRDM methods. As we keep increasing the circuit depth p,
Conf(p,Dmax, k)DM/PRDM increases. In this regard, usefully extractable information
from this confidence measure Conf(p,Dmax)DM/PRDM are twofold:

1. Firstly, it acts as a measure of how much further the end state |γopt, βopt〉Dmax ,
for a particular circuit depth p and bond-dimension caped atDmax, has evolved
away from the superposition state |+〉⊗n. For instance, for p = 1 andDmax = 1,
which is the most approximated state with the least amount of possible evo-
lution, we observed that the Conf(p,Dmax)DM/PRDM was on the order of 10−10

which meant that there was almost no change made to the |+〉⊗n state. Nev-
ertheless, it was still interesting to note that there were instances where even
that was enough to make the correct predictions. Now with both increasing
p, and Dmax, Conf(p,Dmax)DM/PRDM would also increase.

2. Next, one can compare the confidence maps of both the DM and PRDM meth-
ods to make inferences on which one works better for what type of problems.
For instance, we know that for max-cut problems, the ground state is an equal
superposition of at least two maximally entangled states where one state is
the bit-flipped version of the other (chapter 4, subsection 4.2.1). In such a
case, as p increases, the weights of all possible ground states increases. This
makes both 0 and 1 equally likely for the kth qubit if we only calculate the
reduced density matrix. This inference was made in retrospect, after seeing
that the DM method performs poorly for max-cut instances, and where ever
it performed poorly, it had a very small confidence value. The PRDM method
avoids this problem by only looking at a smaller subset of 2n−k+1 states by
projecting the previous k− 1 states while deciding the states of the kth qubit.

The following sections will now discuss these Hamming maps and Confidence plots
for the same Max-Cut and Exact-Cover instances, whose training results for p = 1
was discussed in chapter 8. For all the 10 examples of 8, 9, 10, 11, and 12 qubit

81

9. QIOA Results and Discussions

Max-Cut instances, we have calculated over the entire bond-dimension range (1 ≤
Dmax ≤ 2bn/2c) and for circuit depth 1 ≤ p ≤ 100. In the case of Exact-Cover
instances, we have calculated over the full range of bond-dimensions for examples
of 8 and 15 qubits with p ranging from 1 to 20, while for the 25 qubit examples,
1 ≤ Dmax ≤ 55) and 1 ≤ p ≤ 11.

9.5 Max-Cut QIOA Results

Figure 9.2: Hamming Maps of both DM and PRDM methods implemented on
a 12 Qubit Max-Cut instance, Q12R5. Here, 1 ≤ Dmax ≤ 2b12/2c = 64 and
1 ≤ p ≤ 100. A black pixel corresponds with QIOA predicting the correct
solution for that (p,Dmax) pair.

82

9. QIOA Results and Discussions

Figure 9.2 depicts the Hamming map of a 12-qubit Max-Cut instance (Q12R5). The
upper and lower panels present the performances of the DM and PRDM methods
respectively. Each pixel in the plot depicts the Hamming distance between the actual
ground state of the cost Hamiltonian HC , and the predicted bitstring calculated
using the corresponding (p,Dmax) pair as inputs. The colour-bar to the right of
these images depict the scale used and assigns a Hamming distance of 0 with the
colour black. Hence, in all the areas in the Hamming map where the pixels are
black, we can conclude that QIOA had successfully predicted the correct solution
for the problem. We also see that in the worst case, QIOA predicts a bitstring which
has a Hamming distance of 6 with respect to the actual solution. Furthermore, the
left-bottom corner of these Hamming maps depicts the region that is classically
tractable and as one progresses away from the origin along either axes, the more
classically impractical it gets, as both or either of p, Dmax increases.

While Figure 9.2 is presented as a representative example of QIOA performance, it
shares a lot of features common with all the other 49 different Max-Cut instances.
Some of those common features are listed below:

1. Possibly the most interesting insight from Figure 9.2 is to see that using the
PRDM method of QIOA, there are regions in the Hamming map near the
leftmost-bottom slices, with black pixels. For instance, the entire range of
(Dmax = 1) and (11 ≤ p ≤ 43) and then again for (52 ≤ p ≤ 100).
This was quite unexpected because in Figure 8.1, we saw that for Dmax = 1
and p = 1, the cost landscape was almost completely flat and devoid of any
structure. We had then theorised this lack of topology to be because of the
maximally entangled nature of max-cut states which could not be captured by
a fully truncated |γopt, βopt〉Dmax state with Dmax = 1, as it is a product state.
Following this logic, we expected this behaviour to persist even for larger p,
but this result shows that it is possible even for non-entangled product states
to capture the same solutions as vanilla-QAOA.

2. Moreover, in vanilla-QAOA, there exists no tunable entanglement. Hence, one
would always be operating on the uppermost slice of the Dmax axis on these
Hamming maps, where Dmax = 2bn/2c. However, Figure 9.2, and all the 49
other such Hamming maps explicitly show that operating at this maximum
entanglement regime is very likely a huge overkill.

As it currently stands though, QIOA is still a heuristic algorithm. Which is
to say that given a (p,Dmax) pair, it is currently not known a priory if the
bitstring QIOA produces is the solution, or not. This, however, is not a major
limitation, because, in the left-bottom regime, QIOA is classically tractable.
Hence, one only need to repeatedly run this method for different classically
simulable (p,Dmax) pairs, till we land on a solution. Such a strategy works
because of the very nature of NP problems, where although it is very hard to
find the solutions of an NP problem, given a prediction, it is possible to verify
if this given prediction is indeed the solution in polynomial time.

83

9. QIOA Results and Discussions

3. As hinted in point 2 of from the list in subsection 9.4.2, we see that for Max-
Cut, the performance of the DM method gets worse with increasing Dmax.
Especially after crossing the Dmax = 1

2

(
2bn/2c

)
.

This sudden change of behaviour after crossing this threshold has been seen
multiple times before. For instance, in all the normalised success probability
plots such as Figure 8.4b to Figure 8.8b, we see a minimal change on going from
Dmax = 2bn/2c toDmax = 1

2

(
2bn/2c

)
. A same behaviour also persists in the plots

depicting the change in optimum angles. Furthermore, although the peaks in
cost and solution landscape decrease with decreasing, Dmax, we again see a
minimal change here too when going from Dmax = 2bn/2c to Dmax = 1

2

(
2bn/2c

)
.

All of these suggest that the amount of approximations made when changing
the bond-dimension limit from 2bn/2c to 1

2

(
2bn/2c

)
is negligible.

This implies that for 1
2

(
2bn/2c

)
≤ Dmax ≤ 2bn/2c, since there are not much

approximations made onto the full |γopt, βopt〉 state, and since max-cut solu-
tions are maximally entangled, it makes perfect sense that both ′0′ and ′1′ are
almost equally likely choices for each qubit (see subsection 4.2.1 for details).

4. Another possible reason for the much poorer performance of the DM method
could be that there could exist multiple maximally entangled pairs as equally
likely solutions. This could cause a problem because there is nothing in the
reduced density matrix calculation framework that helps the predicted bit-
string to lock onto a particular state from this set of all possible solutions.
The PRDM method overcomes this problem by projecting the previous k − 1
qubits to their respective predicted states while making the prediction for the
kth qubit, hence (possibly) locking on to one of the feasible solutions.

5. These claims, (claims made in point 3 and point 4), are further supported by
the observation that both DM method and PRDM method show a comparable
performance for Exact-Cover problems where the problems are so designed
that there are no degeneracies involved. This shall be made more clear in the
discussions following the Exact-Cover QIOA results in section 9.6.

