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Candi Wu
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Abstract
In flexible optical fiber communication systems, modulation format identification
(MFI) is a useful feature. Although many MFI methods have been proposed, most
of them are suitable for fixed channel conditions only. In addition, there exists no
hardware-based implementation for identifying more than two formats. In this the-
sis, two methods of real-time identification are implemented and evaluated. Both of
them passed software and hardware test. The method based on calculating informa-
tion entropy has the advantages of low hardware overhead and fast processing speed,
and another method using artificial neural network (ANN) has the advantages of
high accuracy and strong impairments tolerance. In the actual optical fiber commu-
nication system, different methods can be selected according to the characteristics
of this system.

Keywords: fiber optical communication, modulation format identification, neural
network, phase noise, linewidth, chromatic dispersion, FPGA
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1
Introduction

Optical fiber communication technology uses light waves as the transmission carrier
and optical fiber as the transmission medium. This technology has attracted much
attention in recent years because of its advantages of anti-interference, good confi-
dentiality and large bandwidth. However, as user requirements continue to increase,
new dynamic optical fiber communication networks are proposed [1]. The dynamic
network means that the modulation format and bit rate can be changed freely in
the communication.
This dynamic change can improve network flexibility and efficiency. When the
user’s requirements change or the channel changes, the transceivers can change the
modulation formats to ensure communication quality. For example, when the user
needs faster transmission speed, a higher-order modulation format can be selected,
and a lower-order modulation mode can be selected when the channel suffers from
different impairments and the noise increases. In addition, the independent choice
of modulation format can also enable the appropriate carrier recovery module to
be selected among other functionalities [2]. The flexible selection of the modulation
formats of the transmitter requires that the receiver can identify the modulation
formats of the unknown signal.
Generally speaking, identification is to obtain some characteristic parameters by
processing the signal, and then use a certain method to distinguish the characteristic
parameters, so as to determine the modulation format and other parameters of the
signal. Modulation format identification (MFI) in receiver [3] is a module between
signal detection and signal demodulation. The signal used for identification is not
ideal but it suffers from different impairments, and the MFI module needs to tolerate
these impairments.
In addition, in optical communication equipment, MFI also plays an important role
in the optical performance monitoring devices of intermediate network nodes. The
information of the modulation format can either be obtained by prior knowledge or
from an upper-layer protocol [4]. But the optical performance monitor cannot obtain
this information from cross-layer communication because the processing ability at
the node is limited [2].

1.1 Aim
Most of the current research focuses on new MFI algorithms, there is only one dis-
cussion on the hardware implementation of identifying two modulation formats [5].
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1. Introduction

The goal of this thesis is to use field-programmable gate array (FPGA) to realize
real-time MFI for four commonly used modulation formats at the receiving end. In
contrast to the general research direction, the focus here is to find one MFI method
that is easy to implement, tolerant to multiple impairments, and keeps the hardware
overhead as small as possible. Some high-accuracy methods will be selected for com-
parison with each other, and the architecture will be optimized and implemented on
the hardware to test the real-time processing capabilities.

1.2 Outline
The outline of this report is as follows. First, chapter 2 shows the background and
recent research on MFI. Then it introduces 3 MFI methods in detail. These 3 meth-
ods will be simulated and discussed for further hardware implementation. Chapter
3 then talks about how the simulation environment is set up. Further, it shows
the simulation result for 3 selected methods under different conditions. Chapter 4
contains the architecture of selected methods. Chapter 5 gives the hardware sim-
ulation result of selected methods, and also discuss the FPGA resource usage and
test accuracy. Chapter 6 summarizes the project and shows future work in the end.
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2
Background

The chapter first gives an short introduction to fiber optical communication systems,
then introduces existing MFI methods and focuses on three methods implemented
in this report. At the end of this chapter, hardware implementation of neural net-
work(NN) will be discussed.

2.1 Optical Fiber Communication System
The optical fiber communication system is shown in Fig. 2.1. The information source
contains the digital information to be transmitted. The optical transmitter converts
the electrical signal into an optical signal and sends it to channel. The channel
contains optical fiber and other optional components such as the optical amplifiers
and couplers. The optical receiver includes a coherent receiver and a digital signal
processing (DSP) module, after which the information will be transmitted to the
information recipient[4].

Information 
sources

Optical
transmitter

Optical 
receiver

Information
recipients

Channel

Figure 2.1: An overview of an optical fiber communications link.

2.1.1 Optical Impairments
The influence of optical impairments is reflected in the change of signal ampli-
tude, phase and polarization. Generally, linear impairments are usually considered,
typically amplifier spontaneous emission (ASE) noise, chromatic dispersion (CD),
polarization mode dispersion (PMD), and phase noise (PN).
ASE noise comes from the optical amplifiers in the transmitter and in the channel.
In these amplifieres, stimulated emission occurs when the activated particles interact
with incident photons of a specific frequency, emitting new photons with the same
phase, frequency, polarization and propagation direction as the incident light [6].
But at the same time, the activated particles can also spontaneously drop to a
lower energy level, and emit incoherent light [7]. Because the number of activated
particles is constant, the more spontaneous emission photons, the less the activated
emission photons, results in less amplified power. Because only this noise affects the
amplitude of the signal, the optical signal-to-noise ratio (OSNR) that compares the
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2. Background

power of the desired signal to the power of background noise is used to represent
the magnitude of this noise.
CD comes from the phase change caused by the transmission speed of the optical
signal [8]. The optical signal emitted by the light source itself may have a bandwidth,
and the optical fiber can also cause the dispersion of the optical signal. Fiber
dispersion is divided into material dispersion and waveguide dispersion. Material
dispersion comes from that refractive index of silica used to make fiber varies with
the frequency of optical signal. Therefore, when the optical signal has a bandwidth,
the transmission of the optical signal is asynchronous. Waveguide dispersion comes
from the geometric structure of the optical fiber, which ultimately leads to different
wavelengths of light travel different path lengths. CD only affects the phase of the
light and can be measured by the group velocity dispersion parameter D.
PMD is caused by the asymmetry of the optical fiber [8]. When two orthogonal po-
larization components cannot propagate synchronously, the phase and polarization
of the optical signal will change.
PN originates from the laser in the transmitter and the local oscillator in the receiver.
This noise can be measured by linewidth [8]. The smaller the linewidth is, the better
quality the laser has. PN has no effect on the performance of optical systems using
direct receivers, because direct receiving only sensitive to light intensity. Like CD,
phase noise only affects the phase of the optical signal.

2.1.2 Optical Receiver
The structure of a common coherent optical receiver is shown in Fig. 2.2. The DSP
module first performs analog-to-digital conversion and re-sampling of the acquired
analog signal. After that, because I and Q channels of the received signal can-
not be absolutely orthogonal, the signal needs to be orthogonalized to restore the
original signal. CD is one of channel impairments, and can be compensated by a
CD equalizer. Subsequent timing recovery and constant modulus algorithm (CMA)
equalization determine the length of each symbol and eliminate inter-symbol inter-
ference. The two DSP modules after CMA equalizer will use the modulation format
to obtain the phase information between the symbols to calculating frequency offset
and remove the phase noise. The last step of DSP is forward error correction, then
the signal will be sent to recipient.

