
Electromagnetic Models of Bistatic Radar Scattering from
Rough Surfaces with Gaussian Correlation Function

MACIEJ J. SOJA

Department of Radio and Space Science
Radar Remote Sensing Group
CHALMERS UNIVERSITY OF TECHNOLOGY
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Abstract

The main scope of this Master Thesis project was to simulate incoherent bistatic radar scattering from random rough
surfaces using electromagnetic models. Three well-established models were implemented: Physical Optics (PO), Geo-
metrical Optics (GO), and Small Perturbation Model (SPM). These models are asymptotic in frequency, and thus only
valid in the extreme cases of either very high frequencies, as for GO/PO, or very low frequencies, as for SPM. The main
focus of this thesis is on the Integral Equation Model (IEM), which is a more recently developed model and partially bridges
the validity gap between GO/PO and SPM. The Integral Equation Model is built on the same basis as GO/PO, namely
the tangential plane approximation, but it also includes a complementary term, which accounts for multiple scattering.
In order to solve the underlying integral equations, a number of approximations was introduced during the derivation
of IEM by the original authors. Some of these simplifications could later be removed, which resulted in the more recent
derivatives of IEM (mainly Improved Integral Equation Model, IIEM, and Advanced Integral Equation Model, AIEM), giving
much more complicated, but also more accurate expressions.

Five of the mentioned models (GO, PO, SPM, IEM, and AIEM) were implemented by the author and verified against
results published in literature. In the low frequency region, studies of scattering coefficient (�0) as a function of the
elevation angle �s were performed for a number of setups, and the agreement of the implemented models with the
literature was perfect in all cases. In the high frequency region, �0 was studied both as a function of �s and the azimuth
angle �s. The general behavior of �0 as a function of �s is such, that a dip (minimum of scattering) can be expected at an
azimuth angle around 90Æ. The observed positions of these dips were in a disagreement of up to �20Æ when compared
to the literature. In the study of �0 as a function of �s, the agreement with the literature was good except for the cases
that were directly affected by the previously described dip disagreement. However, even in those cases, the maximal
difference in �0 compared to the literature was at most �2 dB. The influence of the dip disagreement on the further
studies could be minimized by avoiding angular setups close to the problematic regions.

The models were used to study the angular distribution of the scattering coefficients for two surfaces: a gently undulating
surface in the PO region and a rough surface in the SPM region. This study resulted in graphs that visualize scattering in
an intuitive way, which improves the understanding of the governing processes. It was confirmed that the roughness
parameters greatly affect the angular distribution of scattering, and that in the low-frequency region (SPM-region),
scattering is more equally distributed in all directions than in the high-frequency region (GO/PO-region).

In a second study, scattering from surfaces with different roughness parameters for some fixed angular setups was
investigated. It was found that the bistatic scattering coefficient for gently undulating surfaces (high kL) was maximized
when the vertical variations were moderate in magnitude. In forward scattering, in the region with very gentle horizontal
variations and small vertical variations, it was found that a slightly rough surface gives higher scattering coefficients than
a perfectly smooth surface, which indicates that the presented versions of the models are not suitable for perfectly smooth
surfaces unless the coherent component is added.

The results of the studies also show that the models generally work well when cross-compared with each other. However,
AIEM overestimates backscattering from surfaces with very gentle horizontal variations and small vertical variations as
compared to IEM and PO. Moreover, it also shows a disagreement with IEM and SPM for backscattering in the low-
frequency region. Comparing the scattering coefficients for VV and HH modes, one can observe that they are higher for
HH than for VV in all cases except backscattering in the low-frequency region where the result is the opposite.

Index Terms

bistatic radar scattering, random rough surfaces, integral equation model (IEM), advanced integral equation model (AIEM), geometrical
optics model (GO), physical optics model (PO), small perturbation model (SPM)
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NOMENCLATURE

Here, the basic nomenclature is presented and it is valid throughout this report unless mentioned otherwise. In
cases where E or E are involved, they can be replaced by H or H in order to get the corresponding symbols for
magnetic fields.� tangential plane tilt angled̂ local coordinate system base vector (d̂ = k̂i � t̂)�� difference in azimuth angles between incident and scattered radiation (�� = �s � �i)�1 (�2) dielectric permittivity in medium 1 (medium 2)�r relative dielectric permittivity on the interface (�r = �2=�1)E0 amplitude of the incident electric fieldEi amplitude of the incident electric field together with the phase term�i (�s) incident (scattered) azimuth anglek1 (k2) wave number in medium 1 (medium 2)kL normalized correlation length (unitless)k� normalized standard deviation of a surface (unitless)kix; kiy; kiz components of k̂iksx; ksy; ksz components of k̂sk̂i (k̂s) incident (scattered) wavevectorĥi (ĥs) incident (scattered) horizontal polarization vectorE i (Et) incident (transmitted) complementary electric field coefficient�1 (�2) intrinsic impedance in medium 1 (medium 2)L correlation length in meters�1 (�2) magnetic permeability in medium 1 (medium 2)�r relative magnetic permeability on the interface (�r = �2=�1)n̂1 or n̂ normal vector to the boundary in medium 1n̂2 or �n̂ normal vector to the boundary in medium 2n̂�E tangential electric surface field(n̂�E)k Kirchhoff term of a tangential surface field n̂�E(n̂�E) complementary term of a tangential surface field n̂�E(n̂�Eh)k Kirchhoff term of a tangential surface field n̂�E (incident polarization horizontal)(n̂�Ev)k Kirchhoff term of a tangential surface field n̂�E (incident polarization vertical)(n̂�Eh) complementary term of a tangential surface field n̂�E (incident polarization horizontal)(n̂�Ev) complementary term of a tangential surface field n̂�E (incident polarization vertical)� frequency of the incident wavep̂ incident polarization vectorq̂ scattered polarization vectorR Fresnel coefficient for cross-polarizationRk (R?) Fresnel coefficient for parallel (perpendicular) polarization�(�) correlation function� standard deviation of a surface in meters�RCS radar cross section in square meters�0 normalized radar cross section, scattering coefficient�0pq scattering coefficient for polarization mode pq (can be HH, VV, HV, or VH)t̂ local coordinate system base vector (t̂ = k̂i � n̂=jk̂i � n̂j)�i (�s) incident (scattered) altitude angle# local incidence anglev̂i (v̂s) incident (scattered) vertical polarization vectorE total electric field in the upper mediumEi (Es, Et, Er) incident (scattered, transmitted, reflected) electric fieldEk (E?) parallelly (perpendicularly) polarized part of the electric fieldEh (Ev) horizontally (vertically) polarized part of the electric field�i Green’s function in the upper medium�t Green’s function in the lower medium grazing angle (90Æ � �i)Z(x; y) realization of a surface created by a random processZx(x; y) partial derivative of Z(x; y) in the x-directionZy(x; y) partial derivative of Z(x; y) in the y-direction
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1 INTRODUCTION

D ECADES have passed since the radar technique was invented, and the field of use of radar has expanded
greatly. Nowadays, radar monitoring of ice, sea, agricultural soil, and forests is of great importance both for

environmental studies and more practical purposes such as sea-state monitoring and wind speed measuring. These
kinds of studies have been done at the Remote Radar Sensing group at Chalmers University of Technology in
Gothenburg, Sweden for over 20 years giving the group a vast experience in the field of radar data analysis. In
order to improve the general knowledge about the mechanisms of scattering, as well as to improve the produced
algorithms, theoretical studies of scattering from rough surfaces are very important.

Rough surface scattering can be studied numerically or analytically, depending on the knowledge about a sur-
face and the purpose of the study. If a particular surface is known (deterministic), then numerical studies using
Maxwell’s equations can be performed with good results. General studies of random rough surfaces can also be
done numerically after averaging over a wide set of statistically representative deterministic surfaces. However,
this can be a very slow process since numerical simulations often are computationally demanding.

If a surface is relatively homogenous in its structure or consists of cells that are relatively homogenous, then it
can be described by a few statistical parameters such as standard deviation of height variations, correlation length,
and correlation function. Many natural surfaces, such as ice and agricultural soil, can be described in such a way.
In that case, theoretical studies of scattering from these kinds of random rough surfaces can be performed much
more efficiently using models based on statistics.

For many years, researchers were restricted to two general models that worked for different types of rough surfaces
— Kirchhoff Model (KM) based on the high-frequency approximation for slowly undulating surfaces [1–7], and
Small Perturbation Model (SPM) based on the low-frequency approximation for small vertical variations [2–7]. Both
models are asymptotic and studies outside the mentioned validity regions are thus highly restricted.

During the eighties, a model valid for surfaces with intermediate roughness was developed for perfectly conducting
surfaces [8], but it was first in 1992 that Fung et al. revealed a model that also worked for dielectric surfaces [9]. This
model was called Integral Equation Model (IEM) as it was built on integral equations for electric and magnetic
fields as described by Poggio and Miller [10]. IEM was later further developed in order to make the simulated
scattering more accurate which resulted in models such as Improved IEM [11] and Advanced IEM [12–14].

After the mentioned models were implemented, simulation results were verified against results found in reference
articles (mainly Wu et al. [14]) for identical setups of the input parameters. Thereafter, IEM and AIEM were used
together with the asymptotic models in a study of scattering from a wide range of different random rough surfaces.
Also, some qualitative studies of the models in scenarios that have not been previously examined in literature (at
least to the author’s current knowledge) have been made. These studies include an examination of the angular
behavior of the scattered field in a half-sphere above the surface, as well as a qualitative study of the scattering
coefficients as a function of surface roughness parameters. Some of the results can easily be explained using the
same arguments as for the asymptotic models while some other results are more difficult to understand intuitively.
Even though no empirical data was used in this study, the results showed that the implemented models produce
consistent results within their validity regions. No major disagreements were found as compared to references.

This report has the following structure. First, radar theory and some basic concepts crucial for further understanding
are presented in Section 2. Next, some physical mechanisms of scattering are briefly explained (Section 3). In
Section 4, rough surfaces are described by means of statistics. Section 5 deals with the asymptotic models based
on the Kirchhoff approximation and small perturbation theory. Thereafter, the derivation of the Integral Equation
Model is presented in detail (Section 6). In Section 7, some major assumptions and approximations used in the
derivation of IEM are explained and examined, and the later versions of IEM are presented. Section 8 deals with
the verification of the implemented models against some known results and against each other for chosen values
of surface parameters, while Section 9 contains a study of the scattering for different surfaces. Finally, in Section
10 the results are summarized, analyzed, and discussed.

All simulations in this report were performed in Matlab R: All figures in this report (except graphs to the left
in Figures 8.1-8.2, which have been taken from Fung et al. [11]) have been produced by the author using either
XFig or Matlab R: This report was written in LATEX using a slightly modified version of the IEEE template1.

1. http://www.ieee.org/web/publications/authors/transjnl/index.html
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2 RADAR

2.1 History and Basic Principles

The word radar is an abbreviation for radio detection and ranging [15–17] and was originally introduced by the US
Navy in the early forties. The technology itself has many fathers and can be tracked back to the beginning of the
20th century. The first radar units were only designed for detecting ships on sea, but as the technology developed,
its area of use broadened. Nowadays, radar is used in a very wide range of different applications, including such
non-military areas as meteorology, oceanology, and traffic control.

Radar is an active remote sensing system based on the principle of echolocation. Some animals (like bats, whales, and
some birds) spend most of their lives in environments, where optical sensing is impossible (like in darkness). These
animals developed echolocation, a system based on measuring the echo of a transmitted signal. When a probing
sound is emitted by the animal, it propagates into the environment until it hits an obstacle and is scattered. Some
parts of the signal return to the animal, where they are detected, measured, and analyzed. From that, the animal gets
an acoustic image of the surroundings, an image it uses for orientation. Humans are generally neither equipped
nor trained for the use of echolocation although there are some cases when people can actually make use of if
(like people with seeing disorder, who use a stick to generate sounds that help them perceive the environment).
Echolocation is reproduced by modern technology in different forms of remote sensing devices. These devices can
either use sound waves, like in sonar, optical waves, like in lidar, or microwaves, like in radar.

2.2 Frequencies and Radar Bands

TABLE 2.1: An overview for the most common radar bands according to Skolnik [18] and AIAA [19]. The P-band
is an old name for frequencies around 300 MHz (P stands for previous).

Band: Frequency interval: Wavelength interval: Usage:

HF 3-30 MHz 10-100 m Over-the-horizon radars (High Frequency)
VHF 30-300 MHz 1-10 m Very long-range surveillance (Very High Frequency)
UHF 300-1000 MHz 30-100 cm Very long-range surveillance (Ultra High Frequency)

L 1-2 GHz 15-30 cm Long-range surveillance, enroute traffic control (long wavelengths)

S 2-4 GHz 7.5-15.0 cm
Moderate-range surveillance, terminal traffic control, long-range weather (short
wavelengths)

C 4-8 GHz 3.75-7.50 cm Long-range tracking, airborne weather (a compromise between X and S)

X 8-12 GHz 2.50-3.75 cm
Short-range tracking, missile guidance, mapping, marine radar, airborne inter-
cept (called X for historical reasons, secret band during World War II)Ku 12-18 GHz 1.67-2.50 cm High resolution mapping, satellite altimetry (subscript u for under K)

K 18-27 GHz 1.11-1.67 cm Meteorology, automotive radar (kurz, short in German)Ka 27-40 GHz 0.75-1.11 cm Very high resolution mapping, airport surveillance (subscript a for above K)
V 40-75 GHz 4.0-7.5 mm

ExperimentalW 75-110 GHz 2.7-4.0 mm
mm 110-300 GHz 1.0-2.7 mm

Radar uses electromagnetic radiation with frequencies corresponding to radio waves or microwaves, and the choice
of frequency is important as various applications demand different kinds of properties. Generally one can say that
higher frequencies give smaller antennas, higher bandwidth (thus higher resolution), but also greater sensitivity
to atmospherical noise which generally causes a shorter range. Higher frequencies also demand more precise
technology. The lower limit at around 3MHz is set by the fact, that big antennas are needed in order to get a
narrow bandwidth [18]. The interval has been divided in many frequency bands called by quite randomly chosen
letters (mainly in order to confuse the enemies during World War II). Each band usually has special properties that
make it suitable for a certain application. For example, in the K-band (18-27GHz), water vapor is almost opaque
for electromagnetic waves which makes it suitable for cloud detection, but totally useless for aircraft detection. A
overview of the different bands can be seen in Table 2.1.

2.3 Radar Equation

The radar equation is a relation which is often considered to be the fundamental equation of radar. Knowing radiation
power of an antenna and some variables that can be measured, the power measured at a receiving antenna can
be computed. The derivation follows closely the ones that can be found in Kingsley and Quegan [15], Sullivan
[16], Woodhouse [17], and Skolnik [18]. An illustration explaining the different symbols used below can be found
in Figure 2.1
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G,Pt Ae
Transmitting antenna

Receiving antenna

R1

R2
�RCS

Target

�
Fig. 2.1: A typical bistatic radar system consists of a transmitting and a receiving antenna. An electromagnetic wave
is emitted from the transmitter into the space towards an object. As the wave encounters the target, it is scattered
and some of the wave is reflected and then received at the second antenna.

Assuming that a transmitting antenna has a peak power output Pt and that it has a gain Gt in the transmitting
direction, the power flux at the distance R1 in that direction is:I = PtGt4�R21 :
Radar cross section (�RCS2 or RCS as it may be referred to) is a parameter that describes the scattering strength
sensed by radar. If the target is situated at the distance R1 from the radar antenna, the scattered flux density at the
distance R2 is: I 0 = I�RCS4�R22 = PtGt�RCS(4�)2R21R22 :
Assuming that the receiving antenna has an effective area of Ae, the received power at the antenna is:Pr = I 0Ae = PtGt�RCSAe(4�)2R21R22 : (2.1)

If a radar uses the same antenna for both transmission and reception then it is called monostatic system. Using
monostatic radar system, only backward scattering can be measured. If the receiver is situated somewhere else
than the transmitter, then the system is called bistatic system. In the case of a monostatic radar system, the gain
is the same for both transmission and reception (G = Gt = Gr) and also, R1 = R2 = R. The quantity Ae can be
re-written as [16]: Ae = G�24� (2.2)

and (2.1) turns into: Pr = PtG2�2�RCS(4�)3R4 (2.3)

where � is the wavelength of the used wave. This is one of the most common forms of the radar equation.

In the bistatic case, (2.3) becomes: Pr = PtGtGr�2�RCS(4�)3R21R22 : (2.4)

2. Radar cross section is normally denoted by just � but in order to avoid confusion with standard deviation �, RCS will be referred to as�RCS .
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Sullivan [16, Chap. 1] describes another form of the radar equation — namely the one that employs the signal-to-noise
ratio (SNR) after matched filtering: SNR = ErEn ; (2.5)

where Er is the received and processed signal energy and En is the noise spectral density. For a pulsed radar with
pulse length � and a loss factor L, the received signal energy isEr = Pr�LCB ; (2.6)

where CB is a correction factor due to signal processing (equal to 1 for matched filtering), and the noise energy
can be expressed as En = kBTs; (2.7)

where kB is Boltzmann’s constant and Ts is the system temperature. Expressions (2.6) and (2.7) can be inserted into
(2.5) and together with (2.3) and (2.2) they give:SNR = PtA2e�RCS�4�R4�2kBTsCBL: (2.8)

All the calculations above are carried out for a fixed direction of the incident and reflected waves (fixed positions of
both antennas and the object). It should be mentioned that quantities such as Gt;r and �RCS are generally different
for different angles (anisotropic). One should thus express them as:Gt = Gt(k̂i);Gr = Gr(k̂s);�RCS = �RCS(k̂i; k̂s);
where k̂i and k̂s are unit vectors in the direction of the incident and scattered wave (see Figure 2.2b), respectively.
For monostatic radar, k̂s = �k̂i and thus �RCS = �RCS(k̂i).
2.4 Normalized Radar Cross Section and the Scattering Coeffi cient

An expression for the monostatic radar cross section can be easily derived from (2.3) which gives:�RCS = Pr(4�)3R4PtG2�2 : (2.9)

In the bistatic case this should be instead taken from (2.4):�RCS = Pr(4�)3R21R22PtGtGr�2 ; (2.10)

where the transmitting and receiving antennas have gain Gt and Gr, respectively.