6. Next, the results described in chapter 8, on the evolution of the optimum
parameters γopt, βopt for p = 1 with Dmax catalog a gradual decrease in the
angles with decreasing Dmax. We have also presented results there hinting
that the global maxima of the solution landscape also shifts corresponding
with this shift in γopt, and βopt. As stated earlier in subsection 9.4.1, the
2p optimum angles however, were calculated for QAOA with non-truncated
bond-dimension Dmax = 2bn/2c. Hence, we strongly suspect this to be one of
the reasons of poor performance of QIOA for smaller bond-dimensions Dmax
and circuit depths p. This also explains why QIOA works really well for larger
Dmax as there is relatively negligible drift in the optimum angles in this range.
This point will be further scrutinised in section 9.8 discussing the trainability
of QIOA in more detail.

84

9. QIOA Results and Discussions

7. Another noteworthy point common to all Hamming maps is the existence of
domains within the map with the same Hamming distance. For instance,
48 ≤ Dmax ≤ 64) and 1 ≤ p ≤ 5 in Figure 9.2, PRDM panel. As
explained in section 9.2, it is difficult to know if all these predicted bitstrings
are the same, although they have the same Hamming distances from just the
Hamming maps. Nevertheless, while performing these calculations we had
observed that in most cases the bitstrings belonging to a particular domain
are the same. Knowing more about the nature of when QIOA fails could help
to make the algorithm better. This was one place where a similar plot of
approximation ratios could have helped.

Figure 9.3 presents representative confidence plots of both the DM (Figure 9.3a)
and PRDM (Figure 9.3b) methods. These plots are of the same 12-qubit max-cut
instance Q12R5, featured in Figure 9.2, and they further amplify the points raised
above. Figure 9.3 helps us to picturise the contrast between the inner-workings of
DM and PRDM methods. The following line of reasoning uses these confidence
maps to connect all the dots discussed above.

(a) Conf(p,Dmax)DM. (b) PRDM : Conf(p,Dmax)PRDM.

Figure 9.3: Calculated Confidence plots for Q12R5.

1. From basic Quantum mechanics, we know that the trace of any reduced density
matrix is equal to 1. That is, ρk00 + ρk11 = 1 for any single qubit reduced
density matrix.

2. Also, Conf(p,Dmax)DM calculates the difference between ρk00 and ρk11 averaged
over all qubits (Equation 9.1) for each (p,Dmax) pair.

3. Now, in Figure 9.3a we clearly see that the Conf(p,Dmax)DM ≈ 0 for all values
of p and Dmax >

1
2

(
2b12/2c

)
= 32. Which means that ρk00 + ρk11 = 1, and

|ρk00 − ρk11| ≈ 0. Implying that ρk00 ≈ ρk11 ≈ 0.5, which is what one would
expect from the density matrix of a maximally entangled ground state.

85

9. QIOA Results and Discussions

4. Furthermore, we already know all the possible solutions of all the instances and
hence know that Q12R5 only has a single pair of maximally entangled states as
the ground state. This is also beautifully reflected in Figure 9.3b, where we see
that with increasing p and Dmax >

1
2

(
2bn/2c

)
, Conf(p,Dmax)PRDM saturates to

0.5. Moreover, it was observed that where there are multiple pairs of solutions
involved, the value Conf(p,Dmax)PRDM saturates to also decreases accordingly.
These observations support our hypothesis that the PRDM method locks onto
one of the possible solutions hence avoiding confusions, exceptionally well.

Thus, putting all these pieces together, we can reasonably conclude that almost
little approximations are made in the range 1

2

(
2bn/2c

)
≤ Dmax ≤ 2bn/2c. How-

ever, reducing the highest possible Dmax by half still doesn’t remove the problem
of exponential scaling, and is not enough. More interesting region is towards the
beginning of Dmax axis when Dmax � 1

2

(
2bn/2c

)
. The exact reasoning of why QIOA

works in this regime also is still unclear. Nevertheless, two interesting observations
characteristic to all max-cut instances in about this region are:

1. The existence of alternating ridges of low and high confidence perpendicular
to the Dmax axis for Dmax <

1
2

(
2bn/2c

)
in both confidence plots.

2. The DM method also works considerably better in this first half of the Dmax
axis compared to the second half.

From the above discussion, we could hypothesise whenever Conf(p,Dmax)DM/PRDM

values are high, it means that the algorithm had fewer choices to choose from, and
hence, could make more confident predictions. The existence of alternating ridges
perpendicular to Dmax axis could suggest that certain truncations of the bond-
dimension preferentially removes one of the maximally entangled pairs from the
|γopt, βopt〉Dmax state thus making it easier for the algorithm to make more confident
predictions. A similar trend was observed in the normalised success % plots (Fig-
ure 8.4b to Figure 8.8b) where we saw data hinting that bond-dimensions Dmax = 3
and Dmax = 1 were subject to more approximations than the rest. In both cases,
we believe these be a feature of the doubly degenerate nature of max-cut states.
As will be explained in section 9.6, these features are not present in the case of
exact-cover instances where there is no degeneracy, further bolstering our claims.
One way to verify this hypothesis would be to perform full state tomographies at
each bond-dimension Dmax.

As in chapter 8, to get a better picture of the overall performance of QIOA on max-
cut, we have also calculated Hamming maps and confidence plots of both DM and
PRDM methods averaged over different 8, 9, 10, 11, and 12 max-cut instances.

86

9. QIOA Results and Discussions

(a) DM method

(b) PRDM method

Figure 9.4: Average Hamming maps of 8-qubit Max-Cut instances

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.5: Average Confidence Plots for 8 qubit Max-Cut instances.

Figure 9.4 presents an average Hamming map where the hamming distance produces
by a (p,Dmax) pair is the average Hamming distance averaged over all the 10 8-qubit
Max-Cut instances. Here too we can observe the stark contrast between the perfor-
mance of DM and PRDM methods that has been described above. Next, Figure 9.5
presents average Conf(p,Dmax)DM (Figure 9.5a) and average Conf(p,Dmax)PRDM

(Figure 9.5b) averaged over all available 8-qubit instances. Here too we see the
presence of ridges perpendicular to the Dmax axis, and that Conf(p,Dmax)DM ≈ 0
for Dmax >

1
2

(
2b8/2c

)
= 8, as explained above.

The inherent randomness associated with heuristic methods such as QIOA on if a
particular (p,Dmax) pair can produce a solution or not, has blurred regions in the
left-most bottom corner of the plot considerably, making it look like QIOA on an

87

9. QIOA Results and Discussions

average does not work for Dmax <
1
2

(
2b8/2c

)
= 8. However, this is not true and is

a consequence of the fact that different (p,Dmax) pair work for different instances.
One has to apply QIOA onto the respective problems to solve them.

(a) DM method

(b) PRDM method

Figure 9.6: Average Hamming maps of 9-qubit Max-Cut instances

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.7: Average Confidence Plots for 9 qubit Max-Cut instances.

Figure 9.6 and Figure 9.7 presents the average behaviour of all the 10 9-qubit max-
cut instances. Here too we observe all the previously explained features. One minor
change would be in Figure 9.7a where we see that the average Conf(p,Dmax)DM

is not exactly zero for Dmax >
1
2

(
2b9/2c

)
= 8. We believe this is because matrix

product states of odd numbered qubit registers have two bonds with the maximum
bond-dimension as opposed to a single bond with highest bond-dimension in even
numbered registers (refer subsection 2.6.2). Hence, registers with odd number of
elements are subject to more approximations than those with even number of ele-
ments when having the same highest bond-dimension limit 2bn/2c. This increased

88

9. QIOA Results and Discussions

approximations could result in fewer choices between solutions as explained during
the discussion on the behaviour of QIOA for Dmax < 1

2

(
2bn/2c

)
. Fewer available

choices lead to making more confident predictions.

(a) DM method

(b) PRDM method

Figure 9.8: Average Hamming maps of 10-qubit Max-Cut instances

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.9: Average Confidence Plots for 10 qubit Max-Cut instances.

89

9. QIOA Results and Discussions

(a) DM method

(b) PRDM method

Figure 9.10: Average Hamming maps of 11-qubit Max-Cut instances

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.11: Average Confidence Plots for 11 qubit Max-Cut instances.