C
ohrent

R
eceiver 

R
esam

pling

O
rthogonalization

C
D

 C
om

pensation

Tim
ing Equalizing

Tim
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C
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Figure 2.2: Block diagram of a common optical receiver.
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2.2 Modulation Format
Information needs to be modulated before being transmitted to become a signal suit-
able for transmission. Multiple phase shift keying (MPSK) and multiple quadrature
amplitude modulation (MQAM) are commonly used modulation formats in digital
communications, and they are also the most frequently involved identification ob-
jects in MFI [3, 9, 10, 11]. MPSK is a phase modulation method. The amplitude
and frequency are taken as constants during the modulation process. The carrier
phase will switch between two different values according to the two levels of the
digital baseband signal. M represents how to divided 2π equally. Generally, binary
phase shift keying (BPSK), quadrature phase shift keying (QPSK), and 8 phase
shift keying (8PSK) are commonly used. MQAM is a technique of joint amplitude
and phase modulation. Information bits are transmitted through the amplitude and
phase of the carrier. The modulated signal can be regarded as the sum of two mu-
tually orthogonal carrier modulation signals. This method has very high spectrum
efficiency. M here has the same meaning as the previous. Generally, 16 quadrature
amplitude modulation (16QAM), 32 quadrature amplitude modulation (32QAM)
and 64 quadrature amplitude modulation (64QAM) are commonly used.
This project will involve four modulation formats: QPSK, 16QAM, 32QAM and
64QAM. The corresponding constellation diagram after the signal is modulated is
shown in Fig. 2.3. The points in the complex plane include the phase and amplitude
information of the modulated symbols.

(a) (b) (c) (d)

Figure 2.3: Constellation diagram of (a) QPSK, (b) 16QAM, (c) 32QAM, (d)
64QAM.

2.3 MFI Methods
As introduced in previous section, the recovery of phase noise requires the informa-
tion of modulation formats, so MFI will be added before calculating frequency offset.
In this step, most of CD is compensated, but there are still ASE noise and phase
noise. The MFI method should be able to tolerate these three noise types. The MFI
methods that satisfy the requirements can be roughly divided into two categories:
One category is to use feature extraction to realize a blind recognition of the signal.
The other one is to use probability theory and the likelihood method [12].
The selection of the characteristics of the first category is very important. The
complexity and accuracy vary with different features. In the literature, one research
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2. Background

work [3] is based on analyzing the information entropy of signal’s amplitude. The
computational complexity of this method is very low and it can identify commonly
used modulation modes. In addition, there are methods of identifying with ampli-
tude circle number [10] and Fourier series fitting method [9], which also has a very
low computational complexity. In the design of the classifier, some researchers are
now committed to combining machine learning and MFI. One study has proposed
that the variance of the received signal and OSNR can be used to train a neural
network [13]. Other researchers use a deep neural network to distinguish modulation
formats based on amplitude histogram [11]. There are also researchers who directly
feed a wireless signal into training, allowing allow automatic learning [14]. The
second category is based on testing hypotheses and Bayesian methods as the theo-
retical basis, and the optimal solution can be obtained when the error classification
probability is the smallest [15].

Generally, the second category is more complex, but the accuracy is not higher
than the first category [12]. Therefore, after comparing the complexity of hardware
implementation in the first category of methods, three methods using characteristics
extraction were selected for further comparison.

2.3.1 Method 1: Information Entropy Based Method
The first method is to use the information entropy (IE) of the received signal am-
plitude as a selected characteristic to identify the modulation format [3]. As shown
in Fig. 2.4, QPSK, 16QAM, 32QAM, and 64QAM signals correspond to different
amplitude distributions.

(a)
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Figure 2.4: Amplitude histogram of (a) QPSK, (b) 16QAM, (c) 32QAM, (d)
64QAM when OSNR is 20 dB.
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If the x-axis in Fig. 2.4 is divided into several bins, then for different modulation
formats, the probability of the amplitude of the received signal falling on these bins
is different. Eq.(2.1) gives a method to calculate information entropy, where pi is
the probability of falling in different areas.

H(x) =
n∑

i=1
−pi(x) logk pi(x) (2.1)

It can be seen that when the number of bins, n, changes, the probability value
corresponding to different bins changes, and the calculated information entropy also
changes accordingly. As shown in Table 2.1, when the number of bins is 7, the
difference in information entropy corresponding to different modulation formats is
the largest. So in this method, the number of bins is set to 7 for best identification.
These different values in Table 2.1 will be used in later chapters as thresholds to
identify different modulation formats.

Table 2.1: Information entropy of different modulation formats with different num-
ber of bins.

Modulation format H3/bit H5/bit H7/bit H9/bit
QPSK 0 0.71 0 0.11
16QAM 1.51 1.96 1.51 1.93
32QAM 1.56 2.26 2 2.5
64QAM 1.47 2.25 2.34 2.66

In the receiver, when a new sample is obtained, the MFI module will update the
probability in different bins. After receiving a certain number of symbols, informa-
tion entropy will be calculated. Finally, the MFI module will predict the modula-
tion format based on different preset thresholds. This method can be applied to
28 GBaud symbol rate in simulation. If 7% forward error correction is used, this
system can identify QPSK, 16QAM, 32QAM, and 64QAM at the lowest OSNR of
12 dB, 18 dB, 22 dB, and 24 dB [3]. Because the amplitude is used for calculation,
this method is not sensitive to the phase noise caused by the linewidth, and has a
certain tolerance for residual CD.

2.3.2 Method 2: ANN-Based Method

The second method is to use an artificial neural network (ANN) as a classifier, and
the amplitude histogram (AH) as the feature to identify modulation formats as
presented by Khan in a recent paper [11]. The paper claims that this method can
be applied to 28 GBaud QPSK, 14 GBaud 16QAM, and 20 GBaud 64QAM when
the linewidth is 100 kHz. And the ranges of different modulation formats are QPSK
10 ∼ 23 dB, 16QAM 17 ∼ 26 dB, 64QAM 25 ∼ 37 dB.

7



2. Background

input vector 
(80 x 1)

Hidden layer-1 
(30 neurons)

Hidden layer-2
(10 neurons)

output vector 
(3 x 1)

.

.

.

.

.

.
.
.
.

Figure 2.5: Network structure of the proposed two hidden layers ANN [11].

The structure of the neural network proposed is shown in the Fig. 2.5. As the input
of the used ANN is the amplitude histogram, the amplitude histogram is transformed
to a matrix of size 80×1 where each value is the number of symbols whose amplitude
is in the current bin. And the output generated from the ANN is an output matrix
of size 3 × 1, representing the three different modulation formats. The activation
function of the two hidden layers is sigmoid [16], and the activation function of the
output layer is softmax [16].