In applications where extended targets are studied (as opposed to point targets), one is generally more interested
in the normalized radar cross section �0, which is the expression for �RCS divided by the area A over which the
measurement is made. This yields: �0 = �RCSA :
The normalized radar cross section �0, or the scattering coefficient as it also can be called, is often measured in
decibels: �0dB = 10 � log10 �0;
which is the main quantity studied in this report.
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Fig. 2.2: (a) Different types of polarization. The solid line marks the trajectory of the tip of the field vector while the
dashed line indicates the direction of propagation of the wave. (b) The incident polarization vector p̂ can always
be re-written as a sum of the two base vectors v̂i and ĥi (similar for the scattered polarization vector p̂ with v̂s andĥs). Vector v̂i is perpendicular to k̂i and lies in the incident (I) plane while ĥi is parallel to the y-axis. Vector v̂s is
perpendicular to k̂s and lies in the scattered (S) plane while ĥs is perpendicular to k̂s and parallel to the x-y-plane.

2.5 Plane Waves, Polarization and Coordinate Systems

Incident waves can be assumed plane if the distance between the examined object and the antenna is large. In radar
applications, this assumption (called far field approximation) is most often valid and widely used. The following
paragraphs use the fact, that the incident radiation consists of plane waves.

The property of wave polarization describes the direction of wave oscillations. Electromagnetic plane waves prop-
agate in a homogenous and isotropic medium as transverse waves that oscillate in a plane perpendicular to the
direction of propagation. Looking at the plane of oscillations and keeping it fixed in space, the tip of the field vector
can either move along a straight line (linear polarization), along an ellipse (elliptical polarization), or along a circle
(circular polarization), which is a special case of elliptical polarization. Elliptical polarization can be either right- or
left-handed depending on the direction of the rotation. In Figure 2.2a, four different types of polarization are shown.

Since circularly and elliptically polarized waves can be resolved into two perpendicular linearly polarized waves
with a phase shift of �=2 radians, it is only necessary to study linear polarizations in two linearly independent
directions in order to be able to cover all possible polarizations. The vector that describes polarization of the incident
electric field will be called p̂. Since Maxwell’s equations are linear, electric and magnetic fields can be split into
additive parts that can be manipulated separately. This way, each vector p̂ can be resolved into a linear combination
of the two orthonormal vectors ĥi and v̂i representing horizontal and vertical polarization (see Figure 2.2b). This
way, a study of only two polarization directions is sufficient.

In studies of scattering, the transmitter and the receiver work with either horizontal or vertical polarizations. Thus,
there is a total of four modes available when studying scattering — vertical-vertical (VV), horizontal-horizontal
(HH), horizontal-vertical (HV), and vertical-horizontal (VH), see Table 2.2. Studying different scattering modes is
very useful due to the diversity of ways in which waves and surfaces can interact.

TABLE 2.2: Four modes for scattering studies. The incident polarization vectors have subscript i and the scattered
polarization vectors have subscript s. VV and HH are co-polarized (like-polarized) modes while HV and VH are
cross-polarized modes. q̂ = v̂s q̂ = ĥsp̂ = v̂i VV VHp̂ = ĥi HV HH
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(a) Perfectly smooth surface (b) Slightly rough surface (c) Rough surface

Fig. 3.1: (a) Scattering from a perfectly smooth surface occurs in a coherent way and all radiation is reflected in
the specular direction and the reflected field is also coherent. (b) When the surface is slightly rough, the major part
of the radiation is still reflected in the coherent way in the specular direction, but some of the incident field is
scattered incoherently in other directions. (c) Scattering from a very rough surface occurs mostly in the incoherent
way and the coherent component is small (in the special case of a perfect diffuser, a perfect Lambertian surface,
the coherent component is non-existent). See also Ogilvy [2] and Ulaby et al. [4, chap. 11].

3 PHYSICS OF SCATTERING

3.1 Surface and Volume Scattering

Scattering occurs on boundaries between two homogenous media with different electric and magnetic properties.
If both media are semi-infinite and the boundary is the only discontinuity, then scattering only occurs at the
boundary (surface scattering). Depending on the roughness of the surface, the angular distribution of the scattered
and transmitted wave is different. If the lower medium is inhomogeneous or a mixture of different media, then
an incoming wave is scattered on different levels and in different ways which is called volume scattering. Volume
scattering (described briefly in Ulaby et al. [4, chap. 11]) is not dealt with in this report because it generally does
not occur in the relevant surfaces.

3.2 Coherent and Incoherent Scattering

One can study scattering qualitatively by regarding two extreme cases — perfectly smooth surface and perfectly
rough surface. Scattering from a perfectly smooth surface occurs in the same way as reflection from a mirror — the
incoming wave is reflected in the specular direction. This kind of scattering affects the phase in a well known and
predictable way and is called coherent scattering. Scattering from a Lambertian surface (a perfect diffuser) occurs in
a perfectly incoherent way. All phase information is lost and the scattered field is evenly distributed over half-space
(it is isotropic). See Figure 3.1, Ulaby et al. [4, chap. 11-2], and Beckmann and Spizzichino [1, chap. 5.3].

Scattering from a natural surface is a combination of coherent and diffuse components. For very rough surfaces, the
diffuse component dominates. However, as a surface becomes smoother, the coherent component becomes more
prominent. It is important to notice, that the roughness of the surface depends on the microwave frequency used.
A surface that appears very rough in optical wavelengths may be smooth to microwaves. That is why roughness
of surfaces is most often expressed in wavelength units (more about that in Section 4.3).
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   ha
Fig. 4.1: In the derivation of the Rayleigh criterion, the path difference for the two different rays is computed from
the grazing angle  and height difference h. The corresponding phase difference should be small in order to limit
the incoherent component of the reflected field.

4 RANDOMLY ROUGH SURFACES

In this text, scattering from randomly rough surfaces is studied from a statistical point of view. A surface is
described by only a few parameters and no deterministic surfaces are studied. Compared to numerical methods for
studies of particular surfaces (such as MM, method of moments, see Wu et al. [20, and references therein] for some
comparisons), this approach gives much shorter computational time, more general results, and it can be used in
many more fields. In order to use a statistical approach, a surface has to be described by a few parameters that will
be described below. First, however, a criterion for a smooth surface is presented. The derivation of the so-called
Rayleigh criterion follows closely Beckmann and Spizzichino [1], Ulaby et al. [4], Skolnik [18], Ishimaru [21].

4.1 Smooth Surfaces and the Rayleigh Criterion

In order to be able to talk about rough surfaces, it is needed to find a criterion, which determines whether the
examined surface is rough or smooth. If two rays are incident on the surface with height deviation h at a grazing
angle  (see Figure 4.1), then the ray that is reflected by the lower part of the surface travels an extra distance that
can be computed with simple trigonometry: �r = 2a = 2h sin 
and the corresponding phase difference is: �' = k�r = 4�h sin � : (4.1)

A phase shift of � will make the two rays interfere in such a way that they eliminate each other. By setting an
arbitrary limit less than �, for example �=2, equation (4.1) turns into�' = 4�h sin � < �=2 (4.2)

and the Rayleigh criterion for a smooth surface is: h < �8 sin : (4.3)

Sometimes more strict limits are used instead of �=2, such as �=4 and �=8 and the factor 8 in (4.3) is replaced by 16
or 32. The factor 32 gives the strongest restriction and then the Rayleigh criterion turns into the so called Fraunhofer
criterion, see Ulaby et al. [4, chap. 11]: h < �32 sin : (4.4)

4.2 Statistical Description of Rough Surfaces

Natural surfaces such as terrain or sea can best be described by means of statistics [1, p. 72]. If a random process
that generates a set of random variables Z(x; y) has constant mean value equal to � and constant standard deviation
equal to �, the probability distribution is constant in space, and its correlation function�(x0; y0) � corr[Z(x; y); Z(x+ x0; y + y0)℄; (4.5)
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is independent of the space variables x; y, then it is stationary. The generated surface Z(x; y) is then a representation
of the process. In the following text, a random rough surface will be referred to as Z(x; y) which does not mean a
particular surface but only a representation of a stationary random process. In this report, only Gaussian stationary
random processes are dealt with (Z has Gaussian probability density function).

4.2.1 Correlation Length
The correlation length L is defined for one-dimensional correlation function as [4, chap. 11]:�(L) = 1e (4.6)

and it describes the typical minimal distance between two points, which can be assumed uncorrelated. For two-
dimensional surfaces that have the same properties in both x- and y-directions, the correlation function can be
written as a function of the radial distance: �(�) = �(px02 + y02); (4.7)

and L is now the radial distance to the closest point where the correlation function is 1e .

In Figure 4.2 three surfaces with constant � but different L are plotted. Often, one could think that a high value of� creates a rough surface and vice versa. As it can be seen, neither of the two parameters is on its own sufficient to
describe whether a surface is smooth or rough. A surface with very high � can be locally smooth if the correlation
length L is high, as in Figure 4.2a. On the other hand, if a surface has short correlation length, even a small
magnitude of � will create a locally very rough surface. As a conclusion, one can say that L describes the surface
variation in x-y-direction while � describes the variation of the elevation of the surface. See also Beckmann and
Spizzichino [1, chap. 5.3] and Ogilvy [2].

4.2.2 Some Common Correlation Functions
Two correlation functions are commonly used: Gaussian and exponential. Using a well defined correlation function,
expectation values that show up in the derivations of the models (presented in the following sections) can be
computed explicitly, which gives easier expressions. Here follows a short description of these functions as presented
in Fung [22, app. 2B] for the one-dimensional case.

The Gaussian (normal) correlation function has an expression with only one parameter L:�G(�) = exp�� �2L2� (4.8)

and its nth power Fourier transform is:W (n)G (K) = Z 10 �n(�)J0(K�)�d� = L22n exp"��KL2 �2#
(4.9)

The exponential correlation function has the following expression:�E0(�) = exp��j�jL � : (4.10)

This function is obviously not differentiable in the origin, which is an undesired property. Most often, the exponential
function is replaced with a similar function that is differentiable in the origin. One such function is:�E1(�) = exp ��j�jL + j�jL exp��j�jd ��: (4.11)

Close to the origin, �E1 � �E0 but it is still differentiable. Other well-defined or generalized functions may be used
as well. Exponential correlation functions are often used in practice since they in many cases represent the natural
behavior of surfaces in a very realistic way. There are some other versions of this function presented in Fung [22,
app. 2B] that will be omitted here.

The nth power roughness (Fourier) spectrum of the exponential correlation function (4.10) is:W (n)E (K) = �Ln�2 "1 +�KLn �2#�3=2: (4.12)



MACIEJ SOJA: ELECTROMAGNETIC MODELS OF BISTATIC RADAR SCATTERING FROM ROUGH SURFACES WITH GAUSSIAN CORRELATION FUNCTION 11

(a) High L (b) Medium L (c) Low L
Fig. 4.2: The correlation length L describes how fast the surface changes in the x-y-direction. All three surfaces have
the same standard deviation �.

4.3 Normalized Roughness Parameters

Since surface parameters � and L need always to be considered in relation to the frequency � of the used wave, it
is common to use their normalized values, which are found by a multiplication with the wave number k:

Normalized correlation length: kL = 2��L = 2�L� ; (4.13)

Normalized standard deviation: k� = 2��� = 2��� : (4.14)
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Fig. 5.1: Approximate validity regions for Small Perturbation Model (SPM), Geometrical Optics (GO), and Physical
Optics (PO) according to Ulaby et al. [4], Koudogbo et al. [24], and Rees [25]. Validity for GO is limited by rules
R2, R3 and/or R7. Rule R7 is a function of the two angles �i, �s and lines for some combinations of these angles
are drawn in the figure. PO is limited by R3 and R5. SPM is limited by R1 and R4. In Thorsos [23] some extra
limitations for SPM have been presented. These limitations restrict the use of SPM for k� > 2, which is on the right
hand side of the dashed line called R6. According to the work described in Thorsos [23], SPM can not be used for
those kL-k�-combinations due to a disagreement with numerical Monte Carlo simulations presented in that article.
It is very important to notice that validity regions presented above are very rough and should be considered as
guidelines rather than rules.

5 BASIC MODELS FOR ELECTROMAGNETIC SIMULATION OF SCATTERING

There are two well-established methods for electromagnetic simulation of radar scattering from randomly rough
surfaces — the Kirchhoff Method (KM) based on the high-frequency assumption and tangential plane approximation,
and the Small Perturbation Method (SPM) based on Taylor expansion around small values of k� (low frequencies).
These two methods have different validity regions that for most cases do not overlap (see Figure 5.1). Roughly,
one can say that SPM can be used when surfaces with small height variations and moderate correlation lengths
are studied, while KM can be used for surfaces that can be assumed locally smooth.

5.1 Kirchhoff Model

The Kirchhoff Model is based on the assumption that the wavelength of the incident wave is much shorter than the

horizontal variations of the surface, and that the so called radius of curvature (the ratio l22:76� , see [4, p. 1012-1013])
is sufficiently large so that the surface undulates gently and it can be seen as locally smooth (see Figure 5.1). This
makes it possible to consider scattering of the incident wave as if it happened from an infinite tangent plane. This
way, the problem can be regarded as a plane-boundary reflection problem, which simplifies both the mathematics
and physics of the task.

5.1.1 Tangential Plane Approximation
The derivation of the Kirchhoff Model described in Ulaby et al. [4, chap. 12-4] originates in the so-called Stratton-Chu
integral: Es = Kk̂s � Z hn̂1 �E� �1k̂s � (n̂1 �H)i ejr�ksdS; (5.1)
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Fig. 5.2: The geometry and nomenclature used in the whole Section 5 are presented above. For IEM derivation, the
nomenclature is the same except that �i is set to zero for simpler expressions.

where K = �jk1e�jk1R4�R ;R is the distance from the center of the illuminated area to the point of observation, n̂1 is the normal to the surface
in medium 1, Es is the scattered electric field, E and H are the total electric and magnetic fields in medium 1, andks = k1k̂s is the scattered wave vector in medium 1 (see Figure 5.2). Expression (5.1) states that the scattered field
at any point within S and in the upper medium can be expressed in terms of tangential surface fields, provided
that S is closed and source free (the derivation of this integral is provided in Appendix B). Using the incident field
expression: Ei = p̂E0e�jk1k̂i�r; (5.2)

where p̂ is a unit polarization vector and k1k̂i is the incident wave vector in medium 1, both incident and reflected
fields can be re-written as sums of corresponding horizontally and vertically polarized components in the following
way: Ei = Eik +Ei? (5.3)

(similar for Er and both H-fields). Using the tangential plane approximation discussed above, the total field in
medium 1 is a sum of the incident and reflected fields just above the boundary (Ei and Er, respectively), and
the perpendicularly polarized electric tangential surface field can be written as:n̂1 �E? = n̂1 � (Ei? + Er?) = n̂1 �Ei?(1 +R?) (5.4)

hence removing Es from this expression. R? is the Fresnel reflection coefficient (see (C5) and (C6)). Following
the same procedure for the parallel polarization of the electric field and both magnetic field polarizations [4, pp.
928-929], the following expressions for tangential fields in medium 1 can be found:n̂1 �E = h(1 +R?)(p̂ � t̂)n̂1 � t̂� (1�Rk)(n̂1 � k̂i)(p̂ � d̂)t̂iE0e�jk1k̂i�r; (5.5)n̂1 �H = � 1�1 h(1 +R?)(p̂ � d̂)n̂1 � t̂+ (1�Rk)(n̂1 � k̂i)(p̂ � t̂)t̂iE0e�jk1 k̂i�r; (5.6)
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where t̂ = k̂i�n̂1jk̂i�n̂1j and d̂ = k̂i � t̂
create together with k̂i a locally suitable, orthonormal coordinate system.

Unfortunately, an analytic solution of the Stratton-Chu integral (5.1) even with the tangential plane approximation
that leads to expressions (5.5)-(5.6) has not been found. Instead, some further simplifications have to be done. For
large values of k�, stationary phase approximation is usually made, which leads to the so-called Geometrical Optics
model (GO). If the mean value of the slope of the surface is small, the scalar approximation can be used. The scalar
approximation leads to PO, Physical Optics model.

5.1.2 Stationary Phase Approximation and Geometric Optics
The phase of (5.1) after (5.5) and (5.6) have been substituted is:Q = jk1(k̂s � k̂i) � r: (5.7)

In the stationary phase approximation, all scattering in a particular direction is assumed only to originate from
specular points. In other words, the phase Q is assumed to be constant in the neighborhood of the studied point(x; y), that is: �Q�x = �Q�y = 0: (5.8)

Using k̂s = sin �s os�sx̂+ sin �s sin�sŷ + os �sẑk̂i = sin �i os�ix̂+ sin �i sin�iŷ � os �iẑqx = k1(sin �s os�s � sin �i os�i)qy = k1(sin �s sin�s � sin �i sin�i)qz = k1(os �s + os �i)
(where the angles are defined in Figure 5.2) in (5.7) together with (5.8) gives:�Q�x = ��x (qxx+ qyy + qzz) = qx + qz �z�x = 0) �z�x = �qxqz ; (5.9)�Q�y = ��y (qxx+ qyy + qzz) = qy + qz �z�y = 0) �z�y = �qyqz ; (5.10)

which eliminates the dependence of n̂1 � E and n̂1 �H of the surface derivatives. The Stratton-Chu integral (5.1)
can now be re-written as:Es = Kk̂s � [n̂1 �E� �1k̂s � (n̂1 �H)℄ Z exp [jk1(k̂s � k̂i)r℄dS: (5.11)

The normalized radar cross section for the four different polarization modes can be computed using (5.11) together
with �0pq = 4�R2Re�
jEspq j2� =�?s	A0Re fjE0j2=�?i g : (5.12)

In order to be able to compute the averages h�i, an assumption about the correlation function has to be made.

Assuming Gaussian correlation function, the radar cross section can be computed according to Ulaby et al. [4,
chap. 12-4] and it becomes: �pq = (k1jfpq j)22q2z�2j�00(0)j exp"� q2x + q2y2q2z�2j�00(0)j# ; (5.13)

where fpq can be found in (C1)-(C4) and �00(0) is the second derivative of the correlation function at the origin
(�00(0) = p2=L for Gaussian correlation function).
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5.1.3 Scalar Approximation and Physical Optics

Using stationary phase approximation, only non-coherent scattering is taken into consideration. However, if a
surface has small slopes, scattering occurs also in the coherent way and scalar approximation has to be used.
According to Ulaby et al. [4, p. 937], this approximation implies that:

1) all slope terms in the local coordinate unit vectors t̂ and d̂ can be omitted
2) the local surface normal n̂ can be expressed asn̂ � �x̂Zx � ŷZy + ẑ;

where Zx;y are local surface slopes in x- and y-directions.

Using these facts, the Stratton-Chu integral (5.1) can now be re-written into a scalar form:Espq = KE0 Z Upq exp hjk1(k̂s � k̂i) � ri dS; (5.14)

where Upq can all be written in the following way:Upq = a0 + a1Zx + a2Zy; (5.15)

where a1;2;3 are coefficients dependent of polarization (the exact expression for Upq can be found in Ulaby et al. [4,
App. 12C]).