Here too in Figure 9.11a, similar to Figure 9.7a, the average Conf(p,Dmax)DM is
noticeably greater than zero for Dmax >

1
2

(
2b11/2c

)
= 16. Nevertheless, the same

reasoning provided for the 9 qubit case, applies here too, as they are both odd
number of qubits.

90

9. QIOA Results and Discussions

(a) DM method.

(b) PRDM method.

Figure 9.12: Average Hamming maps of 12-qubit Max-Cut instances

From Figure 9.12b, we can clearly see that QIOA on an average performs well for
the PRDM method even for Dmax <

1
2

(
2b12/2c

)
= 32. This nature was not as clearly

observable in the previous smaller instances.

91

9. QIOA Results and Discussions

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.13: Average Confidence Plots for 12 qubit Max-Cut instances.

Also, in Figure 9.13a, we see again that Conf(p,Dmax)DM ≈ 0 for Dmax >
1
2

(
2b12/2c

)
= 32, as expected from an even-numbered instance.

9.6 Exact-Cover QIOA Results
We repeated exactly the same calculations performed on the max-cut instances here
too. Since adding individual plots will add little additional insights, the averaged
behaviour of 8, 15, and 25 qubits are provided below, directly.

(a) DM method. (b) PRDM method.

Figure 9.14: Average Hamming maps for 8 qubit Exact-Cover instances.

92

9. QIOA Results and Discussions

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.15: Average Confidence Plots 8 qubit Exact-Cover instances.

The Hamming maps presented in Figure 9.15, Figure 9.17, and Figure 9.19, present
the average behaviour of 8, 15, and 25 qubit exact-cover instances respectively. Note
that they have their Dmax and p axes flipped with respect to that of the max-cut
Hamming maps for aesthetic reasons. As previously anticipated in point 5 under
section section 9.5, we see that both PRDM and DM methods present a comparable
performance.

Nevertheless, we do observe that the PRDM methods starts working for a lower
circuit depth of p in these instances and has a marginally better overall performance
too. We attribute this to the fact that the different bits in the solution bit-string
are not independent. Hence, the projection step performed in the PRDM method
could be making use of these correlations to present a better performance.

(a) DM method.

(b) PRDM method.

Figure 9.16: Average Hamming maps for 15 qubit Exact-Cover instances.

93

9. QIOA Results and Discussions

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.17: Average Confidence Plots 15 qubit Exact-Cover instances.

There is also a significant difference between the confidence plots of exact-cover
and max-cut instances. As previously pointed out, both Conf(p,Dmax)DM and
Conf(p,Dmax)PRDM of the exact cover instances increases with increasing Dmax and
p and has no domains where they are approximately 0. To reiterate the point raised
then, we expect this to be because of the lack of degeneracy, let alone maximally
entangled degeneracy, in these exact-cover instances, hence avoiding the situation
where both ′0′ and ′1′. This lack of degeneracy could also explain why the algorithm
starts working for much lower circuit depth p for exact-cover problems, compared
to the max-cut instances. They are also significantly less noisy. Another interest-
ing observation is that lack of pronounced ridges perpendicular to the Dmax axis as
observed for max-cut confidence plots.

(a) DM method.

(b) PRDM method.

Figure 9.18: Average Hamming maps for 25 qubit Exact-Cover instances.

94

9. QIOA Results and Discussions

(a) Average Conf(p,Dmax)DM. (b) Average Conf(p,Dmax)PRDM.

Figure 9.19: Average Confidence Plots 25 qubit Exact-Cover instances.

The next striking feature about these exact-cover instances is that all 29 of them
start working when Dmax = 1 given enough circuit depths. For example, in all the 25
qubit instances shown in Figure 9.18a and Figure 9.18b, we see that the algorithm
works when Dmax = 1 and p > 2. The reason for this could be tied back to chapter 8,
section 8.3, where we see that the change in angles γopt, and βopt are quite negligible
with decreasing Dmax. Moreover, this could also be because of the ground state
being a single product state too.

9.7 Outlier Instances
In this section, we present two outlier instances, one Max-Cut (Q12R4) and one
Exact-Cover (Q25P8), both of which show characteristics different from their peers.

9.7.1 Q12R4 Max-Cut

(a) Conf(p,Dmax)DM of Q12R4. (b) Conf(p,Dmax)PRDM of Q12R4.

Figure 9.20: Confidence Plots for Max-Cut instance Q12R4.

95

9. QIOA Results and Discussions

(a) DM method.

(b) PRDM method.

Figure 9.21: Hamming maps of the Max-Cut instance Q12R4

In Figure 9.21b, we observed a strange behaviour not seen in other instances. For
smaller values of circuit depth p, the behaviour is as expected, both in the Hamming
maps (Figure 9.21) and the confidence plots (Figure 9.20). But for larger p, we see a

96

9. QIOA Results and Discussions

large domain where the method stops working and gives the same bitstring as output,
which has a minimum hamming distance of 5 from the set of 6 degenerate solutions.
This is also reflected in Figure 9.20b, where we see a corresponding dip in the same
domain where Conf(p,Dmax)PRDM ≈ 0. We also see that the PRDM method starts
working again for p = 100, and Conf(p,Dmax)PRDM also goes back to its saturation
value. A similar domain is also present in Figure 9.21a and Figure 9.20a of the
DM method performance for this instance. Another interesting observation about
Q12R4 is the existence of a second peak in its Solution landscape for p = 1, which
although is the global maxima, does not correspond with any deep minima in its
cost landscape. Hence, we suspect that this behaviour is a consequence of the linear
interpolation algorithm we are using to calculate the angles for p+1 from the angles
till p from Lukin et al. [46], and the true angles change for larger p, to the ones
corresponding to this unaccounted for global maxima. At this point, this is still a
hypothesis, and further studies are necessary.

9.7.2 Q25P8 Exact-Cover

Figure 9.22: DM and PRDM Hamming maps for the Exact-Cover instance
Q25P8

Figure 9.22 is different from the others within the same family because both DM
and PRDM methods work in a considerably lesser set of (p,Dmax) pairs for this
instance. Nevertheless, it is encouraging to see that the QIOA method still works
when Dmax = 1, just as in all the other exact-cover cover instances. However,
further analysis showed that in the large set of regions depicted in orange, where
the hamming distance is 2 in both DM and PRDM methods, the algorithm has been
finding the first excited state, instead of the ground state. This is because, for this
particular problem, the difference between the first and ground state normalised
energies is only equal to 4 units, while the highest energy state has an energy of 348
units. This means that this exception too, fits well into our story that QIOA is adept
at finding low-energy states. Furthermore, increasing the circuit depth p values

97

9. QIOA Results and Discussions

higher than 11 should help to counter this type of issues caused by small spectral
gaps in energy. Confidence plots of this instance show no diverging behaviour,
further augmenting our claim.

9.8 Trainability of QIOA
In the current implementation of QIOA, we source the required 2p angles γ1, . . . γp
and β1, . . . βp through optimization protocols performed on cost landscapes cal-
culated using full, non-truncated, |γ, β〉 states. As previously stated, these non-
truncated states have an exponentially scaling bond-dimension Dmax which quickly
makes them intractable even using heuristic algorithms such as that of Lukin et al.
[46]. Hence, to make QIOA a fully classical algorithm, one needs to find alternative
ways to source the required 2p optimum angles.

Nevertheless, in the list below, we provide two arguments hinting at the possibility
of training QIOA classically in polynomial time. That is, sourcing the 2p optimum
angles classically.

1. First argument comes from chapter 8 where we discuss the possibility of clas-
sically training the parameters of vanilla-QAOA (only shown for circuit depth
p = 1). Here, we note that the cost and solution landscapes largely retain their
structure even after calculating them using highly truncated |γ, β〉Dmax states
where Dmax does not scale exponentially. However, one of the observations
from this chapter was that although there is a slight drift though, in the opti-
mum angles, the maxima of the solution landscape also shift accordingly. An
important caveat to be raised here is that till now, we have only calculated the
drift of these optimum angles with bond-dimension Dmax, and p = 1. Further
calculations are required to study if this behaviour persists for larger circuit
depth p > 1, which is imperative for QIOA to work.