2.3.3 Method 3: CNN-Based Method
The hardware complexity of the third method is much higher than that of the first
two methods because it is using convolutional neural network (CNN) as a classifier,
but it can monitor OSNR while performing MFI. This method uses a constellation
diagram as the selected feature and the CNN is as shown in Fig. 2.6 [17]. This
method can be used to identify 6 modulation formats with 25 GBaud baudrate,
QPSK, 8PSK, 8QAM, 16QAM, 32QAM, and 64QAM. The first five modulation
formats can identify OSNR from 15 ∼ 30 dB, and the OSNR range for 64QAM is
20 ∼ 35 dB.

The input data is a grayscale image with a resolution of 28×28. The output data is
a matrix of 22×1, where the first six bits represent the different modulation formats,
and the last 16 bits represent the estimated value of OSNR. The CNN has 7 layers
in total, including one input layer, two convolutional layers, two pooling layers, one
full-connection layer, and one output layer.

2.4 Activation Functions

An NN usually contains non-linear activation functions sigmoid and softmax [16].
In FPGA implementation, how to optimize the architecture so that the nonlinear
functions can be accurately implemented is a direction of discussion.

8
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6 24

conv1

12 8

conv2

1 19
2

f1

1 22

softmax

Figure 2.6: Network structure of the proposed CNN [17]. Input layer: 28 × 28,
convolution layer 1 (C1): six 24× 24, pooling layer 1 (P1): six 12× 12, C2: twelve
8× 8, P2: twelve 4× 4, Fully connected layer 1 (F1): 192× 1, Output layer: 22× 1

2.4.1 Sigmoid
The sigmoid function is a common activation function, which can be expressed as
f (x) = 1

1+e−x . The hardware implementation methods of this nonlinear function,
in the research literature, are, Taylor series, piecewise linear (PWL) approximation,
polynomial fitting, lookup table (LUT), and CORDIC [18, 19, 20, 21]. The way to
use the Taylor expansion is to expand the e−x, and the result is e−x = 1− x+ x2

2! −
x3

3! + ... + (−1)nxn

n! . By selecting the number of terms used in sigmoid, the accuracy
of this function can be determined.
When using PWL approximation to implement the sigmoid function, the choice of
function determines the accuracy of the fit. One set of functions having average
deviation of 0.01412 are shown in Table 2.2.

Table 2.2: PWL approximation of sigmoid [19].

x y
0 ≤ |x| < 1.0 y = 0.25 · |x|+ 0.5
1.0 ≤ |x| < 2.375 y = 0.125 · |x|+ 0.625
2.375 ≤ |x| < 5 y = 0.03125 · |x|+ 0.84375
|x| ≥ 5 y = 1

9



2. Background

Similar to PWL, polynomial fitting also needs a set of equation. When average
deviation is 0.00769, the functions can be chosen as Table 2.3. Because sigmoid has
the property f (x) = 1−f (−x) , x < 0, only the polynomial fitting when x is greater
than 0 is listed in the table.

Table 2.3: Polynomial fitting of sigmoid [19].

x y
0 ≤ x < 4.0 y = −0.03125 · x2 + 0.25 · x+ 0.5
x ≥ 4 y = 1

Another novel structure was proposed in [22]. The input data can be approximated
as n lnn, so that the calculation of the exponential function can be transformed into
a shift operation. Furthermore, considering the difference between x and n lnn, the
sigmoid function can be calculated using Eq. (2.2).

f(x) = f (n ln 2) + f ′ (n ln 2) ∆x

= f (n ln 2) + (f ((n+ 1) ln 2)− f (n ln 2))
(
x

ln 2 − n
)

(2.2)

In Eq. (2.2), f(n ln 2) can be obtained by the bit operation of the integer part of the
input, f ((n+ 1) ln 2)−f (n ln 2) is a series of fixed values, which can be represented
by 2m1 + 2m2 and convert the multiplication into shift. The average error of this
method can be reduced to 0.0016.

Using LUT is a simple way to implement sigmoid. According to the targeted accu-
racy, output value of sigmoid is stored in LUT. High precision requires large memory.
CORDIC is using hyperbolic function to calculate sigmoid. This method gains ac-
curacy at the cost of processing time. To achieve a deviation lower than 0.005, 50
clock cycles are needed [21].

2.4.2 Softmax
The softmax function is widely used in the output layer of classification prob-
lems. The output layers of the two neural networks mentioned in the previous
section both use softmax as the activation function. The definition of softmax is
f(xi) = exi∑N

j=1 exj
(i = 1, 2, . . . , N). The calculation first needs the exponential value

of each input, N is the total number of inputs. Similar to sigmoid, the calculation of
exponential function can also be calculated by Taylor series [23], PWL approxima-
tion [24], polynomial fitting and LUT [25]. After the exponent value is obtained, the
values can be summed and calculated the final probabilities. Unlike sigmoid, when
using PWL approximation, polynomial fitting and LUT, the range of the fitted ex-
ponential function needs to be determined according to the range of the input data.
Because softmax increases dramatically when x is greater than 0, the maximum
value of the output can be taken to infinity. One possible choice of PWL function
when x is ranging from -2 to 2 is as shown in Table 2.4.

10



2. Background

Table 2.4: PWL approximation of softmax [24].

x y
−2 ≤ x < 0 y = 0.4323 · x+ 1
0 ≤ x < 2 y = 3.1945 · x+ 1

In addition to the above methods which are similar to sigmoid, researchers have
proposed a new method [26].

f(xi) = exp
(

ln
(

exi∑N
j=1 e

xj

))

= exp
xi − ln

 N∑
j=1

exj

 (i = 1, 2, . . . , N) . (2.3)

Softmax can be transformed into Eq. (2.3). The exponential function can be ex-

pressed as eyi = 2yi·log2e = 2ui+vi =

2vi � ui ui > 0
2vi � (−ui) ui ≤ 0

, where ui = yi · blog2ec is

an integer, and vi is the decimal part of yi · log2e. When vi is less than 1, 2vi can
be approximated as vi + d. The logarithmic part of Eq. (2.3) can be expressed as
Eq. (2.4), where w and log2 k come from ∀F > 0,∃!(k, w) : F = 2w · k, k ∈ [1, 2).
w is the position of the highest 1 in the binary number. From the range of k, the
logarithmic term can be expressed as log2k ≈ k− 1. After formulating softmax into
the above equations, multipliers and dividers can be replaced by adders and shift
registers.

lnF = ln 2 · log2F = ln 2(w + log2k)). (2.4)

2.5 Chalmers Optical Fiber Channel Emulator
The hardware realization of the optical fiber system involves fixed-point mapping
of floating-point operations and a large number of DSP operations. At the same
time, an FPGA has limited resources. As the complexity of the system increases,
the hardware overhead will gradually increase. The Chalmers optical fiber channel
emulator(CHOICE) is an emulator developed based on hardware[27] which gives a
good solution for hardware implementation of optical fiber system. This emulator
contains most of the components of the optical fiber system used in this project, and
can be used in real-time FPGA test. A more detailed introduction to the CHOICE
system is in section 4.1.
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2. Background
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3
Simulation of MFI Methods

In chapter 2, three different MFI methods are introduced. In this chapter, these three
methods will be compared with each other using MATLAB simulations based on the
three impairments mentioned in the previous section. These three impairments are
affected by three parameters: SNR, residual CD, and linewidth. After discussing
the effects of each parameter separately, the worst case for one MFI method can be
obtained.

