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Server Based Closed Loop Trajectory Control
PER OHLSSON VANESSA OLSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Autonomous drive is rapidly evolving within the automotive industry. Extensive
testing of all active safety functions in all stages of development is necessary before
releasing the AD vehicles in traffic. To ensure productive testing one goal is to
fully automate the testing of the real vehicle. To be able to test the AD functions
in a car, test targets are used to trigger the different functionalities. This thesis
describes the development of a setup to be used in controlling the test targets with
a centralized controller steering targets along given real time updated trajectories.
Mainly a central control strategy, with all computing executed centrally on a server,
is researched and analyzed. The thesis handles modelling, state estimation, control
and communication to create the framework. Both a MPC control strategy and
a P control strategy with a feed forward prediction is investigated. Simulation
results shows that both the P controller and MPC controller successfully controls
the targets along the desired trajectories. Furthermore, it can be concluded that
the performance of the implemented P controller is comparably better than the
performance of the relatively more sophisticated MPC controller. Limitations in
computing power and real time execution constraints lead to only the P controller
being implemented on the real platform.

Keywords: Trajectory Control, MPC, P control, State estimation, Communication,
Bicycle Model, Automated Test Systems

v





Acknowledgements
We would like to thank our supervisors Siddhant Gupta and Francesco Costagliola
for your great support. In addition we extend a warm thanks to Goksan Isil and
Junhua Chang for all help in the more technical matters.
We would also like to thank Paolo Falcone for being our examiner and supervisor
and for the great advise and support throughout the thesis.

Per Ohlsson & Vanessa Olsson, Gothenburg, June 2018

vii





Contents

List of Figures xi

List of Tables xiii

List of Symbols xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions/Objectives . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Modelling of vehicle dynamics 5
2.1 Kinematic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dynamic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 System Identification Implementation . . . . . . . . . . . . . . 9

2.4 Controller Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 State estimation 15
3.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . 16
3.2 EKF implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 EKF Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 EKF Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Control 23
4.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.4 Linear Time Varying (LTV) MPC . . . . . . . . . . . . . . . . 24
4.1.5 MPC implementation . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 P-controller with feed forward prediction . . . . . . . . . . . . . . . . 27
4.2.1 Steering Control . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



Contents

4.2.2 Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Communication 31
5.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Implementation/communication setup . . . . . . . . . . . . . . . . . 32

6 Results 35
6.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 MPC - Full sized car simulations . . . . . . . . . . . . . . . . . . . . 35
6.3 MPC - RC car simulations . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 P control - Full sized car simulations . . . . . . . . . . . . . . . . . . 41
6.5 P control - RC car simulations . . . . . . . . . . . . . . . . . . . . . . 44
6.6 Controller comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.7 Communication - Results . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Discussion 51
7.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusion 53

Bibliography 55

x



List of Figures

1.1 An overview over the proposed setup for the Steer-by-Server system.
In this figure, the wireless communication will be either 1 or 2 for
controlling the targets and 3 or 4 for feedback to the simulator. . . . 2

1.2 The closed loop trajectory control of the targets . . . . . . . . . . . . 4

2.1 Kinematic bicycle model . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dynamic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Comparison of longitudinal velocity between experimental data and

open loop simulation with identified parameters. . . . . . . . . . . . . 11
2.4 Comparison of lateral acceleration between experimental data and

open loop simulation with identified parameters. . . . . . . . . . . . . 11
2.5 Comparison of yaw rate between experimental data and open loop

simulation with identified parameters. . . . . . . . . . . . . . . . . . . 11
2.6 Comparison of trajectory between experimental data and open loop

simulation with identified parameters. . . . . . . . . . . . . . . . . . . 11
2.7 Commanded and actual steering angle. . . . . . . . . . . . . . . . . . 12
2.8 Controller model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Hard iron distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Soft iron distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Measurements, EKF prediction and EKF update of RC car trajectory. 21
3.4 Measurements, EKF prediction and EKF update of RC car longitu-

dinal velocity (ẋ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Measurements, EKF prediction and EKF update of RC car lateral
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1
Introduction

1.1 Background

Autonomous Driving (AD) is envisioned to be the next step to take in order to in-
crease the safety of cars and in traffic. The Swedish government together with other
organizations have a zero vision, that there will be no serious injuries or fatalities in
traffic [2]. Volvo Car Corporation has their own vision 2020, that no one should be
seriously injured in a new Volvo by the year 2020 [3]. To achieve these visions AD is
a subject undergoing intense study in many companies and research institutes. The
goal with AD is that it should outstand the human driving skills and not only be
more comfortable but also excel in safety.

The new AD functions needs to be extensively tested in all stages of development.
Computer simulations opens up for the possibility to run a large number of tests.
Before a new function is released on the market, the function also needs to be tested
in the real vehicle to ensure functionality. These type of tests is employed on a closed
test track in the first stages. To test the AD functions the car needs to be stressed
in order to trigger the functions under test. This can be done e.g. using different
moving targets such as Radio Controlled (RC) cars, full sized cars or lowriders. A
lowrider is a platform on which boxes can be loaded on in order to simulate e.g. the
back of a car or a moose. In many cases this is done manually or in an open loop
control. With today’s technology the testing can be automated to be able to easier
change the test scenarios and to make the testing more effective.

One idea is to use a Steer-by-Server algorithm that uses a simulation software, run
in real time, which provides all targets with real time updated trajectories. The
goal is to steer all targets along these trajectories via a server by sending the control
signals to the test targets, as in Fig. 1.1. When running tests in real time, it is of
high importance to have low computation time of control signal as well as few delays
and information losses in the communication system. To achieve this the communi-
cation setup, using centralized or decentralized computation of control signals of the
targets, will be researched. In Fig. 1.1, wireless communication 1 and 4 will result in
a centralized control setup where the control signal is calculated on the server while
wireless communication 2 and 3 will result in a decentralized setup where the control
signal will be calculated on the targets, or some other combination/mix of this setup.

The targets will be controlled in a closed loop control algorithm to ensure trajectory

1
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Measurements
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Figure 1.1: An overview over the proposed setup for the Steer-by-Server system.
In this figure, the wireless communication will be either 1 or 2 for controlling the
targets and 3 or 4 for feedback to the simulator.

following. This has been done in [4] and [5], in the latter, trajectory following is en-
sured using Kalman filter for state estimation together with a nonlinear asymptotic
tracking feedback controller to steer the vehicle. For accurate control and synchro-
nization of the different targets with respect to the simulation trajectory a state
estimation of the different targets is needed. A nonlinear Kalman filter is a possible
and likely candidate to use as an state observer, as in [6].

In order for a state estimator to track the RC cars and lowriders properly their
motion needs to be modelled. Examples of commonly used motion models are
the Constant Acceleration (CA) model, Coordinated Turn (CT) model and Bicycle
model (BM). In [7] the CT model is used for a robot which is somewhat similar
to a RC car. The research in [8] investigates the CT model and extensions of the
CT model in more detail and concluded that the CT model in combination with a
nonlinear Kalman filter achieves good tracking. In [1] vehicle dynamics is captured
by a BM model.

Similarly to a control server, a fusion server to localize vehicles was proposed in [9].
The delays in the system was often caused by information packets arriving in non
chronological order. The authors suggested rollback as a solution for that problem.
There are different communication protocols and how suitable a protocol is depends
on the application. In this case the question is where we get the best trade off
regarding computation and communication. The system must be designed to be ro-
bust against communication delays and still have fast computation time. The choice
can be made whether to have central or decentralized computation e.g. to send a
actuator signal in form of a control signal for the acceleration and steering angle or
simply send e.g. position to the target and perform all/parts of the computation on
the target CPU.

2



1. Introduction

As previously mentioned, there has been a lot of research in these separate areas
although there is little work considering merging them together in to a complete
system. The challenge is to combine the existing research and find the best setup
for communication vs. control computation.

1.2 Research Questions/Objectives

The objective of this thesis work is to develop a Server based control algorithm to
synchronize the trajectory of test targets with the scenario requirements. This thesis
will focus on the subsystem inside the dashed line in Fig. 1.1, which will be a part
of the whole Server based test system setup. A description of the subsystem focused
on in this thesis can be seen in Fig. 1.2.

The algorithm should use both real time data from the test targets and trajectories,
calculated by a simulator, in order to control the test targets and synchronize their
positions to the trajectories. All this should be operated in real time or offline with
trajectories updated simultaneously by the simulator depending on the Vehicle Un-
der Test (VUT) behaviour and the scenario specification. All test targets should be
controlled by the algorithm operating on a server. Since information will be send to
and from the targets via wireless communication it is of high importance that the
system is robust to delays and information losses. This setup is envisioned to ensure
efficient and reproducible testing of AS and AD functions. In particular the thesis
work will focus on the following aspects/questions:

• How should the test targets be modelled, in order to be controlled? On a
virtual environment, suitable model fidelity of the test targets is necessary
in order to create a control algorithm and steer the test targets along the
trajectories.