2. Second argument comes from the Hamming maps presented in this chapter.
There we see considerable noise for small values of Dmax, and in almost all
the plots, we see that larger values of circuit depth p is required for QIOA to
start working. We attribute this behaviour to the point raised above about
the corresponding shift in solution landscape peaks. These shifts would imply
that using the original angles lands us in sub-optimal regions in the solution
landscape. Hence, we hypothesise that this noise could be because we are
using the "wrong" angles for calculations. Further, we see that QIOA starts
working for much smaller circuit depth p for exact-cover instances which have
a lower drift in the optimum angles, and hence the solution maximas further
supporting our claim.

These observations hint at the possibility of classically training QIOA using a full
MPS based implementation with reduced bond-dimensions, which we plan to im-
plement in a near future.

98

Part IV

Conclusion

99

10
Conclusion

10.1 Summary
In this thesis, we implemented our own matrix product state (MPS) based quan-
tum circuit simulator using Google X’s tensornetwork package [53]. Matrix product
states are linearised representations of many-body quantum states, where every indi-
vidual component within the full many-body state is represented as a rank 3 tensor
(see chapter 2). We then used this simulator to study the characteristics of the
Quantum Approximate Optimisation Algorithm [2] under different circumstances.
Although any quantum state can be expressed exactly as an MPS, working with MPS
provides an additional option to limit the amount of entanglement in the quantum
register. This is done by performing Schmidt decompositions over each possible
bi-partitions along the linear chain, and then limiting the maximum number of al-
lowed Schmidt weights. This corresponds to limiting the amount of entanglement
within the full state. This is because the entanglement between two partitions of a
state is a function of Schmidt weights of that partition. Also, the Schmidt rank of
a bi-partition is referred to as the bond-dimension corresponding to that partition.
In highly entangled states, the number of non-zero Schmidt weights, and hence the
bond-dimension, increases exponentially with the system size. It is this exponen-
tial increase in bond-dimension which makes it intractable for classical systems to
represent and simulate highly entangled quantum states. Using MPS however, one
could approximate a highly entangled, classically intractable, quantum state |ψ〉, to
obtain another state |ψ′〉 where the entanglement scales non-exponentially, and is
hence classically manageable. In this light, we used our MPS based quantum cir-
cuit simulator to study the effect of limiting the amount of entanglement in QAOA
circuits, on the performance of QAOA. The amount of entanglement was limited by
truncating the bond-dimensions and setting an upper-bound = Dmax, which does
not scale exponentially with system size.

10.1.1 QAOA
The QAOA algorithm first maps the optimisation problem it is aiming to solve
onto a cost Hamiltonian HC . It then creates a parametrised quantum state |γ, β〉
by applying single and two-qubit gates derived from HC and parametrised by β
and γ respectively. Then, it calculates the optimum parameters γopt and βopt that
corresponds with a |γopt, βopt〉 state which has the lowest energy expectation value
with respect to HC . This is referred to as the training phase of QAOA and is
performed with the help of classical optimisation routines in the original QAOA.

101

10. Conclusion

The algorithm then creates this optimums state, |γopt, βopt〉, on a QPU. This state is
then sampled from in the computational basis, to find the basis state with maximum
weight. The idea behind QAOA is that after applying "sufficient" circuit depth p,
this state with the highest weight is the ground state of the problem it is attempting
to solve. In the infinite limit when p → ∞, the |γopt, βopt〉 state is exactly equal to
the ground state. The second phase where |γopt, βopt〉 state is repeatedly sampled to
find the solution is called the sampling phase of QAOA.

Before moving on to approximated QAOA calculations, we first verified if our sim-
ulator is performing as expected by benchmarking it with the results obtained from
a vector-matrix implementation of QAOA as in [39]. We compared if both methods
produce the same results when there are no approximations made and verified this
to be the case. Next, we performed multiple calculations of the QAOA algorithm
implemented on different sized instances of max-cut and exact-cover problems. The
two main results obtained from these simulations are presented in chapter 8 and
chapter 7.

10.1.2 Training Results for p = 1
First, the effect of limiting the bond-dimension to a user-defined maximum value
= Dmax, and hence limiting the entanglement, on the training phase of QAOA for
circuit depth p = 1 was studied. We calculated the cost and solution landscapes,
defined as Dmax〈β, γ|HC |γ, β〉Dmax and 〈gs|γ, β〉Dmax respectively, over multiple values
of maximum bond-dimension limit 1 ≤ Dmax ≤ 2bn/2c, and for γ ∈ [0, 2π] and
β ∈ [0, π].

Here, quite surprisingly, we saw that the cost and solution landscapes largely retain
their shape even on truncating the bond-dimension to very small values (see Fig-
ure 8.1 and Figure 8.9). This means that the minimas in the cost landscape and
the maximas in the solution largely remain in the same position. Since all we really
care about is the position of the minima in the cost landscape during the training
phase of QAOA, this prompted us to suggest that it could be classically possible
to find these minimas using our MPS based calculations. We presented the results
and discussions on this possibility both for max-cut and exact-cover instances in
section 8.2 and section 8.3 respectively.

Ultimately, our method needs to be tested on simulations with larger circuit depth,
p > 1, to understand if the training behaviour discussed in chapter 8 still holds. An
interesting avenue we hope to explore in the near future.

10.1.3 Sampling Results and QIOA
Our training phase results showed that approximated QAOA states |γ, β〉Dmax too,
retained useful information, even forDmax � 2bn/2c. This inspired us to investigate if
the approximated optimum state |γopt, βopt〉Dmax also, retained some of the intended

102

10. Conclusion

consequences of QAOA, such as an increase in the population of the solution state
|gs〉 with increasing circuit depth p. That is, from the original QAOA algorithm, we
know that the weight of the solution |gs〉 increases, and all the other weights decrease
with increasing circuit depth p in the full, non-truncated |γopt, βopt〉 state. We wanted
to investigate if this same behaviour also persisted in truncated |γopt, βopt〉Dmax states
with maximum bond-dimension Dmax � 2bn/2c.

If we show that this behaviour persists in the truncated states also, and that it is
possible to extract the state with the highest weight from this truncated state, then
it would mean that the sampling phase of the original QAOA is classically tractable.
Conversely, this also means that if we show that the sampling phase of QAOA could
be classically manageable using truncated MPS calculations, then it would mean
that the original behaviour of QAOA persists even on truncation. It is, in fact, the
latter path we have chosen in this thesis. We designed a method to extract the state
with the highest weight from a |γopt, βopt〉Dmax state. Then, we test if this extracted
state is the ground state of the cost Hamiltonian, and hence the solution to the
problem we are trying to solve. We call this method QIOA or Quantum Inspired
Optimisation Algorithm, and it has been described in detail in chapter 7. Before
moving on to talk about the performance of QIOA, it is important to note that,
in this investigation, we calculated the optimum parameters for larger circuit depth
p using a vector matrix implementation of the original QAOA and not our MPS
implementation. For max-cut instances, we calculated the optimum angles up to
p = 100, and for the exact-cover instances, a circuit depth up to p = 20 was used
for 8 and 15 qubit instances, while a p = 11 was used for 25-qubit instances. These
results have been presented in chapter 9.

Expounding on the results, for the case of max-cut instances, we see that the QIOA
method works for every bond-dimension Dmax when Dmax > 1

2

(
2bn/2c

)
and for a

circuit p as good as the one required in the original QAOA. This though, isn’t very
interesting because we still have an exponentially scaling bond-dimension. However,
we also see that our algorithm works heuristically for smaller bond-dimensions Dmax
as well, but require higher circuit depth p on an average. The heuristic aspect of the
algorithm is that forDmax <

1
2

(
2bn/2c

)
given a circuit depth p, and a bond dimension

Dmax, at the moment, it is not possible to know a priory if QIOA gives the correct
solution or not. Further work is needed to better understand the predictability of
the algorithm. This heuristic aspect, however, is not a major limitation, as one could
overcome this by exploring a small classically tractable region within the (p,Dmax)
space until one solution is found. In the case of exact-cover instances though, we see
that QIOA works in all cases for Dmax = 1 and a circuit depth as large as needed in
the original QAOA, which is very promising.

