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ABSTRACT
In recent years the demand for renewable energy has increased significantly, resulting in a large number
of wind power plants being built. There has also been an increase in size of these towers and due to that
an increase in the foundation size. The design of these foundations is a complicated process due to the
complex loading on these towers. Especially the cyclic loads results in potential fatigue damage which
gives cumbersome calculations with a lot of uncertainties.
The company WSP has designed several foundations over the years using a method developed by a
professor at the Royal Institute of Technology in Stockholm. There was however a wish within the
company to investigate the process and increase the knowledge. Another aim was to make the design
process more efficient and for this a document capable of designing a foundation in little time was
developed.
The aim of this study was to present a method that fulfills the standards set by the norms. In addition,
some of the more problematic concepts will be discussed in more detail. The two major concepts
analyzed in detail were wind loads and fatigue verification. The wind loads are often provided by the
manufacturer of tower and are maybe not known in an early stage. Fatigue is one of the areas where
designers have limited knowledge and it is an area where a lot of assumptions needs to be made in
the design. Therefore, a more thorough investigation was done into this for both Eurocode and Model
Code 2010. A comparison between the methods presented was also conducted to investigate potential
improvements in the design process.
With the developed method three different case studies were made using three different wind towers.
The studies concerned the influence of tower height, the life span of the foundation and the difference
between using different partial safety factors, taken from Eurocode and IEC. The first study showed a
clear relationship between the height and the design forces on the tower, and a moderate correlation
between the height and the dimensions of the foundation. This study also showed that the influence of
fatigue on the reinforcement increases with height and has a larger influence on the reinforcement in the
top of the foundation. The second study showed that there is no major gain in designing a foundation
for a 20-year life span instead of 50 years which is the value determined from Eurocode. Finally, the
third study showed that there is little difference when designing according to IEC instead of designing
according to Eurocode.
Keywords: Wind power plant foundations, Fatigue, Design methodology, Wind loads, Eurocode
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SAMMANFATTNING
Under de senaste åren har det skett en ökad efterfrågan efter förnybar energi vilket lett till att ett stort
antal vindkraftverk har byggts. Storleken på vindkraftverken har också ökat för att ge högre effekt, vilket
i sin tur lett till ökad storlek på fundamenten. Konstruktionen av dessa fundament är en komplicerad
process, främst på grund av de komplexa lasterna. Framförallt är det de cykliska laster som fundamentet
utsätts för som ger potentiella utmattningsproblem och som leder till omfattande beräkningar.
Företaget WSP har konstruerat ett flertal fundament de senaste åren med en metod utvecklad av en
professor vid Kungliga Tekniska Högskolan i Stockholm. Det fanns dock en önskan inom företaget att
öka förståelsen för processen som använts. Ett annat mål är tidseffektivisera processen och i det syftet
har ett dokument tagits fram för att utföra dimensioneringen.
Målet med denna studie var att presentera en konstruktionsmetod som uppfyller gällande normer. Utöver
det kommer några av de mer problematiska delarna att presenteras i mer detalj. Detta gäller huvudsakligen
vindlaster och dimensionering med hänsyn till utmattning. Vindlaster tillhandahålls oftast av tornleve-
rantören och är inte alltid kända tidigt i processen. Utmattning är ett av de områden där konstruktörers
kunskap kan vara begränsad och där det ofta krävs antaganden i processen. Av den anledningen gjordes
en genomgång av Eurocode och Model Code 2010 samt en jämförelse mellan de olika metoderna i
förhoppning om att hitta förbättringar i konstruktiongången.
Med den framtagna metoden genomfördes tre fallstudier utifrån tre olika vindkraftverk. I studierna
utreddes tornhöjdens påverkan, skillnader för olika livslängder på konstruktionen samt effekten av
att dimensionera med partialkoefficienter från IEC istället för Eurocode. Den första studien visade på
ett tydligt samband mellan tornhöjden och de dimensionerande lasterna på fundamentet, samt viss
korrelation mellan höjden och dimensionerna på fundamentet. Den visade också att utmattning får större
effekt vid ökad tornhöjd samt har större påverkan på armering i överkanten av fundamentet. Den andra
studien visade att det inte finns några större vinster med att konstruera med avsikt på 20 års livslängd
istället för 50 som är riktlinjen i Eurocode. Slutligen så visade den tredje studien att det var liten skillnad
mellan att dimensionera för IEC jämfört med Eurocode.
Nyckelord: Vindkraftsfundament, Utmattning, Designmetodik, Vindlaster, Eurocode
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Nomenclature
Subscripts
c Concrete
d Design value
e Extreme
equ Equivalent
g Permanent
k Characteristic value
m Material
tm Mean tensile
u Ultimate
Greek letters
� Strain

 Partial factor
Λ Turbulence scale parameter
! Reinforcement ratio
� Bar diameter (m)
� density (kg/m3)
� standard deviation (m/s)
Roman lower case letters
c Confinement factor

f Strength (MPa)
k Stiffness ratio
m Relative moment
n Applied number of cycles
z Height (m)
Superscripts
� Power law exponent
k Exponent for S-N curve
Roman capital letters
R Resistance
A area (m2)
E Young’s modulus (MPa)
G Permanent load
I Turbulence intensity
N Resisting number of cycles
Q Variable load
R Stress ratio
S Stress level
V Wind speed
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1 Introduction
“Structural engineering is the art of using materials that have properties which can only be estimated, to
build real structures that can only be approximately analyzed, to withstand forces that are not accurately
known, so that our responsibility with respect to public safety is satisfied.”

Taken from: Shaopei Lin and Zhen Huang. ”Comparative Design of Structures”. iBooks.

1.1 Background
With the increasing effect of climate change the need for alternative energy sources has risen in order to
decrease the dependency on fossil fuels. According to the Swedish organization Svensk Energi, wind
power is the fastest growing renewable energy source in Sweden. In 2015 the total production in Sweden
was 16.6 TWh, which can be compared to the 0.9 TWh produced in 2005 (Svensk Energi, 2016). This
is an increase to more than 18 times in just 10 years. A graph representing the number of plants, effect
and total energy production can be seen in Figure 1.1.
As can be expected, a large number of wind power plants have been built during this period. There has
also been an increase in the size of the wind towers themselves in order to increase the effect, which
has also lead to an increase in the size of the foundations in order to resist the resulting forces from
these high structures. These foundations are subjected to a complex loading situation, mainly from the
ever-changing wind, with sizable cyclic forces.

Figure 1.1: The development of wind power in Sweden. Source: Johansson, 2015.

At the company WSP a number of different foundations has been designed over the years with the help of
experts in the field. There is, however, a feeling within the company that the internal level of knowledge
surrounding this problem has to be increased through a deeper study of the method that has been used
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previously. There is also a wish to potentially improve the design process and the way the results are
obtained.
One of the main challenges is the estimation of fatigue capacity in the foundation due to difficulties
with determining stress concentrations and structural behaviour under cyclic loading. There are a lot of
uncertainty among the active designers on how the loads shall be treated and which standards shall be
used. Especially on a wind power project with actors from several different companies, potentially based
in different countries, there is an uncertainty on which standard is governing. There are International,
European and, in some cases, National standards that all have different methods on how fatigue strength
shall be calculated or what factors should be used. A clarification and study of the governing parameters
for each standard has the potential to improve the understanding of the design process in a significant
way.

1.2 Problem description
“Understand and develop an analytical design methodology for wind power plant foundations”

1.3 Purpose
The purpose of the project was to gain a deeper understanding of how to design wind power plant
foundations and how different norms affect the design outcome. This included comprehension of
methodologies and modeling choices used in designs today. Furthermore, the intention was that this
knowledge should enable designers to make use of the materials in the structure more efficiently, and
thus create more accurate designs. Finally, the intention was to make the design process more efficient in
both preliminary and detailed phases.

1.3.1 Objectives

Themain objective of this study was to investigate a design methodology for wind power plant foundations
and from that propose recommendations for future work. In order to reach the aim of the project some
specific objectives were mapped out:

• describe the design method used by WSP today with underlying theory and increase the knowledge
• study the norms governing the wind loads in order to increase understanding
• study fatigue behaviour with an emphasis on how it is treated in different norms
• develop tools to use the described design method in an efficient way
• investigate how the design life affects the dimensions of the foundation and required reinforcement
• investigate how the height of the tower affect the final design of the foundation.
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• study what influence the life-span has on the final design
• study the influence of using different partial safety factors

1.4 Limitations
In order to keep this study focused the following limitations have been made. Another motivation behind
the limitations may be to keep in order with the wishes made by the examiner and WSP:

• The scope of the study was limited to onshore gravitational foundations only. Other types of
foundations are introduced briefly but not studied in depth.

• Only quadratic foundations with a centrally placed tower are considered in design.
• Only the method used and developed by WSP was studied. Other potential design methods are not

investigated.
• Reference cases used were taken from WSPs earlier projects. The same external conditions were

used for all towers.
• The thesis treats only the design of the foundation, meaning that there was no consideration to the

design of the tower.
• The study was focused to the following norms

– Eurocode
– fib Model Code 2010 for fatigue
– IEC 61400 for wind loads.

• All norms were only used for the discussion and comparisons. For WSP’s method only Eurocode
was used.

1.5 Method
The first part of the project mainly focused on a literature study of methods to design wind power plants.
This was done in order to attain an understanding of how the design is performed in general and how it
is done in particular at WSP. This included understanding the underlying theory behind the assumptions
that are made in the calculations, and also fully comprehend the calculations, in order to clearly convey
the knowledge to others who are not as familiar with design of wind power plant foundations.
When this was achieved, the next step was to establish a calculation document in order to easily produce
foundation designs. One of the goals with the document was to make it easy for the designer to
discover how different design choices affect the outcome and also make the calculations easy to overview.
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Therefore it was deemed appropriate to use Excel for the calculations. This proved very efficient in later
parts of the study.
In order to easily convey the knowledge about the design of foundations to others a document explaining
each step in the calculation process was established. This included the formulas used, explanatory text
and figures when needed.
Two aspects of the design was studied in more depth in order to improve the knowledge. These were
the calculations of wind loads and the fatigue. A deeper literature study was made on both subjects in
order to improve the knowledge. That involved reading books on the subject as well as articles attained
from the Internet, other master theses and material that WSP have used as a base for their assumptions in
previous projects. The study resulted in recommendations on how to proceed in future work and was
used as basis for discussions.
The major aim of the study was to conduct three case studies to find out more about the governing
parameters. The first of these concerned the tower height and was done in order to find relations to the
design forces, foundation dimensions and the governing parameters with regard to height. The second
study concerned the life span of the foundation and the potential gain of shortening it from 50 to 20 years.
Lastly, the influence of designing with partial safety factors from IEC instead of Eurocode was studied.
The results from the case studies was discussed along with some other issues that had arisen during the
process and conclusions were drawn that resulted in recommendations regarding future design work.
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2 Introduction to wind power plants

2.1 Wind towers today

The amount of energy produced from wind power plants (WPP) in Sweden has been increasing during
the last few years. According to the Swedish organization Svensk Energi (2016) the energy from WPPs
in 2015 compiled 12 % of the total energy production in Sweden. It is expected to rise even further
as the knowledge within the area has been increased and thus making it easier and cheaper to produce
new WPPs. Another contributing factor for this development is that the conditions are very good in
Sweden. A long coast line and windy environment renders a lot of good locations for placing WPPs
(Svensk Energi, 2016).

Figure 2.1: Schematic figure showing some of the basic components in a WPP

The rotor which converts the wind energy into electrical energy can be placed in front of or behind the
tower according to Gasch and Twele (2012). The most beneficial is to place it in front due to the extra
load that is created when wind passes the tower and then hits the rotor. The moment driving the generator
comes from the blades, which are usually three. The material used for the blades is either glass fibre or
carbon fibre where the former is less expensive but the latter has better material properties. The glass or
carbon fibres come in sheets that are placed in moulds and glued together by a polyester or epoxy resin.
Using epoxy based resin is more beneficial since it is lighter which implies lower loads and thus less
strain on the structure.
The tower of the WPP is very important for the whole structure because of economic aspects. The wind
conditions influence the height of the hub and how much energy that can be generated. Usually the towers
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are made of steel but concrete is also an option. However, using concrete requires a post-tensioning
system due to the limited tensile strength of concrete. There are also so called hybrid towers consisting
of both concrete and steel where the intention is to make use of the strength of each material. The lower
part of the tower is thus made of concrete whereas the upper part is made of steel (Gasch and Twele,
2012).
The foundation is the connection to the ground and its purpose is to provide stability for the WPP. That
includes handling tilting moments, horizontal and vertical forces and also torsional moments that arise
due to wind effects. The design of the foundation may vary depending on which type of tower that is
used, e.g. tubular, lattice or guyed which are described more in depth in Section 2.2. However, one
common trait among all types of onshore foundations is the use of reinforced concrete for the foundation.

2.2 Wind power plants

There exist a variety of different designs of WPPs depending on which context it is situated in. There are,
for example, offshore WPPs which are placed in marine environments and onshore WPPs which can be
further categorized depending on the ground conditions. If the soil is not able to carry the weight of the
WPP, a pile foundation is to prefer. The piles can either be driven to bedrock or to a layer of soil that has
higher strength. If the top layer of the soil has the capability to withstand the resulting forces, a gravity
based foundation can be used which is stabilized by the ground pressure. Generally offshore WPPs are
more expensive to produce and maintain due to more difficult conditions, however, the wind conditions
for offshore WPPs are very good. Furthermore, the development within the industry has lead to higher
and more powerful WPPs capable of producing more energy. The latest onshore models being designed
have an effect of 7.5MW and a height of 137m, which is the same height as one of the reference projects
but more than twice the capacity (Campbell, 2016). The difference is that this tower is designed for
higher wind speeds which is advantageous since the power of the turbine is approximately proportionate
to the cube of the wind speed (Gasch and Twele, 2012). However, this puts higher demands on the
foundation since bigger loads have to be resisted.
There are several types of towers used when constructing WPPs. The most common is according to
Hanser Verlag (2014) the tubular tower. This type of tower has a circular section which grants benefits
like good torsional resistance and fast erection. The tower is delivered in separate sections that are bolted
together. This type of tower also benefits from the possibility of prefabricating the sections and thus
limiting the on-site construction.
Another type of tower is the lattice mast which is a lighter construction than the tubular tower. As for
the tubular tower, the degree of prefabrication is high and the components can be brought easily to the
construction site. The downside of this design is an extensive erection and maintenance required due to
the vast amount of components.
A third type is the guyed mast which uses cables or guy lines for stabilizing the structure. The tower has
to be able to withstand the compression force from its self-weight and the guy lines. This design enables
material savings but, due to comprehensive ground investigations that are necessary, this design is rarely
used (Hanser Verlag, 2014).
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(a) (b) (c)
Figure 2.2: Different types of towers (a) tubular (b) lattice (c) guyed.

.

2.3 Wind Power Plant foundations
With the increased size of the wind towers there has been an increased demand on the foundations to
fulfill the different requirements needed. The design requirements will be explained in more detail in
the following sections. The purpose of this section is to explain the different types of foundations and
describe when the different types are suitable to use.
The three foundations mentioned by Hanser Verlag (2014) as the most common are

• gravity force foundations
• cabled foundations
• piled foundations.

They are appropriate in different situations depending on the bearing capacity of the soil and the
construction of the tower itself (Hanser Verlag, 2014).

2.3.1 Gravity force foundations

These types of foundations are the most commonly used foundations for WPPs. Two different types
exist, the raft and the monopile foundation, where the difference is the ratio between depth and width.
The monopile foundation consists of a single pile driven deep into the soil according to Burton (2011).
It is also stated that monopiles may be used for sites with good soil conditions but is seldom used due
to an excessive use of materials (Burton, 2011). Two different examples of monopiles can be seen in
Figure 2.6, type (b) and (c).
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The second type of gravity foundation is the raft foundation where in contrast to the pile the width
is larger than the depth, and is therefore designed as a shallow foundation according to Eurocode. In
Figure 2.3 four different types of raft foundations can be seen. Notice that type (d) is a rock-anchored
foundation which can be used when the distance to solid rock is small. Type (a)-(c) show different ways
of designing raft foundations.

Figure 2.3: (a)-(c) show different designs types of raft foundations whereas (d) is rock anchored. Source:
Burton, 2011.

The raft foundation’s function is to resist the forces coming from the tower and the foundation itself.
With the exception of the rock-anchored foundation the forces are resisted only by the weight of the
foundation and the tower. The bending moment results in an eccentric support reaction to the ground
and large internal forces.

Construction details of raft foundations

Since this report will focus on the design of a raft foundation with a square crossection this will be
presented a bit more thorough. In Figure 2.4 a raft foundation can be seen before the casting of concrete.
These are heavily reinforced structures with most of the reinforcement placed in the main directions,
with additional reinforcement in radial direction nearest to the tower.
An anchorage ring that consists of two steel plates connected with post-tensioned bolts is used to attach
the tower to the foundation. This will ensure that the concrete is always in compression and avoid large
cracks due to tension. However, this will lead to very high pressures under the upper steel ring when
the moment creates a positive reaction on that side. Therefore, it is required to use a high-strength
concrete grout under the plate, often with a characteristic compressive strength in the range of 80MPa.
An example of a construction can be seen in Section 2.5.
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Figure 2.4: A typical reinforcement arrangement for a gravity foundation

2.3.2 Cabled foundations

This foundation is used for guyed masts where the loads are transferred using prestressed cables which
are anchored into the ground, see Figure 2.5. This gives a very complicated force flow within the soil
and is dependent on satisfactory bearing capacity.

Figure 2.5: Sketch of a typical cabled foundation where forces are indicated. Source: Hanser Verlag,
2014.

2.3.3 Piled foundations

These kinds of foundations are used both on- and offshore when the soil conditions are unfavorable, or
there is a need to avoid excessive settlements (Knappett and Craig, 2012). Long piles made of concrete,
timber or steel are driven into the ground to give a satisfactory bearing capacity on weak soil. Depending
on whether the soil is cohesive or non-cohesive the design process differs.
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Figure 2.6: Different types of pile foundations. (a) multi-pile (b) solid monopile (c) hollow monopile
Source: Burton, 2011.

2.4 Actions on WPPs
A WPP is subjected to different types of loads during its life where some are more prominent and have
to be considered when designing. The most apparent might be the self weight. The wind is the most
significant load causing the highest stress on the structure. These loads have to be resisted and for gravity
foundations this is achieved by the soil pressure acting on the foundation of the WPP.
The aim of this section is to give the reader a brief view of the forces acting on a WPP. A more thorough
study of the wind loads can be found in Section 3.4. The reason for looking more into detail on this
matter was that there have been interests in understanding how the wind loads are calculated, since today
the tower manufacturer, e.g. Vestas, simply delivers the loads acting on the foundation without any
detailed background information.

2.4.1 Permanent

The permanent loads acting on the WPP is the self-weight of the foundation, the tower, the nacelle and
the rotor. Moreover electrical machinery that is used in the WPP along with other equipment like, for
example, stairs should also be considered.

2.4.2 Wind loads

The wind is the main variable load that has to be considered when designing WPPs and the intensity of
the wind is site specific, meaning that the average speed and other parameters can vary from one location
to another, and this has resulted in the development of wind classes. Gasch and Twele (2012) state that

10 , Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-8210 , Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-8210 , Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-82



there are four different classes in the IEC-standard. Each class provides the designer with appropriate
values for wind speeds, see Table 2.1, in order to attain representative loads for the location of the WPP
to enable accurate and profitable designs.
The selection of wind class has to be verified by site specific investigations. This is important since
small variations in wind speed can cause big differences in how much energy that can be generated. A
10% difference in wind speed leads to 33% difference in power output. The survey includes measuring
wind conditions at the intended location and thorough investigations of the surrounding environment.
The latter involves, for example, locating other WPPs and determining surface roughness of the ground
(Gasch and Twele, 2012). How wind loads are determined and modelled will be introduced further in
Chapter 3.

Table 2.1: Wind speeds for different different wind classes (Gasch and Twele, 2012).

Wind Class I II III IV
Extreme load Unit Comment
Vref = V50 50.0 42.5 37.5 30.0 m/s Expected extreme 50-years

wind, 10m-min average
Ve0 70.0 59.5 52.5 42.0 m/s Extreme 50-year wind, 3-sec

average
Vml 37.5 31.9 28.1 22.5 m/s Expected annual extreme

wind, 10min-average
Vel 52.5 44.6 39.4 31.5 m/s Annual average wind, 3-sec

average
Fatigue strength
TIA 18 18 18 18 %

Characteristic turbulence
intensity at V = 15 m/s Class
A

TIB 16 16 16 16 %
Characteristic turbulence
intensity at V = 15 m/s Class
B

2.5 Introduction to case studies
The aim of this study was to investigate the influence of three different parameters of the WPP. In order
to do this three case studies were conducted. The following parameters were examined:

• the influence of tower height
• the life-span of the WPP
• the effect of different partial factors.
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In order to make the comparisons as accurate as possible the same soil conditions were used for all
towers, taken from a reference case. The three towers are all designed by the same manufacturer, Vestas,
and have been used for foundation design by WSP. The data for these can be seen in Table 2.2.
Table 2.2: Data for the three Wind towers used in case studies.

Name Hub height Rotor diameter Effect Wind class
V126-3.3 MW ™ 137m 126m 3.3MW III A
V112-3.0 MW ™ 124m 112m 3.0MW II A
V100-1.8 MW ™ 95m 100m 1.8MW III A

The reference case used for introduction and choice of parameters derives from one of WSP’s earlier
projects that was designed and built in Sweden during the year 2014. The WPP is of type V126-3.3 MW
™ and is designed specifically for locations with lower wind speeds. The data for this tower can be
seen in Table 2.2. The loads used when designing for ULS and SLS were provided by Vestas and are
displayed in Table 2.3. In Table 2.3 loads for fatigue are presented in the form of equivalent moments
which are calculated in accordance with the method presented in Section 4.8.
Table 2.3: Loads acquired from Vestas acting on the foundation for V126.

Serviceability limit state Unit Comment
Characteristic value Design value
Mex.k 104.9 Mex.d 104.9 MNm Tilting moment
Hex.k 850.4 Hex.d 850.4 kN Horizontal force
Ultimate limit state
Characteristic value Design value
Mex.k 104.9 Mex.d 157.4 MNm Tilting moment
Mex.k.torsion 6429.0 Mex.d.torsion 9643.5 kNm Torsional moment
Hex.k 850.4 Mex.d 1275.6 kN Horizontal force
Fatigue limit state
Mfatigue.tower 53800 kNm Macalloy bolts
Mfatigue.bottom.reinforcement 15450 kNm Bottom reinforcement
Mfatigue.top.reinforcement 13900 kNm Top reinforcement
Mfatigue.steel 46000 kNm Distribution ring

For the different towers there are extreme external forces divided into two different categories, normal
and abnormal. Normal loads correspond to situations that are expected to occur frequently during the
towers life span. Abnormal situations are expected to occur less frequently and therefore have a lower
safety factor than the normal load cases. Which case that results in the largest design load may vary
between different towers.
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A bolt cage, shown in Figure 2.7 and Figure 2.8, is used to anchor the tower to the foundation. All the
loads from the tower have to be transferred through this element. Pressure acts on the upper flange and is
transferred through the plate to the concrete. Tension, on the other hand, is carried through the bolts to
the lower flange where it is compressing the concrete. The bolts are post-tensioned to roughly 65 % of
their tensile strength.
In the center of the foundation under the tower a so called soft layer is used. This consists of expanded
polysterene (EPS) which has low capacity for compression. The purpose of using the EPS is to ensure
beam behaviour in the foundation and moving the extreme stress to the edges. Another benefit is that it
prevents the soil at the edges from becoming too soft after a high number of load cycles, which would
otherwise cause severe tilting of the foundation. This would, in turn, reduce the electricity that can be
produced from the tower.

Figure 2.7: Bolt cage used in the reference case.
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(a) (b)
Figure 2.8: The connection between the tower and the bolt cage.

The design method presented in Chapter 4 will be used for all three case studies. The aim of each case
study is introduced in the following Sections.

2.5.1 Case study 1 - Influence of tower height

In order to get more effect from the tower the height can be increased since the wind speed increases
with height. With a higher tower there is also the option to use larger rotor blades and get more power.
However, this will also lead to larger forces on the tower and a larger foundation. Therefore a comparison
for different heights to examine the relation between foundation size and height was of interest. The
relation for design forces was also studied.
Another aspect of interest was to study the governing parameter in design. This was done to find out if
the damage from fatigue is more severe for a high tower compared to a low tower and also to potentially
find a threshhold were the governing parameter changes.

2.5.2 Case study 2 - Influence of life span

All of the towers in the case study are designed for a life span of 20 years during which it is in production.
This has an effect on the size of the fatigue loads. However, the governing norm in Europe states that the
life span of most structures should be 50 years. This raises the question of what influence this increased
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life span has. The effect is also dependent on if the foundation is intended to be used a second time after
the initial tower has been worn out.

2.5.3 Case study 3 - Conflicts between norms

The design of WPPs should according to IEC (2005), which is the International standard governing the
design of wind towers, be done with partial safety factors. This is also a concept presented by the other
norms. The purpose is to account for stochastic variations for loads and the strength of materials. For
load calculations this moderates how big the chances are for a certain load occurring. These may vary
when considering different types of loads like ultimate and fatigue loads. When it comes to materials,
the purpose is to account for the uncertainty in the production methods and thus the reliability of the
materials strength class.
The same load type or material can have different partial safety factors depending on which norm is
used, and therefore the combination of different norms can provide difficulties. By applying the different
partial factors from Eurocode and IEC (2005), introduced further in Section 3.1, the effect of different
parameters can be seen. In order to see the effect of only the partial factors the same method, presented
in Chapter 4, was used for all partial factors.

, Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-82 15, Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-82 15, Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-82 15



3 Theory
Recalling the quote from the beginning, the design of a structure is a complex process where a lot of data
has to be combined using the knowledge and experience of the designer. Using a quote from Lin and
Huang (2016) "Design is the bridge between subjective function and objective reality". At the beginning
of a design process a couple of functions are defined that the final structure are supposed to fulfill. In
these processes there are no single correct solution because in the early phase decisions are made that
will have a large impact on later phases in the design process.
Focus in this study will lie on the detailed design of structures when the bearing system and loading
conditions are known. The challenge comes in translating the structure and loads into something that
can be verified by either analytical or numerical methods. Some of the things that have to be accounted
for in this process can be seen in Figure 3.1.

