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Abstract

Source and channel coding using fountain codes(also known as rate-
less erasure codes) have been of much interest during the last years.
The capacity achieving property of these codes along with the low de-
coding complexity have greatly contributed to these codes becoming
more frequently applied in both compression and protection against
channel disruptions. One of the major problems of compression and
source coding is the Slepian-Wolf problem. The problem gained im-
portance because of suggesting that, no matter of seperate or jointly
encoding of the sources X and Y, the sufficient rate for reconstruct-
ing them remains the same. The report is mostly devoted to fountain
code approach of Slepian-Wolf problem. Suitable raptor code design
helps us to achieve any arbitrary point of Slepian-Wolf region. Two
different points of the Slepian-Wolf region are achieved with being
only 3.8% and 5.4% off the Slepian-Wolf limit respectively. This
fountain code approach is expected to outperform the classical code
approach such as Low-Density-Parity-Check(LDPC) codes in terms
of decoding complexity and proximity to desired Slepian-Wolf point.
In a later part of the thesis, the Belief Propagation (BP) is applied
to LT-Markov sub-graphs. Gilber-Eliot (GE) channel is the assumed
Markov channel in this work. We come up with the overhead of 16.7%
while applying the former Binary Symmetric Channel(BSC) design
to LT-Markov sub-graphs.
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1. INTRODUCTION

1 Introduction

Source and channel coding with Fountain codes does not have emerged for
more than a decade. Slepian-Wolf problem has always been of great interest
in the meanwhile. Interesting point about Slepian-Wolf is that, different
correlated sources can be encoded seperately at rates equal or larger than
their conditional entropy and decode them jointly to come up with intact
source messages. The requirement is that their entropies add up to the joint
entropy of all sources. In this work and other works, authors are mostly
concerned with case of two correlated sources. However it is hypothetically
expandable to multiple source case. Slepian-Wolf problem has been already
solved by block codes such as LDPC codes [11]. Although in this work, the
Slepian-Wolf problem is addressed using fountain codes. The advantage of
fountain codes over block codes is their remarkably lower decoding complex-
ity. Besides, we expect to get closer to the Slepian-Wolf limit. In this work,
we first explain and discuss some important concepts of source and channel
coding during the opening three sections which leads to a better perception
of the upcoming chapters. The general scheme of Slepian-Wolf simultane-
ous decoding for memoryless sources has been brought up and explained in
Section 5 and the raptor code design of section 7 has been implemented and
simulated finally. The latter tested design, relies on first decoding the XOR
of two sources and then retrieving one of them to finally have the two sources
recovered. This approach saves us from horrible calculations and design of
the general scheme depicted in Section 5 which would have required nonlinear
programming. A brief explanation along with channel capacity calculation
details of GE channels which are a particular kind of Markov channels have
been introduced in Section 6. Section 8 is mostly devoted to Density Evo-
lution (DE) and Sum-Product-Algorithm (SPA) on GE-LDPC subgraphs
and then it has been generalized to GE-LT subgraphs. No particular design
has been done on GE-LT subgraphs; instead we have tested the design of
Slepian-Wolf corner point achieving problem on Binary Symmetric Channels
(BSC) of the same capacity and have made a comparison of the amount of
required overhead to reach the minimum Bit Error Rate (BER).
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2. DATA COMPRESSION

2 Data Compression

The majority of the first 3 chapters have been extracted and taken from [1]
and [2]. The purpose of data compression is to remove the redundancy of
data as much as possible. Although different methods have been devised to
meet this end, almost all follow the same philosophy. That is to assign longer
description sequences to less frequent input symbols and shorter descriptions
to more frequent symbols. In fact, a source code C for a random variable
X and realization x is a mapping from x to D�, which is a set of finite
length strings of symbols from a D-ary alphabet. D denotes the number of
alphabets of the codebook. Huffman code is known and proved to be the
most efficient compressing code. In the following we would briefly look at
the key definitions and proof of important theorems that will come to much
use in our further research.

2.1 Basic Definitions and Concepts

2.1.1 Non-Singular codes

A non-singular code is a code which maps each entry of the range of X to a
different sequence in D�. Non-singularity only grants the successful coding
of the source, but does not certainly yield a decodable code.

2.1.2 Extension of the code C

Extension of the code C is nothing but concatenating the strings of the range
C sequences assigned to finite length strings of X.

C(x1x2x3 . . . xn) = C(x1)C(x2) . . .C(xn). (2.1)

2.1.3 Uniquely decodable codes

If extension of a code is non-singular, the code is then uniquely decodable.
In other words, the extension of a uniquely decodable code would be decoded
to only one individual string of input source alphabets.

1



2. DATA COMPRESSION

2.1.4 Prefix codes

A prefix code or instantaneous code is a codebook in which, none of the code-
words are prefix to one another. Such a code is instantaneously decodable
which means that each specific codeword can be decoded at the same time
one reaches the end of it. Huffman code is the most popular prefix code.

2.1.5 Optimal codes

Optimality of a codeword is usually measured with the average length of
it. In other words, a codebook C is supposed to be optimal if it has less
average length comparing to other codes. Let li and pi be the length and
probability of the ith codeword respectively, the average codeword length,L,
is then defined by

L =
m∑

i=1

pili. (2.2)

2.1.6 D-adic probability distributions

A probability distribution which is D-adic with respect to D, is assigned the
equal probability of D−n to all of its codewords.

2.2 Kraft Inequality

Kraft Inequality is a useful tool for a swift check of whether a specific code
could be a prefix code or not. One can not conclude that a code for which
the Kraft Inequality holds is definitely a prefix code, but it is possible to
construct a prefix code using codewords lengths of that code. A code for
which the Kraft Inequality does not hold, not only is a non-prefix code but
even also not a uniquely decodable code. The inequality is as following:
for any instantaneous code over an alphabet of size D, the codeword lengths
l1, l2, ..., lm should satisfy (2.3).

m∑
i=1

D−li ≤ 1. (2.3)

2



2. DATA COMPRESSION

2.2.1 Extended Kraft Inequality

This inequality mentions that for countably infinite prefix codewords, the
codeword lengths satisfy the extended Kraft Inequality.

∞∑
i=1

D−li ≤ 1. (2.4)

2.3 Optimal codelength

It is a quite interesting fact that the shortest description length of a code lies
within one bit of the source alphabet’s entropy and would never drop below
the source entropy.

H(X) ≤ L < H(X) + 1. (2.5)

Since (2.5) plays a paramount role in data compression, it is worth including
the proof in this report. Let pi denote the transmission probability of the
ith codeword and li denote the length of the ith codeword. According to
optimality which was defined earlier, we would always wish to minimize the

code average length L =
m∑

i=1

pili and we also know that integers l1, l2, . . . , lm

satisfy the Kraft Inequality because a non-uniquely-decodable code is of no
practical use. Firstly we prove a lemma and then proceed with the proof of
the main theorem.

Lemma 2.1 The expected length of a prefix D-ary code for a random variable
X is greater than or equal to the entropy HD(X).

L ≥ HD(X). (2.6)

Equality holds only for pi = D−li.

Proof :

L−HD(X) =
∑

i

pili −
∑

i

pi logD

(
1

pi

)
=

−
∑

i

pi logD

(
D−li

)
+
∑

i

pi logD (pi).
(2.7)

3



2. DATA COMPRESSION

Introducing two other variables ri = D−li/
m∑

j=1

D−lj and c =
m∑

i=1

D−li leads to

L−H =
∑

i

pi logD

(
pi

ri

)
− logD (c) =

D(p‖r) + logD

(
1

c

)
≥ 0.

(2.8)

�

The latter inequality follows from non-negativity of relative entropy and also
from the Kraft Inequality that make both of the logarithms positive. Now
we turn our attention back to the desired main theorem.

As proved earlier only li =
[
logD

(
1
pi

)]
would yield L = H but it is not

granted for
[
logD

(
1
pi

)]
to be integer for all values of i (li can only take on

integer values). In case
[
logD

(
1
pi

)]
is not an integer we have to inevitably

round it upward to
⌈
logD

(
1
pi

)⌉
in order to ensure that li is an integer. These

uprounded codewords would also satisfy the Kraft Inequality.

m∑
i=1

D
−
⌈
log
(

1
pi

)⌉
≤

m∑
i=1

D
− log

(
1
pi

)
=

m∑
i=1

pi = 1. (2.9)

According to the above discussion, the choice of codeword lengths would hold
in (2.10).

logD

(
1

pi

)
≤ li < logD

(
1

pi

)
+ 1. (2.10)

Just multiplying all the terms of the above inequality by pi and summing
over i, would yield the desired result,

HD(X) ≤ L < HD(X) + 1. (2.11)

Now, we will continue another interesting corollary of the above theorem.

4



2. DATA COMPRESSION

Corollary 2.2 Using large block lengths of input symbols gets us closer to
the lower bound HD(X).

The intuitive reason is that encoding one symbol gives us at most 1 bit of

overhead since log
(

1
pi

)
is not an integer. Whereas encoding a larger block

length at once would distribute this overhead among the symbols of the
block. In other words if we define l(x1, x2, ..., xn) to be the length of the
codeword assigned to (x1, x2, ..., xn), then the expected length of a codeword
per symbol Ln would be

Ln =
1

n

∑
p(x1x2, . . . , xn)l(x1, x2, . . . , xn) =

1

n
E [l(X1, X2, . . . , Xn)] .

(2.12)

According to (2.5), (2.13) will be achieved.

H(X1, X2, ..., Xn) ≤ E [l(X1, X2, . . . , Xn)] < H(X1, X2, . . . , Xn) + 1. (2.13)

Assuming that X1, X2, ..., Xn are drawn i.i.d from the source alphabet’s dis-
tribution along with (2.12) and (2.13) leads to (2.14).

H(X) ≤ Ln < H(X) +
1

n
· (2.14)

The inequality (2.14) indicates that by merging input symbols and taking
them as new symbols to be encoded, the average codeword length per sym-
bol approaches the entropy. As n→ ∞ ,

1

n
H(X1, X2, ..., Xn) −−−→

n⇒∞
H(X). (2.15)

If we cast aside the assumption of X1, X2, ..., Xn being i.i.d, then

H(X1, X2, ..., Xn)

n
≤ Ln <

H(X1, X2, ..., Xn)

n
+

1

n
· (2.16)

Moreover we can say that if X1, X2, ..., Xn form a stationary stochastic pro-
cess, the average length per symbol tends to H(X) as n increases.

5



2. DATA COMPRESSION

L�
n −−−→

n⇒∞
H(X). (2.17)

�

Another useful theorem whose proof is not given here, expresses the amount
of penalty we pay if an inaccurate distribution of symbols is used instead. Let
p(x) and q(x) be the correct and estimated probability distribution of input

symbols respectively and l(x) =
⌈
log
(

1
q(x)

)⌉
. Then, we have the following

important equation,

H(p) +D(p‖q) ≤ Ep [l(X)] < H(p) +D(p‖q) + 1. (2.18)

D(p‖q) bits is the penalty paid due to inaccuracy in input symbols distribu-
tion.

6



3. CHANNEL CAPACITY AND CHANNEL CODING

3 Channel Capacity And Channel Coding

In the previous part, source coding was briefly explained. In this section,
we focus on channel coding. There is a close duality between source and
channel coding. In source coding, the aim is to remove redundancy of the
data as much as possible, whereas in channel coding redundancy is added to
input data to make it robust against physical channel and probable data bits
corruptions.

3.1 Information channel capacity and some examples

Channel, in communications, refers to the medium used to convey informa-
tion from a sender to a receiver.

Definition 3.1 Let X represent the space of signals that can be transmitted,
and Y the space of signals received, during a block of time over the chan-
nel. Information channel capacity of a discrete memoryless channel is the
maximum mutual information of X and Y over the distribution p(x).

C = max
p(x)

I(X;Y ). (3.19)

Here, the maximum is taken over all distributions p(x) on the input alpha-
bet. Channel capacity would be expressed as the maximum number of bits
that can be sent at each use of the channel with an arbitrarily small error
probability. For a noiseless binary channel for instance, the sent bit would
be received intact at the other side of the channel. Hence every bit could
be received exactly as it was sent, therefore the capacity would be simply
1. The noteworthy point on channel capacity calculation is that, the output
distribution highly depends on that of the input and thus can not take on
any arbitrary value. In other words, it is not allowed to assign the maxi-
mum value of H(Y ) in order to get the maximum value of I(X;Y ) achieved.
Now we will continue with some examples which would be useful at better
perception of the concept.