• How does the Steer-by-Server algorithm ensure that the trajectories requested
by the simulator are followed by the test targets and the said test targets are
synchronized as per the scenario definition?

• What is the optimal combination of wireless communication and local com-
putation? I.e. should the control signal be calculated centrally and be sent to
the targets through wireless communication. Another alternative is to let the
control signal be calculated on a local computer on the targets and be sent to
the actuator, or a combination of these two? The aim is to make the control
algorithm robust regarding delays and information losses.

3
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Target

Sensor
MeasurementsActuator

Signals
TrajectorySimulator

Controller State
Estimator

Figure 1.2: The closed loop trajectory control of the targets

1.3 Scope
The scope of the thesis is limited to trajectory control. The focus will be on im-
plementing a versatile trajectory control algorithm which can be used to control
different test actors.
The inputs to the algorithm is assumed to be feasible trajectory points, hence gen-
eration of feasible trajectories lies outside the scope of the thesis.
The aim is to use the algorithm on a real actor but this will include further work
and extensive tuning and is not included in the scope.

1.4 Thesis Outline
This thesis is naturally divided in to four parts, a modelling-, a state estimation-,
a control- and a communication part. In Chapter 2 the basics behind modelling is
presented together with some commonly used vehicle dynamic models, the proposed
model and implementation of the proposed model. A brief introduction to state es-
timation is presented in Chapter 3.1.1 followed by theory behind the Kalman filter
and the Extended Kalman filter. In addition, a proposed state estimation setup is
also presented. Two control strategies, a more complex MPC algorithm and a P
control with a feed forward prediction, are presented in theory and implemented in
Chapter 4. Chapter 5 touches upon communication. In this chapter basic theory
regarding relevant communication is presented together with the proposed commu-
nication setup. Results from simulations and communication experiments with a
RC car are presented in Chapter 6. Discussion about the work and results are given
in Chapter 7. The findings are wrapped up and concluded in Chapter 8.

4



2
Modelling of vehicle dynamics

In order to control a vehicle along a trajectory, a model describing the dynamics
is useful. There are various of kinematic models describing lateral motion, all with
different complexity. If planar motion is assumed and the vehicle is not too wide,
the two front wheels can be modelled compressed into one central front wheel and
the rear wheels as one central rear wheel, yielding the bicycle model (BM) [1].

2.1 Kinematic Bicycle Model
The kinematic BM can be seen in Fig. 2.1, it assumes both front and rear wheel
steering. The front wheel steering angle is denoted δf and the steering angle of the
rear wheel is denoted δr. If the rear wheels are fixed, e.g. only front wheel steering,
δr is set to zero.

bb

δf

δr

ψ

β

lr

lfV

X

Y

Figure 2.1: Kinematic bicycle model

The distance from the front wheel to the center of gravity is denoted by lf and the
distance from the rear wheel to the center of gravity is denoted by lr. The slip angle
of the vehicle body is denoted by β. It is defined by the angle between the velocity
at the center of gravity, V , and the longitudinal axis of the vehicle. The angle ψ, the
yaw or heading angle, is defined by the angle between the longitudinal axis of the
vehicle and the longitudinal axis in the global coordinate system. The advantage

5



2. Modelling of vehicle dynamics

with the bicycle model compared to higher fidelity kinematic models is that the
only parameters to identify by system identification is lf and lr, which are easily
measured. However, there is a major assumption regarding the bicycle model, the
velocity vectors at the front and rear wheel are assumed to be in the same direction
as the orientation of the front and rear wheel, i.e δf and δr from the longitudinal
axis of the vehicle. Another way of phrasing this, is that the slip angle at the front
and rear wheel equals to zero. Hence, this assumption is only valid when the vehicle
is moving at relatively low speed (speed up to 5 m/s) since the lateral tire forces are
small at low velocities. When the vehicle is moving at higher velocities, the lateral
tire forces can not be neglected and a model with higher fidelity is necessary for
accurate modelling [1].

Equations for a kinematic bicycle model from [1]:

Ẋ = V cos(ψ + β) (2.1)

Ẏ = V sin(ψ + β) (2.2)
V̇ = a (2.3)

ψ̇ = V cos(β)
lf + lr

(
tan(δf ) − tan(δr)

)
(2.4)

β̇ = tan−1

 lf tan(δr) + lrtan(δf )
lf + lr

 (2.5)

With inputs forward acceleration a, front wheel steering angle δf and rear wheel
steering angle δr.

2.2 Dynamic Bicycle Model
For higher velocities the kinematic model in Eq. 2.1-2.5 does no longer apply. The
dynamic bicycle model (DBM) is similar to the BM but the DBM also takes the tire
forces into account. In contrast to the BM, where V is describing the velocity, in
the DBM the velocities are divided into two components described as a longitudinal
velocity ẋ and a lateral velocity ẏ, both in the body frame. In the DBM the lateral
and longitudinal position and the yaw angle are defined in the same way as for the
BM in a global frame. Assuming front wheel steering only, the DBM is described
by the following differential equations

ẍ = ψ̇ẏ + ax (2.6)

ÿ = −ψ̇ẋ+ 2
m

(Fc,fcosδf + Fc,r) (2.7)

ψ̈ = 2
Iz

(lfFc,f − lrFc,r) (2.8)

Ẋ = ẋcosψ − ẏsinψ (2.9)

6



2. Modelling of vehicle dynamics
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Figure 2.2: Dynamic Bicycle Model

Ẏ = ẋsinψ + ẏcosψ (2.10)

where X is the x-position in the global coordinate frame, Y is the y-position in the
global coordinate frame, ẋ is the longitudinal velocity, ẏ is the lateral velocity, ψ is
the yaw angle and ψ̇ is the yaw rate of the vehicle. m is the mass of the vehicle, Iz
is the yaw inertia, ax is the longitudinal acceleration in the body frame, Fc,f is the
lateral tire force on the front tire and Fc,r is the lateral tire force on the rear tire [1],
[10], [11]. Using a linear tire model, the lateral tire forces can be expressed as

Fc,i = Ciαi (2.11)

where i ∈ {f, r}, Ci is the tire cornering stiffness constant and αi is the slip angle
of the wheel. The slip angle of the front wheel, αf , can be expressed as

αf = δf − θf (2.12)

where δf is the steering angle and θf is the angle between the front tire velocity
vector and the longitudinal axis of the vehicle. The slip angle of the rear wheel can
be expressed as (assuming front wheel steering only)

αr = −θr (2.13)

θr are the angle to the rear tire velocity vector with respect to the longitudinal axis.
The angles θf and θr can be expressed by the following relations, [1]

tan(θf ) = ẏ + lf ψ̇

ẋ
(2.14)
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2. Modelling of vehicle dynamics

and
tan(θr) = ẏ − lrψ̇

ẋ
. (2.15)

By using small angle approximations and combining Eq. 2.11-2.15 the following
expressions for the front and rear tire forces are obtained

Fc,f = Cf
(
δf − ẏ + lf ψ̇

ẋ

)
(2.16)

Fc,r = Cr
ẏ − lrψ̇

ẋ
. (2.17)

Combining Eq. 2.7, 2.8, 2.16 and 2.17 the following expressions of ÿ and ψ̈ can be
derived yielding in the DBM.

ÿ = −ψ̇ẋ+ 2
m

(
Cf
(
δf − ẏ + lf ψ̇

ẋ

)
cosδf − Cr

ẏ − lrψ̇

ẋ

)
(2.18)

ψ̈ = 2
Iz

(
lfCf

(
δf − ẏ + lf ψ̇

ẋ

)
+ lrCr

ẏ − lrψ̇

ẋ

)
. (2.19)

In this model the parameters lf , lr, m, Cf , Cr and Iz needs to be identified. The three
first parameters mentioned are easily measured while the last three are a bit harder
to identify and is with advantage identified with some type of system identification.

2.3 System Identification
System Identification is the process of using observed data and identifying a math-
ematical model of the system, this is done by observing input and output signals
and describing this relation with difference or differential equations. System Iden-
tification can be applied to systems where no prior information about parameters
or system properties are known, Black box modelling, and where some parameters
and properties are known, Gray box modelling. Black box modelling uses models
like ARX, ARMAX but also Artificial Neural Networks (ANN) etc. [12]. Gray box
modelling is often used together with physical or mathematical models to estimate
some unknown parameters.