Figure 3.1: Parameters influencing a Design Model

By establishing these in a satisfactory way a structure can be transformed from something complex
into something that is known, e.g. an Euler-Bernoulli beam, from which design values for sections can
be calculated. Another alternative which has been introduced over the last years with the increased
capacity of computers are numerical methods, e.g. the Finite Element Method (FEM), where the structure
is divided into smaller elements in order to calculate section forces. The main challenge is to know
the limitations of assumptions and the potential risks by doing them, referring back to the quote from
Chapter 1.
Three different concepts will be introduced as part of the literature study. Firstly, the governing standards
that influence the design. Secondly, how the wind loads are calculated in order to increase the knowledge
surrounding this and finally, the theory and governing norms surrounding fatigue is presented. This
was done in order to provide basis for further discussions surrounding the different issues. It was also
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done in order to attain an increased knowledge which supported the presentation of the design method
in Chapter 4. However, the theory presented in this section has limited influence on the case studies
conducted and should be seen as a separate part of the study.

3.1 Standards
In order to ensure that a structure is functioning during the course of its use there are standards that
regulate what a structure must fulfill in order to safely predict its function during the intended life
span. An important aspect in design is the concept of limit states which are the state beyond which the
performance of the structure no longer satisfies the design criteria (Gulvanessian, Calgaro, and Holický,
2012). In Eurocode the two standard states are Ultimate and Servicability limit state, with several checks
needed to be made for different states. For structures subjected to varying loads the Fatigue limit state is
also necessary to check. Examples of checks are listed below.

• Ultimate limit state (ULS)
– Moment capacity
– Shear force capacity
– Structural stability

• Servicability limit state (SLS)
– Vibrations
– Deflections

• Fatigue (FLS)

The standards normally give guidelines for how to combine different loads into the design stress (Sd)on the structure and how to calculate the relevant design resistances (Rd) of the materials and sections
used. The safety of the structure is ensured by controlling that the stress on the structure is less than the
resistance of the structure, i.e.

Sd ⩽ Rd (3.1)
The process may vary a bit between different norms but the general process will be described using
Eurocode as an example, as this is the governing norm in Sweden. The procedure is done by taking a
characteristic load which represents a condition that has a certain return-time, normally 50 years. In the
same manner a characteristic value is considered for each material parameter which represents a certain
probability, e.g. the lower 5-percentile. These two different characteristic values are then modified with
partial safety factors in order to provide a satisfactory margin of safety. The partial safety factors are
determined based on a number of parameters, e.g. which limit state and what type of load. Normally
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these are treated as load combinations which are stated in EN-1990 (2005). In a generic way the safety
check can be expressed as follows


SdS
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(3.2)

where
Gk is the characteristic permanent load,
Qk is the characteristic variable load,
Rk is the characteristic resistance of the structure,

Sd is a partial factor for the uncertainty of the load model,

g is a partial factor for permanent load,

q,i is a partial factor for live loads,

Rd is a partial factor for the uncertainty of the material model,

m is a partial factor for material properties.

This is shown visually in Figure 3.2 reprinted from Gasch and Twele (2012).

Figure 3.2: Visual represenation of structural verification. Source: Gasch and Twele, 2012.

Since a large focus of this study will be on comparing approaches from different standards a short
introduction to these will follow. Interesting points are differences and eventual conflicts between norms
that can be governing.

3.1.1 Eurocodes

Since 2010 it is mandatory for countries within the European Union to design structures to meet the
requirements set by the European Norms (EN). There are a total of 10 different norms and the relation
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Figure 3.3: The links between different parts in the Eurocode.
Source:http://www.standardsforhighways.co.uk

between them can be seen in Figure 3.3. The aim of these norms was to cover as many design situations
as possible and not all of the norms are applicable to the design of WPP. The ones that are of interest for
this study are listed in Table 3.1.
There are some important aspects to know about the Eurocodes. They are reviewed every five years with
a new update coming out in 2018. Another aspect is that countries have a way of influencing the norm
via the national parameters in Eurocode. These are parameters that are left open within the norm for
each country to decide about, with a recommended value stated in the norm which may be used. For
each country there is a National Annex (NA) which states the choices made. In Sweden the governing
NA is the EKS where the latest version is EKS10.
Table 3.1: Eurocode documents of interest for this thesis (EN-1990, 2005).

Number Description
EN 1990 Basis on Structural Design
EN 1991 Actions on structures
EN 1992 Design of concrete structures
EN 1993 Design of steel structures
EN 1997 Geotechnical design
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3.1.2 fib Model Code 90 and 2010

One of the major organizations concerned with concrete structures is the International Federation for
Structural Concrete, commonly refered to as fib from their french name. The organization has over the
years released several different codes, the first code-like documents were released in 1964. This was
done as a joint endeavour by the organizations predecessors Comité Euro-International du Béton (CEB)
and Fédération Internationale de la Précontrainte (FIP) in order to provide documents that national code
commisions could use when writing their documents. In this fashion the Model Code 90 was used as
a basis when writing EN 1992 (fib, 2013). Therefore the Model Code is not a norm in itself, instead
providing a basis for the writing of new norms.
One important aspect in the fib Model Code that differs from Eurocode is the term level of approximation.
This indicates how simplistic the model is where I represents the most approximate method and is
reserved for structures where the need for accuracy is low (fib, 2013) . The level which provides the
highest accuracy is IV, however this often requires more cumbersome calculations. This is shown visually
in Figure 3.4 reprinted from Model Code 2010. For each load effect Model Code provides methods for
different levels depending on the wanted accuracy.

Figure 3.4: Visual representation of level of approximation in Model Code 2010. Source: fib, 2013

3.1.3 IEC-61400

IEC is an international organization that was founded 1906 and provides International standards for all
fields of electrotechnology (IEC, 2017). Their standard series IEC-61400 concerns the design of wind
turbines and their supporting structures. This standard is only valid for onshore structures. IEC-61400-1
is the governing document and is used to calculate the wind loads, e.g. the data in Table 2.1 is taken
from this standard. There are also several load cases that are used as a basis for calculating the loads
used in FLS.

3.1.4 Basis of design

The WPP has to be designed with regard to ULS, SLS and FLS. Examples of loads for each respective
case are displayed in Table 2.3. The loads for ULS and SLS are taken directly from the data provided by
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Vestas where one of the major uncertainties surround the partial load factors accompanying the loads.
For the fatigue load the standard load provided is a mean load and a range which come in two different
sets depending on the fatigue behaviour of the studied material. These load levels are valid for 107 cycles.
Two alternatives are given, namely a Rainflow matrix and a Markov matrix. The latter is used for the
design.
The Markov matrix is a load matrix and the load capacity is represented by the S-N curve for the material
in question. The Markov matrix is described in more detail in Section 3.5.2. The damage equivalent
bending moment in the tower is derived by trial-and-error calculations by varying the moment until the
sum of all partial damages according to Palmgren-Miner hypothesis becomes 1.0. The calculated loads
can be seen Table 2.3 for the different parts subjected to fatigue loading.
The loads acting on the bottom of the tower except for the horizontal force can be seen in Figure 3.5.
How these loads are transferred to and resisted by the foundation will be the main objective of Chapter 4
as well as verification according to the governing norm, Eurocode.

Figure 3.5: Tilting and torsional moments and normal force acting on the foundation. In this study the
loads are provided by Vestas.

One of the major problems when designing a foundation is the origin of the loads, especially the wind
loads. Live loads and self-weights are tabulated in the norms but for wind loads there are some major
problems. One is that the international norm IEC-61400 demands that the calculations of loads should be
made in a certain way without giving detailed guidelines for how these should be performed. Secondly,
the structure is often designed according to different norms which give other safety parameters and can
in the worst case lead to an unsatisfying margin of safety for the structure.
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In previous projects WSP have received the dimensioning loads from the manufacturer of the tower
and the degree of detail have varied from case to case. For one of the cases the characteristic loads are
presented in Table 2.3.

3.2 Partial factors in Eurocode and IEC
This section aims to give the reader a brief introduction to partial factors and their origin. Therefore, it
has been deemed sufficient, in some cases, to only state the partial factor of interest and omitting the
theory behind.
As explained in Section 2.5.3, stochastic variations of loads and strength of materials is handled by the
use of partial safety factors. However, different norms might state various partial factors even though
they are used with the same parameter. This is the case between Eurocode and IEC, where Eurocode
tend to supply the designer with greater partial factors for the loads. In Figure 3.6 a scheme of how the
different partial factors are combined is shown.

Figure 3.6: Link between different partial factors. Source: EN-1990, 2005.

Safety factors can be developed in different ways, ranging from empirical methods to pure mathematical
models as well as combinations of these. The empirical method is based on observing the results
from earlier designs and thereafter adjusting the factors accordingly. The pure mathematical model is
supposed to represent the exact reality whereas the semi-probabilistic methods take basis in well defined
approximations. In Eurocode, the safety factors are mainly derived by empirical methods and experience,
and in some cases further development has been done using mathematical models.
The methods presented in Annex C of EN-1990 (2005) are only informative, meaning that the designer
is not bound to use any of them but recommended to do so. This, in turn, means that the designer is
free to choose any of the three methods. However, the most common choice is to use recommended
partial factors given by Eurocode. One of the major reasons for this is most likely convenience. The
probabilistic methods are complicated and cumbersome to perform and the norms already provide well
substantiated values. Another reason is that statistical data is missing and therefore making it impossible
to perform any probabilistic evaluations.
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fib (2013) provides an approach to calculate the partial safety factors probabilistically. The method
requires that statistical data is available so that the average value, � and coefficient of variation, � can be
calculated. Using, e.g. the case with material partial safety factors the equations are stated as


m =
Rk

Rd
=
�R(1 − k�R)
1 − �R��R

(3.3)

if a normal distribution is used and


m =
Rk

Rd
=

exp(�lnR − k�lnR)
exp(�lnR − �R��lnR)

= exp(−k�lnR + �R��lnR) (3.4)

if a log-normal distribution is used, where
�R is a sensitivity factor,
� is a factor dependant on the consequences of an eventual failure,
�R is a coefficient of variation or relative standard deviation.

The �-values can be found EN-1990 (2005) and represent a safety index that is dependant on the life span
and safety class of the building. The processof deriving the partial factors for loads is more complicated
since the statistical data is often lacking. In Table 3.2 the partial factors used in the case studies are
displayed. These are limited to permanent and main variable actions and thus excluding prestress forces
and other variable actions.
Table 3.2: Partial load factors used in Eurocode and IEC.

Eurocode IEC
Action Unfavourable Favourable Unfavourable Favourable
Permanent, 
G 1.35 1.0 1.05-1.1 0.9-0.95
Leading variable action, 
Q 1.5 Neglected 1.5 Usually neglected

3.3 Theory behind wind-loads
In order to understand how the loads for the design of wind towers are calculated, an introduction to
the different characteristics of wind loads is needed. In order to do this two different books are used as
reference, firstly a book by Hau (2013) and secondly another book by Gasch and Twele (2012).
The wind loads can be divided into steady and unsteady loads and the latter can be divided into cyclic
and non-cyclic loads. Or in short form:

• steady loads
• unsteady cyclic loads, e.g. wind shear on the tower
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• unsteady non-cyclic loads, e.g. action from turbulence.

The resulting stress from each of these loads as well as the sources for them will be presented briefly in
the following sections.

3.3.1 Steady loads

The steady loads originate from gravity, centrifugal and steady wind where gravity acts as one of the
major limiting forces for the size of the WPP according to Hau (2013). For the design of the foundations,
the gravity has a positive effect in resisting the overturning moment, limiting the eccentricity of the
resulting force, see Section 4.1. The weight of the tower in the reference case is also significantly smaller
than the weight of the foundation itself. Centrifugal forces have little impact on the rotors of a WPP due
to the low rotational speed (Hau, 2013).
Of more interest is the effect of a steady, uniform wind acting on the structure. According to Hau (2013)
this is not a realistic load model but is still relevant to check the mean loads acting on the tower over
a longer duration of time (Hau, 2013). An example of how the wind varies can be seen in Figure 3.7.
Gasch and Twele (2012) states that the mean wind speed is also important as the energy generated is
proportional to the cube of the wind. This information is used when designing the layout of the WPP
parks. The final important thing to note regarding the mean wind speed is that a strong correlation exists
between the mean wind speed over a certain time and the maximum wind speed during that interval
(Gasch and Twele, 2012). As will be explained later this is used to calculate the maximum wind speed
during the life-time of the tower.

3.3.2 Unsteady cyclic loads on the tower

Cyclic loads are loads that occur with a certain frequency that will result in alternating forces. The
simplest way to explain this with regard to WPP is the effect of gravity acting on the rotors. As they
rotate 180° the forces will change so the side that was in tension will be in compression and vice versa.
The frequency of this is proportionate to the rotational speed of the rotors, normally denoted Ω [rad s−1].
The wind also contributes to cyclic loads which are dependent on both the nature of the wind and the
operation of the WPP. The first of these effects originates from wind shear which is caused by the uneven
wind load on the tower. Due to the influence from the ground the wind will increase with the height until
it reaches stable condition, called geostrophic wind. The region below which is influenced by the ground
is called the atmospheric boundary layer and varies in height between 100 and 2000 m (Gasch and Twele,
2012). Due to the uneven loading the load on the tower will vary as the rotor blades rotate and create a
cyclic load. How large this effect is varies and Hau (2013) cites four phenomena that influence the shape
of the wind profile, and therefore the wind shear. These are:

Terrain inclination a surrounding slope can disrupt the flow at the tower severely.
Obstacles if the tower is placed close to an obstacle the wind velocity in the bottom will decrease.
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Distance between wind turbines a tower causes turbulence in the wind flow which can have negative
effect on the following towers. In worst case a horizontal gradient is caused as well.

Atmospheric stability a changing temperature can cause extra wind flow in certain direction.

The three first can be influenced by the design of the park. This effect is deemed to be more severe for
the design of rotor blades than it is for the foundation.
Another source of cyclic loads is oblique wind flow which can be both vertical and horizontal, normally
called cross winds. This happens when the direction of the wind flow is at an angle to the rotor and
creates a bending or torsional moment in the tower. For the horizontal cross wind an important parameter
is the yaw angle which describes the angle between the wind and the normal to the hub. This angle is not
constant and can vary significantly over time due to turbulence. The rotor adjusts itself after the wind to
prevent too large effects from this.
The final source of cyclic loads that will be introduced is produced from the effect that the tower itself has
on the wind. When the wind passes the tower, the flow is separated from the tower resulting in a wake
on the rear side which will create turbulence and cause stresses on the tower. The effect is dependent
on two major factors, the first being if the rotor is upwind or downwind. The second is the Reynolds
number (Re) for the flow around the tower which will result in different phenomena (Hau, 2013). For
more information about this see Section 6.3.5 in Hau (2013).

3.3.3 Unsteady non-cyclic loads

The final type of loads that influence the tower and foundation, and the most difficult to handle, is the
turbulence. These loads are non-cyclic and cannot be predicted accurately over time. One illustration of
turbulence can be seen in Figure 3.7. The changing loads will cause a lot of stress on the tower and be
one of the major factors for design, especially for the rotors, since they are the main contributors to the
fatigue loads.
Due to the large uncertainties regarding turbulence effect it is handled with a statistical approach which
is outside the scope of this study. One of the main parameters of interest for calculating loads however is
the turbulence intensity Iv which is defined in Gasch and Twele (2012) as the ratio between the standard
deviation �v and the mean velocity v̄, or in mathematical terms:

Iv =
�v
v̄
. (3.5)

The value for the turbulence intensity varies along the line of 12 to 18%. It can also be used to estimate
the speed of gusts during a certain period due to the previously mentioned correlation between mean and
maximum speed. The intensity is influenced by parameters such as obstacles, terrain inclination and
surface roughness (Gasch and Twele, 2012).

For a visual summary of the loads presented in this section reference is made to (Hau, 2013, Figure 6.1)
or (Gasch and Twele, 2012, Table 8.1 ).
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Figure 3.7: The variation of wind speed over time due to turbulence. Source: Hau (2013)

3.4 Modelling of windloads according to IEC 61400

In IEC (2005) a total number of 22 design load cases (DLC) are defined with varying wind intensity.
All of these will not be discussed in this study, focusing on some relevant cases. The load cases are
divided between Ultimate (U) and Fatigue (F) depending on which analysis they are used for. The main
parameters used for calculating loads are presented in Table 2.1 and the usage of them will be introduced
in the following sections. On some occasions reference will be made to relevant theory. Before going
into the design loads the normal wind conditions will be presented since they are used for calculating
both U and F loads and provide a base for further models.

Normal wind conditions

The wind profile over the tower is based on the Hermann Power Law (Gasch and Twele (2012)) and
states that

V (z) = Vℎub

(

z
zℎub

)�

(3.6)

where
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Figure 3.8: The distribution function for normal wind condition using Vref = 37.5m∕s.

� is the power law exponent,
Vℎub is the wind speed at the tower hub,
z is the height at which the speed is calculated,
zℎub is the height of the hub.

The power law exponent � is given a value of 0.2 in IEC (2005). In Gasch and Twele (2012) the given
value is 0.14. However, it is noted that the exponent varies with height and surrounding conditions.
Therefore a measured exponent is only valid for the individual site (Gasch and Twele, 2012). The wind
speed at hub height is predicted over time using a statistical distribution called Rayleigh distribution.
This is used to predict the mean wind speed over a 10-min interval and both the distribution and the
probability functions can be seen in Figure 3.8. In IEC (2005) the distribution function is stated as

DR(Vℎub) = 1 − e−�(Vℎub∕2Vave)
2 (3.7)

where Vave = 0.2Vref , with Vref taken from Table 2.1. As can be seen in the figure the wind speed with
the highest probability is close to the average wind speed, in this case 7.5m∕s.
The final part in modelling the normal wind conditions is the modelling of turbulence for normal
conditions, the normal turbulence model (NTM). This is used by calculating a representative value for
the standard deviation �1 which depends on the wind speed at the hub according to the following formula

�1 = Iref
(

0.75Vℎub + b
)

; b = 5.6m∕s (3.8)
where
Iref is reference value for turbulence intensity from Table 2.1

3.4.1 Loads concerning failure of the structure

For design in ULS, loads from both normal and extreme wind conditions are used. In this section some
of the extreme conditions will be described in order to understand their implications.
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Extreme wind speed model (EWM)

This model consists of two different models, one steady model and one turbulent model. Firstly, the
steady wind model is similar to Equation (3.6) where the extreme wind speed with a recurrence period
of 50 years, Ve50, is modelled as

Ve50 = 1, 4Vref

(

z
zℎub

)0,11

. (3.9)

It is related to the annual extreme wind speed according to Ve1(z) = 0.8Ve50(z). The similarities with
Equation (3.6) are noticeable with only the exponent and maximum value changing between them.
The difference can be seen in Figure 3.10. These models are combined with the possibility of a yaw
misalignment of ±15° which causes extra stress in the structure.
The turbulent model is similar and is modelled using the same formula as in Equation (3.9) without the
1,4 factor. For this model the standard deviation is determined using

�1 = 0, 11Vℎub. (3.10)

Extreme turbulence model (ETM)

This model uses the normal wind profile from Equation (3.6) with the standard deviation calculated using

�1 = cIref

(

0, 072
(

Vave
c
+ 3

)(

Vℎub
c
− 4

)

+ 10
)

; c = 2m∕s. (3.11)

The standard deviation for both the ETM and the NTM presented in Equation (3.8) for different Vℎub canbe seen in Figure 3.9, using Vref = 37.5m∕s and Iref = 18%. It can be seen that the difference between
the two is highest at low wind speeds and is equal for Vref .

Extreme operation gust (EOG)

The extreme gust is the highest wind speed that will occur during operation. The magnitude of the gust
at hub height is calculated using

Vgust =Min
⎛

⎜

⎜

⎝

1, 35(Ve1 − Vℎub); 3, 3
⎛

⎜

⎜

⎝

�1
1 + 0, 1 D

Λ1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

. (3.12)

where
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Figure 3.9: The standard deviation between 0m∕s and 37.5m∕s for ETM and NTM.

Ve1 is calculated according to Section 3.4.1,
�1 is calculated using Equation (3.8),
D is the rotor diameter,
Λ1 is a turbulence scale parameter calculated from Equation (3.13).

Λ1 =

{

0, 7z z ⩽ 60m
42m z ⩾ 60m

(3.13)

With the value for Vgust the wind model can be calculated using V (z) from Equation (3.6) and combining
it with a time-dependent function for the effect of the gust according to

V (z, t) =
{

V (z) − 0, 37Vgustsin(3�t∕T )(1 − cos(2�t∕T )) for 0 ⩽ t ⩽ T (3.14)
where T is a defined time period of 10.5 s. For other times the wind is modelled using Equation (3.6).
It should be noted that the value for the gust is constant over the whole tower, i.e. independent of the
z-coordinate. It can be seen as moving the entire wind profile at the same time which can be seen in
Figure 3.10.

Extreme wind shear (EWS)

The wind shear is modelled for both horizontal and vertical effect as a transient effect dependent on
respective coordinate. The vertical shear is defined in time by

V (z, t) =

⎧

⎪

⎨

⎪

⎩

Vℎub
(

z
zℎub

)�
±
(

z−zℎub
D

)

(

2, 5 + 0, 2��1
(

D
Λ1

)1∕4
)

(1 − cos(2�t∕T )) for 0 ⩽ t ⩽ T

Vℎub
(

z
zℎub

)� otherwise
(3.15)
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Figure 3.10: Different wind speed profiles from IEC

The horizontal shear is modelled as dependent of both y- and z-coordinates where y denotes the distance
between the center of the tower and the investigated point measured perpendicular to the wind direction.

V (z, t) =
{

Vℎub
(

z
zℎub

)�
±
(

y
D

)

(

2, 5 + 0, 2��1
(

D
Λ1

)1∕4
)

(1 − cos(2�t∕T )) for 0 ⩽ t ⩽ T (3.16)

� = 0.2; � = 6.4; T = 12 s for both vertical and horizontal shear. As was the case for EOG the
wind profile for all other times, t, is defined using Equation (3.6).
The two different wind shears should not be applied simultaneously. The vertical wind shear for t = 6 s
is shown in Figure 3.10 where it can be seen that the wind speed is at maximum approximately at the
height 10 meters.

Extreme direction change (EDC)

The final extreme condition that will be introduced is extreme direction change which happens when
the wind changes direction rapidly and the tower experiences extra stresses due to it. The angle, �e iscalculated from

�e = ±4 arctan

⎛

⎜

⎜

⎜

⎝

�1

Vℎub
(

1 + 0, 1
(

D
Λ1

))

⎞

⎟

⎟

⎟

⎠

(3.17)
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and is limited to ±180°. The change in direction has a duration of T = 6 s and is modelled over time
with the following formula

V (z, t) =

⎧

⎪

⎨

⎪

⎩

0° for t < 0
±0, 5�e(1 − cos(�t∕T )) for 0 ⩽ t ⩽ T
�ea for t > T

(3.18)

where the sign is chosen to give the maximum effect on the structure.

Design load cases

All of these different loads and models that are presented in previous sections are used for the design
of the tower and supporting structures. There are a total of 17 different DLCs concerning ULS, for
which a number of different wind speeds should be checked. The presentation of these are deemed to be
superfluous and reference is made to Table 2 (IEC, 2005). Some of the important parameters that are of
interest for the next section and define the wind speed at hub height are the following:
Vr is the rated wind speed. The minimum speed at which the towers rated power is achieved.
Vout is the highest wind speed that the tower is designed to produce power at.
Vin is the lowest wind speed that the tower is designed to produce power at.

3.4.2 Loads concerning fatigue

The loads used for the design with regard to fatigue are presented in a Table 2 in IEC (2005) and consists
mainly of the load combinations for the normal conditions. A total of five different conditions are used
for calculating fatigue loads:
DLC 1.2 Power production. Modelled using NTM for wind speeds of Vin ⩽ Vℎub ⩽ Vout

DLC 2.4 Power production plus the occurence of fault. Modelled using NTM for Vin ⩽ Vℎub ⩽ Vout

DLC 3.1 Start up. Modelled using NWP for Vin ⩽ Vℎub ⩽ Vout

DLC 4.1 Normal shut down. Modelled using NWP for Vin ⩽ Vℎub ⩽ Vout

DLC 6.4 Parked. Modelled using NWP for Vℎub < 0.7Vref
The number of each case refers to the DLC from IEC (2005). The different wind models are defined in
the beginning of this section.
As can be seen in these different cases they represent the everyday life of the tower. The extreme cases
presented in Section 3.4.1 are so infrequent that they are deemed uninteresting for the fatigue life of the
structure.
From Figure 3.7 it can be seen that the wind speed and corresponding fatigue loads on the wind tower are
not simple to interpret. Since the wind has stochastic variation there are different methods to transform
these into loads that can be used in engineering situations. How this is done will be treated in Section 3.5.2
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3.5 Additional aspects regarding wind loads
With the different models presented previously the loads acting on the structure can be calculated. Three
different aspects of this will be treated briefly, namely:

• Design codes used for modelling
• Transforming time-loads from 20 to 50 years
• Design according to Eurocode and Fluid mechanics

3.5.1 Design codes used for modelling

The process of attaining the load effects is complicated and there are a number of different commercial
design codes available of varying scope and detail. According to Ahlström (2005) there are three major
ways to model these load effects in accordance with the structural dynamics condition described by IEC
(2005). These are:

• Multiple Rigid Bodies (MRB)
• Assumed-Modes method
• Finite Element Method (FEM)

For each of these methods there are a number of design codes to be used. A more exact presentation
of this can be found in Ahlström (2005). Halici and Mutingi (2016) make a study of three different
models, namely FAST, ASHES and FOCUS6. The former consists of a modal analysis and the two
latter of a FEM analysis. For more information about the specifics and the limitations of respective
software reference is made to that study. One important aspect not introduced previously will however
be discussed.
In order to model turbulence, IEC (2005) gives two different methods. Firstly, the Mann uniform shear
turbulence model and, secondly, the Kaimal spectral model. The former consists of a large number of
formulas and is too extensive to be described within the scope of this study. The latter is calculated from

fSk(f ) = �2k
4fLk∕Vℎub

(1 + 6fLk∕Vℎub)5∕3
(3.19)

where
f is the frequency in hertz,
k is the index indicating the component,
Sk is the single-sided velocity component spectrum,
Lk is the integral scale parameter,
�k is the standard deviation of the wind,
Vℎub is the wind speed at hub height.
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This is in turned based on the standard deviation and scale parameters defined in Equation (3.10) and
Equation (3.13). For a more detailed description of the procedure see IEC (2005). One important
thing to note is that several simplifications have been made in the model from IEC. This can lead to an
overestimation of loads in some cases, e.g. as stated by Holtslag, Bierbooms, and van Bussel (2016),
and in other cases the fatigue behaviour can be underestimated mainly because of the absence of surface
roughness from the calculations (Holtslag et al., 2016). The surface roughness will be discussed in more
detail in Section 3.5.3.