In order to find the ensemble average hjEsj2i, the following expression is needed:I = ZZ 
jUpq j2 exp [jk1(n̂s � n̂i) � (r� r0)℄� dSdS0 (5.16)

together with the following approximation to the first order of slope:jUpqj2 � ja0j2 + a0a?1Z 0x + a?0a1Zx + a0a?2Z 0y + a?0a2Zy (5.17)

where Z 0x;y is the surface slope in a point (x0; y0).
The integral in (5.16) can now be computed after using a Taylor expansion of the exponential term. The scattering
coefficient can be found after some tedious transformations has been performed [4, pp. 938-941]. It consists of a
sum of three terms: �0pq = �0pq + �0pqn + �0pqs; (5.18)

where �0pq = �k2i ja0j2Æ(qx)Æ(qy)e�q2z�2 (5.19)

is the coherent term with Æ(x) being the Dirac delta function,�0pqn = k21 ja0j24� exp(�q2z�2) 1Xn=1 (q2z�2)nn! ZZR2 �n exp (jqxu+ jqyv) dudv (5.20)

is the non-coherent term, and�0pqs = �jk21�2qz2� e�q2z�2 1Xn=0 (q2z�2)nn! ZZR2 Re�a0�a?1 ���u + a?2 ���v�� �nejqxu+jqyv dudv: (5.21)

is a term due to surface slopes. This expression can be further simplified if surface correlation function is known.

In this project, a version of Physical Optics presented in de Roo [26], de Roo and Ulaby [27] is implemented.
Compared to the model presented in Ulaby et al. [4], this model has some extra terms that have earlier been
omitted and it generally gives better results.
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5.2 First Order Small Perturbation Model

Small perturbation model (SPM) can be used in cases when the surface correlation length and its standard deviation
are smaller than the wavelength. The validity regions presented in Figure 5.1 are not precise, although they may
give an idea of when SPM may be applicable. The derivation of SPM is presented in Ulaby et al. [4, chap. 12-5]
and here, it is only recapitulated.

The total field in medium 1 and medium 2 (primed) can be written as:E = Exx̂+Eyŷ +Ez ẑ (5.22)E0 = E0xx̂+E0yŷ +E0z ẑ (5.23)

where Ex = 12� ZZR2 Ux(kx; ky) exp(jkxx+ jkyy � jkzz) dkxdky (5.24)E0x = 12� ZZR2 Dx(kx; ky) exp(jkxx+ jkyy + jk0zz) dkxdky (5.25)

and Ez = 12� ZZR2 Uz(kx; ky) exp(jkxx+ jkyy � jkzz) dkxdky (5.26)E0z = 12� ZZR2 Dz(kx; ky) exp(jkxx+ jkyy + jk0zz) dkxdky (5.27)

consist of only an incoherent part, andEy = 12� ZZR2 Uy(kx; ky) exp(jkxx+ jkyy � jkzz) dkxdky| {z }inoherent +e�jkx sin �i(ejkz os �i + R?e�jkz os �i)| {z }oherent ; (5.28)E0y = 12� ZZR2 Dy(kx; ky) exp(jkxx+ jkyy + jk0zz) dkxdky| {z }inoherent +(1 +R?)e�jk0x sin �t+jk0z os �s| {z }oherent ; (5.29)

that also has a coherent part that originates from the incident wave together with the specularly reflected/transmitted
wave. Ux;y;z(kx; ky) and Dx;y;z(kx; ky) are unknown field amplitudes in medium 1 and medium 2 that can be found
using boundary conditions and divergence relations for electromagnetic fields as described in Ulaby et al. [4, p.
952] but omitted here.

Expression (5.24) can now be re-written using Taylor expansion of e�jkzz for small kzz. Moreover, Ux can be
expanded in a perturbation series Ux = Ux1 + Ux2 + : : ::Ex = 12� ZZR2 (Ux1 + Ux2 + : : :)(1� jkzz � : : :) exp(jkxx+ jkyy) dkxdky (5.30)

and likewise for (5.25):E0x = 12� ZZR2 (Dx1 +Dx2 + :::)(1 + jk0zz � :::) exp(jkxx+ jkyy) dkxdky; (5.31)

where the expansions have been done up to second order. After some further mathematical transformations [4, pp.
953-955], fields Ux1 and Uy1 are found and presented explicitly and all other unknown fields in the integrands of
(5.30)-(5.31) can be found using these fields.

In order to find explicit expressions for Ex and the other fields after the integration in (5.30)-(5.31), unit polarization
vectors have to be chosen wisely. Some rather simple mathematical transformations in Ulaby et al. [4, pp. 956-960]
lead to a final expression for the scattering coefficient �0pq in the upper medium:�0pq = 8jk2� os �i os �s�pq j2W (kx + k sin �; ky); (5.32)
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where �pq can be found in (C27)-(C30) andW (kx; ky) = 12� ZZR2 �(u; v) exp [�jkxu� jkyv℄ dudv (5.33)

is a Fourier transform of the surface correlation function. This model is the first order Small Perturbation Model.
Higher order models are available but their expressions are much more complicated.
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Fig. 6.1: The geometry and nomenclature used for IEM derivation. For simplicity, �i has been set to 0 here.

6 INTEGRAL EQUATION MODEL

Integral Equation Model (IEM) was first introduced year 1992 by Fung, Li, and Chen [9]. It was the first method
that tried to bridge the gap between KM and SPM that has been described in Section 5. The method is based on
KM but has also an additional term that takes over in places where KM is not valid. The original IEM was built
on several assumptions and simplifications that have been gradually reviewed and partially removed.

In this section, the derivation of the original IEM will be presented in detail as in Fung et al. [9] and Fung [22,
chap. 4]. Thereafter, differences between the newer models and IEM will be presented in Section 7 and the latest
version of IEM will be implemented and used for the scattering studies presented in Section 9.

6.1 Plane Waves

Assume that a plane wave with frequency � propagates through a homogenous medium 1 (with dielectric per-
mittivity "1 and magnetic permeability �1) in a direction described by a unit vector k̂i. The wave number is thenk1 = 2��p"1�1 and the wave vector is ki = k1k̂i. The polarization of the wave is described by the polarization
unit vector p̂. The electric and magnetic fields are then:Ei = p̂E0e�j(ki�r) (6.1)Hi = k̂i �Ei=�1 (6.2)

where �1 is the intrinsic impedance of medium 1. In both (6.1) and (6.2) a time factor ej!t is understood.

The tangential surface fields in medium 1 can be written in the following way [4, 10, 22]:n̂1 �E = 2n̂1 �Ei � 24� n̂1 � Z E i ds0 (6.3)n̂1 �H = 2n̂1 �Hi + 24� n̂1 � Z Hi ds0 (6.4)

and in medium 2 as: n̂2 �Et = � 24� n̂2 � Z Et ds0 (6.5)n̂2 �Ht = 24� n̂2 � Z Ht ds0 (6.6)

where E i = jki�i (n̂0 �H0)�i � (n̂0 �E0)�r0�i � (n̂0 � E0)r0�i (6.7)Hi = jki�i (n̂0 �E0)�i + (n̂0 �H0)�r0�i + (n̂0 �H0)r0�i (6.8)Et = �jkt�t (n̂0 �H0)�t + (n̂0 �E0)�r0�t + (n̂0 � E0)r0�t (1="r) (6.9)Ht = �jkt�t (n̂0 �E0)�t � (n̂0 �H0)�r0�t � (n̂0 �H0)r0�t (1=�r) (6.10)
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where "r = "2="1, �r = �2=�1, k2 = k1p"r�r = 2��p"2�2, �1 =p�1="1, �2 =p�2="2, and �i;t are Green functions
as described in Appendix A (functions that solve the wave equation). Note that the primed versions of vectors and
the operator r indicate that they are expressed inside the integral. Also note, thatn̂ � n̂1 = �n̂2
(likewise for the primed version) and thus from now on, only n̂ will be used. The fields for medium 2 are found
using fields for medium 1 and boundary conditions for electric and magnetic fields found in Kraus and Carver
[28].

6.2 Kirchhoff Fields and Complementary Fields

The Integral Equation Model originates from the Kirchhoff Model with an extra complementary term. This way,
the expression for total tangential field can be written as a sum of an expression for the Kirchhoff field and the
complementary field: n̂�E = (n̂�E)k + (n̂�E); (6.11)n̂�H = (n̂�H)k + (n̂�H): (6.12)

Since the first term on the right hand side of (6.11) and (6.12) comes from the Kirchhoff approximation, one can
re-write it as: (n̂�E)k = n̂� (Ei +Er); (6.13)(n̂�H)k = n̂� (Hi +Hr); (6.14)

where the superscript r stands for the reflected fields. The complementary electric and magnetic fields are found
from (6.3), (6.4), and (6.11)-(6.14): (n̂�E) = n̂� (Ei �Er)� 24� n̂� Z E i ds0; (6.15)(n̂�H) = n̂� (Hi �Hr) + 24� n̂� Z Hi ds0: (6.16)

Now, the expressions for the reflected fields in (6.13) and (6.14) should be expressed as a function of the incident
fields. For this, the Fresnel reflection coefficients are used.

6.3 Tangential Fields Expressed in the Local Vectors t̂ and d̂
The reflected field and the incident field can be related to each other through Fresnel coefficients:Rk = "r os#�p�r"r � sin2 #"r os#+p�r"r � sin2 #; (6.17)R? = �r os#�p�r"r � sin2 #�r os#+p�r"r � sin2 #; (6.18)

where # is the local incidence angle (see Section 7.3 to see how it is chosen). In order to be able to use the Fresnel
reflection coefficients, the fields in (6.13) and (6.14) should be divided into parallel and perpendicular components.
Using the following orthogonal set of unit vectors (recall from Kirchhoff Model derivation in Section 5.1):t̂ = k̂i�n̂jk̂i�n̂j , d̂ = k̂i � t̂, and k̂i = t̂� d̂
one can re-write Ei = p̂Ei and Hi = k̂i �Ei=� (where Ei = jEij = E0e�j(k̂i�r̂)) as:Ei = Ei? +Eik = (p̂ � t̂)t̂Ei + (p̂ � d̂)d̂Ei; (6.19)Hi =Hi? +Hik = h(p̂ � t̂)d̂Ei + (p̂ � d̂)t̂Eii. �: (6.20)

The Fresnel coefficients can now be used in (6.13) and (6.14) and the following equations are derived after some
mathematical transformations [22, p. 168]:(n̂�E?)k = (1 +R?)(p̂ � t̂)n̂� t̂Ei; (6.21)(n̂�Ek)k = (1�Rk)(p̂ � d̂)n̂� d̂Ei; (6.22)
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and similar for H-fields.

After (6.19)-(6.22) have been used, the Kirchhoff tangential fields (6.13) and (6.14) can be expressed as a linear
combination of two components in the tangential plane spanned by the two unit vectors t̂ and n̂� t̂:(n̂�E)k = n̂� h(1�Rk)(p̂ � d̂)d̂+ (1 +R?)(p̂ � t̂)t̂iEi = (6.23)= � h(1�Rk)(p̂ � d̂)(n̂ � k̂i)t̂� (1 +R?)(p̂ � t̂)n̂� t̂iEi (6.24)

and (n̂�H)k = 1� n̂� h(1�R?)(p̂ � t̂)d̂� (1 +Rk)(p̂ � d̂)t̂iEi = (6.25)= �1� h(1�R?)(p̂ � t̂)(n̂ � k̂i)t̂+ (1 +Rk)(p̂ � d̂)n̂� t̂iEi: (6.26)

The next step is to express the complementary fields in a similar way. Both terms on the right-hand side of (6.3)
and (6.4) should be expressed in the integral form. By adding (6.3) and (6.4) to (6.5) and (6.6), respectively, and
after applying boundary conditions, the following relations are found:n̂�Ei = 14� n̂� Z (E i � Et) ds0; (6.27)n̂�Hi = � 14� n̂� Z (Hi �Ht) ds0: (6.28)

In terms of unit vectors t̂ and n̂� t̂, the left-hand side of (6.27) becomesn̂�Ei = (p̂ � t̂)n̂� t̂Ei � (n̂ � k̂i)(p̂ � d̂)t̂Ei (6.29)

while the right-hand side becomes:14� n̂� Z (E i � Et) ds0 = 14� n̂� t̂ �(n̂� t̂) � (n̂� Z (E i � Et) ds0)�+ 14� t̂ �t̂ � n̂� Z (E i � Et) ds0� : (6.30)

Since (6.29) and (6.30) are equal, the corresponding vector components are equal and thus:(p̂ � t̂)Ei = 14� (n̂� t̂) � �n̂� Z (E i � Et) ds0� ; (6.31)(n̂ � k̂i)(p̂ � d̂)Ei = � 14� t̂ � n̂� Z (E i � Et) ds0; (6.32)

and correspondingly for (6.28).

In the similar way as in (6.27) and (6.28), the differences between the incident and reflected tangential surface
fields found in (6.15) and (6.16) can be expressed as integrals:n̂� (Ei �Er) = 14� (1�R?)(n̂� t̂) � �n̂� Z (E i � Et) ds0� n̂� t̂+14� (1 +Rk)t̂ � �n̂� Z (E i � Et) ds0� t̂; (6.33)n̂� (Hi �Hr) = � 14� (1�Rk)(n̂� t̂) ��n̂� Z (Hi �Ht) ds0� n̂� t̂+� 14� (1 +R?)t̂ ��n̂� Z (Hi �Ht) ds0� t̂: (6.34)

This way, both parts of the right-hand side of (6.15) and (6.16) can be expressed as a linear combination of vectorst̂ and n̂� t̂: (n̂�E) = � 14� (n̂� t̂) � �n̂� Z �(1 +R?)E i + (1�R?)Et� ds0� n̂� t̂+� 14� t̂ � �n̂� Z �(1�Rk)E i + (1 +Rk)Et� ds0� t̂; (6.35)(n̂�H) = 14� (n̂� t̂) ��n̂� Z �(1 +Rk)Hi + (1�Rk)Ht� ds0� n̂� t̂++ 14� t̂ � �n̂� Z �(1�R?)Hi + (1 +R?)Ht� ds0� t̂: (6.36)
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This, combined with (6.23) and (6.25) gives us an expression for the total tangential surface fields expressed in local
coordinates t̂ and n̂� t̂, the Fresnel reflection coefficients R? and Rk, and the incident fields:n̂�E = � h(1�Rk)(p̂ � d̂)(n̂ � k̂i)t̂� (1 +R?)(p̂ � t̂)n̂� t̂iEi +� 14� (n̂� t̂) � �n̂� Z �(1 +R?)E i + (1�R?)Et� ds0� n̂� t̂+� 14� t̂ � �n̂� Z �(1�Rk)E i + (1 +Rk)Et� ds0� t̂; (6.37)n̂�H = �1� h(1�R?)(p̂ � t̂)(n̂ � k̂i)t̂+ (1 +Rk)(p̂ � d̂)n̂� t̂iEi ++ 14� (n̂� t̂) � �n̂� Z �(1 +Rk)Hi + (1�Rk)Ht� ds0� n̂� t̂++ 14� t̂ � �n̂� Z �(1�R?)Hi + (1 +R?)Ht� ds0� t̂: (6.38)

Since the expressions for E i;t and Hi;t are functions of Ei and Hi, andn̂ � E = j�k rs � (n̂�H);n̂ �H = � jk�rs � (n̂�E);
according to Poggio and Miller [10], the total fields and the tangential surface tangential fields are connected through
the surface divergence rs thus making (6.37) and (6.38) integral equations. Equations (6.37) and (6.38) has to be
solved. In order to do that, some simplifications need to be introduced.

6.4 Simplified Expressions for Tangential Surface Fields

In the first Integral Equation Model [9, 22], some approximations have been introduced in order to simplify the
mathematical expressions. These approximations have gradually been removed in further work by the same research
group [11–14, 20, 29–32] as well as by Álvarez-Pérez in his model IEM2M (see Section 7). In the following paragraphs,
some important approximations will be pointed out in the same was as it is done in Álvarez-Pérez [33].

6.4.1 Kirchhoff Fields

The major complication in the expressions (6.24) and (6.26) for the Kirchhoff fields is the local dependence of thed̂- and t̂-vector. By adding and subtracting n̂ � h(1 +R?)(p̂ � d̂)d̂i or n̂� �(1�Rk)(p̂ � t̂)t̂� in the right-hand side

of (6.24), the expression can be re-written as:(n̂�E)k = n̂� h(1�Rk)(p̂ � d̂)d̂+ (1 +R?)(p̂ � t̂)t̂iEi == n̂� h(1 +R?)p̂� (R? +Rk)(p̂ � d̂)d̂iEi == n̂� �(1�Rk)p̂+ (R? +Rk)(p̂ � t̂)t̂�Ei (6.39)

and similarly for (6.26):(n̂�H)k = 1� n̂� h(1�R?)(p̂ � t̂)d̂� (1 + Rk)(p̂ � d̂)t̂iEi == 1� n̂� nk̂i � h(1�R?)p̂+ (R? +Rk)(p̂ � d̂)d̂ioEi == 1� n̂� nk̂i � �(1 +Rk)p̂+ (R? +Rk)(p̂ � t̂)t̂�oEi: (6.40)

If the incident field is vertically polarized, that is p̂ = v̂i, then v̂i � t̂� 1 for most surfaces. Additionally, Rk+R? � 1
for moderate incident angles. This reduces (6.39) to(n̂�Ev)k � (1�Rk)n̂� v̂iEi (6.41)
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and a similar derivation, but with p̂ = ĥi and ĥi � d̂ � 1 gives a simplified version of the Kirchhoff field for
horizontal polarization: (n̂�Eh)k � (1 +R?)n̂� ĥiEi: (6.42)

For magnetic fields, the corresponding results are:(n̂�Hv)k � 1� (1 +Rk)n̂� (k̂i � v̂i)Ei; (6.43)(n̂�Hh)k � 1� (1�R?)n̂� (k̂i � ĥi)Ei: (6.44)

For cross-polarization, the both terms in (6.39) and (6.40) including the 1�Rk;?-terms are comparable in size withRk + R? and none of them can be dropped. One other simplification is made in Fung [22, chap. 4] instead. The
average of the second and third line in (6.39) and (6.40) is used together with the assumption that the Rk+R?-term
is smaller than the others gaining: (n̂�Ep)k � (1�R)(n̂� p̂)Ei; (6.45)(n̂�Hp)k � 1� (1 +R)n̂� (k̂i � p̂)Ei: (6.46)

with R = Rk�R?2 . This result applies for both HV and VH polarization. The approximations made for cross-
polarization are less accurate than the corresponding ones made for co-polarization.