One of the simplest models is the Linear difference equation model

y(t) + a1y(t− 1) + ...+ any(t− n) = b1u(t− 1) + ...+ bmu(t−m). (2.20)

Viewing Eq. 2.20 in terms of the previous input and outputs signals determining
the next output signal it can be rewritten on the following form

y(t) = −a1y(t− 1) − ...− any(t− n) + b1u(t− 1) + ...+ bmu(t−m). (2.21)

For simplification purposes the signals and parameters can be written in vector
format. The vector containing the parameters to be estimated is written as

8



2. Modelling of vehicle dynamics

θ =
[
a1, ..., an b1, ..., bm

]T
(2.22)

and the vector of the previous input and output signals becomes

φ(t) =
[
−y(t− 1)...− y(t− n) u(t− 1)...u(t−m)

]T
. (2.23)

The output signal at time, t, rewriting Eq. 2.21 with Eq. 2.22 and 2.23 can be
written as

y(t) = θTφ(t). (2.24)

2.3.1 Least Squares
In the case that there is no knowledge about the parameters in θ, but recorded
inputs and outputs for time 1 < t < N , then the recorded data can be denoted

ZN = {u(1), y(1), ..., u(N), y(N)}. (2.25)

The Least square method can be applied by choosing θ such that minimizing the
squared error between the calculated values and the recorded values.

VN(θ) = 1
N

N∑
t=1

(y(t) − ŷ(t|θ))2 = 1
N

N∑
t=1

(y(t) − φT (t)θ)2 (2.26)

θ∗
N = argmin

θ
Vn(θ, ZN) (2.27)

Differentiating Eq. 2.26 and setting equal to zero to find the minimum.

0 = d

dθ
VN(θ, ZN) = 2

N

N∑
t=1

φ(t)(y(t) − φT (t)θ) (2.28)

Rearranging Eq. 2.28 gives

N∑
t=1

φ(t)y(t) =
N∑
t=1

φ(t)φT (t)θ. (2.29)

The estimated value θ∗
N minimizing Eq. 2.27 thus becomes

θ∗
N =

[
N∑
t=1

φ(t)φT (t)
]−1 N∑

t=1
φ(t)y(t). (2.30)

2.3.2 System Identification Implementation
In the dynamic bicycle model Eq. 2.6-2.10 there is a set of parameters, which varies
depending on the vehicle. The parameters m, lf , lr, Iz, Cf and Cr are the parameters
which can vary to fit vehicles with different characteristics. The mass, m, and the
lengths, lf and lr, are easily measured but the yaw inertia, Iz, of the test targets
and the cornering stiffness constants,Cf and Cr, of the tires is hard to measure. A
useful tool to identify the remaining parameters is system identification.
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2. Modelling of vehicle dynamics

Collection of data

To estimate the parameters in Eq. 2.18 and Eq. 2.19 field data was collected. The
different data sets collected was chosen to excite the system as much as possible.
The field experiments was conducted with applying a constant speed to the RC car
and different sinusoidal steering signals with different frequencies and amplitudes.

Parameter Identification

The parameters to identify is solely found in the DMB Eq. 2.18 and 2.19. The
equations are linear in terms of the parameters to identify and can hence be identified
using the linear least square method in two steps. The first step is to use Eq. 2.31
and measurements to identify Cf and Cr

ÿ = −ψ̇ẋ+ 2
m

(
Cf
(
δf − ẏ + lf ψ̇

ẋ

)
cosδf − Cr

ẏ − lrψ̇

ẋ

)
(2.31)

Rewriting Eq. 2.31 in terms of the parameters to identify, Cf and Cr, gives

m(ÿ + ψ̇ẋ)
2︸ ︷︷ ︸
yN

=
[
Cf Cr

]
︸ ︷︷ ︸

θT
N

(δf − ẏ+lf ψ̇
ẋ

)
cosδf

− ẏ−lrψ̇
ẋ


︸ ︷︷ ︸

φN

(2.32)

where subscript N emphasizes that there are N samples. Using Eq. 2.32 the least
square method can be used and identifying Cf and Cr. Once Cf and Cr are identified
the same procedure can be repeated for Eq. 2.33 to identify Iz

ψ̈ = 2
Iz

(
lfCf

(
δf − ẏ + lf ψ̇

ẋ

)
+ lrCr

ẏ − lrψ̇

ẋ

)
. (2.33)

Rewriting 2.33 in terms of Iz gives

ψ̈

2︸︷︷︸
yN

=
[

1
Iz

]
︸︷︷︸
θT

N

[
lfCf

(
δf − ẏ+lf ψ̇

ẋ

)
+ lrCr

ẏ−lrψ̇
ẋ

]
︸ ︷︷ ︸

φN

(2.34)

Iz can then be estimated using least squares. The numerical values of the identified
parameters can be found in Table 2.1.

Table 2.1: Numerical parameters of the RC car.

Parameter Value Unit
m 12 kg
lf 0.23 m
lr 0.23 m
Iz 1.7301 kg ·m2

Cf 2.9674
Cr 8.5430
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2. Modelling of vehicle dynamics

Model evaluation

In Fig. 2.3-2.6, how well the identified model corresponds to measurements from
the RC car is presented. The measurements used in the evaluation are longitudinal
velocity integrated from an accelerometer, lateral acceleration from an accelerome-
ter, yaw rate from a gyroscope and position measurements from a GPS. It can be
observed in Fig 2.3 and 2.5 that there are small offset on the longitudinal velocity
as well as on the yaw rate. In Fig. 2.4 it can be seen that the identified model
fits the measurements quite well even though the accelerometer measurements are
noisy. Furthermore, it can be seen that the lateral acceleration of the model is more
similar to to a sinusoidal than the measurements. In Fig. 2.6 it can be observed
that the RC car drifts to the left, which consist with the fact that the measured yaw
rate is not symmetric around zero, see Fig. 2.5.
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Figure 2.3: Comparison of longitudinal
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open loop simulation with identified pa-
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2. Modelling of vehicle dynamics

The measurements in Fig. 2.3-2.6 were collected from an experiment where the
RC car was driven with a constant velocity of 1 m/s and a sinusiodal steering with
frequency 3 Hz. In Fig. 2.7 the commanded and actual steering from the experiment
can be seen.
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Figure 2.7: Commanded and actual steering angle.

The numerical parameters in Table 2.2 are used to simulate larger test targets.

Table 2.2: Numerical parameters of a real sized car from [1].

Parameter Value Unit
m 1573 kg
lf 1.1 m
lr 1.58 m
Iz 2873 kg ·m2

Cf 80000
Cr 80000

2.4 Controller Model
When controlling the vehicle the goal is to ensure trajectory following. The state
variables can then with advantage be manipulated and instead be expressed in terms
of deviation variables.

The DBM Eq. 2.6-2.10 is rewritten in terms of error variables as in [1]. The position
state variables are instead expressed as deviation variables from the reference, in
the following manner: let ey be the distance between the center of gravity of the
vehicle and the reference trajectory. Similarly for the orientation error: let eψ be
the orientation error of the vehicle with respect to the road. A visual representation
of the error variables can be seen in Fig. 2.8. Define
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2. Modelling of vehicle dynamics
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Figure 2.8: Controller model

ëy = ÿ + Vx(ψ̇ − ψ̇ref ) (2.35)
eψ = ψ − ψref (2.36)

where Vx is the longitudinal speed of the vehicle (Vx = ẋ) [1]. The angular rate of
change to reach the desired orientation can be obtained from the current reference
yaw angle to the next reference yaw angle. Define the rate of change of the lateral
error as

ėy = ẏ + Vx(ψ − ψref ) (2.37)
then Eq. 2.37 is consistent with Eq. 2.35 if the forward speed Vx is constant [1].
Substituting from 2.35 and 2.36 to 2.18 and 2.19 the state space model in terms of
the new deviation models is given as

ëy = − 2Cf + 2Cr
mVx

ėy + 2Cf + 2Cr
m

eψ + −2Cf lf + 2Crlr
mVx

ėψ

+ 2Cf
m

δf − 2Cf lf − 2Crlr
mVx

ψ̇ref

(2.38)

ëψ = − 2Cf lf − 2Crlr
IzVx

ėy + 2Cf lf − 2Crlr
Iz

eψ −
2Cf l2f + 2Crl2r

IzVx
ėψ

+ 2Cf lf
Iz

δf −
2Cf l2f + 2Crl2r

IzVx
ψ̇ref .

(2.39)

By observing the error model 2.38-2.39 one can see that the model is linear if the
the longitudinal speed Vx is constant. In the case where Vx is not constant the error
model becomes a linear parameter varying system with Vx as the only time varying
parameter.

The errors ey and eψ are described in internal coordinates and the global position
coordinates of the vehicle can be obtained by
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2. Modelling of vehicle dynamics

X = Xref − eysin(ψ) (2.40)

Y = Yref + eycos(ψ) (2.41)

where Xref and Yref are the global coordinates of the reference trajectory.
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3
State estimation

In any system the true state values that describes the system behavior cannot be
exactly determined. However, the states of the system can be estimated by different
filtering techniques using measurements and or models. This chapter addressees
state estimation. Basics about the Kalman filter and the Extended Kalman filter
(EKF) will be presented followed by the implementation of an EKF.

