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Populärvetenskaplig presentation
Att det i nuläget råder ett negativt ränteklimat har troligtvis inte undgått någon då detta re-
gelbundet cirkulerar i nyhetsbevakningen. Ur ett historiskt perspektiv kan nuvarande ränteklimat
sägas ha sin grund i 2008 års finanskris, vilket kan anses ha orsakts av en avreglerad finansmarknad i
USA som skapade ekonomiska svallvågor över nästan hela värden. Efterdyningarna av finanskrisen
har resulterat i att räntorna sänkts i stora delar av världen i syfte att stimulera ekonomin. I Sverige
har detta, tillsammans med svårigheter att möta inflationsmålet på 2 %, resulterat i att vi sedan
2015 har negativa räntenivåer från Riksbanken.

Investeringar i finansiella instrument som har räntan som underliggande tillgång har sedan
länge varit stabila och förhållandevis säkra investeringar. De allra säkraste anses vara obligationer
utgivna av stater. På den svenska obligationsmarknaden är svenska staten den största utgivaren
och majoriteten av de utgivna instrumenten består av statsobligationer. Den låga räntan resulterar
i att avkastningen på dessa obligationer avtar vilket självfallet minskar deras popularitet.

För att förutspå förändringar i ekonomin används matematiska modeller baserade på historisk
data. Kritik kan riktas mot dessa modeller då det inte finns garanti för att framtida mönster över
huvud taget ska uppvisa samma beteende som de historiska. Utan att använda dessa modeller
skulle det istället handla om mer eller mindre kvalificerade gissningar för att avgöra vad som kan
tänkas ske i framtiden. Det skiftande ränteklimatet har även påverkat dessa matematiska modeller
och attribut som tidigare ansetts vara en svaghet betraktas nu som önskvärda. Det tydligaste
exemplet på detta är möjligheten att modellera negativa räntor.

Vasiceks modell presenterades av Oldřich Vašíček 1977 som en möjlighet att modellera framtida
räntevärden men har mött kritik på just nämnda ämne kring att modellera negativa räntevärden.
Då detta nu i allra högsta grad kan anses aktuellt är det givetvis intressant att undersöka hur
Vasiceks modell kan tänkas estimera det framtida svenska ränteklimatet.

Att skatta de ingående parametrarna i Vasiceks modell kan vid första anblick ses som en rätt
trivial uppgift, även om matematiska tillvägagångsätt såsom maximum likelihood metoden kan
innehålla en hel del algebra. Det är dock viktigt att hela tiden ha komplexiteten kring rådande
räntesituation i tankarna och inse att viss modifiering kan tänkas krävas för att komplettera vanliga
tillvägagångssätt. Så har även fallet visats vara för Vasiceks modell vilket ytterligare understryker
det faktum att matematiska modeller med negativa räntevärden tillviss del är att segla på okänt
vatten.

Trots komplexiteten och utmaningarna som tidigare nämnts så har Vasiceks modell ändå visat
sig på ett önskvärt vis kunna modellera avkastningskurvan på svenska statsobligationer. Det har
även visat sig att via räntesimuleringar så kan Vasiceks modell användas för prissättning av diverse
räntederivat. Detta har till viss del gett upprättelse åt den snart 80 år gamle Vasicek, även om
han själv vid framtagandet av modellen 1977 säkerligen såg negativa räntenivåer som en utopi.

Blickar vi framåt i tiden så har räntemarknaden visat en tendens att återgå till, vad som gener-
ellt sett betraktats vara, normala räntenivåer. Detta är fullt rimligt med tanke på de fluktuationer
som räntemarknaden historiskt sett visat upp. Att ett land konstant skulle uppvisa negativa rän-
tenivåer under långa tidsperioder får i skrivande stund betraktas som osannolikt och det kan mycket
väl hända att Vasiceks modell återigen möter kritik i framtiden för dess förmåga att modellera neg-
ativa räntevärden. Dock kvarstår problematiken med att estimering för framtiden egentligen inte
är mer än kvalificerade gissningar, vilket den amerikanske författaren Jonathan Raymond satte
fingret på i citatet "You can’t know what the future holds, though you might conjecture on it, and
if you’re psychic, you might venture a guess".



Sammanfattning

Sedan 2015 har räntan i Sverige varit negativ vilket historiskt sett är ett väldigt ovanligt
fenomen. Därav kan de flesta matematiska räntemodeller ej modellera negativa räntevärden.
Denna rapport ämnar undersöka hur den svenska räntan kan modelleras i dagens ränteklimat.

Detta kommer ske via att applicera Vasiceks modell till svenska statsskuldsväxlar. Vasiceks
modell blev fokus för rapporten tack vare det faktum att det är en Gaussisk process som fångar
den långsiktiga räntan och kan därför i kvalitativa termer anses modellera svenska statsob-
ligationer. Beräkningarna gentemot modellen gjordes via maximum likelihood-metoden. Via
detta upptäcktes att parametern som ämnar mäta hastigheten till den långsiktiga räntan, α,
ej var väntevärdesriktig för värden nära noll. När detta togs i beaktande visade sig Vasiceks
modell resultera i en relativt bra estimering i jämförelse med den svenska avkastningskur-
van. Dock resulterade detta i en modell med negativ α-parameter, vilket överskred modellens
tendens att gå mot den långsiktiga räntan. Istället är väntevärdet av räntan en evigt stigande
funktion. Från detta kan det argumenteras att modellen inte fångar konceptet kring lång-
siktiga räntenivåer vilket gör modellen icke-önskvärd för tidsperioder längre än tio år.

Vidare ämnar denna rapport prissätta räntederivat via Vasiceks modell. Specifikt så testas
caps och floors prissättas via Blacks modell vilket i sin tur är beroende av framtidsräntan.
Dock uppmärksammades att Blacks modell inte tillåter negativa räntevärden då detta ger
logaritmen av negativa värden. Istället presenteras en prissättningsmetod av dessa derivat
via Monte Carlo simuleringar vilket i sin tur gav önskvärda resultat för priset på caps/floors.
Från detta kan en slutsats dras att prissättning kan göras av dessa derivat för den relevanta
tidsperioden fem till tio år.

Nyckelord: statsobligationer, avkastningskurva, Vasicek-modellen, maximum likelihood-metoden,
korttidsränta, caps och floors.



Abstract

Since 2015 the interest rate in Sweden has been negative, which historically is a very unusual
phenomenon. Hence, most mathematical interest rate models do not account for negative in-
terest rates. This paper aims to investigate how to model the Swedish interest rate in today’s
environment.

This is carried out by applying the Vasicek model to Swedish treasury bills. The Vasicek
model was chosen since it is a Gaussian process that incorporates mean reversion and thus in
qualitative terms, it was feasible to assume that it can reproduce the yield of Swedish bonds.
The calibration of the model to the Swedish treasury bill data was done with the maximum
likelihood method. We found that the maximum likelihood estimation of the rate of reversion
parameter α was biased for values close to zero. When accounting for this bias, we found that
the Vasicek model resulted in a rather good fit in comparison with the listed Swedish yield
curve. However, this also resulted in a model with negative rate of reversion, which exceeded
the mean reversion. Thus, our model never incorporates mean reversion and is instead ever
increasing, which makes the model invalid for longer time spans than ten years.

Furthermore, this thesis also aims to price interest rate derivatives using the Vasicek model
as underlying interest rate. In particular, we try to price caps and floors using the Black model,
which is reliant on the forward rate. We found however, that the Black model does not al-
low for negative interest rate since this implies the logarithm of negative values. Instead we
present how to price these derivatives using Monte Carlo simulations, which resulted in a
satisfactory relation between the cap/floor price and their rate. Thus, we conclude that pri-
cing caps/floors with this method is suitable as long as the model is valid, i.e. five to ten years.

Key words: government bonds, yield curve, Vasicek model, maximum likelihood estimation,
spot rate, caps and floors
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1 Introduction
The following section aims to act as an opening into the field of interest rate markets. It will shed
light on the prevailing Swedish market conditions and present difficulties that have arisen in the
last couples of years.

1.1 Background
Since the beginning of 2015 the Swedish interest rate climate has experienced negative interest
rates, changing the conditions of the money and capital markets [26]. These low interest rate levels
have raised questions amongst the banking society on how for example credit risk is managed and
where the most profit line of business actually is to be found. Furthermore, it has provided a
more benevolent attitude for long term investments from society’s point of view. The low interest
rate levels have also raised questions regarding the mathematical models implemented to manage
financial derivatives, something that this thesis aims to further investigate [12].

In discussions around the money and capital markets, the Swedish government plays a major
role in obtaining and managing these lines of businesses. In order to finance the public sector, the
Swedish government sells various kinds of securities, for example government bonds, government
bills and lottery bonds. Riksgälden is responsible for managing this trade and in December 2017,
Riksgälden decided to stop selling lottery bonds because of the low interest rates [31]. Due to this
unusual phenomenon with negative interest rates, investors and money managers are today rewar-
ded with a negative yield on bonds with shorter maturity than five years. According to Riksgälden,
there is a negative trend in the daily traded volume of government bonds since 2010, which is an
obvious consequence of the negative yield. Despite this, there are still investors who buy these
bonds, often with the intention to sell them on the secondary market. It is therefore important to
be able to price these interest-bearing securities with negative interest rates as underlying value
when they are traded on the secondary market. That is to say, a model is requested that can
provide a negative interest rate and at the same time reproduce a satisfactory yield curve. Several
papers such as [11], [36] and [10] highlight valuation problems that occur in negative interest rate
environments and delve deeper into which models that can be used.

Furthermore, this brings the discussion regarding the Vasicek model into question. Vasicek
introduced his model in 1977 but has since then often been criticized for its ability to create and
model negative interest rates. By contrast, this is something that in today’s financial climate is
considered desirable and therefore is aligned with the challenges accompanying negative interest
rates.

1.2 Purpose
The aim of this bachelor thesis is to examine whether or not the Vasicek model is appropriate
to model the yield curve of Swedish government bills and bonds. It is from the beginning known
that the model succeeds in qualitative terms, i.e., that the Vasicek model is capable of reproducing
negative interest rates. It remains for us to prove whether it is also true in quantitative terms. If
the model turns out to produce satisfactory yield levels, the project also aims to include pricing of
interest rate derivatives, namely interest rates caps and floors.

1.3 Outline
The thesis will begin with a theory chapter where the basics behind the bond market and the
Swedish market derivatives in particular are described. We then introduce the fair pricing of
bonds and how one can derive the yield from the price. Before we present interest rates caps and
floors, we have to introduce the forward rate, which acts as an underlying factor. Towards the end
of the chapter, the concepts behind Vasicek model will be described and how to use the particular
model to price zero coupon bonds and interest rate caps and floors.
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We will subsequently proceed to the chapter regarding the method within the scope of this
thesis, in which we will present and delve deeper into the maximum likelihood method in order to
provide the reader with a foundation for further analysis. We will then present how the maximum
likelihood method will be used to estimate the parameters in the Vasicek model. At the end of
the chapter, we will also present an approach of how to price caps and floors using Monte Carlo
simulations.

The fourth chapter will present the results, given the methodology from previous chapters.
A comparison is here to be found amongst the actual yield curve and estimated yield curve for
Swedish government bills and bonds. The result from the Monte Carlo simulations, with respect
to pricing of caps and floors, will also be presented here.

The thesis will then end with a conclusion chapter, in which we will elaborate our findings and
present our illation whether or not the Vasicek model is appropriate to use. We also include a
discussion regarding the parameter values and bias.

Throughout every section in the thesis, references will be done to appendices. This could
include proofs, clarification, Matlab code or a more comprehensive discussion. These appendices
are to be found at the end of the thesis.

2 Theory
In order to keep a nation running, including hospitals, welfare and other elements within the
public sector, the government is in need of funding. This is commonly done by collecting taxes
and borrowing money from the world financial markets. From a government perspective, the most
frequently used financial instruments for this purpose are called government bills and bonds. The
actors trading within these derivatives ranges from financial institutions and other countries to
private investors [31]. The scope of the first part of this chapter will primarily be to describe the
bond market in detail with a particular focus on the Swedish situation. Furthermore, the chapter
intends to provide the reader with the basic foundations of the relevant concepts within financial
mathematics and how to apply these in the bond market context.

2.1 The bond market
The characteristics of a government bond can vary significantly based on its factors. The two
most notable factors when attempting to categorize government bonds are 1) time to maturity and
2) the possibility of paying coupons. Hence, there exist different names for different government
bonds in order to provide sectioning according to the bond specifics. Different countries most
commonly have different names for their individual bonds. In Sweden there are two main types
of bonds, referred to as Statsskuldväxlar (treasury bills), with a maturity of one year or less,
and Statsobligationer (government bonds), with a maturity of more than one year. The state
institution, Riksgälden, has the authority to issue and manage these securities. Looking abroad,
the bond market structure varies. Whilst Sweden has divided the interest rate securities in two
segments, the US have divided their bonds into treasury bills, with shorter maturity than one year,
treasury notes, with maturity between one to ten years, and treasury bonds, with more than ten
years to maturity [17]. For simplicity, the thesis will from now on refer to all government interest
rate securities with a maturity of one year or more as government bonds.

Swedish treasury bills

According to the Swedish issuer Riksgälden, treasury bills can be defined in the following manner,

"Interest securities with short maturity that we are using to manage the fluctuation in
the need of borrowed capital. We usually issue treasury bills with a maturity up to six
months [32]."
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Furthermore, treasury bills are, when issued according to the long-term plan, of two different
categories. Either it is a six-month maturity bill, in which case it should be issued in the IMM
months1. The second alternative is a treasury bill that matures within three months, in which case
it should be issued during one of the remaining months. Moreover, the financial markets fluctuate,
which in turn can call upon actions to keep the financial situation at bay. Hence, it is common
that more short-term treasury bills are issued to balance the outflow. These treasury bills are
usually maturing with respect to an already given maturity time, although this implies that the
time period for which the specific treasury bill is active is shorter than what previously have been
stated as guidelines [30]. At the 21st of March 2018, the current treasury bills follow from table 1.