7



3. CHANNEL CAPACITY AND CHANNEL CODING

3.1.1 Binary Symmetric Channel

A binary symmetric channel is a channel in which, either of the transmit-
ted input symbols are likely to be mistaken for the other one with equal
probability p. We can calculate the capacity as (3.20).

I(X;Y ) = H(Y ) −H(Y ‖X) =

H(Y ) −
∑

p(x)H(Y ‖X = x ) =

H(Y ) −
∑

p(x)H(p) =

H(Y ) −H(p) ≤
1 −H(p).

(3.20)

�

�

�
�

�
�

�
�

�
�

�
�

����
�

�
�

�
�

�
�

�
�

���0

1

0

11 − p

1 − p

p

p

Figure 3.1: The probability transition diagram of the binary symmetric channel.

3.1.2 Binary Erasure Channel

The binary erasure channel is a channel in which, the transmitted bit would
either be received intact at the receiver or gets corrupted and lost with prob-
abilities 1 − α or α respectively. Let X be a binary random variable With
Pr(X = 1) = π, the capacity could be calculated as

8



3. CHANNEL CAPACITY AND CHANNEL CODING

�

�

�������������

������������	

0

1

0

1

e

1 − α

1 − α

α

α

Figure 3.2: The probability transition diagram of the binary erasure channel.

C = max
p(x)

H(Y ) −H(Y |X) = max
p(x)

H(Y ) −H(α). (3.21)

H(Y) could be calculated like in (3.22).

H(Y ) = Pr(Y = 0) log
1

Pr(Y = 0)

+Pr(Y = e) log
1

Pr(Y = e)

+Pr(Y = 1) log
1

Pr(Y = 1)
·

(3.22)

Then we have Pr(Y = 0) = (1 − π)(1 − α), Pr(Y = 1) = π(1 − α) whereas
Pr(Y = e) = α, substituting these values in H(Y ) and then applying H(Y )
in (3.21) would yield

C = max (1 − α)H(π) = 1 − α. (3.23)

3.1.3 Symmetric Channels

A symmetric channel is identified with a symmetric P (y|x) matrix. The ele-
ment at the ith row and j th column of the matrix represents the conditional

9



3. CHANNEL CAPACITY AND CHANNEL CODING

probability of having yj received given xi be the desired transmitted symbol.
Sum of the row elements of the matrix is obviously one, but one can not
deduce that the column sum is also one (we only need to take a look at the
binary erasure channel). For a symmetric channel,

I(X;Y ) = H(Y ) −H(Y |X)

= H(Y ) −H(r)

≤ log |y | −H(r),

(3.24)

in which r is a row of a transition matrix.

3.1.4 Weakly Symmetric Channels

Despite the symmetric channels in which both the rows and columns are
permutable with each other, weakly symmetric channel is a channel whose
transition matrix is solely row wise permutable. An example of a weakly
symmetric channel is shown in (3.25).

p(y|x) =

(
0.4 0.1 0.5
0.1 0.4 0.5

)
. (3.25)

I(X;Y) is a continuous concave function of p(x) over a closed convex set and
that is why we can look for a global maximum on I(X;Y ) versus p(x). Now
we have the tools required for proceeding to channel coding theorem which
fundamentally underlies coding theorem.

3.2 Joint Typicality

The basic requirement for a receiver to be able to decode successfully is that
no two input sequences produce an identical output sequence, y. Accord-
ing to joint typicality, for each n-sequence, there exist 2nH(Y |X) possible Y
sequences. What is needed for a unique successful decoding is that no two
input codes lead up to the same output at the other side of the channel.
There are approximately 2nH(Y ) Y sequences, thus the number of disjoint
regions on Y region is approxitely 2n(H(Y )−H(Y |X)) = 2nI(X;Y ) which imply

10



3. CHANNEL CAPACITY AND CHANNEL CODING

that nearly 2nI(X;Y ) distinguishable sequences can be sent. At this time, we
can briefly detail the whole process.

At the transmitter side, a sequence message W would be drawn from index
1, 2, ...,M then would be encoded to a n-sequence Xn(W ) and transmitted
over the channel which would be received as a random sequence Y n, Then
receiver decides that the index say Ŵ = g(Y n) was sent. An error occurs
in case W �= Ŵ . A memoryless channel is a channel whose outputs are
independent of the inputs at previous time samples. A channel without
feedback is a channel whose inputs do not depend on the past output symbols
in other words,

p(xk|xk−1, yk−1) = p(xk|xk−1). (3.26)

Definition 3.2 An (M,n) code for the channel {x, p(y|x), y} consists of an
index set {1, 2, ...,M}, an encoding function Xn : {1, 2, ...,M} → X n that
gives us codewords Xn(1), Xn(2), ..., Xn(M) and a decoding function

g : Yn → {1, 2, ...,M} . (3.27)

which assigns a guessed index to each received vector. Any error occurrence
could be expressed with

λi = Pr [g(Y n) �= i|Xn = Xn(i)]

=
∑
yn

p [yn|xn(i)] I [g(yn �= i)]. (3.28)

Where I(·) is the indicator function. (3.28) indicates the error probability
given that Xn(i) was sent. The maximum error probability is therefore given
by

λn = maxλi, (3.29)

and the average error probability would be then defined as

P (n)
e =

1

M

M∑
i=1

λi. (3.30)

Definition 3.3 The rate R of an (M,n) code is defined as

R =
logM

n
bits per transmission. (3.31)

The rate R is said to be achievable if a (
⌈
2nR
⌉
, n) exists such that λ(n) goes

to zero as n tends to infinity.

11



3. CHANNEL CAPACITY AND CHANNEL CODING

Now, we are at the position to define joint typical sequences which will come
to a great use when elaborating channel coding theorem later.

3.2.1 Joint Typical Sequences

Joint typicality is the method that is usually used to decode the received
sequences because the aposteriori decoding is a demanding task to be per-
formed at the receiver. We normally say that the received vector Y corre-
sponds to codeword Xn(i) if they are jointly typical.

Definition 3.4 The set A
(n)
ε of jointly typical sequences {(xn, yn)} with re-

spect to the distribution p(x, y) is the set of n-sequences with empirical en-
tropies ε−close to the true entropies.

A(n)
ε = (xn, yn) ∈ X n × Yn : (3.32)∣∣∣∣−1

n
log p(xn) −H(X)

∣∣∣∣ < ε, (3.33)∣∣∣∣−1

n
log p(yn) −H(Y )

∣∣∣∣ < ε, (3.34)∣∣∣∣−1

n
log p(xn, yn) −H(X, Y )

∣∣∣∣ < ε, (3.35)

and p(xn, yn) =
n∏

i=1

p(xi, yi) since the channel is memoryless.

3.2.2 Joint AEP Theorem:

Theorem 3.5 let (Xn, Y n) be sequences of length n drawn i.i.d from the
distribution p(xn, yn) =

∏n
i=1 p(xi, yi), then following results are deducable.

1. Pr((Xn, Y n) ∈ A
(n)
ε ) → 1 as n→ ∞

2. |A(n)
ε | ≤ 2(nH(X,Y )+ε)

3. (X̃n, Ỹ n) ∼ p(xn)p(yn) then

12



3. CHANNEL CAPACITY AND CHANNEL CODING

Pr((X̃n, Ỹ n) ∈ A(n)
ε ) ≤ 2−n(I(X;Y )−3ε), (3.36)

and for sufficiently large n, we have

Pr((X̃n, Ỹ ,n ) ∈ A(n)
ε ) ≥ (1 − ε)2−n(I(X;Y )+3ε). (3.37)

3.3 Channel Coding Theorem

This theorem is the most basic theorem of information theory and underlies
the later attempts taken in order to devise channel codes which could take
us as close as possible to capacity of channel. Shannon infact set an ultimate
target for the achievable rate on a physical channel. The ideas shannon
introduced in order ro transmit data reliably over a channel include:

1. Allowing an arbitrarily non-zero probability of error.

2. Using the channel for so many times in row so that the law of large
numbers comes true.

3. Calculating the average error probability over a large number of random
codebooks to have the probability symmetrized and finally to find a
good code.

It was mentioned earlier that the probability of a n-sequence codeword Y be
jointly typical with a codeword X is approximately 2−nI(X;Y ). Hence, having
2nI codewords almost guarantees an error-free transmission over the channel.
Now we will bring up and prove the most important theorem of information
theory history.

3.4 Definition and Proof Of The Channel Coding The-
orem

Theorem 3.6 All rates below capacity C are achievable. Specifically, for
every rate R < C there exists a sequence of (2nR, n) codes with maximum
probability of error λ(n) → 0. Conversely, any set of (2nR, n) codes with
λ(n) → 0 must have R ≤ C.

13



3. CHANNEL CAPACITY AND CHANNEL CODING

Now, we proceed to the proof of theorem. At first the achievability part will
be proved and then comes the converse section.
We generate a code of (2nR, n) randomly drawn from distribution p(x) and
we also generate every alphabet of these 2nR codewords randomly.

p(xn) =

n∏
i=1

p(xi). (3.38)

Now, these codewords can be indicated within a matrix such that each row
of the matrix shows one of the codewords,

C =

⎡
⎢⎣

x1(1) x2(1) . . . xn(1)
...

...
. . .

...
x1(2

nR) x2(2
nR) . . . xn(2nR)

⎤
⎥⎦ . (3.39)

Noting the discussion, each entry in the matrix is generated i.i.d according
to the distribution p(x). So the probability of a particular codebook could
be expressed as in (3.40).

Pr(C) =
2nR∏
ω=1

n∏
i=1

p(xi(ω)). (3.40)

Now, C is assumed to have been generated as above and also revealed to
both sender and receiver. Both sender and receiver are also aware of the
transition matrix p(y|x) for the channel. A message indexed W is then
selected according to the uniform distribution,

Pr(W = ω) = 2−nR, ω = 1, 2, . . . , 2nR, (3.41)

in which ω corresponds to the ωth row of the matrix C. The receiver then
receives a sequence according to the channel distribution p(yn|xn).

p(yn|xn(ω)) =

n∏
i=1

p(yi|xi(ω)), (3.42)

and then the receiver takes a guess upon which index was sent according to
the joint typicality concept. It means that the receiver announces Ŵ as the
sent index if:

1. (Xn(Ŵ ), Y n) is jointly typical.

2. There is no other index k, such that (Xn(k), Y n) ∈ A
(n)
ε .

14



3. CHANNEL CAPACITY AND CHANNEL CODING

An error occurs in case Ŵ �= W which could be called by the event

E =
{
Ŵ �= W

}
.

For calculating the probability of error, one has to take error probability
average over all the codewords of a codebook and then over all codebooks,
whereas taking average over codewords could be disregarded because of sym-
metry in distribution. In other words we can expect all the codewords to
introduce more or less the same error probability and therefore the corre-
sponding error probability for one of them could represent the average over
all the codewords.

Pr(E) =
1

2nR

2nR∑
ω=1

∑
C
P (C)λω(C) (3.43)

=
∑
C
P (C)λ1(C) (3.44)

= Pr(E|W = 1). (3.45)

Now the event Ei is defined as the probability of Xn(i) and Y n to be jointly
typical.

Ei = {(Xn(i), Y n) ∈ An
ε } , i ∈

{
1, 2, . . . , 2nR

}
. (3.46)

Where Ei is obviously the event of ith codeword and Y n being jointly typical.
Hence the probability of error could be rephrased as below.

Pr(E|W = 1) = P (Ec
1 ∪ E2 ∪ E3 ∪ . . . ∪ E2nR) (3.47)

≤ P (Ec
1) +

2nR∑
i=2

P (Ei), (3.48)

The latter inequality follows from the fact that the events Ec
1, E2, . . . , E2nR

are not disjoint, hence the probability of union of them is not sum of their
probabilities. Now according to the joint typical theorem AEP, the following
relation holds,

P (Ec
1) ≤ ε, for n sufficiently large. (3.49)

According to codeword generation process, given that Xn(1) is sent, Y n

and Xn(i) are independent for i �= 1 so are Xn(1) and Xn(i). Hence the
probability of Y n and Xn(i) for i �= 1 being jointly typical is ≤ 2−n(I(X;Y )−3ε),
therefore

15



3. CHANNEL CAPACITY AND CHANNEL CODING

P (E) = P (E|W = 1) ≤ P (Ec
1) +

2nR∑
i=2

P (Ei)

≤ ε+

2nR∑
i=2

2−n(I(X;Y )−3ε)

= ε+ (2nR − 1)2−n(I(X;Y )−3ε)

≤ ε+ 23nε2−n(I(X;Y )−R)

≤ 2ε.