3.1 Residual CD
The implementation of method 1 depends on the chosen thresholds. With the num-
ber of symbols is 2500, the linewidth is 100 kHz, the system baudrate is set to 28
GBaud, and parameter D of fiber is 16 ps/(nm×km), as the residual CD changes,
the information entropy changes with SNR as shown in Fig. 3.1.
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Figure 3.1: The values of H7 vary with different OSNR when the residual CD is
(a) 0 ps/nm, (b) 32 ps/nm, (c) 64 ps/nm, (d) 96 ps/nm in method 1.
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3. Simulation of MFI Methods

As the residual CD continues to increase, the difference between the entropy values
of modulation formats decrease. This effect is more obvious in QAM than in QPSK.
Considering that there will be more impairments in the real environment, the differ-
ence among the information entropy of the four formats will be further reduced. So
in this case, this method has a residual CD of 64 ps/nm as the worst case. After this
value is exceeded, the curves of information entropy may overlap with each other in
a real environment and this method cannot work properly.

Table 3.1: The setting of different impairments in method 2. The SNR and the
residual CD are randomly chosen in the given ranges

Format Baudrate SNR Residual CD Linewidth Samples
QPSK 28 GBaud 7 ∼ 30 dB 0 ∼ 96 ps/nm 100 kHz 500
16QAM 28 GBaud 11 ∼ 30 dB 0 ∼ 96 ps/nm 100 kHz 500
32QAM 28 GBaud 13 ∼ 30 dB 0 ∼ 96 ps/nm 100 kHz 500
64QAM 28 GBaud 16 ∼ 30 dB 0 ∼ 96 ps/nm 100 kHz 500

0 50 100 150 200 250

residual CD (ps/nm)

0.4

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u

ra
c
y

new net

original net

Figure 3.2: The accuracy varies with different residual CD when applying original
ANN and new ANN in method 2.

Method 2 uses ANN as a classifier. Before it can be used, a training set needs to be
generated for the ANN to be trained. The parameter selected when generating the
training set is shown in Table 3.1. Each modulation format has 500 training samples
and each sample contains 2500 symbols. The SNR and residual CD in each sample
is randomly selected within the range. The range of the residual CD is obtained
by testing several different ranges with the same other parameter. Large residual
CD can lower the accuracy of identification, so for efficiency and high accuracy,
we choose the residual CD in 0 ∼ 128 ps/nm. Considering that when D is 16
ps/(nm×km), the inference set uses the same parameter settings but the residual
CD is fixed between 0 ∼ 240 ps/nm and the number of samples in each format is
reduced to 200. The accuracy of method 2 is shown by the yellow curve in Fig 3.2.
For the residual CD values lower than 112 ps/nm, accuracy is more than 90%.
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3. Simulation of MFI Methods

The network designed in method 2 in the paper [11] has two hidden layers, each
with 30 perceptrons and 10 perceptrons. In order to minimize the hardware over-
head, we now attempt to reduce the size of the ANN. The size of the ANN can
be reduced in two ways: reducing the number of layers, and reducing the number
of perceptrons in each layer. In this project, reducing the number of layers greatly
reduces the accuracy, so we keep the two hidden layers but instead reducing the
number of perceptrons. After trying to train multiple ANNs of different sizes with
the same training set, the final size of the ANN was reduced to 10 perceptrons and 5
perceptrons in each layer. The result of this less complex ANN is shown in Fig. 3.2
as the new net (blue line). As shown here, the sensitivity on residual CD does not
change significantly as the network is simplified.

Table 3.2: The setting of training sets when residual CD is fixed in method 3.
Only SNR is randomly chosen within the given range.

Format Baudrate SNR Linewidth Samples
QPSK 28 GBaud 7 ∼ 16 dB 100 kHz 100 per SNR
16QAM 28 GBaud 11 ∼ 20 dB 100 kHz 100 per SNR
32QAM 28 GBaud 13 ∼ 22 dB 100 kHz 100 per SNR
64QAM 28 GBaud 16 ∼ 25 dB 100 kHz 100 per SNR

Table 3.3: The MFI accuracy varies with different residual CD in method 3.

Residual CD QPSK 16QAM 32QAM 64QAM
0 ps/nm 1 0.99 1 0.97
32 ps/nm 0.99 0.99 1 1
64 ps/nm 1 0.99 1 0.99
96 ps/nm 1 1 1 0.97

Method 3 uses CNN to classify the grayscale image of the constellation diagram.
The training set is set as Table 3.2 when the impact of residual CD is studied. The
inference sample set also has the same settings as for training set. The monitored
OSNR ranges are changed to QPSK 7 ∼ 16 dB, 16QAM 11 ∼ 20 dB, 32 QAM
13 ∼ 22 dB, and 64QAM 16 ∼ 25 dB. The accuracy of method 3 corresponding to
different residual CD is shown in Table 3.3. The error of OSNR predicted is shown
in Fig. 3.3. It can be seen from the figure that as the residual CD increases, the
accuracy of the prediction is constantly decreasing. And the accuracy of predicting
high SNR is generally lower than that of predicting low SNR.

3.2 Phase Noise
As mentioned in chapter 2, because method 1 and method 2 use amplitude his-
tograms as input, they are insensitive to PN. This property was also tested during
the simulation. When the residual CD is 64 ps/nm and the baudrate is 28 GBaud,
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3. Simulation of MFI Methods
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Figure 3.3: The difference between the predicted OSNR and the real OSNR varies
with different residual CD in method 3. (a) is QPSK, (b) is 16QAM, (c) is 32QAM,
(d) is 64QAM.
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Figure 3.4: The values of H7 vary with different OSNR when the linewidth is (a)
10 kHz, (b) 100 kHz, (c) 1 MHz in method 1.

the linewidth is changed between 10 kHz, 100 kHz, and 1 MHz in turn. The infor-
mation entropy of method 1 varies with SNR as shown in Fig. 3.4.
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3. Simulation of MFI Methods

Similarly, method 2 uses the same impairments setting as before but changes the
linewidth between 10 kHz, 100 kHz, and 1 MHz. The accuracy changing with
residual CD is shown in Fig. 3.5.

0 50 100 150 200 250

residual CD (ps/nm)

0.4

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u

ra
c
y

lw - 10 kHZ

lw - 100 kHZ

lw - 1 MHZ

Figure 3.5: The accuracy vary with different residual CD when the linewidth is
(a) 10 kHz, (b) 100 kHz, (c) 1 MHz in method 2.
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Figure 3.6: The difference between the predicted OSNR and the real OSNR varies
with different linewidth in method 3. (a) is QPSK, (b) is 16QAM, (c) is 32QAM,
(d) is 64QAM.