Table 1: Swedish treasury bills 2018-03-21 [33].
Name Coupon Issue date Expire date Time to maturity Yield today

(%) (years) (%/year)
STB - 2017-09-01 2018-03-21 = 0.00 -0.659
STB - 2018-01-12 2018-04-18 ≈ 0.08 -0.664
STB - 2018-02-02 2018-05-16 ≈ 0.16 -0.784
STB - 2017-12-08 2018-06-20 ≈ 0.25 -0.657
STB - 2018-03-02 2018-09-19 ≈ 0.50 -0.698

Swedish government bonds

The most notable difference between a treasury bill and a government bond is that the time to
maturity amongst the latter is significantly further away in time when issued. Furthermore, the
government bond does usually also pay a yearly coupon on the notional. In general, this coupon is
of a fixed character and payed annually to the bond holder. There also exist subcategories within
the concept government bonds, namely nominal and real bonds. The difference between these
two are that the real government bond compensates for the inflation. Hence, these bonds are not
exposed to the risk of value erosion [28]. The time to maturity for the current Swedish government
bonds is in a wide spectrum, spanning from two up to more than 20 years. Despite this being the
case, the number of expiration dates are restricted to just a few. The number of bonds currently
active are constantly changing. This depends on, for example, how the short-term plan changes due
to the financial climate, both domestic and abroad. Although Riksgälden is continuously handing
out bonds through auctions, the maturity date and coupon payments are predetermined to the
currently existing bonds. This is especially relevant when considering government bonds because
of the relatively low frequency in which new sorts of bonds are created. At the 21st of March 2018,
the current government bonds follows from table 2.

Table 2: Swedish government bonds 2018-03-21 [33].
Name Coupon Issue date Expire date Time to maturity Yield today

(%) (years) (%/year)
SGB 1052 4.25 2007-11-26 2019-03-12 ≈ 0.98 -0.739
SGB 1047 5.00 2004-02-02 2020-12-01 ≈ 2.70 -0.451
SGB 1054 3.50 2011-02-14 2022-12-01 ≈ 4.20 -0.112
SGB 1057 1.50 2012-10-22 2023-11-13 ≈ 5.65 0.166
SGB 1058 2.50 2014-02-03 2025-05-12 ≈ 7.15 0.387
SGB 1059 1.00 2015-05-22 2026-11-12 ≈ 8.65 0.600
SGB 1060 0.75 2017-01-27 2028-05-12 ≈ 10.15 0.771
SGB 1056 2.25 2012-03-20 2032-06-01 ≈ 14.20 1.110
SGB 1053 3.50 2009-03-30 2039-03-30 ≈ 21.03 1.409

1IMM stands for International Money Market and includes March, June, September and December.
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Primary market

At the primary market, the government bonds and treasury bills are traded by auctions with
minimum amount of one million Swedish kronor [35]. Hence, it is unusual for specific individuals
to participate in these auctions, which are held every other Wednesday. As stated in table 1
and table 2, there are at the moment five treasury bills and nine government bonds active on
the Swedish market. Riksgälden decides which bonds or bills that will be able to purchase and
the conditions for the auctions are communicated one week before. The nature of the auction
is that Riksgälden provides a limited number of bonds/bills available for trade. The tools for
distinguishing and competing between the auctioneers are then the interest rate. The participants
which are able to offer the lowest interest rate with respect to the specific bond will be victorious
and are able to realize the purchase. This is often in economical literature referred to as a Vickrey
auction [14]. Although Riksgälden acts as the issuer of the bond, they themselves do not act as the
reseller. This task is divided upon different capital markets, including Barclays, Danske Markets,
Handelsbanken Markets, Nordea Markets, NatWest Markets, SEB and Swedbank. These actors
are commonly referred to as market makers [29].

Secondary market

When entering a contract consisting of government bonds and treasury bills, the buyer ties money
to a specific investment and for a specific time of maturity. Although the buyer is well aware of the
circumstances surrounding the contract, in order to make the bond market reach its full potential,
a secondary market needs to exist. Countless events may occur from now up until maturity which
force the buyer to sell the bond. An effective secondary market provides this possibility and also
enables individual investors to trade within government bonds [6]. Moreover, if private investors
wish to participate in the bond market, this is usually done by buying bond funds. As mentioned,
due to the negative yield connected to the short-term securities, investors buy them with the
incentive to sell them on the secondary market. Without a secondary market, one can argue that
there would be close to zero investors willing to buy these short-term securities today.

2.2 Fair bond pricing
The preliminary thought behind fair bond pricing is that the price of the bond, B(t, T ), at time
t should be equal to the discounted notional value L that the holder of the bond gets paid at
maturity time T ≥ t [19]. If the bond then pays a coupon at time t+ dt, T ≥ t+ dt ≥ t, the value
of the coupon today should be discounted from the interest rate at time t+dt, and not at the time
of maturity of the bond. Example 2.1 illustrates how to price a bond, when the interest rate is
assumed to be deterministic and known.

Example 2.1. A bond with notional value L = $100 pays an annual coupon of 8%, with a maturity
of T = 5 years. The interest rate of each year is known and presented in table 3.

Table 3: Deterministic interest rate.
Year Interest rate per year (%)

(continuously compounded)
1 4.2
2 5.2
3 6.0
4 6.4
5 6.8

The fair price at time t = 0 is then the discounted value of each payoff, i.e., the present value

price = 8e−0.042·1 + 8e−0.052·2 + 8e−0.060·3 + 8e−0.064·4 + 108e−0.068·5 = $104.63.

Note that in example 2.1, we assumed the interest rate to be continuously compounded, if it
instead would have been annually compounded, the price would be

8(1− 0.042)1 + 8(1− 0.052)2 + 8(1− 0.060)3 + 8(1− 0.064)4 + 108(1− 0.068)5 = $103.58.
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Further on in this thesis, we will assume the interest rate to be continuously compounded. However,
in example 2.1, the interest rate is assumed to be deterministic, which is not in accordance with
reality. Instead, the scope of this thesis is to model the future interest rate as a stochastic process.

2.2.1 Pricing Zero-coupon bonds

A zero-coupon bond (ZCB) is a financial contract that at maturity time, T , guarantees the owner
of the contract the predetermined amount L, i.e., the notional value, without any intermediate
dividends [4]. It still holds that the fair price of a ZCB is the discounted notional value. However,
since the spot rate that determines the discount rate is stochastic, the fair price is the expected
value of the discounted notional value, as described in definition 2.1 [16].

Definition 2.1. The fair price B(t, T ) of a ZCB at time t that matures at time T ≥ t, with
notional value L is

B(t, T ) = E[L
D(T )

D(t)
|R(t)], (1)

where
D(t) = e−

∫ t
0
R(τ)dτ

is the discount process based on the stochastic spot rate R(t) [4].

One easy way of modelling R(t) is to assume that it follows a geometric Brownian motion, i.e.,

R(t) = R(0)eαt+σW (t).

However, this does not allow for a negative interest rate, which is a desired feature in this thesis
and hence, this model is rejected. It is also clear that due to the linearity of the expected value,
the notional amount L can be moved outside of the parenthesis in equation (1) and assumed to
be equal to 1, without loss off generality. Hence, further on in this thesis, we assume that L = 1
in the case of every bill and bond. Furthermore, since most known models for R(t) are Markov
processes [5], we can state a general pricing function

B(t, T ) = v
(
t, T,R(t)

)
, (2)

where v
(
t, T,R(t)

)
is a function that depends on the time left until maturity, T −t, and the current

spot rate R(t).

2.2.2 Pricing coupon bonds

If the bond pays a coupon ci at time ti ≥ t, this coupon could be modelled as a ZCB with notional
value ci and hence a price ciB(t, ti). The price of the coupon bond Bc(t, T ) is then the sum of
all discounted coupons in (c1, c2, .., cn−1, cn) together with the discounted final notional value 1 at
maturity (note that tn = T ), i.e.,

Bc(t, T ) = B(t, T ) +

n∑
i=j+1

ciB(t, ti), for t ∈ [tj , tj+1), j = 0, 1, ..., n− 1. (3)

If we further assume (as in the case with Swedish government bonds) that ci = c ∀ i = 1, ..., n,
equations (2) and (3) then combine into a complete model for pricing coupon bonds, namely

Bc(t, T ) = v
(
t, T,R(t)

)
+ c

n∑
i=j+1

v
(
t, ti, R(t)

)
, for t ∈ [tj , tj+1), j = 0, 1, ..., n− 1. (4)

2.3 Yield to maturity
The yield is a common expression in the world of finance and can vary in its interpretation. In
this thesis, the yield considered will be yield to maturity (YTM), which is expressed annually.
The yield of a bond is reliant on the interest rate and the cash flow connected to the bond. One
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can describe the YTM of the bond as the interest rate that calculates the net present value of
the coupons and the notional amount paid at maturity [22], i.e., YTM is the same as the annual
internal rate of return on an investment, with the investment representing any given bond.

Depending on whether the payoff of an investment is known or not, the uncertainty in the yield
differs. When considering bonds, the payoff is known from the beginning but due to the credit
rating of the issuer, the yield of these bonds tend to differ. This is because the buyer undertakes
a higher risk when entering into an agreement with an issuer with low credit rating and therefore
expects higher payoff. Furthermore, to incentivize risk aversion, high-risk bonds are commonly
cheaper. Investors who buy bonds with the incentive to own them up until time of maturity, know
in advance the amount of money they will earn and can therefore easily discount the forthcoming
cash-flow to obtain the present value. However, if the investors buy the bonds with incentive to
sell them before the time of maturity, the price can fluctuate due to the surrounding environment
within the world economy. When a bond is sold at the secondary market, the market price B(t, T )
decides the yield. As stated before, the yield of a ZCB is the annual interest rate that the holder
of the bond obtains. Hence, definition 2.1 can be used conversely to calculate the yield Y (t, T ) of
any given ZCB at time t that matures at time T as

B(t, T ) = e−Y (t,T )(T−t) ⇒ Y (t, T ) = − logB(t, T )

T − t
, (5)

when the time to maturity T , the price of the bond B(t, T ) and the payoff, i.e., the notional amount
L = 1, are all known. Then, by using the properties from equation (3) and (5), the yield of coupon
bonds can also be calculated, using the formula

Bc(t, T ) = e−Yc(t,T )(T−t) + c

n∑
i=j+1

e−Yc(t,T )(ti−t), for t ∈ [tj , tj+1), j = 0, 1, ..., n− 1. (6)

When we know this, we can calculate the yield Yc(0, 5) at time t = 0 of the coupon bond in example
2.1 as

8e−Yc(0,5)·1 + 8e−Yc(0,5)·2 + 8e−Yc(0,5)·3 + 8e−Yc(0,5)·4 + 108e−Yc(0,5)·5 = $104.63⇒ Yc(0, 5) = 6.65%.

In conclusion, the yield depends on the relation between coupons and the notional value, as well
as on the interest rate between every year from time t until maturity at time T ≥ t.

Yield curve

The yield curve can be used to represent the connection between the yield of several bonds with dif-
ferent maturities. This graphical representation has the yield at the y-axis and time to maturity at
the x-axis. A yield curve can only include bonds with same quality. It is therefore not appropriate
to use government bonds and corporate bonds within the same yield curve. To create a yield curve
that illustrates the Swedish government bonds and treasury bills, one has to interpret the existing
instruments available on the market. As stated above, there are a total of 14 currently active
instruments on the Swedish market that together creates this yield curve. Figure 1 illustrates the
yield curve, based on these 14 government bonds and treasury bills available on the market2 on
the 21st of March 2018. For further explanation regarding different shapes and implications of the
yield curve, see Appendix A.

Let us observe government bond SGB 1053 in table 2 that currently has 21.03 years left to
maturity. This bond is today used as a benchmark for the yield curve at 21.03 years to maturity.
As years go by, this specific type of bond will be used as benchmark for different maturities. After
20 years, this same bond will have about 1.03 years left to maturity. This means that in 20.03
years the last coupon payment from SGB 1053 will emerge. Hence, the SGB 1053 will drift closer
to origin when illustrating the yield curve over the years for which the bond is active. After that,
this bond can be modelled as a treasury bill up until maturity. Therefore, there is a possibility

2Which essentially is 13, since the first treasury bill in table 1 expired at the day of our calibration
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Figure 1: Yield of Swedish government bonds and treasury bills, 21 of March 2018.

that for some intervals there is an absence of instruments acting as benchmarks. In other words,
the data that Riksbanken presents that correspond to, say five years to maturity, is sometimes a
calculated average value from years nearby.

2.4 Forward rate
The forward rate is the projection of the future interest rate, based on either the spot rate of today
or the yield curve. At a given point in time t, two parties entering an interest rate agreement know
what the interest rate will be for time t + τ , τ ≥ 0 as well as for time T ≥ t + τ [25]. Hence,
the general idea behind the forward rate is that, when buying a bond at time t that matures at
time t + τ and furthermore reinvest the payoff in a new bond that matures at time T , then this
should be equivalent to buying a bond at time t that matures at time T , i.e., the two investment
alternatives should produce the same yield. Given that this holds, the following must be true

eY (t,t+τ)τeY (t+τ,T )(T−(t+τ)) = eY (t,T )(T−t), (7)

where, e.g., Y (t, t + τ) is the yield for the first time period [t, t + τ ]. Furthermore, the relations
between the yield and the forward rate is that the sum of all forward rates in any given time
interval must equal the yield expressed in terms of return on investment [16], i.e.,

Y (t, T )(T − t) =

∫ T

t

F (t, v)dv.

Hence, equation (7) extends to

e
∫ T
t
F (t,v)dv = e

∫ t+τ
t

F (t,v)dve
∫ T
t+τ

F (t+τ,v)dv,

which has a solution

F (t, T ) = lim
τ→0

F (t+ τ, T ) = −∂ logB(t, T )

∂T
. (8)

The derivation of equation (8) is found in Appendix A. F (t, T ) is referred to as the instantaneous
forward rate at time t, which is a continuous process. If we want to express the forward rate in
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a discrete manner, the same logic still holds, which gives us the forward rate FD(t, t + τ, T ) in
discrete terms of time as a function of the yield, i.e.,

FD(t, t+ τ, T ) =
e−Y (t,t+τ)τ − e−Y (t,T )(T−t)

e−Y (t,T )(T−t)(T − (t+ τ))
∀ T ≥ t+ τ ≥ t. (9)

In terms of bond pricing, equation (9) can further be simplified, using equation (5), as follows

FD(t, t+ τ, T ) =
B(t, t+ τ)−B(t, T )

B(t, T )
(
T − (t+ τ)

) . (10)

2.5 Interest rate caps and floors
A borrower faces two options when entering a contract with a lender, either to let the interest
rate of the contract loan float freely or to lock the interest rate to a specific level. Although the
former allows for changes within the interest rate, these changes are evaluated at the start of a
time interval called tenor, denoted as ρ = ti − ti−1, i.e., interest rate periods. The specific interest
rate of the first day in a period statues the level for the remaining part of the tenor. There are
some obvious pros and cons with both alternatives, for instance if the borrower thinks that the
interest rate will be higher in the future it is reasonable to lock the interest to some predetermined
level. This usually results in a scenario in which the rate is locked at a higher value than the
current level. If the borrower decides to let the interest rate float freely, the risk connected to the
loan increases due to greater uncertainties. The borrower can hedge against these uncertainties by
buying interest rate caps, whereas the lender wishes to hedge from another perspective, namely a
decrease in the interest rates. This is then done through buying interest rate floors. These interest
rate derivatives are commonly traded over the counter (OTC) and consist of sequences of n caplets
and floorlets, spread across the time interval [t1, t2, .., tn], with the tenor ρ being the equidistant
time partition [37]. That is to say, one can summarize the caplets and floorlets by

Cap =

n∑
i=1

Capleti

and

Floor =

n∑
i=1

Floorleti

when calculating the price. The contexture of caps and floors makes the derivatives fairly similar
to European call and put options [20]. The caplet is an agreement between two parties in which
the seller promises the buyer insurance against higher interest rates. That is to say that, if the
interest rate R(t) on the exercise date is higher than an agreed-upon limit K, referred to as the
cap rate, the seller pays the part of the interest rate that exceeds the cap rate [16].