3.5.2 20 year loads to 50 year loads

One of the major focuses of this study was to investigate the effect of different life spans for the foundation.
This is of main concern when it comes to the fatigue life but initially some comments will be made
regarding the ULS.
As mentioned in Section 3.4.1 the load is calculated for a wind speed with a 50-year recurrence. Therefore,
the ultimate load is already calculated for a 50-year life span despite the fact that most wind towers
have a service life of 20 or 25 years. EN-1990 (2005) states that the life span of common structures is
set to 50 years. Other types of structures like agricultural buildings and changeable parts of structures
may have shorter life span. It is however hard to argue that a WPP foundation can be classified as a
agricultural structure and therefore the life span should be set to 50 years. This influence the loads and
certain concrete parameters, most notably creep and concrete cover.
The fatigue loads are often provided by the designer of the tower to the company designing the foundation.
How well defined these loads are varies and can be problematic to use in combination with the partial
safety factors. In order to provide a base for further discussion the methods used for representing loads
in the reference project will be presented briefly. The two methods are the Rainflow matrix and Markov
matrix which represents the same load in two different ways.
The most common way to calculate the loads is discussed by Ragan and Manuel (2007) from the
University of Texas. The loads are produced from a time series similar to the one that can be seen in
Figure 3.7. In order to provide the fatigue loads the Rainflow Cycle-Counting method is used (Ragan
and Manuel, 2007). This process is described by Sutherland (1999) where the first step in this process is
to identify local maxima and minima, often referred to as peaks and valleys, which are used to calculate
ranges. For large batches of data this is done by computers using algorithms that often include range
filters which remove the low variations in order to focus on the load ranges that cause damage. The next
step is post-processing which takes these different ranges and put them into an appropriate cycle-count
bin which has limits for ranges. The different load ranges in the time data is summed up within these
bins and provide the fatigue loads of interest. The width of these bins can influence the fatigue loads in a
significant manner. The final result is a Rainflow matrix which consists of stress ranges with associated
number of cycles. Therefore the Rainflow matrix can be seen as a 1D representation of the load spectra
(Sutherland, 1999). An example of a stress range matrix can be seen in Figure 3.12.
The Markov matrix is also described by Sutherland (1999). The main difference from the previous is
that in addition to the ranges and cycles the mean level is also sampled. This is the preferred method by
Sutherland since it also represents the mean stress levels in the structure. The Markov matrix is a 2D
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Figure 3.11: Example of a 2D representation of fatigue loads. Source: Gasch and Twele (2012)

representation of the loads as seen in Figure 3.11. Due to the difference between Rainflow and Markov
representation specialized algorithms have to be used for each method. (Sutherland, 1999).
Since there is no realistic way to simulate the entire life span of a WPP there is always the problem of
how loads can be represented in an accurate way. This problem is discussed by Sutherland (1999) where
it is stated that as long as the values used for establishing the loads are representative, the amount of data
does not increase for longer time spans. The same amount is needed for 30 years as for 60 years. The
major problem then consists of defining a representative data, or in other words what is the minimum
data required. This problem is also discussed in a report by Moriarty, Holley, and Butterfield (2004)
where the effect of the extreme values on the loads are studied. The loads are calculated from 10-minute
simulations for a certain wind condition. Moriarty et al. (2004) state that around 30 simulations is
ideal for each loading condition whilst Sutherland (1999) gives a minimum value of around 19 but
recommends more simulations depending on the sequencing of the samples. The number of cycles that
each loading condition provides is then calculated by using a density function, e.g. the one presented in
Equation (3.7), from which the extrapolated number of cycles is obtained (Sutherland, 1999). In IEC
(2005) a minimum number of 6 simulations per mean hub wind speed is required, with the exception
of three DLCs where 12 simulations are required. This number seems low but in their study Moriarty
et al. (2004) used 9 simulations for each load bin and get satisfactory results (Moriarty et al., 2004). The
conclusion drawn from this study is that due to the probabilistic way of acquiring the 20-year loads it is
a sufficient to use a simple scaling of 2.5 to transform it to 50 years. The probable distribution of wind
conditions is already accounted for in the original loads and it is seen as only increasing the amplitude of
the distribution by a factor of 2.5.
The whole process of acquiring fatigue loads is summed visually using Figure 3.12 reprinted from
Berglind and Wisniewski (2014). In this figure the load spectra is represented with a Rainflow matrix. It
is deemed important to understand the process of acquiring these loads in order to better understand the
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behaviour of the tower and to improve the cooperation with the tower manufacturer. The final part of the
process, the fatigue life, and how this is calculated using existing norms will be the focus of Section 3.7
and Section 3.8.

Figure 3.12: Visualization of fatigue load process. Source: Berglind and Wisniewski (2014)

3.5.3 Simplified wind calculations

When designing structures with regard to wind according to Eurocode the loads are normally determined
using EN-1991-1-4 (2005). In order to get a more thorough grip on the magnitude of the load, this norm
is used to calculate a reference load which is compared to the extreme load from Table 2.3. The load case
most similar to the static case from Eurocode is DLC 6.1 which is the parked condition combined with
EWM. This load case is very likely to occur during the service life since most towers stand still when
the wind speed exceeds the cut-out wind speed Vout. It is also stated by Gasch and Twele (2012) that it is
one of the two load cases that is likely to cause extreme stresses, the other being DLC 1.3 representing
an extreme operating gust with an extreme direction change.
When designing according to Eurocode a different wind model is used, based on the boundary layer
physics introduced by Prandtl (Gasch and Twele, 2012). The wind profile is calculated by combining
equations (4.3)-(4.5) in EN-1991-1-4 (2005) resulting in

V (z) = 0.19 ln
(

z0
z0,II

)0.07

ln
(

z
z0

)

Vb (3.20)
where
z0 is the surface roughness dependent on the terrain,
z0.II is the surface roughness for terrain type II,
Vb is the characteristic wind speed according to equation 4.1 in EN-1991-1-4 (2005).
In order to calculate forces on a structure the following expressions are used to calculate forces at a
reference height ze. These are taken from equations (4.7) and (5.1) in EN-1991-1-4 (2005)

we = qp(z)cPe = [1 + Iv(z)]
1
2
�V 2

m (z)cPe (3.21)
Iv(z) =

1
ln(z∕z0)
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where
z is the hub height,
cpe is a shape factor dependent on the area studied,
we is the distributed force on the tower kN∕m,
qp is the characteristic distributed force kN∕m,
Iv is the turbulence factor from EN-1991-1-4 (2005),
Vm is the mean wind speed at the highest point according to Equation (3.20).

There is no data within the norm specifically for wind towers but there are guidelines for circular cylinders
which are used as an approximation. The width of the tower is assumed to vary linearly between 6m at
the bottom and 3m at the top since there is no exact data. The pressure is assumed to be uniform over
the whole height which is a simplification compared to section 7.2.2 in EN-1991-1-4 (2005). This is
motivated by the fact that the width is significantly smaller than the height of the tower. The drag force
(FD) on the airfoil is calculated according to Gasch and Twele (2012), which states

FD = cd
�
2
V 2
ℎubcL (3.22)

where
cd is a drag coefficient dependent on the attack angle,
� is the density of the air, typically 1.25 kg∕m3,
V is the mean wind speed over the rotor blade,
c is the cord length, the mean width of the rotor blade,
L is the length of the rotor blade.

The drag coefficient is determined from Figure 5-7 in Gasch and Twele (2012).

3.6 Theory regarding fatigue
The context in which the WPP is placed implies a very high number of loading cycles. During the whole
life span the WPP is constantly subjected to the wind and in production to cyclic loads from the rotor
blades. This can lead to fatigue problems in the structure and thus the ultimate limit state is not the only
aspect that needs to be considered in the design process.
According to Thun (2006) fatigue is commonly divided into different categories, low-cycle and high-cycle
fatigue, with the limit between the two at roughly 103 cycles. In recent years the concept of super-high
cycle fatigue has been lifted for structures subjected to more than 107 cycles. This is however a quite
uncommon situation (Thun, 2006). In Figure 3.13 the cycle spectra for different fatigue categories can
be seen together with structures typically exposed to these kinds of loads. According to this WPPs
falls within the high-cycle fatigue category. However, according to Gasch and Twele (2012) a WPP
is subjected to more than 109 cycles during a 20 year life span (Gasch and Twele, 2012). This is also
supported by Hau (2013) who places the number of cycles for a wind turbine between 107 and 108 (Hau,
2013). Therefore the foundation should probably be seen as a super-high cycle structure but there are no
methods for accounting for that many cycles today.
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Figure 3.13: Cycle spectra for different classifications of fatigue life. Source:
http://www.structuremag.org/?p=10735

A failure of a structure caused by a load lower than the design ultimate load is characterized as a fatigue
failure. The failure is caused by a continuous decomposition of the material due to a high number of
cycles. The progress of the decomposition is dependant on factors like the mean stress level, the amount
of cycles and the stress range, which is the difference between maximum and minimum stress (Heffernan,
1997).
It is also important to note that the variation in results for similar fatigue analyses can vary significantly.
In his report, Sutherland (1999) refers to a study by Veers of computed damage at failure which varies
between 0.79 and 1.53, from which he concludes that a difference of factor 2 between damage prediction
and life span is to be expected (Sutherland, 1999). This further points towards the difficulties of predicting
fatigue resistance.

3.6.1 Fatigue in reinforcement

In a report written by Al-Emrani and Åkesson (2013), used as course literature at Chalmers University
of Technology, the principles of fatigue in steel are introduced. They state that for most cases the fatigue
cracks initiate in regions with high local stresses and often in combination with local defects, such as
defects in the lattice structure of the metallic crystal. Repetitive loading accumulates these defects which
induces the formation of slip bands that are susceptible to cracking. This is the first stage of the fatigue
life, normally called crack initiation, and is concentrated to a few grains in the metal, with damage driven
by shear stresses. In the second stage, crack propagation, some of the cracks have joined and formed
larger cracks extending over several grains. These cracks do, contrary to the micro cracks, develop
perpendicular to the main stress direction. These two stages can be seen in Figure 3.14.
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Figure 3.14: The crack development in a steel lattice. Source: Al-Emrani and Åkesson (2013)

There are a variety of factors affecting the fatigue life of steel. A higher static capacity, e.g., renders a
more fatigue resistant steel. However, this is only valid to a certain point according to Heffernan (1997).
For high strength steel this rule does not apply and higher steel classes do not increase the fatigue life
significantly. Another aspect affecting the fatigue life are the geometry of the bar where plain bars have
greater resistance than ribbed bars, with a difference of about 18%. In a similar way thicker bars have
shorter fatigue life than thin bars (Heffernan, 1997).
A common way of evaluating fatigue, explained by Al-Emrani and Åkesson (2013), is the use of S-N
curves which correlate the constant nominal stress range (S) to the resisting number of cycles (N). The
curve is usually logarithmic and consists of two or three straight lines connected as shown in Figure 3.15.
S-N curves are obtained by testing certain details until failure and noting the number of cycles. Different
types of details, for example a plate without hole and a plate with a hole, will have different S-N curves.
Thus every detail that is to be evaluated with the method requires an experimentally decided curve
(Al-Emrani and Åkesson, 2013).
In order to use the curve, one has to know the load history, i.e. which stresses that have been applied
and how many times. If this is known, the damage on the structure can be calculated which gives the
remaining fatigue life. To assess the damage for a stress spectrum consisting of varying loads, Miner’s
rule can be used. It states that the damage (d) caused by a number of cycles with the same stress level is
equal to the number of cycles (n) divided by the total amount of cycles required for failure (N) as shown
in Equation (3.23). In reality the load intensity is quite random and therefore Miner’s rule cannot be
applied directly (Al-Emrani and Åkesson, 2013).
A way of considering a varying load history is by using Rainflow counting, a process discussed in
Section 3.5.2 together with Rainflow or Markov matrix which is used to present the loads. The method
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aims to convert a load spectrum into a relatively small number of load cycles with certain mean and
range values. When this is done Miner’s rule can be used to determine the resulting damage.

k
∑

i=1

ni
Ni

= d (3.23)

3.6.2 Fatigue in concrete

According to Heffernan (1997) it is concluded that concrete has reduced strength for repetitive loading.
The reason behind this phenomenon is micro cracks that are formed because of shrinkage occurring
during the hardening process of the concrete. These cracks constitute a natural process in the concrete
and cannot be prevented. The micro cracks propagate when the concrete member is subjected to loading
and, if the number of load cycles is high enough, this will eventually lead to failure. The fatigue life of
the concrete is not solely dependant on the number load cycles but also the humidity in the ambient air
and what rate the load is applied. Also, there is a strong correlation between the static strength of the
concrete and its fatigue resistance where higher strength concrete renders longer fatigue life (Heffernan,
1997).

3.6.3 Fatigue in reinforced concrete

The fatigue strength of composite members like reinforced concrete cannot be assessed solely on the
fatigue strength of the individual components. This is because the individual components work together
by interaction in order to form the member that resists the load. The strength of the member is thus
highly dependant on the interaction and therefore this has to be included when assessing fatigue.
According to Heffernan (1997) the stress in the steel is higher near cracks in the concrete. This implies
that these sections are more susceptible to fatigue damage and where a fatigue failure is expected. The
fatigue life of a reinforced concrete member is mainly dependant on the fatigue life of the steel. On the
other hand the serviceability is rather correlated to the fatigue characteristics of the concrete (Heffernan,
1997).

3.7 Norms concerning fatigue in reinforcement
As stated in previous sections this study will present the norms regarding fatigue according to different
norms, both with regard to the reinforcement and the concrete. There are several different aspects
to take into account for the different calculations and these will be discussed in connection with the
corresponding case.
The design is made with S-N curves which has been created through extensive testing. One important
aspect normally considered when designing steel with regard to fatigue is the fatigue limit. Beneath this
stress level there can be an infinite amount of cycles (Al-Emrani and Åkesson, 2013). This is used when
designing steel elements according to EN-1993-1-9 (2005). However, as can be seen in Figure 3.15
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this limit is not present in the S-N curves for reinforcement, instead represented by limiting values in
simplified approaches.

3.7.1 Design according to Eurocode

The rules for design with regard to fatigue can be found in section 6.8 in EN 1992-1-1 and concerns
both reinforcement and concrete. The rules for concrete will be presented in Section 3.8. Another
important thing to have in mind is that since there is no prestressing steel in the direction of the regular
reinforcement the formulas that concern prestressing is omitted. For studies of this reference is made to
EN-1992-1-1 (2005).
When calculating the effect on the structure from the cyclic load, the load combination presented in
equation 6.69 in EN-1992-1-1 (2005) is used. This load combination is used for both concrete and
reinforcement:

∑

i=1
Gk,i +  1,1Qk,1 +

∑

j=1
 k,jQk,j +Qfat (3.24)

where
Gk,i is the characteristic loads from permanent loads,
Qfat is the relevant cyclic fatigue load presented by the designer of the WPP,
Qk,i are characteristic variable loads that the tower foundation is subjected to.

The verification of the reinforcement is made using the S-N curves presented in Figure 3.15 which
shows the general form of the curve for reinforcement taken from EN-1992-1-1 (2005). The different
parameters presented in the figure are:
Δ�Rsk Resisting stress range
N* Reference number of cycles

Figure 3.15: S-N curve from EN 1992-1-1

The values used differ between different reinforcements and are presented in Table 3.3. These values are
again taken from EN-1992-1-1 (2005) and are valid in Sweden since no national choice has been made.
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Table 3.3: Parameters for design of reinforcement in Eurocode

Type of reinforcement stress exponent Δ�Rsk [MPa]
N* k1 k2 at N* cycles

Straight and bent bars 106 5 9 162.5
Welded bars and wire fabrics 107 3 5 58.5
Splicing devices 107 3 5 35

The values presented in Table 3.3 are used directly for straight bars. In the case of bent bars, e.g. shear
reinforcement, a reduction factor is used according to

� = 0.35 + 0.026D
�

(3.25)
where
D is the diameter of the mandrel,
� is the bar diameter.

There are almost no situations where the exact number of cycles is the same as the reference number and
in order to transform this Equation (3.27) or Equation (3.28) may be used.
A common situation is that there are different stress ranges with varying number of cycles. Then the
Palmgren-Miner rule can be used, see Equation (3.23), to sum the different contributions and fulfill the
following condition,

DEd =
k
∑

i=1

n(Δ�i)
N(Δ�i)

⩽ 1 (3.26)

where
n(Δ�i) is the number of cycles applied for a given stress range,
N(Δ�i) is the resisting number of cycles for a given stress range.

The resisting number of cycles is calculated using the following expressions

N(Δ�i) = N∗
⎛

⎜

⎜

⎝

Δ�Rsk

S,fat


F ,fatΔ̇�i

⎞

⎟

⎟

⎠

k1

if 
F ,fatΔ̇�i(N∗) ⩽
Δ�Rsk(N∗)

s,fat

(3.27)

N(Δ�i) = N∗
⎛

⎜

⎜

⎝

Δ�Rsk

S,fat


F ,fatΔ̇�i

⎞

⎟

⎟

⎠

k2

if 
F ,fatΔ̇�i(N∗) ⩾
Δ�Rsk(N∗)

s,fat

(3.28)

where 
F ,fat is a safety factor on the load effect with a recommended value in paragraph 6.8.4 in EN-
1992-1-1 (2005) of 1.0. 
S,fat is a safety factor for uncertainties regarding the material. The value is
defined in table 2.1N in EN-1992-1-1 (2005), with a recommended value of 1.15.
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Simplified method in Eurocode

For the design of steel, a couple of alternative approaches are presented in EN-1992-1-1 (2005). Firstly,
there are two limiting values recommended by Eurocode beneath which no check is required

Δ�S ⩽ 70MPa Valid for non-welded bars in tension
Δ�S ⩽ 35MPa Valid for welded bars in tension

Δ�S is the stress range independent of mean level. For this check the frequent load combination presented
in Equation (3.24) is used.
The final method for verification presented in Eurocode is the Damage equivalent method where the full
damage spectrum is represented by a single equivalent stress range Δ�S,equ. This transformation needs to
be done in a satisfactory way, one example is using guidelines for the transformation of loads for bridges
presented in EN-1992-2 (2005). Another example is the method presented in Section 4.8. When this
transformation is done the fatigue resistance can be verified using


F ,fatΔ̇�S,equ(N∗) ⩽
Δ�Rsk(N∗)

s,fat

(3.29)

where
Δ�S,equ(N∗) is the damage equivalent stress for a given number of cycles.

This may be approximated on the safe side as the maximum stress range.
Δ�Rsk(N∗) is the resisting stress range for a given number of cycles.
If the equivalent stress range is calculated in a correct way the acquired result should be the same as
when using Equation (3.26).

3.7.2 Design according to fib Model Code 2010

The design process according to fib (2013) is similar to the one from Eurocode and can be found in
section 7.4.1 in fib (2013). Similar to the values presented in Table 3.3 there are values that correspond
to the S-N curve presented in Figure 3.15. The values from table 7.4-1 in fib (2013) are presented in
Table 3.4 in contracted form.
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Table 3.4: Parameters for design of reinforcement in fib Model code

Type of reinforcement stress exponent Δ�Rsk [MPa]
N* k1 k2 at N* cycles at 108 cycles

Straight and bent bars D > 25� 106 5 9 210 125
� ⩽ 16mm 106 5 9 160 95
� > 16mm 106 5 9 -1 -1
Bent bars D < 25� 107 3 5 50 30
Welded bars including tick 107 3 5 65 40

As mentioned in Section 3.1.2 there are different levels of approximation in fib Model Code. For the
design of reinforcement with regard to fatigue there are three different methods used, ranging from II to
IV.

Level II approximation

The first level of approximation consists of a check of the maximum stress range for the frequent
combination which should be below a limiting value. This value is calculated using


EdΔ�s,max ⩽
Δ�Rsk

s,fat

(3.30)

where
Δ�s,max is the maximum stress range,
Δ�Rsk is the resistant stress range at 108 cycles,

S,fat is a safety factor for uncertainties regarding the material,

Ed is a safety factor on the load. Either 1.1 or 1.0 depending on accuracy of loads.

Level III approximation

On the next level of accuracy the structure is verified using the following condition, see similarity with
Equation (3.30).


EdΔ�s,max ⩽
Δ�Rsk(n)

s,fat

(3.31)

The factors are the same as before and the values for calculating the resisting stress are taken from
Table 3.4. The characteristic resistance for n cycles is calculated using

1these values are the same as the first line multiplied with the reduction factor Equation (3.25)
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Δ�Rsk(n) =
(N∗

n

)

1
k1 Δ�Rsk(N∗) if n < N∗ (3.32)

Δ�Rsk(n) =
(N∗

n

)

1
k2 Δ�Rsk(N∗) if n > N∗ (3.33)

where
Δ�Rsk(N∗) the resisting stress range forN∗ cycles,
k1 is the slope of the S-N curve for n < N∗,
k2 is the slope of the S-N curve for n > N∗.

Level IV approximation

The final level of approximation, i.e. the most accurate analysis, consists of using the Palmgren-Miner
rule from Equation (3.26) where the whole load spectrum during the service life is used. When calculating
the resisting number of cycles,N , the stress range is modified using 
Ed
s,fatΔ�i. The calculations aredone with the relationships from Equation (3.32) and Equation (3.33).
One important note regarding Dlim is presented in fib (2013). This states that the limiting value of 1.0
can be an overestimation for decreasing stress ranges. This means that if the largest stress ranges occur in
the beginning of the structures life cycle, the damage done may be extensive enough that the subsequent
lower stress ranges can cause failure prematurely. Since there is no way to predict the wind during the
WPP’s life span this cannot be taken into account in a good way but it is important to keep in mind.

3.8 Norms concerning fatigue in concrete
As stated in Section 3.6.2 fatigue damage in concrete originates from micro cracks. There is no stress
limit beneath which no fatigue damage can occur since the cracks are already there and the propagation
phase is the only phase present.

3.8.1 Design according to Eurocode

The rules for the design of concrete can be found in section 6.8, EN-1992-1-1 (2005). In this section two
different approaches for verification are presented for structures subjected to compression and shear. No
guideline is given in EN-1992-1-1 (2005) for a design where the full load-cycle is considered similar to
the Palmgren-Miner rule. There is however a possibility to use a method presented in EN-1992-2 (2005)
which will be presented in this section as an alternative.
The first of these methods, in this study denoted EN1, consists of the following verification

Scd,max,equ + 0, 43
√

1 − Requ ⩽ 1 (3.34)
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where

Requ =
Scd,min,equ
Scd,max,equ

(3.35)

Scd,min,equ =
�cd,min,equ
fcd,fat

(3.36)

Scd,max,equ =
�cd,max,equ
fcd,fat

(3.37)

and
Requ is the ratio between maximum and minimum stress,
Scd,min,equ is the minimum compressive stress level,
Scd,max,equ is the maximum compressive stress level,
fcd,fat is the fatigue strength according to Equation (3.38),
�cd,min,equ is the minimum stress of the ultimate amplitude for N cycles,
�cd,max,equ is the maximum stress of the ultimate amplitude for N cycles.

The design fatigue strength is calculated using the following formula, taken from EN-1992-1-1 (2005)
equation (6.76)

fcd,fat = k1�cc
(

t0
)

fcd

(

1 −
fck
250

)

(3.38)

where
�cc(t0) is a coefficient for the strength at the time of load application,
k1 value defined in National Annex. Recommended value is 0.85 forN = 106.

The second alternative for verification, denoted EN2, is done using the following condition

�c,max
fcd,fat

⩽ 0.5 + 0.45
�c,min
fcd,fat

(3.39)
⩽ 0.9 for fck ⩽ 50MPa
⩽ 0.8 for fck > 50MPa

where
�c,max is the maximum compressive stress under the frequent load combinations,
�c,min is the minimum compressive stress in the same fiber as �c,max. Has to be ⩾ 0MPa.

There is also a section in EN-1992-1-1 (2005), section 6.8.7 (4), that gives guidelines regarding the
design of structures without shear reinforcement. Since it is unrealistic to construct the foundation
without shear reinforcement these are of no interest for this study.
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Method according to EN 1992-2

The method presented in EN-1992-2 (2005), denoted EN3 in this study, is based on the Palmgren-Miner
rule presented in Equation (3.26) where the resisting number of cycles is calculated using

Ni = 10
14
(

1−Scd,max,i
√

1−Ri

)

(3.40)

where
Ri is the ratio between maximum and minimum stress,
Scd,max,i is the maximum compressive stress level according to Equation (3.37).

The fatigue capacity of the concrete is calculated using Equation (3.38). Since this method is mainly
used for the design of bridges the results should be considered with some caution. However, for this
study they are used for comparative reasons.

3.8.2 Design according to fib Model Code 2010

As for the design regarding reinforcement there are a number of levels of approximation. Contrary to the
Eurocode there is a method presented which takes the full load cycle into account, similar to the method
presented in Section 3.7.2.