The assumptions above are the first simplifications made in the IEM and they have first been removed in AIEM
[14]. From here on, the assumptions v̂i � t̂� 1 and ĥi � d̂� 1 will be referred to as A1a and Rk +R? � 1 as A1b.

6.4.2 Complementary Fields
In order to remove the unknowns under the integral sign in (6.35) and (6.36), the same approximations as for the
Kirchhoff fields (that is to remove a term including Rk +R?) are used in the expressions for E i and Et. Moreover,
in order to make some further mathematical simplifications, the following two terms are added and removed in
expressions (6.35) and (6.36) in vertical polarization case:(1�Rk) 14� (n̂� t̂)(n̂� t̂ � n̂� Z E iv ds0)
and (1 +Rk) 14� (n̂� t̂)(n̂� t̂ � n̂� Z Etv ds0)
yielding: (n̂�Ev) = �(1�Rk) 14� n̂� Z E iv ds0 � (1 +Rk) 14� n̂� Z Etv ds0 +�(Rk +R?) 14� n̂� t̂�n̂� t̂ � �n̂� Z (E iv � Etv) ds0�� �� � 14� n̂� Z �(1�Rk)E iv + (1 +Rk)Etv�ds0 (6.47)

where assumptions A1a and A1b have been used to remove the last term including Rk + R?. The integral that
follows Rk + R? can be substituted using (6.27) and Eiv = Eiv̂i, which together with A1a gives a small value of(n̂� t̂) � (n̂� v̂i)Ei.
A similar expression is found in the same way for the magnetic field:(n̂�Hv) � 14� n̂� Z �(1 +Rk)Hiv + (1�Rk)Htv� ds0; (6.48)

and for both electric and magnetic fields in the horizontal polarization case:(n̂�Eh) � � 14� n̂� Z �(1 +R?)E ih + (1�R?)Eth� ds0;(n̂�Hh) � 14� n̂� Z �(1�R?)Hih + (1 +R?)Hth� ds0: (6.49)
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Fig. 6.2: The choice of angle for the Fresnel coefficients. For a surface with short correlation length (low kL), the
only contribution in a particular direction comes from specular reflection and the angle # is thus set to the specular
angle (half the angle between �k̂i and k̂s). For a very slowly undulating surface, the surface is close to horizontal
and the used angle will then be the incident angle (# = �i).
The cross-polarization terms are found using the same routine as for Kirchhoff fields — by averaging two equal
expressions for (n̂�Ep) and removing the Rk +R?–term:(n̂� Ep) � � 14� n̂� Z �(1�R)E ip + (1 +R)Etp� ds0; (6.50)(n̂�Hp) � 14� n̂� Z �(1 +R)Hip + (1�R)Htp� ds0: (6.51)

6.5 Far Fields

Having the tangential surface fields in simplified versions, it is now possible to compute the electric and magnetic
fields far away from the surface using the Stratton-Chu integral derived in Appendix B:Espq = q̂ �Espq = �jke�jkr4�r q̂ � r̂� Z �(n̂�Esp)� r̂� (n̂�Hsp)�� ejk̂i�r ds == �jke�jkr4�r Z hq̂� k̂i � (n̂�Esp) + q̂ � (n̂�Hsp)�i ejk̂i�r̂ ds: (6.52)

and since n̂� Ê = (n̂� Ê)k + (n̂� Ê), then:Espq = Ekpq +Epq == �jksE0e�jksR04�R0 �Z fpq exp [jr̂ � (k̂s � k̂i)dxdy++ 18�2 Z Fpq exp [ju(x� x0) + jv(y � y0) + jk̂s � r̂0 � jk̂i � r̂0℄dxdydx0dy0dudv� (6.53)

where fpq = D1Ei [q̂� k̂s � (n̂� Êp)k + �q̂ � (n̂�Hp)k℄; (6.54)F 0pq = 8�2D1Ei [q̂� k̂s � (n̂� Êp) + �q̂ � (n̂�Hp)℄: (6.55)

where D1 = (Z2y +Z2x +1)1=2, Zx = �Z(x;y)�x , and Zy = �Z(x;y)�y . Fpq becomes F 0pq after � and r� have been replaced
in the expressions for the complementary tangential surface fields by a proper Green’s function and its gradient
and the integrations with respect to u, v, x0, and y0 have been carried out.

In the fields fpq and Fpq , there are expressions for R? and Rk that include the local incidence angle #. This angle
cannot be known exactly and instead, there are some approximations made in the model. This angle is chosen to be
either the incident angle �i if the correlation length is large enough, or the specular angle (half the angle betweenk̂s and �k̂i), see Figure 6.2. This approximation will from now on be referred to as A2 and will be discussed later
in Section 7.3.
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6.6 Approximate Expressions for fpq
In order to find expressions for fpq that are practical and applicable, expressions (6.41)-(6.46) are used to find:fvv � � h(1�Rk)ĥs � (n̂� v̂i) + (1 +Rk)v̂s � (n̂� ĥi)iD1; (6.56)fhh � h(1�R?)ĥs � (n̂� v̂i) + (1 +R?)v̂s � (n̂� ĥi)iD1; (6.57)fhv = h(1�Rk)v̂s � (n̂� v̂i)� (1 +Rk)ĥs � (n̂� ĥi)iD1 ++(R? +Rk)(v̂i � t̂) hv̂s � (n̂� t̂)� ĥs � (n̂� d̂)iD1; (6.58)fvh = h(1�R?)v̂s � (n̂� v̂i)� (1 + R?)ĥs � (n̂� ĥi)iD1 +�(R? +Rk)(ĥi � d̂) hv̂s � (n̂� t̂)� ĥs � (n̂� d̂)iD1: (6.59)

6.7 Approximate Expressions for Fpq
The complementary field coefficient Fpq has a very complicated expression involving cross products, integrals and
Green’s function. First, Green’s function used in (6.7)-(6.10) is written in its spectral representation:�(r; r0) = � 12� Z jq eju(x�x0)+jv(y�y0)�jqjz�z0j dudv (6.60)

where q = (k2 � u2 � v2)1=2 (q can be either qi = (k21 � u2 � v2)1=2 or qt = (k22 � u2 � v2)1=2 depending on the
medium). The gradient becomesr�(r; r0) = � 12� Z gq eju(x�x0)+jv(y�y0)�jqjz�z0j dudv; (6.61)

where g = ux̂+ vŷ � qẑ.

At this point, there is an approximation made in the first version of IEM [22]. This approximation will be called
A3 and it consists of removing the terms including q in the expressions for � and r�. This is justified by the two
following arguments:� factor jqjz � z0j is small if two points on a surface are close together and hence can be removed,� factor �qẑ can be removed due to the fact that most of the factors with minus sign will cancel the factors with

plus sign in the integral and thus the whole contribution will be zero.

These assumptions give simpler expressions for (6.7)-(6.10):E ip = Z P2�qi hk1�1(n̂0 �H0p) + (n̂0 �E0p)� g + (n̂0 �E0p)gi dudv; (6.62)Etp = � Z P2�qt �k2�2(n̂0 �H0p) + (n̂0 �E0p)� g+ (n̂0 � E0p)g="r� dudv; (6.63)Hip = Z P2�qi �k1�1 (n̂0 �E0p)� (n̂0 �H0p)� g + (n̂0 �H0p)g� dudv; (6.64)Htp = � Z P2�qt �k2�2 (n̂0 �E0p)� (n̂0 �H0p)� g + (n̂0 �H0p)g=�r� dudv; (6.65)

where q = ux̂+ vŷ and the phase factor P is P = exp [ju(x� x0) + jv(y � y0)℄.
Next, the expressions above are used together with the simplified complementary tangential fields (6.47)-(6.51)
in order to find the expressions for F 0pq found in (6.55). First, the integrations with respect to x0, y0, u, and v are
carried out. Next, the remaining tangential fields inside Fpq are replaced by their approximative values — namely
the Kirchhoff tangential fields. The procedures described in this paragraph are very lengthy and are omitted. They
follow exactly the derivation found in Fung [22, pp. 181-185].
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The resulting complementary field coefficient for HH becomes:Fhh � v̂s � n̂��� �(1 +R?)kq � (1�R?)kt�tqt� � (1�R?)(n̂� v̂i)+� [(1 +R?)=q � (1�R?)=qt℄ (1 +R?)(n̂� ĥi)� q+� [(1 +R?)=q � (1�R?)=("rqt)℄ (1�R?)(n̂ � ĥi)� qo++ĥs � n̂���(1�R?)kq � (1 +R?)kt�tqt� � (1 +R?)(n̂� ĥi)+� [(1�R?)=q � (1 +R?)=qt℄ (1�R?)(n̂� v̂i)� q+� [(1�R?)=q � (1 +R?)=("rqt)℄ (1 +R?)(n̂ � v̂i)� qg (6.66)

while the other coefficients can be found in Fung [22, pp. 183-184].

6.8 Average Power and Scattering Coefficient

In order to find the incoherent power for the scattered field Espq , the mean-squared power is subtracted from the
total power: P inohpq = P totalpq � Pmeanpq == hEspqEspq?i � hEspqihEspqi? == �hEkpqEkpq?i � hEkpqihEkpqi?�++2Re�hEpqEkpq?i � hEpqihEkpqi?�++ �hEpqEpq?i � hEpqihEpqi?� == P kpq + P kpq + P pq (6.67)

where h�i means average of � over all realizations of the random surface Z(x; y), ? is the complex conjugate, andRe is the real part. Now, from the radar equation and the expression for the radar cross section (2.9):�0pq = P inohpqE20 � 4�R2A0 : (6.68)

In order to find an explicit expression for �0, an assumption regarding the surface has to be made so that all the
averages in (6.67) can be found. In Fung [22, pp. 232-245], a detailed description of how to transform the complicated
expression that (6.67) gives into a more easy to implement expression is presented. The final result is also re-written
so that the final scattering coefficient consists of two parts: one part that originates from direct scattering from the
surface (�Spq), and the other part that originates from multiple scattering from the surface:�pq = �Spq + �Mpq : (6.69)

In the single scattering case, the coefficient is�Spq = k212 exp ���2(k2iz + k2sz)� 1Xn=1��2n ��Inpq��W (n)(ksx � kix; ksy � kiy)n! �
(6.70)

where Inpq = (ksz � kiz)nfpq exp (��2kizksz) + knszFpq(�kix;�kiy) + knizFpq(�ksx;�ksy)2 ; (6.71)

and W (n)(u; v) is the nth power Fourier spectrum of the correlation function, see Section 4.2.2. The multiple
scattering term can be found in Fung [22, p. 247] and is omitted here. The expressions for the Kirchhoff fieldsfpq can be found in (C1)-(C4) while the expressions for the complementary fields Fpq for IEM can be found in
(C35)-(C42). In both single and multiple scattering cases, large k� results in a negligible second part of the sum
in (6.71) and the sum in (6.70) can be replaced with an exponential function which gives the Geometrical Optics
model after stationary phase approximation (see Section C.2).
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Fig. 7.1: The local coordinate system consists of the three vectors: t̂ = k̂i�n̂jk̂i�n̂j , d̂ = k̂i � t̂, and k̂i = t̂ � d̂. The

two polarization vectors v̂i and ĥi are taken to be almost orthogonal to t̂ and d̂, respectively, according to A1a

(v̂i � t̂� 1). The angle between the x-axis and the tangent plane that is perpendicular to n̂ is � and the coordinate
axes are chosen so, that only a rotation around y-axis is present. Then, the angle � is close to 90Æ if the azimuth
angle �i is small, that is the rotation of the plane perpendicalar to k̂i around x- and z axis is very small.

7 ASSUMPTIONS AND SIMPLIFICATIONS IN IEM-BASED MODELS

Previously in the text, a derivation of the Integral Equation Model was presented. Some assumptions were made
and these assumptions will now be explained and justified.

7.1 Assumption A1a — Low v̂i � t̂
Assumption A1 that was made on page 22 was: v̂i � t̂� 1 (7.1)

which is equivalent to [33] ĥi � d̂� 1 (7.2)

and to (n̂� t̂) � (n̂� v̂i)� 1: (7.3)

Using the geometry in Figure 7.1, it can be seen that this assumption originates from the fact that k̂i and n̂ are parallel
or almost parallel (they both lie in the plane of incidence). This assumption makes the mathematics described in
Section 6 much easier and it is fairly justified for backscattering and forward scattering. However, it is not valid
for bistatic scattering and has been removed in the latest version of the Advanced Integral Equation Model [14]. In
Figure 7.2, one can see what happens with v̂i � t̂ for some chosen angles �i, �i, and � (the local slope angle).

7.2 Assumption A1b — Rk +R? � 1
Assumption A1b is mentioned on page 22. The absolute value of the sum of the two Fresnel coefficients is:jSRj � jRk +R?j � 1 (7.4)
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Fig. 7.2: In this graph, jv̂i � t̂j is plotted against the incident azimuth �i for a fixed value of the incident latitude�i and some chosen values of the root-mean-square slope angle �. The value of jv̂i � t̂j increases with the incident
azimuth. Also, higher slopes give higher jv̂i � t̂j. The approximation jv̂i � t̂j � 1 works thus only for low values of�i and �.

and together with the formulas for Rk;? found in (6.17) and (6.18), the sum can be written as:Rk +R? = 2�r�r os#2 � 2p�r � sin#2p�r�r � sin#2��r os#+p�r � sin#2� ��r os#+p�r�r � sin#2� : (7.5)

Now using the definition of root-mean-square slope for a Gaussian surface (�00(0) = 2L2 ):�s =p�2�00(0) = p2�L (7.6)

the mean slope angle can be found: h�i = tan�1 �s; (7.7)

see Figure 6.1b. The mean angle of incidence is now:h#i = �i � h�i = �i � tan�1 �p2�L� (7.8)

which now gives us the sum of reflection coefficients as a function of the ratio �L .

In order to examine the behavior of jSRj, a study of both �r- and �i-dependence is needed (�r is almost always 1
except for magnetic surfaces which are not of an interest here). First, it should be noticed that �r is of higher order
in the denominator of (7.5) and thus lower values give higher jSRj (see Figure 7.3a and Figure 7.3b). Next, a plot
of jSRj versus �L is shown in Figure 7.3c for different angles �i. Usually, � < L and then �L < 1 and angles near
grazing give high values of jSRj. The same conclusions are published in Fung [22] and Álvarez-Pérez [33]. This
simplification was lifted off by Wu et al., which led to more extensive computations but also more accurate results
[14]. In that article, it is also mentioned that the inclusion of the terms with Rk + R? gives more accurate results
especially in bistatic directions (�s 6= 0Æ).

7.3 Assumption A2 — Discrete Choice of Local Incidence Angle

In the first Integral Equation Model, the local incident angle # used in the computation of Fresnel reflection
coefficients was assumed to be either the specular angle or the global incident angle �i. This assumption can
be found att page 23.

The first option is correct when a rather rough surface is examined. For a rough surface, scattering occurs in all
directions and the only contribution in the direction of k̂s is from the parts of the surface that have their normals
halfway between �k̂i and k̂s, that is when n̂ = k̂s � k̂ijk̂s � k̂ij ;
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Fig. 7.3: (a) jSRj plotted versus the local incidence angle #. It can be clearly seen that jSRj increases with the local
incidence angle. Higher relative permittivity �r generally gives lower value for jSRj except for grazing incidence
where jSRj = 2 for all values of �r. (b) jSRj plotted versus the ratio of � to L after using expression (7.8) for the
global incident angle �i equal to 30Æ. The same results regarding �r-dependency can be drawn here as well. For�L < 1, the values of jSRj do not exceed 0.2. (c) Since low values for �r give highest jSRj, �r = 2 is chosen and jSRj
is plotted for different incidence angles �i. For �L < 1, the values of jSRj become high for �i approaching grazing.
For �i lower than approximately 45Æ the values of jSRj are negligible.

and the local incidence angle # can be computed using# = os�1(k̂i � n̂): (7.9)

The second option, that is # = �i is more correct in cases when correlation lengths are large. The surface can then
be seen as locally flat and most scattering happens in the forward direction (the incoherent component is small).

An obvious problem is the choice of the roughness value for which one case goes into the other. This problem has
been studied by among others Wu et al. who also derived the so-called transition function [13, 20, 34].
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Fig. 7.4: Here, the difference between the Fresnel reflection coefficients computed from the incident angle and the
specular angle (often referred to as Rp(�i) and Rp(0), respectively) is plotted. In the upper row, �Rh = jRh(0) �Rh(�i)j is plotted while the lower row �Rv is shown. Four azimuth angles are chosen and each plot shows the
dependence of �Rp of �i and �s. Light cells represent high �Rp and vice versa.

The difference in R?;k between the two possibilities presented above is plotted in Figure 7.4 as a function of
the three angles �i, �s, and �s. It can be clearly seen that the difference is greatest for Rh with �s close to 90Æ. ForRv , the difference is generally much lower, especially for small angles �i and �s, and for scattering at �0 when�i � �s.
7.4 Assumption A3 — Simplifications in the Green’s Function

The spectral representation of Green’s function as presented in (6.60) was:� = � 12� Z jq eju(x�x0)+jv(y�y0)�jqjz�z0j dudv (7.10)

where q = (k2 � u2 � z2)1=2, and the gradient was:r� = � 12� Z gq eju(x�x0)+jv(y�y0)�jqjz�z0j dudv; (7.11)

where g = x̂u+ ŷv � ẑq: (7.12)

Recall from Section 6.7 that in the approximation used in IEM, all the underlined terms in (7.10)-(7.12) have been
omitted, which was justified by the two following arguments:� factor jqjz � z0j is small if two points on a surface are close together and hence can be removed,� factor �qẑ can be removed due to the fact, that most of the factors with minus sign will cancel the factors with

plus sign in the integral and thus the whole contribution will be zero.

This assumption affects only the complementary term and it is rather accurate in the case of single scattering. In
multiple scattering, it has been shown quite early [31, 32] that the removal of the terms including q was not justified
other than for backscattering and so the full Green function was implemented. In single scattering, this took longer
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F+ F� G+ G�
ki

Fig. 7.5: Due to the fact that jqjz�z0j can have four values depending on the direction and medium of propagation,
the complementary field coefficients in Advanced Integral Equation Model are divided into four parts: F+ for
upward propagation in medium 1, F� for downward propagation in medium 1, G+ for upward propagation in
medium 2, and G� for downward propagation in medium 2.

time and it was first in Fung et al. [11] that the discussed simplification was removed.