Given that a tenor ρ represents a time period of length ti − ti−1 ∀ i = 1, ..., n, the interest
rate at the last day of the tenor is used as comparison value towards the cap/floor rate K. If R(t)
exceeds K, the caplet is in the money and if it falls below K, the floorlet is in the money. If these
instruments are agreed upon at time t, with a tenor ρ, the first caplet/floorlet is evaluated at time
t+ ρ, and further on payed at time t+ 2ρ, depending on if the derivative is in the money or not.
The payoff for a caplet at time t+ρ, with tenor ρ and cap rate K, with notional amount L (which,
without loss of generality, is set to L = 1 for simplicity), is then

PCaplet(K, t+ ρ,R(t+ ρ), ρ) = ρmax(R(t+ ρ)−K, 0),

whereas the payoff for a floorlet is

PFloorlet(K, t+ ρ,R(t+ ρ), ρ) = ρmax(K −R(t+ ρ), 0).

The fair price of these caplets and floorlets can be calculated by a modified version of the
Black-Scholes formula, namely the Black model or the Black-76 model. The foundation of this
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formula is that the price at time t equals the risk neutral expected payoff at time t + ρ and it is
calculated by [39] as

ΠCaplet(K, t,R(t), ρ) = ρB(t, t+ 2ρ)
(
FD(t, t+ ρ, t+ 2ρ)Φ(d1)−KΦ(d2)

)
(11)

and
ΠFloorlet(K, t,R(t), ρ) = ρB(t, t+ 2ρ)

(
KΦ(−d2)− FD(t, t+ ρ, t+ 2ρ)Φ(−d1)

)
, (12)

where

d1 =
log(FD(t,t+ρ,t+2ρ)

K ) + σ2
R(t+ρ)

ρ
2

σR(t+ρ)
√
ρ

and

d2 = d1 − σR(t+ρ)
√
ρ,

where σR(t+ρ) is the variance of the underlying interest rate at time t + ρ, FD(t, t + ρ, t + 2ρ) is
the discrete forward rate defined in equation (9), Φ(x) the cumulative normal distribution of x
and B(t, t + ρ) the bond price defined in equation (1). Furthermore, the observant reader may
notice that neither d1 nor d2 contains the interest rate R(t) at time t. This in fact is aligned with
the logic of how the forward price in a risk-neutral market already accounts for the risk-free rate
for future values [40]. Furthermore, the price of a cap at time t, with tenor ρ, cap rate K, that
matures at time T is then the sum of all caplets defined in equation (7), i.e.,

ΠCap(K, t, T,R(t), ρ) =

T−t
ρ −1∑
i=1

ρB(t, t+ (i+ 1)ρ)
(
FD(t, t+ iρ, t+ (i+ 1)ρ)Φ(d1)−KΦ(d2)

)
, (13)

where tn = T . Moreover, the price of a floor follows the same structure,

ΠFloor(K, t, T,R(t), ρ) =

T−t
ρ −1∑
i=1

ρB(t, t+(i+1)ρ)
(
KΦ(−d2)−FD(t, t+iρ, t+(i+1)ρ)Φ(−d1)

)
. (14)

It is then notable that depending on what model is used to estimate the interest rate, d1 and d2
will depend on the time, which is taken into account in section 2.6.2.

2.6 The Vasicek model
A general model for the spot rate R(t) is given by the stochastic differential equation

dR(t) = α(r −R(t))dt+ σR(t)γdW (t). (15)

Furthermore, in the case when γ = 0, this is a Gaussian process known as the Ornstein-Uhlenbeck
process and also called the Vasicek model (for γ = 1

2 we have the CIR model, which is along with
other models described in Appendix D). Moreover, α implies the speed of which the short rate
R(t) is reverting towards the average short rate r, and σ describes the instantaneous volatility of
R(t). dW (t) is the only stochastic term that governs the model, where W (t) is a standard Wiener
process [8]. For further explanation regarding the parameters in the Vasicek model, see Appendix
A. Vasicek has gained acknowledgement with his model as the first one to capture mean reversion,
a concept that statutes a theory regarding how the interest rate eventually will move towards an
average value, i.e., when the short rate R(t) < r , it will have an upwards drift towards r (at a
rate of α), and downwards when the short rate R(t) > r [13]. Equation (15) for γ = 0 then has
the continuous solution

R(t) = R(0)e−αt + r(1− e−αt) + σe−αt
∫ t

0

eαsdW (s). (16)

Also note that E[R(t)]→ r as t→∞, which is a feature of the mean reversion. From this, theorem
2.1 follows.
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Theorem 2.1 (Mean and variance for the Vasicek model). The interest rate R(t), based on the
current spot rate R(0), modelled by the Vasicek model is normally distributed with mean m(t) and
variance Var(t), [16] i.e.,

R(t) ∼ N
(
m(t),Var(t)

)
,

where
m(t) = R(0)e−αt + r(1− e−αt),

and

Var(t) =
σ2

2α
(1− e−2αt).

For proof, see Appendix A. However, we only prove the mean and the variance, not that it is
normally distributed since this follows from [16].

2.6.1 Pricing ZCBs with the Vasicek model

Following the same pricing formula defined in equation (2), we can use the parameters α, r and σ
in order to price any ZCB with the Vasicek model. The price BVasicek(t, T ) at time t for a ZCB
with face value 1, that expires as time T can be calculated using theorem 2.2.

Theorem 2.2 (ZCB-pricing with the Vasicek model). The Vasicek price of a ZCB at time t that
matures at time T is calculated as

BVasicek(t, T ) = E[e−
∫ T
t
R(s)ds|R(t)] = e−R(t)C(T−t)−A(T−t).

Where
C(τ) =

1

α
(1− e−ατ ),

and

A(τ) = rτ − r(1− e−ατ )

α
− σ2

α2

( (1− e−2ατ )

4α
− (1− e−ατ )

α
+
τ

2

)
.

For proof, see Appendix A. Moreover, if we denote T − t as τ , it is notable that

lim
τ→0

BVasicek(t, t+ τ) = 1,

thus visualizing that the logic that today’s price of a ZCB that matures today is just the face
value of the ZCB [8]. Furthermore, theorem 2.2 will be significant in using the Vasicek model for
estimating yields further on in this project.

2.6.2 Pricing interest rate caps/floors with the Vasicek model

Using the Vasicek pricing function from theorem 2.2, alongside with equation (10), (13) and (14), we
can calculate the price of caps and floors as defined in section 2.5. The price ΠCap

Vasicek(K, t, T,Rt, ρ)
of a cap at time t, that matures at time T , with tenor ρ and rate K is then given by

ΠCap
Vasicek(K, t, T,Rt, ρ) = ρ

T−t
ρ −1∑
i=1

e−RtC((i+1)ρ)−A((i+1)ρ)
(
FVasicek(iρ, (i+ 1)ρ)Φ(d1i)−KΦ(d2i)

)
,

(17)
where tn = T , C(iρ) and A(iρ) are defined as in theorem 2.2. Furthermore,

FVasicek(iρ, (i+ 1)ρ) = (
e−RtC(iρ)−A(iρ))

e−RtC((i+1)ρ−A((i+1)ρ)
− 1)ρ−1,

is the Vasicek time discrete forward rate, with

d1i =
log(FVasicek(iρ,(i+1)ρ)

K ) + Var(iρ) iρ2 )√
Var(iρ)iρ

and d2i = d1i −
√

Var(iρ)iρ,
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where Var(iρ) is the variance of a future time iρ, defined in theorem 2.1. Moreover, the price of a
floor with the same parameters is

ΠFloor
Vasicek(K, t, T,Rt, ρ) = ρ

T−t
ρ −1∑
i=1

e−RtC((i+1)ρ)−A((i+1)ρ)
(
KΦ(−d2i)−FVasicek(iρ, (i+1)ρ)Φ(−d1i)

)
.

(18)

3 Method
In order to predict the future interest rate using the Vasicek model, this thesis uses the maximum
likelihood estimation (MLE) to estimate values for the parameters α, r and σ. First, we present
the general foundations of this method, and then we establish how to use this method on a time
series where the interest rate is assumed to follow the Ornstein-Uhlenbeck process defined by the
Vasicek model.

3.1 Maximum likelihood estimation
The maximum likelihood method (MLM) is a general method for estimating the unknown para-
meters in any probability distribution. Assume we have a sample x with n independent and
identically distributed (i.i.d.) random variables, then the MLM maximizes the probability of ob-
taining the same sample once again. By x = {x1, x2, ..., xn} we denote our sample of size n, and
by θ = {θ1, θ2, ..., θm} we denote the m different parameters in the probability density function
(pdf) f(x; θ). Under the assumption that the random variables are i.i.d., the joint probability
distribution (jpd) fjpd(x1, x2, ..., xn; θ) can be expressed as3

fjpd(x1, x2, ..., xn; θ) = P(X1 = x1 ∩X2 = x2 ∩ ... ∩Xn = xn)

= f(x1; θ) · f(x2; θ) · ... · f(xn; θ)

=

n∏
i=1

f(xi; θ).

(19)

The objective is then to find the parameters θ that maximizes the likelihood function defined
in equation (19). This can either be done numerically or analytically, here we show how to do it
analytically. The first step is to simplify the algorithm by taking the logarithm of the likelihood
function and thus obtain the log-likelihood function which we denote by L(θ). Since the logarithm
is a monotonic function, the values that maximizes L(θ) also maximizes the likelihood function
(i.e., fjpd(x1, ..., .xn; θ) for a given sample x) [9]. Thus we define L(θ) as

L(θ) = log

n∏
i=1

f(xi; θ) =

n∑
i=1

log f(xi; θ). (20)

Since it is easier to differentiate a sum than a product, this facilitates the next step of the algorithm,
which is to differentiate and set to zero, i.e.,

∂L(θ)

∂θ
= 0. (21)

Thus, each θi in the gradient vector ∂L(θ)
∂θ that renders this condition, represents the mean of each

parameter estimate. Theorem 3.1 tells us more about the distribution of the parameter estimates.

Theorem 3.1. Let x = {x1, ..., xn} denote our sample of size n, θ = {θ1, ..., θm} our m different
parameters and L(θ) define the log-likelihood function for some given probability distribution. For
n large it then holds that each ML-estimator θ̂i (i = 1, ..,m) is multivariate normally distributed,
i.e.,

θ̂i ∼ N
(
θi,
(
− IE(θi)

)−1)
,

3If, for some reason, the random variables can not be assumed to be i.i.d., this of course changes the jpd, but
that is beyond the scope of this project. See Appendix B for further explanation.
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where
θi = arg max

θi∈θ
L(θ),

and

IE(θ) =


E[∂

2L(θ)
∂θ21

] E[ ∂
2L(θ)
∂θ1∂θ2

] . . . E[ ∂
2L(θ)

∂θ1∂θm
]

E[ ∂
2L(θ)
∂θ2∂θ1

] E[∂
2L(θ)
∂θ22

] . . . E[ ∂
2L(θ)

∂θ2∂θm
]

...
...

. . .
...

E[ ∂
2L(θ)

∂θm∂θ1
] E[ ∂

2L(θ)
∂θm∂θ2

] . . . E[∂
2L(θ)
∂θ2m

]

 .
(
− IE(θi)

)−1 then represents the i:th diagonal element of the inverse of the negative expected
information matrix IE(θ)[9].

3.2 MLE on the Normal distribution
Using the properties from both equation (20) and theorem 3.1, one can provide a parameter estim-
ation of the standard normal distribution. Given the general definition of the normal distribution

f(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

the log-likelihood function for a sample x = {x1, x2, ..., xn} follows as

L(θ) = −n
2
log(σ2)− n

2
log(2π)− 1

2σ2

n∑
i=1

(xi − µ)2. (22)

To illustrate the principle behind MLE, we differentiate equation (22) for µ and σ2 in the following
manner

∂L(θ)

∂µ
=

1

σ2

n∑
i=1

(xi − µ),
∂L(θ)

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2. (23)

Furthermore, deriving the IE(µ, σ2) by first calculating

∂2L(θ)

∂µ2
= − n

σ2
, (24)

and
∂2L(θ)

∂(σ2)2
=

n

2(σ2)2
− 1

(σ2)3

n∑
i=1

(xi − µ)2 =
n

2(σ2)2
− n

(σ2)2
= − n

2(σ2)2
. (25)

Since no term is stochastic in either equation (24) or (25), the expected value is not to be considered
significant. Although when investigating

∂2L(θ)

∂µ∂σ2
= − 1

(σ2)2

n∑
i=1

(xi − µ),

one clearly notice that the stochastic term xi still remains. Considering that E[xi] = µ, its easy
to see that the E[∂

2L(θ)
∂µ∂σ2 ] = 0. This, together with setting the equations in (23) to 0, provides the

following expression for parameter estimation and the negative expected information matrix

µ̂ =
1

n

n∑
i=1

xi, σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2, −IE(µ;σ2) =

[ n
σ2 0
0 n

2(σ2)2

]
. (26)

This same calculation logic will be used in Appendix B when deriving the parameters for Vasiceks
model.
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3.3 MLE on the Vasicek model
Using theorem 2.1 alongside with the pdf for the normal distribution, we can derive an expression
for L(θ). Assume we have a time series R = {Rt0 , Rt1 , ..., Rtn} consisting of n+ 1 different points
with equidistant time partition dt = ti− ti−1 in a given time interval t0, t1, ..., tn. Theorem 2.1 can
than be deduced in discrete terms where the expected value of each Rti is then given by

E[Rti ] = Rti−1
e−αdt + r(1− e−αdt),

whereas the variance is given by

Var[Rti ] =
σ2

2α
(1− e−2αdt).