10.2 Applicability of QIOA method
In chapter 7, section 7.4, we have discussed multiple ways to extract the state |s〉
which holds the highest coefficient within a truncated matrix product representation

103

10. Conclusion

|γopt, βopt〉Dmax . At this point, it is important to clarify that we have no indications
suggesting that the QIOA method can be used generally in all cases of sampling
problems. To the best of our knowledge, the method only works well in cases where
the coefficient of the state |s〉 is much higher than all the other coefficients. This is
a very strong requirement that limits the applicability of QIOA. In that aspect, the
QIOA method is assured to work exactly, only when extracting the most populous
state from a full |γopt, βopt〉 state with no truncations, and an infinite circuit depth
p. This is because here, it is guaranteed that the population of the ground state
|gs〉 increases and the population of other states decreases with increasing circuit
depth p. However, exact representations of these |γopt, βopt〉 states provably need an
exponentially increasing number of parameters, which quickly becomes classically
intractable.

All we are showing with the QIOA method in this thesis is that, in all the in-
stances we have studied, we see that the main behaviours of QAOA persists even
after making approximations to the entanglement. Hence, using the framework of
tensor networks and matrix product states, we can extract the solution from a trun-
cated state as well. This makes QIOA a promising avenue for interesting future
explorations.

10.3 Future Work
Currently, we source the 2p required optimum parameters from non-approximated
implementations of the original QAOA. This was possible only because of the small
system sizes we looked at. Hence, to have a completely classical algorithm, we would
need to extend our training results described in chapter 8 for p > 1 as well. This is
something we are planning to work on in the near future.

Another big caveat in our study is that till now, we have only studied the perfor-
mance of QIOA for very small system sizes. While the system sizes we have looked
at are what is generally seen in literature when talking about quantum algorithms,
the best classical algorithms today work with sizes at-least two orders of magnitude
higher. Further work is required to elucidate the exact scaling and complexity of
QIOA.

Another important future work is to perform full state tomographies of all the in-
stances we have simulated to study more on if and how the behaviour of QAOA
persists even for smaller bond-dimensions. At the moment, we only provide con-
verse arguments that the behaviour of QAOA persists for smaller bond-dimensions
because QIOA works for smaller bond-dimensions. More rigorous methods of study
are required to further validate this claim. Full state tomographies over different
bond-dimensions would allow us to explicitly list the role MPS plays in the QIOA
method too. Moreover, studying the effect of truncating bond-dimensions in an MPS
state on the weights of different energy levels is an interesting problem in itself.

104

10. Conclusion

As stated before, currently QIOA is a heuristic algorithm where it is not possible
to not know if it works for a given (p,Dmax). Further work is required to provide
more rigorous proofs or constraints on when QIOA works, and when it does not.
We also need more investigations to study if QIOA is more generally applicable or
has similarities to some sub-class of sampling problems.

It could also be interesting to see how well the QIOA method performs in the case of
other variational quantum-classical hybrid algorithms, such as VQE [3], that encode
problem solutions in ground states of Hamiltonians.

105

10. Conclusion

106

Bibliography

[1] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum,
2:79, 8 2018.

[2] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate
Optimization Algorithm. pages 1–16, 2014.

[3] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man Hong Yung, Xiao Qi
Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications,
5:4213, 7 2014.

[4] Amir Khoshaman, Walter Vinci, Brandon Denis, Evgeny Andriyash, and Mo-
hammad H. Amin. Quantum variational autoencoder. Quantum Science and
Technology, 4(1), 1 2019.

[5] Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-
Guzik, Garnet Kin Lic Chan, and Ryan Babbush. Quantum Simulation of
Electronic Structure with Linear Depth and Connectivity. Physical Review
Letters, 120(11), 3 2018.

[6] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul,
Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. There’s plenty of
room at the Top: What will drive computer performance after Moore’s law?, 6
2020.

[7] E Drexler Richard Feynman, undefined Pasadena, and undefined 2009. There’s
Plenty of Room at the Bottom.

[8] Andreas Junk and Falk Riess. From an idea to a vision: There’s plenty of room
at the bottom. American Journal of Physics, 74(9):825–830, 9 2006.

[9] Richard P. Feynman. Quantum mechanical computers. Foundations of Physics,
16(6):507–531, 6 1986.

[10] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[11] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Complexity, 1(January):155–160, 2007.

[12] R L Rivest, A Shamir, and L Adleman. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Technical report.

[13] Ronald De Wolf. The Potential Impact of Quantum Computers on Society.
Technical report, 2017.

[14] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G S L Brandao, David A
Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins,

107

Bibliography

William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin
Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve
Habegger, Matthew P Harrigan, Michael J Hartmann, Alan Ho, Markus Hoff-
mann, Trent Huang, Travis S Humble, Sergei V Isakov, Evan Jeffrey, Zhang
Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey
Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark,
Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R Mcclean, Matthew
Mcewen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni,
Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen
Niu, Eric Ostby, Andre Petukhov, John C Platt, Chris Quintana, Eleanor G
Rieffel, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger,
Vadim Smelyanskiy, Kevin J Sung, Matthew D Trevithick, Amit Vainsencher,
Benjamin Villalonga, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zal-
cman, Hartmut Neven, and John M Martinis. Quantum supremacy using a
programmable superconducting processor. Nature, 574:505, 2019.

[15] On “Quantum Supremacy” | IBM Research Blog.
[16] Ewin Tang. A quantum-inspired classical algorithm for recommendation sys-

tems. Technical report, 2019.
[17] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation system.

In Leibniz International Proceedings in Informatics, LIPIcs, volume 67. Schloss
Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 11
2017.

[18] András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired
algorithm for linear regression. arXiv:2009.07268, 9 2020.

[19] Samuel Mugel, Carlos Kuchkovsky, Escolastico Sanchez, Samuel Fernandez-
Lorenzo, Jorge Luis-Hita, Enrique Lizaso, and Roman Orus. Dynamic Portfolio
Optimization with Real Datasets Using Quantum Processors and Quantum-
Inspired Tensor Networks. 6 2020.

[20] Chen Ding, Tian-Yi Bao, and He-Liang Huang. Quantum-Inspired Support
Vector Machine. 14(8), 6 2019.

[21] John Realpe-Gómez and Nathan Killoran. Quantum-inspired memory-
enhanced stochastic algorithms. 6 2019.

[22] Ulrich Schollwöck. The density-matrix renormalization group in the age of
matrix product states. Annals of Physics, 326(1):96–192, 1 2011.

[23] Jacob C. Bridgeman and Christopher T. Chubb. Hand-waving and interpretive
dance: An introductory course on tensor networks, 5 2017.

[24] Román Orús. A practical introduction to tensor networks: Matrix product
states and projected entangled pair states, 2014.

[25] Itai Arad and Zeph Landau. Quantum computation and the evaluation of tensor
networks. SIAM Journal on Computing, 39(7):3089–3121, 2010.

[26] Norbert Schuch, David Pérez-García, and Ignacio Cirac. Classifying quantum
phases using matrix product states and projected entangled pair states. Physical
Review B - Condensed Matter and Materials Physics, 84(16):165139, 10 2011.

[27] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. Cambridge University Press, 2010.

[28] M. B. Hastings. An Area Law for One Dimensional Quantum Systems. 5 2007.

108

Bibliography

[29] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate
Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem.
Technical report, 2015.

[30] Boaz Barak, Ankur Moitra, Ryan O’donnell, Prasad Raghavendra, Oded Regev,
David Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and
John Wright. Beating the random assignment on constraint satisfaction prob-
lems of bounded degree. Technical report, 2015.