(3.50)

�

The latter inequality would only be achieved if R ≤ I(X;Y ) − 3ε, which
implies that in case R ≤ I(X;Y ), ε can be chosen such that error probability
is less than 2ε Which tops off the proof of the achievability section. In the
following section we will discuss the Fano’s inequality and consequently the
proof to the converse section of channel coding theorem.

3.4.1 Fano’s Inequality

Theorem 3.7 For a discrete memoryless channel with a codebook C, uni-
formly distributed input messages and P

(n)
e = Pr(W �= g(Y n)), there exists

an inequality for H (Xn|Y n).

H(Xn|Y n) ≤ 1 + P (n)
e nR. (3.51)

Lemma 3.8 Letting Y n be the result of passing Xn through a discrete mem-
oryless channel. Then we have

I(Xn;Y n) ≤ nC for all p(xn). (3.52)

16



3. CHANNEL CAPACITY AND CHANNEL CODING

Proof:

I(Xn;Y n) = H(Y n) −H(Y n|Xn) = (3.53)

H(Y n) −
n∑

i=1

H(Yi|Xi) ≤ (3.54)

n∑
i=1

H(Yi) −
n∑

i=1

H(Yi|Xi) = (3.55)

n∑
i=1

I(Xi;Yi) ≤ (3.56)

nC. (3.57)

�

The equality in (3.54) follows from the channel lack of memory and the
inequality (3.55) comes from the fact that the codeword alphabets might be

dependent on each other. Hence, H(Y n) is upperbounded by

n∑
i=1

H(Yi).

This theorem simply implies that using the channel for so many times would
not increase the information capacity in bits per transmission.

Now, we are prepared to prove the converse section of the channel coding
theorem which says that any sequence of (2nR, n) codes with λ(n) → 0 must
have R ≤ C.

As long as maximal probability goes to zero, it is easy to conclude that the
average probability also tends to zero. Since, the index W has been taken
from a uniform distribution over

{
1, 2, . . . , 2nR

}
, we have

nR = H(W ) = H(W |Y n) + I(W ;Y n) (3.58)

≤ H(W |Y n) + I(Xn(W );Y n) (3.59)

≤ 1 + P n
e nR + nC, (3.60)

in which, (3.59) follows from the natural fact that W → Xn(W ) → Y n →
Ŵ form a markov process. The inequality (3.60) follows from the Fano’s
inequality discussed earlier. Dividing the latter inequality by n yields (3.61).

17



3. CHANNEL CAPACITY AND CHANNEL CODING

R ≤ P (n)
e R +

1

n
+ C, (3.61)

by letting n→ ∞ and noting that P
(n)
e goes to zero for large n according to

the above assumptions. Thus

R ≤ C. (3.62)

Another deducable inequality could be

P (n)
e ≥ 1 − C

R
− 1

nR
· (3.63)

It is clear from the above relation that for R > C, the error probability bound
would get away from zero. Now we will continue with some basic concepts
of channel coding.

18
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4 Encoding Of Correlated Sources

In data compression, R ≥ H(X) is sufficient to encode a source X. For the
purpose of encoding two sources with the joint probability distribution of
p(x, y) together, the rate of H(X, Y ) would obviously suffice. Slepian and
Wolf have shown that even in case of seperate encoding of the sources X and
Y , total rate of R ≥ H(X, Y ) would be sufficient to reconstruct the sources,
whereas at the first sight one might think of R = Rx +Ry ≥ H(X)+H(Y ) to
be the minimum rate for that end. Letting ((2nR1, 2nR2), n) be the distributed
source code for the joint source (X, Y ) with encoder maps,

f1 : X n → {
1, 2, . . . , 2nR1

}
, f2 : Y n → {

1, 2, . . . , 2nR2
}
, (4.64)

and decoder map,

g :
{
1, 2, . . . , 2nR1

}× {1, 2, . . . , 2nR2
}→ X n × Y n, (4.65)

in which, f1(X
n) is the index for Xn and f2(Y

n) is the index corresponding
to Y n where (R1, R2) is the rate pair of the code.

Theorem 4.1 Slepian-Wolf: For the distributed source coding problem for
the source (X, Y ) drawn i.i.d ∼ p(x, y), the achievable rate region would be
then characterized by

R1 ≥ H(X|Y ),

R2 ≥ H(Y |X),

R1 +R2 ≥ H(X, Y ).

(4.66)

4.1 Achievability of the Slepian-Wolf Theorem

If for each sequence Xn, an index is drawn from
{
1, 2, . . . , 2nR

}
uniformly

at random, the set of sequences Xn with the same index would form a bin.
The whole procedure can be viewed as first, setting up some bins and then
throwing the sequences Xn into the bins. To decode the source, we look
inside the bin to find a typical Xn sequence. In case there is only one typical
sequence in the bin, it could be declared as the estimate X̂n of the source
sequence. Otherwise, error has occured. Generally, if the number of bins is
much greater than the number of typical sequences, the likeliness of more
than one typical sequences existing in a bin is small. Hence the probability
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4. ENCODING OF CORRELATED SOURCES

that a typical sequence results in an error is very small. Letting f(Xn)
be the bin index corresponding to Xn and g be the decoding function, the
probability of error is

P (g(f(X)) �= X) ≤ P (X /∈ A(n)
ε ) +

∑
x

P (∃x′ �= x : x′ ∈ A(n)
ε , f(x′) = f(x))p(x)

≤ ε+
∑

x

∑
x′∈A

(n)
ε ,x′ �=x

P (f(x′) = f(x))p(x)

≤ ε+
∑

x

∑
x′∈A

(n)
ε

2−nRp(x)

= ε+
∑

x′∈A
(n)
ε

2−nR
∑

x

p(x)

≤ ε+
∑

x′∈A
(n)
ε

2−nR

≤ ε+ 2n(H(X)+ε)2−nR

≤ 2ε.

(4.67)

It is easy to observe that if R > H(X) + ε and n is sufficiently large, the
probability of error could be arbitrarily small. Now we can proceed to top
off the theorem’s proof.

We assume to have partitioned the space of X n into 2nR1 bins and the space
of Y n into 2nR2 bins. Since we are concerned with distributed encoding, we
presume that sender 1 has sent the index of the bin X belongs to as m and
sender 2 has sent the index of the bin Y belongs to as n. On the decoder
side then, (x, y) would be declared as the sent sequence, where f1(x) = m,
f2(y) = n. Now the probability of error could be comprised of four events,
E0, E1, E2 and E12.

E0 =
{
(X, Y ) /∈ A(n)

ε

}
,

E1 =
{∃x′ �= X : f1(x

′) = f1(X) and (x′, Y ) ∈ A(n)
ε

}
,

E2 =
{∃y′ �= Y : f2(y

′) = f2(Y ) and (X, y′) ∈ A(n)
ε

}
,

E12 = {∃(x′, y′) : x′ �= X, y′ �= Y, f1(x
′) = f1(X), f2(y

′) �= f2(Y )

and (x′, y′) ∈ A(n)
ε

}
.

(4.68)

Union of events bound yields
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P (n)
e = P (E0 ∪ E1 ∪ E2 ∪E12)

≤ P (E0) + P (E1) + P (E2) + P (E12).
(4.69)

According to AEP, P (E0) tends to zero, and for P (E1) we can say that

P (E1) = P
{∃x′ �= X : f1(x

′) = f1(X), and (x′, Y ) ∈ A(n)
ε

}
=
∑
(x,y)

p(x, y)P
{∃x′ �= x : f1(x

′) = f1(x), (x
′, y) ∈ A(n)

ε

}
≤
∑
(x,y)

p(x, y)
∑

x′ �=x,(x′,y)∈A
(n)
ε

P (f1(x
′) = f1(x))

=
∑
x,y

p(x, y)2−nR1|Aε(X|y)|

≤ 2−nR12n(H(X|Y )+ε).

(4.70)

The latter tends to zero in case R1 > H(X|Y ). For large n and R2 >
H(Y |X), R1 + R2 > H(X, Y ), P (E2) and P (E12) will also go to zero. The
proof is therefore complete.

�
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5 Simultaneous Decoding Of LT Codes For

The Slepian-Wolf Problem

5.1 Problem Description

Two memoryless sources have been encoded seperately and oblivious of each
other. Their symbols have been drawn i.i.d from a joint probability distri-
bution function p(xi, yi). We encode both sources X and Y with LT codes
of output node distributions Ω1 and Ω2 respectively. At the decoder, simul-
taneous decoding is required to be done such as to operate at any desired
point of the optimum Slepian-Wolf line:

⎧⎪⎨
⎪⎩

Rx +Ry = H(X, Y )

Rx ≥ H(X|Y )

Ry ≥ H(Y |X).

(5.71)

In the following, a major scheme and then Belief Propagation messages are
proposed.

5.2 Scheme of simultaneous decoding for LT codes

In this section, we will briefly explain what has been done in [7]. Firstly, we
state some assumptions which help to simplify the problem. Regarding the
Slepian-Wolf region we intend to achieve, two decoders help each other to
exploit the correlation between the two sources. Two sources are assumed
to have been correlated with a BSC. It is possible to assume a BSC(pest)
between the sources X and Y, so that

p(Yi = yi|Xi = xi) =

{
pest xi �= yi

1 − pest xi = yi

. (5.72)
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For the marginal probability ditributions we have

PXi
(xi) =

∑
yi

PXi,Yi
(xi, yi),

PYi
(yi) =

∑
xi

PXi,Yi
(xi, yi).

(5.73)

Since LT codes are a class of erasure rateless codes [4], we would begin
collecting the output symbols to catch up with the desired Slepian-Wolf point.
With the assumption of moving on the line (5.71), we need to apply the rates
rH(X|Y ) and sH(Y |X) so that r and s be two real numbers greater than 1
satisfying

rH(X|Y ) + sH(Y |X) = H(X, Y ). (5.74)

Let the entropy of X given Y be denoted byH(X|Y ) = h(pest1) andH(Y |X) =
h(pest). h(·) is the binary entropy function defined by

h(p) = p log(
1

p
) + (1 − p) log(

1

1 − p
). (5.75)

It is easy to obtain pest and pest1 since we are given with pX,Y (x, y) as the
joint probability distribution,

pest < p

pest1 < p1.
(5.76)

p and p1 are the smallest values that allow the error free decoding of sources
X and Y so that

rh(p) + sh(p1) > H(X, Y ). (5.77)

Now letting n be the output length of sources X and Y, we begin with
collecting nrh(pest) encoding symbols at Y decoder and nsh(pest1) encoding
symbols at X decoder. Due to the fact that our estimations may be away
from the values p and p1 which would lead up to the correct decoding, there
would probably remain some unsatisfied output node (checknode) equations
at the end of the message passing decoding. Thus, pest and pest1 should be
updated step by step to come up with yet unknown values p and p1. Let pi

est

denote the ith update of pest and pi
est1 be the ith update of pest1. Then at ith

update step, nr(h(pi
est1

) − h(pi−1
est1)) and ns(h(pi

est) − h(pi−1
est )) extra bits are

sent to X and Y decoders to compensate for the information shortage. Belief
Propagation (BP) algorithm is also after each update. Let’s assume that
nrh(pest1)(1 + ε1) and nsh(pest)(1 + ε2) symbols have been finally collected
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at decoders X and Y respectively. ε1 and ε2 could then be the representing
values for the error or the amount we are off the desired Slepian-Wolf region.
It is noteworthy that the LT symbols have been produced from intermediate
nodes which have been provied out of the input symbols with an invertible
matix G,

(i1, . . . , in) = G(y1, . . . , yn). (5.78)

     .
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Figure 5.3: Simultaneous decoding of the LT en-
coded sources X and Y using inter-subgraph and
linking channel message passing

5.3 Belief Propagation messages

BP algorithm would be used for the simultaneous decoding of previously
defined LT codes. As known, the updates in lth round of the BP algorithm
are as

tanh

(
m

(l)
o,i

2

)
=
∏
i′ �=i

tanh

(
m

(l)
i′o

2

)
,

m
(l+1)
i,o = mo +

∑
o′ �=o

m
(l)
o′,i.