The log-likelihood function L(θ), which is an extension of the log-likelihood function on the normal
distribution in equation (22), following the same in theorem 2.1, is then given by

L(θ) = L(α, r, σ2) =− n

2
log
(σ2

2α

(
1− e−2αdt

))
− n

2
log 2π

− α

σ2(1− e−2αdt)

n∑
i=1

(
Rti −Rti−1e

−αdt − r
(
1− e−αdt

))2
.

(27)

Using the log-likelihood function in (27), we can then derive each estimator for the parameters α,
r and σ2 as presented in theorem 3.2.

Theorem 3.2. If Rt0 is the first given interest rate in the time series and Rtn is the current
interest rate, the parameters α, r and σ2 in the Vasicek models are given by the ML-estimators

α̂ = − 1

dt
log
(n∑n

i=1RtiRti−1
−
∑n
i=1Rti

∑n
i=1Rti−1

n
∑n
i=1R

2
ti−1
− (
∑n
i=1Rti−1

)2

)
,

r̂ =
1

n(1− e−α̂dt)

( n∑
i=1

Rti − eα̂dt
n∑
i=1

Rti−1

)
and

σ̂2 =
2α̂

n(1− e−2α̂dt)

n∑
i=1

(
Rti −Rti−1e

−α̂dt − r̂(1− e−α̂dt)
)2
.

Where dt = ti − ti−1 ∀ i = 1, ..., n. Furthermore, the presented conclusion is supported by [41],
[1] and [13]. However, see Appendix B for our proof. The expected information matrix IE(θ) is
presented in theorem 3.3, which almost coincides with the matrix presented by [1] and [2], but is
in disagreement with the incomplete matrix presented by [13].

Theorem 3.3. In the Vasicek model, the negative expected information matrix −IE(θ) = −IE(α, r, σ)
has the following expression: −IE(α, r, σ) =

2α(dt)2e−2αdt∑n
i=1(Rti−1

−r)2

σ2(1−e−2αdt)
+ ne−4αdt(e2αdt−2αdt−1)2

2α(1−e−2αdt)2
− 2αdt

∑n
i=1(Rti−1

−r)
σ2(1+eαdt)

−n(1−e
−2αdt(2αdt+1))

σα(1−e−2αdt)

− 2αdt
∑n
i=1(Rti−1

−r)
σ2(1+eαdt)

2nα(1−e−αdt)
σ2(1+e−αdt)

0

−n(1−e
−2αdt(2αdt+1))

σα(1−e−2αdt)
0 2n

σ2

 .
In comparison with [1] and [2], elements (2,1) and (1,2), the expression differs in the denominator,
where they claim the denominator of these elements is σ2(1 + e−αdt), whereas we claim that it is
σ2(1 + eαdt). However, see Appendix B for our derivation of this matrix.
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3.3.1 The biased parameter α

Similar studies to ours have shown that the maximum likelihood parameter for α is biased for
values close to zero. For instance, [42] and [41] have both shown that when the speed of reversion,
i.e., α is small, this does not just affect the estimation α̂, but also the estimations for r̂ and σ̂2.
The impact on σ̂2 however, is so small that it is disregarded.

To provide sufficient information on the bias of α̂, we simulated an Ornstein-Uhlenbeck process
as a discrete Vasicek model that follows an autoregressive process of the order 1 as

Rt = Rt−dt + α(r −Rt−dt)dt+ σ
√
dtεt,

where dt is the equidistant time partition between every point in time, chosen as dt = 1
12 to be

in accordance with reality, and εt ∼ i.i.d.N(0, 1) ∀ t. Figure 2 shows the result from two of these
simulations, whereas table 4 gives sufficient information about the difference between the two sim-
ulations. Furthermore, the simulations ran for 200 different values of α ∈ (−1, 1) with 500 different
random number generators for each α̂ and a total sample size n = 240. The y-axes of figure 2 thus
represents the mean of these 500 estimated values of α̂ for each α.

Table 4: Principles for figure 2
Graph Arbitrary chosen parameters (I) Parameters chosen from data in section 4.1 (II)
R0 0 4.51% (1998 March spot rate)
r 0.05 -0.0218
σ 0.01 0.0059

Figure 2: Parameter estimation based on simulation.

As figure 2 shows, regardless of the parameters r and σ, the estimator α̂ for α seems to be
biased around values close to zero. In fact, this phenomenon is ubiquitous for every combination
of the parameters r and σ. [41] mentions this as a problem with the MLE of the α-parameters,
and states theorem 3.4.

Theorem 3.4. For a stationary Vasicek process, with dt = ti−ti−1 fixed and n→∞, the estimator
α̂ from theorem 3.2 is biased. In particular,

E[α̂] = α+
5 + 2eαdt + e2αdt

2ndt
+O(n−2),

where O(n−2) tends to zero as n becomes sufficiently large.

Hence, the "true" value for α can be found by approximating eαdt as 1 + α dt for small values
on dt = T

n , where T is defined as the "length of time expressed in years" of the data set. This then
leads to the conclusion that

n(E[α̂]− 4
T )

n+ 2
≈ α. (28)
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However, when dt is not sufficiently small, as in the case in section 4.1, where dt = 20
240 = 1

12 ,
the equation in theorem 3.4 needs to be solved numerically to obtain a fair value of α. It is then
notable that some references, [42] for instance, claims that the speed reversion parameter α needs
to be positive in order for the Vasicek model to make sense qualitatively. In this thesis however,
this remark is overlooked, due to the fact that α and r both need to be either positive or negative
to create a comprehensible yield curve, and MLE on all available Swedish bond data always returns
a negative estimation of r.

3.4 Monte Carlo simulation for caps and floors
Given the complexity of the present interest rate environment, the risk that current models, to-
gether with our estimates, will not be able to properly provide a suitable price calculation for caps
and floors, also leads this thesis into the subject of Monte Carlo (MC) simulations. This section of
the thesis is done in a numerical manner using Matlab, first simulating the interest rate according
to equation (15). The parameters to be used in this MC simulation will be based on the outcome
of MLE for the Vasiceks model, which will further be presented in the result section. However,
explaining the principles behind MC simulation is out of the scope for this bachelor thesis. Hence,
we assume that the reader is familiar with the concept of MC simulation. The Matlab code used
for numerical calculations is to be found in Appendix E.

Although the basics behind MC is assumed familiar, one still needs to have a discussion regard-
ing the size, m, of the simulation. Using the properties from the central limit theorem together
with several numerical test runs, its reasonable to draw a conclusion regarding what size of n that
is sufficiently large. The interest rate simulation will be stored in a matrix as follows

A =


R1,1 R1,2 . . . R1,m

R2,1 R2,2 . . . R2,m

...
...

. . .
...

Rn,1 Rn,2 . . . Rn,m

 ,
where every column represents an independent simulation of the interest rate according to equation
(15). Note that every value in the top row is the same, since the starting point for the simulation
is the current spot rate and hence known for all Ri,1. Furthermore, the simulation algorithm used
in order to provide a reasonable estimation for the cap is

ΠCap(K, t, T,Rt, ρ) =
1

m

m∑
j=1

ndt
ρ −1∑
i=1

PCaplet(K, t+ iρ, A(
iρ

dt
, j), ρ)

=
1

m

m∑
j=1

ρ

ndt
ρ −1∑
i=1

max
(
A(
iρ

dt
, j)−K, 0

)
e
∑i+

ρ
dt

k=1 A(k,j)dt.

(29)

The parameters dt = T
n and ρ from equation (29) represents the time between interest rate

changes and the tenor size, as stated in section 2.5. The exact same logic holds during simulation
of the floor price, with the exception of a payoff according to PFloorlet.

4 Results
The following section aims to present our findings within the scope of this thesis. This mainly
includes parameter estimation, yield curve modelling and pricing of caps and floors.

4.1 Data selection
Since the Vasicek model is a short rate model, both [3] and [24] use bonds with short maturity
to model their yield curves, whereas [2] also uses the short rate to model the value of investment

15



projects with the Vasicek model. Hence, we have limited the data sets to treasury bills with one
month until maturity. The objective is then to choose the data sample that gives the best fit to the
13 different bonds presented in tables 1 and 2. After arbitrarily choosing several different sets of
data, we found that the monthly averages of the one month maturity interest rate from the last 20
years gave the best fit to the real yield curve. In Appendix C, we present the results for different
data sets. This data is also chosen as a foundation for graph II in figure 2. The data we choose is
presented in figure 3. Also note that the vast deterioration in 2008 portraits the aftermath of the
financial crisis, which could be seen as a source of error.

Figure 3: 20 years of one month maturity treasury bills [27].

4.2 Parameter estimation
On the foundations of theorem 3.2 and the data presented in figure 3, we used Matlab to estimate
the parameters α, r and σ. The results from the MLE are presented in table 5.

Table 5: MLE on the data from figure 3.
Parameter Estimation Standard error 95% Confidence interval
α 0.0630 0.08070 (-0.0951, 0.2212)
r -0.0218 0.05670 (-0.1329, 0.0893)
σ 0.0059 0.00027 (0.0054, 0.0064)

First it is worth noticing the large standard errors of the parameter α and r. This of course
creates ambiguity in interpreting the validity of this method. However, on the basis of section
4.3, we accept the parameter estimation at face value. Furthermore theorem 3.4 is essential in
analyzing this outcome, since the α-value presented in table 5 is biased. Numerically solving the
equation in theorem 3.4 for E[α̂] = 0.0630 then gives the almost unbiased parameter α = −0.1358.
To further investigate this matter, we simulate two time series with the two different values for α
presented whilst r and σ are the ones presented in table 5. Moreover, the simulations ran for 10000
different random number generators, start value Rt0 = 4.51% (March 1998 spot rate), dt = 1

12 and
n = 240. The results are presented in table 6.
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Table 6: Parameter estimation based on different values for α.
Input parameter: α = 0.0630 α = −0.1358

Estimated parameters: α̂ = 0.1560 α̂ = −0.1353
r̂ = −0.0094 r̂ = −0.0231
σ̂ = 0.0059 σ̂ = 0.0058

As evident from figure graph II in figure 2, the estimation α̂ is clearly more biased for α ∈
[−0.05, 0.1]. However it is interesting to see that the input parameter α also affects the estimation
r̂. Hence, the conclusion from this is to use the values α = −0.1358, r = −0.0218 and σ = 0.0059 to
model the yield of Swedish government bonds and interest rate caps/floors. However, in qualitative
terms it is hard to interpret the fact that α is negative. For instance, [42] and [16] and several
other references states that α has to be larger than zero, [16] even states that r has to be larger
than zero, which of course is not in cohesion with the reality we are trying to model. In fact, some
of these references base this claim on the assumption that the interest can only be positive, which
is not the case. [38] claims that it is completely feasible to have a negative α as long as the current
interest rate is larger than the mean reversion r, which is the case here. Furthermore, it is worth
mentioning that in order to obtain a concave curve as in the of reality, both α and r need to be
either positive or negative. In qualitative terms it would of course make more sense to have both
parameters positive, but here we accept the results from theorems 3.2 and 3.4 at face value.

4.3 Yield curve modelling
On the basis of definition 2.1 and equation (6), the estimated yield can be calculated at every point
in time that is equal to the maturities of the bonds in tables 1 and 2. The result is presented in
figure 4, which gives a comparison between the actual yield curve presented in figure 1 from the
21st of March 2018, and the yield curve generated with the Vasicek model. As figure 4 portraits,

Figure 4: Yield curve comparison [27] [18].

the model works very well for bonds with maturities of ten years or less, in fact, it completely
manages to capture the property of having negative interest rate for bonds with maturities of five
years or less. However, for bonds with longer maturities our model seems to overestimate the yield.
To adjust the estimation, several different sets of data were used, but none gave a better fit than

17



the one presented in figure 4. Estimation of several other time series and a concluding comparison
between all possible time series with time spans between 19 and 21 years can be found in Appendix
C. However, the data from the last 20 years provided the best fit and hence it is the one we present
here.

4.4 Pricing caps and floors
The results we obtained from the pricing functions presented in equation (17) and (14) were so
unrealistic that we have chosen not the present them (some prices were actually negative, which
should be virtually impossible). In fact, it turns out that the Black model presented in section
2.5 does not work for negative interest rates since negative interest rates implies negative forward
rates. The negative forward rate leads to a risk neutral scenario where, depending on the rate K,
one has to take the logarithm of a negative term, which is undefined. In fact, [11] mentions this as
a serious drawback of the model and propose other models such as the Hull-White model and the
Bachelier model to price these caps and floors. To elaborate upon this matter however, we chose
to use Monte Carlo simulation to price these derivatives. The foundation for these simulations
is described in section 3.4. However, before presenting our results, we restate that the price of a
caplet at time t, that matures at time t+ρ, with rate K and tenor ρ is the expected payoff at time
t+ ρ, namely

ΠCaplet(K, t,R(t), ρ) = ρE[max(R(t+ ρ)− k, 0)].

The future interest rate R(t+ ρ) is then modeled with the Vasicek model on the same basis as
the simulation presented in section 3.3.1.

Pricing caps and floors according to Monte Carlo simulation

To determine a reasonable sample size n for the MC simulation, we used the estimated Vasicek
parameters from table 5 for the numerical price calculation with respect to both the cap and floor
price. These together with the rest of the parameters for simulation, are to be found in table 7,

Table 7: Vasicek variables for cap and floor simulation.
Parameter Cap Floor
α -0.1358 -0.1358
r -0.0218 -0.0218
σ 0.0059 0.0059
dt 1/240 1/240
ρ 3/12 3/12
T 5 5
Rt0 -0.0066 -0.0066
K -0.01 0.01

where it is noticeable that the only parameter that differs between caps and floors is K. This is
due to the context of the payoff function. The price of the cap/floor as a function of the amount
of simulations n is shown in figure 5, which clearly states that a trial size of n = 5000 is sufficient
for the MC simulation. As stated in section 3.4, this follows by the CLT.
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Figure 5: Cap/floor price with respect to sample size n.

Hence, the discussion shifts focus in able to actual estimate a price for both caps and floors.
Since this clearly depends on the value of K, we found it reasonable to plot both the cap and floor
price together with the values from table 7 but with K ∈ [−0.05, 0.05]. The result is presented
below.

Figure 6: Cap/floor price in comparison with strike rate K for different n.