[31] Edward Farhi and Aram W Harrow. Quantum Supremacy through the Quan-
tum Approximate Optimization Algorithm. 2 2016.

[32] M. Streif and M. Leib. Training the quantum approximate optimization al-
gorithm without access to a quantum processing unit. Quantum Science and
Technology, 5(3), 2020.

[33] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor Rieffel, Davide Ven-
turelli, and Rupak Biswas. From the Quantum Approximate Optimization
Algorithm to a Quantum Alternating Operator Ansatz. Algorithms, 12(2):34,
2 2019.

[34] Andreas Bärtschi and Stephan Eidenbenz. Grover Mixers for QAOA: Shifting
Complexity from Mixer Design to State Preparation. Technical report, 2020.

[35] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
Computation by Adiabatic Evolution. 1 2000.

[36] Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics,
2:1–14, 2 2014.

[37] About Us - Jeppesen.
[38] Mattias Grönkvist and Gr¨ Grönkvist. The Tail Assignment Problem. Technical

report, 2005.
[39] Pontus Vikstål, Mattias Grönkvist, Marika Svensson, Martin Andersson, Göran

Johansson, and Giulia Ferrini. Applying the Quantum Approximate Optimiza-
tion Algorithm to the Tail Assignment Problem. Physical Review Applied, 14(3),
12 2019.

[40] M. Willsch, D. Willsch, F. Jin, H. DeRaedt, and K. Michielsen. Benchmark-
ing the quantum approximate optimization algorithm. Quantum Information
Processing, 19(7), 2020.

[41] Gavin E. Crooks. Performance of the Quantum Approximate Optimization
Algorithm on the Maximum Cut Problem. 11 2018.

[42] P Erdds and A R&wi. On random graphs I. Technical report.
[43] G Strang Wellesley-Cambridge Press and undefined Massachusetts. Introduc-

tion to linear algebra. 2003.
[44] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. Springer

Texts in Statistics An Introduction to Statistical Learning. Technical report.
[45] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The

Computer Journal, 7(4):308–313, 1 1965.
[46] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D.

Lukin. Quantum Approximate Optimization Algorithm: Performance, Mecha-
nism, and Implementation on Near-Term Devices. 12 2018.

[47] MR Gary and DS Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. 1979.

109

Bibliography

[48] Fernando G S L Brandão, Michael Broughton, Edward Farhi, Sam Gutmann,
and Hartmut Neven. For Fixed Control Parameters the Quantum Approximate
Optimization Algorithm’s Objective Function Value Concentrates for Typical
Instances. Technical report, 2018.

[49] Hadley Wickham and Lisa Stryjewski. 40 years of boxplots. Technical report,
2011.

[50] Jeffrey S. Simonoff. Smoothing Methods in Statistics. Springer Series in Statis-
tics. Springer New York, New York, NY, 1996.

[51] RW Hamming. Coding and information theory. 1986. Englewood Cliffs, NJ,
Prentice Hall.

[52] DP Williamson and DB Shmoys. The Design of Approximation Algorithms,
2011.

[53] Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce
Fontaine, Yijian Zou, Jack Hidary, Guifre Vidal, and Stefan Leichenauer. Ten-
sorNetwork: A Library for Physics and Machine Learning. Technical report.

110

A
Appendix 1

Python Code

A.1 Function to create a QAOA MPS state

1 def QAOA_mps(gamma, beta, gamma_beta, Dmax):
2

3 Q_ord = np.linspace(start = 0, stop = (n-1), num = n, dtype = int)
4

5 SWAP = g.get_SWAP()
6

7

8 for i in range(n):
9

10 Rz = g.get_Rz(2*gamma*h[i])
11 gamma_beta.apply_one_site_gate(Rz, i)
12

13 for i in range(n):
14

15 if (i < (n-1)):
16

17 for k in range(n-1):
18

19 if (Q_ord[k] < Q_ord[k+1]):
20

21 Jij = g.get_Jij(gamma, J[Q_ord[k]][Q_ord[k+1]])
22 gamma_beta.apply_two_site_gate(Jij, site1 = k, site2 = (k+1))
23

24 gamma_beta,_ = trunc.truncate_mps(gamma_beta, Dmax)
25

26

27

28 if (i%2 == 0):
29 for s in range(l1):
30

31 Q_ord[2*s],Q_ord[2*s+1] = Q_ord[2*s+1],Q_ord[2*s]

I

A. Appendix 1

32 gamma_beta.apply_two_site_gate(SWAP, site1 = (2*s), site2 = (2*s+1))
33

34 gamma_beta,_ = trunc.truncate_mps(gamma_beta, Dmax)
35

36 else:
37

38 for s in range(l2):
39

40 Q_ord[2*s+1],Q_ord[2*s+2] = Q_ord[2*s+2],Q_ord[2*s+1]
41 gamma_beta.apply_two_site_gate(SWAP, site1 = (2*s+1), site2 = (2*s+2))
42

43 gamma_beta,_ = trunc.truncate_mps(gamma_beta, Dmax)
44

45

46 Rx = g.get_Rx(2*beta)
47

48 for i in range(n):
49

50 gamma_beta.apply_one_site_gate(Rx, i)
51

52 gamma_beta = gamma_beta.tensors[::-1]
53 gamma_beta = [gamma_beta[x].transpose([2,1,0]) for x in range(n)]
54 gamma_beta = tn.FiniteMPS(gamma_beta,canonicalize = False)
55

56 return gamma_beta

A.2 Function to Calculate the Cost of a QAOA
state

1 def get_Cost_mpsIII(gamma_beta):
2

3 '''
4 Using network implementation for hi
5 Takes 23 seconds.
6

7 Fastest method.
8

9 '''
10

11 Cost = 0
12 Sz1 = tn.Node(g.get_Z())
13

14 for i in range(n):
15

II

A. Appendix 1

16 g_b = gamma_beta.tensors
17 g_b = [tn.Node(g_b[x]) for x in range(n)]
18 g_bcon = [tn.conj(g_b[x]) for x in range(n)]
19

20 for k in range(n):
21

22 if (k == i):
23

24 g_b[k][1]^Sz1[0]
25 g_bcon[k][1]^Sz1[1]
26

27 else:
28

29 g_bcon[k][1]^g_b[k][1]
30

31 if (k == (n-1)):
32

33 g_bcon[k][2]^g_bcon[0][0]
34 g_b[k][2]^g_b[0][0]
35

36 else:
37

38 g_bcon[k][2]^g_bcon[k+1][0]
39 g_b[k][2]^g_b[k+1][0]
40

41

42

43 C = tn.contractors.greedy((g_bcon + [Sz1] + g_b))
44 C = C.tensor
45 C = np.real(C.item())
46 C = h[i]*C
47 Cost = Cost + C
48

49 Sz2 = tn.Node(g.get_Z())
50

51 for i in range(n-1):
52

53 for j in range((n-1),i,-1):
54

55 g_b = gamma_beta.tensors
56 g_b = [tn.Node(g_b[x]) for x in range(n)]
57 g_bcon = [tn.conj(g_b[x]) for x in range(n)]
58

59 for k in range(n):
60

61 if (k == i):

III

A. Appendix 1

62

63 g_b[k][1]^Sz1[0]
64 g_bcon[k][1]^Sz1[1]
65

66 elif (k == j):
67

68 g_b[k][1]^Sz2[0]
69 g_bcon[k][1]^Sz2[1]
70

71 else:
72

73 g_bcon[k][1]^g_b[k][1]
74

75 if (k == (n-1)):
76

77 g_bcon[k][2]^g_bcon[0][0]
78 g_b[k][2]^g_b[0][0]
79

80 else:
81

82 g_bcon[k][2]^g_bcon[k+1][0]
83 g_b[k][2]^g_b[k+1][0]
84

85

86 C = tn.contractors.greedy((g_bcon + [Sz1, Sz2] + g_b))
87 C = C.tensor
88 C = np.real(C.item())
89 C = J[i,j]*C
90 Cost = Cost + C
91 del g_b, g_bcon
92