(5.79)

The set of variable nodes is comprised of intermediate nodes and the set of
checknodes is made up of input nodes and payload bits. mi,o represents the
messages sent from varibale node i to check node o whereas mo,i indicates
the messages leaving check nodes to variable nodes. mo is the initial Log
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Likelihood Ratio (LLR) of every check bit o. In other words the LLR of a
received symbol Y is defined as

ln
Pr[X = 0|Y ]

Pr[X = 1|Y ]
, (5.80)

where X is the symbol sent over the channel. The initial reliabilities of
(c1, . . . , cm) and (i1, . . . , in) are ∞ and 0 respectively, whereas the initial
LLR of yi is also zero assuming that xi has not been decoded.

Hence, the complete knowledge of payload bits is used to decode totally
unknown intermediate symbols (i1, . . . , in). Prior probabilities are clearly
determined by (5.73) whereas extrinsic information is a function of source
symbol messages which are passed to the corresponding symbols of the other
decoder. By an abuse of notation used in [8] , extrinsic messages are defined
as

P
(E)
Xi

= ψ(xi, m
(x)
i ) , (5.81)

where ψ : {0, 1}×R → [0, 1] represents the function ψ(a, b) = 1
2
+1

2
σ(a) tanh( b

2
),

in which σ : {0, 1} → {+1,−1} converts between two different kinds of bi-
nary symbols, where σ(0) = +1 and σ(1) = −1. Then the link node message
from xi to yi can be expressed as

c
(y)
i = log

∑
xi
pXi,Yi

(xi, yi = 0)ψ(xi, m
(x)
i )∑

xi
pXi,Yi

(xi, yi = 1)ψ(xi, m
(x)
i )

· (5.82)

The same approach would yield c
(x)
i as the sent message from yi to xi,

c
(x)
i = log

∑
yi
pXi,Yi

(xi = 0, yi)ψ(yi, m
(y)
i )∑

yi
pXi,Yi

(xi = 1, yi)ψ(yi, m
(y)
i )

· (5.83)

Given the initial reliabilities of a fraction of x messages, BP begins to run
between nodes. Messages c

(y)
i and c

(x)
i are also sent from xi to yi and the

other way round at each iteration.
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6 Sources With Memory

In this section, first the properties of Gilbert-Elliot(GE) channels and some
details on calculating the capacity of these channels are briefly explained. In
the last part of the section, the BP messages on the scheme of simultaneous
decoding of the sources that have GE channel as their correlation channel
will be shortly introduced.

6.1 Gilbert-Elliott channels

In this section, bold upper case letters represent vectors and plain lower case
letters along with subindices indicate a specific component of a vector. Now
we will assume that a Markov channel underlies our BSC channel between
x and y, which means that the channel state si changes at each time step
and that translates to the transition of channel parameter θi that defines
Markov-Modulated Binary Symmetric Channel (MMBSC). A specific type of
MMBSC is the GE channel which is a binary-input, binary-output two-state
hidden Markov process. This channel has state sequence S ∈ S := {B,G}n

where B represents a bad BSC whereas G represents a good BSC with a
lower crossover probability. Let Y ∈ {0, 1}n be the channel output vector in
response to the channel input vector X ∈ {0, 1}n,

Y = X⊕ Z

Pr(Zi = 1|Si = si) = ηsi
,

(6.84)

where Z is the noise sequence and

ηG ≤ ηB ≤ 1/2. (6.85)

The state transition probabilities are given by b := Pr(Si+1 = B|Si = G)
and g := Pr(Si+1 = G|Si = B). The steady-state probablities can be
derived by Pr(Si = B) = b/(b+ g) and Pr(Si = G) = g/(b+ g) respectively.

6.2 Capacity of the Gilbert-Elliot channels

The procedure on how to calculate the capacity of a GE channel has been
discussed in [13]. This method gives a fast recursive algorithm to estimate
the capacity when PG, PB and ρ are given. ρ is the good-to-bad ratio of the
channel and is given as
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Figure 6.4: GE channel model is depicted in the Figure. PG and PB indicate
crossover probabilities in Good and Bad states respectively, g and b are the between
states transition probabilities.

ρ � Pr[sl = G]/Pr[sl = B] = g/b.

ρ = 0 and ρ = ∞ represent a channel that only has one state. According to
[13], for ξ ∈ {G,B} and using induction on l, it can be shown that

Pr[sl = ξ|s0 = ξ] − Pr[sl = ξ|s0 �= ξ] = (1 − g − b)l, (6.86)

which yields the definition of the channel memory parameter µ,

µ � 1 − g − b.

µ = 1 holds when we are dealing with a fixed state channel, whereas µ =
−1 holds for regularly alternating channels. If µ < 0, the channel has a
oscillatory memory, µ > 0 pertains to the case when channel has a persistent
memory. Z is also defined as Z = X ⊕ Y , zi = xi ⊕ yi. It is easy to see that
pmf 1 of Z is the same as P (Y |X), where the vectors X and Y are input
and output vectors of the GE channel respectively. Now, the definition of
another parameter will be given.

1Probability Mass Function
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Definition 6.1 q�
l (zl−1, s0) denotes the probability of channel error at the lth

use conditioned on the initial state and previous channel errors,

q�
l (zl−1, s0) = Pr[zl = 1|zl−1, s0].

q�
l (zl−1) denotes the channel error probability only conditioned on previous

channel errors,

ql(zl−1) � E[q�
l (zl−1, s0)|zl−1] = Pr[zl = 1|zl−1],

where E(·) denotes expected value.

Skipping details which could be read in [13], we proceed with defining recur-
sions which will come to use while calculating the channel capacity:

q�
l+1(zl, s0) = ν(zl, q

�
l (zl−1, s0))

ql+1(zl) = ν(zl, ql(zl−1)),
(6.87)

where ν(·, ·) is defined by

ν(0, q) �
{
PG + b(PB − PG) + µ(q − PG)

[
1−PB

1−q

]
, PB �= 1

(1 − b)PG + b PB = 1, q �= 1
(6.88)

and

ν(1, q) �
{
PG + b(PB − PG) + µ(q − PG)(PB/q), PG �= 1

(1 − g)PB PG = 0, q �= 0
(6.89)

for PG ≤ q ≤ PB. The initial values for the recursions are

q�(s0) =

{
PG s0 = G
PB s0 = B

·

As known, capacity can be written as follows:

C = lim
l→∞

1

l
max
p(xl)

I(xl; yl). (6.90)

The capacity of the GE channel in bits per channel use is given by

C = 1 − lim
l→∞

E [H(ql)] = 1 − lim
l→∞

E [H(q�
l )], (6.91)

where H(·) is the binary entropy function. The sequence in (6.91) converges
to capacity of the GE channel as l tends to infinity. A particular case is
when PG = 0.01, PB = 0.22, ρ = 1 and µ = 0.98 which implies g = 0.01
and b = 0.01. Capacity of this channel turns out to be 0.55 bits per channel
use. This particular GE channel will become of more interest when SPA on
GE-LT graphs will be analysed later in Section 8.
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6.3 BP messages for simultaneous decoding of corre-
lated sources

For the decoding of sources which are correlated according to the proposed
model of the previous section, two other subgraphs are required to be added
to the major scheme proposed in [7]. According to [9], each of these extra
subgraphs would add four extra messages represented as α, β, χ and ζ to the
scheme. Messages α, β and ζ would be sent out from channel factor nodes
to the future state, current state and symbol-variable node respectively and
χ is the extrinsic message sent from LT subgraph to the channel subgraph.
We let α(si) denote the message from the current state variable node to the
channel factor node and β(si+1) represent the message from the future state
variable node to the channel factor node.
While decoding, the operations in LT subgraphs are the same as in the
memoryless case, however there are two new messages passed through the
Markov chain [8]. These messages for the decoder of source y are calculated
by

α(si+1) = K
∑

xi,yi,si

pXi,Yi
(xi, yi|si)α(si)

.pSi+1
(si+1|si)p

(E)
Xi

(xi)p
(E)
Yi

(yi)

β(si) = K
∑

xi,yi,si+1

pXi,Yi
(xi, yi|si)β(si+1)

.pSi+1
(si+1|si)p

(E)
Xi

(xi)p
(E)
Yi

(yi),

(6.92)

where K denotes a normalization constant. ζ for source decoder y would be
given by

ζ = log
∑

xi,s∈S p(yi=0,xi|s)p(s).p
(E)
Xi

(xi)∑
xi,s∈S p(yi=1,xi|s)p(s).p

(E)
Xi

(xi)
,

where the prior density p(s) is used in the initial step, followed by values of

α in the next steps, whereas p
(E)
Xi

(xi) at the initial step would be replaced by
the prior probability p(xi). Message χ can be calculated in the same manner
as in memoryless case.
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Messages (5.82) and (5.83) would then be modified as

c
(y)
i = log

∑
xi,si,si+1

pXi,Yi
(xi, yi = 0|si)α(si)β(si+1).pSi+1

(si+1|si)p
(E)
Xi

(xi)∑
xi,si,si+1

pXi,Yi
(xi, yi = 1|si)α(si)β(si+1).pSi+1

(si+1|si)p
(E)
Xi

(xi)

c
(x)
i = log

∑
yi,si,si+1

pXi,Yi
(xi = 0, yi|si)α(si)β(si+1).pSi+1

(si+1|si)p
(E)
Yi

(yi)∑
yi,si,si+1

pXi,Yi
(xi = 1, yi|si)α(si)β(si+1).pSi+1

(si+1|si)p
(E)
Yi

(yi)
·

(6.93)
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7 Joint Source-Channel Code Design

Now, we will step in to the venture of designing suitable LT codes for the
proposed problems. We will almost use the notation of [15] for this part. At
first, we will begin with the memoryless case. In order to lower the design
complexity, the scheme in Figure 5.3 will be thought of as classical LT codes
scheme. This scheme comprises of intermediate nodes as variable nodes and
the set of input symbol nodes and payload bits as LT checknodes or output
symbols. As a general joint source-channel code design, payload bits have
been assumed to be sent over a Binary Input Additive White Gaussian Noise
(BIAWGN) channel. The scheme for the decoder of the source x which can
be easily genaralized to that of source y due to symmetry, will be explained
now.

payload x

payload y

Intermediate nodes of source x

Intermediate nodes of source y

Source x input symbols

Source y input symbols

Figure 7.5: Simultaneous decoding of two sets of payload bits. Input symbols
and payload bits could be thought of as to have been produced through LT coding of
intermediate nodes

Let n denote the input length, m1 represent the payload length, α1 and α2

denote the average input node degree (intermediate node degree) from the
perspective of edges emanating from the variable nodes and payload bits
respectively. β1 and β2 represent node degree distributions of input symbols
and payload bits. Counting the edges at both sides yields

α1n+ α2n = β1n+ β2m

m

n
=
α1 + α2 − β1

β2
≥ H(X|Y )

C1
,

(7.94)

where α1 = β1 and C1 is in terms of [bits per channel use] and is the capacity
of the channel over which payload is sent. The inequality in the latter equa-
tion arises from the fact that always, at least as many bits as the amount
of source entropy are required to be sent over the channel. In addition to
that, given with the input length ,n, the joint source-channel code sent over
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the channel is of length m, and the source entropy is H [bits/symbol], then
mC ≥ nH must always hold. This will impose a constraint on the node
average parameters so that,

α2

β2
· C ≥ H(X|Y ), (7.95)

which translates to the linear optimization problem of getting the term α2

β2

as close to H(X|Y )
C

as possible where α2

β2
is the code rate and is determined

according to the desired Slepian-Wolf point. One example could be R1 =
H(X) and R2 = H(Y |X) that would yield a corner point on the line (5.71).
Other points could be also obtained by an appropriate selection of R1 and
R2. Let ω

(2)
d indicate the probability that an edge connected to payload bits,

has d− 1 neighboring edges of that kind. We know that

β2 = 1∑
d

ω
(2)
d
d

,

which would alter the term subject to minimization to

α2

∑
d

ω
(2)
d

d
· (7.96)

Besides, there are some constraints. Let ω
(1)
d represent the probability that

an edge connected to the set of input symbols, has d − 1 neighboring edges
of the same kind,⎧⎪⎪⎨

⎪⎪⎩

∑
d

ω
(1)
d = 1 0 ≤ ωd ≤ 1 for d = 1, . . . , dmax∑

l

ω
(2)
l = 1 0 ≤ ω̃l ≤ 1 for l = 1, . . . , d̃max

. (7.97)

As noted earlier, with only a slight change of notation, the same could be done
for the source y decoder. It is again noteworthy that rates for the sources x
and y are different. Let σ denote the channel parameter, in all calculations,
C1 and C2 are the capacities of BIAWGN(σ1) and BIAWGN(σ2) respectively
and could be easily set to 1 in case we want to do a pure source coding design.
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7.1 Joint Source-Channel Coding with side informa-
tion

Here, firstly the problem for the simple case of joint channel-source coding
with side information available at the decoder will be solved. What is meant
by side information is that the source Y encoded at the rate H(Y )

C
is totally

available at the joint decoder and source X will be then decoded at rate
H(X|Y )

C
. Again, note that due to this module being extracted from our bigger

scheme which was explained earlier, the set of our checknodes comprises
of two subsets of input symbols and payload bits respectively. Since our
two subsets have different observation LLRs, two types of edges between
variable nodes and check nodes are considered. Moreover, the payload bits
are assumed to have been sent over a BIAWGN(σ) channel. Nevertheless, the
input codeword x is assumed to be correlated with y through the conditional
probability p(y|x).