The correlation between the level of K and the final price for both the cap and the floor is
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expected to behave in the manner of Figure 6. Furthermore, the MC simulation proves in practice
that our estimated parameters from the Vasicek model actually can be used to model the cap and
floor price. The confidence interval has been created according to the normal distribution, which
again follows by the CLT. The fact that a larger sample size, n, is resulting in a narrower CI, is also
this aligned with the CLT. For a more detailed proof of this claim, see Appendix C. The narrow
confidence intervals further strengthens the fact that n = 5000 is sufficient for a MC simulation.

5 Conclusion
The purpose of this report was to analyze how the Vasicek model could reproduce the yield curve of
Swedish government bonds and treasury bills and thus evaluate whether or not the Vasicek model
would be a suitable model for pricing Swedish bonds and interest rate derivatives. To investigate
this purpose, all programming language was written in Matlab.

When the Vasicek model was first introduced, the novelty of the model was its ability to
incorporate mean reversion, i.e.

lim
t→∞

E[R(t)] = lim
t→∞

(
R(0)e−αt + r(1− e−αt)

)
= r.

This however, is only true for α > 0, which is not the case in our model. Instead, the maximum
likelihood estimation resulted in a negative α-value after the bias of the estimation had been
accounted for. Essentially this means that there is only a convergence towards r if r = R(0), which
in qualitative terms would mean that the expected value of the future interest rate is the same
as the current spot rate. Due to the negative interest rates of today in Sweden, this is clearly
not a feasible scenario. The more reasonable assumption is that the future spot rate will tend to
positive values, as has been the case in history4. This is actually a feature that our model seems
to encompass, e.g. the expected value of the March 2023 spot rate is (where t = 0 is defined as
March 2018)5

E[R(5)] = 0.008173.

Hence, the conclusion regarding the parameter estimation in the Vasicek is that, in quantitative
terms, our parameters manage to capture the macroeconomic essence of today, at least in the short
sighted future. However due to their definitions it would, in qualitative term, make more sense
to obtain positive values for α and r. In fact, using the model with negative values for α and r
redefines the meaning of the these parameters, i.e. due to the fact there is no mean reversion, r
could obviously not be considered as the long-term interest rate and α, since it is negative, does
not imply a realistic speed of reversion.

Regarding longer time spans however, the lack of a mean reversion leads to an every increasing
future expected spot rate, e.g.,

E[R(20)] = 0.208,

which clearly does not make sense. In fact, this is evident in figure 4, in which our model over-
estimates the yield of all bonds with maturities of 10 years or more. A possible explanation for
this is the fact that the Vasicek model is a one-factor model. Since all parameters are assumed
to be independent of time and since σ is the only term that determines the impact of the Wiener
process, the model fails to account for all underlying factors in the long run. This is most likely
the reason to why similar studies such as e.g. [24] and [2] do not use longer maturities than ten
years for their estimations. In fact, even though other models are beyond the scope of this thesis,
we consider it feasible to mention the existence of substitutes, as can be found in Appendix D.

Regarding the pricing of interest rate caps/floors, the lack of data on Swedish interest rate
derivatives makes it impossible to collate the prices presented in figure 6 to actual market prices

4In fact, this is actually the case. At the current date, 14th of May 2018, the intersection between the x-axis
and the yield curve from figure 1 has shifted from five to four years, thus visualizing that the negative interest rates
seems to be diminishing.

5Furthermore, the model expects the spot rate to reach zero in 2.66 years.
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of these derivatives. However, arguing from a qualitative perspective, the structure of the graph
makes sense, as it is equable to the payoff structure of standard call and put options. Furthermore,
on the basis of the evaluation from the Vasicek model, it is plausible to assume that our pricing
method is not suitable for very long maturities.

Finally, in comparison with papers such as [13], [2] and [1], none of these mentions the bias
of estimating α as a problem, instead they accept the estimations from the MLE at face value,
with exception for [2], who evaluate their estimation with t-testing. Accounting for the bias in our
estimation of α proved to be monumental in our calibration of the parameters. In comparison with
the similar project MVEX01-18-82, who instead calibrated their model with the generalized method
of moments, our results proved to be preferable. This is most likely due to the wider existence
of papers such as [41] who investigate the bias of the MLE for any time series that is assumed to
follow the Vasicek model. In fact, [41] also state that there is a bias in the estimation of σ. This
was overlooked in our report however, since the bias did not account for any significant difference
in the parameter estimation. We found that simulating time series with known parameters was a
very useful method for analyzing the bias of estimators, which is a strategy we would recommend
to further studies within the field of applied mathematics in finance.
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Appendix A - Theory

Yield curve

Shape of the Yield Curve
By basic knowledge in economics one may think that the shape of the yield curve always should
increase. This theory is further clarified by an example in [8]. Lets say that two persons with
the same credit rating wants to borrow money, the first one for a year and the second one for ten
years, the second person would most likely be charged at a higher rate. One reason to this is that
both the alternative cost and the risk connected to the second loan is higher. Another reason,
which in the past has been considered significant, is the inflation. By analyzing historical yield
curves it is easy to see that this theory is not true for all times. Equation (5( and (6) increases
the understanding in the set off between the yield and the price. The following subsections aims
to explains in more detail the differences between various shapes and which financial expectations
that are connected to them. If nothing else is specified, the source to the following subsections is
[8]. Furthermore, the shape of every yield is presented in figure 7.

Figure 7: Shape of yield curves.

Normal

When long-term bonds yield are higher than the short-term bonds, the corresponding yield curve
is referred to as normal. As the name implies, this is the most common shape which is seen as the
average yield curve and it is a sign that there is a belief that the inflation and interest rates will rise
[21]. Therefore, investors are less likely to buy long-term bonds with the current interest rate and
subsequently, miss out on the higher future interest rate. The demand for short-term bonds rises,
followed by an increase within the price, which creates a lower yield. The opposite happens to the
long-term bonds. The normal yield curve indicates that the economy has been going strong for a
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while and that there are expectations from the investors that, in the Swedish case, Riksbanken will
increase the interest rate in a near future [22].

Inverted

The inverted yield curve occurs in the market when the short-term yield is higher than the long-
term yield. This is due to a belief that the rate will soon be lowered by Riksbanken which creates a
rise in demand for long-term bonds. The investors sees an opportunity to lock-in the current rate,
which by belief is supposed to be lower in a near future. The increase in demand for long-term
bonds correspondingly rises the price and the yield goes down.

Flat

By the name it is easy to visualize the flat yield curve but the occurrence of them are rare. In
fact, it may be considered as a phase that must be passed between every recession and boom in
the economy. A flat yield curve means that long-term and short-term investors gets equally paid
for owing bonds on a yearly basis. Hence, there are few incentives for the long-term bond holder
that compensates them for the higher risk and the alternative cost.

Humped

When short-term and long-term bonds both yield lower than the medium-term bonds there is an
increase in the middle of the yield curve. This scenario is uncommon and does not often occur. It
can arise due to beliefs that the interest rate is increasing at first and then going to be lowered in
the near future.

Application of the Yield Curve
Yield curves can be utilized in many different ways which are described in detail in [4] and this
section contains a short summary of these discussions.

As a benchmark for other bonds

They yield curve of government bonds are used as a guideline when pricing other securities in the
debt market. That is, the yield curve of bonds from various issuer but with the same maturity can
be compared to the yield curve of government bonds with same maturity. The yield of these other
bonds should be higher than the yield of the government bonds. To clarify this, if a government
bond with maturity of ten years has a yield of eight percent, then other bonds with maturity of 10
years should yield at least eight percent or higher. The difference in the yield is commonly referred
to as the spread.

As a predictor of future Yields

All participants in the debt market, even Central banks and government treasury departments,
uses yield curves to predict future interest rates and inflation levels. As described above, the
expectations of the future are different based on the current shape of the yield curve. So dependent
on whether the present yield curve is normal, inverted, flat or humped, different decisions are made
by the financial stakeholders.

Description of the Vasicek model parameters
The parameters in question for Vasiceks model are α, r and σ. The explanation follows below.

Description of the α parameter

As stated in section 2.6, the parameter α implies the speed of which the short rate R(t) is reverting
towards the average short rate r. Putting this in a context of more general term, one can see α as
the factor which over time pulls the interest rate towards its long-term value r. Hence, it follows
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from this logic that a greater value of α makes the interest rate revert faster [15]. Furthermore,
α excepts both positive and negative values, although one condition for α < 0 is that the initial
interest rate is larger than the avarage short rate [38].

Description of the r parameter

The average short rate r implies the value for which the interest rate converges over time. One
simple way of illustrating this is to use mathematical software and perform Monte Carlo simulation
of the interest rate. The more time you simulate the interest rate and calculates the average from
all this simulation, the closer to the average short rate r should the result become.

Description of the σ parameter

σ describes the instantaneous volatility of the short term rate R(t), which is assumed to be constant
[8]. This assumption can be questioned due to the rapid turns in the world economy that in turn
affects the short rate R(t).

Proof of equation (8)
Proof. The instantaneous forward rate at time t and maturity T follows from

e
∫ T
t
F (t,v)dv = e

∫ t+τ
t

F (t,v)dve
∫ T
t+τ

F (t+τ,v)dv,

which is equivalent to

e
∫ T
t+τ

F (t+τ,v)dv = e
∫ T
t
F (t,v)dv−

∫ t+τ
t

F (t,v)dv = e
∫ T
t
F (t,v)dve−

∫ t+τ
t

F (t,v)dv

where
e
∫ T
t
F (t,v)dv = B(t, T )−1

and

e−
∫ t+τ
t

F (t+τ,v)dv = B(t, t+ τ)

which leads to
e
∫ T
t+τ

F (t+τ,v)dv =
B(t, t+ τ)

B(t, T )
. (A.1)

Solving equation (A.1) with respect to F (t+ τ, T ) gives∫ T

t+τ

F (t+ τ, v)dv= log(B(t, t+ τ))− log(B(t, T ))⇔

F (t+ τ, T )= − ∂

∂T

(
log(B(t, T ))− log(B(t, t+ τ))

)
= −∂log(B(t, T )

∂T
,

which concludes the proof.

Proof of theorem 2.1
Proof. Given equation (16) and denoting m(t) = R(0)e−αt + r(1− e−αt), one can start calculation
E[R(t)] accordingly,

E[R(t)] = E[m(t)] + σeαt E[

∫ t

0

e−αs∂W (s)]. (A.2)

First of all, one can notice that it does not exist any stochastic term in m(t), hence E[m(t)] = m(t).
Moreover, using the definition of Itô integrals, the second term of equation (A.2) becomes

E[σeαt(e−αtW (t)−
∫ t

0

eαsW (s)ds)].
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Furthermore, using the property that the expected value of a Brownian motion is zero, clearly
states that

E[R(t)] = m(t) = R(0)e−αt + r(1− e−αt)
and hence concludes the first part of the proof. Continuing, the variance can be described as

Var[R(t)] = E[R(t)2]− E[R(t)]2 = E[(m(t) + σeαt
∫ t

0

e−αs∂W (s))2]− E[R(t)]2. (A.3)

Using the same logic as in the first part of the proof, together with developing equation (A.3), we
are left with

E[(σeαt(e−αtW (t)−
∫ t

0

eαsW (s)ds))2]

= (σeαt)2(E[(e−αtW (t))2]− 2E[e−αtW (t)

∫ t

0

eαsW (s)ds] + E[(

∫ t

0

eαsW (s)ds))2]), (A.4)

which can be elaborated using basic stochastic principles for integration to

σ2e−2αt(e−2αtt− 2αe−αt
∫ t

0

eαssds+ α2

∫ t

0

∫ t

0

eα(s+τ)min(s, τ)dsdτ)

= σ2e−2αt(e−2αtt− 2αe−αt
∫ t

0

eαssds+ α2

∫ t

0

eατ (

∫ τ

0

eαssds+

∫ t

τ

eαsτds)dτ).

Furthermore, using integration by parts, one is finally provided with the expression for the variance,
namely

Var[R(t)] =
σ2

2α
(1− e−2αt)

and hence the proof is completed.

Proof of theorem 2.2
Proof. The price of a ZCB with maturity T at time t, according to the risk-neutral valuation
framework, is derived as

B(t, T ) = E
[
e−

∫ T
t
R(s)ds| R(t)

]
,

which according to [23] is equivalent to

B(t, T ) = exp
(
E[−

∫ T

t

Rs(R(t))ds]− 1

2
Var[−

∫ T

t

Rs(R(t))ds]
)

= exp
(R(t)− r

α
(1− e−a(T−t)) − r(T − t)

+
σ2

4α3
(2α(T − t)− 3 + 4e−α(T−t) − e−2α(T−t)

)
= exp

(
−1− eα(T−t)

α
R(t) + r(

1− e−α(T−t)

)
α

− (T − t))− σ2

2α2
(
1− e−α(T−t)

α
) +

σ2

2α2
(T − t)

− σ2

4α
(
1− 2e−α(T−t) + e−2α(T−t)

α2
)
)

= exp
(
−C(τ)R(t) + rC(τ)2 − rτ − σ2

2α2
C(τ)

+
σ2

2α2
(τ)

σ2

4α
C(τ)2

)
=e−C(τ)R(t)−A(τ)

(A.5)
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where

C(τ) =
1− e−a(τ)

a

and

A(τ) = rτ − r(1− e−ατ )

α
− σ2

α2

( (1− e−2αdt)
4α

− (1− e−ατ )

α
+
τ

2

)
.
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Appendix B - Method

Log-likelihood function for dependent random variables
If it is not feasible to assume that the random variables are i.i.d., there are other ways to present
the likelihood function. One example is to assume that the random variables are dependent of
each other, but hold Markov properties. The jpd fjpd(x1, x2, ..., xn; θ) is then described as

fjpd(x1, x2, ..., xn; θ) = P(X1 = x1 ∩X2 = x2 ∩ ... ∩ Xn = xn)

= f(x1; θ) · f(x2|x1; θ) · ... · f(xn|xn−1, xn−2, .., x1; θ)

= f(x1; θ)

n∏
i=2

f(xi|xi−1; θ).

(B.1)

Then L(θ) can be expressed as

L(θ) = log f(x1θ)

n∏
i=2

f(xi|xi−1; θ)

= log f(x1; θ) +

n∑
i=2

log f(xi|xi−1; θ).