93

94 return Cost

A.3 QIOA Main Method

This is the main method described in Figure 7.1

1 q = 12
2

3 l1 = int(np.floor((q)/2))
4 l2 = int(np.floor((q-1)/2))
5

6 for s in range(1):
7

IV

A. Appendix 1

8 ####### Data Extraction
9 location = '/home/ph30n1x/Chalmers/Thesis/QAOA/MaxCut/Q'

10

11 C = np.load(location+str(q)+tag+str(s)+'/C.npy')
12 n = len(C)
13

14 Gamma0 = np.load(location+str(q)+tag+str(s)+'/Gamma0.npy')
15 Beta0 = np.load(location+str(q)+tag+str(s)+'/Beta0.npy')
16

17

18 Sol = []
19 for j in range(1,33):
20

21 try:
22

23 S = np.load(location+str(n)+tag+str(s)+'/Fire/Sol_str_'+str(j)+'.npy')
24

25 S = str(S)
26 Sol.append(S)
27

28 except:
29 continue
30

31 num_of_Sols = len(Sol)
32

33 ####### Initialisation
34

35 Pmax = len(Gamma0)
36 Dlim = 100
37

38 Paxis = list(range(1,(Pmax+1)))
39 Daxis = list(range(1,(Dlim+1)))
40 X,Y = np.meshgrid(Daxis,Paxis)
41

42 qioa_best = np.ones([Pmax,Dlim])
43 qioa_worst = np.ones([Pmax,Dlim])
44

45 qioa_dm = np.ones([Pmax,Dlim])
46 qioa_prdm = np.ones([Pmax,Dlim])
47 qioa_la = np.ones([Pmax,Dlim])
48

49 DM_confidence = np.zeros([Pmax,Dlim])
50 PRDM_confidence = np.zeros([Pmax,Dlim])
51 LA_confidence = np.zeros([Pmax,Dlim])
52

53

V

A. Appendix 1

54 ####### State Preparation
55

56 for Dmax in range(1,Dlim+1):
57

58 for p in range(1,Pmax+1):
59

60 try:
61

62 gamma_beta = tn.FiniteMPS([np.array([[[1/np.sqrt(2)],
63 [1/np.sqrt(2)]]]) for x in range(n)])
64

65 GB = QAOA_mps(Gamma0[0],Beta0[0],gamma_beta,Dmax,C)
66

67 Sol_prdm_pr = ''
68 Sol_dm_pr = ''
69 Sol_la_pr = ''
70

71 for i in range(1,p):
72

73 GB = QAOA_mps(Gamma0[i],Beta0[i],GB,Dmax,C)
74

75

76 GB = tn.FiniteMPS(GB.tensors, center_position = 0, canonicalize = True)
77

78 ####### End State Preparation
79

80 # print("\n\n start LA : ",p,Dmax,'\n\n')
81

82 ########## Start Linear Algebra LA method ##########
83

84 diff_la = np.zeros(q)
85 tens = GB.tensors
86 tens_0 = [np.matrix(tens[x][:,0,:]) for x in range(n)]
87 tens_1 = [np.matrix(tens[x][:,1,:]) for x in range(n)]
88

89 k0 = np.matmul(tens_0[0],tens_0[0].H)
90 k1 = np.matmul(tens_1[0],tens_0[0].H)
91

92

93 if (abs(k0.item()) > abs(k1.item())):
94

95 K_b = tens_0[0]
96 Sol_la_pr += '0'
97

98 else:
99

VI

A. Appendix 1

100 K_b = tens_1[0]
101 Sol_la_pr += '1'
102

103 diff_la[0] = abs(k0.item()) - abs(k1.item())
104

105 for i in range(1,n):
106

107 k0 = np.matmul(K_b,tens_0[i])
108 k1 = np.matmul(K_b,tens_1[i])
109

110 k0 = np.matrix(k0)
111 k1 = np.matrix(k1)
112

113 print("Difference LA = ",abs(np.matmul(k0,k0.H).item()) - abs(np.matmul(k1,k1.H).item()))
114

115 diff_la[i] = abs(np.matmul(k0,k0.H).item()) - abs(np.matmul(k1,k1.H).item())
116

117 if (abs(np.matmul(k0,k0.H).item()) > abs(np.matmul(k1,k1.H).item())):
118

119 K_b = k0
120 Sol_la_pr += '0'
121

122 else:
123

124 K_b = k1
125 Sol_la_pr += '1'
126

127 LA_confidence[p-1,Dmax-1] = np.mean(abs(diff_la))
128

129 ########## End Linear Algebra LA method ##########
130

131 # print("\n\n start DM : ",p,Dmax,'\n\n')
132

133 ########## Start DM method ##########
134

135 diff_dm = np.zeros(q)
136 for i in range(n):
137

138 k0 = abs(get_DM(GB,i)[0,0])
139 k1 = abs(get_DM(GB,i)[1,1])
140

141 diff_dm[i] = k0 - k1
142

143 print("Difference DM = ",k0 - k1,' and Sum = ',k0 + k1)
144

145 if (k0 > k1):

VII

A. Appendix 1

146

147 Sol_dm_pr += '0'
148

149 else:
150

151 Sol_dm_pr += '1'
152

153 DM_confidence[p-1,Dmax-1] = np.mean(abs(diff_dm))
154

155 ########## End DM method ##########
156

157 # print("\n\n start PM : ",p,Dmax,'\n\n')
158

159 ########## Start PM method ##########
160

161 diff_prdm = np.zeros(q)
162 for i in range(n):
163

164 s_prdm, k0_prdm,k1_prdm = get_PM(GB,Sol_prdm_pr)
165 Sol_prdm_pr += s_prdm
166

167 diff_prdm[i] = abs(k0_prdm) - abs(k1_prdm)
168

169 print("Difference PRDM = ",k0_prdm - k1_prdm,)
170

171 PRDM_confidence[p-1,Dmax-1] = np.mean(abs(diff_prdm))
172

173 ########## End PM method ##########
174

175 ########## Check for DM method ##########
176

177 if (Sol_dm_pr in Sol):
178

179 print(' DM SUCCESS for '+str(q)+tag+str(s)+' for D = '+str(Dmax)+' and p = '+str(p)+'!!!!')
180 qioa_dm[p-1,Dmax-1] = 0
181

182 else:
183

184 Eq = []
185 for rs in range(num_of_Sols):
186

187 Eq.append(Hamming_dist(Sol_dm_pr,Sol[rs]))
188

189 qioa_dm[p-1,Dmax-1] = min(Eq)
190

191 print(' DM Not working for '+str(q)+tag+str(s)+' for D = '+str(Dmax)+' and p = '+str(p)+'!')

VIII

A. Appendix 1

192 print('# of mismatched characters = ',qioa_dm[p-1,Dmax-1],'\n')
193

194 ########## End Check for DM method ##########
195

196 ########## Check for LA method ##########
197

198 if (Sol_la_pr in Sol):
199

200 print(' LA SUCCESS for '+str(q)+tag+str(s)+' for D = '+str(Dmax)+' and p = '+str(p)+'!!!!')
201 qioa_la[p-1,Dmax-1] = 0
202

203 else:
204

205 Eq = []
206 for rs in range(num_of_Sols):
207

208 Eq.append(Hamming_dist(Sol_la_pr,Sol[rs]))
209

210 qioa_la[p-1,Dmax-1] = min(Eq)
211

212 print(' LA Not working for '+str(q)+tag+str(s)+' for D = '+str(Dmax)+' and p = '+str(p)+'!')
213 print('# of mismatched characters = ',qioa_la[p-1,Dmax-1],'\n')
214

215 ########## End Check for LA method ##########
216

217 ########## Check for PRDM method ##########
218

219 if (Sol_prdm_pr in Sol):
220

221 print('PRDM SUCCESS for '+str(q)+tag+str(s)+' for D = '+str(Dmax)+' and p = '+str(p)+'!!!!')
222 qioa_prdm[p-1,Dmax-1] = 0
223