By keeping the jqjz � z0j-term, one has to deal with two cases:� when z0 > z, jqjz � z0j = �jq(z � z0) (upward propagation),� when z0 < z, jqjz � z0j = jq(z � z0) (downward propagation),

so that the equation is now divided in two cases. Additionally, the value of q depends on the medium the wave

crosses so that q can be either qi or qt with qi;t =qk2i;t � u2 � v2. In the complementary term, the waves of interest

can travel in four ways (see Figure 7.5):F+: upward through medium 1: jqjz � z0j = �jqi(z � z0),F�: downward through medium 1: jqjz � z0j = jqi(z � z0),G+: upward through medium 2: jqjz � z0j = �jqt(z � z0),G�: downward through medium 2: jqjz � z0j = jqt(z � z0),
which now gives a total of four possible cases. In IIEM [11], only F+ and F� are used since it is assumed that
the field coefficients for medium 2 are small. In AIEM [12–14], all four cases are treated, which gives much more
complicated expressions but also much more accurate results (for the explicit expression, see Appendix C.7).

The effects of this approximation are difficult to study separately. Generally, the change in assumption A3 is the
major difference between IEM, IIEM, and AIEM, and thus the general behavior can be studied by comparing the
results produced by these methods in cases when approximations A1 and A2 are valid.

7.5 Summary of IEM Based Models

In the beginning of Section 6 and in Sections 7.1-7.4 it was mentioned how approximations have been gradually
removed in different versions of the Integral Equation Model. Almost all the work on IEM has been done by the
same research group lead by the creators of IEM, Fung et al. Some work has been done by other researchers, most
notably Álvarez-Pérez [33], who was first with removing assumption A3 in the single scattering case. For a brief
summary, see Table 7.1.

Shadowing functions can be included in all functions and they have been used in IEM from the very beginning.
More about them can be read in Sancer [35], Smith [36]. In Appendix D.2 two shadowing functions are presented.

The Advanced Integral Equation Model is the first model to use the so-called transition function, even though the
function can be used in all models. For an explicit expression, see Appendix D.1. More about transition function
can be found in Wu et al. [20], Fung and Chen [34].
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TABLE 7.1: A short summary of the different versions of the Integral Equation Model.

Model: Source: Description:

IEM Fung et al. [9], Fung [22]
A1, A2 and A3 present for both single
and multiple scattering

IEMM
Hsieh and Fung [31], Hsieh et al. [32]

like IEM but A3 removed in multiple
scattering with F� used only, shad-
owing function used

Chen et al. [30]
like IEMM above but with slightly
modified F� in multiple scattering

IEM2M Álvarez-Pérez [33]
like IEM but A3 modified in single
scattering for better agreement with
SPM

IIEM Fung et al. [11]

like IEM but A3 removed in sin-
gle scattering and F� used, multiple
scattering not included in the article,
shadowing function used

AIEM

Chen et al. [12]
like IIEM for single scattering but
with F� and G� used, multiple scat-
tering not included in the article

Wu and Chen [13]

like IIEM for single scattering and
IEMM for multiple scattering, both
with F� and G� used, A2 removed
by transition function

Wu et al. [14]

like IIEM for single scattering with
both F� and G� used, A1 removed,
A2 removed by transition function,
multiple scattering not included in
the article
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Fig. 8.1: The scattering coefficients for HH (upper row) and VV (bottom row), computed by the models implemented
for this project (right), are compared with corresponding results found in Fung et al. [11] (left). The results agree
very well in the SPM-region (roughness parameters are kL = 1:5 and k� = 0:1). The other parameters are: �r = 9:0,�i = 45Æ, and �s = 70Æ.

8 VERIFICATION AND VALIDATION OF THE MODELS

After the models have been implemented in Matlab R; they have been tested against published results. In Fung
et al. [11], the authors present figures in which IIEM is tested against KM, SPM, and IEM. In Wu et al. [14], AIEM
is also included and there are more cases presented. The verification process was mainly done by comparison with
the results published in those two articles. Also, the models were tested against other articles [9, 13, 20, 27] with
very good results. These results are however not presented in this text.

8.1 Comparison with Fung et al. [11]

First, a comparison with Fung et al. [11] was done in order to confirm that IIEM was correctly implemented. SPM,
GO, and IEM implemented by the author as presented in Appendix C were used together with an implementation
of IIEM provided by Gustafsson [37]. In this section, two figures will be presented side-by-side with each other:
reference figure to the left, and a figure resulting from simulations using the implemented models to the right.

In Figure 8.1, one can see the results for simulations in the SPM region (kL = 1:5, k� = 0:1) with �r = 9:0,�i = 45Æ, and �s = 70Æ. The agreement is very good. In VV-mode, one can clearly see a dip at the approximate
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Fig. 8.2: In the PO-region, a comparison with the reference (left) shows that IIEM agrees slightly better than IEM
and KM but in overall, the scattering coefficient agrees fairly well (the current setup is: kL = 15, k� = 0:75, �r = 9:0,�i = 20Æ, and �s = 30Æ.

position of the Brewster angle.

In Figure 8.2, one can see results from a case in the region where Physical Optics model is valid. The agreement is
generally good except for large angles �s. In the case presented in this figure, kL = 15 and k� = 0:75, which is a
rather extreme case of a very smooth surface. IIEM agrees very well with the reference while IEM and KM show
some minor deviations.

8.2 Comparison with Wu et al. [14]

In Wu et al. [14], the authors test the Advanced Integral Equation Model (AIEM) against PO, GO, and SPM.
Moreover, Wu et al. also include IEM and IIEM in their evaluation. The scattering coefficients were thus computed
for the same cases as those presented in Wu et al. [14], and the plots were compared. Multiple scattering was not
implemented in any of the models. Since the chosen roughness parameters were slightly outside validity regions
for both PO and GO, both methods were tested while reproducing the results from Wu et al. [14], and the one
that had the best agreement in each figure was kept and simply called KM. Due to lack of space in this report, the
original figures published in Wu et al. [14] will not be shown in this text as it was done in the previous section.

8.2.1 Scattered Elevation Angle Dependancy

Small Perturbation Region
In Figure 8.4, the scattering coefficient is plotted as a function of the scattered elevation angle �s for three dielectric
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permittivities: 9:0 � 0:5j, 16 � 1:5j, and 40 � 3:0j. The other parameters are kept constant: kL = 1:5, k� = 0:1,�s = 30Æ, and �i = 30Æ. The roughness parameters indicate that Small Perturbation Model can be used. It can be
clearly seen that the scattering coefficient decreases as the scattering angle increases and it also increases with a
higher dielectric permittivity. The same observation can be made in Figure 8.5, in which �i = 45Æ while all other
parameters are the same as in Figure 8.4. Both figures are in excellent agreement with Wu et al. [14, Figure 3 and
4].

Figure 8.6 shows scattering in the plane of incidence (�s = 0Æ or �s = 180Æ) at incident angles 30Æ and 60Æ.
The surface parameters are �r = 12 � 1:8j, kL = 1:5, and k� = 0:1, which is still in the validity region for SPM.
One can see that lines for the different methods all go through the point where �s = �i, which means that they all
agree in the case of forward and backward scattering. Otherwise, the curves show the same tendencies as in the
previous paragraph. All curves in Figure 8.6 agree very well with Wu et al. [14, Figure 3 and 4].

Kirchhoff Region
Figure 8.7 shows some results in the region where Kirchhoff approximation is valid. Roughness parameters are set
to kL = 7:5 and k� = 2:8 while electric permittivity is switched between 12� 1:8j and 40� 3j. First, the scattering
coefficients are plotted as a function of �s for �i = 30Æ and �s = 30Æ. According to the graphs, the scattering
coefficient for HH-polarization do not change much for different �s while it decreases with increasing angle for
VV-polarization. As expected, higher �r gives higher scattering in all directions (less energy is transmitted through
the surface). Higher incident angle (�i = 45Æ) gives slightly lower scattering coefficient but the main trends are the
same. Compared to corresponding figures in reference material [14, Figure 7 and 8], all the graphs look almost the
same, with a reservation for high �s-angles, where the scattering coefficient is too low for HH-polarization and too
high for VV-polarization (the difference is around 2 dB).

The last results, see Figure 8.8, concern incident plane behavior for the integral equation-based models in the
Kirchhoff region. The surface parameters are the same as in the previous paragraph and �r is chosen to be 12�1:8j.
The incident angle is chosen to be �i = 30Æ and �s is switched between 0Æ and 180Æ. Also, there is a slight
disagreement with Wu et al. [14, Figure 9 and 10] in the region where �s is high.

8.2.2 Azimuthal Behavior
In Figure 8.9, the surface parameters were: �r = 16, kL = 7:5, and k� = 2:8 and both HH and VV polarization
modes were plotted. The angles were chosen to be �i = 30Æ and �s = 50Æ in the first case, �i = 45Æ and �s = 45Æ in
the second case, and �i = 50Æ and �s = 30Æ in the third case. Since the surface is rather smooth, Kirchhoff Model
is used as a reference. One can see that the curves are maximal in the backscatter and forward scattering direction
and they gradually fall to a dip around 75Æ. For this surface roughness and for models that do not include multiple
scattering, major part of scattering occurs in the incident plane in the coherent way without much depolarization.
As �s increases, the field is still measured for the same polarization but for �i > 0Æ, the field along the measured
polarization vector decreases since it is just a projection of the field in the plane of incidence. In comparison with
Wu et al. [14, Figure 2], the results shown in Figure 8.9 differ in the position of the dips in all six figures. The most
prominent difference, however, is the lack of change in the dip position in Figure 8.9 between HH and VV. In Wu
et al. [14, Figure 2], that change is around 10Æ.

In Figure 8.10, the scattering coefficients were plotted as a function of azimuth for two elevation angle combinations
— �i = 30Æ and �s = 60Æ in the first case in Wu et al. [14, Figure 11], and �i = 60Æ and �s = 30Æ in the second
case [14, Figure 12]. kL was set to 9:42 in both cases while k� was switched between 1:73 and 5:12. The relative
dielectric permittivity was set to 3:0. The results remind a lot of the results from the previous paragraph. First,
one can see that for the rougher surface, the scattering coefficient in backward direction is almost equal to that in
forward direction. For the smoother surface, forward scattering is less prominent compared to backscattering. The
location of the dips is also different compared to reference. Moreover, in Wu et al. [14, Figures 11 and 12], the dips
change with around 30Æ between HH and VV while in Figure 8.10 this change is not present. Finally, IIEM differs
a lot from the other methods just like in Figure 8.9, but it still agrees well with the reference.

The change of dip position is a possible explanation for the disagreement that occurred earlier in elevation angle
studies in the Kirchhoff region. For �s = 30Æ, the disagreement became higher when �s increased. Looking at
Figure 8.3, one can see that for the constant value of �s and increasing �s, the examined direciton moves closer to
the direction of the dip. Since there is a slight disagreement in the dip position between Figures 8.9-8.10 and the
reference figures, moving closer to the dip results in higher uncertainty in the results. The possible reasons for the
dip position disagreement will be discussed in Section 10.
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Fig. 8.3: The scattering coefficient for AIEM and HH is here plotted as a function of both �s and �s for the same
surface as in Figure 8.7. The dashed line corresponds to �s = 30Æ. As �s increases, the dashed line and the dip come
closer to each other. Since there is a slight disagreement in dip position between Figures 8.9-8.10 and corresponding
figures in the reference article, there will also be a slight disagreement in the other figures especially for azimuth
angles close to the dip.



36 THESIS FOR THE DEGREE OF MASTER OF SCIENCE

0 10 20 30 40 50 60 70
−28

−26

−24

−22

−20

−18

HH−polarization; φ
s
=30o, θ

i
=30o, kσ=0.1, kL=1.5, ε

r
=9−0.5i

θ
s
 (degree)

σ0  (
dB

)

 

 

IEM
IIEM
SPM
AIEM

0 10 20 30 40 50 60 70
−32

−30

−28

−26

−24

−22

−20

−18

VV−polarization; φ
s
=30o, θ

i
=30o, kσ=0.1, kL=1.5, ε

r
=9−0.5i

θ
s
 (degree)

σ0  (
dB

)

 

 

IEM
IIEM
SPM
AIEM

0 10 20 30 40 50 60 70
−28

−26

−24

−22

−20

−18

−16

HH−polarization; φ
s
=30o, θ

i
=30o, kσ=0.1, kL=1.5, ε

r
=16−1.5i

θ
s
 (degree)

σ0  (
dB

)

 

 

IEM
IIEM
SPM
AIEM

0 10 20 30 40 50 60 70
−28

−26

−24

−22

−20

−18

−16

VV−polarization; φ
s
=30o, θ

i
=30o, kσ=0.1, kL=1.5, ε

r
=16−1.5i

θ
s
 (degree)

σ0  (
dB

)

 

 

IEM
IIEM
SPM
AIEM

0 10 20 30 40 50 60 70
−26

−24

−22

−20

−18

−16

−14

HH−polarization; φ
s
=30o, θ

i
=30o, kσ=0.1, kL=1.5, ε

r
=40−3i

θ
s
 (degree)

σ0  (
dB

)

 

 

IEM
IIEM
SPM
AIEM

0 10 20 30 40 50 60 70
−26

−24

−22

−20

−18

−16

−14

VV−polarization; φ
s
=30o, θ

i
=30o, kσ=0.1, kL=1.5, ε

r
=40−3i

θ
s
 (degree)

σ0  (
dB

)

 

 

IEM
IIEM
SPM
AIEM

Fig. 8.4: Results for cases found in Wu et al. [14, Figure 3]. The agreement with Wu et al. [14] is perfect for all
models.
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Fig. 8.5: Results for cases found in Wu et al. [14, Figure 4]. The agreement with Wu et al. [14] is excellent.
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Fig. 8.6: Scattering coefficients for cases found in Wu et al. [14, Figures 5 and 6] are shown. In this figure, just like
in Figures 8.4-8.5, the agreement with the reference is also perfect which gives the conclusion that SPM, IEM, and
AIEM were implemented correctly by the author (at least in those terms that are important in the SPM-validity
region). IIEM also shows good agreement with the reference article.
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Fig. 8.7: Results for cases found in Wu et al. [14, Figures 7 and 8]. For HH-polarization, a slight underestimation
of �0 is observed for high values of �s for all models. For VV-mode, an overestimation is observed instead. The
difference is at most 2dB. The form of the curves is otherwise very close to the form of the graphs in Wu et al.
[14]. The small deviations can be explained by the results observed in Figures 8.9-8.10.
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Fig. 8.8: Results for cases found in Wu et al. [14, Figures 9 and 10]. Scattering coefficients for high angles �s are
slightly overestimated for VV and underestimated for HH just like in Figure 8.7.
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Fig. 8.9: Results for cases found in Wu et al. [14, Figure 2]. Compared to the original, figures above do not show
a change in the location of the dip between HH and VV for KM, IEM, and AIEM as they do in the reference. The
relative displacement of IIEM has a correct direction but once again, the position of the dip is different. Values of�0 for �s = 0Æ and �s = 180Æ are the same as in the reference. The relative change between different angle setups
do also agree with the relative changes in the reference.
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Fig. 8.10: Results for cases found in Wu et al. [14, Figures 11 and 12]. Also here, the position of the dip is the same
for HH and VV, which does not agree with Wu et al. [14]. The difference here is however much bigger than in
Figure 8.9. Otherwise, the differences are just the same as in Figure 8.9. IIEM shows good general behavior but the
exact position of the dip is also shifted.
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8.3 Root Mean Square Testing of Model Validity

Here, the implemented methods were tested against each other in order to see in which regions they agree best.
This was done in the following way:

1) a uniformly distributed random set of N = 400 angle combinations was created using Matlab R function rand
and the angles were chosen from the following intervals:�i 2 [5Æ; 75Æ℄, �s 2 [�75Æ; 75Æ℄, �s 2 [0Æ; 180Æ℄, and �i = 0Æ,

2) nL = 20 and n� = 15 equally spaced values for kL and k�, respectively, were chosen from the intervals [0:1; 10℄
and [0:01; 5℄,

3) five different �0-values were computed for all angles, all kL-k�-combinations, and all polarization modes, for
each one of the models: PO, GO, SPM, IEM, and AIEM,

4) root mean square deviations between IEM, AIEM, PO, GO, and SPM were computed:RMSDm;r(kL; k�) =vuut 1N NXn=1 [�0m(kL; k�)� �0r (kL; k�)℄2; (8.1)

where �0m comes from either IEM or AIEM and �0r from either GO, PO, or SPM (�0 is in linear units and so is
the resulting RMSDm;r),

5) the resulting averages over all polarization modes were plotted in decibels for Gaussian correlation function
in Figure 8.11a and for exponential correlation in 8.11b.

The number of angle combinations was chosen as a compromise between computation time and accuracy. No
improvement in result quality was found when the number of angle combinations was increased but computation
time became much longer. Averaging over all four polarization modes was done since no specific differences were
noticed in the different polarization modes.

First, one can see that for both Gaussian and exponential correlation functions, SPM and IEM/AIEM agree very
well in the region where kL and k� are low. AIEM and IEM agrees very well with both PO and GO for all kL andk� which should not be a surprise due to the fact that IEM is a method based on the Kirchhoff Approximation but
with more terms included.

Comparing Figure 8.11 with Figure 5.1, one can see that there are some regions that overlap (mostly for SPM,
but also for GO with the Gaussian correlation function). It is important to note that regions of low RMSD in Figure
8.11 do not show the same thing as the validity regions do in Figure 5.1. RMSD-plots only show places where
IEM/AIEM agrees with the asymptotic methods and do not say anything about agreement with real-life, measured
data (as they do in Figure 5.1).

For the exponential correlation function, the agreement is generally slightly worse than for the Gaussian function.
Root-mean-square deviation between IEM and AIEM is slightly higher for both Kirchhoff models. One can also see
that for both correlation functions and both Kirchhoff based methods, there is a surprisingly good agreement in
for high k� and low kL. This is a typical example of a region where both methods agree but none is valid.
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(a) RMSD in decibel for Gaussian correlation function. The values are clipped below -20 dB and above 0 dB for better viewing.
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(b) RMSD in decibel for exponential correlation function. The values are clipped below -20 dB and above 0 dB for better viewing.

Fig. 8.11: RMSD plot for Gaussian and exponential correlation functions. The intensity value is equal to the RMSD
in dB between two modelled scattering coefficients. The results are averages of HH, VV, HV, and VH for each
function. AIEM has slightly better agreement with GO in the region of high kL and k� and with PO for high kL
and low k� region. Note: for better viewing, the values below -20 dB and above 0 dB are shown as -20 dB and 0
dB, respectively.
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8.4 Angular Dependency

An interesting question that arises after looking at the graphs presented in Section 8.2 is how the scattering
coefficients depend on the position of measurement (�s and �s) and what is the angular distribution of the scattering
coefficients. This can be examined by doing an AIEM simulation for different angles and looking at �0dB(�s; �s)-plots
for different �i settings for a particular surface. In the following section, a comparison between AIEM and PO/SPM
will be done in the corresponding validity regions. The relative electric permittivity has been set to �r = 16. Two
settings of surface roughness are chosen as well: kL = 1:5, k� = 0:1 for SPM validity, and kL = 7:5, k� = 2:8 for
Physical Optics validity (which is slightly outside the validity regions described in Figure 5.1, but the results from
Wu et al. [14] are obtained for the same parameters with good results). The incident angle �i was switched between40Æ, 65Æ, and 80Æ.