(B.2)

Proof of theorem 3.2
Firstly, we state that the derivation for this proofs was done more than two months before the
deadline of the project. During this time period, the notations in the main rapport have changed
somehow. Hence, what is referred to as Rt0 in theorem 3.2 is denoted as R1 in this proof, likewise
what is referred to as Rn+1 in theorem 3.2 is referred to as Rtn here. Hence, the sum

∑n
i=1Ri

in this proof is the same as the sum
∑n
i=1Rti−1

in theorem 3.2. Furthermore, when the Vasicek
model is described as a continuous process as in e.g. theorem 2.1, the spot rate today, which is de-
noted as R(0) in that case, is the same as Rtn , since it is custom to address the time now t as t = 0.

Proof. To derive the maximum likelihood estimators for the Vasicek model, we start by simplifying
the model and expressing the parameters as follows

A = e−αt

B = r(1− e−αt)

C =
σ2

2α
(1− e−2αt).

The log-likelihood function L(θ) in equation (27) can then be described as

L(θ) = L(A,B,C) = −n
2

logC − n

2
log 2π − 1

2C

n∑
i=1

(
Ri+1 −ARi −B

)2 (B.3)

in the terms of A,B and C. Furthermore, the MLE-algorithm can be elaborated using simple
differentiation rules for the Vasicek parameters α,r and σ2,

∂L(θ)

∂α
=
∂L(θ)

∂A

∂A

∂α
+
∂L(θ)

∂B

∂B

∂α
+
∂L(θ)

∂C

∂C

∂α
∂L(θ)

∂r
=
∂L(θ)

∂B

∂B

∂r
∂L(θ)

∂σ2
=
∂L(θ)

∂C

∂C

∂σ2
.
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Proof for σ2

Since A nor B depend on σ2, C is the only relevant parameter for differentiate the estimator for
σ2. This is done similar to the logic in section 3.2 regarding the normal distribution, specifically

∂L(θ)

∂σ2
=
(
− n

2C
+

1

2C2

n∑
i=1

(
Ri+1 −ARi −B

)2) 1

2α
(1− e−2αt) = 0. (B.4)

Since α 6= 0 by the definition of the Vasicek model, this provides the first linear combination (which
essentially is the proof for the third term in theorem 3.2)

C =
1

n

n∑
i=1

(
Ri+1 −ARi −B

)2 ⇒ σ̂2 =
2α

n(1− e−2αt)

n∑
i=1

(
Ri+1 −ARi −B

)2
. (B.5)

Proof for α and r

Furthermore, the parameter r does only exist within B, hence the same logic as for σ2 can be
applied. Namely

∂L(θ)

∂r
=

(1− e−αt)
C

n∑
i=1

(
Ri+1 −ARi −B

)
= 0.

Since (1− e−αt) 6= 0 and C 6= 0, this provides the second linear combination

n∑
i=1

(
Ri+1 −ARi −B

)
= 0. (B.6)

In order of expressing B as a function of the other variables, it follows from elaborating equation
(B.6),

B =
1

n

n∑
i=1

(
Ri+1 −ARi

)
. (B.7)

Finally for α,

∂L(θ)

∂α
= (− te

−αt

C
)

n∑
i=1

(
Ri(Ri+1 −B)−AR2

i

)

+
( 1

C

n∑
i=1

(
Ri+1 −ARi −B

))∂B
∂α

+
(
− n

2C
+

1

2C2

n∑
i=1

(
Ri+1 −ARi −B

)2)∂C
∂α

.

Although the expression for ∂L(θ)
∂α at first glance not provides a concrete solution, using the prop-

erties from the first two linear combinations, equation (B.4) and (B.6), and that they equal zero, in
turn removes the second and third term from ∂L(θ)

∂α expression (also note that the term − te
−αt

C 6= 0
and therefore does not affect the linear combination), namely

n∑
i=1

(
Ri(Ri+1 −B)−AR2

i

)
= 0. (B.8)

Elaborating the above expression, one is provided with

n∑
i=1

RiRi+1 = B

n∑
i=1

Ri +A

n∑
i=1

R2
i . (B.9)
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The linear combinations in equation (B.6) and (B.8) can then be solved in order to obtain an
estimator for A and B. Start with substituting B in equation (B.9) with B from equation (B.7),

n∑
i=1

RiRi+1 =
( 1

n

n∑
i=1

(
Ri+1 −ARi

)) n∑
i=1

Ri +A

n∑
i=1

R2
i ⇒

n∑
i=1

RiRi+1 −
1

n

n∑
i=1

Ri+1

n∑
i=1

Ri = A
( n∑
i=1

R2
i −

1

n

( n∑
i=1

Ri
)2)⇒

A =
n
∑n
i=1RiRi+1 −

∑n
i=1Ri ·

∑n
i=1Ri+1

n
∑n
i=1R

2
i − (

∑n
i=1Ri)

2
. (B.10)

As stated earlier in this proof, A = e−αt. Thus, equation (B.10) can be used to express the
estimator for α, namely

α̂ = −1

t
logA = −1

t
log
(n∑n

i=1RiRi+1 −
∑n
i=1Ri ·

∑n
i=1Ri+1

n
∑n
i=1R

2
i − (

∑n
i=1Ri)

2

)
. (B.11)

Furthermore, B = r(1 − e−αt) and then equation (B.7) can be used to express r as a function of
α, namely

r̂ =
B

(1− e−αt)
=

1

n(1− e−αt)

( n∑
i=1

Ri+1 − e−αt
n∑
i=1

Ri

)
. (B.12)

Thus, equations (B.5), (B.11) and (B.12) express the full conclusion of this proof.

Proof of theorem 3.3
Proof. The proof for theorem 3.3 follows the same initial simplification as for theorem 3.2. Fur-
thermore by the definition of the variance for the maximum likelihood estimators, it follows that
the variance of each estimator is the negative expected value of the inverse of the second derivative,
as explained in theorem 3.1. Note that we derive the variance of σ̂ and not of σ̂2, although we in
the previous proof derived the estimator of σ̂2. However, in that case it does not matter since the
maximized probability with respect to σ̂ is the same as the one with respect to σ̂2. The same logic
holds for the covariance calculation.

Proof for ∂2L(θ)
∂σ2

The second derivative of the log-likelihood function in equation (B.3) with respect to σ2 can then
be expressed as

∂2L(θ)

∂σ2
=
∂2L(θ)

∂C2

(∂C
∂σ

)2
=

∂

∂C

[
− n

2C
+

1

2C2

n∑
i=1

(Ri+1 −ARi −B)2
](σ
α

(1− e−2αt)
)2

=
(σ
α

(1− e−2αt)
)2( n

2C2
− 1

C3

n∑
i=1

(Ri+1 −ARi −B)2
)
.

(B.13)

Hence, the expected value of equation (B.13) then needs to be calculated. Since the only stochastic
term in the sum is Ri+1, this provides the following

E
[∂2L(θ)

∂σ2

]
=
(σ
α

(1− e−2αt)
)2( n

2C2
− 1

C3

n∑
i=1

E
[
(Ri+1 −ARi −B)2|Ri

])
. (B.14)
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Moreover, at any time ti the interest rate Ri is given and the expected interest rate at time ti+1

depends on the known interest rate Ri. Hence

E
[
(Ri+1 −ARi −B)2|Ri

]
= E

[
(Ri+1 − (ARi +B))2|Ri

]
= E

[
R2
i+1|Ri

]
− 2(ARi +B)E

[
Ri+1|Ri

]
+ (ARi +B)2.

(B.15)

Note that E[R2
i+1|Ri] is the same as the squared mean plus the variance of Ri+1. Whilst E[Ri+1|Ri]

is the mean of Ri+1. Hence

E
[
R2
i+1|Ri

]
=
σ2

2α
(1− e−2αt) +

(
Rie
−αt + r(1− e−αt)

)2
= C + (ARi +B)2

and

E
[
Ri+1|Ri

]
= Rie

−αt + r(1− e−αt) = ARi +B.

Hence, equation (B.15) gives us that E
[
(Ri+1 − ARi − B)2|Ri

]
= C. Thus, this can be replaced

in equation (B.14), which provides us with

E
[∂2L(θ)

∂σ2

]
=
(σ
α

(1− e−2αt)
)2( n

2C2
− 1

C3

n∑
i=1

C
)

= − n

2C2

(σ
α

(1− e−2αt)
)2

= − n

2
(
σ2

2α (1− e−2αt)
)2(σα (1− e−2αt)

)2
= −2n

σ2
.

(B.16)

Since the variance is the inverse of the negative expected value of the second derivative, equation
(B.16) then gives that

∂2L(θ)

∂σ2
= −

(
− 1

2n
σ2

)
=
σ2

2n
,

which concludes the first part of the proof.

Proof for ∂2L(θ)
∂r2

Furthermore, the variance of r̂ is calculated in the same manner, namely

∂2L(θ)

∂r2
=
∂2L(θ)

∂B2

(∂B
∂r

)2
∂2L(θ)

∂r2
=

∂

∂B

[ 1

C

n∑
i=1

(Ri+1 −ARi −B)
]
(1− e−αt)2 = − n

C
(1− e−αt)2. (B.17)

Substituting C in equation (B.17) then gives us that

∂2L(θ)

∂r2
= −2nα(1− e−αt)2

σ2(1− e−2αt)
. (B.18)

As stated before, the variance is the inverse of the negative expected value of the second derivative
and therefore equation (B.18) can be used to express the variance as

∂2L(θ)

∂r2
= −

(
− 1

2nα(1−e−αt)2
σ2(1−e−2αt)

)
=

σ2(1− e−2αt)
2nα(1− e−αt)2

,

which concludes the second part of the proof.
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Proof for ∂2L(θ)
∂α2

The differentiation for ∂2L(θ)
∂α2 is quite obscure and will therefore be done in sex separate steps.

First of all we conclude that

∂2L(θ)

∂α2
=
∂2L(θ)

∂A2

(∂A
∂α

)2
+
∂2L(θ)

∂B2

(∂B
∂α

)2
+
∂2L(θ)

∂C2

(∂C
∂α

)2
+

2
∂2L(θ)

∂A∂B

(∂A
∂α

)(∂B
∂α

)
+ 2

∂2L(θ)

∂A∂C

(∂A
∂α

)(∂C
∂α

)
+ 2

∂2L(θ)

∂B∂C

(∂B
∂α

)(∂C
∂α

)
. (B.19)

Subsequently, the expected value of each of these derivatives can be calculated as follows

E
[∂2L(θ)

∂A2

(∂A
∂α

)2]
= − 1

C

n∑
i=1

(R2
i )(−tA)2 (B.20)

E
[∂2L(θ)

∂B2

(∂B
∂α

)2]
= − (rtA)2n

C
(B.21)

E
[∂2L(θ)

∂C2

(∂C
∂α

)2]
= − n

2C2
Ψ2 (B.22)

where Ψ = ∂C
∂α = −σ

2A2(−2αt+A−2−1)
2α2

E
[∂2L(θ)

∂A∂B

(∂A
∂α

)(∂B
∂α

)]
=

r

C
(tA)2

n∑
i=1

Ri (B.23)

E
[∂2L(θ)

∂A∂C

(∂A
∂α

)(∂C
∂α

)]
= E

[
2(tA)Ψ

n∑
i=1

(AR2
i −Ri(Ri+1 −B))

]
= 0. (B.24)

As previously shown, E[Ri+1|Ri] = ARi+B. Thus, the expected value of equation (B.24) will just
be zero since E

[∑n
i=1(AR2

i − Ri(Ri+1 − B))
]

=
∑n
i=1(AR2

i − Ri(ARi + B − B) = 0. Moreover,
the next line will follow in i similar manner as we will see that

E
[∂2L(θ)

∂B∂C

(∂B
∂α

)(∂C
∂α

)]
= E

[
(rtA)Ψ(− 1

C2
)

n∑
i=1

(Ri+1 −ARi −B)
]

= 0. (B.25)

Again using the properties of the expected value of Ri+1, the summation turns out as follows

E
[ n∑
i=1

(Ri+1 −ARi −B)
]

=

n∑
i=1

(ARi +B −ARi −B) = 0.

Hence,

∂2L(θ)

∂α2
= −

(
(B.20) + (B.21) + (B.22) + 2 · (B.23)

)−1
=
( (tA)2

C

n∑
i=1

R2
i +

n(rtA)2

C
+
nΨ2

2C2
− 2

r(tA)2

C

n∑
i=1

Ri

)−1
=
( (tA)2

C

( n∑
i=1

(Ri − r)2 +
nΨ2

2C(tA)2
))−1

=
( 2αt2e−2αt

σ2(1− e−2αt)

n∑
i=1

(Ri − r)2 +
ne−4αt(e2αt − 2αt− 1)2

2α(1− e−2αt)2
)−1

,

(B.26)

which concludes this part of the proof.
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Proof for ∂2L(θ)
∂r∂σ

E
[∂2L(θ)

∂r∂σ

]
= E

[ ∂
∂r

[ ∂L
∂C

∂C

∂σ

]]
= E

[( ∂2L

∂A∂L

∂A

∂r
+

∂2L

∂B∂C

∂B

∂r
+
∂2L

∂C2

∂C

∂r

)∂C
∂σ

]
.

Since neither A nor C contains r, both ∂A
∂r and ∂C

∂r becomes zero. Furthermore, E
[
∂2L
∂B∂C

]
also

equals zero due to equation (B.25), hence

E
[∂2L(θ)

∂r∂σ

]
= 0.

Proof for ∂2L(θ)
∂r∂α

First, note that E[∂
2L(θ)
∂B∂C ] = 0 from equation (B.25), which will be used later in this proof. Moreover,

E[
∂2L(θ)

∂r∂α
] = E

[ ∂
∂α

[∂L(θ)

∂B

∂B

∂r

]]
= E

[(∂2L(θ)

∂A∂B

∂A

∂α
+
∂2L(θ)

∂B2

∂B

∂α
+
∂2L(θ)

∂B∂C

∂C

∂α

)∂B
∂r

]
=
( tA
C

n∑
i=1

Ri −
rntA

C

)
(1− e−αt) =

tA(1− e−αt)
C

n∑
i=1

(Ri − r)

=
2αte−αt(1− e−αt)
σ2(1− e−2αt)

n∑
i=1

(Ri − r) =
2αt

σ2(1 + eαt)

n∑
i=1

(Ri − r).

(B.27)

Since I(α̂, r̂, σ̂) contains of the negative seconds derivatives, we only need to take the negative value
of equation (B.27), which concludes this part of the proof.

Proof for ∂2L(θ)
∂α∂σ

First note that E[∂
2L(θ)
∂B∂C ] = 0 and that E[∂

2L(θ)
∂A∂C ] = 0 from equation (B.24) and (B.25), which will

be used later. Also note that this is the derivative with respect to σ and not σ2. Hence,

E[
∂2L(θ)

∂α∂σ
] = E

[ ∂
∂α

[∂L(θ)

∂C

∂C

∂σ

]]
= E

[(∂2L(θ)

∂A∂C

∂A

∂α
+
∂2L(θ)

∂B∂C

∂B

∂α
+
∂2L(θ)

∂C2

∂C

∂α

)∂C
∂σ

]
.