224 else:
225

226 Eq = []
227 for rs in range(num_of_Sols):
228

229 Eq.append(Hamming_dist(Sol_prdm_pr,Sol[rs]))
230

231 qioa_prdm[p-1,Dmax-1] = min(Eq)
232

233 print('PRDM Not working for '+str(q)+tag+str(s)+' for D = '+str(Dmax)+' and p = '+str(p)+'!')
234 print('# of mismatched characters = ',qioa_prdm[p-1,Dmax-1],'\n')
235

236 ########## End Check for PRDM method ##########
237

IX

A. Appendix 1

238 ########## BEST of QIOA ##########
239

240 if ((Sol_dm_pr in Sol) or (Sol_la_pr in Sol) or (Sol_prdm_pr in Sol)):
241

242 qioa_best[p-1,Dmax-1] = 0
243

244 else:
245

246 qioa_best[p-1,Dmax-1] = min([qioa_dm[p-1,Dmax-1],qioa_la[p-1,Dmax-1],qioa_prdm[p-1,Dmax-1]])
247

248 ########## End BEST of QIOA ##########
249

250 ########## Worst of QIOA ##########
251

252 if ((Sol_dm_pr in Sol) and (Sol_la_pr in Sol) and (Sol_prdm_pr in Sol)):
253

254 qioa_worst[p-1,Dmax-1] = 0
255

256 else:
257

258 qioa_worst[p-1,Dmax-1] = max([qioa_dm[p-1,Dmax-1],qioa_la[p-1,Dmax-1],qioa_prdm[p-1,Dmax-1]])
259

260 ########## End BEST of QIOA ##########
261

262 print('\n\n')
263

264 except:
265

266 print('SVD Error!! for D = '+str(Dmax)+' and p = '+str(p)+'!\n\n')
267

268 qioa_dm[p-1,Dmax-1] = -1
269 qioa_la[p-1,Dmax-1] = -1
270 qioa_prdm[p-1,Dmax-1] = -1
271 qioa_worst[p-1,Dmax-1] = -1
272 qioa_best[p-1,Dmax-1] = -1
273

274 raise

A.4 PRDM Method code

1 def get_PRDM(gamma_beta,sol):
2

3 l = len(sol)
4

5 g_b = gamma_beta.tensors

X

A. Appendix 1

6

7 g_b = [tn.Node(g_b[x]) for x in range(n)]
8 g_bcon = [tn.conj(g_b[x]) for x in range(n)]
9

10

11 for i in range(l):
12

13 z = tn.Node(np.array([1.0,0.0]))
14 z_conj = tn.conj(z)
15

16 o = tn.Node(np.array([0.0,1.0]))
17 o_conj = tn.conj(o)
18

19 if (sol[i] == '0'):
20

21 g_b[i][1]^z[0]
22 g_b[i] = tn.contract_between(g_b[i],z,
23 output_edge_order = [g_b[i][0],g_b[i][2]])
24

25 g_bcon[i][1]^z_conj[0]
26 g_bcon[i] = tn.contract_between(g_bcon[i],z_conj,
27 output_edge_order = [g_bcon[i][0],g_bcon[i][2]])
28

29 else:
30

31 g_b[i][1]^o[0]
32 g_b[i] = tn.contract_between(g_b[i],o,
33 output_edge_order = [g_b[i][0],g_b[i][2]])
34

35 g_bcon[i][1]^o_conj[0]
36 g_bcon[i] = tn.contract_between(g_bcon[i],o_conj,
37 output_edge_order = [g_bcon[i][0],g_bcon[i][2]])
38

39

40 if (i != (l-1)):
41

42 g_b[i][1]^g_b[i+1][0]
43 g_bcon[i][1]^g_bcon[i+1][0]
44

45

46 if (l != 0):
47

48 GL_proj = tn.contractors.greedy(g_b[:l],
49 output_edge_order = [g_b[0][0],g_b[l-1][1]])
50

51 GLcon_proj = tn.contractors.greedy(g_bcon[:l],

XI

A. Appendix 1

52 output_edge_order = [g_bcon[0][0],g_bcon[l-1][1]])
53

54 else:
55

56 GL_proj = tn.Node(np.array([1.0]).reshape((1,1)))
57 GLcon_proj = tn.Node(np.array([1.0]).reshape((1,1)))
58

59

60 for i in range(l+1,n):
61

62 if (i != (n-1)):
63

64 g_b[i][2]^g_b[i+1][0]
65 g_bcon[i][2]^g_bcon[i+1][0]
66

67 g_bcon[i][1]^g_b[i][1]
68

69

70 if (l != (n-1)):
71

72 GR_proj = tn.contractors.greedy((g_b[(l+1):] + g_bcon[(l+1):]),
73 output_edge_order = [g_bcon[l+1][0],g_b[l+1][0],g_bcon[-1][2],g_b[-1][2]])
74

75 else:
76

77 GR_proj = tn.Node(np.array([1.0]).reshape((1,1,1,1)))
78

79 GLcon_proj[1]^g_bcon[l][0]
80 GL_proj[1]^g_b[l][0]
81

82 GLcon_proj[0]^GR_proj[2]
83 GL_proj[0]^GR_proj[3]
84

85 g_bcon[l][2]^GR_proj[0]
86 g_b[l][2]^GR_proj[1]
87

88 K = tn.contractors.greedy([GLcon_proj, GL_proj, g_bcon[l], g_b[l], GR_proj],
89 output_edge_order = [g_bcon[l][1],g_b[l][1]])
90

91 k0_prdm = abs(K.tensor[0,0])
92 k1_prdm = abs(K.tensor[1,1])
93

94 s_prdm = ''
95

96 if (abs(k0_prdm) > abs(k1_prdm)):
97

XII

A. Appendix 1

98 s_prdm = '0'
99

100 else:
101

102 s_prdm = '1'
103

104 return s_prdm,k0_prdm,k1_prdm

XIII

	List of Figures
	List of Tables
	I Introduction
	Introduction
	Tensor Networks
	Tensors
	Pictorial Representation
	Tensor Operations
	Contraction
	Tensor Products

	Singular Value Decomposition
	Schmidt Decomposition
	Matrix Product States
	MPS Derivation
	Bond Dimension and Entanglement
	Product States

	Matrix Product Operators
	Quantum Circuits as Tensor Networks
	Reduced Density Matrix Calculations

	QAOA
	Quantum Adiabatic Algorithm
	QAOA Method
	QAOA and Tensor Networks

	II Methods
	Instance Generation
	Exact Cover
	Max-Cut
	Max-Cut Definition
	Erdős - Rényi Graphs

	Nomenclature

	State Preparation
	Initialization
	Gates Used
	Single Qubit Gates
	
	

	Two Qubit Gates
	
	SWAP Gates

	Truncation
	Cost Estimation
	Summary

	Training QAOA
	Grid Search
	Optimisation Protocols

	QIOA
	General Principle
	State Preparation
	
	
	Reduced Density Matrix Method
	Reduced Density Matrix Method with Projections

	Summary

	III Results & Discussion
	Training Results and Discussions
	Cost and Solution Landscapes
	Max-Cut Training Results
	Exact-Cover Training Results

	QIOA Results and Discussions
	Inspiration
	Hamming Distance
	Black-box Picture of QIOA
	Plot Definitions
	Hamming Maps
	Confidence Plots

	Max-Cut QIOA Results
	Exact-Cover QIOA Results
	Outlier Instances
	Q12R4 Max-Cut
	Q25P8 Exact-Cover

	Trainability of QIOA

	IV Conclusion
	Conclusion
	Summary
	QAOA
	
	Sampling Results and QIOA

	Applicability of QIOA method
	Future Work

	Bibliography
	Appendix 1
	Function to create a QAOA MPS state
	Function to Calculate the Cost of a QAOA state
	QIOA Main Method
	PRDM Method code