Level II approximation

This verification is a check that a more detailed fatigue verification is not necessary if the maximum and
minimum stresses are within a certain limit. This check can be made for both compression and tension.
However, since there is no check for tension in Eurocode this will not be part of this study.
The verification for compression is done by comparing the maximum compressive stress under the
frequent load combination against the fatigue strength


Ed�c,max�c ⩽ 0.45fcd,fat (3.41)
where

�c =
1

1.5 − 0.5|�c1|∕|�c2|
(3.42)

fcd,fat = 0.85�cc(t0)fck

(

1 −
fck
400

)

∕
c,fat (3.43)

and
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fcd,fat is design fatigue strength according to Equation (3.43),
�c

is the averaging factor for concrete stresses in the compression zone. The stress
levels

|�c1| and |�c2| are determined in the same section and within 300mm of the surface of the concrete.
�cc(t0)

is a coefficient that is determined according to section 5.1.9.1. in fib (2013) and
takes into account the concrete age at first load application.

�c,max is the maximum compressive stress.

Level III approximation

The next level of approximation in Model Code 2010 is based on maximum and minimum level of stress
in both compression and tension. The verification is made by checking that

n ⩽ N

whereN is the resisting number of cycles. The minimum and maximum stress levels are calculated from
the following set of equations respectively

Scd,min =

Ed�c,min�c
fcd,fat

(3.44)

Scd,max =

Ed�c,max�c
fcd,fat

(3.45)

With these the resisting number of cycles can be calculated with the following equations. In fib (2013)
there are methods for verifying both compression and tension. An important note is that Scd,min ⩽ 0.8.

log(N1) =
8

Y − 1
(Scd,max − 1) (3.46)

log(N2) = 8 +
8 ln(10)
Y − 1

(Y − Scd,min) log
(Scd,max − Scd,min

Y − Scd,min

)

(3.47)
with:
Y =

0.45 + 1.8Scd,min
1 + 1.8Scd,min − 0.3S2cd,min

(3.48)

where

(a) if log(N1) ⩽ 8 then log(N) = log(N1)

(b) if log(N1) > 8 then log(N) = log(N2)

As was the case for level II there are expressions for concrete in tension but they will not be expressed
here since there are no equivalent in Eurocode.
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Level IV approximation

The method on this level of approximation is the same as was presented in Section 3.7.2 where the
Palmgren-Miner rule is used. The resisting number of cycles is calculated for each stress range as for
level III approximation. The same problem exists when decreasing stress levels can be expected to limit
the value allowed for Dlim.
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4 Design method for wind tower foundations

The design method used for the case study is based around a method developed by Carl Eric Broms who
is a professor at the Royal Institute of Technology. It is developed for square foundations with constant
thickness and grid reinforcement.
An example of a calculation report for one of the towers can be seen in Appendix B, with all of the
different verifications for the structure.

4.1 Loads

The outer loads are given from the manufacturer and act on the foundation as shown in Section 4.1. The
most important loads are the moment and the vertical force. The horizontal force is relatively small and
does not need major consideration. The moment and the vertical force from the tower are resisted by a
distributed soil pressure. The moment causes an eccentricity and thus the soil pressure will be offset to
one side of the foundation. The distributed pressure from the soil can be replaced by a resulting vertical
point force with eccentricity e as indicated in Section 4.1.

Figure 4.1: Loads acting on the foundation.

The load transfer to the tower and the bolt ring is assumed to be distributed between a force couple, one in
tension and one in compression, due to the moment. The force transfer is also assumed to be concentrated
to two quarter circles. This is motivated due to the stress distribution from Navier’s formula where most
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of the stress will be located in the parts farthest from the center. The lever arm, Lr, is calculated fromcenter of gravity calculations according to

Lr =
1
A

b

∫
a

f (x)xdx = 2
�r

45°

∫
−45°

r cos(�)rd� =

√

8r
�

≈ 0.9r (4.1)

which can be seen in Figure 4.2. From this the resulting force pair used for calculating section forces
becomes

Ft∕c =
M
1.8r

(4.2)

where
M is the bending moment in the tower,
Ft∕c is the resulting force from the moment,
r is the radius of the bolt cage.

Figure 4.2: Visual representation of the reaction force from the tower.

4.2 Bearing capacity of the soil
The maximum capacity that the soil can withstand is calculated according to Eurocode 1997-1:2005. The
check is made for drained conditions in accordance with the reference project, presented in Section 2.5.
In order to perform the calculations the friction angle and the weight of the soil has to be known or
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estimated in a satisfactory manor. The maximum capacity of the soil (qp) is calculated according to
Annex D in EN-1997-1-1 (2005) as

qp = c′Ncbcscic + q′Nqbqsqiq + 0.5
 ′N
b
s
 i
 (4.3)
where a number of dimensionless parameters are divided into several categories.

• Bearing capacity
Nq = e� tan(�

′) tan2(45 + �′∕2)
Nc = (Nq − 1) cot �′

N
 = 2(Nq − 1) tan�′

• Inclination of the foundation
bc = bq − (1 − bq)∕(Nc tan�′)
bq = b
 = (1 − � tan�′)2

• Shape of the foundation
sq = 1 + (B′∕L′) sin�′ for rectangular shape
sq = 1 + sin�′ for quadratic or circular shape
s
 = 1 − 0.3(B′∕L′) for rectangular shape
s
 = 0.7 for quadratic or circular shape
sc = (sqNq − 1)∕(Nq − 1) for all shapes

• Horizontal component of the load
ic = iq − (1 − ic)(Nc tan�′)
iq = [1 −H∕(V + A′c′ cot �′)]m

i
 = [1 −H∕(V + A′c′ cot �′)]m

where

m = mb = [2 + (B′∕L′)]∕[1 + (B′∕L′)] when H has the same direction as B
m = ml = [2 + (L′∕B′)]∕[1 + (L′∕B′)] when H has the same direction as L
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The parameters of interest in the formulas are
c’ is the apparent cohesion in the soil and typically assumed to be 0,

 ′ is the effective weight of the soil,
q’ is the pressure on the foundation from overhead loads,
�′ is the inner friction angle,
� is the angle of the foundation compared to the horizontal plane,
B’ is the effective width of the foundation,
L’ is the effective length of the foundation,
H is the horizontal force on the foundation,
V is the vertical force on the foundation.

The main parameters influencing the stability are the friction angle, �′, and the effective weight of the
soil, 
 ′. Typical values for these parameters, taken from Bergdahl, Malmborg, and Ottosson (1993), can
be seen in Table 4.1 and are chosen by the designer dependent on the given conditions at the site.
Table 4.1: Eurocode documents of interest for this thesis (EN-1990, 2005).

Soil type Friction angle [°] Weight [kN∕m3]
Sand 28-35 15-20
Gravel 30-37 15-20
Moraine 35-45 18-23

4.3 Resulting ground reaction and stability
The ground reactions in the soil are found by equilibrium calculations. These are necessary in order to
find the design forces and moments acting on the slab and also to make sure that the foundation does not
turn over. The foundation is checked in two directions, namely the wind direction parallel to the main
axis of the foundation and the wind direction acting in a 45° angle from the main axis, see Figure 4.3.
For both directions the load eccentricity is calculated using

e = M
Q

(4.4)

where
e is the eccentricity, see Section 4.1,
M is the moment acting at the bottom of the foundation,
Q is the total vertical force.
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(a) (b)
Figure 4.3: (a) wind acting parallel to the main axis, (b) wind acting in a 45° angle from the main axis.

The calculations become problematic due to the soil pressure being triangularly distributed where the
maximum value is at the edge. The first step is to find the distance L, see Figure 4.4. L is the part of
the slab that is subjected to pressure from the soil due to the tilting moment, i.e. the required area in
order for the soil to resist the overturning moment. A way of finding L is by performing a center of mass
calculation.

Of course, the soil pressure is not a mass but varying distributed pressure. However, the analogy is a
good way of understanding the calculations. In Figure 4.4b the pressure acting on the slab is shown in
transparent and the soft layer which does not experience any pressure is represented by the solid grey.
The calculations utilize the fact that the eccentricity, e, is known and coincides with the center of mass.
This means that the distance, d, from the edge is known, see Figure 4.4a.

The calculation are simpler when the wind is acting parallel to the main direction because the width is
constant, while for the wind acting in the diagonal direction the width is maximum in the middle and
zero at the corner. For the main direction, the expressions for the pressure, denoted as h, and width for
the main slab and softlayer become

bslab(x) = bfound
ℎslab(x) = (1 − x∕L)ℎ
bsoftlayer(x) = c

ℎsoftlayer(x) = (1 −
x

L − b
)L − b
L

ℎ

which are inserted into the expression for the center of gravity
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(a) (b)
Figure 4.4: Model used to find how big the pressured area is, (a) plane view showing the relation between
the eccentricity, e and the distance, d from the edge to the center of mass, (b) visualization of the solution
as a 3D-body center of mass calculation where the height indicates the magnitude of the soil pressure.

d =

L

∫
0
bslab(x)ℎslab(x)xdx −

L−b

∫
0
bsoftlayer(x)ℎsoftlayer(x)x

L

∫
0
bslab(x)ℎslab(x) −

L−b

∫
0
bsoftlayer(x)ℎsoftlayer(x)

(4.5)

d =
bfoundℎL2

6
− cℎ(b−L2)(2b+L)

6L
bfoundℎL

2
− cℎ(b−L)2

2L

(4.6)

which can be solved for L since d is known. The result is relatively intuitive in the sense that it can
be understood in terms of first areas of moment. Calculating the area of the main slab, e.g., resulted
in the expression bfoundL

2
and this is reasonable because the pressure varies from zero to the maximum.

The lever arm can be understood using the same analogy where the resultant of the linearly varying
pressure should be at one third from the edge which is L

3
. The same applies for the area with the soft

layer, however here the area is reduced by the factor L−b
L

since the area does not stretch to the edge and
therefore does not experience the maximum soil pressure. The lever arm is a summation of the distance
to the edge of the soft layer and a third of the negatively pressured area, b − L−b

3
.

Furthermore, the next step is to find the maximum pressure at the edge. This is done by integrating the
soil pressure over the slab area and putting it equal to the vertical force from the tower, Q. Then the only
unknown is the maximum stress at the edge, �max. Note that the variable x now starts where the pressure
is zero, contrary to the previous case, so that expression for the slab becomes
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�slab(x) = �max
x
L

bslab(x) = bfound
�softlayer(x) = �max

x
L

bsoftlayer(x) = c

and by integrating these expressions over the lengths L, for the slab, and L-b, for the soft layer, results in

Q =

L

∫
0

�slab(x)bslab(x)dx −

L−b

∫
0

�softlayer(x)bsoftlayer(x)dx (4.7)

Q = �max

(bfoundL
2

− c
2L
(L − b)2

)

(4.8)

where Q is the total vertical force from the tower.
The diagonal case is solved in the same manner as described above. However, in this case the width of
the pressured area varies triangularly, see Figure 4.5, and thus complicates the expressions.

(a) (b)
Figure 4.5: Model used to find how big the pressured area is, (a) plane view showing the relation between
the eccentricity, e and the distance, d from the edge to the center of mass, (b) visualization of the solution
as a 3D-body center of mass calculation where the height indicates the magnitude of the soil pressure.

The expressions for the triangular shaped bodies are
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ℎslab(x) =
(

1 − x
L

)

ℎ

bslab(x) = 2x

ℎsoftlayer(x) =

(

1 − x

L −
√

2b

)

L −
√

2b
L

bsoftlayer(x) = 2x

which are inserted into the expression for the center of gravity

d =

L

∫
0
bslab(x)ℎslab(x)xdx −

L−b

∫
0
bsoftlayer(x)ℎsoftlayer(x)x

L

∫
0
bslab(x)ℎslab(x) −

L−b

∫
0
bsoftlayer(x)ℎsoftlayer(x)

d =
ℎL3

6
− 1

6L
(L −

√

2b)4

ℎL2

2
− 1

3L
(L −

√

2b)3

which can be solved for the length, L. These expressions can be understood using the same analogy as
explained previously, i.e. by seeing the problem as different first areas of moment where the linearly
varying pressure shifts the center of mass.
As explained previously, when the pressured area is solved, the only unknown is the maximum pressure
at the edge, �max, which is found by integrating the pressure over the area and putting it equal to the
weight from the tower. The expression for the soil pressure becomes a variable dependant on x, where x
starts from where the soil pressure is zero and not the corner,

�slab(x) = �max
x
L

bslab(x) = L − x

�softlayer(x) = �max
x
L

bsoftlayer(x) = 2(L −
√

2b − x)

and, once again, by integrating over the lengths L and L-b respectively the total reaction force is expressed
as
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Q =

L

∫
0

�slab(x)bslab(x)dx −

L−b

∫
0

�softlayer(x)bsoftlayer(x)dx (4.9)

Q =
�max
3

(

L2 − 1
L

(

L −
√

2b
)3
)

(4.10)

which is equal to the total vertical reaction and thus �max can be solved.
The resulting stress from the soil is compared to the limiting value calculated according to Section 4.2. No
limiting value for the eccentricity is given in the calculations. In the Swedish handbook Plattgrundläg-
gning a limiting value of e ⩽ bfound∕6 is given which is also used for calculations for slender buildings.
Section 6.5.4, EN-1997-1-1 (2005), states that special care should be taken if the eccentricity exceeds
1∕3 of the width of a rectangular base plate.
In order to verify that the behaviour is satisfactory in serviceability limit state, Navier’s formula is used
to verify that the whole foundation is in compression according to

�main =
Q

Afound
±
Mfound

Ifound

bfound
2

< 0MPa (4.11)

�diagonal =
Q

Afound
±
Mfound

Ifound

√

2bfound
2

< 0MPa (4.12)

This is done for both the main direction and for 45° where the latter is normally the most severe case. As
is mentioned by Broms (2013) the foundation should be placed with the main axis parallel to the main
direction of the wind to lessen this risk. This check in combination with the limiting value presented
previously verifies a good interaction between the foundation and the soil.

4.4 Bending capacity

The sectional moments in the foundation are calculated in two sections, one on the tension side and
one on the compression side. In this model the foundation is seen as two dimensional. The moment on
the tension side causes tension in the upper part of the slab and on the compression side the upper part
is in compression. According to these moments the bending reinforcement is designed. It should be
mentioned that the required top reinforcement always is lower than the bottom reinforcement due to the
effect of the weight of the tower, which causes tension on the bottom and compression on the top of the
foundation.
The soil stress is assumed to be triangular with a maximum at the edge. The soft layer will also influence
the length of the soil reaction. The resulting moment in the foundation can be seen in Figure 4.6.
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Figure 4.6: Moment distribution in the foundation due to the tilting moment.

For the bottom part the required reinforcement is calculated with the following formulas for single
reinforced members, i.e. the effect of top reinforcement is not taken into account.

m =
Mmax

2d2c rtowfcd
(4.13)

! = 1 −
√

1 − 2m (4.14)

As.bottom =
Mmax

dc
(

1 − !
2

)

fyd
(4.15)

where
m is the relative moment in the section,
dc is the effective depth of the concrete section,
rtow is the radius of the tower,
fcd is the design compressive strength of the concrete,
! is the reinforcement ratio in the section,
fyd is the design yield stress of the reinforcement.

These formulas hold true if the ratio calculated in Equation (4.14) is below the value for a balanced
reinforcement, !bal, which is calculated from

!bal = 0.8
�cuEs

fyd + �cuEs
(4.16)
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where
�cu is the ultimate strain of the concrete,
Es is the elasticity modulus of the reinforcement steel.

It represents the case when the reinforcement starts to yield at the same moment as the concrete collapses.
If the value calculated in Equation (4.14) is higher than the one calculated in Equation (4.16) another
expression is used for calculating the reinforcement needed. This is however not a desirable situation
since it means that the concrete fails before the reinforcement yields resulting in a brittle failure.
For the top reinforcement the same formulas are used as before. As mentioned previously the needed
amount in the top of the foundation is lower. Therefore, the minimum required reinforcement needed to
avoid cracks in the concrete has to be checked. This amount is calculated according to equation (9.1) in
EN-1992-1-1 (2005) as

As.min = 0.26
fctm
fyk

bfounddc (4.17)

where
fctm is the mean tensile strength of the concrete class,
fyk is the characteristic yield strength of the reinforcement,
bfound is the width of the foundation,
dc is the effective depth of the concrete section.

In order to improve the behaviour in the serviceability state the reinforcement is arranged in a way that
two thirds of the reinforcement is placed in a column strip with a width of half the foundation. This
process is in accordance with the strip method presented in Engström (2014). The reinforcement can be
placed with different configurations as the designer chooses as long as certain guidelines are followed
(Engström, 2014).

4.5 Shear capacity outside the perimeter of the tower

The shear force is assumed to be transferred along one quarter of the tower perimeter. First a check is
performed to see if the concrete alone can withstand the shear force using equations (6.2a) and (6.2b)
from EN-1992-1-1 (2005). The shear capacity of the section per meter is set to the lowest of

VRd.c = CRd.ck(100�lfck)1∕3dc (4.18)
VRd.c = vmindc (4.19)

where
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k = 1 +
√

200
d

⩽ 2.0,
�l = Asl

bwd
,

Asl is the flexural reinforcement in the studied section,
CRd.c = 0.18


c
vmin, = 0.035k3∕21 f 1∕2ck ∶ k1 = 0.15.

Due to the very large forces acting on the foundation shear reinforcement is almost always needed. The
amount of shear reinforcement is calculated assuming that the reinforcement should carry the whole
shear force. The necessary reinforcement area is calculated according to

Asv =
VEd
fyd

(4.20)

where
VEd is the design shear force in section,
fyd is the design yield stress of the reinforcement.

Thereafter, the required amount is placed within circles with certain radius from the center depending on
the effective area of the stirrups. The amount is expressed as a portion of the total area (�i) according to

�i =
Asv

Ai
(4.21)

Similar to the case for the moment the shear reinforcement is mainly placed in the centre of the foundation
but still reaching outside the column strip mentioned in the previous section. In the design used by
WSP the reinforcement is arranged in three circles of increasing diameter where half of the required
reinforcement area is placed within each circle. This results in a total reinforcement amount that is 50 %
higher than the limiting amount. The motivation behind this is assumed to be increased behaviour with
regard to cracking and to avoid cumbersome calculations regarding capacity in different sections.

4.6 Bolts and bolt ring
When designing the anchor cage and its components it is important to ensure that concrete is never in
tension. This implies that the prestress force in the bolts is high enough and that the splitting forces can
be handled. Consideration is needed for relaxation in the bolts but also for shrinkage and creep in the
concrete. The bolts are placed in a circle under the tower, and the amount of bolts needed depends on
how high the tensile force from the tower is.
The stress in the bolts is chosen so that the concrete is in compression whilst the maximum tensile stress
in the bolts is below the 0.1% proof stress. This stress depends on the type of bolts used and will not be
discussed.
In order to calculate the stress in the concrete and the bolts, the respective stiffness, EA, is calculated
from
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(EA)bolt = EsnboltAbolt (4.22)
(EA)c = Ecd(bancℎor + 0.25ℎ)�2rtow (4.23)

(4.24)

and the proportional stiffness from the bolts and concrete are expressed as

ki =
(EA)i
∑

(EA)
(4.25)

where
i is index for either concrete, c, or bolts,
Es is the elasticity modulus of the bolts,
Ecd is the elasticity modulus of concrete,
nbolt is the number of bolts in the bolt cage,
Abolt is the area an individual bolt,
bancℎor is the width of the anchor plate.

The maximum force per meter acting on the concrete is then a combination of the prestress force and the
force from the tower according to

Fmax = −
Gtower

Acyl
+
Md

Wcyl
+
nboltFbolt
�2rtow

(4.26)

where
Md is the design moment according to Table 2.3,
Acyl is the area of the anchor plate,
Wcyl section modulus of the anchor plate,
nbolt is the number of bolts in the bolt cage,
Fbolt is the prestress force of one bolt,
rtow is the radius of the tower at foundation height.
In order to determine the long term effect on the bolts the stress relaxation, creep and shrinkage must
be taken into account. The stress relaxation factor, � , in the bars is calculated from section 3.3.2 in
EN-1992-1-1 (2005) with different values used depending on the type of prestressing bars used. The
creep is estimated using the initial stress, �init, from the prestressing bolts which represents the average
stress the concrete is exposed to during the lifetime. This is calculated according to

�init =
nboltFbolt

�2rtow(bcyl + 0.25ℎ)
(4.27)

where
h is the height of the foundation,
bcyl is the width of the anchor plate.

, Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-82 61, Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-82 61, Department of Civil and Environmental Engineering, Master’s thesis, BOMX02-17-82 61



The creep factor, �, is estimated from the method in Section 3.1.4 in EN-1992-1-1 (2005). In the same
section the method for estimating the shrinkage of the concrete, �cs, can be found. The total shrinkage is
a combination of drying shrinkage and autogenous shrinkage. In section 5.10.6 in EN-1992-1-1 (2005)
it is stated that due to the interaction between the three effects the stress relaxation factor can be lessened
with a factor of 0.8. The total prestress loss can then be calculated as

Δ�s = Es�cs + �
Es
Ecd

�init + 0.8��init (4.28)

where
�cs is the total shrinkage of the concrete,
�init is the initial prestress level in the bolts,
Es is the elasticity modulus of the bolts,
Ecd is the elasticity modulus of concrete.
In order to verify the behaviour of the connection two checks are made. The first of these is to ensure
that there is no gap between the tower and foundation under normal conditions. The force that needs to
be resisted for this is calculated from

Fnor,t = −
Gtower

Acyl
+
Mnor

Wcyl
(4.29)

This is then verified by controlling that

Fnor.t ⩽
Fpre,∞
kc

(4.30)

where
Fpre,∞ is the prestressing force after long term losses according to Equation (4.28),
kc is the relative stiffness of concrete according to Equation (4.24).

The second control is done by controlling the relative eccentricity between the moment in the tower
and the compressive reaction force. The vertical force is calculated by integration over the circle in
Figure 4.7 according to

� =
�max(cos� − cos �)

1 − cos �

V =

�

∫
−�

�rtowd� =
�maxrtow
1 − cos �

�

∫
−�

(cos� − cos �)d� =
�maxrtow
1 − cos �

2(sin � − � cos �) (4.31)

where
� is the angle according to Figure 4.7,
�max is the stress at the edge of the circle, see Figure 4.7.
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Figure 4.7: Example of stress distribution in foundation in ULS.

The moment is calculated in a similar way using

M =

�

∫
−�

�r2tow cos�d� =
�maxr2tow
1 − cos �

�

∫
−�

cos�(cos� − cos �)d� =
�maxr2tow
1 − cos �

(� − sin � cos �) (4.32)

With this a relative eccentricity, er, can be calculated by dividing the design moment with the reaction
force times the radius

er =
M
V rtow

= 1
2
� − sin � cos �
sin � − � cos �

(4.33)

er =
Md

Gtower + nboltFbolt
(4.34)

This relative eccentricity is calculated for both the initial prestressing force and the force after prestress
loss calculated from Equation (4.28). For the initial case the maximum stress in the bolts is compared to
the design resistance of the bolts. In the second case the maximum compressive reaction on the concrete
and the angle (�) are calculated by combining Equation (4.33) and Equation (4.34). The stress from this
compressive force is then checked against the design capacity of the grout and concrete.
The maximum compressive stress can also be expressed in regards of the average stress from the reaction
force as seen in Figure 4.10 according to

k� =
�max

(

Gtower+nboltFbolt
2�r

) (4.35)
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Anchor plate and distribution ring

The anchor plate is designed using a structural model according to Figure 4.8 where the force is distributed
over the width of the anchor plate. This results in a sectional moment which is calculated from

Mplate = �plate
(bancℎor − bdist)2

8
(4.36)

where
�plate is the stress in concrete from the bolt force,
bancℎor is the width of the anchor plate,
bdist is the distance between the bolts.

This gives a distributed moment per meter and the resisting moment is calculated from the plastic section
of the plate in accordance with equation (6.7) in EN-1993-1-1 (2005) where it is stated that the strength
in a section with holes can be based around the ultimate stress instead of the yeild stress. The plastic
resistance thus becomes

MR =
0.9fu
1.25

t2ancℎor
4

dbolt − dℎole
dbolt

(4.37)

where
fu is the ultimate stress in the plate,
dbolt is the distance between the bolts,
dℎole is the diameter of bolt holes,
tancℎor is the thickness of the anchor plate.

Figure 4.8: Model used for calculating stresses in the anchor plate.

Another check that has to be made is the splitting force from the prestressing. This is controlled using
a strut-and-tie model, seen in Figure 4.9, according to section 6.5 in EN-1992-1-1 (2005) where the
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Figure 4.9: Strut and tie model used to calculate the splitting forces in the concrete under the anchor
plate.

section is treated as a full discontinuity region. The tie force, T, is calculated using the initial prestressing
force distributed over the anchor plate according to

T = 1
4

(

1 − 0.7
bancℎor
0.5ℎcage

)

Finit (4.38)

where
bancℎor is the width of anchor plate,
ℎcage is the height of the anchor cage,
Finit is the initial prestressing force.