(B.28)

Now, also note from equations (B.13), (B.15) and (B.16) that E[∂
2L(θ)
∂C2 ] = − n

2C2 . Hence (B.28)
equals (where Ψ is defined as in equation (B.22))

− n

2C2
Ψ
σ(1− e−2αt)

α
= − n

2
(
σ2

2α (1− e−2αt)
)2 (− σ2e−2αt(e2αt − 2αt− 1)

2α2

)σ(1− e−2αt)
α

=
n

σα

1− e−2αt(2αt+ 1)

1− e−2αt
.

(B.29)

As stated in the previous section, the matrix contains the negative second derivative, thus this
completes the final part of the proof.
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Appendix C - Further results

Yield curve estimating
Here we provide estimation data for eight arbitrarily chosen time series with time spans between
five and 25 years. Note that in the cases when the unbiased estimation of α and the estimation
of r are not both positive or negative, we also provide an estimated yield curve using the biased
estimator of α. Each yield estimation will follow without further explanation about its time series.
Figure 16 also shows a final comparison of nine different time series (note that we only present
estimation data for the time series of length 19, 20 and 21 years, not the once in between).

Table 8: Monthly 25 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.1593 0.0589 (0.0438, 0.2747)
α (unbiased) -0.00074
r 0.0022 0.0136 (-0.0245, 0.0288)
σ 0.0074 0.00030 (0.0068, 0.0080)

Figure 8: Estimated yield curve based on 25 years of monthly data.
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Table 9: Monthly 22 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.1988 0.0761 (0.0496, 0.3481)
α (unbiased) 0.0169
r 0.0035 0.0097 (-0.0156, 0.0226)
σ 0.0063 0.00027 (0.0057, 0.0068)

Figure 9: Estimated yield curve based on 22 years of monthly data.
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Table 10: Monthly 21 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.0385 0.0777 (-0.1137, 0.1907)
α (unbiased) -0.1508
r -0.0394 0.1253 (-0.2850, 0.2062)
σ 0.0059 0.00026 (0.0054, 0.0064)

Figure 10: Estimated yield curve based on 21 years of monthly data.
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Table 11: Monthly 19 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.0180 0.0823 (-0.1434, 0.1794)
α (unbiased) -0.1908
r -0.0931 0.5140 (-1.1004, 0.9143)
σ 0.0058 0.00027 (0.0052, 0.0063)

Figure 11: Estimated yield curve based on 19 years of monthly data.
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Table 12: Weekly 20 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.0539 0.0718 (-0.0869, 0.1946)
α (unbiased) -0.1459
r -0.0292 0.0681 (-0.1627, 0.1044)
σ 0.0053 0.00012 (0.0053, 0.0055)

Figure 12: Estimated yield curve based on 20 years of weakly data.
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Table 13: Weekly 15 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.0713 0.0957 (-0.1163, 0.2590)
α (unbiased) -0.1950
r -0.0295 0.0690 (-0.1647, 0.1058)
σ 0.0061 0.00013 (0.0058, 0.0064)

Figure 13: Estimated yield curve based on 15 years of weekly data.
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Table 14: Weekly 10 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.4488 0.1555 (0.1439, 0.7536)
α (unbiased) 0.0486
r 0.0039 0.0057 (-0.0150, 0.0072)
σ 0.0061 0.00019 (0.0057, 0.0065)

Figure 14: Estimated yield curve based on 10 years of weekly data.
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Table 15: Weekly 5 years
Parameter Estimation Standard error 95% Confidence interval
α (biased) 0.4100 0.2876 (-0.1537, 0.9737)
α (unbiased) -0.3870
r -0.0091 0.0072 (-0.0232, 0.0051)
σ 0.0042 0.00018 (0.0038, 0.0045)

Figure 15: Estimated yield curve based on 5 years of weakly data.

40



Figure 16: Comparison of estimated yield curves to actual yield curve

Monte Carlo simulation
The confidence interval that was calculated in figure 6 was created according to

ΠC/F for 95% = Π̄± σ√
n
. (C.1)

This follows from the CLT assumption of the MC simulations sample being normally distributed.
To illustrate this fact, we performed a QQ-plot with respect to the normal distribution. This could
for obvious reasons only be performed upon one derivative type at the time with a fixed strike
value K. Figure 17 illustrates how a QQ-plot for a cap could look like (the exact same logic holds
for floors).
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Figure 17: QQ-plot for MC simulation sample.

At first, the skewness from Figure 17 together with the commonly known theory regarding
QQ-plot indicates for the educated reader that this needs some modification before considered
normally distributed. However, considering the formulas used in equation (29), one clearly notice
that the skewness is derived from the fact that negative values are considered as zero. Hence, it
follows from this that the skewness is heavely correlated to the value of K. For Figure 17, the
values from table 7 was used with the exception of K being fixed to -0.01. Following the logic from
section 4.4, the price of a cap increases with a diminishing value of K, and with similar logic the
price of a floors increases with a increasing value of K. Hence, it also follows that the values of K
providing the highest price for either caps or floors, will provide less skewness in the QQ-plot. It is
also these values that are most relevant for discussion and hence a confidence interval accordingly
to equation (C.1) is reasonable in approximation.
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Appendix D - Conclusion

One-factor models
In the following models, the short rate is the stochastic factor which will determine all the future
interest rates. Since it is the short rate that implies the uncertainty, the following expression is
used to describe it generally [8].

dr(t) = µr(t)dt+ σr(t)dW.

Where σ is the standard deviation and µ the instantaneous drift rate of r, the short rate. This
functions are both functions of r but they are assumed to be independent of time. In a one factor
model it is assumed that the interest rates all have the same direction [8]. These models use a
Gaussian interpretation, since it gives solutions that are numerical and is straightforward when
used to price instruments. But since Gaussian models allows for negative interest rates in specific
cases there are opinions that these models does not represent the reality and should therefore not
be used. But the models remain popular just for this specific reason, that they are able to handle
negative interest rates [8].

The Dothan model

Published in 1978 [7], Dothan presented his model with the background in driftless geometric
Brownian motion, implying that the average does not change as the starting point shifts [34].
Under the objective probability measure Q0, the interest rate can be described as

dR(t) = σR(t)dW 0(t), R(0) = R0.

R0 and σ are both positive constants. Furthermore, Dothan presented a constant risk price.
This in turns is equivalent to assuming risk-neutral dynamics according to

dR(t) = aR(t)dt+ σR(t)dW (t), a = constant.

Without delving deeper into the characteristics of the model, Dothan possess the ability to only
simulate positive Rt. This is due to the fact that R is lognormal distributed [4].

The Cox, Ingersoll and Ross (CIR) model

Published in 1985, the CIR model, under the condition of the risk-neutral measure Q, can be
described as

dR(t) = k(θ −R(t))dt+ σ
√
R(t)dW (t), R(0) = R0,

with R0, k, θ, σ all being positive constants. Subsequently, putting the CIR model in context
towards the Vasicek model, one will notice that CIR allows for analytical tractability and similar to
the Dothan model, also an instantaneous short rate with exclusively positive values [4]. A similarity
with Vasicek, CIR and Hull-White model is that they are all models with mean reversion. The
risk-free price for a ZCB in the CIR model is given by

B(t, T ) = C(t, T )e−A(t,T )R(t)

where

C(t, T ) =
2(ez(T−t) − 1)

(z + a)(ez(T−t) − 1) + 2z

A(t, T ) =
[ 2ze(z+a)(T−t)/2

(z + a)(eλ(T−t) − 1) + 2z

]2ab/σ2

and
z =

√
a2 + 2σ2 [8].
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The Hull-White / Extended Vasicek Model

Noticing the flaws and improvement areas, Hull and White published an extended version of the
Vasicek model in 1990 with the main attribute being a time-varying parameter as follows

dR(t) = (θ(t)− αR(t))dt+ σdW (t).

With α and σ as positive constant and the mean reversion level θ(t)/α [8]. The time dependent
parameter θ(t) is chosen to fit the term structure of interest rates in the real market [4]. Under
certain conditions, the Hull-White model no longer remains Hull-White

Hull-White =

{
Simplified Hull-White model if α 6= 0
Vacisek model if α 6= 0 and θ(t) = r · α [8].

A disadvantage with the Hull-White model is that it is possible for extreme negative values, but
the probability for this is very small [11].

Multi-factor models
Since the one-factor models has some drawbacks it is sometimes more beneficial to use multi-factor
models and more specified, two-factor models since they allow for a more realistic correlation
pattern. These models are in general more useful when the correlation is very important or when
one is seeking a higher precision [4]. If we were to use the G2 model instead of Vasicek, we obtain
the following equation for the bond price B(τ),

B(τ) = A(τ)exp(−Cx(τ)xt −By(τ)yt).

Where C(τ) and A(τ) is the same as in theorem 2.2. The two-factor model can easily be extended
to contain three or more factors but an arising problem is here how to decide the number of factors
so the implementation will remain practical. The trade-off what has to be made is whether it is
more desired to represent realistic correlation patterns or maintain a more numerically-efficient
implementation [4].

HJM Framework
The Heath, Jarrow and Morton framework was developed from the single factor short rate models
drawbacks. It is similar to the Hoo-Lee model, which models the yield in a binomial tree, but
instead of being discrete, Heath, Jarrow and Morton translated the Ho-Lee model into continuous
time. One significant difference between the HJM model and one-factor short rate models is that
the stochastic evolution of the yield curve is obtained by deriving an arbitrage-free framework with
continuously compounded interest rates at time T , compared to simply choose the forward rate
f(t, T ) [8].The bond price B(t, T ) is provided by following equation

f(t, T ) = −∂lnB(t,T )
∂T

B(t, T ) = e−
∫ T
t
f(t,s)ds.

The conclusions from the HJM framework highligts that the short rate is not Markov. The
short rate process therefore depends on the path between t and today for the short rate including
the value at time t. To represent the structure movements, Monte Carlo simulation have to be
used which gives a binomial nonrecombining tree which quickly gets extremely large (with 2n nodes
results in roughly 1 billion when n = 30). Depending on how the instantaneous standard deviation,
s(t, T,Ω) is chosen the HJM framework becomes other interest rate models [4].

s(t, T,Ω) =

{
constant, σ leads to Ho-Lee Model
σe−a(T−t) leads to Hull-White Model

Both Ho-Lee Model and Hull-White Model are particular Markov examples of HJM [16].
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Appendix E - MATLAB code

MLE for Vasicek
function [parameters,expectedinfomatrix,lvalue] = Mle_Vasicek(data,years)

disp(’alpha,r,sigma’) %shows the order of the parameters
n = length(data)-1;
%’n’ corresponds to the amount of changes, since this is discrete.
%Note that we always have n+1 points in our sample.
dt = years/(n+1); % size of ’each step’.
parameters = zeros(1,3);
expectedinfomatrix = zeros(3,3);
S0 = 0; % inital for sum of all R(t(i-1))
S1 = 0; % inital for sum of all R(t(i))
S00 = 0; % inital for sum of all R(t(i-1))∧

S01 = 0; %inital for sum of all R(t(i-1))∗R(t(i))
for i = 1:n %calculates every sum

S0 = S0+data(i);
S1 = S1+data(i+1);
S00 = S00+data(i)∗data(i);
S01 = S01+data(i)∗data(i+1);

end
ahat = -(1/dt)∗log((n∗S01-S0∗S1)/(n∗S00-S0∧2)); %adresses a value to alpha-hat
rhat = 1/(n∗(1-exp(-ahat∗dt)))∗(S1-exp(-ahat∗dt)∗S0);
%adresses a value to r-hat
sigmapart = 0; %inital for the sum in our estimator of sigma
for j = 1:n %calculates the sum in our estimator of sigma

sigmapart = sigmapart+(data(j+1)-data(j) ∗exp(-ahat∗dt)-rhat ∗(1-exp(-ahat∗dt)))∧2;
end
sigma2 = 2∗ahat∗sigmapart/(n∗(1-exp(-2 ∗ahat∗dt)));
%adresses a value to sigma2-hat
parameters(1) = ahat;
parameters(2) = rhat;
parameters(3) = sqrt(sigma2);
A = exp(-ahat∗dt); %to simplify (see proof for thm 3.2 and 3.3)
C = sigma2/(2∗ahat)∗(1-exp(-2∗ahat∗dt)); %to simplify (see proof)
dCdalpha = -(sigma2∗A∧2∗(-2 ∗ahat ∗dt+exp(2∗ahat∗dt)-1))/(2 ∗ahat∧);
%derivative to simplify (see proof)
d2La2 = -1/C∗S00 ∗dt∧2∗A∧; %derivative to simplify see proof)
d2Lb2 = -n/C∗(rhat∗dt∗A)∧; %derivative to simplify (see proof)
2Lc2 = -dCdalpha∧{∗n}/(2∗C∧2); %derivative to simplify (see proof)
d2Lab = rhat∗(dt∗A)∧2∗S0/C; %derivative to simplify (see proof)
2Lalpha2 = -(d2La2+d2Lb2+d2Lc2+2∗d2Lab);
%complete second order derivative (see proof)
d2Lr2 = (2∗n∗ahat∗(1-exp(-ahat∗dt))∧2)/(sigma2 ∗(1-exp(-2 ∗ahat∗dt)));
%complete secondorder derivative (see proof)
d2Lsigma22 = (2∗n)/sigma2; %complete second order derivative (see proof)
%the following seven lines completes the negative expected informationmatrix
expectedinfomatrix(1,1) = d2Lalpha2;
expectedinfomatrix(2,2) = d2Lr2;
expectedinfomatrix(3,3) = d2Lsigma22;
expectedinfomatrix(2,1) = -2∗ahat∗dt∗(S0-n∗rhat)/(sigma2∗(1+exp(ahat∗dt)));
expectedinfomatrix(1,2) = expectedinfomatrix(2,1);
expectedinfomatrix(3,1) = -n/(sqrt(sigma2)∗ahat)∗(1-exp(-2∗ahat∗dt)∗(2∗ahat∗dt+1))/
(1-exp(-2∗ahat∗dt));
expectedinfomatrix(1,3) = expectedinfomatrix(3,1);
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lvalue = -n/2∗log(sigma2/(2∗ahat)∗(1-exp(-2 ∗ahat∗dt)))-n/2∗log(2∗pi)-
(sigma2/ahat∗(1-exp(-2∗ahat∗dt)))∧(-1)∗sigmapart;
%adresses a value to the log-likelihood based on the estimators

end

Price with Vacisek
function price = vasicekPrice(alpha,r,sigma,R0,maturity,decimal,timeNow,coupon)