The constellation diagram used in method 3 will change with different linewidths.
When considering the residual CD of 64 ps/nm and the baudrate of 28 GBaud, the
accuracy of the MFI is shown in Table 3.4, and the accuracy of the predicted OSNR
is shown in Fig. 3.6. As the linewidth increases, the overall prediction error will
increase. From the simulation results obtained above, we find NN-based methods
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3. Simulation of MFI Methods

Table 3.4: The MFI accuracy vary with different residual CD in method 3.

Linewidth QPSK 16QAM 32QAM 64QAM
10 kHz 1 1 0.99 0.98
100 kHz 1 0.99 1 0.99
1 MHz 1 1 1 0.99

have a better tolerance for residual CD, and the linewidth has little effect on all
methods. For the smallest SNR used, because method 1 needs to rely on the selection
of the threshold to perform MFI, the lowest SNR value that can be used is not as
low as the other two NN-based methods.
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4
Architecture

This chapter introduces the specific architectures that were developed for two dif-
ferent MFI methods. While all three methods reviewed show good performance, we
select the first two methods for implementation. This is because small area and low
power consumption are the main targets of our MFI hardware design. First, this
chapter introduces the hardware structure of the entire optical fiber system, and then
the specific implementation of the two MFI methods are shown. All components
have detailed descriptions.

4.1 Overview
A complete system is shown in Fig. 4.1, which has all corresponding parts to the pre-
vious simulation on MATLAB. The transmitter includes a random-number generator
(RNG), a modulator and a root-raised-cosine filter (RRC). The channel impairments
include additive white gaussian noise (AWGN), phase noise (PN) and CD. AWGN
module generates ASE noise as it has the same distribution. Both two modules
are from the CHOICE system except for the CD which is developed in this project
and which will be described in detail in section 4.1.1. As shown in Fig. 4.1, each
impairment is an independent module, which can be added freely. And also, the
parameters that control impairments are settable. The MFI block can work under
a lower frequency in the system to save power in a practical situation.

RNG Modulator RRC AWGN PN CD

Transmitter

IQ Selector

Channel Receiver
CHOICE

MFI

Figure 4.1: The overview of an optical fiber system in hardware environment.

The period of the random bits in RNG is 264−1, and a 12-bit sequence is generated
in each clock cycle. Then the sequence is modulated. The modulation formats
which are allowable are QPSK, 16QAM, 32QAM and 64QAM. The modulator in
MATLAB follows the normalization of average power when generating symbols.
But in the VHDL design, in order to reduce the hardware overhead, the design only
limits the maximum amplitude of the symbols. When the maximum amplitude is
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4. Architecture

set to 1, the I and Q components can be represented by a signed 8-bit data. After
modulator, the signal goes to an RRC to simulate the process of reducing inter-
symbol interference in the real transmission. At the same time, it is upsampled
to generate two samples per symbol. The parameters used in AWGN, CD, and
PN are calculated in MATLAB and placed in the LUTs for quick access. Thus,
the parameters can be changed during VHDL simulation or FPGA emulation. The
signals transmitted from the channel to the MFI are one-channel data, and provides
two data in the I and Q directions respectively within one clock cycle.

4.1.1 CD
The transfer function of CD in the time domain can be expressed as Eq. (4.1),
where D represents the dispersion coefficient of the fiber, λ is the wavelength, and
z is transmitted distance [28].

hCD =
√

c

jDλ2z
exp ( jcπ

Dλ2z
t2) (4.1)

According to chapter 2, the CD impairment comes from the residual electromagnetic
waves of the previous symbols. The longer the distance, the more influence from
the previous symbols is received. In order to emulate a practical system, to find the
residual CD we would need to calculate the long-distance CD on the channel and
perform CD compensation at the receiver. But for simplicity, we directly use the
short-distance CD instead.

(I + jQ) · (hI + jhQ) = (IhI −QhQ) + j(IhQ + IhQ) (4.2)

The transfer function can be replaced by FIR filters. The number of taps is deter-
mined by the residual CD. A large residual CD requires large taps to ensure that the
output is similar from the convolution of the time domain system function. Because
the I and Q components of the signal can affect each other as Eq. (4.2), Four FIR
filters are needed. The structure is shown in Fig. 4.2.

filter I

filter Q

filter I

filter Q

I

Q
add

+

-

I

add Q

+

+

Figure 4.2: The structure for CD module.

4.2 Architecture for Method 1
The implementation of method 1 is composed of two modules as shown in Fig. 4.3.
First, the number of symbols whose amplitudes fall in given bins are counted. This
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process produces an amplitude histogram (AH) with a low resolution. And then, the
possibilities of each bin and information entropy are calculated. The architecture of
this method is relatively simple, and the entire process is sequential.

Calculate AH Calculate IE

I

Q
mode

Figure 4.3: Block diagram of method 1.

4.2.1 Calculate AH
To generate an AH, we first need to know the amplitude of the symbols. The
calculation of amplitude is given in Eq. (4.3). From the formula, the implementation
requires two multipliers and a square root module, which is relatively difficult to
implement.

|I + jQ| =
√
I · I +Q ·Q (4.3)

In order to simplify the structure, the alpha max plus beta min algorithm is used
here to calculate the amplitude [29]. The algorithm is shown in Eq. (4.4), where
max is larger absolute value of the I and Q components, and min is the smaller
absolute value. α0, α1, β0, and β1 have multiple values to choose from. As mentioned
in section 4.1, the CHOICE system has a different way of generating modulated
symbols, so the number of bins must be retested during hardware simulation. The
number of bins can only be 3, 5, 7, and 9, so accuracy requirements in this process
are low. The selected values are shown in Table 4.1, and the corresponding largest
error is -2.65%.

|z| = max(|z0|, |z1|),
|z0| = α0Max+ β0Min,

|z1| = α1Max+ β1Min. (4.4)

The AH module is composed of a register array. According to the magnitude of the
received amplitude, the corresponding register is updated by one. After collecting
enough symbols, the value in the register array will be transmitted to next module.

Table 4.1: Parameter in alpha max plus beta min algorithm.

α0 β0 α1 β1
1 0 7/8 17/32

4.2.2 Calculate IE
As shown in Eq. (2.1), the calculation of information entropy is an accumulation
process, and the object is the probability of each bin multiplied by the negative
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logarithm value of this probability. In order to reduce the additional resource con-
sumption caused by the probability calculation, the total number of symbols used
can be set to 2n. Therefore, the division operation in binary can be replaced by
simple shifts.
The log function can be approximated using the method of calculating lnF in
Eq. (2.4). The structure of the entire information entropy (IE) module is shown
in Fig. 4.4. After detecting the highest 1 bit in the detector, w and k − 1 can be
calculated and added together to get the logarithmic result. When finishing calcu-
lating the data in all bins, the information entropy can be obtained at the next clock
edge.

detector

shift
add mult

reg

add
Pi

Hbin

clk
w

k-1

Figure 4.4: Block diagram of module to calculate information entropy.