This tie force is resisted primarily by the flexural reinforcement. However, is this not satisfactory, splitting
reinforcement can be placed radially in the middle part of the foundation to avoid splitting of the concrete.
The final part of the connection that is designed is the distribution ring which is placed under the concrete
grout, see Section 2.5. This is designed in a similar way to the anchor plate described above. The
difference is that there are two conditions for the concrete. The first is taken from equation (5.42) in
EN-1992-1-1 (2005) and states that the concrete stress, �c , is lower than 0.6fck at all times. The second
condition is that the concrete stress is below the limiting value fcd . Due to the effect of bending the
concrete is in a triaxial state of compression and the verification becomes

�c ⩽
3fck

c

(4.39)

in accordance with section 6.5.3 in EN-1992-1-1 (2005) where it is stated that a triaxially compressed
node can be verified using equations (3.24) and (3.25) from EN-1992-1-1 (2005).
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4.7 Shear capacity within the perimeter of the tower

The shear force within the tower have to be considered as well. The shear force is calculated according
using the stress distribution as in Equation (4.32) and Equation (4.31) with the angle � in Figure 4.7 as
�
2
, i.e. an elastic stress distribution. Using this gives

V =
�maxrtow
1 − cos �

2(sin � − � cos �) = �maxrtow2 (4.40)

M =
�maxr2

1 − cos �
(� − sin � cos �) =

�maxr2tow�
2

. (4.41)

where
�max is the maximum stress in the stress distribution,
rtow is the radius of the tower.
By then expressing the maximum stress from Equation (4.41) the shear force can be calculated as

VM =
2MEd

r2tow�
rtow2 =

4MEd

�rtow
(4.42)

and the total shear force inside the tower then becomes

VM,tot =
4MEd

�rtow
− 0.5Gtower (4.43)

An important note here is that in previous calculations provided by WSP and controlled by Carl-Erik
Broms, professor at the Royal Institute of Technology, the force is expressed as

VM,CE =
Med

r2tow�
rtow2 =

2Md

�rtow
(4.44)

and the ratio between these results is 2:1. No feasible reason behind this difference has been found and
for the calculations to be verifiable against previous work done by WSP the force is calculated using
Equation (4.44).
This shear force is checked against the criteria expressed in equations (6.5) and (6.6) from EN-1992-1-1
(2005) where the maximum allowed shear stress in a section is calculated using

0.5 ⋅ 0.6
fck

c

[

1 −
fck

250MPa

]

dc2rtow (4.45)

where
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fck is the characteristic compressive stress of the concrete,
dc is the effective depth of the concrete section,
rtow is the radius of the tower.

The anchor bolts that are not used for anchoring, i.e. outside the area illustrated in Figure 4.2, are utilized
as shear reinforcement since they are deemed more efficient than regular stirrups. The anchor bolts are
active as shear reinforcement within an effective region where they are in tension but not utilized for
anchoring the moment. This region is indicated in Figure 4.10. The stirrups are fully effective between
angles � and �

4
, and increase in efficiency from 0% to 100% effectiveness between � and �.

The stress is calculated in the same way as in Section 4.6 with the effect of stress loss accounted for.
With � according to Equation (4.33) and Equation (4.34) and k� according to Equation (4.35) the angle
for the start of the effective section (�) is calculated from the relation

1 − cos �
1 − cos �

=
k� − 1
k�

(4.46)

Figure 4.10: Average stress and stress distribution for the bolts in ULS.
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The total shear capacity of the anchor bolts can then be calculated from

FR =
(

0.5(� − �)
�

+
(� − �∕4))

�

)

nboltFbolt,∞ (4.47)

where
Fbolt,∞ is the prestress force after stress loss,
nbolt is the number of bolts in the bolt cage.

If the calculated capacity is higher than the shear force calculated in Equation (4.43) then there is no need
for additional shear reinforcement. However, due to the risk of the bending moment causing vertical
cracks within the tower perimeter, vertical stirrups should be added to compensate for the reduced
effectiveness. With the assumption that the shear force is taken by an inclined strut with a slope of
roughly 1:2 the reinforcement ratio becomes

�w =
1
2

fctm
fyk sin

2 �
(4.48)

where
fctm is the mean tensile strength of the concrete,
fyk is the characteristic strength of the reinforcement,
� is the the angle of the strut, ≈ 1.11 rad.

4.8 Fatigue assessment

Several checks regarding fatigue have to be conducted when designing a WPP. The parts that have to be
checked include the bottom and top flexural reinforcement, the prestressed bolts, the shear reinforcement
and the concrete under the distribution ring.
For most cases, the load is treated using an equivalent moment range which is calculated using Miner’s
rule, seen in Equation (3.23). This equivalent moment will represent the entire Markov matrix and
is calculated using a trial-and-error approach where the representative damage from each entry in the
Markov matrix is calculated using Equation (4.49). For the right equivalent moment the sum of the
damages from each entry will be equal to 1.0. The equivalent moment is chosen to represent a strategic
number of cycles, e.g. 106 cycles for reinforcement steel in accordance with Figure 3.15, which is
indicated withN∗.

di =

⎧

⎪

⎨

⎪

⎩

ni
N∗

(

Mi

M0

)k1 ifMi ⩽M0

ni
N∗

(

Mi

M0

)k2 ifMi > M0

(4.49)

where
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ni is the applied number of cycles for the moment range,
N∗ is the resisting number of cycles for the equivalent moment range,
Mi is the applied moment range,
M0 is the equivalent moment range,
k1 is the slope of the curve for a moment range lesser than the equivalent moment range,
k2 is the slope of the curve for a moment range greater than the equivalent moment range.

The reason for using this equivalent method is to simplify the calculations. By using a equivalent moment
range that represents the whole load range it limits the number of calculations needed, e.g. it is enough
to calculate the required reinforcement from only this single moment range, as seen in Section 4.8.1.
This will most likely have an effect on the result and another method could potentially result in different
requirements. However, the effect of this is not included in this study.
There is one additional aspect that should be noted before the checks for each structural element is
introduced. The loads provided by Vestas correspond to a life span of 20 years whilst Eurocode states
that the life span should be 50 years. This is treated by multiplying the damage with a factor of 2.5, i.e.
d50 = 2.5d20.

4.8.1 Flexural reinforcement

The fatigue calculations for the flexural reinforcement are based on bending moments that are equivalent
to a 50 year life span. The design fatigue strength for 106 cycles can be calculated by using the fatigue
class for reinforcement where the different values can be seen in Table 3.3. With this value a design
stress range can be calculated according to

Δ�rd,fat =
Δ�Rsk

s⋅

(4.50)

where
Δ�rd,fat is the design stress range for the reinforcement steel,
Δ�Rsk is the stress range from Table 3.3,

s is a safety factor for the material.

Then the needed reinforcement area can be estimated using

As,fat =
Mequ

0.9dc�rd,fat
(4.51)

where
As,fat is the needed reinforcement area for fatigue,
Mequ is the equivalent moment in accordance with previous Section,
dc is the effective depth of the concrete section

By comparing this value to the values calculated from Equation (4.15) and Equation (4.17) the governing
factor for the flexural reinforcement can be found.
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4.8.2 Bolts

A similar process as for the flexural reinforcement is used for calculating the fatigue life of the bolts. An
equivalent stress range is found by using the equivalent fatigue moment range. The parameters used for
calculating the resistance are listed in Table 6.4N in EN-1992-1-1 (2005) and can be seen in Table 4.2.
The shape of the S-N curve used can be seen in Figure 3.15. Since the type of bolt used for anchoring is
not explicitly stated in the norm, the lowest values are used to get a value on the safe side. The resisting
stress range is calculated using Equation (4.50).
Table 4.2: Parameters for design of prestressing steel in Eurocode

Type of reinforcement stress exponent Δ�Rsk [MPa]
N* k1 k2 at N* cycles

pre-tensioning 106 5 9 185
post-tensioning
Single strands in plastic ducts 106 5 9 185
Straight or curved tendons in plastic ducts 106 5 10 150
Curved tendons in steel ducts 106 5 7 120
Splicing devices 106 5 5 80

The acting stress range in the bolt is calculated using the section modulus of the foundation connection,
calculated from

Wcyl = �
(2rtow)2

4
(4.52)

which gives the force per meter of the circle. With the assumption that this force is acting on the whole
circle the stress range can be divided over the total number of bolts. Thus the acting stress range, with
due regard to the stress distribution according to Equation (4.24), becomes

Δ�Ed =
Mequ

Wcyl

2�rtow
Aboltnbolt

kbolt =
2Mequkbolt
nboltrtowAbolt

(4.53)

where
Mequ is the equivalent moment for the steel,
rtow is the radius of the tower,
Abolt is the area of a single bolt,
nbolt is the total number of bolts in the connection.

The control of the connection is then done by checking this stress against the resisting stress range.
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4.8.3 Shear reinforcement

As in Section 4.8.2 the equivalent stress range is based on the equivalent moment range and from this an
equivalent shear force is calculated. The allowed stress range for the shear reinforcement uses the same
values as the flexural reinforcement, but is modified with regard to anchorage, i.e. bending around the
flexural reinforcement, according to Equation (3.25).
Both the shear reinforcement outside and inside the tower perimeter need to be checked. The dimensioning
shear force outside the tower is calculated by assuming that the earth pressure varies linearly over the
slab. By using Navier’s formula, the pressure at the edge of the foundation is found as

Δ�edge =
Mequ

Ifound

bfound
2

(4.54)

Ifound =
b4found
12

.

The shear force range is found by integrating the pressure which varies from maximum at the edge to
zero in the middle. The pressure is integrated over one quarter of the slab, with the width increasing
from zero at the center to the full width at the edge. The reason for integrating over this area is that the
shear force is assumed to only be transferred along this part. The shear force range then becomes

ΔVequ =

bfound
2

∫
0

b(x)�(x)dx =
Δ�edgeb2found

6
(4.55)

b(x) = bfound − 2x

�(x) = Δ�edge

bfound
2
− x

bfound
2

.

This shear force can then be used along with a design stress range in order to find the required amount of
shear reinforcement. The design stress range is found using Equation (4.50) from Section 4.8.1, adjusted
according to Equation (3.25), as

As,fat =
ΔVequ
�rd,fat

. (4.56)
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4.8.4 Concrete

The fatigue in the high performance concrete, i.e. the grout, that is used between the anchor plate and
the distribution ring is not checked for fatigue since there is little knowledge about its behaviour in this
regard.
The concrete under the distribution ring has to be checked with regard to FLS because of the maximum
and minimum bending moments, the prestress force from the bolts and the gravity load from the tower.
The fatigue damage can be evaluated using a Markov matrix provided by the manufacturer. In contrast
to the previous cases in this section there is no equivalent moment, instead the damage from each load is
added to the total damage. If the total damage is less than 1.0 the design is considered to be adequate.
The fatigue strength of concrete is calculated from equation (6.76) in EN-1992-1-1 (2005) and states that

ffat = 0.85
fck
1.5

(

1 −
fck

250MPa

)

. (4.57)

In EN-1992-1-1 (2005) the capacity for concrete with regard to fatigue is verified using equation (6.72).
This is expressed as

Ecd,max + 0.43
√

1 − Requ ⩽ 1.0 (4.58)

where
Ecd,max is the maximum stress level,
Requ is the ratio between maximum and minimum stress level.

The terms in Equation (4.58) are calculated according to equations (6.73)-(6.75) in EN-1992-1-1 (2005).
The verification is valid for 106 cycles and there is no guideline for how a potential S-N curve is shaped.
The assumption is made that the curve varies linearly in a log-log scale between ffat for 1 cycle and
�max for 106 cycles. For each entry in the Markov matrix the value of �max is calculated from

�max,i = ffat
(

1 − 0.43
(√

1 − Requ

))

(4.59)

which is a rewritten version of Equation (4.58). The slope of this curve for Requ=0 becomes

m =
log

(

106

1

)

log
(

1
0.57

) ≈ 24.6 (4.60)

and using this the maximum stress for 109 cycles becomes

fmax,9 = ffat ⋅ 0.57
(

106

109

)1∕24

≈ 0.43ffat (4.61)
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The corresponding curve for this method can be seen in Figure 4.11
Recent research conducted has shown that confinement increases the fatigue life of concrete. This
confinement effect is considered using equation (3.25) from EN-1992-1-1 (2005) which states that

1.5fcd,c = fck

(

1.125 + 2.5
�2
fck

)

(4.62)

where
fcd.c is the confined concrete compressive strength,
fck is the characteristic compressive strength,
�2 is the lateral stress in the concrete.
For the compression side the confinement factor, c, becomes 3 due to active confinement, similar to
Equation (4.39), whereas the confinement factor on the tensile side comes from passive confinement
caused by the reinforcement. With a Poisson’s ratio of 0.2 the lateral stress becomes 0.2fck and the
confinement factor can be expressed by rewriting Equation (4.62) as

1.5fcd,c = (1.125 + 2.5 ⋅ 0.2)fck ⇒
1.675
1.5

fck (4.63)

and therefore the confinement factor can be said to vary between ≈ 1.5 and 3. In a conservative way the
values 1.0 and 3.0 are used. It is assumed that the confinement effect has disappeared for 109 cycles for
Requ=0. The fatigue capacity at this number of cycles is calculated from

ffat,9 = ffat
(

c − (c − 0.43)
√

1 − Requ

)

(4.64)

where
ffat is the fatigue strenght according to Equation (4.57),
0.43 is the relative strength in accordance with Equation (4.61),
Requ is the ratio between minimum and maximum stress.

With these values a S-N curve dependent on the the confinement level, c, and stress ratio, Requ, can beconstructed. Examples of curves for different ratios can be seen in Figure 4.11. With the slope of the
curve, m, the resisting number of cycles for each entry can be calculated as

Ni = 109
(�max,i
ffat,9

)mi
(4.65)

and the total damage can be calculated using Miner’s rule from Equation (3.23).
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Figure 4.11: S-N curve for concrete stress according to method by Carl-Erik Broms.

This method is questioned by the Norwegian company Det Norske Veritas, today DNV-GL, in their
third party review. Their main objection is against the confinement factor since there is no mention of
it connected to fatigue in Eurocode. The difference in results between the method presented in Broms
(2013) and the used norms will be discussed in Section 6.3.2.
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5 Results

In Section 2.5 the three different case studies were introduced together with the dimensions of the towers.
The results in this section is calculated with the method presented in Chapter 4 and will be discussed in
Chapter 6

5.1 Case study 1 - Influence of tower height

For each tower a set of normal loads and a set of abnormal loads is used which are presented in Table 5.1.
Table 5.1: Characteristic moments for normal and abnormal cases.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Normal moment 104 900 kNm 82 800 kNm 65 700 kNm
Abnormal moment 132 800 kNm 92 260 kNm 80 700 kNm
Normal horizontal force 850 kN 724 kN 708 kN
Abnormal horizontal force 1055 kN 748 kN 842 kN

Using the partial safety factors from Eurocode, see Table 3.2, gives design forces presented in Table 5.2.
The relationship between the height of the tower and the design forces can be seen in Figure 5.1 and
Figure 5.2.
Table 5.2: Design moments for the different towers.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Design moment 159 360 kNm 124 320 kNm 98 550 kNm
Design horizontal force 1276 kN 1122 kN 1062 kN

The resulting dimensions can be seen in Table 5.3 together with the total weight of the foundation and
the towers. The foundations are quadratic in shape. A graphic showing the relation between the values
in Table 5.3 and the height of the tower can be seen in Figure 5.3 and Figure 5.4.
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Figure 5.1: Relationship between height and design moment with linear trendline. Data taken from
Table 5.2
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Figure 5.2: Relationship between height and design horizontal force with linear trendline. Data taken
from Table 5.2
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Figure 5.3: Height, width and volume of the three different towers

Table 5.3: Design dimensions and weights for the different towers.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Foundation width 19m 17m 16.5m
Height 2.1m 2.075m 1.85m
Volume 758m3 578m3 504m3

Total weight 24 569 kN 19 734 kN 15 952 kN
Tower radius 3m 2.095m 1.95m

From the resulting internal section forces the needed reinforcement areas are calculated. These areas
can be seen in Table 5.4. A comparison between the different reinforcement amounts can be seen in
Figure 5.5
In a similar way the reinforcement area with regard to fatigue can be seen in Table 5.5. No area for shear
reinforcement is calculated since it is only verified whether fatigue is governing or not.
Finally, the fatigue damage for the reinforcement is presented in Table 5.6. The damage is calculated
using the maximum reinforcement amount from Table 5.4 and Table 5.5. Therefore the damage is 1.0
for the cases when fatigue is limiting
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Figure 5.4: Relationship between height and design weight with linear trendline. Data taken from
Table 5.2

Table 5.4: Resulting reinforcement area for extreme loads.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Bottom reinforcement 88 893mm2 98 973mm2 79 012mm2

Top reinforcement 51 004mm2 42 127mm2 40 027mm2

Shear reinforcement 43 583mm2 39 035mm2 31 397mm2

Table 5.5: Resulting reinforcement area for fatigue loads.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Bottom reinforcement 63 957mm2 65 628mm2 50 286mm2

Top reinforcement 56 115mm2 60 414mm2 34 294mm2

Table 5.6: Damage from fatigue calculations for reinforcement.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Bottom reinforcement 0.05 0.02 0.01
Top reinforcement 1.0 1.0 0.14
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Figure 5.5: Governing reinforcement amounts for the three different towers
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Figure 5.6: Amount of bottom reinforcement required with regard to the maximum bending moment and
fatigue loading.
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Figure 5.7: Amount of top reinforcement required with regard to the maximum bending moment and
fatigue loading.

5.2 Case study 2 - Designing for 20 years instead of 50 years

For the comparison, the two interesting parameters are the reinforcement amounts and the equivalent
moments. The equivalent moments can be seen in Tables 5.7 and 5.8 and shows a slight decrease with
around 10% for each equivalent moment, except for steel which shows a decrease of around 20%. This is
to be expected since the applied number of cycles is only 40 % of the previous and the damage has to be
increased for each entry in the Markov matrix. The different notations in Tables 5.7 and 5.8 corresponds
to:

Tower equivalent moment for the anchoring bolts
BR equivalent moment for bottom reinforcement
TR equivalent moment for top reinforcement
Steel equivalent moment for the distribution plate

In Table 5.9 the reinforcement amount for the design with regard to fatigue can be seen. This amount is
compared to the results from the previous section, and the changes in reinforcment amount can be seen
in Table 5.10 for bottom reinforcement and in Table 5.11 for top reinforcement. This shows no change in
the amount for bottom reinforcement and a slight change for two of the towers for the top reinforcement.
These results are shown graphically in Figure 5.8 and Figure 5.9

The results from this case study will be discussed in Section 6.1.2
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Table 5.7: Equivalent fatigue loads for 50 years

Moment V100-1.8 MW ™ V112-3.0 MW ™ V126-3.3 MW ™
MT ower [kNm] 32391 44591 53736
MBR [kNm] 10407 14883 15397
MTR [kNm] 7366 14196 13837
MSteel [kNm] 25199 36291 45885

Table 5.8: Equivalent fatigue loads for 20 years

Moment V100-1.8 MW ™ V112-3.0 MW ™ V126-3.3 MW ™
MT ower [kNm] 27942 39317 47568
MBR [kNm] 9138 13132 13631
MTR [kNm] 6568 12548 12339
MSteel [kNm] 20190 29465 36903

Table 5.9: Resulting reinforcement area for fatigue loads using 20 years.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Bottom reinforcement 56 623mm2 57 590mm2 43 733mm2

Top reinforcement 50 037mm2 53 653mm2 30 579mm2

Table 5.10: Resulting reinforcement change for bottom reinforcement.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
50 year 88 893mm2 98 973mm2 79 012mm2

20 year 88 893mm2 98 973mm2 79 012mm2

Change [mm2] 0 0 0
Change [%] 0 0 0
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Table 5.11: Resulting reinforcement change for top reinforcement.

Parameter V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
50 year 56 115mm2 60 414mm2 40 027mm2

20 year 51 004mm2 53 653mm2 40 027mm2

Change [mm2] 5111 6761 0
Change [%] 9.1 11.1 0
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Figure 5.8: Amount of bottom reinforcement required with regard to the maximum bending moment and
fatigue loading for both 20 and 50 years.
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Figure 5.9: Amount of top reinforcement required with regard to the maximum bending moment and
fatigue loading for both 20 and 50 years.

5.3 Case study 3 - Conflicts between norms

In case study 3 a comparison between Eurocode and IEC was performed. The aim was to find any
differences that might change the amount of required reinforcement, preferably less since that gives the
designer the option to create a cheaper foundation with less material.
The expected result was that the material usage would decrease since IEC provides smaller load partial
factors than Eurocode, see Table 3.2. This was true in some situations, sometimes it did not matter and
in one case it actually increased the amount as can be seen in Table 5.12.
For the shear reinforcement, IEC rendered less reinforcement in all three towers, see Figure 5.12. This is
explained by the fact that the tilting moment is reduced which, in turn, reduces the eccentricity. This
implies that a larger area of the foundation will be used to resist the tilting moment. The shear force
that is dimensioning is located at the edge of the tower. If a large part of the slab beyond this section is
compressed, the shear force will be lower.
The amount of bottom reinforcement was lower in two towers and slightly larger in one, see Figure 5.10.
The two cases where it was larger is due to the tilting moment being smaller which causes less pressure
from the soil and smaller moment in the foundation. The larger amount of reinforcement when using
IEC’s partial factors is because one of the favourable forces was reduced and thus the total strain reduced.
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The top reinforcement was not affected by the change of partial factors, see Figure 5.11. The reason
is that the dimensioning factor was either the minimum reinforcement or the amount with regards to
fatigue, both of which are independent of the load partial factors.
Table 5.12: Resulting reinforcement amounts from case study 3.

V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Parameter Eurocode IEC Eurocode IEC Eurocode IEC
Bottom rein. 88 893mm2 80 808mm2 98 973mm2 99 301mm2 79 012mm2 69 156mm2

Top rein. 51 004mm2 51 004mm2 42 127mm2 42 127mm2 40 027mm2 40 027mm2

Shear rein. 43 583mm2 41 239mm2 39 035mm2 36 401mm2 31 397mm2 29 529mm2
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Figure 5.10: Relation between Eurocode and IEC with regards to bottom reinforcement
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Figure 5.11: Relation between Eurocode and IEC with regards to top reinforcement
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Figure 5.12: Relation between Eurocode and IEC with regards to shear reinforcement
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6 Discussion
The discussion in this Chapter is based on the results in Chapter 5 and previously introduced theory. In
order to support the discussion and conclusions, drawn references are introduced to present alternative
views to the raised problems.

6.1 Observations from Case Studies
At the initiation of this study there were a number of questions that were raised and which were introduced
in the Objectives, see Section 1.3.1. Based on the results observations have been made which is the basis
recommendations were made on how to treat this problems.

6.1.1 Case Study 1 - Influence of height

Before going into discussion of the results it should be noted that one of the towers, the one that is 124m
high, has a different wind class than the others and is therefore designed for a Vref of 42.5m∕s. This
may have an influence on the results and will be mentioned in more detail where it is of interest.
One of the aims in conducting this study was to investigate relationships to support a preliminary sizing,
when the information surrounding the tower is limited. In Figure 5.1 and Figure 5.2 linear trendlines for
both design moment and horizontal forces can be seen. Despite the limited sample size the curves show
clear trends which supports the idea of using it in an initial stage of production. Examples of design
forces using those trends can be seen in Table 6.1. If there is an interest to find a more detailed curve
more towers can be checked; however the potential improvement is deemed to be of little magnitude. An
interesting note is that the tower with a higher wind class has a force that lies below the curve which at
first seems contradictory. The probable reason for this is that the higher wind speed lessens the size of
the rotor blades and results in lower forces in total.
Table 6.1: Approximated design forces for different tower heights.

Height [m] Design moment [kNm] Design horizontal force [kN]
80 73 969
90 87 1017
100 101 1064
110 115 1111
120 129 1159
130 143 1206
140 157 1253

No clear relationships can be seen for the dimension of the foundation when it comes to tower height.
This has some to do with the fact that the ratio between width and height is chosen by the designer during
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the process. Therefore the volume and total weight is more interesting to look at. In a similar fashion to
the design moment the volume seen in Figure 5.3 is lower for the second tower. This is obviously due
to the fact that the design moment is lower. However, since the weight of that tower is proportionately
higher, the effect is lesser for the weight as can be seen in Figure 5.4.
The bottom reinforcement amounts can be seen in Table 5.4 and Table 5.5 and shows that the extreme
moment is governing for all heights. The top reinforcement can also be seen and it shows that for the
higher towers fatigue is governing whilst for the lowest tower the maximum moment results in the
highest reinforcement amount. A summary of this can be seen in Table 6.2. It should also be noted
that the minimum reinforcement for cracking according to Equation (4.17) is governing in some of the
cases. However, for the discussion with regard to height this is not considered since those values are
independent on the height, instead dependent on the concrete class.
Table 6.2: Governing factor for the different reinforcement amounts

V126-3.3 MW ™ V112-3.0 MW ™ V100-1.8 MW ™
Governing factor Extreme Fatigue Extreme Fatigue Extreme Fatigue
Bottom reinforcement
Top reinforcement
Shear reinforcement

That the required bottom reinforcement is higher than the required top reinforcement is expected since
the permanent loads, i.e. the self-weight, gives tension in the bottom part of the foundation and raises
the maximum load level in the reinforcement. Therefore, it is only natural that the governing phenomena
for the bottom reinforcement is the maximum moment since it will give the highest stress levels. This
becomes more interesting when looking at the top reinforcement which is governed by fatigue for all cases
except for the lowest tower. The explanation behind this is that the maximum stress level is lowered due
to compression from the weight of the tower. However, the moment ranges from the Markov matrix is the
same as for the bottom reinforcement and, since the fatigue design for reinforcement is only dependent
on the ranges, the values become roughly the same. This is further verified by checking the average ratio
between bottom and top reinforcement which is ≈ 2.0 for extreme moment and ≈ 1.2 for fatigue. The
relation between the different reinforcement amount can be seen in Figure 5.5 which shows that the ratio
between the different reinforcement amounts is quite constant for the different tower heights.
When it comes to fatigue damage it appears that the damage increases with height. This is true for both
top and bottom reinforcement which can be seen in Table 5.6 where the damage for bottom reinforcement
increases with height in addition to the previously raised points. The data is however to limited to find a
threshold height when fatigue becomes governing for the top reinforcement. By calculating some more
towers a clearer pattern may be found. It is however quite safe to state that the bottom reinforcement will
be determined from the extreme moment, regardless of height, since the minimum ratio between fatigue
and extreme reinforcement is 1.57.
From the results in the study it has become clear that there is one other parameter that seems to have
a significant influence on the amount of reinforcement needed. The radius of the tower will influence
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Figure 6.1: Amount of bottom reinforcement required with regard to the maximum bending moment and
fatigue loading.

the size of the sectional forces, or more precisely the magnitude of the force component calculated
in Equation (4.2). With a small radius this force becomes significantly larger and results in higher
sectional forces. This effect is lesser when it comes to the dimensions since this is more dependent on the
eccentricity of the reaction force which is independent of the radius. This effect is further accentuated
by Figure 6.1 where the reinforcement amount per meter is presented, which shows a clear increase for
the middle tower and quite similar values for the other two. This is probably due to the relatively small
radius.