For each setting, two plots were created for both HH- and VV-mode (see Figure 8.14):� a two-dimensional image with �s on the x-axis and �s on the y-axis (the y-axis was flipped upside-down in
order to create a more intuitive plot). The intensity in each point was:e�0dB = �0dB �min(�0dB)max(�0dB)�min(�0dB) ;
which is a scaled and normalized version of �0dB (e�0dB lies in the interval [0; 1℄; this plot will from now on be
referred to as ”2D-image” or simply ”image”),� a three-dimensional surface that shows the angular distribution of the scattering coefficient. Spherical coordi-
nates for each point (e�0dB ; �s; �s) have to be transformed into Cartesian coordinates:x = e�0dB sin �s os�s; (8.2)y = e�0dB sin �s sin�s; (8.3)z = e�0dB os �s: (8.4)

This plot will be referred to as ”3D-surface” or simply ”surface”.

Both graphs actually show the same results but in quite a different way. The 3D-surface is better for studying
the angular distribution qualitatively, to discern the lobes, and to examine how the point of zero scattering (the
dip) changes for different angle setups. The 2D-image is better when it comes to more quantitative analysis and
comparison between models, angle settings, and modes.

Looking at Figure 8.14, one can see that the difference between the position of the dips between HH and VV
polarizations for AIEM for all three angles is small or non-existent. This result was already observed in Section 8.2
but the reason is unknown (Wu et al. [14] shows a noticeable difference in this position). For Physical Optics, the
difference is more obvious especially for high �s.

For surfaces that have long correlation length, scattering is most prominent in the specular direction. One mechanism
that affects the position of the dip is the fact that, for angles �s greater than zero, the measured field with a
particular polarization consists of the projection of the specularly scattered field in the direction of the measurement.
This explains the result for normal incidence. The location of the dip is then naturally at 90Æ for all models and
polarizations. Additionally, when looking at all four polarizations, one can see that cross-polarization tops when
co-polarization is the lowest, see Figure 8.12. When the azimuthal angle is increased, the co-polarized scattered
field decreases because its projection becomes smaller.

In the 2D-image, three lines have been plotted. These are the contours for regions that have intensities of 99%,
95% and 80% of the maximal achieved intensity. The maximal intensity can be found for angles close to 0Æ and180Æ (that is if the scattering is measured in the plane of incidence). An interesting result is that even though the
dips are at the same positions for both HH and VV, the regions of maximal scattering (regions surrounded by the
red line that represents 99% of maximal intensity) are situated in different places, both for AIEM and PO. While
in HH-mode scattering is most prominent in a direction close to specular direction (although not exactly specular
— some unexplained variations may be found), in VV mode, most scattering seems to occur in the normal direction.

In the region where SPM is valid, AIEM was plotted in the same way against SPM in Figure 8.15. One can clearly see
looking at the 3D-surfaces that for HH, scattering occurs almost isotropically with an exception for the region around�s = 90Æ, where the scattering coefficient drops in a dip. The dip in HH-mode is however very shallow for the SPM.
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Fig. 8.13: In this figure, forward scattering is examined. The three curves in HH and VV correspond to �r = 3 (red),�r = 16 (green), and �r = 81 (blue). If the incidence occurs at the Brewster angle, then no vertically polarized field
is reflected. As it can be seen in the figure, the dip in VV occurs exactly at the expected location for both SPM, IEM,
and AIEM (the Brewster angles can be computed from �B = tan�1p�r). This shows that all three models handle
Brewster angle correctly.

The origin of the dip in the SPM-region may be the so-called Brewster angle. Brewster angle is the angle at which
vertical polarization is not reflected at all. In IEM-based methods, the value of # in the expression for the Fresnel
coefficient is chosen to be half the angle between the incident and scattered direction. If �s = 0Æ and the sum of the
incident and the scattered angle �i+ �s is equal to twice the Brewster angle �B = tan�1p�r, then dip should occur
in VV. If the azimuth is increased, then the dip occurs for lower angles �s if �i is kept constant. Higher incident
angle �i gives slower rate of change of the location of the dip. Looking at Figure 8.13, one can see that the effect
of Brewster angle is simulated properly by the three methods SPM, IEM, and AIEM.

The location of the maximal-intensity regions in the 2D-image are slightly different for surfaces with short correlation
lengths and small standard deviations. Most prominent scattering still occurs in the plane of incidence but the
regions show much higher values than in the case shown in Figure 8.14. The region of 99% intensity for HH shifts
towards 45Æ as �i goes towards 90Æ for AIEM while in SPM, it cannot be told whether that happens or not because
the 99%-region is much larger and SPM-simulated scattering is thus much closer to isotropic. For VV-mode, most
of the scattering is still in the normal, or close-to-normal direction.
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(a) Advanced Integral Equation Model, �i = 40Æ (b) Physical Optics Model, �i = 40Æ

(c) Advanced Integral Equation Model, �i = 65Æ (d) Physical Optics Model, �i = 65Æ

(e) Advanced Integral Equation Model, �i = 80Æ (f) Physical Optics Model, �i = 80Æ
Fig. 8.14: Relative scattering coefficient for three angles �i from a rough Gaussian surface with k� = 2:8 and kL = 7:5
using Advanced Integral Equation Model and Physical Optics Model. The three curves — red, green and blue —
are contours for regions of 99%, 95% and 80% of the maximal scattering coefficient. Permittivity is set to �r = 16.
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(a) Advanced Integral Equation Model, �i = 40Æ (b) Small Perturbation Model, �i = 40Æ

(c) Advanced Integral Equation Model, �i = 65Æ (d) Small Perturbation Model, �i = 65Æ

(e) Advanced Integral Equation Model, �i = 80Æ (f) Small Perturbation Model, �i = 80Æ
Fig. 8.15: Relative scattering coefficient for three angles �i from a rough Gaussian surface with k� = 0:1 and kL = 1:5
using Advanced Integral Equation Model and Small Perturbation Model. The three curves — red, green and blue
— are contours for regions of 99%, 95% and 80% of the maximal scattering coefficient.
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9 SURFACE STUDY

The main scope of this project is to study the behavior of scattering coefficients when surface structure changes.
In order to do that, a number of tests has been set up. First, k� was kept constant and kL was swept through a
wide range of values in four regions — GO, PO, SPM, and joint PO/SPM validity regions — for both forward
(�s = �i, �s = 0Æ), backward (�s = �i, �s = 180Æ), and general bistatic scattering (no particular restriction on angles).
Thereafter, kL was kept constant and k� was swept over a wide range of values in two regions — Kirchhoff
validity region (joint PO and GO) and SPM validity region. Tests were done for both forward, backward, and
bistatic scattering.

9.1 Constant Standard Deviation

The first test was performed in each region of validity for the asymptotic methods. The normalized standard
deviation of the surface was set to a constant value and kL was swept over a wide range. Figure 9.1 shows an
overview of the values for k� and kL used in this section. The lower limit for GO varies for different angular
setups and in the cases when more than one angular setup was used, only the most strict restriction is shown in
Figure 9.1. The colors of the marks in Figure 9.1a correspond to the colors of the curves in Figures 9.2-9.5 and the
colors of the marks in Figure 9.1b correspond to the colors of the curves in Figures 9.6-9.7.

9.1.1 Forward and Backward Scattering
For simulations in the plane of incidence, the following four angle setups were used: �i = 40Æ or �i = 50Æ, �s = �i,
and �s = 0Æ or �s = 180Æ. The relative dielectric permittivity used was 16� 1:5j.
Geometrical Optics Region
In the region where Geometrical Optics Model is valid, the following values of k� were used: 3.0, 5.0, 7.0, and 9.0.kL was swept for each value within the validity region up to 14.5 (see Figure 9.1a).

The scattering coefficient increases for decreasing k� in forward scattering, see Figure 9.2. This, together with
the opposite trend in backscattering (lower two graphs) confirms the fact, that increasing k� gives more backscatter
but less forward scatter in the Kirchhoff region. Moreover, a higher incident angle (closer to grazing) results in a
slightly lower forward scattering but also in larger backscattering for HH-polarization while the trend is opposite
for VV-polarization.

Another trend that can be observed in Figure 9.2 is that scattering coefficient increases with kL for forward scattering
while it decreases for backward scattering, especially for rather low k� (around 3). This can also be understood
quite intuitively — larger correlation lengths give larger facets and more energy can be scattered forward. The
opposite relation for backscattering is also natural — more backscattering occurs when surfaces change faster. It
can be seen that for backscattering (especially for �i = 50Æ) that the highest k� gives the highest backscattering. This
can be explained by the fact, that high k� gives a high mean slope of a surface. Higher surface slope means greater
chance that the incidence will be normal to the tangential plane thus giving very high backscattering. Observing
how the curves for different values of k� change, one can see that there must be a k� in between 5 and 7 for which
the curve stops going upward and starts going downward. This happens only for �i = 40Æ.

Physical Optics Region
The results of this simulation are presented in Figure 9.3. Standard deviation k� has been set to 0.8, 1.3, and 1.8 in
order to fulfill the

p2 �L < 0:25-condition for Physical Optics and �r was still 16� 1:5j. Within this region, almost
the same results are observed as for Geometrical Optics. In forward scattering, �0 increases with increasing kL and
decreasing k� and it is higher for HH than for VV in all cases. One can also see that the scattering coefficient fork� = 0:8 is generally lower for �i = 50Æ than for �i = 40Æ which does not happen for the other values of k�. The
uneven spacing between curves shows that there is a non-linear dependance on k� in that region.

For backscattering, the general results are also quite the same as for Geometrical Optics region apart from the
fact, that the spacing between curves is much more even. For all curves, the three models agree perfectly except
for high kL and low k� for �i = 50Æ where the Advanced Integral Equation Model shows higher values than both
IEM and PO (see the four plots in the bottom part of Figure 9.3). The same observation can also be made in Figure
9.2, but then also for IEM.
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Small Perturbation Region
Since the small perturbation region is rather small, only two k� were tested — 0.05 and 0.2. Forward and backscatter-
ing coefficient are generally lower than the corresponding ones for both Kirchhoff models (see Figure 9.4 compared
to Figure 9.2 and 9.3). This is due to the fact, that for small height variations of the surface, scattering is much more
evenly distributed in azimuth (much closer to isotropic) than for the Kirchhoff region. It should thus be expected
to give higher scattering coefficient values in the bistatic mode (more about that later). Moreover, one can see that
higher k� gives higher �0 — rougher surfaces give more forward scattering.

For backscattering (two last rows in Figure 9.4), one can see that higher k� also gives a higher scattering coefficient,
which together with the conclusions from forward scattering is difficult to explain intuitively. One possible expla-
nation is that higher surface deviation may give more bistatic scattering than low surface deviation values. There is
also a maximal �0 that can be acquired for all values for kL. For backscattering, AIEM gives an overestimation for
the HH-polarized scattering coefficient and an underestimation for VV-polarization compared to SPM while IEM
agrees perfectly. One more observation that can be made here is that backscattering in SPM-region is the only case
when HH gives lower scattering than VV.

In Ulaby et al. [4], the validity region for SPM theoretically also includes the region for high kL. Thorsos [23]
shows that the validity of SPM is limited for k� > 2 due to a disagreement with numerical simulations. In order
to evaluate that, some tests were also made in the region where kL > 2� and k� < 0:3. In that region, Physical
Optics is usually the valid asymptotic model and the results were thus compared with PO. All parameters were
set just like in the previous paragraph with an exception for kL, which now was swept from 2� to 15. The results
are plotted in Figure 9.5. In forward scattering, SPM, PO, IEM, and AIEM agree very well, while in backscattering,
SPM gives extremely low, unrealistic values of �0, which shows that SPM is not a suitable modeling method in this
region. Higher k� gives more forward and backscattering, just like the previous results showed. Higher kL gives
also more forward scattering but less backscattering. Forward scattering is stronger in HH-mode than in VV-mode.

9.1.2 Bistatic Scattering

In bistatic scattering, two angle setups were used. The first setup was: �i = 45Æ, �s = 45Æ, �s = 30Æ, and the second
one was: �i = 30Æ, �s = 50Æ, �s = 30Æ. The dielectric permittivity was set to 16 � 1:5j throughout all tests. The
values for kL and k� used in the tests are shown in Figure 9.1b.

Geometrical Optics Region
In the region where Geometrical Optics Model is valid, the agreement between GO, IEM, and AIEM is perfect
(see Figure 9.6). For both angle setups and both polarization modes, the general trend is that �0 increases with
increasing kL and also is higher for lower k� and it is higher for HH than VV. There is a small difference between
the two angle setups (�i = 30Æ gives slightly higher �0). This difference decreases with k� for HH but increases
with k� for VV. The used values for k� were: 5.0, 7.0, and 9.0.

Physical Optics Region
In the region of Physical Optics validity, scattering coefficients decrease with an increasing correlation length and
also, they are higher for higher k�, see Figure 9.6. This is an opposite result compared to Geometrical Optics model
and a conclusion is that there is a maximal value of �0 somewhere in between validity regions for both PO and
GO. The different models agree with each other farily well. The difference between the two angular setups is rather
small. The used values for k� were: 0.8, 1.3, and 1.8.

Small Perturbation Region
In the region where SPM can be used, the behavior of �0 for different values of kL and k� is generally the same
for bistatic scattering as for forward and backward scattering, as in Figure 9.7 compared to Figure 9.4. This result
could be predicted since scattering is much closer to isotropic for surfaces with short correlation length. Also here,
the three used methods agree very well, and the difference between the two angular setups is small. The used
values for k� were: 0.05 and 0.2.

Finally, in the region of kL > 2� and k� < 0:3, it can be observed that AIEM and IEM both predict values
that agree with both SPM and PO. The results from forward and backward scattering showed earlier that SPM did
not agree with PO and both IEM based methods in this region. The same values for k� were used as mentioned
in the previous paragraph.
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Fig. 9.1: (a) For forward and backward scattering, the chosen kL and k� values are shown with cross-marks in the
figure and the colors correspond to the colors in Figures 9.2-9.5. The line corresponding to rule R7 is put in its
highest possible position for the angle combinations used in the study described in Section 9.1.1. (b) For bistatic
scattering, the same routines regarding the cross-marks applies as for forward and backward scattering but it refers
to Figures 9.6-9.7 instead and the results are described in Section 9.1.2.
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Fig. 9.2: In the case of backward and forward scattering in the GO-region, one can see that the agreement of the
methods is almost perfect. One interesting observation is that for backscattering at �i = 40Æ, the scattering coefficient
first rises with k� but then starts to fall again. Apparently, there must be some kind of maximum for �0. Values
of k� are 3.0 (cyan), 5.0 (blue), 7.0 (green), and 9.0 (red, see Figure 9.1a). Note an overestimation of �0 given by
AIEM and IEM as compared with GO for backscattering, high kL-values, and low k�-values.
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Fig. 9.3: The curves for forward scattering at �i = 50Æ show some uneven spacing that can be a result of a maximum
on its way to being reached. Values of k� are 0.8 (blue), 1.3 (green), and 1.8 (red, see Figure 9.1a). Note a big
overestimation of �0 given by AIEM as compared with GO for backscattering, high kL-values, and low k�-values.
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Fig. 9.4: For the SPM-region (with the restriction from Thorsos [23] included), the three models seem to agree very
well except for backscattering, where AIEM does not agree well with SPM and IEM. For backscattering, there seems
to be a maximum of scattering as well. In VV mode, backscatter is slightly stronger. k� was set to 0.05 (green) and
0.2 (red), see Figure 9.1a. Note that backscattering in the SPM-region gives higher VV than HH, a result that is not
observed for any other scenario.
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Fig. 9.5: In the region where both SPM and PO are valid according to Ulaby et al. [4], the agreement is good for
forward scattering. In backward scattering, SPM gives very low, unrealistic values and AIEM also gives values
higher than those predicted by both IEM and PO. The other results are rather predictable apart from the fact, that
the slightly higher value of k� gives a stronger forward scattering coefficient. This is an interesting result that
cannot be understood intuitively. k� was set to 0.05 (green) and 0.2 (red, see Figure 9.1a).
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Fig. 9.6: In the bistatic case, the results in both KM-regions are quite predictable. For high k�-region (GO, top two
rows), an increase of correlation length gives higher scattering coefficient. As kL grows, the facets become bigger
but there is still quite large horizontal variation so that bistatic scattering coefficient also grows. For PO (bottom
two rows), larger facets together with low k� means that the surface becomes even more flat and less radiation
is scattered in bistatic directions (and more in the forward direction). For the PO validity region, AIEM slightly
disagrees with the other methods. k� was set to 5.0 (blue), 7.0 (green), and 9.0 (red) for GO, and 0.8 (blue), 1.3
(green), and 1.8 (red) for PO, see Figure 9.1b.
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Fig. 9.7: In the SPM validity region, the bistatic scattering coefficient shows the same trends as for forward and
backward scattering. This is an expected reaction since scattering in this region occurs mostly in the incoherent
way, quite isotropically. Even in the joint PO/SPM region scattering occurs in an intuitive way that reminds very
much of scattering in PO-region from Figure 9.6. All methods seem to agree well in this region. k� was set to 0.05
(green) and 0.2 (red), see Figure 9.1b.
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9.2 Constant Correlation Length

The next test was performed with exactly the same angle setups as before but now, k� was swept over a wide
range of values and kL was kept constant. The values for kL and k� were chosen according to Figure 9.8. Colors of
the marks in Figure 9.8a correspond to colors in Figures 9.9-9.10 and colors of the marks in Figure 9.8b correspond
to colors in Figure 9.11.

9.2.1 Forward and Backward Scattering
Kirchhoff Region
For forward and backward scattering, kL was set to 8.0, 11.0, and 14.0 while k� was swept from 0.1 to the upper
limit for GO. Instead of testing the models separately for GO and PO, one test was made for both in a wider range
of k� and both methods were plotted. The common region for PO and GO is called the Kirchhoff region.