4.3 Architecture for Method 2
Same as method 1, the input in method 2 is also an amplitude histogram. When
the maximum amplitude is limited to 1, the AH of QPSK is more concentrated on
the right side of the axis, and the AH of QAMs are more concentrated on the left.
While the AH of QPSK has only one peak, there are more than three peaks are in
QAMs. So a smaller number of bins can be chosen when drawing the histogram.
Smaller AH can retain the characteristics of all modes but reduce the input size and
hardware overhead.
Method 2 calculates the AH in the same way as method 1. But because method
2 uses more bins to represent AH, so the accuracy required when calculating the
amplitude is higher. The parameters of the alpha max plus beta min algorithm here
are set to the values shown in Table 4.2. Compared with method 1, this component
has two more multipliers, but the largest error is reduced by 1.52% [29].

Table 4.2: Parameter in alpha max plus beta min algorithm.

α0 β0 α1 β1
127/128 3/16 27/32 71/128

4.3.1 ANN
The optimized ANN used in this project is shown in Fig. 4.5, including a prepro-
cessing module and a three-layer network. The preprocessing module scales the
data between -1 and 1 and the scaling parameters can be obtained from the network
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trained by MATLAB. As discussed above, the smaller number of bins can be applied
to ANN, so the number of input layers would be adjusted in this hardware design.

AH
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Figure 4.5: Optimized ANN used in method 2.

For each neuron, the internal structure is shown in Fig. 4.6. Each neuron needs to
add the weighted inputs to its own bias, and use this value as input to the activation
function to obtain the final output. According to this structure, in order to reduce
the hardware overhead, we can compute three layers serially and reuse the structure
for one layer. The detailed inner structure of the ANN implementation we developed
is shown in Fig. 4.7.

sum

w0

w1

wn-2

wn-1

a0

a1

an-2

an-1 b

f Oi

Figure 4.6: Structure of each neuron.

One layer of this neural network can be replaced by 10 12-bit registers. The initial
value in the register is the bias of this neuron. Each input from the AH can be
sequentially transferred to NN. After preprocessing, the AH input will pass through
10 multiplier arrays, and get added to the data in the registers. After input data
looping through all AH bins, the value of the first layer input to the activation
function can be obtained. The output value for the activation function will also
be stored in 10 12-bit registers. Only one activation function is instantiated, and
this instance of activation function is reused for all neurons. Once the first layer is
finished, the register storing the output of the activation function will be used as
the input to the next layer. The number of neurons in the second hidden layer is
5 neurons fewer than in the first hidden layer. So the unused registers will be set
to 0 to reduce the flipping caused by multipliers. The third layer is also calculated
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in a similar way, but it uses a different activation function. Unlike the sigmoid, the
softmax calculates all the input at the same time.

sub

preprocess LUT

Lowest Value

mult

Coeff

register

data buffer

multi

add

data buffer

weight LUT

bias LUTsigmoidsoftmax

parallel calculations

preprocess

network

mode

Figure 4.7: Structure of our ANN implementation. All neurons are computed
serially to save on hardware resources.

4.3.1.1 The Sigmoid Module

In chapter 2, several methods to realize sigmoid are proposed, and one of them is
PWL fitting. In our NN implementation, PWL fitting of Table 2.2 is used to reduce
hardware overhead. In Table 2.2, x is multiplied by 2−n, which can be implemented
as a right shifter in the hardware, reducing the use of multipliers. For negative
input, the properties of f(x) = 1 − f(x) are used. The structure of the sigmoid is
shown in Fig. 4.8. The overall structure is relatively simple, and the calculation can
be completed within one clock cycle.

4.3.1.2 The Softmax Module

chapter 2 also gives different softmax approximation methods. PWL, which is used
in sigmoid implementation, is not suitable for the softmax in our optimised ANN.
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Figure 4.8: Block diagram of sigmoid module.

Because when input data change from 7.9 to −8, PWL requires parameters ranging
from 2−11 to 211. Therefore, another method introduced in section 2.4.2 is used here.
This method involves the approximation of exponents and logarithms. The loga-
rithmic calculation is almost the same as calculating IE in method 1, except that it
is multiplied by a fixed parameter. The exponential function can also be simplified
into a shift after being converted to 2n. The whole softmax module is shown in
Fig. 4.9. Arrows of different colors represent the transmission direction of data in
different clocks, and a total of 4 clock cycles are required.

EXPD1

EXPD2

EXPD3

EXPD4

S
U
M

LN

P1
P2
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P4

Figure 4.9: Block diagram of the softmax module. Arrows represent the data
flow. Inputs first go through the EXP blocks as shown by the purpure arrow, and
the outputs are summed up and sent to the LN block as shown by the yellow arrow.
After the LN block has done the calculation, data is sent to EXP blocks as shown
by red arrow. Finally, the outputs are generated as shown by the green arrow.
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5
Result

This chapter presents the logic simulation results produced by the design introduced
in Chapter 4, and the test on FPGA. The effect of each impairments will be discussed
separately. In addition, the hardware overhead for the complete design will also be
evaluated.

5.1 Logic Simulation of Method 1
As mentioned in Section 4.2, when the modulator generates a signal with a maximum
amplitude instead of the normalized power, the amplitude histograms of modulation
formats change and the corresponding information entropy is also different. Fig. 5.1
shows the information entropy obtained by the simulation when the numbers of bins
are 3, 5, 7, and 9.
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Figure 5.1: The values of information entropy vary with different numbers of bins
in method 1. (a) 3 bins, (b) 5 bins, (c) 7 bins, (d) 9 bins.

The information entropy values calculated with 5, 7, and 9 bins overlap and only have
small differences when SNR is high. This is because, in hardware implementation,
the distribution of peaks of QAMs is more concentrated, high noise can affect the
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data corresponding to each bin more. Thus the 7 bins that have been tested well
in the MATLAB simulation are not applicable here, and the number of bins will be
set to 3 in the following tests.

0 5 10 15 20 25 30

SNR [dB]

0

0.5

1

1.5

H
3
 /
 b

it

(a)

QPSK

16QAM

32QAM

64QAM

0 5 10 15 20 25 30

SNR [dB]

0

0.5

1

1.5

H
3
 /
 b

it

(b)

QPSK

16QAM

32QAM

64QAM

0 5 10 15 20 25 30

SNR [dB]

0

0.5

1

1.5

H
3
 /
 b

it

(c)

QPSK

16QAM

32QAM

64QAM

0 5 10 15 20 25 30

SNR [dB]

0

0.5

1

1.5

H
3
 /
 b

it

(d)

QPSK

16QAM

32QAM

64QAM

Figure 5.2: The values of H3, information entropy with 3 bins, vary with different
OSNR when the residual CD is (a) 0 ps/nm, (b) 32 ps/nm, (c) 64 ps/nm, (d) 96
ps/nm in method 1.