6.1.2 Case Study 2 - Designing for 20 years instead of 50 years

Another parameter that was studied was the influence of using a shorter life span for the foundation.
Since there was major doubts within the company that there would be a possibility to replace the tower
and use another, thus almost reaching the prescribed 50 year life-time, the potential gain of designing for
20 years was of interest.
In Table 5.9 the reinforcement amount for fatigue loading can be seen when 20 years is used. The change
in reinforcement amount can be seen in Table 5.10 and Table 5.11. From this it can be seen that the
change is marginal on the reinforcement amount needed in the foundations. The largest difference is
11% for the middle tower which is a marginal financial gain compared to the total cost of the foundation.
It should also be noted that for a 20 year span only the top reinforcement in the middle tower is governed
by fatigue. From this it can be argued that the effect of fatigue is not as severe as thought. This is also
supported by Hau (2013) who does not put fatigue as one of the design drivers for foundations. While it
is unreasonable to not check the fatigue behaviour, it is clear that the maximum moment is the major
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concern in design. Since there is no mention in Eurocode of a lower partial safety factor when designing
for a shorter life span, a decrease in service life will not affect the dimension of the foundation since it is
mainly designed to withstand overturning.
In addition to what has been mentioned the other main parameter influenced by a shorter life span is the
concrete cover which could potentially be decreased since the environment cannot do as much damage
in a shorter span. However, there is no mention of this in EN-1992-1-1 (2005) or the Swedish National
annex. And since the difference would be in the span of 10 – 20 mm on each side of a foundation slab
that is around 2 m thick the potential gain is very little, even with regard to a increased lever arm for the
reinforcement.
Since the method for transforming the fatigue loads to a 50 year life span is simple and the potential gain
in reinforcement amounts is low, the recommendation is not to design for 20 years, instead using the
more common 50 years. This also opens for the possibility to change the tower after it has been used for
its intended lifetime. The chance of this happening is however deemed to be very small due to the fast
advancements for new Wind towers, especially off-shore. These will most likely make the wind towers
used today uneconomic.

6.1.3 Case Study 3 - Conflicts between norms

One of the studied aspects was what influence Eurocode and the international standard, IEC, have on
the design. This is of interest since the two norms propose different partial factors for the loads which,
intuitively, suggests that the resulting design will be different.
The expected result from the case study was that the use of lower partial load factors would put less
stress on the structure and thus reduce the required amount of material. However, some of the design
aspects were not affected and in one case the required amount of reinforcement was increased.
The outcome of these results are explained quite easily. In two of three cases the bottom reinforcement
was affected positively by the reduced partial factors due to its direct correlation with the tilting moment
from the wind. Lower partial factors rendered lower design moment and thus reduced the reinforcement
area.
However, for the accidental load case the amount of bottom reinforcement was increased. The reason
being that a favourable force was reduced when the lower partial factors were introduced, which increased
the stress on the foundation. Another contributing factor was that in this case the unfavourable force from
the wind was not correlated with the partial factors, and was thus unaffected when using lower factors.
Furthermore, for the top reinforcement the results were not dependant on the partial factors. This is
explained by the fact that the decisive factor was either the requirements with regards to minimum
reinforcement or fatigue, which are both independent of the partial factors.
In summary, even in those cases where the biggest gains could be made, the differences were relatively
small and it can therefore be questioned whether it is of any interest to apply other norms in the design
process. This is, of course, a very subjective matter and the outcome might be greater in other projects
regarding design of WPP’s, e.g. a piled foundation. Therefore, it is up to every designer to make the
judgement whether to apply any other norms.
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It should also be mentioned that a more thorough investigation of partial factors could have been done. In
Eurocode probabilistic methods are provided which are based on safety indexes, what type of failure that
is of interest and the life span. This in combination with statistical data, e.g. of material strengths and
load spectra, can be used to determine partial factors. This was not included simply because that kind of
study would be too complex and thus the study was limited to only using the values stated by the norms.

6.2 Simplified wind-model
From the different sections in Chapter 3 the modelling of wind loads is introduced in order to increase
the knowledge. As mentioned in Section 3.5.3 one of the load cases in IEC (2005) can be approximated
using simplified methods. For this comparison two different wind profiles from Eurocode is used. The
first wind model from Eurocode (EC I) has a reference wind speed of 23m∕s and terrain type I, the other
(EC II) has a reference wind speed of 25m∕s and terrain type II. The parameters are also presented in
Table 6.3 and are chosen to give a similar speed at hub height to the one from IEC.
A comparison of the wind profile used in IEC, see Equation (3.6), and the one used in Eurocode, see
Equation (3.20), can be seen in Figure 6.2 where the two different wind profiles from Eurocode are
used. One of the major questions regarding the wind models from IEC is the absence of the surface
roughness. The terrain is instead accounted for with the turbulence intensity which is verified from field
measurements (IEC, 2005). The difference between these two methods could be interesting to investigate
further since it will probably influence wind shear and other factors in calculations. It is however outside
the scope of this study.
Table 6.3: Wind parameters for Figure 6.2

Case vb Terrain type
EC I 23m∕s I
EC II 25m∕s II

The resulting loads can be seen in Table 6.4 together with the characteristic loads from Vestas also seen
in Table 2.3. All calculations are made on the wind tower with a height of 137m.
Table 6.4: Characteristic loads from Eurocode and IEC

Case Hcar[kN] Mcar[MNm]
EC I 731 44.6
EC II 814 49.6
IEC 850.4 104.9

As can be seen in the table the horizontal loads are fairly similar while the moment differs a lot between
IEC and Eurocode. The assumption is that the difference comes from the neglect of the wind load on the
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Figure 6.2: Wind speed profiles for Eurocode and IEC

rotor blades which provides a large moment due to their large distance from the foundation. Therefore,
the forces on the rotor blades are calculated according to Equation (3.22). The forces on the blades are
treated as three point loads acting on the tower at hub height in the principal wind direction. The value
of Cd is set to 1.0. This is motivated due to the fact that the pitch angle of the blades at high wind speed
is ≈ 85° according to Gasch and Twele (2012).
The resulting forces can be seen in Table 6.5. The horizontal force changes from a 9% underestimation
to a 67% overestimation. In a similar way the moment at the foundation is increased from a 55%
underestimation to a 29% overestimation. These results still are significantly different from the loads
provided by the manufacturer. It is clear that Equation (3.22) overestimates the forces on the airfoil and
the simplified model with three point loads at hub height does not capture the complexity of the loading
situation.
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Table 6.5: Characteristic loads for Eurocode with added drag forces on rotor blades

Case Hcar[kN] Mcar[MNm]
EC I 1369 132.0
EC II 1467 139.1
IEC 850.4 104.9

The difference between the simplified calculations and the provided moment can be explained by the
complexity of the loading. Some of the factors that can be assumed to influence the accurate forces are:

• eccentricity of self-weight.
• loads from the nacelle and other parts with high eccentricity.
• effect of yaw misalignment and wind shear.
• the effect of turbulence.
• the shape of the rotor blades.

The conclusion here is that it is not recommended to use Eurocode when designing structures supporting
wind towers. The method presented is to simplistic to model the complicated loading situation on a wind
tower. However, for some older towers where a more detailed load calculation has not been done this is
the only alternative available. For more modern towers the more appropriate way is either to use the
loads provided by the designer or in an early stage use the relationship discussed in Section 6.1.1. For
calculations in this section see Appendix A.

6.3 Additional aspects regarding fatigue
The design with regard to fatigue is still in development and new facts change the methods used. In
Figure 6.3 the difference between values for design of concrete for Model code 90 and 2010 can be seen.
The main difference regards the strength for a high number of cycles,N > 108, where the strength is
lower for the new code. However, the opposite holds true for moderate number of cycles that are most
common where the updated code gives a higher capacity.

6.3.1 Comparison between Modal Code and Eurocode

For the different verification methods presented in Section 3.8 there are four factors that influence the
fatigue capacity of concrete. These are maximum and minimum stress levels, the full loading history
and the ratio between maximum and minimum stress. These are listed in Table 6.6 where it can be seen
that two of the methods take all of these into account. The naming of the different methods derives from
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Figure 6.3: Difference between Model Code 90 and 2010 for different minimum stress levels. Source:
Urban, Strauss, Schütz, Bergmeister, and Dehlinger (2014)

Section 3.8 where the notations from the different methods are introduced. The methods from fib (2013)
is denoted using fib and its level of approximation as presented in Section 3.8.2. The concept of level of
approximation was introduced in Section 3.1.2.
A Doctoral Thesis Thun (2006) discusses the influencing factors for fatigue life. Four factors are named
where the maximum and minimum stress levels already have introduced. The third one mentioned is the
stress amplitude, i.e. the difference between maximum and minimum stresses, which is accounted for in
several of the verification methods. The last one is the stress frequency which is not accounted for in
current norms. Due to the uncertainties in the wind loads it would not have been realistic to account for
stress frequency when designing a WPP regardless.
Table 6.6: Parameters influencing the different design checks

Parameter fib II fib III fib IV EN 1 EN 2 EN 3
Maximum stress level
Minimum stress level
Loading history
Ratio between maximum and minimum stress

By doing a similar figure as Figure 6.3 with the method from EN-1992-2 (2005), seen in Equation (3.40),
and the method presented in fib (2013), seen in Equations (3.46) to (3.48), the differences between the
two methods can be studied. A couple of observations can be made from this. The first being that for the
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number of cycles that the wind tower is exposed to, ≈ 109 according to Gasch and Twele (2012), the
equation from Eurocode gives lower values than Model Code. This means Eurocode is on the safe side.
The exception is for Scd.min = 0.8 where the positions are reversed. By comparing Figures 6.3 and 6.4
it can be seen that the two figures are similar and it is clear that EN-1992-2 (2005) was written using
Model Code 1990 as a reference.

Figure 6.4: Graph showing the difference between Model Code 2010 and Eurocode.

Another point of interest is the different equations for the fatigue strength of concrete, namely Equa-
tions (3.38) and (3.43). The values for the different concrete classes can be seen in Figure 6.5 where it is
noted that the fatigue strength for Model Code 2010 is significantly higher than for Eurocode with an
increasing effect for higher compressive strength. For the concrete class C35/45 the difference is 6%
between the two methods.

Figure 6.5: Fatigue strength of different concrete classes for Model Code 2010 and Eurocode.

These two effects combined indicate that there is a lot more capacity in the concrete when using Model
Code 2010 compared to Eurocode which is natural since the former represents the latest in research
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Figure 6.6: Maximum stress level for �min = 0 for the three discussed methods.

whilst the latter is based on previous recommendation. It will interesting to see if the next revision of
Eurocode is closer in results to Model Code.

6.3.2 Comparison with the method from Carl-Erik Broms

In a report made by Broms (2013) he argues that the method used in Section 4.8.4 is more severe than
the formula presented in EN-1992-2 (2005), presented here in Equation (3.40). His argument is that
for cycles above 106 the results from the formula presented in Eurocode become unrealistic (Broms,
2013). In Figure 6.6 the three different curves can be seen for a case when the minimum stress is zero,
representing a pulsating load. Here it can be seen that the curve presented by Carl-Erik is below both of
the curves presented in the norms. Note that this is without any adjustment for confinement. It is also
clear that for a high number of cycles, > 107, the method presented by Carl-Erik gives a higher capacity
than the others. Therefore this method should probably be used with some caution for a high number
of cycles. An attempt to calculate the damage from the different methods was found inconclusive with
results that varied significantly. This is explained mainly due to the very high mean compressive stress
in the concrete due to the prestressing and the self-weight of the tower. This led to maximum stresses
that exceeded the fatigue strength of the concrete and gave unreasonable results, with damages in the
range 1024.
The second part of the argumentation that needs to be addressed is the confinement factor presented
in Equations (4.39) and (4.63). There is no mentioning of how this effect should be accounted for in
neither Eurocode or Modal Code with regard to fatigue. Therefore there is no set method to verify
the method presented by Broms (2013). It is also clear from correspondence between WSP and the
Norwegian company Det Norske Veritas, today DNV-GL, that this is one of the major uncertainties in
the design methodology used. A full investigation of this is beyond the scope of this study; however a
short introduction to the problem is provided.
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The effect of confinement is discussed in a technical paper by Lü, Li, and Song (2007) and also in an
article by Wang and Song (2011). Both of these present analytical expressions for S-N curves where
the effect of lateral constraints are considered (Lü et al., 2007). In their article Wang and Song (2011)
show that the confinement effect lessens with an increased number of cycles and has almost disappeared
for cycles in the range of 108, as seen in Figure 6.7. They are also of the opinion that it leads to a
waste of material when concrete structures subjected to confinement are designed for values attained for
uniaxail compression (Wang and Song, 2011). From Figure 6.7 it seems that the value of 3.0 proposed
in Section 4.8.4 is a bit high, and some caution should be used when designing according to it. It will
be interesting to see if this effect will be considered in future revisions of norms in order to utilize the
material more efficiently while still providing structures of satisfactory safety.

Figure 6.7: The effect of confinement on fatigue strength in concrete. Source: Wang and Song, 2011
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7 Conclusions
The aim of this study was to investigate the design methodology of wind power plant foundations used
at WSP, the underlying theory and the major issues surrounding it. This was the main objective along
with increasing the knowledge within the subject. In addition tools have been developed to use WSP’s
method more efficiently. However, there is a problem with transparency in the tools developed and there
are still parts of the design process that are a bit unclear.
The major cause for concern is the fatigue loading where the view is that all of the issues raised have
not been answered in a satisfying way. Regarding the influence Eurocode and Model code 2010 the
main conclusion is that for reinforcement the methods agree in general and feels reliable. However,
for concrete the methods differ significantly and feels volatile. When an attempt was made to study
the difference between the results using one of the wind towers, the results were inconclusive since
some of the resulting damage were in the range of 1024. The reason behind this is the compression from
the anchor ring which raises the compressive stress above the fatigue strength in the concrete. This
automatically results in severe damage regardless of the range of the loads.
This leads back to the effect of confinement which is a concept with a lot of uncertainty. The method
proposed by Carl-Erik Broms account for the confinement, but is not based on any of the governing
norms and therefore has to be verified by a third party company. It will be of great interest to see if future
revisions of Model Code 2010 and Eurocode will take this effect into account and bring clarity to the
question of confinement for fatigue loaded structures. The work surrounding this study has not been
enough to bring clarity to the issue. It is highly recommended that anyone who is involved in the design
of wind power plant foundations gets acquainted with the problems surrounding confinement.
The case studies gave several of the sought answers. This has given an improvement in regard to
preliminary sizing. A relatively clear relationship between height and design loads have been established
which can be helpful in early stages. This, combined with the results showing that extreme loads is
the governing factor for the final design of the foundation, means that preliminary dimensions can be
calculated in a matter of minutes from only the outer dimensions of the tower. For the initial stages when
a lot of data is unknown this is a major gain. The developed calculation document also greatly improve
the speed and decrease the effort surrounding the calculations in the detailed phase. However, it was also
discovered that other factors can have major impact on the final design. One of these was the diameter of
the tower where a smaller tower resulted in more reinforcement in the foundation. A smaller diameter
means that the force couple that resist the tilting moment from the tower has a smaller leverarm. This,
in turn, means that the magnitude of the force couple has to be bigger to compensate which renders a
higher moment in the slab and therefore more reinforcement is required.
In addition, the results show no severe disadvantage when designing for 50 years which is stated by
Eurocode instead of 20 years proposed by IEC. The only positive effect is a slight decrease in the top
reinforcement, in the range of 10%, which is minor and therefore it is recommended to use the 50 year
life span suggested by Eurocode.
Finally, the difference between using partial safety factors from IEC instead of Eurocode is minor. The
difference in reinforcement amounts and outer dimensions are small. Therefore there is no apparent
reason to use the less safe method proposed by IEC and take the risk of a potential legal feud concerning
this, since Eurocode is the governing norm according to Swedish law.
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7.1 Suggestions for future research
There are still a number of uncertainties when it comes to the design of wind power plant foundations.
The different choices made influence the design in a major way and in order to improve the design process
further, the background to these choices is needed. From the work on this study the following issues are
suggested for further studies surrounding wind power plant foundations.

• Implement this method on a circular or octagonal foundation.
• How long term loading affects the soil properties and how this, in turn, affects the tower. For

example does constant tilting cause electricity losses due to less stiffness in the foundation.
• A deeper investigation into the effect of fatigue with focus on the effect of confinement for concrete.
• The moments provided by the manufacturer are often simplified. How large difference is it between

these moments and a more accurate method.
• Investigate the effect of the ratio between the width of the foundation and radius of the tower.
• A more thorough economic study connected to the design of foundations.
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A Wind forces according to Eurocode
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Design	moment	from	Eurocode

Case	I

Input
Value	 Unit

b1 3 Width	of	tower	at	hub	height
b 6 m Width	of	tower	at	foundation
z 137 m Height	of	the	tower
vref 23 m/s Reference	wind	speed	acc.	to	1991-1-4
Terrain	type I Terrain	type	acc.	to	1991-1-4
c 4 m Maximum	chord	length
lblade 61,6 m Lenght	of	a	rotor	blade

cd,blade 1
Drag	coefficent	for	the	rotor	blade	according	to	Fig	5-7	
in	Gasch	and	Twele	(2012)

⍴ 1,25 kg/m3 Density	of	air

kr 0,17 Terrain	factor	according	to	EN	1991-1-4	(4.5)	
cr 1,62 Rawness	factor	according	to	EN	1991-1-4	(4.4)

vhub 37,19 m/s Wind	speed	at	hub	height

qp 1,50 kn/m2 Pressure	according	to	EN	1991-1-4	(4.8)
Re 9,80E+06 Reynolds	number	

Iv 0,105 Turbulence	intensity	according	to	EN-1991-1-4	(4.7)

cpe 7,91E-01 Coefficient	of	external	pressure	

Results
Hblades 638,98814 kN Horizontal	force	on	the	blades
Htower 730,96 kN Horizontal	force	on	the	tower

Htot 1369,95 kN Total	force	at	foundation	level

Mtower 44507,61 kNm Moment	from	the	forces	on	the	tower
Mblade 87541,3752 kNm Moment	from	the	forces	on	the	blades

Mtot 132048,98 kNm Total	moment	at	foundation	level



Case	II

Input
Value	 Unit

b1 3 Width	of	tower	at	hub	height
b 6 m Width	of	tower	at	foundation
z 137 m Height	of	the	tower
vref 25 m/s Reference	wind	speed	acc.	to	1991-1-4
Terrain	type II Terrain	type	acc.	to	1991-1-4
c 4 m Maximum	chord	length
lblade 61,6 m Lenght	of	a	rotor	blade

cd,blade 1
Drag	coefficent	for	the	rotor	blade	according	to	Fig	5-7	
in	Gasch	and	Twele	(2012)

⍴ 1,25 kg/m3 Density	of	air

kr 0,19 Terrain	factor	according	to	EN	1991-1-4	(4.5)	
cr 1,50398551 Rawness	factor	according	to	EN	1991-1-4	(4.4)

vhub 37,60 m/s Wind	speed	at	hub	height

qp 1,66 kn/m2 Pressure	according	to	EN	1991-1-4	(4.8)
Re 1,03E+07 Reynolds	number	

Iv 0,126 Turbulence	intensity	according	to	EN-1991-1-4	(4.7)

cpe 7,93E-01 Coefficient	of	external	pressure	

Results
Hblades 653,144533 kN Horizontal	force	on	the	blades
Htower 814,22 kN Horizontal	force	on	the	tower

Htot 1467,37 Total	force	at	foundation	level

Mtower 49577,14 kNm Moment	from	the	forces	on	the	tower
Mblade 89480,801 kNm Moment	from	the	forces	on	the	blades

Mtot 139057,94 kNm Total	moment	at	foundation	level



B Calculation report for Vestas V126-3.3MW™
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Complementary document for Excel  
The aim of this document is to be a complement to the Excel calculations. The purpose is to create 

understanding for the calculations as well as the underlying theory and assumptions that they are 

based on. 

1. Preconditions 
The values that might occur for certain parameter are specifically for a project including a wind 

power plant of type Vestas V126 3,3 MW. These values are thus not general but may vary from 

different projects. 

The wind loads are calculated in accordance to IEC 61400-1 Edition 3 and Wind 

turbine generator systems-Part 1: safety requirements. 

The loads are given in the load document supplied by the tower manufacturer.  

Norms 

These handbooks and codes have been used for design of the square gravity foundation. 

 IEC 61400-1 Wind turbines – Part 1 

 Foundation Loads, document from the manufacturer 

 BFS 2015:6 – EKS10 

 Eurocde 1, 1991-1 

 Eurocode 2, 1992-1-1, 1992-2 

 Eurocode 3, 1993-1 

 Eurocode 7, 1997-1 

 Handboken Bygg Geoteknik (Swedish handbook for geotechnical design) 

 Plattgrundläggning (Swedish handbook for slab/foundation design) 

Material properties 

Concrete class: 35/45 

Grout: Masterflow 800 

Reinforcement class: K500C-T 

Geometry 

Abbreviation Value Unit Description 

h 2,1 m Height of the foundation 

hbackfill 0,4 m Height of the topping 

bfound 19 m Width of the foundation 

dfound 1,9 m  Distance from edge to reinforcement 

rtow 3 m Radius of the tower 

csl 9 m Size of soft layer 

hhor 2,3 m Height of the horizontal force 



 

  

2. Loads 
In this chapter the loads from the self-weight and the wind are presented. 

Gravity loads 

The gravity loads from are presented in the table below and consist of the self-weight from the 

concrete and backfill. 

Density 

Material Weight [kN/ m3] Abbrevation 

Concrete 25  𝜌𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒  

Backfill 18  𝜌𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙 

 

The weight from the tower is given from the manufacturer as: 

𝐺𝑡𝑜𝑤𝑒𝑟 = 

The total weight of the foundation is calculated as: 

𝐺𝑓𝑜𝑢𝑛𝑑 = 𝜌𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝑏𝑓𝑜𝑢𝑛𝑑
2 ℎ 

The total weight from the backfill is calculated as: 



𝐺𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙 = 𝜌𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙ℎ𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙(𝑏𝑓𝑜𝑢𝑛𝑑
2 − 𝜋𝑟𝑡𝑜𝑤

2 ) 

Additional loads are the live load: 

𝑞𝐿𝐿 = 5𝑘𝑁/𝑚
2 

In the calculation document the sum of the gravity loads except the live load is referred to as: 

𝑄 = 𝐺𝑡𝑜𝑤𝑒𝑟 + 𝐺𝑓𝑜𝑢𝑛𝑑 + 𝐺𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙  

Extreme horizontal loads 

The follow loads are acting at the bottom of the tower. 

Abbreviation Value Unit Description 

Mex.characteristic 132800 kNm Bending moment 

Hex.characteristic 1055 kN Horizontal force 

Mex.characteristic.alternatively 104900 kNm Bending moment 

Hex.characteristic.alternatively 850.4 kN Horizontal force 

Mtor.characteristic.alternatively 6429 kNm Torsional moment 

 

Normal operation (serviceability load) 

 

Abbreviation Value Unit Description 

Mnormal.characteristic 104898.93 kNm Bending moment 

Hnormal.characteristic 850.43 kN Horizontal force 

Mnormal99.characteristic 69611.92 kNm Bending moment, 99% fraction value 

Hnormal99.characteristic 553.27 kN Horizontal force, 99% fraction value 

Fatigue loading 

Markov matrices and S-N curves… 

Have to explain how the Markov matrix functions when it translates the load spectrum into an 

equivalent load. 

Abbreviation Value [kNm] Description 

Mfat.tower 53 800 Anchor bolts 

Mfat.BR 15 450 Top reinforcement 

Mfat.TR 13 900 Bottom reinforcement 

Mfat.steel 46 000 Anchor plate 

 

  



3. Foundation stability 
The resulting eccentricity due to bending moment and horizontal force is calculated as: 

𝑒 =
𝑀𝑓𝑜𝑢𝑛𝑑

𝑄
 

Where: 

𝑀𝑓𝑜𝑢𝑛𝑑 = 𝑀𝑒𝑥.𝑑 + 𝐻𝑒𝑥.𝑑 ∗ ℎℎ𝑜𝑟 

Figure of this, describing the original load case and the equivalent. 

Wind direction parallel to the main axis 

If evenly divided soil pressure and the soft layer is neglected the soil pressure can be calculated as: 

𝜎 =
𝑄

2(
1
2
𝑏𝑓𝑜𝑢𝑛𝑑 − 𝑒)𝑏𝑓𝑜𝑢𝑛𝑑

 

Figure for better understanding why these dimensions are used in this particular way 

When the soft layer is included the calculations become slightly more complicated. In order to find 

the pressure from the soil the total compressed area needs to be known which is done by center of 

mass calculations. 

The distance between the edge and the eccentricity is: 

𝑑 =
𝑏𝑓𝑜𝑢𝑛𝑑

2
− 𝑒 

The distance between the edge and the soft layer is defined as: 

𝑏𝑠𝑙 =
𝑏𝑓𝑜𝑢𝑛𝑑

2
−
𝑐𝑠𝑙
2

 

 

The soil that is pressured can then be calculated by solving the equation: 

𝑑 =
𝑏𝑓𝑜𝑢𝑛𝑑

𝐿2

2 − 𝑐𝑠𝑙
(𝐿 − 𝑏𝑠𝑙) (𝑏𝑠𝑙 +

𝐿 − 𝑏𝑠𝑙
2 )

𝑏𝑓𝑜𝑢𝑛𝑑𝐿 − 𝑐𝑠𝑙(𝐿 − 𝑏𝑠𝑙)
 

Where 𝐿 is unknown. 

When 𝐿 is known the soil pressure is calculated as: 

𝜎 =
𝑄

𝑏𝑓𝑜𝑢𝑛𝑑𝐿 − 𝑐𝑠𝑙(𝐿 − 𝑏𝑠𝑙)
 

Do we need to explain this more in detail? Add figure of course…. 