3.1 Kalman filter
The Kalman filter is a filter which uses Baysian probability theory to estimate the
states of a system in an optimal way. For a discrete linear Gaussian state space
model the Kalman filter is the linear minimum mean square error estimator. The
discrete linear state space model of a system is given by

xk = Ak−1xk−1 + qk−1, qk−1 ∼ N (0, Q) (3.1)

yk = Hkxk + rk, rk ∼ N (0, R) (3.2)

where x is the state vector, Ak−1 is the transition matrix of the dynamic system, q is
Gaussian process noise, y is the measurement vector, Hk is the measurement model
matrix and rk is Gaussian measurement noise. The Kalman filter estimates states
in a recursion including two steps, first a prediction followed by an update step [13].

The prediction step uses a model of the process and predicts the states according
to:

x̂k|k−1 = Ak−1x̂k−1|k−1 (3.3)

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Q (3.4)

where x̂k|k−1 is the predicted state at time k, x̂k−1|k−1 is the estimated state at time
k − 1, Pk|k−1 is the predicted state error covariance at time k, Pk−1|k−1 is the es-
timated state error covariance at time k − 1 and Q is the process noise covariance
matrix.

The update step uses a model of the available measurements to update the estimate
according to:

vk = yk −Hkx̂k|k−1 (3.5)

Sk = HkPk|k−1H
T
k +R (3.6)
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3. State estimation

Kk = Pk|k−1H
T
k|k−1S

−1
k (3.7)

x̂k|k = x̂k|k−1 +Kkvk (3.8)
Pk|k = Pk|k−1 −KkSkK

T
k (3.9)

where vk is the innovation at time k, Sk is the innovation covariance at time k, R
is the measurement noise covariance matrix, Kk is the Kalman gain at time k, x̂k|k
is the estimated state at time k and Pk|k is the estimated state error covarianvce at
time k [13].

3.1.1 Extended Kalman filter
As mentioned above, the Kalman filter is the linear minimum mean square error
estimator. However, not all process and measurement models are linear and the
ordinary Kalman filter cannot be applied for nonlinear models. If the model is
nonlinear an intuitive approach is to linearize the process and measurement model
around the current estimate to approximate the nonlinear models, yielding the Ex-
tended Kalman filter.

A discrete nonlinear state space representation of a system is given by the following
equations

xk = f(xk−1, uk−1) + qk−1, qk−1 ∼ N (0, Q) (3.10)
yk = h(xk) + rk, rk ∼ N (0, R) (3.11)

where, x is the state vector, f is the nonlinear motion model, q is Gaussian process
noise, y is the measurement vector, h is the nonlinear measurement model and r is
Gaussian measurement noise. Both the process noise and the measurement noise
are assumed to be Gaussian.

The prediction step:

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (3.12)
Pk|k−1 = F (x̂k−1|k−1)Pk−1|k−1F (x̂k−1|k−1)T +Q (3.13)

where x̂k|k−1 is the predicted state at time k, x̂k−1|k−1 is the estimated state at time
k − 1, f is the nonlinear motion model, uk−1 is the input signal at time k − 1,
F (x̂k−1|k−1) = ∂f(x)

∂x

∣∣∣
x̂k−1|k−1

is the Jacobian of f evaluated at x̂k−1|k−1, Pk|k−1 is the
predicted state error covariance at time k, Pk−1|k−1 is the estimated state error co-
variance at k − 1 and Q is the process noise covariance.

The update step:

Sk = H(x̂k|k−1)Pk|k−1H(x̂k|k−1)T +R (3.14)
Kk = Pk|k−1H(x̂k|k−1)TS−1

k (3.15)

x̂k|k = x̂k|k−1 +Kk

(
yk − h(x̂k|k−1)

)
(3.16)

Pk|k = Pk|k−1 −KkSkK
T
k (3.17)
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where Sk is the innovation covariance at time k, h is the nonlinear measurement
model, H(x̂k|k−1) = ∂h(x)

∂x

∣∣∣
x̂k|k−1

is the Jacobian of h evaluated at x̂k|k−1, R is the
measurement noise covariance, Kk is the Kalman gain at time k, yk − h(x̂k|k−1)
is the innovation at time k, xk|k is the estimated state at time k and Pk|k is the
estimated state error covariance at time k [13].

3.2 EKF implementation

In the framework a state estimator is necessary to ensure good control of the targets,
due to noisy measurements. An EKF, as in Section 3.1.1, was implemented using
the nonlinear DBM from Section 2.2 to have a good estimate of the states.

3.2.1 EKF Prediction

The prediction step in the EKF utilizes a process model of the vehicle to predict the
future values of the states. The process model used in the implemented EKF is the
DBM in Eq. 2.6-2.10 together with the parameters in Tab. 2.1.
The states, x̂ are predicted using the DBM, the previous estimated states, x̂k−1 and
the prevoius input uk−1. To predict the covariance, P , the DBM is linearized each
iteration around the previous updated estimate x̂k−1 and calculated as in Eq. 3.13.

3.2.2 EKF Update

The main idea behind the update step is to correct the predicted estimate by using
information from the current sensor measurements. Often does not the measurement
output we get from sensors coincide with our states. If that is the case measurement
models can be used to express the measurements in terms of states. The following
sensors are used when implementing the measurement model:

• Accelerometer measuring acceleration in x, y and z directions.
• Gyroscope measuring angular velocity around x, y and z axis.
• Magnetometer measuring the magnetic field in x, y and z directions.
• GPS measuring the global x and y position.

Position

The position measurements can be read directly from the GPS and simply modelled
with some additive noise, denoted by rgps

X = Xgps + rgps (3.18)

Y = Ygps + rgps. (3.19)
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Velocities

The velocities ẋ and ẏ can be calculated by numerically integrate the accelerometer
measurement

ẋ = ẋ0 +
∑

ax · dt+ racc,x (3.20)

ẏ = ẏ0 +
∑

ay · dt+ racc,y (3.21)

where ẋ0 is the initial longitudinal velocity, ẏ0 is the initial lateral velocity, ax is the
measured longitudinal acceleration, ay is the measured lateral acceleration, dt is the
sampling time and racc,x and racc,y are measurement noise.

Yaw and Yaw-rate

Gyroscope measures angular velocity hence the measurement of the yaw-rate can be
modelled as

ψ̇ = ψ̇gyr + rgyr (3.22)

where ψ̇gyr is the gyroscope measurement and rgyr is measurement noise.

The absolute orientation in the plane, the yaw angle, can be estimated using the
magnetometer measurements

ψ = tan−1
(
ymag
xmag

)
+ rmag (3.23)

where xmag is the measured magnetic field around the x-axis, ymag is the measured
magnetic field around the y-axis and rmag is measurement noise.

Magnetometer Calibration

The magnetometer must be calibrated if the values are to make sense. The magnetic
measurements are easily distorted by electric appliances, batteries or iron. The sug-
gested calibration is in two steps and will give more accurate values. The two steps
are correcting the measurements regarding soft iron distortion and hard iron distor-
tion. A commonly used technique for visualizing and correcting the magnetometer
measurements from soft and hard iron distortion is to slowly rotate the magne-
tometer around its z-axis and plot the x- and y-components of the magnetometer
measurements in a 2D graph. In the case where no soft or hard iron distortions are
present the measurements will form a circle with radius equal to the magnitude of
the magnetic field. The circle will have its center in the origin.

Hard iron errors

Hard iron errors will only shift the center of the measurements, see Fig. 3.1.
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X

Y

α

β

Figure 3.1: Hard iron distortion

The raw magnetometer measurements can be corrected from hard iron distortion by
using

α = xmin + xmax
2

, β = ymin + ymax
2

(3.24)

imag = iraw − imin + imax
2

(3.25)

where i ∈ {x, y}, imin+imax

2 is the coordinate of the center of the shifted circle and
subscript raw indicates the raw magnetometer measurement.

Soft iron errors

Soft iron errors will distort the measurements to an ellipse, as can be seen in Fig.
3.2. The transformation from a circle into an ellipse does not affect the center, hence

X

Y

θ

r
q

bb (x1, y1)
(x2, y2)

Figure 3.2: Soft iron distortion

the center of the measurements is the same as the case without soft iron distortion.

19



3. State estimation

The transformation from a circle into an ellipse can be described byxmagymag
zmag

 =

C1 C2 C3
C4 C5 C6
C7 C8 C9


xrawyraw
zraw

 (3.26)

where, C3 = C6 = C7 = C8 = 0 and C9 = 1 since the transformation does not affect
the z-component of the measurements. The length of the major axis of the ellipse,
r, is calculated by

r =
√
x2

1 + y2
1 (3.27)

where x1 and y1 are the coordinates on the major axis, see Fig. 3.2. The angle that
the ellipse is rotated with respect to the x-axis, θ, is calculated by

θ = arcsin

(
y1

r

)
. (3.28)

The rotation matrix

R =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (3.29)

rotates the ellipse such that the major axis is aligned with the x-axis. The scaling
factor between the major and minor axis, σ, is calculated by

σ = q

r
(3.30)

where q is the length of the minor axis and it is calculated by

q =
√
x2

2 + y2
2 (3.31)

where x2 and y2 are the coordinates on the minor axis, see Fig. 3.2. Only the x
value is then divided by the scaling factor σ in order to transform the ellipse to a
circle.