%Note that
C = @(T,t) (1-exp(-alpha∗(T-t)))/alpha; %part of the pricing function
A = @(T,t) r∗(T-t)-r∗(1-exp(-alpha∗(T-t)))/alpha-sigma∧2∗(1-exp(-2∗alpha∗(T-t)))/
(4∗alpha∧3)+sigma∧2∗(1-exp(-alpha∗(T-t)))alpha∧3-sigma∧2∗(T-t)/(2∗alpha∧2);
%part of the pricing function
if maturity > 1

%if the maturity > 1, the payoff will be 1+coupon, else 1.
q1=coupon;

else
q1=0; end
t=timeNow; %adresses timeNow-value, this is always set to zero

if decimal > 0
price=q1∗exp(-(R0∗C(decimal,t)+A(decimal,t)));
%price for the first payoff.

else
price=0;

end
for i=t+1:maturity-1

price=price+q1 ∗exp(-(R0∗C(i+decimal,t)+A(i+decimal,t)));
end
price=price+(1+q1)∗exp(-(R0∗C(maturity+decimal,t)+A(maturity+decimal,t)));
end

Yield with Vacisek
function yield = yieldII(price,integer,decimal,timeNow,coupon)

%Note that this code only works for two decimals, as this was the case
%in our project, i.e. it can calculate the yield of a bond that matures
%in 21.54 years but not one that matures in 21.541 years (however, the
%difference is almost none).
%Also note that integer + decimal = maturity

t = timeNow; %usually set to zero
if decimal > 0
%if there is a decimal, the forthcomming matrix will be long, i.e. 5
%elements turns to 50 if the decimal
%is in the order of ten and 500 if the decimal is in the order of a hundred

if floor(10∗(integer+decimal)) == 10∗(integer+decimal)
%checks decimal order

matrix = zeros(1,10∗(integer-t+decimal)+1);
%if true, creates a matrix of the order of 10∗(integer+decimal)+1
for i = 1:integer %adresses each value in the discounted payoff-matrix

matrix(length(matrix)-(10∗decimal+1∗(i-1))) = coupon;
end

else
matrix = zeros(1,100∗(integer-t+decimal)+1);
%if the last if-statement is not true,creates a matrix of the order
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%of 100∗(integer+decimal)+1
for i = 1:integer

matrix(length(matrix)-(100∗decimal+100∗(i-1))) = coupon;
%adresses each value

end
end

else
matrix = zeros(1,integer-t+1);
%if the first if-statement is not true, this creates a simple
%matrix of the order integer+1 (this is the most simple case)
for i = 2:length(matrix)-1

matrix(i) = coupon; %adresses each value
end

end
matrix(length(matrix)) = -price;
%sets price at t=0 (last element is the first element in
%MATLABs roots-function
if integer > 1 %if integer > 1 the payoff at maturity will be 1+coupon,
%else it will just be 1 (this is regarded in the price aswell)

matrix(1) = 1+coupon;
else

matrix(1)=1;
end
if decimal > 0
%solves discounted payoff-matrix based on the
order of decimals

if floor(10∗decimal) == 10∗decimal
%checks order of decimal (ten or hundred)

exp10yield = roots(matrix);
%solves the matrix (i.e. polynomial) set to zero
for j = 1:length(exp10yield)

if isreal(exp10yield(j)) == 1 exp10yield(j) > 0
%since roots returns a full matrix containing both negative
%roots and
yield = -10∗log(exp10yield(j));
%ten since we extended each element by the order of ten,
%for example x∧0.5 -> x∧5
end

end
else

exp100yield = roots(matrix);
for j = 1:length(exp100yield)

if isreal(exp100yield(j)) == 1 exp100yield(j) > 0
yield = -100∗log(exp100yield(j));

end
end

end
else

expyield = roots(matrix);
for j = 1:length(expyield)

if isreal(expyield(j)) == 1 expyield(j) > 0
yield = -log(expyield(j));

end
end

end
end

47



capfloorPrice
function [priceVectorCap,priceVectorFloor] = capfloorPrice(Matrix,p,K,dt)

dim=size(Matrix);
nrTrials=dim(2);
%Obtaining the number of columns in the matrix
lengther=dim(1);
%Obtaining the number of rows in the matrix
priceVectorCap=zeros(nrTrials,1); %vector for the price of caps
priceVectorFloor=zeros(nrTrials,1); %vector for the price of floors
discounter=0;
tenorGap=p/dt;%Declaring the size of each tenor

for i=1:nrTrials
for j=tenorGap:lengther

for k=1:tenorGap
%Creating three foor-loops that will be used to calculate multiple caps/floors.
% Each row in the column will act as a cap/floor

discounter=discounter+Matrix(j-k+1,1)∗dt;
%Discounter that will change with respect to the number of steps

end
checkValue=Matrix(j,i);
priceVectorCap(i)=priceVectorCap(i)+p∗max(checkValue-K,0)∗exp(-discounter);
priceVectorFloor(i)=priceVectorFloor(i)+p∗max(K-checkValue,0)∗exp(-discounter);
%Calculates the prices of the caplets and the floorlets as in equation
(11) and (12)

end
discounter=0;

end

end

MCsimulateVasicek
function [interestRate]=MCsimulateVasicek(a,r,sigma,dt,T,Rt0)

nrTrials=T/dt;
interestRate=zeros(T,1);
interestRate(1)=Rt0;
%Placing the initial spot rate into the vector interetRate
for i=2:nrTrials %Simulating the spot rate up to nrTrials number of times.

interestRate(i)=interestRate(i-1)+a∗(r-interestRate(i-1))∗dt+sigma∗sqrt(dt)∗randn;
%fills the vector interestRates with the spot rate

end
end
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strikeShifter
function [finalCapVector,finalFloorVector,xvalues,finalCapPriceUpperCI,
finalCapPriceLowerCI,finalFloorPriceUpperCI,finalFloorPriceLowerCI]=
strikeShifter(a,r,sigma,dt,p,T,Rt0,nrTrials,Ktrials)
%Simulates different cap and floors prices depending upon strike level

finalCapVector=zeros(Ktrials,1);
finalFloorVector=zeros(Ktrials,1);

Z=1.96; %confidence interval of 95%

finalCapPriceUpperCI=zeros(Ktrials,1);
finalCapPriceLowerCI=zeros(Ktrials,1);

finalFloorPriceUpperCI=zeros(Ktrials,1);
finalFloorPriceLowerCI=zeros(Ktrials,1);

for i=1:Ktrials
K=-0.05+(i-1)/(1000);
%Makes shifts in striek value xvalues(i)=K;
matrix=simulateInterestRate(a,r,sigma,dt,T,Rt0,nrTrials);
%Provides simulations of the interest rate
[capPriceVector,floorPriceVector]=capfloorPrice(matrix,p,K,dt);
%Calculates the price according to simulation

finalCapPrice=mean(capPriceVector);
finalFloorPrice=mean(floorPriceVector);

finalCapVector(i)=finalCapPrice;
finalFloorVector(i)=finalFloorPrice;

sqrtN=sqrt(length(capPriceVector));
stdevCPV=std(capPriceVector);
stdevFPV=std(floorPriceVector);

%Calculates CI finalCapPriceUpperCI(i)=finalCapPrice+Z∗stdevCPV/sqrtN;
finalCapPriceLowerCI(i)=finalCapPrice-Z∗stdevCPV/sqrtN;

finalFloorPriceUpperCI(i)=finalFloorPrice+Z∗stdevFPV/sqrtN;
finalFloorPriceLowerCI(i)=finalFloorPrice-Z∗stdevFPV/sqrtN;

end

simulateInterestRate
function simulateMatrix=simulateInterestRate(a,r,sigma,dt,T,Rt0,nrTrials)

for i=1:nrTrials
rng(i);
simulateMatrix(:,i)=MCsimulateVasicek(a,r,sigma,dt,T,Rt0);
%simulates the interest rate with Vasicek model end

end
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Test for size of n
a=-0.1358;
r=-0.0218;
sigma=0.0059;
dt=1/240;
p=3/12;
T=5;
Rt0=-0.0066;
K=-0.01;
ticker=0;

for i=25:25:12000
%Simulates for different sample size, to determine a suitable level
nrTrials=i;
ticker=ticker+1;
matrix=simulateInterestRate(a,r,sigma,dt,T,Rt0,nrTrials);
[capPriceVector,floorPriceVector]=capfloorPrice(matrix,p,K,dt);
finalCapPrice(ticker)=mean(capPriceVector);
finalFloorPrice(ticker)=mean(floorPriceVector);
xvector(ticker)=i;
%Saves the simulated values

end

Run program - MC simulation for different K

a=-0.1358;
r=-0.0218;
sigma=0.0059;
dt=1/240;
p=3/12;
T=5;
Rt0=-0.0066;
nrTrials=5000;
Ktrials=100;
%The following section plots different strike values

[finalCapVector,finalFloorVector,xvalues,finalCapPriceUpperCI,finalCapPriceLowerCI,
finalFloorPriceUpperCI,finalFloorPriceLowerCI]
=strikeShifter(a,r,sigma,dt,p,T,Rt0,nrTrials,Ktrials);
plot(xvalues,finalCapVector,’black’,’LineWidth’,0.5)
hold on
plot(xvalues,finalFloorVector,’:’,’LineWidth’,1,’color’,’black’)
hold on
plot(xvalues,finalCapPriceUpperCI,’-’,’LineWidth’,0.25,’color’,’black’)
hold on
plot(xvalues,finalFloorPriceUpperCI,’-’,’LineWidth’,0.25,’color’,’black’)
hold on
plot(xvalues,finalCapPriceLowerCI,’-’,’LineWidth’,0.25,’color’,’black’)
hold on
plot(xvalues,finalFloorPriceLowerCI,’-’,’LineWidth’,0.25,’color’,’black’)
hold on

title(’Cap/floor price with respect to K in Monte Carlo simulation’);
legend(’Cap price’,’Floor price’,’95% CI’,’location’,’north’)
set(gcf,’color’,’w’);
set(gca,’FontSize’,14);

50



ylabel(’Price for cap/floor’,’FontSize’,14);
xlabel(’Cap/floor rate K’,’FontSize’,14);
grid on

51



Appendix F - Sectioning

Section Writers
Populärvetenskaplig presentation All
Abstract All
Sammanfattning All
1 Introduction All
Backround Oscar
Purpose All
Outline Axel, Fredrik
2 Theory All
The bond market Axel, Fredrik
Fair bond pricing Justin, Oscar
Yield to maturity Axel, Oscar
Forward rate Fredrik, Justin
Interest rate caps and floors Axel, Justin
The Vasicek model Justin
3 Method All
Maximum likelihood estimation Axel, Oscar, Justin
MLE on the Normal distribution Axel, Oscar
MLE on the Vasicek model Fredrik, Justin
Monte Carlo simulation for caps and floors Fredrik
4 Results All
Data selection Axel, Oscar
Parameter estimation Axel, Fredrik, Justin
Yield curve modeling Axel, Justin, Oscar
Pricing caps and floors Fredrik, Justin
5 Conclusion All
Appendix A-Theory All
Appendix B-Method Fredrik, Justin
Appendix C-Result Fredrik, Justin
Appendix D-Conclusion Oscar
Appendix E-Matlab-code All
Appendix F-Sectioning All
Appendix G-Glossary Oscar

52



Appendix G - Glossary
Arbitrage - To buy and sell an asset and make a profit from a price difference.

Bond - A type of fixed income investment where the investor lends money to, for example the
government, for a fixed interest rate over a defined period of time.

Cap rate - The measure level used to determine if a caplet/floorlet is in the money.

Coupon - The interest expressed as percentage of the principal value of a bond.

Discounted notional value - The total value of an asset discounted to the value of today.

European call options - If the owner of the call option with strike price $30 has the oppor-
tunity to buy the underlying asset for $30 at maturity. If the value of the underlying asset is $50
the owner can buy the asset and exercise the option and therefore make a profit of $20 per share.

European options - A financial contract that gives the owner the possibility at maturity to
exercise the option if the price of the underlying asset is in the money.

European put options - If the owner of the put option with strike price $30 has the oppor-
tunity to sell the underlying asset for $30 at maturity. If the value of the underlying asset is $20
the owner can sell the asset and exercise the option and therefore make a profit of $10 per share.

Fair price - The price which both parties, both buyer and seller agrees up on. The market
value often represents the fair price.

Fixed income security - Investment that pays fixed and predetermined periodic returns and
the principal at maturity.

Forward rate - The interest rate connected to a financial transaction in the future.

Government bond - A debt security issued by a government.

Interest rate caplets - Is a European style call option that enables hedging towards higher
interest rates. If an investor buys a caplet he gets paid if the interest increases more than a de-
termined strike price.

Interest rate floorlets - Is a European style put option that enables hedging towards lower
interest rates. If an investor buys a floorlet he gets paid if the interest decreases more than a
determined strike price.

Internal rate of return - The discount rate that equals the net present value of all future
cash flows to zero.

Maximum likelihood method (MLM) - Is a method to estimate the parameters in a stat-
istical model when the observations is known. The estimation seeks the values for the maximum
of the likelihood function.

Mean reversion - Is a theory stating that returns and prices will move towards the mean or
average eventually.

Net present value - The difference between the present cash inflows and outflows over a time
period.
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Nominal bond - The payments of this bond is of fixed amount instead of a fixed real value.

Notional Value - The total value of an asset.

Over the counter - When a security or asset gets traded in less formal exchanges as New York
Stock Exchange.

Real bond - A bond which has inscurance against the inflation.

Risk aversion - When an investor chooses to invest in a more predictable payoff with lower
risk rather than a possibly higher payoff with a higher grade of uncertainty.

Securities - A tradeable financial asset of various kind. The most common types are bonds,
stocks or options.

Skewness - A measurement of how assymetrical an probability distribution is of an random
variable around its mean.

Speed of reversion - How fast the prices move towards mean returns and prices, see Mean
reversion.

Spot rate - The price of a settlement on a security.

Spread - Difference between the asking price and the bidding price of an asset.

Vickrey auction - Is a auction where the bidders submit sealed bids and therefor doesn’t know
the others bids in the auction.

Yield - The income return from an investment. Can be both dividends and interest from an
asset.

Zero-coupon bond (ZCB) - An asset which does not pay coupon and pays the nominal value
at maturity.
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