Wind in diagonal direction 

In a similar fashion the resulting soil pressure can be found when the wind is acting diagonally. For 

the case when the soft layer is neglected the soil pressure is calculated as: 

𝜎 =
𝑄

(
3
2
)
2

(√2
𝑏𝑓𝑜𝑢𝑛𝑑
2 − 𝑒)

2 

Where the distance 𝑑 between the resultant and the corner of the foundation is expressed as: 

𝑑 = √2
𝑏𝑓𝑜𝑢𝑛𝑑

2
− 𝑒 

𝑑 is acting at a distance one third from the bottom of the pressured triangular area meaning that the 

total height of the pressured area is expressed as: 

(
3

2
)𝑑 = 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑒𝑙 

Thus the above expression for the soil stress.  

If the soft layer is included the calculations become more cumbersome. The distance between the 

corner of the foundation and resultant is: 

𝑑 = √2
𝑏𝑓𝑜𝑢𝑛𝑑

2
− 𝑒 

The distance between the corner of the foundation and the soft layer is expressed as: 

𝑏𝑠𝑙 = √2(
𝑏𝑓𝑜𝑢𝑛𝑑

2
−
𝑐𝑠𝑙
2
) 

The equation for solving 𝐿 thus becomes: 

𝑑 =

2
3𝐿

3 − (𝐿 − 𝑏𝑠𝑙)
2 (𝐿 −

1
3
(𝐿 − 𝑏𝑠𝑙))

𝐿2 − (𝐿 − 𝑏𝑠𝑙)2
 

The soil stress is then calculated as: 

𝜎 =
𝑄

𝐿2 − (𝐿 − 𝑏𝑠𝑙)2
 

Add figure with all dimensions to make the calculations clear 

Accidental load case 

In the accidental load case the water level is assumed to be at the top of the foundation and thus 

providing buoyancy. This reduces the vertical pressure on the soil as shown in the following equation: 

𝑄 = 𝐺𝑡𝑜𝑤 + 𝐺𝑓𝑜𝑢𝑛𝑑 − 𝑏𝑓𝑜𝑢𝑛𝑑
2 ℎ𝜌𝑤𝑎𝑡𝑒𝑟 + 𝐺𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙 



In all other aspects the equations to find the soil pressure are exactly the same as in the previous 

chapter. 

Bearing capacity of the soil 

The bearing capacity of the soil is calculated according to SS-EN 1997-1-1:2005, appendix D.4 using 

the following equations. 

𝜎 = 𝑐′𝑁𝑐𝑏𝑐𝑠𝑐𝑖𝑐 + 𝑞𝑁𝑞𝑏𝑞𝑠𝑞𝑖𝑞 + 0.5𝛾𝐵𝑁𝛾𝑏𝛾𝑠𝛾𝑖𝛾 

However for cohesion soil during undrained conditions it is often assumed that 𝜙 = 0 leading to: 

𝜎 = 𝑐′𝑁𝑐𝑏𝑐𝑠𝑐𝑖𝑐 + 𝑞𝑁𝑞𝑏𝑞𝑠𝑞𝑖𝑞; (𝑁𝑞 = 1) 

And for friction soil it is often assumed that 𝑐 = 0 leading to: 

𝜎 = 𝑞𝑁𝑞𝑏𝑞𝑠𝑞𝑖𝑞 + 0.5𝛾𝐵𝑁𝛾𝑏𝛾𝑠𝛾𝑖𝛾 

The 𝑁-values account for the bearing capacity of the soil, the 𝑏-values for the inclination of the slab 

surface, the 𝑠-values for the shape of the slab and the 𝑖-values for the inclination of the load due to 

the horizontal load components. 

𝑁𝑞 = 𝑒
𝜋 tan𝜙′ tan2 [45 +

𝜙′

2
] 

𝑁𝑐 = (𝑁𝑞 − 1) cot 𝜙
′ 

𝑁𝛾 = 2(𝑁𝑞 − 1) tan𝜙′, where 𝛿 ≥
𝜙′

2
 and 𝛿 is the friction angle in the contact area 

𝑖𝑐 = 𝑖𝑞 −
1− 𝑖𝑞

𝑁𝑐𝑡𝑎𝑛𝜙′
 

𝑖𝑞 = [1 −
𝐻

𝑉 + 𝐴′𝑐′𝑐𝑜𝑡𝜙′
]
𝑚

 

𝑖𝛾 = [1 −
𝐻

𝑉 + 𝐴′𝑐′𝑐𝑜𝑡𝜙′
]
𝑚+1

 

 

𝑏𝑐 = 𝑏𝑞 −
1 − 𝑏𝑞

𝑁𝑐𝑡𝑎𝑛𝜙′
 

𝑏𝑞 = 𝑏𝛾 = (1 − 𝛼𝑡𝑎𝑛𝜙
′)2 

𝑠𝑞 = 1+
𝐵′

𝐿′
𝑠𝑖𝑛𝜙′, for rectangular shape 

𝑠𝑞 = 1+ 𝑠𝑖𝑛𝜙′, for circular shape 

𝑠𝛾 = 1 − 0,3
𝐵′

𝐿′
, for circular shape 



𝑠𝛾 = 0.7, for quadratic or circular shape 

𝑠𝑐 =
𝑠𝑞𝑁𝑞 − 1

𝑁𝑞 − 1
  

𝑚 = 𝑚𝐵 =
2+

𝐵′

𝐿′

1+
𝐵′

𝐿′

 , when the horizontal force, H, is acting parallel to the side B 

𝑚 = 𝑚𝐵 =
2+

𝐿′

𝐵′

1+
𝐿′

𝐵′

 , when the horizontal force, H, is acting parallel to the side L 

 

4. Ground reaction in serviceability limit state 
In order to ensure proper stiffness of the foundation no gap between the subsoil and the foundation 

should occur during normal conditions. This is evaluated by calculating the stresses in the in the soil, 

if the stresses are negative on the “tension side” the whole soil area under the foundation is 

compressed. 

𝐴𝑓𝑜𝑢𝑛𝑑 = 𝑏𝑓𝑜𝑢𝑛𝑑
2 − 𝑐𝑠𝑙

2  

𝐼𝑓𝑜𝑢𝑛𝑑 =
𝑏𝑓𝑜𝑢𝑛𝑑
4

12
−
𝑐𝑠𝑙
4

12
 

𝜎 = −
𝑄

𝐴𝑓𝑜𝑢𝑛𝑑
+

𝑀

𝐼𝑓𝑜𝑢𝑛𝑑

𝑏𝑓𝑜𝑢𝑛𝑑

2
 

5. Reaction from tower 
 

Elastic behavior  

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 2𝑟𝑡𝑜𝑤𝑒𝑟𝜋 

𝑊𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝜋
(2𝑟𝑡𝑜𝑤)

2

4
 

𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = −
1.35𝐺𝑡𝑜𝑤
𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

−
𝑀

𝑊𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

𝐹𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = −
𝐺𝑡𝑜𝑤

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
+

𝑀

𝑊𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

 

6. Overall structural behavior 
In this chapter the moments and shear forces are calculated based on the results from  



Wind in main axis direction 

The calculations in this chapter aim to find the sectional shear forces and moments in the foundation 

in section 1-1 as shown in figure … In these calculations the soil pressure is assumed to have a 

triangular distribution which makes the procedure slightly more cumbersome. Except for that 

difference the calculations basically follow the same procedure described in the previous chapters. It 

starts with a calculation of the eccentricity performed exactly as before which is followed by a center 

of mass calculation and when this is known the maximum soil stress at the edge of the foundation, 

the shear force and moment at section 1-1 can be calculated. 

𝑒 =
𝑀

𝑄
 

𝑑 =

𝑏𝑓𝑜𝑢𝑛𝑑 ∗ 𝐿
2

6
−
𝑐𝑠𝑙
2 ∗ 𝐿

∗ (𝐿 − 𝑏)2 ∗ (𝑏 +
𝐿 − 𝑏
3
)

𝑏𝑓𝑜𝑢𝑛𝑑 ∗ 𝐿
2 − 

𝑐𝑠𝑙
2 ∗ 𝐿 ∗

(𝐿 − 𝑏)2
 

𝜎 =
𝑄

𝑏𝑓𝑜𝑢𝑛𝑑 ∗ 𝐿
2

− 
𝑐𝑠𝑙
2 ∗ 𝐿

∗ (𝐿 − 𝑏)2
 

When the soil stress is known the moment and shear force can be calculated in section 1-1 as shown 

in figure … 

The moment causing tension in the bottom of the slab is calculated as: 

𝑀𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑄(𝑒 − 0.9𝑟𝑡𝑜𝑤𝑒𝑟) + 𝜎11𝑏𝑓𝑜𝑢𝑛𝑑𝑐𝑠𝑙
𝑥11
2

6
− 𝐺𝑓𝑜𝑢𝑛𝑑+𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙𝑏𝑓𝑜𝑢𝑛𝑑

(
𝑏𝑓𝑜𝑢𝑛𝑑
2 − 0.9𝑟𝑡𝑜𝑤𝑒𝑟)

2

2
− 𝐻𝑒𝑥0.9𝑑𝑓𝑜𝑢𝑛𝑑  

𝑀𝑡𝑜𝑝 = (𝑞𝑖𝑚𝑝𝑜𝑠𝑒𝑑 + 𝐺𝑓𝑜𝑢𝑛𝑑+𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙)
(
𝑏𝑓𝑜𝑢𝑛𝑑
2

− 0.9𝑟𝑡𝑜𝑤𝑒𝑟)
2

2
 

For the shear force the calculation becomes as follows. 𝑄 is the resultant from the soil pressure 

which has to be reduced with the soil pressure acting before the section in question. Only one fourth 

of the self-weight of the slab is assumed to be carried through this section and thus the dividing four 

in the last term. 

𝑉 = 𝑄 − 𝜎(𝑏𝑓𝑜𝑢𝑛𝑑 − 𝑐𝑠𝑙)
𝑥

2
−
𝐺𝑓𝑜𝑢𝑛𝑑 + 𝐺𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙

4
 

  

Wind in 45 degree direction 

The calculations follow the same procedure as in the previous chapter, however, the dimensions 

needs to be slightly redefined because of the 45 degree direction. The same eccentricity is used so 

that: 



𝑒 =
𝑀

𝑄
 

𝑑 =

𝐿3

2 −
(𝐿 − √2 ∗ 𝑏)

3 1
𝐿 (√2𝑏 +

𝐿 − √2𝑏
2 )

𝐿2 − (𝐿 − √2𝑏)
3 1
𝐿

 

𝜎 =
𝑄

1
3
(𝐿2 − ((𝐿 − √2𝑏)

2 1
𝐿
))

 

 The last equation can be derived by using integration techniques and expressions for the soil 

pressure depending on the length variable 𝑥. For the large triangle we have the expressions: 

𝜎(𝑥) = 𝜎𝑚𝑎𝑥
𝑥

𝐿
 

𝑏(𝑥) = 2𝐿 − 2𝑥 

Into the integral: 

∫𝑏(𝑥)𝜎(𝑥) 𝑑𝑥 = ∫(2𝐿 − 2𝑥

𝐿

0

𝐿

0

) 𝜎𝑚𝑎𝑥
𝑥

𝐿
 𝑑𝑥 

2 𝜎𝑚𝑎𝑥
𝐿

∫(𝐿 − 𝑥)𝑥 𝑑𝑥

𝐿

0

=
2 𝜎𝑚𝑎𝑥
𝐿

∗ [
𝐿𝑥2

2
−
𝑥3

3
]
0

𝐿

=
 𝜎𝑚𝑎𝑥
3

𝐿2 

For the smaller triangle the same procedure is performed but with other expressions for the stress 

and the width: 

𝜎(𝑥) = 𝜎𝑚𝑎𝑥
𝑥

𝐿
 

𝑏(𝑥) = 2(𝐿 − √2𝑏) − 2𝑥 

∫ 𝑏(𝑥)𝜎(𝑥) 𝑑𝑥 = ∫ (2(𝐿 − √2𝑏) − 2𝑥)

𝐿−√2∗𝑏

0

𝐿−√2∗𝑏

0

 𝜎𝑚𝑎𝑥
𝑥

𝐿
 𝑑𝑥 

2 𝜎𝑚𝑎𝑥
𝐿

∫ (𝐿 − √2𝑏 − 𝑥) ∗ 𝑥 𝑑𝑥

𝐿−√2𝑏

0

=
2 𝜎𝑚𝑎𝑥
𝐿

[𝐿
𝑥2

2
− √2𝑏𝑥 −

𝑥3

3
]
0

𝐿−√2∗𝑏

 

2 𝜎𝑚𝑎𝑥
𝐿

(
1

6
(𝐿3 − 3√2𝐿2 + 6𝑏2𝐿 − 2√2𝑏3)) =

 𝜎𝑚𝑎𝑥
3

1

𝐿
(𝐿 − √2𝑏)

3
 

Thus the resulting expression for both the big and small triangle becomes: 

𝜎𝑚𝑎𝑥
3

(𝐿2 −
1

𝐿
(𝐿 − √2𝑏)

3
 ) 



The moment and shear force and shear force in section 1-1 and 2-2 can be found by using the same 

type of integration techniques described in the previous chapters. For the shear force the expression 

become: 

𝑏(𝑥) = 2
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
− 2𝑥 

𝜎(𝑥) = 𝜎, for the part with constant pressure 

𝜎(𝑥) = 𝜎𝑚𝑎𝑥
𝑥

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

, for the part with triangularly distributed pressure 

𝑉 = ∫ 𝜎(2
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
− 2𝑥)

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

0

𝑑𝑥 = 2𝜎 [
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
𝑥 −

𝑥2

2
]
0

𝑏𝑓𝑜𝑢𝑛𝑑

4√2
= 2𝜎

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
2

2
= 𝜎

(
𝑏𝑓𝑜𝑢𝑛𝑑
4 )

2

2
 

𝑉 = ∫ 𝜎𝑚𝑎𝑥
𝑥

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

(2
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
− 2𝑥)

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

0

𝑑𝑥 =
2𝜎𝑚𝑎𝑥
𝑏𝑓𝑜𝑢𝑛𝑑

4√2

[
𝑏𝑓𝑜𝑢𝑛𝑑

4√2

𝑥2

2
 −
𝑥3

3
]
0

𝑏𝑓𝑜𝑢𝑛𝑑

4√2
 

2𝜎𝑚𝑎𝑥
𝑏𝑓𝑜𝑢𝑛𝑑

4√2 (

 
 
(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
3

2
−

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
3

3

)

 
 
= 2𝜎𝑚𝑎𝑥

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
2

6
= 𝜎𝑚𝑎𝑥

(
𝑏𝑓𝑜𝑢𝑛𝑑
4 )

2

6
 

The moment on the other hand can be expressed as: 

𝑏(𝑥) = 2
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
− 2𝑥 

𝜎(𝑥) = 𝜎, for the part with constant pressure 

𝜎(𝑥) = 𝜎𝑚𝑎𝑥
𝑥

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

, for the part with triangularly distributed pressure 

𝑙𝑒𝑣𝑒𝑟𝑎𝑟𝑚 = 𝑥 

𝑀 = ∫ 𝜎𝑏(𝑥)𝑥 = 2𝜎𝑚𝑎𝑥 ∫ 𝑥 (
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
− 𝑥)

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

0

  𝑑𝑥 = 2𝜎𝑚𝑎𝑥

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

0

[
𝑏𝑓𝑜𝑢𝑛𝑑

4√2

𝑥2

2
−
𝑥3

3
]
0

𝑏𝑓𝑜𝑢𝑛𝑑

4√2
   

2𝜎𝑚𝑎𝑥

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
3

6
= 𝜎𝑚𝑎𝑥

(
𝑏𝑓𝑜𝑢𝑛𝑑
4 )

3

6√2
 



𝑀 = ∫ 𝜎𝑏(𝑥)𝑥 𝑑𝑥 =
2𝜎𝑚𝑎𝑥
𝑏𝑓𝑜𝑢𝑛𝑑

4√2

∫ 𝑥

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

0

𝑏𝑓𝑜𝑢𝑛𝑑

4√2

0

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
− 𝑥) 𝑥 𝑑𝑥 =

2𝜎𝑚𝑎𝑥
𝑏𝑓𝑜𝑢𝑛𝑑

4√2

[
𝑏𝑓𝑜𝑢𝑛𝑑

4√2

𝑥3

3
−
𝑥4

4
]
0

𝑏𝑓𝑜𝑢𝑛𝑑

4√2
 

2𝜎𝑚𝑎𝑥
𝑏𝑓𝑜𝑢𝑛𝑑

4√2 (

 
 𝑏𝑓𝑜𝑢𝑛𝑑

4√2

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
3

3
−

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
3

4

)

 
 
= 2𝜎𝑚𝑎𝑥

(
𝑏𝑓𝑜𝑢𝑛𝑑

4√2
)
3

12
= 𝜎𝑚𝑎𝑥

(
𝑏𝑓𝑜𝑢𝑛𝑑
4

)
3

6√2
 

The moment is calculated as follows and is increased by the shear force times the effective depth: 

𝑀 = 𝜎𝑚𝑎𝑥
(
𝑏
4
)
2

2
(

𝑏
4

3√2
+ 𝑑𝑓𝑜𝑢𝑛𝑑) + 



Moments and reinforcement at foundation edge 
Depending on what dimensions the reinforcement bars can be delivered in to the building site, slicing 

of the bars might be required. However, since the moment at the edges is lower than near the tower 

and thus a lower amount of reinforcement is appropriate. The design moment is calculated in same 

fashion for both the top and bottom reinforcement. 

𝑀𝑒𝑑𝑔𝑒 =

𝑙𝑠𝑝𝑙𝑖𝑐𝑒𝑀
𝑏𝑓𝑜𝑢𝑛𝑑
2 − 0.9𝑟𝑡𝑜𝑤

𝑏𝑓𝑜𝑢𝑛𝑑
 

And the required reinforcement is calculated as: 

𝐴𝑠 =
𝑀𝑒𝑑𝑔𝑒

𝑑𝑓𝑜𝑢𝑛𝑑𝑓𝑦𝑑
 

8. Flexural reinforcement 
The required reinforcement is calculated according to the book Byggkonstruktion (Isaksson, 

Mårtensson and Thelandersson, 2008) . Depending on if the section is normally reinforced or over 

reinforced different equations are used to find the amount of reinforcement. 

The relative moment is calculated as: 

𝑚 =
𝑀

2𝑟𝑡𝑜𝑤𝑒𝑟𝑑2𝑓𝑐𝑑
 

And the limit between normally reinforced concrete and over reinforced concrete is defined as:  

𝜔𝑏𝑎𝑙 = 0.8
𝜖𝑐𝑢𝐸𝑠

𝑓𝑦𝑑 + 𝜖𝑐𝑢𝐸𝑠
 



Which should be compared to: 

𝜔 = 1− √1 − 2𝑚 

𝐴𝑠 =
𝑀

𝑓𝑦𝑑𝑑(1−
𝜔

2
)
, if 𝜔 ≤ 𝜔𝑏𝑎𝑙  

𝐴𝑠 =
𝑀

𝜎𝑠𝑑(1−
𝜔

2
)
 where 𝜎𝑠 = 𝐸𝑠𝜖𝑐𝑢 (

0.8

𝜔
− 1),  if 𝜔 > 𝜔𝑏𝑎𝑙  

Fatigue check of flexural reinforcement using Markov factor 

The fatigue is checked in accordance with SS-EN 1992-1-1:2005, section 6.8.5. To use this method an 

equivalent damage is needed which is calculated from the moment acting at the foundation using 

the Markov matrix.  

The Markov factor, 𝛾Δ𝑀 , is a factor to account for the geometry of the foundation and the the tower. 

Assume that the radius is very big, then the reaction force will move towards the edge of the 

foundation and thus closer to the the resultant force from the soil. This will decrease the moment in 

the slab and looking at the formula for the Markov factor it is obvious that it decreases as the radius 

grows. Thus a small Markov factor renders less moment in the slab. 

𝛾Δ𝑀 = 0.5 ∗

𝑏𝑓𝑜𝑢𝑛𝑑
2 ∗

2
3 − 0.9 ∗ 𝑟𝑡𝑜𝑤

𝑏𝑓𝑜𝑢𝑛𝑑
2

∗
2
3

 

Δ𝑀 = Δ𝑀𝑡𝑜𝑤𝑒𝑟 ∗ 𝛾Δ𝑀  

𝑀𝑁 = −𝐺𝑡𝑜𝑤 (
𝑏𝑓𝑜𝑢𝑛𝑑

8
−
𝑟𝑡𝑜𝑤 ∗ 2

2 ∗ 𝜋
)  

From this a stress can be derived and a required reinforcement area calculated to resist. The capacity 

is reduced with the two factors 𝛾𝐹,𝑓𝑎𝑡  and 𝛾𝑆,𝑓𝑎𝑡 as follows. Gamma values can be found in SS-EN 

1992-1-1:2005. 

 

Δ𝜎𝑆,𝑒𝑞𝑢(𝑁
∗) ≤

Δ𝜎𝑅𝑠𝑘(𝑁
∗)

𝛾𝐹,𝑓𝑎𝑡𝛾𝑆,𝑓𝑎𝑡
 

This stress is then used to calculate the required amount of reinforcement: 

𝐴𝑠,𝑓𝑎𝑡 =
𝑀

0.9𝑑Δ𝜎𝑆,𝑒𝑞𝑢
 

Which is compared to the previous calculated area needed as flexural reinforcement. 

9. Prestressed bolts 
In this chapter the stresses in the bolts and the distribution plate are calculated. 



Preconditions 

𝐴𝑏𝑜𝑙𝑡  – bolt area 

𝑓𝑦𝑘.𝑏𝑜𝑙𝑡  – bolt proof stress 

𝑓𝑡𝑘.𝑏𝑜𝑙𝑡  – Ultimate tensile strength 

𝑛𝑏𝑜𝑙𝑡  – Number of bolts 

𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒  –width of the distribution plate 

The bolts can be post-tensioned to 70 % of the ultimate tensile strength. This gives an indication 

of what force the bolts should be tensioned with, proposedly to an even number that renders 

lower stress than the ultimate stress, i.e. 

𝑓𝑡.𝑏𝑜𝑙𝑡 

An equivalent cross section for the concrete and the bolt is calculated as: 

𝐸𝐴𝑏𝑜𝑙𝑡 = 𝐸𝑠𝑛𝑏𝑜𝑙𝑡𝐴𝑏𝑜𝑙𝑡 

𝐸𝐴𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 𝐸𝑐𝑑(𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒 + 0.25ℎ)𝜋2𝑟𝑡𝑜𝑤  

The bolt and concrete will respectively bear  

𝑘𝑏𝑜𝑙𝑡 =
𝐸𝐴𝑏𝑜𝑙𝑡

𝐸𝐴𝑏𝑜𝑙𝑡 + 𝐸𝐴𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
 

𝑘𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 =
𝐸𝐴𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝐸𝐴𝑏𝑜𝑙𝑡 + 𝐸𝐴𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
 

of the load. 

The tensile force from the tower is found from Naviers formula where the gravity contributes 

negatively and the tilting moment positively. 

𝐹𝑡𝑜𝑤𝑒𝑟 = −
𝐺𝑡𝑜𝑤
𝐴𝑐𝑦𝑙

+
𝑀𝑡𝑖𝑙𝑡
𝑊𝑐𝑦𝑙

 

The total tensile force is found as 

𝐹 = 𝐹𝑡𝑜𝑤𝑒𝑟 +
𝑛𝑏𝑜𝑙𝑡𝑓𝑡.𝑏𝑜𝑙𝑡
𝜋2𝑟𝑡𝑜𝑤

 

Prestress loss 

𝑏𝑎𝑛𝑐ℎ𝑜𝑟 -  width of anchor plate 

The initial compression along the circle of bolts becomes 

𝐹𝑐.𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝑛𝑏𝑜𝑙𝑡𝑓𝑡.𝑏𝑜𝑙𝑡
𝜋2𝑟𝑡𝑜𝑤

 



𝜒 = 1.98 ∗ 38∗0.7 (
500000

1000
)
0.75∗(1−0.7)

 from Eurocode 2, 3.1.4. 

𝑛𝑦𝑒𝑎𝑟  – years working life 

𝐴𝑐 = ℎ𝑏𝑓𝑜𝑢𝑛𝑑  

𝑢 = 𝑏𝑓𝑜𝑢𝑛𝑑  – Circumference of the part that is exposed to drying 

ℎ0 =
2𝐴𝑐
𝑢

 

𝛽𝑑𝑠 =
365𝑛𝑦𝑒𝑎𝑟

365𝑛𝑦𝑒𝑎𝑟 + 0.04√ℎ0
3

 

𝑘ℎ =
1 𝑖𝑓 ℎ0 ≤ 500
0.7 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑅𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒  –outside relative humidity 

𝑅𝐻0 – initial relative humidity 

𝑎𝑑𝑠.1 – coefficient dependent on cement class 

𝑎𝑐𝑑.2 - coefficient dependent on cement class 

𝛽𝑅𝐻 = 1.55 (1 − (
𝑅𝐻

𝑅𝐻0
)
3

) 

𝜖𝑐𝑑.0 = 0.85((220 + 110𝑎𝑑𝑠.1)𝑒^(−𝑎𝑐𝑑.2
𝑓𝑐𝑚
𝑓𝑐𝑚0

)10−6𝛽𝑅𝐻 

The drying shrinkage becomes 

𝜖𝑐𝑑 = 𝛽𝑑𝑠𝑘ℎ𝜖𝑐𝑑.0 

The autogenous shrinkage 

𝜖𝑐𝑎 = 2.5(𝑓𝑐𝑘 − 10) ∗ 10
−6 

The bolts are pretensioned after 28 days, then two thirds of the autogenous shrinkage has taken 

place. 

𝛽𝑎𝑠 = 1− 𝑒
−0.2𝑡0.5 

An uncertainty factor for the total amount is used and in this case taken as 1.3. 