Figure 7.6: Input symbols(squares), pay-
load bits(triangles)as checknodes and intermedi-
ate nodes as variable nodes

7.1.1 Full Gaussian Approximation

The problem is simplified by assuming that all the messages sent back and
forth along the edges are Gaussian like the method proposed in [15]. For
the sake of simplicity, the terms cirles, squares and triangles are used instead
of intermediate nodes, input symbols and payload bits respectively. The
messages are denoted by four random variables X l

(1), X
l
(2), Y

l
(1) and Y l

(2).

X l
(1) and X l

(2) denote the messages from a circle to a square and a triangle

respectively at the lth iteration, and Y l
(1) and Y l

(2) represent the messages
from a square to a circle and from a triangle to a circle respectively. Then
we can proceed with Density Evolution(DE) of our proposed scheme,

E
[
X

(l+1)
1

]
=

Dmax∑
D=1

(
D∑

d=1

ι
(1)
d (d− 1)E[Y l

1 ] + I
(2)
D−d(D − d)E

[
Y l

2

])
(7.98)
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E
[
X

(l+1)
2

]
=

Dmax∑
D=1

(
D∑

d=1

ι
(2)
d (d− 1)E[Y l

2 ] + I
(1)
D−d(D − d)E

[
Y l

1

])
, (7.99)

where ι
(1)
d represents the probability that a randomly chosen edge from a

circle to a square has d − 1 neighboring edges which are also connected to
squares. ι

(2)
d is the probability that a randomly chosen edge from a circle

to a square has d− 1 neighboring edges which are also connected to the set
of squares. I

(1)
d is the probability that a randomly taken circle is connected

to d squares and I
(2)
d denotes the probability that a randomly taken circle is

connected to d triangles. The mean of the messages Y l
(1) and Y l

(2) could be
updated as

E

[
tanh

(
Y l

(1)

2

)]
= E

[
tanh

(
Z1

2

)]
ω(1)

(
E

[
tanh

(
X l

(1)

2

)])
(7.100)

E

[
tanh

(
Y l

(2)

2

)]
= E

[
tanh

(
Z2

2

)]
ω(2)

(
E

[
tanh

(
X l

(2)

2

)])
, (7.101)

where ω(1) and ω(2) are the characteristic functions of edge degree distribu-
tions at the squares and triangles respectively. Z1 and Z2 are the observation
LLR s of those sets. From now on, Gaussian approximation will be used to
calculate the above messages [15]. Assuming that X is a Gaussian with mean
µ and variance σ2 = 2µ, then

E
[
tanh

(
X
2

)]
= 1

2
√

πµ

∫∞
−∞ tanh

(
u
2

)
e−

(u−µ)2

4µ du.

Defining ϕ(x) for x ∈ [0,∞) as

ϕ(x) = 1 − 1

2
√
πx

∫ ∞

−∞
tanh

(u
2

)
e−

(u−x)2

4x du, (7.102)

then

E
[
m

(l+1)
i,o1

| deg(i) = D
]

= (d− 1).E
[
m

(l)
o1,i

]
+ (D − d).E

[
m

(l)
o2,i

]

E

[
tanh

(
m

(l+1)
i,o1

2

)]
= 1 − ϕ

(
E
[
m

(l+1)
i,o1

])
,

(7.103)
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where o1 and o2 represent the the set of square and triangle checknodes.
Before proceeding to following relations, it is noteworthy to mention that the
sum of two independent Poisson random variables remains Poisson. Hence,
the only reason for using different notations is to clarify whether the input
degree distribution corresponds to the input bits or the payload bits. Then
we have

E

[
tanh

(
m

(l+1)
i,o1

2

)]
=

1 −
D=Dmax∑

D=1

D∑
d=1

ι
(1)
d I

(2)
D−d · ϕ

(
(d− 1) · E

[
m

(l)
o1,i| deg(o1, i) = d

]
+

(D − d).E
[
m

(l)
o2,i| deg(o2, i) = D − d

])
,

(7.104)

where deg(o1, i) is the the number of edges between the input node i and
the set of squares. deg(o2, i) indicates the number of edges between the
input node i and the set of triangles, and there is a similar equality for

E

[
tanh

(
m

(l+1)
i,o2

2

)]
,

E

[
tanh

(
m

(l+1)
i,o2

2

)]
=

1 −
D=Dmax∑

D=1

D∑
d=1

ι
(2)
d I

(1)
D−d.ϕ

(
(d− 1).E

[
m

(l)
o2,i| deg(o2, i) = d

]
+

(D − d).E
[
m

(l)
o1,i| deg(o1, i) = D − d

])
.

(7.105)

Now we will proceed with the update rule at output nodes. Again with abuse
of notation in [15] and by denoting the expectation E

[
tanh(Z1

2
)
]

by z1 and
E
[
tanh(Z2

2
)
]

by z2,

E
[
m

(l+1)
o1,i

]
=
∑

b

ω
(1)
b ϕ−1

(
1 − z1

[
1 −

D=Dmax∑
D=1

D∑
d=1

ι
(1)
d I

(2)
D−dϕ

(
(d− 1)E

[
m

(l)
o1,i

]
+

(D − d)E
[
m

(l)
o2,i

]) ]b−1
⎞
⎠

(7.106)
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E
[
m

(l+1)
o2,i

]
=
∑

b

ω
(2)
b ϕ−1

(
1 − z2

[
1 −

D=Dmax∑
D=1

D∑
d=1

ι
(2)
d I

(1)
D−dϕ

(
(d− 1)E

[
m

(l)
o2,i

]
+

(D − d)E
[
m

(l)
o1,i

])]b−1
⎞
⎠ .

(7.107)

According to [17], for successful decoding, we need to guarantee that,

y1 <
∑

b

ω
(1)
b ϕ−1

(
1 − z1

[
1 −

D=Dmax∑
D=1

D∑
d=1

ι
(1)
d I

(2)
D−dϕ ((d− 1)y1+

(D − d)y2)

]b−1
⎞
⎠

y2 <
∑

b

ω
(2)
b ϕ−1

(
1 − z2

[
1 −

D=Dmax∑
D=1

D∑
d=1

ι
(2)
d I

(1)
D−dϕ ((d− 1)y2+

(D − d)y1)

]b−1
⎞
⎠ .

(7.108)

Regarding the monotonicity of ϕ−1, the above inequalities can not hold for
y1 ≥ ϕ−1(1 − z1) and y2 ≥ ϕ−1(1 − z2) respectively. However, these inequal-
ities are required to be valid for y1 and y2 around zero [15]. With taking
derivation of above equations around 0, assigning y2 and y1 with zero in the
former and latter inequalities respectively, and using the fact that the dis-
tributions ι2d ,I

(1)
D−d and also ι1d ,I

(2)
D−d are independent of each other, upper

bounds are obtained on ω
(1)
2 and ω

(2)
2 ,

ω
(1)
2 ≥ 1

α1z1
,

ω
(2)
2 ≥ 1

α2z2
,

(7.109)

where α1 =
∑

d (d− 1)ι
(1)
d and α2 =

∑
d (d− 1)ι

(2)
d . Although the noted

method is quite straightforward to use, in practice there are some flaws laying
on the path of using it. The problem is that the messages passed from output
symbols to input symbols are far from being Gaussian as suggested in [15].
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7.2 Semi-Gaussian Approximation

By proposing this scheme, the channel capacity and a corner point of the
Slepian-Wolf region are simultaneously aimed to be achieved. Full Gaussian
DE was explained in the previous section. Nonetheless, it doesn’t appear to
provide us with reasonable results since the density of the messages leaving
checknodes could hardly be approximated by Gaussian. Moreover, Probabil-
ity density function (pdf) of these messages is sharper in the middle. The
more the degree of a check node increases, this middle apex gets sharper. It
makes the full Gaussian approximation more grave. Therefore, in order to
design the code, the semi Gaussian approximation was taken on. It means to
approximate the messages leaving variable nodes (intermediate nodes) with
Gaussian density and then using the exact expression term of (5.79) to track
the mean of mo,i messages. The variable nodes Gaussian messages can then
be fully expressed by their means since they are assumed to be symmet-
ric σ2 = 2m. Hence, our DE simulations are all based on Semi-Gaussian
approximation.

7.3 DE constraints

Since the full DE is too complicated to analyse, the Semi-Gaussian approx-
imation of the DE is considered. This means that the messages which go
from variable nodes to check nodes are approximated by Gaussian distribu-
tion function. That is due to the fact that these messages are obtained as
sum of random variables of the same type [15]. In order to evaluate DE,
the all zero codeword is assumed to have been sent. Hence, the mean of the
sent message from the input symbol nodes is required to increase at every
iteration. The mean of the messages passed from input bits to output bits at
l + 1th iteration could be expressed by α

∑
d ωdfd(µ). This mean is subject

to be more than µ. Whereas, C.α

D∑
d=1

ωd

d
is the target function that is to be

minimized [15]. Thus the constraint set could be expressed by
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1. ∀i = 0, . . . , N − 1 : α
D∑

d=1

ωdfd(µi) > µi

2.

D∑
d=1

ωd = 1

3. ∀d = 1, . . . , D : ωd ≥ 0 ,

where fd(µi) for a given degree d is expressed as

2arctanh

(
tanh

(
Z1

2

) d−1∏
i=1

tanh

(
Xi

2

))
. (7.110)

For our specific problem, as long as the checknodes have been sent on two
different channels,

α1

∑
d

ω
(1)
d f

(1)
d (µ) + α2

∑
d

ω
(2)
d f

(2)
d (µ) > µ, (7.111)

where

f
(1)
d (µ) ≡ 2E

[
arctanh

(
tanh

(
Z1

2

) d−1∏
i=1

tanh

(
Xi

2

))]
,

f
(2)
d (µ) ≡ 2E

[
arctanh

(
tanh

(
Z2

2

) d−1∏
i=1

tanh

(
Xi

2

))]
.

(7.112)

The solution to the optimization problem of (7.96) is addressed with either
Differential Evolution or linear programming of which the latter has been
chosen due to simplicity. The optimization problem comprises of ω

(1)
d and

ω
(2)
d as parameter vectors, with fixed α1 and α2. Our objective is then to get

(7.96) as close to R1

C
as possible. α1

∑
d ω

(1)
d = 1 along with

∑
d ω

(1)
d = 1 and∑

d ω
(2)
d = 1 provide us with three hard constraints.

7.4 A specific joint source-channel code design for a
Slepian-Wolf corner point problem

In this section, we will focus on designing a joint source-channel code with
side information at the decoder. Assuming that y has been received intact
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and is observed at the decoder, the target is to decode x using its payload
bits which have been sent over a BIAWGNC(0.97)2. The correlation between
sources X and Y are presumed to be modelled by a BSC with crossover prob-
ability of ε = 0.0417. This results in 0.25 bits per channel use for H(X|Y ).
These assumptions specify getting the term α2

∑
d

ωd

d
as close to 0.5 as pos-

sible while α1 and α2 have been fixed and assigned with 5 and 3 respectively.
Taking the constraint (7.111), µ is discretized with steps of 0.02, µ ∈ [0, 10].