Corresponding to the MATLAB simulation given in Chapter 3, first the different
dispersion parameters are simulated. When the residual CD is set between 0 ps/nm,
32 ps/nm, 64 ps/nm, and 96 ps/nm, linewidth is 100 kHz, and baudrate is 28
GBaud, and we obtain the results shown in Fig. 5.2. It can be seen that the values of
information entropy calculated on the hardware have the same trend as in MATLAB.

The information entropy will gradually increase as the CD increases. In the software,
the information entropy between different modulation formats at 64 ps/nm can be
well distinguished, and it can reach high accuracy at low SNR. But in hardware,
the residual CD needs to be reduced to 32 ps/nm to ensure identification accuracy,
because the difference between the information entropy value of QPSK and the
information entropy value of 32QAM is very small when residual CD is 64 ps/nm.
But even so, this method does not work well at low SNR.
The influence of the linewidth is shown in Fig. 5.3. From the figure, the test on
hardware has the same result on software. The average value of information entropy
and the range of fluctuations are almost unchanged. In addition, because the data
transmission in the hardware takes time, it’s meaningful to test the minimum num-
ber of symbols required by method 1. According to the requirement given in the
design structure, three sets of data are tested here, 2048, 1024, and 512 and the test
uses 64 ps/nm residual CD, 100 kHz linewidth, and 28 GBaud baudrate. The results
are shown in Fig. 5.4. When the number of symbols is 1024, the average information
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Figure 5.3: The values of H3 vary with different OSNR when the linewidth is (a)10
kHz, (b) 100 kHz, (c) 1 MHz in method 1.
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Figure 5.4: The values of H3 vary with different number of symbols in method 1.
(a) 2048, (b) 1024, (c) 512.

entropy can still be maintained, but the fluctuation of the data increases. When the
number of symbols is 512, information entropy can reach a value similar to other
sets at high SNR. But overall, the number of symbols is too small to work properly.
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5.2 Logic Simulation for Method 2
According to the discussion in Section 4.3, after the modulator is changed, the input
data size can also be adjusted. We select the input size of 50, 60, 70, and 80 (as in
the paper), and the parameter setting for the training set also uses Table 3.1 but the
number of samples change to 20 per SNR per residual CD. The inference sets also
use the same parameter setting but change the residual CD between 0 ∼ 160 ps/nm
and the number of samples to 10 per SNR per residual CD. When the number of
bins is 50, the accuracy of testing the inference set is around 62%, but when the
number of bins is 60, 70, and 80, the accuracy can reach 73%. Therefore, we choose
60 in following simulation. After changing the size of input layer to 60, four residual
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Figure 5.5: The accuracy varies with different OSNR when the residual CD is (a)
64 ps/nm, (b) 96 ps/nm, (c) 128 ps/nm, (d) 160 ps/nm in method 2.

CDs are selected to show accuracy of ANN in detail. When the linewidth is 100 kHz,
and the baudrate is 28 GBaud , the residual CD is fixed at 64 ps/nm, 96 ps/nm,
128 ps/nm, and 160 ps/nm respectively in inferences sets. The test result is shown
in Fig. 5.5. The simulation result shows that when the residual CD is large, the
accuracy fluctuates and the performance drops significantly. This may come from
the error of the activation functions, or it caused by the limitations of the network
itself. In order to reduce the hardware overhead, the method selected for sigmoid
is the PWL approximation that can use shifted to replace multiplication, but the
average error reaches 0.014. And in ANN processing, the data has 8 decimal bits
and the resolution is 0.0039, so the accuracy of the sigmoid affects the accuracy of
ANN. In addition, when ANN gives the wrong identification, the simulation shows
that the data input to softmax has a large difference, which should not be affected
by the accuracy of softmax.
After replacing the sigmoid with the novel structure using n lnn to approximate
input in Section 2.4.1, the simulation result is shown in Fig. 5.6. It can be seen that
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Figure 5.6: The accuracy varies with different OSNR using new sigmoid approxi-
mation when the residual CD is (a) 128 ps/nm, (b) 160 ps/nm in method 2.

when the residual CD is 128 ps/nm or 160 ps/nm, the enhanced sigmoid structure
only has a small impact, so the major limitation is the network itself. The test is
only performed 10 times at each SNR because of the influence of simulation time.
In the following FPGA test, when inference sets have more samples, the influence
of sigmoid can be seen more clearly.
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Figure 5.7: The accuracy varies with different OSNR when the linewidth is (a)10
kHz, (b) 100 kHz, (c) 1 MHz in method 2.

Similarly, the influence of linewidth can also be discussed. When the baudrate is 28
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GBaud, the residual CD is 64 ps/nm, the linewidth changes from 10 kHz to 1 MHz,
the test used the same ANN trained with 100 kHz linewidth for all inferences. From
the results obtained in Fig. 5.7, the linewidth does not affect the accuracy of the
ANN, which is consistent with the analysis in MATLAB.
Like method 1, method 2 also has requirement on the minimum number of symbols.
Because the input data needs to be preprocessed and scaled between -1 and 1 before
sent to ANN, this means that as long as the shape of the amplitude histogram is
the same, the same ANN can be used for the different numbers of symbols. When
method 1 uses amplitude histogram with a small resolution, the number of symbols
can be reduced to 1024 and has the potential to be further reduced. So, when
method 2 has higher resolution, the minimum number of symbols could be about
1000. In order to confirm the results, the result of the small number of symbols will
be tested on the FPGA and given in the next section.

5.3 FPGA Test Results
After completing the simulation, the entire optical fiber system was transferred to an
FPGA board. From the Vivado design tool, the resource utilization of the system
on the VC709 FPGA board can be seen in Table 5.1. It can be seen from the
results that method 1 is very small compared to other modules. According to the
used method 1 structure, the processed data can be obtained after 4 clock cycles.
The hardware implementation structure of method 2 selected in this project has a
structure of 10 multipliers in parallel, one sigmoid and one softmax. The processing
time is 96 clock cycles.