EKF Measurement Model

Since all the states in the DBM Eq. 2.6-2.10 can either be measured directly from
the sensor readings or calculated from sensor readings the measurement model used
in the EKF is written as

yk =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Hk

xk +



rgps
rgps
racc,x
racc,y
rmag
rgyr


︸ ︷︷ ︸

r

. (3.32)

By using pre-calculations on the sensor readings, one can observe in Eq. 3.32 that
the measurement model used in the EKF is linear. This means that linearization is
only necessary in the prediction step.
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3.2.3 Tuning
To get a good estimate extensive tuning of the EKF is required. The tuning pa-
rameters in the EKF are the Q and R matrices. The individual values on Q and
R are not important but rather the relationship between the values. The Q matrix
describes the uncertainty in the model while the R matrix describes the uncertainty
in the measurements. A higher value in the Q matrix makes the filter trust the
measurements more and vice versa. The weight matrices Q and R, when used to
estimate the states of the RC car, were tuned to

Q =



0.02 0 0 0 0 0
0 0.02 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.4


(3.33)

R =



0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.2 0 0 0
0 0 0 0.4 0 0
0 0 0 0 0.6283 0
0 0 0 0 0 0.1571


(3.34)

Experimental results of the EKF with the RC car and the model from 2.2 with
identified parameters from Table 2.1 are shown in Fig. 3.3-3.7.

The GPS has high accuracy leading to a low corresponding value in the R matrix
and it can be observed in Fig. 3.3 that the estimated trajectory is close to the
measured trajectory.
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Figure 3.3: Measurements, EKF predic-
tion and EKF update of RC car trajectory.
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In Fig. 3.4 it can be observed that the measurement of the longitudinal velocity is
accurate, hence the EKF is tuned to rely more on the measurement. In Fig. 3.5 it
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can be seen that the updated lateral velocity is between the predicted and measured
lateral velocity most of the time. This can be explained by the fact that the EKF
is tuned to rely on the model nearly as much as on the measurements.

As seen in Fig. 3.6 the magnetometer is not a very accurate sensor. The measure-
ments are noisy leading to the choice of having a high covariance on the yaw angle
in the R matrix and leading to trusting the model more.
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Figure 3.5: Measurements, EKF predic-
tion and EKF update of RC car lateral
velocity (ẏ).
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Figure 3.6: Measurements, EKF predic-
tion and EKF update of RC car yaw angle
(ψ).

The gyroscope is a sensor with high precision and the measurement can be trusted,
leading to a low value on the covariance on the yaw rate measurement. The estimated
yaw rate can be seen in Fig. 3.7 and it can be observed that the predicted and
updated yaw rate almost overlaps the measurements.
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tion and EKF update of RC car yaw rate
(ψ̇).
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Control

To ensure the targets follows the given trajectories a good control algorithm needs
to be implemented. In this chapter a MPC control strategy and a P control strategy
with a feed forward prediction are investigated and implemented.

4.1 Model Predictive Control

The main idea behind the Model Predictive Control (MPC) framework is to predict
the future behavior of the system, by utilizing a model of the process. In MPC the
control input is obtained by solving an optimal open-loop control problem over a
finite horizon. The solution to the optimal open-loop control problem is a sequence
of future optimal control inputs, but only the first control input in the sequence
is applied to the system. The optimal open-loop control problem is solved at each
sampling instant starting from the current state and with shifted time horizon [14],
[15].

4.1.1 Optimization
For a discrete time state space model the finite horizon optimal control problem can
be written as

min
u(0:N−1)

VN =
N−1∑
i=0

l(x(i), u(i)) + Vf (x(N)) (4.1)

s.t. x(k + 1) = f(x(k), u(k)), x(0) = x0 (4.2)
y(k) = g(x(k), u(k)) (4.3)
x(k) ∈ X, u(k) ∈ U, k ∈ {0, N − 1} (4.4)
x(N) ∈ Xf ⊆ X (4.5)

where Eq. 4.1 is the cost function to minimize, Eq. 4.2 is the difference equation
describing the model and initial state, Eq. 4.3 describes how the output is described
in terms of the state and input, Eq. 4.4 is the constraints on the states and inputs
and Eq. 4.5 is the constraint for the final state. The terminal cost Vf and the ter-
minal constrain set Xf are often chosen such that closed-loop stability is ensured [14].
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4.1.2 Objective
If the models 4.2 and 4.3 are linear, the sets X,U and Xf are defined by affine
inequalities and the cost 4.1 is appropriately chosen, i.e. quadratic, the finite horizon
optimal control problem results in a quadratic program (QP). A natural choice of
cost VN is

VN =
N−1∑
i=0

(
(y(i)−r(i))TQ(y(i)−r(i))+uT (i)Ru(i)

)
+(y(N)−r(N))TPf (y(N)−r(N))

(4.6)
where r is the reference, Q, R and Pf are positive semi definite weighting matri-
ces. The first summand in 4.6 represents the cost for the output tracking error, the
second summand represents the cost for control action and term outside the sum-
mation is the terminal output tracking error cost. An advantage with having the
finite horizon optimal control problem on QP form is that there are efficient solvers
for QP, e.g. solvers provided in the YALMIP toolbox.

4.1.3 Horizon
In the optimization problem 4.6 it assumed that the state prediction horizon and
control prediction horizon, denoted by N and M respectively, are equal. In some
cases it can be favourable to have N > M and keeping the control signal constant for
M ≤ k ≤ N . By having N > M the computational complexity can be reduced since
the number of decision variables in the optimization problem is reduced. However,
N > M may also decrease the performance of the controller [14].

4.1.4 Linear Time Varying (LTV) MPC
In the case where models 4.2 and 4.3 are nonlinear, the nonlinear dynamics can be
approximated by at each time instant k linearize 4.2 and 4.3 around the current
state x(k) and the previous control input u(k − 1). Then 4.2 can be written as

x(k + 1) = Akx(k) +Bku(k), x(0) = x0 (4.7)

where
Ak = ∂f(x, u)

∂x

∣∣∣∣
(x(k),u(k))

, Bk = ∂f(x, u)
∂u

∣∣∣∣
(x(k),u(k))

(4.8)

and accordingly in the same way for 4.3

y(k) = Ckx(k) +Dku(k) (4.9)

where
Ck = ∂g(x, u)

∂x

∣∣∣∣
(x(k),u(k))

, Dk = ∂g(x, u)
∂u

∣∣∣∣
(x(k),u(k))

(4.10)

and subscript k emphasizes that matrices varies with time [14] [16]. Worth mention-
ing is the fact that the nonlinear model 4.2 is linerazed around an operating point
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which may not be an equilibrium point. By using the LTV approach the finite hori-
zon optimal control problem for a nonlinear system can be approximated by a QP,
which means that the computational burden for solving the optimization problem
can be reduced since QP solvers are more efficient than general nonlinear solvers.
However, one has to have in mind that at each sampling instant there will be extra
computations for calculating the Ak, Bk, Ck and Dk matrices [14].

4.1.5 MPC implementation

Equality constraints

The DBM from section 2.2 is used when predicting the behaviour of the target in
the MPC algorithm. The DBM Eq. 2.6-2.10 can be linearized and rewritten as a
state space representation with x as a state vector:

x = [X Y ẋ ẏ ψ ψ̇]T (4.11)

and u as control input:
u = [ax δf ]T . (4.12)

At each time step when the optimization problem is to be solved the DBM Eq.
2.6-2.10 is first linearized around the current estimate of the state from the EKF.
Hence, the system can be expressed on discrete state space form

x+ = Ax+Bu (4.13)

where superscript + denotes the successor state. This LTV state space model can
be used as an equality constraint when solving the MPC optimization problem.

Inequality constraints

The input signal has a bounded range. The steering control signal can not exceed
the minimum or maximum steering angle and the acceleration control signal cannot
exceed the minimum or maximum acceleration. These properties can be seen as an
inequality constraint and can be formulated as[

amin
δfmin

]
≤ u ≤

[
amax
δfmax

]
(4.14)

Additionally, a constraint on how fast the steering angle can change

∆δf (k) = δf (k) − δf (k − 1) (4.15)

is included due to the fact that there are limitations on the steering servo of the RC
car.

∆δfmin
≤ ∆δf ≤ ∆δfmax (4.16)

In this specific case the states are not bounded. Hence, no inequality constraints
regarding the states are included.
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Objective

The MPC algorithm is repeatedly solving an optimization problem. To solve an
optimization problem an objective is needed. In this case the goal is to optimize the
trajectory following of the target to the reference trajectory. The objective function
is implemented as

VN =
N∑
i=0

(
Cx(i) − yref (i)

)T
Q
(
Cx(i) − yref (i)

)
+ uT (i)Ru(i) (4.17)

with the terminal cost Pf = Q and control horizon M = N .