Linear programming provided us with ω
(1)
d and ω

(2)
d and as already known,

Ωd = βωd

d
. The latter equality is straightforward to obtain from ω(x) = Ω′(x)

Ω′(1)
and yields

Ω(1)(x) = 0.0091x+ 0.3669x2 + 0.5843x3 + 0.0398x63 (7.113)

Ω(2)(x) = 0.2617x2 + 0.1301x3 + 0.1453x4+

0.1651x5 + 0.1121x8 + 0.0745x9 + 0.1112x19.
(7.114)

Now, in order to measure the error probability with 10% of overhead, the

target lower bound of 0.5 for the optimization problem of α2

∑
d

ωd

d
≥ 0.5 is

changed to 0.55. The calculated Ω1(x) and Ω2(x) go as

Ω1(x) = 0.01x+ 0.9094x2 + 0.0069x4 + 0.0246x8 + 0.0051x42+

0.0049x46 + 0.0086x62 + 0.0140x63 + 0.0165x66,
(7.115)

Ω2(x) = 0.1664x2 + 0.3022x3 + 0.1321x4 + 0.1501x5+

0.1019x8 + 0.0667x9 + 0.0796x19,
(7.116)

and mean of the messages mio leaving the intermediate nodes versus the
number of iterations are depicted for both cases in the Figures 7.7a and 7.7b.

Let m be the number of collected output bits and k be the source length.
System information analysis at the decoder side yields

k(1 − h(ε)) +mC = k,

m = k/2.
(7.117)

In other words, receiver needs to collect m = k
2
(1 + ε) bits to decode the

intermediate nodes. Assigning σ with 0 changes the problem to a pure source
coding problem. For the linear programming approach, α1 and α2 were

2Binary Input Additive White Gaussian Noise Channel
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Figure 7.7a: Mean of the intermediate
node messages versus iterations while
having no overhead
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Figure 7.7b: Mean of the intermediate
node messages versus iterations while
having 10 % of overhead

assigned and fixed with 5 and 3 respectively. Another simulation was then
run for the pure source coding problem, thereby resulting in C = 1 with the
correlation between sources modelled by a BSC with the similar crossover
probability of 0.0417. This translates into H(X|Y ) = 0.25 bit and therefore

getting α2

∑
d

ω
(2)
d

d
as close to 0.25 as possible. The same discussion again

provides us with Ω(1)(x) and Ω(2)(x),

Ω(1)(x) =0.015x+ 0.8480x2 + 0.1370x24,

Ω(2)(x) =0.1978x4 + 0.3302x5 + 0.2242x8 + 0.1489x9 + 0.0988x65,
(7.118)

when we are concerned with 0 percentage of overhead and

Ω(1)(x) =0.015x+ 0.8480x2 + 0.1370x24,

Ω(2)(x) =0.2148x4 + 0.3238x5 + 0.2198x8 + 0.1460x9 + 0.0956x65,
(7.119)

for 4% of overhead. The maximum attainable mi,o is obviously α1z1 + α2z2.
For the joint source-channel code case, it is straightforward to conclude that
α1z1 + α2z2 � 20.7. This consequently results in an error probability of ap-
proximately 6.10−4 while taking the messages leaving intermediate nodes to
be Gaussian. While testing the pair of Ω

(1)
d and Ω

(2)
d in (7.118), intermediate

node message mean got stuck at 4.5 that implies the quite poor error proba-
bility of 6.7%. Whereas the pair in (7.119) yielded the mean of approximately
75 and error proability of 4.10−10.
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Figure 7.8a: Mean of the intermediate
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7.5 Slepian-Wolf problem with arbitrary rate alloca-
tion

Up to now, the only concern was achieving the corner points of the Slepian-
Wolf region. From now on and for the rest of this section, the focus will be
on fountain code design for the purpose of achieving any arbitrary point of
the Slepian-Wolf region.

7.6 Approaching the Slepian-Wolf limit using syndromes

The Slepian-Wolf problem by arbitrary rate allocation between the sources
was first addressed and outlined in the work of Pradhan and Ramchandran
as Distributed Source Coding Using Syndromes (DISCUS)[11]. The main
idea of the work is to model the correlation between sources with a channel
code and then partition that single channel code. This has been inspired by
the fact that the Slepian-Wolf Coding (SWC) problem is indeed a channel
coding problem. This approach has been exemplified by partitioning the G
matrix of a (7, 4, 3) binary Hamming code and allocating each partition to
encode one of the uniformly distributed sources X and Y . Assume X and
Y are two memoryless 7-bit binary random variables with their correlation
modeled by dH(X, Y ) ≤ 1. dH(X, Y ) denotes the Hamming distance between
X and Y . Entropies and joint entropies are expressed by H(X) = H(Y ) = 7
bits and H(X, Y ) = H(Y )+H(X|Y ) = 10 bits respectively. Let x and y de-
note the codewords allocated to the sources X and Y . Let sources X and Y
be encoded at rates R1 and R2 such that R1 ≥ 3, R2 ≥ 3 and R1 +R2 ≥ 10.
Now, according to Slepian and Wolf, it is possible to devise a jointly de-
coding method at the decoder. At first let’s assume we want to approach a
corner point on Slepian-Wolf region. In this case, Y sends over its complete
information using 7 bits whereas X only transmits its syndrome given by
s = Hx, which contains only 3 bits. Since dH(X, Y ) ≤ 1 , one can easily
retrieve x once given y and s. In fact the correlation between the two sources
could be modelled by BSC.

Another scenario is to achieve a non-corner point like R1 = R2 = 5 bits.
For this case, the generator matrix of the systematic (7, 4) Hamming code C,
defined by (7.120) is broken up
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Gk×n = [I4 P ] =

⎡
⎢⎢⎣

1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1

⎤
⎥⎥⎦ , (7.120)

into two generator matrices G1 and G2. Each of these matrices is comprised
of two rows of G and thereby construct two subcodes C1 and C2. 5-bit
Syndromes s1 and s2 are then transmitted to the decoder as sT

1 = H1x
T and

sT
2 = H2y

T . Appending the syndromes s1 and s2 with zeros gives t1 and t2.
x ⊕ t1 and y ⊕ t2 are clearly the codewords of C1 and C2 respectively. The
joint decoder receives s1 and s2 and finds the closest codeword to t = t1 ⊕ t2
in C which is c = x⊕ t1 ⊕ y⊕ t2. Recovering the systematic parts of x and y
from c and letting them be denoted by â1 and â2, one can easily reconstruct
the sources as x̂ = â1G1⊕ t1 and ŷ = â2G2⊕ t2. Since the Hamming distance
between x and y is 1 by maximum and the applied (7, 4, 3) Hamming code
has minimum distance of 3, x and y can certainly be recovered error-free.

7.7 Slepian-Wolf problem and fountain codes

Thanking to the insight taken from [11], later works were done to get as close
as polssible to the Slepian-Wolf region with arbitrary rate allocation. The
most important works were carried out by Qian Xu et al. using rateless codes
and particularly raptor codes. Raptor code is known as the best approxima-
tion to a digital fountain [18]. In this work, Irregular repeat accumulative
(IRA) has been used as the precoding of the proposed raptor approach.

7.7.1 The coding and decoding scheme

Here, the applied scheme is elaborated. Sources X and Y have been seper-
ately encoded as illustrated in Figure 7.9. Source X is assumed to have been
coded with two sets of bits Ztx and Slx. The subindices t and l indicate
the number of collected bits of each kind at the decoder side, and index x
represents belonging to source X.
Source Y has similarly been encoded with the sets of bits Zty and Rmy. As
the common term Zt may suggest, the same output connection is applied to
this part of the two graphs. The sets Sl and Rm are connected differently,
although still having the same node degree distribution. The idea is firstly
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to decode intermediate nodes of X⊕Y using the the set of X⊕Y nodes and
payload set Ztx ⊕ Zty. Then, Rmx ⊕ Rmy is constructed with having X ⊕ Y
at hand. Rmx is then recovered through XOR ing Rmx ⊕ Rmy and Rmy. At
the final stage, we use all the three sets of Ztx, Slx and Rmx for erasure de-
coding of X intermediate nodes. Having X decoded, we would easily manage
to retrieve Y through X ⊕ (X ⊕ Y ).

X symbols Zt Sl

Y symbols Zt Rm

Figure 7.9: Sources X and Y have been seperately encoded

Ztx ZtyX Y

Figure 7.10: Decoding of X ⊕ Y with Ztx ⊕ Zty has been depicted in the figure.

Assume that the correlation between X and Y is modelled by BSC(ε), X
and Y word length to be k. t = kH(Y |X) bits would then suffice to decode
X ⊕ Y . l and m could be adjusted to achieve any point of the Slepian-Wolf
line and not only the corner points. Eventhough we expect to be confined
with some node degree distribution constraints that would deter us from
achieving all the desired points.
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Ztx Slx Rmx

Figure 7.11: Erasure decoding of X using the payload sets Ztx, Slx and Rmx

7.7.2 Code design

Now, we proceed with design details of the proposed scheme. As mentioned
earlier, there are t + l bits used to encode X and t +m bits used to encode
Y . In order to decode X ⊕ Y and X successfully and achieve the desired
Slepian-Wolf region, the following constraints are required to hold

t = kH(X|Y )

t+ l +m = k

2t+ l +m = kH(X, Y ).

(7.121)

It is easy to conclude that l + m = k (1 −H(X|Y )). In case X and Y
are equiprobable binary sources, it makes sense to let l and k be equal and
thereby to achieve the middle point of the Slepian-Wolf broken line. To this
end, l is assigned by l = m = k(1−H(X|Y ))

2
, where k is the source word length.

DE is applied on the scheme in the Section 7.1 to derive the edge degree
distributions ω

(1)
d and ω

(2)
d by solving the optimization problem of (7.111).

Soft constraint of (7.111) was discretized into steps of 0.01 for µ ∈ [0, 20].

The hard constraint is α1

∑
d

ω
(1)
d

d
= 1, where ω

(1)
d and ω

(2)
d correspond to

the edge degree distributions for output node sets X⊕Y and payload bits zt

respectively. It was observed that the decoding performance was degraded
for high average node degree of the payload bits. For this specific design
problem, we are concerned with the case in which the correlation between
the sources X and Y is modelled by BSC(ε) where ε = 0.0417. Hence, the
observation LLR for the first set output nodes(X ⊕ Y bits) is calculated as

log
(

Pr(X=0)
Pr(X=1)

)
= 3.13. LLR of the payload bits would be ±∞ theoretically,

although assigned with ±20 in the simulations. Let Ω(1)(x) denote the input
bits degree distribution and Ω(2)(x) be the payload bits degree distribution.
It is useful to recall the necessity of erasure decoding of X after retrieving
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X⊕Y . Ω(x) is used to represent the overall output node degree distribution
in the Figure 7.11. Ω(3)(x) is calculated as the node degree distribution of
the output node sets Sl and Rm which are depicted in the Figure 7.9,

t

k
Ω(2)(x) +

k − t

k
Ω(3)(x) = Ω(x)

Ω(3)(x) =
Ω(x) − t

k
Ω(2)(x)

1 − t
k

·
(7.122)

Ω(x) is the output node degree distribution required for erasure decoding
and can be assigned with robust Soliton distribution or be extracted from
the table in [5]. The latter equality in (7.122) adds a new constraint to what
we had beforehand,

Ω(x) >
t

k
Ω(2)(x),

Ωd > H(Y |X)Ω
(2)
d (x),

Ωd > H(Y |X)β2
ω

(2)
d

d
,

ω
(2)
d < d

Ωd

α2

·

(7.123)

The latter relation has been concluded from the fact that

α2

β2
= t

k
= H(Y |X)·

Although the ideal is to have an overhead free decoding, one is always re-
quired to add some overhead in order to come up with successful decoding
with SPA. In fact the latter inequality of (7.123) added to set of constraints
detailed in Section 7.3 restricts us to only be able to work with a limited
subset of average node degrees α1 and α2.