Table 5.1: Resource utilization in FPGA

Module LUT Register Muxes DSP
Transmitter and channel 9260 4903 1576 108
Method 1 328 133 0 1
Method 2 2659 1221 269 12
Method 2 with enhanced sigmoid 2797 1222 263 12

Compared to method 1, method 2 has large differences in hardware overhead and
processing time. If the parallel 10 multipliers are converted into sequential processing
using only multiplier, the hardware overhead would be decreased dramatically, but
the processing time will increase to about 700 clock cycles. If all inputs are processed
in parallel, the result can be calculated in 11 clock cycles, but the number of DSPs
used is up to 600, which will greatly increase the hardware overhead. The hardware
overhead of using the different sigmoid approximation is also given in Table 5.1.
Although the new structure increases the use of LUTs, the change is small. The
utilization of method 2 is much larger than that of method 1, but it is still small
compared with the entire optical fiber system.
The FPGA test result of method 1 of different residual CDs is shown as in Fig. 5.8.
The data here is obtained by testing 1000 times at each SNR point and is trans-
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Figure 5.8: The values of H3 vary with different OSNR when the residual CD is
(a) 0 ps/nm, (b) 32 ps/nm, (c) 64 ps/nm, (d) 96 ps/nm in method 1.
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Figure 5.9: The accuracy with different OSNR when the residual CD is (a) 0
ps/nm, (b) 32 ps/nm, (c) 64 ps/nm, (d) 96 ps/nm in method 1.

mitted by UART. Because the baudrate for UART is 9600 and is much slower than
the processing speed, only the average information entropy is shown in the figure.
According to the average value, the corresponding threshold can be selected to per-
form MFI. Because the values of information entropy under high SNR corresponding
to different residual CDs are different, we choose to give priority to satisfying CD
as 64 ps/nm. The final result is shown in Fig. 5.9. It can be seen that when the
threshold requirement of one residual CD is met, the performances corresponding to
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Figure 5.10: The values of H3 vary with different OSNR when the linewidth is (a)
10 kHz, (b) 100 kHz, (c) 1 MHz in method 1.

other residual CDs drop a lot. It can also be seen that although the MFI accuracy
is very high, the QPSK can only be identified in high SNR. And as the residual CD
increases, the SNR requirement for QPSK becomes higher.
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Figure 5.11: The accuracy with different OSNR when the linewidth is (a) 10 kHz,
(b) 100 kHz, (c) 1 MHz in method 1.

Similarly, in Fig. 5.10, when using the same test setup as in the simulation, the
average information entropy has the same result as in simulation. The accuracy in
Fig. 5.11 shows the fluctuation of information entropy. It can be seen that at high
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Figure 5.12: The accuracy of MATLAB and FPGA test varies with different OSNR
when the residual CD is (a) 64 ps/nm, (b) 96 ps/nm, (c) 128 ps/nm, (d) 160 ps/nm
in method 2.

SNR, the accuracy of 32QAM identification decreases. This is because the choice of
threshold between 32QAM and QPSK will affect the lowest SNR that QPSK can be
identified and the accuracy of identifying 32QAM at high SNR. And although the
FPGA test has chosen a low threshold to sacrifice more QPSK, the accuracy still
be decrease at high SNR for 32QAM due to data fluctuations.
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Figure 5.13: The accuracy of using different sigmoid approximations varies with
different OSNR using new sigmoid approximation when the residual CD is (a) 128
ps/nm, (b) 160 ps/nm in method 2.
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Figure 5.14: The accuracy of MATLAB and FPGA varies with different OSNR
when the linewidth is (a)10 kHz, (b) 100 kHz, (c) 1 MHz in method 2.
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Figure 5.15: The accuracy varies with different OSNR when the number of symbols
changes to 1000 in method 2.

The FPGA test results of method 2 with the residual CD variation corresponding
to the previous simulation results are shown in Fig. 5.12. Here, 1000 inferences
have been performed for each SNR of each format. At the same time, Fig. 5.12 also
shows using AH obtained by simulation to test the same ANN on MATLAB, and
each SNR was tested 10 times. From Fig. 5.12, the performance loss caused by the
hardware on the fixed data length and the approximation of the activation function
is very small on the low residual CD. On the high residual CD, there are more
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obvious changes. The impact of low-precision sigmoid approximation can be seen
more clearly in FPGA test. Here, when residual CD are 128 ps/nm and 160 ps/nm,
the result of using a high-precision sigmoid approximation structure is shown in
Fig. 5.13. It can be seen that the accuracy has only improved a bit. Comparing
the 100% accuracy achieved by the software in Fig. 5.12 and the 98% accuracy at
high SNR in Fig. 5.13, it can be seen that the fixed data length still has a certain
impact on the accuracy. In addition, the test results of linewidth are also displayed
by comparing with the results of MATLAB. Fig. 5.14 shows that the results of the
two test are basically coincident.
As mentioned earlier, method 2 may accept the smallest number of symbols as
small as 1000. In FPGA test, we can multiply the amplitude histogram generated
by 1000 symbols by 2.5 and regard this as the result of 2500 symbols. If the ampli-
tude histogram from 1000 symbols has the same shape as using 2500 symbols, the
ANN trained with 2500 symbols can be used normally. The final result is shown in
Fig. 5.15. It can be seen that in addition to QPSK, the accuracy of other modulation
format has a certain decline. But in general, when the residual CD is small, using
1000 symbols can still bring good results.
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6
Conclusion

In this thesis, we first discussed three methods to perform MFI on a signal whose
modulation format can vary between QPSK, 16QAM, 32QAM, and 64QAM. And
for each method, the effects of different impairments are individually analysed using
MATLAB. After discussing the reliability of those methods in MATLAB, based on
the approximate hardware overhead required to implement different methods, we
selected two methods.
The first one is the conventional method based on calculating information entropy.
This method has a small hardware overhead and a short processing time. But this
method can only be applied to fixed residual CDs or residual CDs with a small
variation range. Also, due to the limitations of the method itself, it cannot achieve
the minimum SNR requirement to identify QPSK. And at a higher residual CD,
the accuracy at high SNR will drop to 98%. This performance loss is caused by the
limitation of the method itself, which cannot be improved by adjusting the resolution
or the number of analysed symbols in the hardware processing.
The second method is to use an ANN to identify AH. Compared with the first
method, this method requires more hardware resources and longer processing time.
But this method can tolerate a higher CD. When the residual CD is 128 ps/nm,
the accuracy within the target SNR range is at least 99%, and this accuracy can be
further improved by increasing the resolution in calculation. When the residual CD
is 180 ps/nm, the accuracy of the ANN will be limited due to the method itself. In
addition, method 1 needs to set different thresholds for different residual CDs, but
method 2 can realize using one ANN for large range of CDs by given the suitable
training set.
This thesis has given two different methods for real-time MFI implementation in the
fiber optical system on FPGA, and a large number of tests have proved the reliability
of these two methods. After knowing the possible modulation formats and channel
conditions of the optical fiber system, we can decide which method should be used.
Method 1 has low hardware overhead but high channel requirements and the method
2 has higher hardware overhead but high impairments tolerance.
Future work may include using these two methods to test more modulation formats,
such as 256 QAM. From the current point of view, the principle of method 1 can
detect more formats. But in the same way, the requirements for channel quality
may be further improved. For method 2, because the AH of 256 QAM and other
modulation formats are still quite different, when training the ANN, if additional
training data is added, the realized ANN is likely to reach the expected goal. But
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also, because the AHs of the high modulation formats like 64 QAM and 256 QAM
are greatly affected by residual CD, the channel requirements of the second method
may also be increased. In addition, the method of this project to achieve residual
CD is to directly generate CD according to the short fiber length. But the actual
system usually uses long fiber and CD compensation. So the influence of residual
CD may change in the real system. The difference can be further discussed and used
to test for two methods.
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