The used reference is given by a X and a Y position and a reference yaw angle ψ

yref =

Xref

Yref
ψref

 (4.18)

and the output matrix is consequently given by

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

 . (4.19)

In this simple case we are only interested in minimizing the deviation from the
reference trajectory. No other states are taken into consideration and can take
whatever value.

Tuning of MPC

In an MPC algorithm there are several tuning parameters, hence extensive tuning is
necessary in order to get a desired behavior of the controller. The tuning parameters
in the implemented MPC controller are prediction horizon N and the weighting
matrices Q and R. Since the dynamics of the RC car differs from the dynamics of a
full sized car the tuning of MPC is different for the RC car compared to a full sized
car. For the RC car the Q and R matrices are chosen to

Q =

580 0 0
0 580 0
0 0 3000

 (4.20)

R =
[
100 0
0 150

]
(4.21)

and with prediction horizon N = 10 and sampling time T = 0.1 s. For a full sized
car the Q and R matrices are chosen to

Q =

400 0 0
0 400 0
0 0 1.5 · 106

 (4.22)
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R =
[
10 0
0 100

]
. (4.23)

The prediction horizon is set to N = 10 for the full sized car and sampling time
T = 0.1 s. Hence, the prediction horizon is 1 s for both the RC car and the full
sized car.

Solver

The YALMIP toolbox is used it comes with a variety of available solvers. The
solver used in the thesis is QUADPROG, which is a QP solver. The YALMIP tool-
box is easily integrated in Matlab and QUADPROG is available in the MathWorks
Optimization toolbox.

4.2 P-controller with feed forward prediction
Another control strategy with less computation requirements is a P-controller with a
feed forward prediction. The strategy is to apply a steering to the target proportional
to the look-ahead lateral position error.

Y

X

b

b

ey

ψ

ψref

eroad

eprojected

b
p+ d

p

d

Figure 4.1: P control strategy with lateral look-ahead position error.

4.2.1 Steering Control
Steering

The control law is defined as proportional to the look-ahead lateral path error [17].

δf = Kp(ey + elead) (4.24)
where

elead = eprojected + eroad (4.25)
where ey is the current lateral error, eprojected depends on the current orientation
error, eroad includes information about the look-ahead reference point and Kp is the
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proportional gain.

Since the trajectory following depends on the speed of the vehicle, the feedback gain
Kp should be speed dependent to avoid unnecessary steering commands. The value
of Kp can be determined analytically by using a curb-following strategy, suggested
by [17]. Assume that the rear axis of the vehicle is placed at the reference trajectory.
Furthermore, assume that the rear axis of the vehicle has zero slip angle and that
it is directed along the reference trajectory. Then one can define, at every time
step, a circular arc between the current position of the rear axis and the look-ahead
reference point using the current yaw angle [17]. The curvature of the circular arc
is given is by 1/R, where R is the radius of the circle. The curvature of the circular
arc can be obtained by the following relation

ψ̇ref = Vx
R
. (4.26)

Assuming the angle between the longitudinal axis of the vehicle and the straight
line between the current and look-ahead reference points is small, it follows from
Fig. 4.1 that

1
R

= 2elead
d′2 (4.27)

where d′ is the distance between the rear axis of the vehicle and the next reference
point

d′ = d+ lr (4.28)

and d is the pre-defined distance between the points on the reference trajectory [17].
If the look-ahead distance/time is chosen to short the steering commands will be
too aggressive. On the other hand, if the look-ahead distance/time is chosen to long
the vehicle will cut corners. Hence, the look-ahead distance/time is something that
can be tuned in order to get desired behavior.

In order for the vehicle to follow the curvature of the online defined circular arc, the
needed steering angle is

δf = L+KvVx
V 2
x

aycurb
= L+KvVx

V 2
x

V 2
x

R

= L+KvV
2
x

R
= 2L+KvV

2
x

d′2 elead.

(4.29)

Consequently, the speed dependent gain is given by

Kp = 2L+KvV
2
x

d′2 (4.30)

where L is the length of the vehicle and Kv is the under steering factor.
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Under steering factor

There are three different scenarios for the under steering factor Kv which depends
on the relative values of the cornering stiffness of the front and rear tires and the
mass distribution of the vehicle. The three scenarios are neutral, understeer and
oversteer. In the neutral case Kv is equal to zero because the slip at the front and
rear tires are equal. In the understeering case Kv > 0 because there are larger slip on
the front tires than on the rear tires. In the oversteering case Kv < 0 because there
are smaller slip on the front tires than on the rear tires [1]. Kv can be calculated by

Kv = mf

2Cf
− mr

2Cr
(4.31)

where mf and mr are the mass distribution

mf = m
lf
L
, mr = m

lr
L
. (4.32)

4.2.2 Velocity Control
The look-ahead lateral position error controller assumes constant longitudinal ve-
locity and calculates only the necessary steering command for tracking the reference
trajectory. In order to maintain constant velocity of the vehicle a simple control
strategy for the acceleration command is implemented

ax =
(V̂x − Vxref

)
T

(4.33)

where, V̂x is the estimated longitudinal velocity from the EKF and Vxref
is the

desired longitudinal velocity defined by the reference trajectory. Constant velocity
is assumed leading to that the desired velocity easily can be calculated from the
reference trajectory as

Vx =

√
(Xref,k −Xref,k−1)2 + (Yref,k − Yref,k−1)2

T
(4.34)
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5
Communication

To send messages to and from the central server to the different targets wireless
communication is a requirement in the framework. The communication part of the
framework is presented and discussed in this chapter together with some theory.

5.1 Protocol
The transport control protocol (TCP/IP) and the user datagram protocol (UDP)
are the network protocols that are commonly used for transmitting data. TCP/IP
is a confirmation based protocol, which means that the transmitter first sends a re-
quest to transmit data and awaits an acknowledgment from the receiver, i.e ensures
the connection. If connection is ensured, the transmitter sends data to the receiver
and awaits another acknowledgment. If no acknowledgment for the data is received,
the transmitter assumes that the data is lost and re-transmits the data. Before
transmitting the data, it is divided into segments. Each segment has a sequence
number to prevent the receiver from decoding the data segments in incorrect order.
These error preventing functions may cause unwanted delays in the communication
system [18]. Hence, TCP/IP may not be the most suitable protocol for real-time
applications [19].

In contrast to TCP, UDP is not confirmation based. Hence, there is no guarantee
that the data is correctly received or received at all. On the other hand, since UDP
does not have connection check the transmitter can provide the network layer with
data at any desired rate. Hence, UDP provides fast but unreliable communication.
Worth mentioning is the fact that even though the transmitter can provide the
network layer with data in any desired rate, this desired rate may not be the actual
end-to-end throughput. Slower end-to-end throughput can be explained by data
congestion or limitations on intermediary links [18].

5.2 Latency
We define communication latency of the centralized server setup as the time between
sending the control signal from the server and the time the commanded control sig-
nal is measured. More particularly this includes sending the signal, the signal being
processed on the target, sending command to the low level controller, sending the
measured control signal back to the server and processing the received signal.
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5.3 Implementation/communication setup
Since the host computer will run MATLAB the communication between the system
and the targets will also be via MATLAB. The communication protocol used will
be UDP since there are no severe consequences if a single message is not received
correctly. Furthermore, delays caused by not receiving acknowledgement from the
receiver is avoided when using the UDP protocol. The communication setup is used
with a standard UDP block in Simulink. The message to the RC car is an Extensible
Markup Language (XML) message which is converted to uint8 and sent as a UDP
message. The messages are sent between the server and the RC car via radio. The
RC car receives a XML message consisting of commanded actuator signal or a ref-
erence trajectory point depending on the setup. In the researched centralized setup
the XML message consists of a steering angle [rad] and a velocity [m/s] command.
The reason why velocity is used instead of longitudinal acceleration is that the low
level controller on the RC car takes a velocity as an input. To obtain a velocity, the
calculated acceleration command is integrated. The RC car processes the message
and the low level controller performs the control action. The XML message is con-
structed in Matlab and encoded to an uint8 to be sent via the UDP Simulink send
block.

The control server receives XML messages containing status of the RC car. The
status messages includes sensor readings from the GPS, accelerometer, gyroscope
and magnetometer. Furthermore, the status message includes actual steering angle
and time stamp. An overall illustration of the communication setup is shown in Fig.
5.1.

MATLAB
UDP Send

MATLAB
UDP Recieve

Target

State estimator

Decoder Encoder

Controller

Host Computer

Network/radio

communication

Figure 5.1: Communication setup

The control server for the test targets is sampled with sample time T = 0.1 s.
Because of the choice of sample time and the fact that the messages only contains
some doubles the requirements on the data rate of the communication setup is
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relatively low. Hence the proposed setup is not limited by the data rate of the
current communication channel.
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6
Results

In this chapter the results are presented. First simulation results of the different
controllers are shown followed by a comparison. Lastly brief results from communi-
cation experiments are shown.