In the region where any of the two Kirchhoff methods is valid, the scattering coefficient for forward scattering
is observed to first rise to a maximum around k� � 1:0 and then fall again, see the two first rows of images in
Figure 9.9. The scattering is expected to be maximal in the forward direction for a flat surface, and it shows that
there must exist a scattering term that has not been accounted for. This term is the coherent term that consists of
a ”spike” (delta function) in the specular direction. In backscattering, �0 first increases with k� and then starts to
fall slowly. The value of k� corresponding to the maximum value of the backscattering coefficient becomes higher
as kL rises and also, the slope of the curves after the maximum is higher for the lower angle setup with �i = 40Æ.
AIEM and IEM follow PO well for low k� and GO for high k�. In forward scattering, IEM fails to follow GO after
around k� = 2 and it falls down to �1. Generally, backscattering coefficient is smaller than forward scattering
coefficient, especially for low values of k�. This is an expected result since small standard deviation of a surface
makes is locally smooth and reflects most of the radiation specularly.

Small Perturbation Region
In Figure 9.10, the results are presented for the region where SPM is valid according to Ulaby et al. [4] with
the correction presented in Thorsos [23]. kL is set to 0.5, 1.0, 1.5, and 2.5. Both forward and backscattering cases
show the same trends — �0 increases with k�. In forward scattering, an increasing kL makes �0 grow while for
backscattering, the change of kL affects �0 in a more complicated way. Values of kL lying in the middle of the
validity region seem to give the highest �0. For backscattering, AIEM gives an overestimation of �0 compared
to SPM and IEM in the HH-mode (underestimation in VV-mode). SPM simulated values give higher backscatter
coefficients for VV than HH, the opposite trend compared to the other scenarios.

9.2.2 Bistatic Scattering
Kirchhoff Region
In Figure 9.11, the results of simulations in the GO and PO regions are shown. High k�-values give generally
lower bistatic scattering coefficients for both modes while high kL gives higher �0. Therefore, highest scattering
coefficient is due to gently undulating surfaces with relatively small standard deviation. There is a maximal value
of the bistatic scattering coefficient that can be achieved. This value is both kL- and k�-dependent. Both integral
equation-based models follow the asymptotic models well except for very high k� where AIEM fails to trace GO
and IEM and falls off towards �1. PO does not work well for high k�, which is to be expected in view of its
validity region.

Small Perturbation Region
Finally, in the SPM-region, one can see the typical behavior that occurs for small correlation lengths and small
standard deviation values — no big difference between bistatic scattering and the scattering in the plane of incidence
can be seen.
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Fig. 9.8: (a) For forward and backward scattering, the chosen kL and k� values are shown with cross-marks in the
figure and the colors correspond to the colors in Figures 9.9-9.10. The line corresponding to rule R7 is put in its
highest possible position for the angle combinations used in the study described in Section 9.2.1. (b) For bistatic
scattering, the same routines regarding the cross-marks applies as for forward and backward scattering but it refers
to Figure 9.11 instead and the results are described in Section 9.2.2.
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Fig. 9.9: In the Kirchhoff region, a very interesting observation can be made. The coefficient for forward scattering
seems to be maximized when k� � 1:0 in forward scattering which proves that the coherent term is not included in
the models (otherwise scattering would be maximal in the specular direction). In backward scattering, there is also
a maximum, but that value is much more strongly affected by the scattering angles and correlation lengths. The
values for kL that are used are: 8.0 (blue), 11.0 (green), and 14 (red), see Figure 9.8a. PO shows some inconsistent
results for high k� which is to be expected since it is not valid there.
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Fig. 9.10: In the SPM-region, the scattering coefficients seem to increase both in forward and backward scattering
as k� increases. The trends look quite alike those observed earlier and shown in Figure 9.7 and in Figure 9.4. In
the figure above, the used values of kL are: 0.5 (cyan), 1.0 (blue), 1.5 (green), and 2.5 (red), see Figure 9.8a. The
agreement of AIEM with IEM and SPM is not really good for backscattering. As one can see, SPM and IEM give
higher value of VV compared to HH. This is a result that cannot be found in the other scenarios.
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Fig. 9.11: The same result as for forward and backward scattering are observed here for bistatic scattering in the
Kirchhoff region (top two rows) — namely the fact that �0 is maximized for a slightly rough surface. For bistatic
scattering, this is not as surprising because one would expect a slightly rough surface to give more bistatic scattering
than a smooth surface. For SPM (bottom two rows), the results are almost the same as for backward and forward
scattering and the observation that scattering is almost isotropic in the SPM-region is confirmed. Figure 9.8b shows
the values of kL used in KM-region: 8.0 (cyan), 10.0 (blue), 12.0 (green), and 14.0 (red) and in SPM-region: 0.5
(cyan), 1.0 (blue), 1.5 (green), and 2.5 (red). PO shows some inconsistent results for high k� in the top two rows
which is to be expected since it is not valid there.
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10 DISCUSSION AND CONCLUSIONS

This project consisted of three steps: 1) theoretical study of the different models, 2) model implementation, validation,
and application, and 3) analysis and evaluation of the results. During the first step, different ways of simulating
radar scattering were examined thoroughly. The choice of SPM, PO, and GO as references is natural for reasons
that are both computational and historical (easier expressions that have been used for a long time). There are really
few models that try to bridge the gap between SPM and GO/PO. Most of the current work in that field is centered
around IEM and that is why Integral Equation Model was used. Since this method has evolved a lot since it first
was presented in 1992, both the earliest and the latest version (AIEM) were chosen in order to show potential
differences between them. Finally, IIEM was used in some parts of the project because an implemented version of
it was provided by Gustafsson [37], which was treated as a reference during validation. Also, during this step, a
study of texts that describe some applications of the electromagnetic models in connection with empirical data was
made in order to get an idea of the procedures needed for a trustworthy examination.

The essential part of this project is the second step, during which the chosen models were first implemented,
then verified, and finally applied in some studies. More about those steps can be found in the paragraphs that
follow.

10.1 Model Implementation

During model implementation, a lot had to be taken into consideration. Even the simplest expressions for single
scattering (presented in Appendix C) are rather complicated and careful implementation of each coefficient was
needed. Even careful insertion of the coefficients and expressions into Matlab R could not prevent some problems
that occurred when AIEM was being implemented according to Wu et al. [14]. The main author of that article
was contacted by e-mail and it was confirmed that some misprints occurred in the article. Fortran code for AIEM
was provided as well. After that, AIEM started to work well. Moreover, expressions for PO gave some troubles as
well. PO is presented in both Ulaby et al. [4] and Ulaby et al. [6] but the implementation of these expressions was
problematic (due to possible misprints and/or the human factor). Instead, scattering coefficients found in de Roo
[26] were used and worked well.

Another concern that occurs for numerical evaluations of the scattering coefficients are the infinite sums and integrals
found in the expressions. Since only single scattering was implemented, there were no integrals present and thus
only infinite sums needed some attention. The sums can normally be cut at some point since they are convergent.
The choice of that point is important, but, using modern computers, the speed of computation of the sums is so
high, that hundreds of terms can be taken without any major loss of computation speed. In practice, the sums were
cut when the relative change was low enough. A consequence of not including multiple scattering in the models
was that the simulated scattered, cross-polarized fields became gravely underestimated (a big part of depolarization
comes from multiple scattering) and were thus omitted in the study.

Transition function was also implemented according to the Fortran file provided by Wu [38]. The transition function
also contained an infinite sum that had to be cut at some point. It was discovered, that this sum converged more
slowly and more terms had to be taken into consideration. However, since the relative change was used as a
criterion for the sum to be cut, this was only an issue if a fixed number of sum terms were used. The inclusion of
the shadowing function into the models was not problematic since the function has a really simple form.

10.2 Model Verification

After the models have been implemented, they needed to be tested. Since no numerical values were accessible for
comparison, the verification was done against figures presented in articles and books. The most valuable article from
that point of view was Wu et al. [14] since it contained many figures for different angle setups, dielectric contants,
and models used. In the article, AIEM, IIEM, and IEM were used together with SPM, GO, and a method referred
to as KM (which probably was the same as PO, although this was not mentioned in the article). Additionally, some
of the implemented models were compared to the results found in Ulaby et al. [4], Fung et al. [11], and Wu and
Chen [13] but those results are not presented in this text. As mentioned earlier, the disagreement in the position of
the dips of �0 was essentially the only encountered and unexplained problem.

In some cases, it was uncertain which model version was used and how. For the figures in Wu et al. [14], it was
not mentioned whether shadowing function was used or not. The results presented here were produced without
using the shadowing function except in IIEM. Also, unless specified otherwise, transition function was used for
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AIEM.

It is possible that there are some minor mistakes in the models implemented by the author, but generally, the
results of the model verification showed very good results. The only issue was the azimuthal disagreement in dip
position and a slight disagreement of AIEM with SPM in the region where kL and k� are small.

10.3 Model Application

The results of the study of the scattering coefficient against surface parameters k� and kL show some interesting
results. First and foremost, the results agree with the intuitive conclusions for both very smooth and very rough
surfaces. For example, in GO-region, longer correlation lengths give higher scattering coefficients in forward scatter-
ing but also lower backscatter coefficients (as expected for specular reflection). Also, higher incidence angle (closer
to grazing) gives less backscatter but more forward scatter. �0HH is also higher than �0V V since the first one is not
affected by the Brewster angle.

What was less expected was the discovery of the maxima of scattering coefficients found for forward scattering
in the region where Kirchhoff approximation is valid. The results indicate that for a certain value of kL and k�,
the scattering coefficient is maximal. Ideally, one could think that �0 in forward scattering should be greatest
when k� is close to zero and kL is high, and the bistatic and backward scattering coefficient would be quite
low everywhere. However, it was discovered that the scattering coefficient for bistatic and forward scattering in
KM-region is maximized if there is some vertical roughness in the surface. The same happens with backscattering
coefficient but it is less distinguished. For forward scattering, this means that the implemented models are not valid
in the region of very small k� because the coherent term is not included.

During the examination of the root-mean-square deviation of the modeled scattering coefficients most of the results
regarding validity regions were confirmed. It was also noted, that the RMSE graphs should be used together with
the validity region figures. RMSE graphs do not say anything about model validity against the true values, but
only about the agreement of the different models against each other.

When studying bistatic scattering for different angles �s and �s, a discovery was made that VV-polarization is
much less affected by the angular setup than HH-polarization mode. Once again, the difference between the two
modes can be a result of the different degree of interaction with the surface around the Brewster angle for both
modes. It was observed that for VV most scattering occurs in the normal direction, even for surfaces valid for
Kirchhoff approximation.

10.4 Future work

Due to time limitations of this project and space limitations of this report, some issues and ideas that have come
up during work had to be skipped. The possible future development of this project may include:� a thorough study of the origin of the difference in dip position of the dips in the examination of the azimuthal

behavior,� an implementation of multiple scattering for IEM and AIEM according to Fung and Chen [34] and Wu and
Chen [13],� a cross-polarization study for different angle and surface setups, preferably after multiple scattering has been
implemented,� an investigation of the difference in scattering coefficients when shadowing and transition function are used
and not used [20],� an investigation of scattering from surfaces with dielectric and roughness properties that are based on real
values in connection with some experimental data [39, 40],� a study of the model behavior for other than Gaussian correlation functions [41],� a more complete study of the validity of the methods, preferably with a comparison with method of moments
simulations and maybe some other, less common methods like Small Slope Approximation [42] among others
(as in Chen and Fung [29] for example),� some simulations of scattering in regions far from the validity regions of the asymptotic models (or in the
intermediate region).
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Fig. A.1: The nomenclature used for the derivation of the electric and magnetic field integral equations.

APPENDIX A
INTEGRAL REPRESENTATION FOR ELECTROMAGNETIC FIELDS

A.1 Maxwell’s Equations

The four Maxwell’s equations are [10, 28, 43]:r�E = �j!�H�K; (A1)r�H = j!"E+ J; (A2)r � E = �="; (A3)r �H = m=�: (A4)

They are completed by the charge conservation relationships:r � J = �j!�; (A5)r �K = �j!m; (A6)

where " and � are dielectric constants for the relevant medium, and ! is the angular frequency of the wave. J andK are the electric and magnetic magnetic current densities, and � and m are charge densities (magnetic monopoles
are assumed).

A.2 Vector Wave Equations

By a cross multiplication of r from the left with equations (A1) and (A2) and by using equations (A1)-(A4) for
substitutions, the following two vector wave equations are found:r�r�E� k2E = �j!�J�r�K; (A7)r�r�H� k2H = �j!"K+r� J; (A8)

where k2 = !2"�.

A.3 Electric Field Integral Equation

In order to solve (A7) and (A8) Green’s Vector Theorem need to be used [4, 10]:ZV (Q � r �r�P�P � r �r�Q) dv = Z� (P�r�Q�Q�r�P) � ds; (A9)
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where P and Q are arbitrary vector functions of position with continuous first and second derivatives in the volumeV and on its boundary �. After setting P = E, choosing G to beG = â�(r; r0) = âe�jkjr�r0jjr� r0j ; (A10)

where â is an arbitrary orientation unit vector, and r and r0 are observation and source position vectors respectively,
and using (A7), the equation (A9) turns into:ZV [j!�J�(r; r0) +K�r�(r; r0)� (�=")r�(r; r0)℄ dv == Z� [j!�(n̂�H)�(r; r0)� (n̂�E)�r�(r; r0)� (n̂ � E)r�(r; r0)℄ ds; (A11)

where n̂ is a unit normal for �.

Since the Green’s function �(r; r0) = e�jkjr�r0jjr� r0j
is singular when r = r0, an infinitesimal sphere should be circumscribed about r as indicated in Figure A.1. The
integral over � becomes a sum of integrals over different parts of �: the outer boundary S, the inner boundary S0,
and the sphere boundary Ss. S0 is divided into S1, which is the part of the inner boundary that is not affected by
the sphere, and S2, a part of the inner boundary that goes around the sphere. Formally, this can be expressed by:Z� = ZS + ZS1 + ZS2 + ZSs (A12)

and, for each surface the corresponding normal vector is n̂, n̂1, n̂2, and n̂s respectively.

Only the integrals over S2 and Ss are affected by the limit r = jr� r0j ! 0. This part is called I and it becomes:I = limr!0 ZS2+Ss [j!�(n̂�H)�(r; r0)� (n̂�E)�r�(r; r0)� (n̂ �E)r�(r; r0)℄ � ds == limr!024�E0�ZS2 n̂2 � n̂2r2 ds+ ZSs n̂s � n̂sr2 ds1A35 : (A13)

Since r̂ = �n̂2 and r̂ = n̂s, and the solid angle is defined byd
 = n̂ � r̂r2 ds;
the integrands in the right hand side of (A13) can be written asd
2 = � n̂2 � n̂2r2 ds; (A14)d
s = n̂s � n̂sr2 ds: (A15)

so that I becomesI = limr!024�E0�ZS2 n̂2 � n̂2r2 ds+ ZSs n̂s � n̂sr2 ds1A35 = limr!024�E0�ZSs d
s � ZS2 d
21A35 : (A16)

The limit of the first integral on the right hand side of (A16) is equal to 4� while the second limit is equal to 2� ifr lies on a smooth part of �. If it lies in V but not on �, then the integral is 0. If it lies on a part of � that is not
smooth, some further investigations have to be done.
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From (A16), E can be extracted and, together with (A11) and (A12) it gives:E(r) = � T4� ZV [j!�J�(r; r0) +K�r�(r; r0)� (�=")r�(r; r0)℄ dv ++ T4� ZS+S1 [j!�(n̂�H)�(r; r0)� (n̂�E)�r�(r; r0)� (n̂ � E)r�(r; r0)℄ ds; (A17)

where T = � 2 if r is on a smooth portion of �,1 if r is not on �.

If S is grown to infinity,
RS(�)ds can be called Ei as it represents sources outside S, or, as it will be called from

now on, the incident electric field Ei. If there are no sources inside V , then (A17) reduces to:E(r) = T 8<:Ei(r)� 14� ZS [j!�(n̂�H)�(r; r0)� (n̂�E)�r�(r; r0)� (n̂ � E)r�(r; r0)℄ ds9=; : (A18)

where S now simply represents the boundary between V and V C. This equation is often referred to as the electric
field integral equation (EFIE).

A.4 Magnetic Field Integral Equation

An expression for H can be found using the same procedures as in Section A.3 above:H(r) = T 8<:Hi(r) + 14� ZS [j!�(n̂�H)�(r; r0)� (n̂�H)�r�(r; r0)� (n̂ �H)r�(r; r0)℄ ds9=; : (A19)

Often, it is referred to as the magnetic field integral equation (MFIE). A more detailed derivation of (A18) and (A19)
can be found in Poggio and Miller [10].



MACIEJ SOJA: ELECTROMAGNETIC MODELS OF BISTATIC RADAR SCATTERING FROM ROUGH SURFACES WITH GAUSSIAN CORRELATION FUNCTION 69

APPENDIX B
STRATTON-CHU INTEGRAL AND THE FAR FIELD APPROXIMATION

The so-called Stratton-Chu integral [44] relates the tangential surface fields to the fields far away from the boundary.
The expression for the Green’s function � in (A18) and (A19) is now replaced by its explicit expression:� = exp (�jkjr� r0j)jr� r0j : (B1)

The far field assumption gives the following simplification in the denominator of (B1):jr� r0j � jrj = r; (B2)

and in the exponential (phase) expression: jr� r0j � r � r � r0; (B3)

see Ulaby et al. [4, App. 12J.5]). The expressions for � and r� become:� = exp (�jkr + jkr � r0)r ; (B4)r� = jkrr exp (�jkr + jkr � r0): (B5)

In the far field, the surface S has to be treated as an open surface and thus the integral in (A18) needs an extra
term corresponding to the line integral on the boundary [4, p. 1022]. This gives an expression for the scattered field
only: Es(r) = � 14� Z [j!�(n̂�H)�� (n̂�E)�r��r�(n̂ � E)℄ ds| {z }

EFIE, (A18)

+ j4�!" I r�H � dl| {z }
integral on �S ; (B6)

which after the insertion of (B4) and (B5) gives:Es(r) = je�jkr4�r Z [(n̂�E)� k� !�(n̂�H) + k(n̂ � E)℄ ejk�r0 ds� e�jkr4�r!"k I ejk�r0H � dl; (B7)

where k = kr̂. The last term can be re-written using Stoke’s theorem, which gives:I ejk�r0H � dl = Z r� �Hejk�r0� � ds == Z h�rejk�r0��H+ ejk�r0r�Hi � ds == Z (jk�H+ j!"E) ejk�r0 � ds (B8)

and with (B7), the expression for Es, that is the far field expression for the scattered electric field becomes:Es = �jke�jkr4�r r̂� Z [(n̂�E)� r̂� (n̂�H)�℄ ejk�r0 ds; (B9)

which is the Stratton-Chu integral.
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APPENDIX C
EXPLICIT EXPRESSIONS FOR GO, PO, SPM, IEM, AND AIEM MODELS

C.1 Common Expressions

Some expressions occur in more than one models and are thus presented here.