7.7.3 Implementation

In order to simulate the proposed system, SPA is applied on the scheme
illustrated in the Figure 7.10. α1 and α2 are assigned with 2.8 and 2.25
respectively, whereas the source length is set to 4000. It is noteworthy that
Doping is also used to assist the decoding process. Doping means to reveal
the intermediate bit which has the least reliability at each step. Ω

(1)
d and Ω

(2)
d
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are derived with semi-Gaussian DE as

Ω(1)(x) = 0.06x+ 0.3572x2 + 0.4937x3 + 0.0744x6 + 0.0148x7,

Ω(2)(x) = 0.0903x3 + 0.0057x4 + 0.3302x5 + 0.1872x8 + 0.1489x9 + 0.2224x19.

(7.124)

Ω(3)(x) is consequently calculated from (7.122) , where

Ω(x) = 0.00797x+ 0.4936x2 + 0.1662x3 + 0.0726x4 + 0.0826x5+

0.0561x8 + 0.0372x9 + 0.0556x19 + 0.0250x65 + 0.0031x66 (7.125)

has been taken from [5], hence

Ω(3)(x) = 0.0106x+ 0.6531x2 + 0.1915x3 + 0.095x4+

0.0123x8 + 0.0334x65 + 0.0042x66.
(7.126)

The error probability of 0.006 is achieved with t = 1300 and 50 iterations
which is unacceptable and in contrast with DE results. This can be reasoned
in different ways of which the most probable might be the inefficiency of the
applied DE. For instance, the messages coming out of input intermediate
nodes may be far away from Gaussian.
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Figure 7.12: BER with respect to overhead for
the cases α1 = 1 and α1 = 2.8 is depicted with
blue dashed and red dashed lines respectively.

Due to the error floor problem of LT codes which is illustrated in the Figure
7.12, no remarkable improvement was observed when increasing t even up
to 1600. Theoretical value of t is nH(Y |X) = 1000, where n is the source
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message length and H(Y |X) = 0.25 while dealing with BSC(ε), ε = 0.0417
as before. Unexpectedly the best result is achieved when α1 is assumed to
be 1. With covered graph assumption, this is equivalent to the complete
matching between input X ⊕ Y bits and intermediate bits. What meant by
covered graph is that the attaching subgraph of these two sets should have
no dangling intermediate node. The best result is achieved with α1 = 1
and α2 = 2.3 yielding the BER of 0.004 while 1200 payload bits have been
collected.

Ω(1)(x) = x

Ω(2)(x) =0.1333x2 + 0.2675x5 + 0.2242x8+

0.1489x9 + 0.2224x19 + 0.0036x65,

(7.127)

means that the left hand set of output nodes have only come to the use of
assigning the intermediate nodes with obsevation LLR. This, along with the
suffering from the error floor problem, arises the motivation of taking on the
raptor code approach instead of LT codes that was used earlier.

7.8 Raptor code approach for the Slepian-Wolf prob-
lem

As discussed in the previous section, our LT code design failed to get close to
capacity while decoding X ⊕ Y . Hence, in order to lower the Bit Error Rate
(BER) down to zero, the idea of using raptor codes is devised instead. The
idea translates to adding some redundant bits to the end of the source words
to construct LDPC codewords and consequently adding some LDPC checkn-
odes to the payload bits. This precoding would effectively assist to deal with
the remaining BER and error floor problem of LT code approach. In other
words, this precoding follows as adding m redundant bits to the source words
x and y. Thereby, m LDPC check bits are added to the set of checknodes
or output nodes. For the sake of simplicity in implementation, a high rate
regular LDPC is taken on as the precoder. To cancel out a remaining BER
of Er, the corresponding capacity is calculated, Cap(BSC(Er)), for which we
are seeking the precoder. As already known, Cap(BSC(Er)) = 1 − h(Er)
and rate of a LDPC taken from (dv, dc) ensemble with dv denoting vari-
able node degree and dc indicating the checknode degree is calculated by
R = 1 − dv

dc
. Therefore R < C, where C is capacity, implies that the in-

equality 1 − dv

dc
> Cap(BSC(ε)) needs to hold. The latter inequality yields

dv

dc
= m

n
, where m denotes the number of LDPC checknodes and n indicates
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the number of LDPC variable nodes or LDPC codeword length. For the pur-
pose of canceling out a BER of Er , we need to make sure that m

n
> h(Er).

For instance, to address our previous section problem or remaining error of
0.004,

m

n
> h(0.004) = 0.0376, (7.128)

which practically translates to adding 151 redundant bits to the set of variable
nodes (intermediate bits) and 151 LDPC check nodes to the set of output
check nodes. Our LDPC pre-code is chosen from a regular (3, 51) LDPC
ensemble that yields a precoder of rate 0.9412. This pre-code compensates for
the remaining error of 0.004 observed in the previous section. This introduces
250 bits of redundant and checknode bits. Hypothetically, a LDPC code of
rate 0.9624 suffices for that purpose. Nonetheless, since we don’t expect a
regular LDPC to be capacity achieving on the BSC, it makes sense to take
on lower rate codes to achieve the capacity and lower the error down to zero.
Fortunately, there is no need to take on an ensemble with the rate of much
lower than capacity to come up with the zero BER. Number of collected
output symbols (payload bits) to achieve the zero BER was estimated to be
1060. What meant by estimation is that t = 1060 seemed adequate to lower
the BER down to zero on more than 90% of the graphs randomly taken from
the designed ensemble. We continue with decoding x as explained in the
previous section. Having Ω(2)(x) as in (7.127), we manage to derive Ω(3)(x)
using (7.122),

Ω(3)(x) = 0.0106x+ 0.6137x2 + 0.2216x3 + 0.0968x4+

0.0210x5 + 0.0001x8 + 0.0321x65 + 0.0041x66.
(7.129)

Then having t = 1060, the second y encoding bits set length m is assigned
with 1500. We then look for the appropriate second x encoding bits set
length l that yields the error free decoding of x. Basically, since H(X) = 1,
at least k encoding bits are required for the successful decoding of x. For
this case, k = 4000 and (7.121) imply that for the overhead free decoding
of x, at least l = 1440 bits are needed. Therefore we vary l and run belief
propagation on the scheme depicted in the Figure 7.11. The only difference is
that the upper row circles are replaced with x bits rather than intermediate
bits, to achieve the lowest possible BER. With l = 1650 , BER of 0.007
was achieved, thereby persuading us to use raptor code again. Theoretically,
according to the discussion brought up above, a pre-coder of rate 0.94 would
have sufficed to cancel out the error. Although we finally took the ensemble
(4, 44) of rate 0.9 that helped us get the BER down to zero using l = 1570
bits. This translates to being about 3.8 % away from the Slepian-Wolf limit
H(X, Y ) = 1.25.
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Figure 7.13: BER with respect to overhead while
decoding x with raptor code.

Another test is performed with m = 1700 bits and the same LDPC ensemble
as the pre-coder. This leads us to come up with l = 1450 bits to lower
the BER down to zero, thereby to be 5.4% away from H(X, Y ). Being away
from the Slepian-Wolf limit could be addressed by the source message length.
Moreover, the source message length of infinity could get us closer to achieve
the limit. Defining Rx = t+l

k
and Ry = t+m

k
, the two obtained points are

shown in the Figure 7.14.
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Figure 7.14: Slepian-Wolf region for the sources
X and Y along with the achieved points depicted
with red plus points are illustrated in the Figure.

Design details of the joint source-channel code for the Slepian-Wolf problem
is not included, although the points depicted in the Figure 7.14 are expected
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to get further to the limit H(X,Y )
C

when σ increases. σ denotes the channel
parameter.
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8 Fountain Codes On Markov Channels

The problem of designing and applying LDPC codes for correlated sources
on Markov channels have been mostly addressed by Andrew W. Eckford et
al. in [9], [10]. We will exploit the notation of [9] for this section. Moreover,
DE on Markov channels have been limited to GE channels. In this section
and from now on, the concern is only with GE channels which is a particular
realization of hidden Markov channels. The Sum-Product-Algorithm could
be applied on these codes as before. Nevertheless besides messages passed
between symbol variable nodes and factor nodes, 4 other messages are added.
These messages are to represent the backward and forward messages between
channel factor nodes and from channel factor nodes to symbol variable nodes
and the otherway round respectively. Here, these messages are expressed
as they have been derived in [9]. As already known from LDPC codes, the
codeword x is valid, if it satisfies all the parity check nodes. Let hk or hk(x k)
denote a factor node and the subscript k imply the restrictions on x codeword.
In other words, k indicates the specific positions of x that participates in the
parity check equation. Letting m be the number of factor nodes,

h(x ) =

m∏
k=1

hk(x k).

The probability of a specific codeword x to be received is expressed as

p(x ) = h(x )/|C| ,

which is derived by the assumption that all codewords in C are equally likely
to be transmitted. From Markov chain, the probability of the state sequence
s can be easily calculated as follow,

p(s) = p(s1)

n−1∏
j=1

p(sj+1|sj).
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Now, the joint pmf for the codeword x , channel output y and state sequence
s is given as,

p(y , x , s) = p(y |s , x )p(s)p(x )

=
1

|C|

(
n∏

i=1

p(yi|xi, si)

)

.

(
p(s1)

n−1∏
j=1

p(sj+1|sj)

)(
m∏

k=1

hk(x k)

)
.

(8.130)

The first equality of (8.130) has been concluded from the fact that Markov
channel state transition is independent from the transmitted codeword, hence
the joint pdf of them would break up to the multiplication of pdfs. Now,
having the basic relations, the sum-product messages can be derived. As
noted earlier, a Markov subgraph needs to be attached to the formerly de-
vised LDPC subgraph. The purpose of adding this subgraph is to send the
channel messages to LDPC subgraph and receiving the extrinsic messages
from LDPC subgraph. It also comes to the use of exchanging two inter-
nal messages between GE subgraph channel factor nodes and state variable
nodes as shown in Figure 8.16. These messages are known as forward and
backward messages. Forward message A gives an estimation of the future
state mode. This estimation is based on the extrinsic message D received
from the current symbol variable node and the forward message A− received
from the previous state channel factor node. Backward message B gives an
estimation of the current state mode based on the extrinsic information re-
ceived from the current symbol variable node D and the backward message
B− received from the future state. Extrinsic message D gives the reliability
of the symbol variable Xi excluding all the information received from the
GE subgraph. Whereas the channel message C gives the reliability of the
symbol variable Xi only relying on the information received from the Markov
subgraph.

Now, we step into the venture of deriving these explained messages. Let P
denote the state transition probability matrix,

P =

[
1 − b b
g 1 − g

]
,
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Figure 8.15: GE-LDPC decoder factor graph
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Figure 8.16: Channel factor graph, backward-
forward, extrinsic and channel messages are il-
lustrated

and σ be the mapping function σ : {0, 1} → {1,−1}, γ : R × {0, 1} → [0, 1]
be defined as

γ(λ, y) =
1

2

[
1 + σ(y) tanh

(
λ

2

)]
, (8.131)

where λ is the log-likelihood ratio log(p(0)/p(1)), and γ(λ, y) can be taken
as p(y). Letting

N =

[
ηG 0
0 ηB

]
,

I =

[
1 0
0 1

]
,

(8.132)

and then defining E as
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E(λ, y) = N(1 − γ(λ, y)) + (I− N)γ(λ, y),

allows us to express the messages A,B,C and D in the compact form. SPA
which results in the following equalities is avoided, although one can easily
expand out these relations and come up with the more clear terms of SPA.

A =
PTE(D, Y )A−

uT
2 PTE(D, Y )A− ,

B =
E(D, Y )PB−

uT
2 E(D, Y )PB− ,

C = σ(Y ) log
(A−)T (I− N)PTB−

(A−)TNPTB− ,

D =
d∑

j=1

Xj .

(8.133)

The latter equation is derived almost the same way as the messages leaving
symbol variable nodes to symbol factor nodes are achieved. The only differ-
ence is that all the messages entering the variable node from the neighboring
symbol factor nodes get involved and the observation LLR is excluded. The
message passing schedule has been outlined in [9] as having n iterations in
LDPC subgraph for each iteration in GE subgraph. Nevertheless in this
work, n has been assigned with 1 for the sake of simplicity.