6.1 Simulation setup

To test the controllers from Chapter 4 simulations were performed, presented in this
chapter. The chapter is divided into four sections. The first two sections presents
the results on the MPC control and the last two sections are handling the results
regarding the P control. With the goal to be able to create a versatile framework
which can control many different targets simulations were performed on both a full
sized car model and on the smaller RC car. In the simulations the DBM from
section 2.2 is used together with the parameters in Table 2.2 when simulating the
behaviour of the full sized car and when simulating the behaviour of the RC car
the identified parameters in Table 2.1 is used together with the DBM. To test the
controllers performance characteristics they were tested on two different scenarios:

• Scenario 1: A straight trajectory but the initial position has an offset to the
reference, to illustrate how good the controller converges towards the reference.

• Scenario 2: A trajectory consisting of a straight segment followed by four
curves and finally an additional straight segment, to illustrate how well the
controllers manage steering actions.

In all simulations a sampling time of T = 0.1 s is used. The velocity is varying in
the simulations depending on the scenario and car type.

6.2 MPC - Full sized car simulations

The implemented MPC controller presented in section 4.1.5 are tested on the two
different scenarios. When evaluating the MPC controller for a full sized car, simu-
lations were made to test the controller in section 4.1.5 with the tuning values from
Eq. 4.22 and 4.23.
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Scenario 1

In Fig. 6.1-6.5 the simulation results, simulating the first scenario, is presented. It
can be observed in Fig. 6.1 that the steady state error converges to zero from the
initial lateral error of 1 m. The yaw angle is illustrated in Fig. 6.2. From the figure
it can be concluded that the yaw angle also converges towards a zero error to the
yaw angle reference.
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Figure 6.1: Straight line MPC control
trajectory for full sized car.
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Figure 6.2: Straight line MPC control
yaw angle (ψ) for full sized car.

In Fig. 6.3 it can be seen that the penalty on the acceleration in the objective
function, Eq. 4.23, leads to a smoother longitudinal velocity. The lateral velocity
seen in Fig. 6.4 is fluctuating sligthly more due to the steering control seen in Fig.
6.5.
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Figure 6.3: Straight line MPC control
longitudinal velocity (ẋ) for full sized car.
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Figure 6.4: Straight line MPC control
lateral velocity (ẏ) for full sized car.

In Fig. 6.5 it can be seen that the steering, blue line, is well within the constraints,
black dotted lines.
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Figure 6.5: Straight line MPC control
steering angle (δf ) for full sized car.

Scenario 2

The same controller was likewise tested simulating scenario 2. In Fig. 6.6-6.11
results from simulations of scenario 2 is presented. It can be seen in Fig. 6.6 that
the controller follows the trajectory well and the same thing can be said about the
yaw angle, see Fig. 6.7.
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Figure 6.6: MPC control trajectory for
full sized car.
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Figure 6.7: MPC control yaw angle (ψ)
for full sized car.

The penalty on longitudinal acceleration leads to a smooth longitudinal velocity
seen in Fig. 6.8.
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Figure 6.8: MPC control longitudinal
velocity (ẋ) for full sized car.
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Figure 6.9: MPC control lateral velocity
(ẏ) for full sized car.

The lateral error, Fig. 6.10 is relatively large and reaches almost 2 m at the most.
It can be seen that the steering control signal, Fig. 6.11, tries to decrease the lateral
position error but also has an high cost in the objective function which makes the
steering stay rather low.

0 5 10 15

Time [s]

-2

-1

0

1

2

L
a

te
ra

l 
e

rr
o

r 
[m

]

Lateral position error

Simulated

Figure 6.10: Straight line MPC control
lateral error (ey) for full sized car.
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Figure 6.11: Straight line MPC control
steering angle (δf ) for full sized car.

6.3 MPC - RC car simulations
The controller from Section 4.1.5 with the tuning values from Eq. 4.20 and 4.21 was
also tested in simulations with the model from 2.2 and the identified values from
Table 2.1 to simulate the behaviour of the RC car. The RC car is simulated on the
two same scenario as the full sized car in Section 6.2 with some modifications to fit
the different dynamics of the RC car compared to a full size car. The reference is
instead structured with a velocity of 5 m/s. Furthermore the initial position offset
of the RC car is instead set to 0.5 m to match the new velocity.
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Scenario 1

Fig 6.12-6.16 illustrates the results from the first scenario. In Fig. 6.12 it can be seen
that the controller converges towards a zero lateral position error. The yaw angle is
converging but keeps oscillating around the reference quite long before converging
towards the reference, see Fig. 6.13
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Figure 6.12: Straight line MPC control
trajectory for RC car.
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Figure 6.13: Straight line MPC control
yaw angle (ψ) for RC car.

It can be observed in Fig. 6.14 that the longitudinal velocity is almost constant
during the entire simulation. Fig. 6.15 shows that the lateral velocity converges to
zero, which coincides with the results presented in Fig. 6.12 and 6.13.
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Figure 6.14: Straight line MPC control
longitudinal velocity (ẋ) for RC car.
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Figure 6.15: Straight line MPC control
lateral velocity (ẏ) for RC car.

The steering control signal is oscillating around zero but converges with time, see
Fig. 6.16.
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Figure 6.16: Straight line MPC control
steering command (δf ) for RC car.

Scenario 2

The results from simulations of the RC car with scenario 2 are found in Fig. 6.17-
6.22. In Fig. 6.17 it can be seen that the MPC deviates slightly from the trajectory.
However, the yaw reference is tracked properly, see Fig. 6.18.
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Figure 6.17: MPC control trajectory for
RC car.
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Figure 6.18: MPC control yaw angle (ψ)
for RC car.
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Figure 6.19: MPC control longitudinal
velocity (ẋ) for RC car.
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Figure 6.20: MPC control lateral veloc-
ity (ẏ) for RC car.

In Fig. 6.21 it can be seen that the maximum lateral error is roughly 0.5 m. In Fig.
6.22 it can be seen that the steering angle fluctuates but also that is stays inside the
constraints.
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Figure 6.21: MPC control lateral error
(ey) for RC car.
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Figure 6.22: MPC control steering angle
(δf ) for RC car.

6.4 P control - Full sized car simulations

The implemented P controller with a feed forward term presented in section 4.2
is tested on the two scenarios. When evaluating the P controller simulations were
made to test the controller in section 4.2. To simulate the behavior of a full size
car the model from section 2.2 were used together with the parameter values found
in Table 2.2. A sampling time of T = 0.1 s was used and the look-ahead time was
tuned to 0.2 s. In Fig. 6.23-6.27 the simulation results, simulating the first scenario,
are presented.
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Scenario 1

The P controller drives the lateral error to zero in about 3 s, which can be seen in
Fig 6.23. The yaw angle, in Fig. 6.24 is fluctuating due to the oscillating steering
control from the P controller, see Fig. 6.27, but is then driven to the reference angle.
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Figure 6.23: Straight line P control tra-
jectory for full sized car.

0 2 4 6 8 10

Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

Y
a
w

 [
ra

d
]

Yaw angle

Simulated

Reference

Figure 6.24: Straight line P control yaw
angle (ψ) for full sized car.

The P controller only controls the steering. The longitudinal acceleration is con-
trolled as in Section. 4.2.2 leading to the oscillating longitudinal velocity in 6.25.
The lateral velocity is oscillating due to the steering, see Fig. 6.26 and 6.27.
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Figure 6.25: Straight line P control lon-
gitudinal velocity (ẋ) for full sized car.
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Figure 6.26: Straight line P control lat-
eral velocity (ẏ) for full sized car.

The steering control signal is low with small changes in the start and then converging
towards zero.
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Figure 6.27: Straight line P control
steering command (δf ) for full sized car.

Scenario 2

In Fig. 6.28-6.33 the results from simulating scenario 2 can be seen.
Fig. 6.28 shows that the P controller follows the trajectory successfully. However in
Fig. 6.29 it can be seen that the yaw angle slightly fluctuates around the reference.
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Figure 6.28: P control curve trajectory
for full sized car.
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Figure 6.29: P control yaw angle (ψ) for
full sized car.

It can be seen in Fig. 6.30 that the longitudinal velocity varies quite much, which
indicates that the velocity control strategy presented in Section 4.2.2 might be too
naive. In Fig. 6.31 it can be seen that the lateral velocity is close to zero during most
time of the simulation but that there are some larger peaks and drops. Furthermore
it can be observed by comparing Fig. 6.31 and 6.33 that the larger peaks and drops
in lateral velocity occurs when it is larger peak or drop in the steering angle control
signal.
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Figure 6.30: P control longitudinal ve-
locity (ẋ) for full sized car.
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Figure 6.31: P control lateral velocity
(ẏ) for full sized car.
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Figure 6.32: P control lateral error (ey)
for full sized car.
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Figure 6.33: P control steering angle
(δf ) for full sized car.

6.5 P control - RC car simulations
The controller from Section 4.2 was also tested in simulations with the model from
Section 2.2 and the identified values from Table 2.1 to simulate the behaviour of the
RC car. The P controller was tested for the two scenarios and the look-ahead time
was tuned to 1 s.