First, the Kirchhoff fields used in GO, IEM and AIEM are:fhh = 2Rkos �i + os �s [sin �i sin �s � (1 + os �i os �s) os��℄ ; (C1)fvv = � 2R?os �i + os �s [sin �i sin �s � (1 + os �i os �s) os��℄ ; (C2)fhv = 2R sin��; (C3)fvh = �2R sin��; (C4)

where R? = �2 os �i � �1 os �t�2 os �i + �1 os �t ; (C5)Rk = �1 os �i � �2 os �t�1 os �i + �2 os �t ; (C6)R = 12(Rk �R?): (C7)

C.2 Geometrical Optics

The single scattering expression for the Geometrical Optics model can be found in Fung [22, chap. 5.5] and it is:�GOpq = k2jfpq j22�2(ksz � kiz)2%00(0) exp�� (ksx � kix)2 + (ksy � kiy)22�2(ksz + kiz)2%00(0) � ; (C8)

where �00(0) is the second derivative of the correlation function in the origin.

C.3 Physical Optics

The single scattering expression for a slightly improved version of the Physical Optics model that includes the first
order term and the most important part second order term, as described in de Roo [26] is:�POpq = I0 �a00pq ��alimnsin �i � qliqz + alimnsin �i � qliqz �� ��a00pq ��alimnsin �i � qliqz + alimnsin �i � qliqz ��? (C9)

where I0 = 8<: (kL)24 e�(qz�)2P1i=1 (qz�)2ii!i exp h� (qtL)24i i
(Gaussian correlation function)(kL)22 e�(qz�)2P1i=1 (qz�)2i(i�1)!(i2+(qtL)2)3=2 (exponential correlation function)
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and a00hh = �R?(os �i + os �s) os�� (C10)a00vv = �Rk(os �i + os �s) os�� (C11)a00hv = Rk(1 + os �i os �s) sin�� (C12)a00vh = �R?(1 + os �i os �s) sin�� (C13)a10hh = (R?(sin �s � sin �i os��)�R0?(os �i + os �s) os��) sin �i (C14)a10vv = (Rk(sin �s � sin �i os��)�R0k(os �i + os �s) os��) sin �i (C15)a10hv = (Rk sin2 �i os �s +R0k sin �i(1 + os �i os �s)) sin�� (C16)a10vh = �(R? sin2 �i os �s +R0? sin �i(1 + os �i os �s)) sin�� (C17)a01hh = (Rk(1 + os �i os �s) sin��+R0? os �i(os �i + os �s) sin�� (C18)a01vv = (R?(1 + os �i os �s) sin��+R0k os �i(os �i + os �s) sin�� (C19)a01hv = �R? os �i(sin �i sin �s � (1 + os �i os �s) os��) +Rk(os �i + os �s) os�� (C20)a01vh = Rk os �i(sin �i sin �s � (1 + os �i os �s) os��) �R?(os �i + os �s) os�� (C21)

(C22)

with R0? = ��2 sin �i(1� R?)� �1 k1 os �ik2 os �t sin �t(1 +R?)� � [�2 os �i + �1 os �t℄�1 (C23)R0k = ��1 sin �i(1� Rk)� �2 k1 os �ik2 os �t sin �t(1 +Rk)� � [�1 os �i + �2 os �t℄�1 (C24)

(C25)

being the first order terms of the reflection coefficients.

C.4 Small Perturbation Model

The first order Small Perturbation Model used in this work was presented in Ulaby et al. [4] and the same version
is used here. The scattering coefficient is:�SPMpq = 8jk2� os �i os �s�pq j2 �W (kix + k sin �i; kiy); (C26)

where �hh = �[qstqit os��� �r sin �i sin �s℄ (�r � 1)� �2r(�r � 1) os��	 �� �(�r os �s +q�r�r � sin2 �s) (�r os �i + qit)��1 (C27)�vv = �[qstqit os��� �r sin �i sin �s℄ (�r � 1)� �2r(�r � 1) os��	 �� �(�r os �s +q�r�r � sin2 �s) (�r os �i + qit)��1 (C28)�hv = sin�� [�r(�r � 1)qit � �r(�r � 1)qst℄ � [(qst + �r os �s)(�r os �i + qit)℄�1 (C29)�vh = sin�� [�r(�r � 1)qit � �r(�r � 1)qst℄ � [(qst + �r os �s)(�r os �i + qit)℄�1 (C30)

and qst = q�r�r � sin2 �s; (C31)qit = q�r�r � sin2 �i: (C32)
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C.5 Integral Equation Model

The version of Integral Equation Model used in this work has been thoroughly described in Fung [22] and in
Section 6 and needs no further presentation. The scattering coefficient for single scattering is:�IEMpq = k22 exp ���2(k2iz + k2sz)� 1Xn=1 ��2n ��Inpq��W (n)(ksx � kix; ksy � kiy)n! �

(C33)

where Inpq = (ksz + kiz)nfpq exp (��2kizksz) + (ksz)nFpq(�kix;�kiy) + (kiz)nFpq(�ksx;�ksy)2 (C34)

where Fpq(kx; ky) is a simplified version of the complementary field coefficients shown in the next section. The
coefficients above are:Fhh(�kix;�kiy) = [(1�R?) os �i � (1 +R?)qit=�r℄ [(1 +R?) os��+ (1�R?)�rC1℄ +� �(1�R?)2 � (1�R?)(1 +R?) os �i=qit�C2; (C35)Fvv(�kix;�kiy) = � �(1�Rk) os �i � (1 +Rk)qit=�r� �(1 +Rk) os��+ (1�Rk)�rC1�++ �(1�Rk)2 � (1�Rk)(1 +Rk) os �i=qit�C2; (C36)Fhv(�kix;�kiy) = [(1�R) os �i � (1 +R)qit=�r℄ [(1 +R)= os �s + (1�R)�r=qit℄ sin��++ �(1�R)2 � (1�R)(1 +R) os �i=qit� sin2 �i sin��; (C37)Fvh(�kix;�kiy) = [(1 +R) os �i � (1�R)qit=�r℄ [(1�R)= os �s + (1 +R)�r=qit℄ sin��++ �(1 +R)2 � (1 +R)(1�R) os �i=qit� sin2 �i sin��; (C38)Fhh(�ksx;�ksy) = [(1�R?) os �s � (1 +R?)qst=�r℄ [(1 +R?) os��+ (1�R?)�rD1℄ +� �(1�R?)2 � (1�R?)(1 +R?) os �s=qst�D2; (C39)Fvv(�ksx;�ksy) = � �(1�Rk) os �s � (1 +Rk)qst=�r� �(1 +Rk) os�� + (1�Rk)�rD1�++ �(1�Rk)2 � (1�Rk)(1 +Rk) os �s=qst�D2; (C40)Fhv(�ksx;�ksy) = � [(1 +R) os �s � (1�R)qst=�r℄ [(1�R)= os �i + (1 +R)�r=qst℄ sin��+� �(1 +R)2 � (1 +R)(1�R) os �s=qst� sin2 �s sin��; (C41)Fvh(�ksx;�ksy) = � [(1�R) os �s � (1 +R)qst=�r℄ [(1 +R)= os �i + (1�R)�r=qit℄ sin��+� �(1�R)2 � (1�R)(1 +R) os �s=qst� sin2 �s sin��; (C42)

where C1 = (os��� sin �i sin �s)=(qit os �s); (C43)C2 = sin �i(sin �s � sin �i os��)= os �s; (C44)D2 = (os��� sin �i sin �s)=(qst os �i); (C45)D2 = sin �s(sin �i � sin �s os��)= os �i: (C46)

and qit and qst are the same as defined in Appendix C.4.

C.6 Improved Integral Equation Model

The Improved Integral Equation Model that was used for verification against Wu et al. [14] was provided by
Magnus Gustafsson [37] and will not be presented here. It was not used in other studies in this report.

C.7 Advanced Integral Equation Model

For the Advanced Integral Equation Model, the single scattering expression is [12, 13]:�AIEMpq = k22 exp ���2(k2iz + k2sz)� 1Xn=1 ��2n ��Inpq��W (n)(ksx � kix; ksy � kiy)n! �
(C47)
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whereInpq = (ksz + kiz)nfpq exp (��2kizksz) + 14 �F+pq(�kix;�kiy) � (ksz � kiz)n exp ���2 �k2iz � kizksz + k2iz��++F�pq(�kix;�kiy) � (ksz + kiz)n exp ���2 �k2iz + kizksz + k2iz��++F+pq(�ksx;�ksy) � (kiz + ksz)n exp ���2 �k2sz � kszksz + k2iz��++F�pq(�ksx;�ksy) � (kiz � ksz)n exp ���2 �k2sz + kszksz + k2iz��++G+pq(�kix;�kiy) � (ksz � qiz)n exp ���2 �q2iz + qizksz + k2iz��++G�pq(�kix;�kiy) � (ksz + qiz)n exp ���2 �q2iz � qizksz + k2iz��++G+pq(�ksx;�ksy) � (kiz + qsz)n exp ���2 �q2sz + qszksz + k2iz��++ G�pq(�ksx;�ksy) � (kiz � qsz)n exp ���2 �q2sz � qszksz + k2iz��	 (C48)

with qsz = qk22 � k2sx � k2sy and qiz = qk22 � k2ix � k2iy . The function W (n)(kx; ky) is the Fourier transform of thenth power of the correlation function.

The explicit expressions for F and G are here presented. Using q�m = qk2m � k2�x � k2�y (m = 1; 2 depending

on medium, and � = i; s for incident/scattered radiation), the upward and downward reradiation coefficients
found in (C48) are: F+pq(kx; ky) = Fpq(kx; ky; q1; q1); (C49)F�pq(kx; ky) = Fpq(kx; ky;�q1; q1) (C50)

for medium 1 and G+pq(kx; ky) = Gpq(kx; ky; q2; q2); (C51)G�pq(kx; ky) = Gpq(kx; ky;�q2; q2) (C52)

for medium 2.

The functions Fpq(kx; ky; kz ; q) and Gpq(kx; ky; kz ; q) specified in (C54)-(C60) are used to determine the coefficients
(C49)-(C52). Note, that parameters kx, ky, and kz are actually only used in C and B coefficients found in (C65)-(C76).q is a parameter with the same magnitude as kz but its sign remains fixed upon the change of reradiation direction.
It is only used in expressions (C54)-(C60):Fhh(kx; ky; kz ; q) = 1�Rhq [(1 +Rh)C1 � (1�Rh)C2 � (1 +Rh)C3℄ +�1 +Rhq [(1�Rh)C4 + (1 +Rh)C5 + (1�Rh)C6℄; (C53)Fvv(kx; ky; kz ; q) = �1�Rvq [(1 +Rv)C1 � (1�Rv)C2 � (1 +Rv)C3℄ ++1 +Rvq [(1�Rv)C4 + (1 +Rv)C5 + (1�Rv)C6℄; (C54)Fhv(kx; ky; kz ; q) = 1�Rq [(1 +R)B1 � (1�R)B2 � (1 +R)B3℄ ++1 +Rq [(1�R)B4 + (1 +Rh)B5 + (1�Rh)B6℄; (C55)Fvh(kx; ky; kz ; q) = 1 +Rq [(1 +R)B4 + (1�R)B5 + (1 +R)B6℄ ++1�Rq [(1�R)B1 � (1 +Rh)B2 � (1�Rh)B3℄; (C56)



74 THESIS FOR THE DEGREE OF MASTER OF SCIENCEGhh(kx; ky; kz ; q) = �1 +Rhq [(1 +Rh)C1"r � (1�Rh)C2 � (1 +Rh)C3℄ +1�Rhq [(1�Rh)C4 + (1 +Rh)C5 + (1�Rh)C6="r℄; (C57)Gvv(kx; ky; kz ; q) = 1 +Rvq [(1 +Rv)C1 � (1�Rv)C2 � (1 +Rv)C3="r℄ +�1�Rvq [(1�Rv)C4"r + (1 +Rv)C5 + (1�Rv)C6℄; (C58)Ghv(kx; ky; kz ; q) = �1 +Rq [(1 +R)B1 � (1�R)B2 � (1 +R)B3="r℄ +�1�Rq [(1�R)B4"r + (1 +R)B5 + (1�R)B6℄; (C59)Gvh(kx; ky; kz ; q) = �1 +Rq [(1 +R)B4 + (1�R)B5 + (1 +R)B6="r℄ +�1�Rq [(1�R)B1"r � (1 +R)B2 � (1�R)B3℄: (C60)

Without making any approximations, the angle �i can be set to 0. Using the slopeszx = �ksx + kxkiz � kz ; (C61)zy = �ksy + kykiz � kz ; (C62)z0x = kix + kxkiz + kz ; (C63)z0y = kix + kykiz + kz ; (C64)

the C coefficients for the co-polarized F coefficients are as follows:C1 = C1(kx; ky; kz) = os�s(1 + zxz0x) + sin�szyz0x; (C65)C2 = C2(kx; ky; kz) = os�s(kx os �i + kxzx os �i + kzz0x sin �i + kxzxz0x sin �i + kyz0y os �i � kyzxz0y sin �i) ++ sin�s(kxzy os �i + kxzyz0x sin �i + kzz0y sin �i � kxz0y os �i + kyzyz0y sin �i); (C66)C3 = C3(kx; ky; kz) = � os�s(kx sin �i � kzzx sin �i � kxz0x os �i + kzzxz0x os �i) +� sin�s(ky sin �i � kyz0x os �i � kzzy sin �i + kzzyz0x os �i); (C67)C4 = C4(kx; ky; kz) = os �s sin�s(z0y sin �i � zxz0y os �i) ++os �s os�s(os �i + z0x sin �i + zyz0y os �i) +� sin �s(zx os �i + zxz0x sin �i � zyz0y sin �i); (C68)C5 = C5(kx; ky; kz) = os �s sin�s(kyzx � kyz0x) +� os �s os�s(kz + kxzx + kyzy) ++ sin �s(kzzx + kxzxz0x + kyzyz0x); (C69)C6 = C6(kx; ky; kz) = os �s sin�s(kxz0x � kzzxz0y) +� os �s os�s(kyz0y � kzzyz0y) ++ sin �s(kyzxz0y � kxzyz0y); (C70)
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while the corresponding B coefficients for the cross-polarized field coefficients are:B1 = B1(kx; ky; kz) = os �s sin�s(1 + zxz0x)� zy sin �s � zyz0x os �s os�s; (C71)B2 = B2(kx; ky; kz) = os �s sin�s(kz os �i + kxzx os �i + kzz0x sin �i + kxzxz0x sin �i + kyz0y os �i + kyzxz0y sin �i) +� sin �s(kzzy os �i + kzzyz0x sin �i � kzzxz0y sin �i � kxzxz0y os �i + kyzyz0y os �i) +� os�s os �s(kxzy os �i + kxzyz0x sin �i + kzz0y sin �i � kxz0y os �i + kyzyz0y sin �i); (C72)B3 = B3(kx; ky; kz) = � os �s sin�s(kx sin �i � kzzx sin �i � kxz0x os �i + kzzxz0x os �i) ++os�s os �s(ky sin �i � kyz0x os �i � kzzy sin �i + kzzyz0x os �i) +� sin �s(kyzx sin �i � kxzxzxp os �i � kxzy sin �i + kxzyz0x os �i); (C73)B4 = B4(kx; ky; kz) = os�s(z0y sin �i � zxz0y os �i) +� sin�s(os �i + z0x sin �i + zyz0y os �i); (C74)B5 = B5(kx; ky; kz) = os�s(kyzx � kyz0x) ++ sin�s(kz + kxz0x + kyzy); (C75)B6 = B6(kx; ky; kz) = os�s(kxz0y � kzzxz0y) ++ sin�s(kyz0y � qzyz0y): (C76)

APPENDIX D
ADDITIONAL FUNCTIONS

D.1 Transition Function

The transition function [13, 20, 34] is a function that interpolates values for Rk and R? and replaces the choice
between incident/specular angle for Fresnel coefficient calculation that is described in Section 6.3. Transition function
has been used together with AIEM model in some cases but will not be described more thoroughly here. Only the
explicit expression for that function will be presented while a description can be found in Wu et al. [20].

The Fresnel coefficient for a polarization p that is either vertical (k) or horizontal (?) is:Rp(T ) = Rp(�inident) + [Rp(�speular)�Rp(�inident)℄�1� SpS0p� (D1)

where Sp = 14 � 1Pn=1 � (k� os �i)2nn! ��� eFp���2W (n)(ksx � kix; ksy � kiy)�1Pn=1" (k� os �i)2nn! ����2n+1Rp(0)os �i e�(k� os �i)2 + eFp2 ����2W (n)(ksx � kix; ksy � kiy)# ; (D2)S0p = �1�1 + �2 + �3 ; (D3)

and �1 = 14 [os �sFpq(�kix;�kiy) + os �iFpq(�ksx;�ksy)℄ ; (D4)�2 = (os �s + os �i)Re ffpq � [os �sFpq(�kix;�kiy) + os �iFpq(�ksx;�ksy)℄g ; (D5)�3 = (os �s + os �i)jfpq j2: (D6)

The two eFp are: eFh = 8Rv(0) sin2 �i os �i +p�r � sin2 �ios �ip�r � sin2 �i ! ; (D7)eFv = �8Rh(0) sin2 �i os �i +p�r � sin2 �ios �ip�r � sin2 �i ! : (D8)
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D.2 Shadowing Function

One fact that usually has to be included in the computation of the scattering coefficients is the shadowing function.
This function lowers the radar cross section of a resolution cell due to shadowing at high incident angles �i (low
grazing angles). Shadowing has been studied by Smith [36] and Sancer [35] among others and is also described in
Ulaby et al. [4] and Fung [22]. The function is simply multiplied with the scattering coefficient:�0SH = �0 � Sin � Sout; (D9)

where �0 is the scattering coefficient without shadowing, Sin is the shadowing factor for incident radiation, andSout is the shadowing factor for the scattered radiation.

Smith [36] describes two possible functions:S1(�i; �s) = [1 + f(�i; �s)℄�1; (D10)S2(�i; �s) = �1� 12erf� ot �i�sp2��S1(�i; �s); (D11)

(D12)

where the first one represents the probability of 00clear view00 and the second one is more suitable for Kirchhoff
terms and it is 00the conditional probability that a point will not lie in the shadow given that its local slope is
perpendicular to the incident beam00, citing Fung [22, p. 191]. The functionf(�i; �s) = 12 "r 2� � �sot �i exp��ot �2i2�2s �� erf�ot �i�sp2�# ; (D13)

where �s is the root-mean-square slope, contains the so-called complementary error function:erf(x) = 1� erf(x) = 1� 2p� xZ0 e�t2 dt: (D14)
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