8.1 DE on LDPC and GE-LDPC subgraphs

DE could be done in different ways. It is possible to either carry out a full
Gaussian DE as devised in [17] or apply the method described in [10] by Eck-
ford et al.. The former method presumes all messages to be Gaussian. Here,
Chung’s density evolution on LDPC codes which is appliable on BEC s and
and BIAWGNC s is briefly explained. We would then proceed with Eckford’s
method for correlated sources with HMM which with some manipulations
will be later applied on Fountain codes too.
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8.1.1 Full Gaussian DE on LDPC codes

Let λ(x) and ρ(x) be the edge degree distribution of the variable and check

nodes respectively. λ(x) =

dl∑
i=2

λix
i−1 and ρ(x) =

dr∑
i=2

ρix
i−1. As known,

rate of the code would be given by r = 1−
∫ 1
0

ρ(x)dx∫ 1
0 λ(x)dx

. Φ function is defined as

Φ(x) =

⎧⎨
⎩

1√
4πx

∫
R

tanh(
u

2
)exp

(
−(u− x)2

4x
du

)
. if x > 0,

0 if x = 0.

(8.134)

Chung’s density evolution is then expressed as

ūl =
∑

j

ρjΦ
−1

⎧⎨
⎩
[∑

i

λiΦ(ū0 + (i− 1)ūl−1)

]j−1
⎫⎬
⎭ , (8.135)

where ūl indicates mean of the messages leaving factor nodes after lth itera-
tion. T̄l is defined as

T̄l =
∑

i

λiΦ(ū0 + (i− 1)ūl), (8.136)

which helps us to simplify ūl as

ūl =
∑

j

ρjΦ
−1
(
T̄ j−1

l−1

)
, (8.137)

where T̄l = E
(
tanh(vl

2
)
)

and vl is the message sent by variable nodes. It-
erative decoding then translates to staircase motion between the two curves
(8.137) and (8.136). Successful decoding is feasible as long as the tunnel be-
tween the two curves is open. Tunnel between the two curves gets narrower
as the BIAWGN parameter σ increases [14]. This concept leads to definition
of the design optimization problem,

dv∑
j=2

λj = 1, λj ≥ 0,

∑
i

λiΦ(ū0 + (i− 1)ūl) > T̄ for (T̄ , ū) pairs that satisfy

{
ūl =

∑
j ρjΦ

−1
(
T̄ j−1

l−1

)
Φ(ū0) < T̄ < 1

λ2 <
1

ρ′(1) exp( ū0

4
)
·

(8.138)
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With the above brief explanation of Gaussian DE on LDPC codes, DE on
GE-LDPC subgraphs which is of more concern and interest will be discussed
in the next section.

8.1.2 DE on GE-LDPC codes

As noted earlier, the main part of this work has been done by Eckford et al.
in [9] and [10]. As can be seen in the Figure 8.15, in GE-LDPC subgraph,
channel factor nodes are attached to symbol variable nodes. This is slightly
different from our GE-LT subgraph which will be of our more future interest
in this work. In fact in GE-LT subgraph, channel factor nodes are not
connected to symbol variable nodes but to parity-check nodes of the LT
subgraph. Here, we note the DE procedure on GE-LDPC subgraph which is
then applicable to GE-LT subgraph with some slight manipulations. Of all
the 4 added messages described in Section 8, only the extrinsic message D is
subject to modification, which will be explained later in the correspondent
section. Taking P and Q to be the messages leaving symbol variable nodes
and parity-check nodes respectively, the regular LDPC SPA updating rule
for P and Q is outlined as before,

fP,j+1 = F−1
[
F (fP,0)(F (fQ,j))

dv−1
]

tanh

(
Q

2

)
=

dc−1∏
i=1

tanh

(
Pi

2

)
.

(8.139)

F in (8.139) represents the Fourier transform whereas index j indicates
the iteration number. The former equation of (8.139) indicates the Fourier
transform of the second equality in (5.79),

fD,j = F−1
[
(F (fQ,j))

dv
]

(8.140)

says that D at every iteration can be obtained through summation of all the
incoming edges to that specific symbol variable node. It is noteworthy that
the messages A and B are two component vectors. For instance, the first
component of B shows the probability of currently being in the Good state
and the second component shows the probability of laying in the Bad state.
In the following relations, fA1,j+1 represents the Pdf of the Good state. With
doing some manipulations on A in (8.133), it is easy to see that

A1 =
N1 +N2A

−
1

D1 +D2A
−
1

, (8.141)
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where

N1 =g(ηB + (1 − 2ηB)γ(D, Y ))

N2 =(1 − b)(ηG + (1 − 2ηG)γ(D, Y ))

− g(ηB + (1 − 2ηB)γ(D, Y ))

D1 =ηB + (1 − 2ηB)γ(D, Y )

D2 =ηG + (1 − 2ηG)γ(D, Y )

− ηB − (1 − 2ηB)γ(D, Y ).

(8.142)

B can also be similarly calculated. conditioning on the state s, we come up
with

f(a−1 |s) =
p(s|a−1 )f(a−1 )

p(s)
,

f(b−1 |s) =
p(s|b−1 )f(b−1 )

p(s)
,

(8.143)

where f(a−1 ) = fA1,j and p(s|a−1 ) = a−1 in case s = G and p(s|a−1 ) = 1−a−1 for
s = B. For further notes on how the equalities in (8.143) have been derived,
the interested reader is referred to [9]. Finally, obtaining f(a1|s, y, d) (which
is more thoroughly expressed in [9]) as

f(a1|s, y, d) = f

(
D1A1 −N1

N2 −D2A1

∣∣∣∣s
)

.

∣∣∣∣D1(N2 −D2A1) +D2(D1A1 −N1)

(N2 −D2A1)2

∣∣∣∣ ,
(8.144)

and marginalizing yields

f(a1) =
∑

s

∑
y

p(y|s)p(s).
∫

d

f(a1|s, y, d)f(d)dd. (8.145)

f(b1) is then obtained in the same manner. Following the above procedure,
the channel message C is then derived and extracted as

f(C) =
∑

s

∑
y

p(y|s)p(s).
∫

b1

f(c|s, y, b1)f(b1|s)db1, (8.146)
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which plays the role of P0 in (8.139) at every iteration. Density of these
messages is initialized as

fA1,0(a1) = δ(a1 − g/(b+ g))

fB1,0(b1) = δ(b1 − 1/2)

fC,0(c) = η̄δ(c+ log(1 − η̄)/η̄)

+ (1 − η̄)δ(c− log(1 − η̄)/η̄)

fP,0 = fC,0,

(8.147)

where η̄ is the average flip probability and δ(·) is the Dirac delta function.
fP,j+1 and fD,j+1 are rephrased as

fP,j+1 = F−1

[
F (fC,j)

vmax∑
i=1

λi(F (fQ,j))
i−1

]
,

fD,j+1 = F−1

[
vmax∑
i=1

λ̂i(F (fQ,j))
i

]
,

(8.148)

where λi is the probability that a randomly taken edge is connected to a
symbol variable node of degree i. Similarly, λ̂i is the probability that a
randomly taken symbol variable node is of degree i.

8.1.3 SPA on GE-LDPC subgraphs

As noted earlier, the differenece between GE-LDPC and GE-LT subgraphs
is that in GE-LT subgraphs, channel factor nodes are connected to symbol
variable nodes. In GE-LDPC subgraph, as seen earlier, the channel factor
nodes are connected to symbol variable nodes. LT check node of degree d
would take on the updating rule of

D = 2arctanh(
d∏

j=1

tanh(
Xj

2
)), (8.149)

as the extrinsic message sent from LT subgraph to GE subgraph. As it
can be obviously seen, any channel message or observation LLR has been
excluded from (8.149). The update equations under SPA are described as
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follows:

tanh

(
m

(l)
o,i

2

)
= tanh

(
ξ

2

)
.
∏
i′ �=i

tanh

(
m

(l)
i′,o

2

)

m
(l+1)
i,o =

∑
o′ �=o

m
(l)
o′,i

α(si+1) =
∑
si∈S

p(si+1|si)α(si)
∑

xi∈{0,1}
p(xi|χ)p(yi|si, xi)

β(si) =
∑

si+1∈S

p(si+1|si)β(si+1)
∑

xi+1∈{0,1}
p(xi+1|χ)p(yi+1|si+1, xi+1)

ξ = log
p(xi = 0|α, β)

p(xi = 1|α, β)
,where

p(xi = 0|α, β) =
∑
si∈S

∑
si+1∈S

p(yi|si, xi = 0)p(si+1|si)α(si)β(si+1) and

p(xi = 0|α, β) = 1 − p(xi = 1|α, β)

D = 2arctanh

(
d∏

j=1

tanh

(
m

(l)
i′,o

2

))
,

p(x|χ) being the probabilistic form of χ :

p(x|χ) =

{
1
2

+ 1
2
tanh χ

2
, x = 0;

1
2
− 1

2
tanh χ

2
, x = 1;

and

α : S → [0, 1] and β → [0, 1] ·
(8.150)

8.2 Applying the BSC design on the GE channels

In the Section 6.1, a particular (b, g, PB, PG) GE channel was exemplified.
Some brief explanation was also given on how to calculate the capacity of such
a channel according to [13]. Although we did not come up with any linear
programming solution like in Section 7.4 for the GE-LT subgraphs, it is still
an interesting approach to design a scheme for BSC of the same capacity
and do some comparison. The comparison is to find out the amount of
extra overhead needed comparing to BSC to lower the decoding error down
to the error floor achieved when the sources were correlated through the
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noted BSC. The other motivating reason for such an approach is that SPA
has not been tested on GE-LT graph illustrated in the Figure 8.17 before.
Moreover, the GE channel discussed at the end of the Section 6.1 is taken on
as the correlation channel between sources X and Y . Then having x intactly
recovered as the side information, we would step into decoding y. As noted
earlier, from the capacity point of view the (0.01, 0.01, 0.22, 0.01) GE channel
is equivalent to BSC(0.094). To get a better insight of this equivalence, it
is noteworthy that the average inversion probability of the considered GE is
0.1105. Output node degree distributions Ω(1)(x) and Ω(2)(x) are obtained

Figure 8.17: GE-LT graph. Input nodes are
depicted with squares whereas intermediate nodes
and payload bits are illustrated with circles and
triangles respectively. lower row squares and cir-
cles show channel factor nodes and state variable
nodes.

by linear programming and DE described in Section 7.3. Again we look
for the suitable average node degrees α1 and α2 that provide us with better
results on BSC(ε), ε = 0.094. In other words we seek a design on the scheme
depicted in Figure 7.6 that works fine with the shortest payload overhead.
α1 = 3 and α2 = 4.05 are set, as long as such an assignment of α2 yields the
same β2 as in Section 7.7.3,

Ω(1)(x) = 0.45x2 + 0.5379x3 + 0.0055x5 + 0.0066x70

Ω(2)(x) = 0.0615x+ 0.4462x9 + 0.4922x10.
(8.151)

8.2.1 Simulation

Simulation was done on BSC(0.094) with the distributions in (8.151) and
8000 y input symbols to be decoded when we are given with x as the side
information. A simple information analysis reveals that
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n(1 − h(ε)) +m = n

m = nh(ε) � 3600,
(8.152)

where n and m indicate source length and payload length respectively. Fi-
nally, 4200 bits were collected to lower the error down to the floor of 0.003
that implies the overhead of 0.167%. Then, the same distributions as in
(8.151) is applied on the scheme of the Figure 8.17 and parameters of (0.01, 0.01, 0.22, 0.01)
to compare the BER versus overhead with that of BSC(0.094) and the scheme
of the Figure 7.6.
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Figure 8.18: Comparison of BER with re-
spect to overhead for the cases BSC(0.094) and
GE(0.01,0.01,0.22,0.01) is illustrated in the fig-
ure.

Again, the raptor code approach could have probably lowered the error down
to zero. This shows that not only decoding on the proposed Markov channel
requires more overhead to reach its floor, but the floor is also higher com-
paring to that of the BSC for which the code has been designed. This arises
the necessity of a Fountain code design on Markov channels. A raptor code
design could again be the solution to this problem although it has not been
addressed in this work.
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9 Conclusion

This report was mostly devoted to design of classical LT and raptor codes
for addressing the Slepian-Wolf problem. Design was done on sources which
are correlated by a Binary Symmetric Channel(BSC). We did not manage
to propose a novel fountain coding scheme for sources correlated by Gilbert-
Elliot(GE) channel although it was of much interest. Instead, the scheme
for memoryless sources was tested on the GE case. The concept of the work
for source coding in 7th chapter is expandable to channel and joint source-
channel coding too, as seen in the report. In other words, the second source
symbols can be thought of being the first source symbols which are sent over
a channel. Hence, the design is easily applicable on BSC s. Future work can
focus on channel code design for Markov channels.
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