Scenario 1

The results from the simulations of the first scenario are illustrated in Fig. 6.34-6.38.
The P controller drives the lateral error to zero but with an oscillating behaviour,
seen in Fig. 6.34. Furthermore, it can be observed in Fig. 6.34 and 6.35 that
tracking error for the trajectory and yaw angle converges slowly to zero.
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Figure 6.34: Straight line P control tra-
jectory for RC car.
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Figure 6.35: Straight line P control yaw
angle (ψ) for RC car.

Both the longitudinal and lateral velocities oscillates slightly around 5 m/s and 0
m/s respectively, during the the entire simulation, see Fig. 6.36 and 6.37.
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Figure 6.36: Straight line P control lon-
gitudinal velocity (ẋ) for RC car.
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Figure 6.37: Straight line P control lat-
eral velocity (ẏ) for RC car.

The steering angle has small changes in the beginning and is then driven towards
zero, see Fig. 6.38.
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Figure 6.38: Straight line P control
steering command (δf ) for RC car.

Scenario 2

In Fig. 6.39-6.44 results from simulations of the P controller simulating the RC car
with scenario 2 can be seen. Fig. 6.39 shows the trajectory and that the P controller
does a good job in controlling the model with some small deviations. The yaw angle,
Fig. 6.40, is controlled nicely with some minor deviations.
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Figure 6.39: P control trajectory for RC
car.
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Figure 6.40: P control yaw angle (ψ) for
RC car.

In Fig. 6.41 it can be seen that the controller keeps constant velocity in the straight
sections and a slightly higher somewhat constant velocity in the curve.
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Figure 6.41: P control longitudinal ve-
locity (ẋ) for RC car.
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Figure 6.42: P control lateral velocity
(ẏ) for RC car.

The lateral position error is small and is most of the time not more of than 20 cm,
see Fig. 6.43. The steering angle is rather smooth and is within the constraints, see
Fig. 6.44.
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Figure 6.43: P control lateral error (ey)
for RC car.
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Figure 6.44: P control steering com-
mand (δf ) for RC car.

6.6 Controller comparison

In this section the results for the MPC and P control simulations for full sized car and
RC car are summarized and discussed. The controllers are compared with respect
to computational complexity, lateral error, yaw error and steady state convergence
time.

In Table 6.1 the computation times of the two different controllers are presented.
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Table 6.1: Controller computation time

P control mean MPC mean
computation time [s] computation time [s]

Full sized vehicle 1.2715 · 10−5 0.4937
RC car 8.9098 · 10−6 0.4223

It can be seen in Table 6.1 that the P controller is significantly faster than the MPC
controller. Hence, the P controller is more suitable for a real time implementation.

Results of the lateral position error, of the vehicle with respect to the reference,
from scenario 2 is presented in Table 6.2.

Table 6.2: Controller mean absolute lateral error for scenario 2.

Scenario 2 P control mean MPC mean
absolute lateral error [m] absolute lateral error [m]

Full sized vehicle 0.351 0.652
RC car 0.101 0.238

It can be seen that the P controller has smaller mean absolute lateral error than
the MPC controller. However, since the MPC controller is only investigated in the
simulation environment the tuning of the MPC is less extensive than the tuning of
the P controller, which affects the simulation results for the mean absolute lateral
error.

Table 6.3: Controller mean absolute yaw error for scenario 2.

Scenario 2 P control mean MPC mean
absolute yaw error [rad] absolute yaw error [rad]

Full sized vehicle 0.0833 0.0539
RC car 0.0809 0.0396

In Table 6.3 it can be seen that the MPC tracks the yaw reference more accurately
for both full sized car and RC car. Smaller yaw error can be explained by the fact
that the penalty for deviation from yaw reference are substantial for both full sized
car and RC car, see Eq. 4.20 and 4.22.

Results from scenario 1 illustrating how fast the controller drives the error to zero
is concluded in Table 6.4.

Table 6.4: Controller convergence time

Scenario 1 P control convergence time [s] MPC convergence time [s]
Full sized vehicle 2.8 5.3

RC car 38.3 23.4
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It can be seen in Table 6.4 that the MPC controller converges to zero tracking error
slower than the P controller for a full sized vehicle but faster for a RC car.

6.7 Communication - Results
To measure the latency of the centralized server set up experiments are run with the
RC car and the time between sending the control signal and the time the commanded
control signal is measured is recorded. The results are shown in table 6.5.

Table 6.5: RC car latency

Mean latency Median latency Max latency Min latency
0.0968 s 0.1 s 0.14 s 0.04 s

There is a limitation on how fast measurements can be polled from the RC car. The
fastest possible polling time is 11 ms and the polling time used in the experiments
was 20 ms. The choice of polling time 20 ms might affect the accuracy slightly but
it gives an upper bound on the latency.
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7
Discussion

In this chapter the results presented in this thesis are discussed. The discussion
focuses on the reasons why the results turned out in the way they did. Furthermore,
reasoning about how the limitations affected the results and possible approaches to
the solve the remaining problems is done.

7.1 Modelling
Open loop comparison of DMB with identified parameters and measurements for the
RC car, presented in Section 2.3.2, shows that there is a slight offset in the identified
model. The offset gives an indication that the data set is not good enough. The
quality of the data set strongly depends on the available sensors. Another approach
for modelling the test targets could be to use Black box modelling, such as ARX or
ARMAX models, instead. However, the benefit of having the same physical model
for all test targets with just different parameter values is lost.

7.2 EKF
Since the processes model used in the EKF is the DBM with the identified parame-
ters the model uncertainty is introduced in the state estimation as well. Furthermore,
the inaccuracy of the available sensors on the RC car brings more uncertainty into
the estimation. The GPS and gyroscope are accurate enough but the magnetometer
contains a lot of noise. The reason why we use the magnetometer for measuring
the yaw angle, even though it is noisy, is that it is the only available sensor which
provides information of absolute orientation. To be able to control a test target an
accurate estimation of the yaw angle is crucial. The main challenge of implementing
an EKF is, in this case, to get a reliable validation method since the ground truth
is unknown.

7.3 Results
Simulations showed good results in controlling the targets along the trajectories,
both using MPC strategy and P control with feedforward prediction strategy. Ad-
ditionally, simulations indicated that the computational complexity of the imple-
mented MPC was too high to meet the real time constraints. However, ways to
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improve the computational time of the MPC has not been investigated in this thesis.

When performing experimental results with the RC car the controller was unable to
make the RC car follow the desired trajectories. The lack of success in controlling
the RC car, is probably due to mismatch in the model parameters as well as tuning
of the EKF. If no good estimate of the target is available, it is impossible to get a
good control.

The P controller shows promising results in Chapter 6 in simulations. These results
shows that it is probably a good choice of control strategy, if one were get a more
well matching model and/or a more accurate state estimation.

Investigations in whether the control setup should be centralized or decentralized
showed that the latency present in the communication system were not to severe for
an centralized control setup. However, the research was limited to just implemen-
tation of a centralized control setup. Furthermore, the research was also limited to
scenarios including only one test target to control.
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It can be concluded that the DBM is a suitable model for test targets of different
size since only the yaw inertia and tire cornering stiffness needs to be identified us-
ing system identification. However, to get accurate trajectory following it is of high
importance to get an accurate estimation of the parameters, which put demands on
the sensors available on the test targets when collecting measurements for system
identification.

A MPC control strategy is supposed to be better suited for more complex scenarios
due to the more complex and longer prediction. A MPC control strategy uses the
model to predict the future behaviour. This makes an accurate prediction which
is used to calculate the optimal control signal. MPC can control more than one
variable which in this case leads to a smoother velocity control. However the MPC
demands more extensive tuning to get a good control. In this thesis this is not
the case and it can be seen that the P controller is not only faster but gives more
accurate trajectory following in terms of lateral position error, 0.351 m compared to
0.652 m for full sized car and 0.101 m compared to 0.238 m for RC car.

The computing time for the controllers is a key when deciding on a control strategy.
The system will need to be run in real time. The P control computes the control
signal in 1.2715 · 10−5s while the MPC takes 0.4937s. It can be concluded that the
P controller easily meets the real time constraints in the framework but that the
MPC controller does not. For an MPC control algorithm to run under real time
constraints the computing power would need to be immensely enhanced.

The results from the researched central setup in communication and control shows
that the latency observed in the communication is rather small. Given the fact that
the steering in the RC car specifically runs at 50 Hz the latency of 0.0968 s seen
in Tab. 6.5 The communication has no big impact on the choice of centralized vs.
decentralized control setup.

However it can be predicted that the computing complexity is enhanced with the
number of test targets in a scenario. For further work a decentralized framework
could be researched in order to run more complex scenarios with increasing num-
bers of actors. We also suggest future work can include research in whether a more
sophisticated control strategy than the one presented in Section 4.2.2 can be imple-
mented for the velocity control. Furthermore, it can be investigated if it is possible
to get a more accurate identification of the DBM parameters of the RC car.
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