𝛾𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 1.3 

𝜖𝑐𝑠 = 𝛾𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (
𝜖𝑐𝑎
3
+ 𝜖𝑐𝑑) 

The creep number is found in figure 3.1 in EC2: 



𝜑 

Δ𝜎𝑠 = 𝐸𝑠𝜖𝑐𝑠 +𝜑
𝐸𝑠
𝐸𝑐𝑑

 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 0.8𝜒𝜎𝑠 

The force after prestress loss is 

 𝐹𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠 = (𝜎𝑠 − Δ𝜎𝑠)𝐴𝑏𝑜𝑙𝑡 

The force over the bolt ring is then  

𝐹𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠.𝑡𝑜𝑡𝑎𝑙 =
𝑛𝑏𝑜𝑙𝑡  𝐹𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠

𝜋2𝑟𝑡𝑜𝑤
 

Initial ultimate limit state 

Check that a gap does not occur between foundation and tower for frequent loads, thus using 

𝑀𝑡𝑖𝑙𝑡.𝑛𝑜𝑟𝑚𝑎𝑙 . 

𝐹𝑡𝑜𝑤𝑒𝑟.𝑛𝑜𝑟𝑚𝑎𝑙 = −
𝐺𝑡𝑜𝑤
𝐴𝑐𝑦𝑙

+
𝑀𝑡𝑖𝑙𝑡.𝑛𝑜𝑟𝑚𝑎𝑙
𝑊𝑐𝑦𝑙

 

If a gap would occur the at the tension side, the concrete compression there will be zero since the 

bolts are not in contact with the concrete. The force in the bolts will then increase with the factor: 

1

𝑘𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
 

So that 

𝐹𝑔𝑎𝑝 =
𝐹𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠.𝑡𝑜𝑡𝑎𝑙

𝑘𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
 

This force is then compared so that 

𝐹𝑔𝑎𝑝 > 𝐹𝑡𝑜𝑤𝑒𝑟.𝑛𝑜𝑟𝑚𝑎𝑙  

The fatigue damage is calculated with the fatigue bending moment, 𝑀𝑓𝑎𝑡.𝑡𝑜𝑤𝑒𝑟 , as 

Δ𝜎𝑓𝑎𝑡 =
4𝑀𝑓𝑎𝑡.𝑡𝑜𝑤𝑒𝑟

𝑛𝑏𝑜𝑙𝑡2𝑟𝑡𝑜𝑤

𝑘𝑏𝑜𝑙𝑡
𝐴𝑏𝑜𝑙𝑡

   

The fatigue strength is calculated in accordance with SS:EN 1992-1-1 2005 using table 6.4N to get the 

inclinations of the S-N curve. From this table the fatigue strength 𝑓𝑓𝑎𝑡  is taken which renders 

Δ𝜎𝑅 =
𝑓𝑓𝑎𝑡

𝛾𝑠
 (
𝑁𝑐𝑦𝑐𝑙𝑒𝑠

𝑁∗
)
𝑘

 

𝑁∗ - From Eurocode 

𝑁𝑐𝑦𝑐𝑙𝑒𝑠 – number of cycles 

𝑘 = 𝑘1 𝑜𝑟 𝑘2, 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑁𝑐𝑦𝑐𝑙𝑒𝑠, from table 6.4N. 



Ultimate limit state before and after prestress loss 

 The bolted connection is a post-tensioned concrete structure where the prestress force is regarded 

as an imposed load. The resulting compression reaction is assumed to have elastic (triangular) 

distribution. The total vertical reaction, i.e. tower plus prestress force, is denoted V and the bending 

moment, M. 

 

𝜎 = 𝜎𝑚𝑎𝑥
cos 𝜑 − cos 𝑎

1 − cos 𝑎
  

The reaction V is 

𝑉 = ∫𝜎𝑟𝑑𝜑

𝑎

−𝑎

 

𝑉 = 𝜎𝑚𝑎𝑥
𝑟

1 − cos 𝑎
∫ cos 𝜑 − cos 𝑎 𝑑𝜑

𝑎

−𝑎

 

𝑉 = 𝜎𝑚𝑎𝑥
𝑟

1 − cos 𝑎
(2 sin 𝑎 − 2 acos 𝑎) 

𝑘 =
𝜎𝑚𝑎𝑥
𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒

=
𝜎𝑚𝑎𝑥
𝑉
2𝜋𝑟

= 𝜋
1 − cos 𝑎

sin 𝑎 − acos 𝑎
 

The bending moment at the centre is 

𝑀 = ∫𝜎𝑟𝑑𝜑 cos 𝜑 𝑟

𝑎

−𝑎

 

𝑀 = 𝜎𝑚𝑎𝑥
𝑟2

1 − cos 𝑎
∫(cos 𝜑 − cos 𝑎) cos 𝜑 𝑑𝜑

𝑎

−𝑎

 

𝑀 = 𝜎𝑚𝑎𝑥
𝑟2

1 − cos 𝑎
(𝑎 − sin 𝑎 cos 𝑎) 

The relative eccentricity at the factored extreme bending moment becomes 



𝑒𝑟 =
𝑒

𝑟
=

𝑀

(𝐺𝑡𝑜𝑤 + 𝑛𝑏𝑜𝑙𝑡𝑓𝑡.𝑏𝑜𝑙𝑡)𝑟𝑡𝑜𝑤
 

Using the previously defined expression for the total vertical force, V and moment, M we can write 

the relative eccentricity as and find the angle a from, 

𝑒

𝑟
=
𝑀

𝑉𝑟
=
1

2

𝑎 − sin 𝑎 cos 𝑎

sin 𝑎 − acos 𝑎
 

And the factor k is solved from 

𝑘 =
𝜋(1 − cos 𝑎)

sin 𝑎 − 𝑎 cos 𝑎
 

With k the maximum compression reaction under the bolt ring can be calculated as 

𝐹𝑚𝑎𝑥 = 𝑘
𝐺𝑡𝑜𝑤 + 𝑛𝑏𝑜𝑙𝑡𝐹𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠

𝜋2𝑟𝑡𝑜𝑤
 

The maximum force, 𝐹𝑚𝑎𝑥  can then be compared with the previously calculated force due the tower 

weight and tilting moment. These values should be roughly the same, i.e. 

𝐹𝑚𝑎𝑥 ≈ −
𝐺𝑡𝑜𝑤
𝐴𝑐𝑦𝑙

+
𝑀𝑡𝑖𝑙𝑡.𝑛𝑜𝑟𝑚𝑎𝑙
𝑊𝑐𝑦𝑙

 

 

The bolts are perfectly elastic up the maximum load during prestressing, however, a set of 0.6 mm 

has to be compensated. This implies that the maximum force is 

𝐹𝑏𝑜𝑙𝑡.𝑚𝑎𝑥 = 𝑓𝑡.𝑏𝑜𝑙𝑡 + 𝐴𝑏𝑜𝑙𝑡
0.6𝑚𝑚

𝑙𝑏𝑜𝑙𝑡
𝐸𝑠 

Which is compared with  

𝐹𝑔𝑎𝑝 =
𝐹𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠.𝑡𝑜𝑡𝑎𝑙

𝑘𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
 

 

The effect of torsional moment and horizontal force 

After the tower bottom section is erected, a “pedestal” is cast inside the tower in order to prevent 

sliding movement of the tower due to horizontal forces. Furthermore, in this way the deformation of 

the ring beam (bottom flange) will be minimized. The concrete slab is anchored to the foundation by 

means of hair pins. 

𝑅𝐻 = 𝐻 – Shear force due to horizontal wind load 

𝑅𝑇 =
𝑀

𝑟𝑡𝑜𝑤
 – Shear force due to torsional moment 

𝐴𝐻𝑇 = 0.5(2𝑟𝑡𝑜𝑤 − 𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒)
2

 – Area for shear transfer 



𝜇𝐻𝑇 = 0.6 – Untreated surface 

𝑅𝐻𝑇 = √𝑅𝐻
2 + 𝑅𝑇

2  

𝜏 =
𝑅𝐻𝑇
𝐴𝐻𝑇

 

And the amount of shear reinforcement can be calculated as 

𝜌 =
𝜏𝐻𝑇
0.6

𝛾𝑠
𝑓𝑦𝑘

 

The horizontal force is transferred through the grout into the “pedestal” cast in the tower. The area 

that transfers the shear force into the center of the tower is defined as 

𝐴𝑔𝑟𝑜𝑢𝑡 = √𝐴𝐻𝑇ℎ𝑔𝑟𝑜𝑢𝑡  

And the pressure is then 

𝑞 =
𝐻

𝐴𝑔𝑟𝑜𝑢𝑡
 

Anchor plate 

𝑏𝑎𝑛𝑐ℎ𝑜𝑟 – width of plate 

𝑏𝑚𝑎𝑐𝑠𝑡𝑎𝑔 – distance between bolts 

𝑓𝑢 – ultimate strength 

𝑡𝑎𝑛𝑐ℎ𝑜𝑟  – thickness of anchor plate 

𝑑𝑏𝑜𝑙𝑡.𝑐𝑐  – cc-distance between bolts 

𝑑𝑏𝑜𝑙𝑡.ℎ𝑜𝑙𝑒  – hole diameter 

The compression from the anchor bolts 

𝑅𝑎𝑛𝑐ℎ𝑜𝑟 = 1.1
0.95𝑛𝑏𝑜𝑙𝑡𝑓𝑡𝑘.𝑏𝑜𝑙𝑡𝐴𝑏𝑜𝑙𝑡

2𝑟𝑡𝑜𝑤𝜋
 

𝜎𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 =
𝑅𝑎𝑛𝑐ℎ𝑜𝑟

𝑏𝑎𝑛𝑐ℎ𝑜𝑟
, to compare with 1.5𝑓𝑐𝑑 

Moment in the plate is calculated as 

𝑀𝑎𝑛𝑐ℎ𝑜𝑟.ℎ𝑜𝑙𝑒 = 𝜎𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
(𝑏𝑎𝑛𝑐ℎ𝑜𝑟 − 𝑏𝑚𝑎𝑐𝑠𝑡𝑎𝑔)

2

8
 

Which is compared with the capacity 

𝑀𝑅 =
0.9𝑓𝑢
1.25

𝑡𝑎𝑛𝑐ℎ𝑜𝑟
2

4

(𝑑𝑏𝑜𝑙𝑡.𝑐𝑐 − 𝑑𝑏𝑜𝑙𝑡 . ℎ𝑜𝑙𝑒)
2

𝑑𝑏𝑜𝑙𝑡.𝑐𝑐
 



 

When the wind is causing a negative bending moment, i.e. when bottom of the slab is compressed, a 

favorable triaxle concrete stress develops over the anchor plate in the bottom of the slab. The 

concrete capacity can then be increased by a factor 1.5. When the wind is acting the other direction, 

a positive bending moment develops that causes tension in the bottom of the slab.  This means that 

the stress variation in the bolts will be almost zero which implies that also the variation in the 

concrete will be zero. Recall that the concrete stress is zero if a gap develops on the tension side thus 

no extra pressure on the bolts. This, in turn, means that it is sufficient to check so that the concrete 

stress is limited to the basic fatigue strength, 𝑓𝑓𝑎𝑡 . 

𝑓𝑓𝑎𝑡 = 0.85
𝑓𝑐𝑘

1.5
(1 −

𝑓𝑐𝑘

250
),  SS-EN 1992-1-1:2005 Eq. 6.61 & 6.57 

Which is compared with  

𝜎𝑐.𝑎𝑛𝑐ℎ𝑜𝑟 =
𝑛𝑏𝑜𝑙𝑡𝑓𝑡.𝑏𝑜𝑙𝑡 
2𝜋𝑟𝑡𝑜𝑤𝑏𝑎𝑛𝑐ℎ𝑜𝑟

 

 

Splitting forces due to prestress 

The splitting forces in the concrete is assessed in accordance with EC2 using the previously defined 

initial force, 𝐹𝑐.𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 

 

𝐹𝑡𝑖𝑒 = 2
1

4
 (1 − 0.7

𝑏𝑎𝑛𝑐ℎ𝑜𝑟

0.5ℎ
)𝐹𝑐.𝑖𝑛𝑖𝑡𝑖𝑎𝑙, SS-EN 1992-1-1:2005 Eq. 6.59 

The total splitting force, H: 

𝐹𝐻𝑠𝑝𝑙𝑖𝑡 = 𝐹𝑡𝑖𝑒2𝑟𝑡𝑜𝑤  

Splitting reinforcement is added for half the splitting force so that 

𝐴𝑇 =
𝐹𝐻𝑠𝑝𝑙𝑖𝑡

2𝑓𝑦𝑑
 



The splitting reinforcement is placed in two layers, one close to the top and close to the bottom.  

Distribution ring  

𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒  – ring width 

𝑡𝑝𝑙𝑎𝑡𝑒  – ring thickness 

 The compression in the plate due to tower self-weight, tilting moment and prestress force becomes 

𝐹𝑐.𝑝𝑙𝑎𝑡𝑒 =
1.35𝑚𝑏𝑜𝑙𝑡𝑓𝑡.𝑏𝑜𝑙𝑡

𝜋2𝑟𝑡𝑜𝑤
+ |−

1.35𝐺𝑡𝑜𝑤
𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

−
𝑀

𝑊𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
| 

𝜎𝑐.𝑝𝑙𝑎𝑡𝑒 =
𝐹𝑐.𝑝𝑙𝑎𝑡𝑒

𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒
 

The concrete is triaxially compressed due the bending moment, this implies that the stress should be 

compared to 

𝑓𝑐𝑑.𝑡𝑟𝑖𝑎𝑥 = 3 𝑓𝑐𝑑 

The bending moment in the plate is 

𝑚𝑝𝑙𝑎𝑡𝑒 = 𝐹𝑐.𝑝𝑙𝑎𝑡𝑒
𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒 − 𝑏𝑡𝑜𝑤𝑒𝑟.𝑓𝑙𝑎𝑛𝑔𝑒

8
 

The capacity is 

𝑚𝑅.𝑝𝑙𝑎𝑡𝑒 =
𝑓𝑦𝑡𝑝𝑙𝑎𝑡𝑒

2

6
 1.75 

The bending moment at the holes is 

𝑏𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 =
𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒

2
−
𝑏𝑚𝑎𝑐𝑠𝑡𝑎𝑔

2
 

𝑚ℎ𝑜𝑙𝑒𝑠 = 𝜎𝑐.𝑝𝑙𝑎𝑡𝑒
𝑏𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟
2

2
 

𝑚𝑅.ℎ𝑜𝑙𝑒𝑠 =
0.9𝑓𝑢
1.25

𝑡𝑝𝑙𝑎𝑡𝑒
2

4

𝑑𝑏𝑜𝑙𝑡.𝑐𝑐 − 𝑑𝑏𝑜𝑙𝑡.ℎ𝑜𝑙𝑒
𝑑𝑏𝑜𝑙𝑡.𝑐𝑐

 

Fatigue 

Δ𝑁 =
𝑀𝑓𝑎𝑡.𝑠𝑡𝑒𝑒𝑙

𝑊𝑐𝑦𝑙
 

Δ𝜎 =
Δ𝑁 𝑏𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟

2

2𝑏𝑡.𝑓𝑙𝑎𝑛𝑔𝑒
 
6

𝑡𝑝𝑙𝑎𝑡𝑒
2  

𝑑𝑏𝑜𝑙𝑡.𝑐𝑐 − 𝑑𝑏𝑜𝑙𝑡.ℎ𝑜𝑙𝑒
𝑑𝑏𝑜𝑙𝑡.𝑐𝑐

 

Δ𝜎𝑅 =
𝑓𝑓𝑎𝑡

𝛾𝑠
(
𝑁𝑐𝑦𝑐𝑙𝑒𝑠

𝑁∗
)
𝑘

 



 

10. Shear reinforcement 
 

The shear force is concentrated along one quarter of the perimeter of the tower. The control section 

is at 0.5d outside the outer bolt ring,  

 

 

𝜐 =
𝑉𝑚𝑎𝑥

𝜋
(𝑂𝑟𝑖𝑛𝑔 + 0.5𝑑𝑏𝑜𝑡𝑡𝑜𝑚)

4

 

𝜏 =
𝜐

𝑑𝑏𝑜𝑡𝑡𝑜𝑚
 

𝛾𝑐 = 1.5  

𝐶𝑅𝑑.𝑐 =
0.18

𝛾𝑐
 

𝑓 = 𝐶𝑅𝑑.𝑐𝑘(100𝜌𝑠ℎ𝑒𝑎𝑟𝑓𝑐𝑑)
1
3  

If shear reinforcement is required: 

𝐴𝑠𝑣 =
𝑉𝑚𝑎𝑥
𝑓𝑦𝑑

 

The shear reinforcement is then placed within circles so that, e.g., 

 𝐴1 = 𝜋(𝑟2
2 − 𝑟1

2) 

𝜌 =
4𝐴𝑠𝑣
2𝐴1

 

Anchoring of stirrups  

The stirrups are anchored to the top reinforcement and should fulfill the requirements according to 

case a) in the figure below in accordance with section 8.5, SS-EN 1992-1-1:2005.  



 

𝑑𝑚𝑎𝑛𝑑𝑟𝑒𝑙  – Mandrel diameter 

𝜂1 – section 8.4.2, SS-EN 1992-1-1:2005 

𝜂2 – section 8.4.2, SS-EN 1992-1-1:2005 

𝑓𝑐𝑡𝑑 – concrete tension strength 

𝑓𝑏𝑑 = 2.25𝜂1𝜂2𝑓𝑐𝑡𝑑 – eq. 8.2, section 8.4.2, SS-EN 1992-1-1:2005 

𝑙𝑏.𝑟𝑞𝑑 =
Φ

4

 𝜎𝑠𝑑

𝑓𝑏𝑑
  – eq. 8.3, section 8.4.3, SS-EN 1992-1-1:2005 

𝑎1 - 𝑎5 are given in section 8.4.4, SS-EN 1992-1-1:2005 

 𝑙𝑏𝑑 = 𝑎1𝑎2𝑎3𝑎4𝑎5𝑙𝑏.𝑟𝑞𝑑 – eq 8.4, section 8.4.4, SS-EN 1992-1-1:2005 

Mandrel diameter 

The allowed mandrel diameter is checked according to section 8.3, SS-EN 1992-1-1:2005. 

𝜙𝑚.𝑚𝑖𝑛 ≥ 𝐹𝑏𝑡

1
𝑎𝑏
+
1
2𝜙

𝑓𝑐𝑑
 

Which should fulfill  

𝜙𝑚𝑎𝑛𝑑𝑟𝑒𝑙 ≥ 𝜙𝑚.𝑚𝑖𝑛 

Extension of stirrups 

With the soil reaction at the edge known, the extension length of the stirrup can be calculated using 

the concrete shear capacity. 

𝑓𝑣  – concrete shear capacity 

𝑉𝑐 = 𝑓𝑐𝑑𝑏𝑜𝑡𝑡𝑜𝑚  – concrete shear capacity per meter 

𝑥𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 =
𝑉𝑐

𝜎𝑚𝑎𝑥.𝑠𝑜𝑖𝑙 − 𝐺𝑓𝑜𝑢𝑛𝑑.𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙  

𝑏𝑓𝑜𝑢𝑛𝑑 − 2𝑥𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝑏𝑓𝑜𝑢𝑛𝑑
 



From 𝑥 and further, closer to the center, the shear reinforcement should be able to carry the force 

𝑉𝑐. 

Fatigue strength of stirrups 

 

𝐼𝑓𝑜𝑢𝑛𝑑 =
𝑏𝑓𝑜𝑢𝑛𝑑
4

12
 

Δ𝜎 =
𝑀𝑓𝑎𝑡.𝑡𝑜𝑤𝑒𝑟

𝐼𝑓𝑜𝑢𝑛𝑑

𝑏𝑓𝑜𝑢𝑛𝑑

2
 

The shear force range along one quarter of the tower can be derived as follows. The expression is 

integrated from 0 to 
𝑏

2
 starting from the edge. The expression for the width and soil pressure become  

𝑏 = 𝑏𝑓𝑜𝑢𝑛𝑑 − 2𝑥 

𝜎 = Δ𝜎
(
𝑏𝑓𝑜𝑢𝑛𝑑
2 − 𝑥)

𝑏𝑓𝑜𝑢𝑛𝑑
2

   

∫𝑏𝜎 𝑑𝑥

𝑏
2

0

=
2Δ𝜎

𝑏𝑓𝑜𝑢𝑛𝑑
∫(

𝑏𝑓𝑜𝑢𝑛𝑑

2
− 𝑥) (𝑏𝑓𝑜𝑢𝑛𝑑 − 2𝑥) 𝑑𝑥 =

Δ𝜎𝑏𝑓𝑜𝑢𝑛𝑑
2

6

𝑏
2

0

 

Δ𝑉 = Δ𝜎𝑏𝑓𝑜𝑢𝑛𝑑  𝑏𝑓𝑜𝑢𝑛𝑑  

The resistance for bent bars should be reduced according to table 6.3N in SS-EN 1992-1-1:2005 so 

that the capacity becomes 

𝑓𝑓𝑎𝑡 = Δ𝜎𝑅(0.35 + 0.026𝑑𝑚𝑎𝑛𝑑𝑟𝑒𝑙/𝜙) 

The force may be reduced if the flexural reinforcement is anchored in several layers. 

When the resistance is known the required area can be calculated as: 

𝑉𝑓𝑎𝑡𝑖𝑔𝑢𝑒 = Δ𝑉
𝑓𝑦𝑑2

1
4

𝑓𝑓𝑎𝑡
Which is compare to the previously calculated maximum shear force. 

Shear inside tower 

With elastic stress distribution in the tower the total compression and tension forces from the 

bending become: 

𝑉 =
𝑀

𝜋𝑟2
2𝑟 =

2𝑀

𝜋𝑟
 

Reducing the shear force due to the weight from the tower gives the force that needs to be resisited: 

𝑉 =
2𝑀

𝜋𝑟𝑡𝑜𝑤𝑒𝑟
− 0.5𝑄 



The maximum compression capacity in the concrete should, according to Eurocode, fulfill: 

𝑉𝐸𝑑 ≤ 0.5𝑏𝑤𝑑𝜈𝑓𝑐𝑑 Eq 6.5, SS-EN 1992-1-1:2005 

𝜈 = 0.6 [1 −
𝑓𝑐𝑘

250
] Eq 6.6, SS-EN 1992-1-1:2005 

The anchor bolts will carry some of the shear force. Between the angles 𝛽 and 𝛼 the anchor bolts go 

from 0 % to 100 % active as shear reinforcement and between the angles 45°  and 𝛽 the bolts are 

100 % active, recall that in this area the bolts are not effective as moment resistor since that that 

part is concentrated to one quarter of the circle, i.e. -45° to 45°. The angle 𝛼 and the factor 𝑘 is 

calculate in previous chapters. 𝛽 is found by seeing the linearly varying pressure and realizing that 

two equilateral triangles can be formed.  

 

The figure below shows the relation between the triangles which leads to the expression: 

1 − cos 𝛽

1 − cos 𝛼
=
𝑘 − 1

𝑘
 



 

The total capacity of the anchor bolts as shear reinforcement can be calculated using the prestress 

force after prestress loss as: 

𝐹 =
0.5(𝛼 − 𝛽) + 1.0(𝛽 − 𝜃)

𝜋
𝑛𝑏𝑜𝑙𝑡𝐹𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠  

 

Vertical cracks caused by the global bending moment may reduce the effectiveness of the bolts over 

the perimeter of the tower. These cracks develop perpendicular to the direction of the moment as 

indicated in the figure below. The shear force is assumed to be taken by bottle shaped diagonal 

concrete struts with slope of about 1:2. Because of this, a minimum amount of reinforcement should 

be  provided to assure a ductile behavior after a splitting crack occurring. If the tensile stress across 

the strut is assumed to have trinaugal variation, the minimum reinforcement ratio for the vertical 

stirrup becomes: 

𝜌𝑤 =
1

2

𝑓𝑐𝑡𝑚
𝑓𝑦𝑘 sin2 𝑎

 

 

Fatigue  

The equivalent bending moment range the slab is calculated from the Markov matrices and thus for 

the shear force range becomes: 

𝑉 =
2𝑀𝑓𝑎𝑡𝑖𝑔𝑢𝑒.𝑡𝑜𝑤𝑒𝑟

𝜋𝑟𝑡𝑜𝑤𝑒𝑟
−
3

2
Δ𝑉 

Where Δ𝑉 is calculated in Fatigue strength of stirrups. 



Concrete fatigue  

The compression strength in the fatigue limit state can be assessed from the Markov matrix. Each 

load bin is studied in accordance with SS-EN 1992-1-1 and the accumulative damage is calculated as 

follows. 

The basic strength after the first load cycle is given as: 

𝑓𝑓𝑎𝑡 = 0.85𝑓𝑐𝑑 (1 −
𝑓𝑐𝑘
250

) 

The fatigue strength 𝜎𝑚𝑎𝑥 at a million cycles varies and is calculated from  

𝜎𝑚𝑎𝑥 = 𝑓𝑓𝑎𝑡(1 − 0.43√1 − 𝑅) 

Where 

𝑅 =
𝜎𝑚𝑖𝑛,𝑖
𝜎𝑚𝑎𝑥,𝑖

 

𝜎𝑚𝑖𝑛,𝑖 and 𝜎𝑚𝑎𝑥,𝑖  are the concrete stresses under the tower distribution ring due to the maximum 

and minimum bending moments at the studied load cycle plus the stress due to the gravity load 

reaction and prestressing.  

It is assumed that the concrete fatigue strength varies linearly in a log-log diagram from 𝜎𝑚𝑎𝑥 for 

𝑁 = 106 to 𝑓𝑓𝑎𝑡  for 𝑁 = 1 cycles. Note that this approach is slightly more conservative than the 

“Bridge formula” in SS-EN 1992-1-1 where the fatigue strength is a curve with convex curvature 

when represented in a log-log diagram. The difference is small in the range up to a million cycles but 

above this it is unrealistic. 



 

 

𝑚𝐴𝐵 =
log (

106

100
)

log (
1
0.57

)
= 24.578 

The stress value for a billion cycles become: 

𝜎 = 𝑛𝑣𝑎𝑙𝑓𝑓𝑎𝑡  

Where 

𝑛𝑣𝑎𝑙 = 0.57(
106

109
)

1
24

 

The wind turbine tower is placed directly on the top surface of the foundation slab. Due to the large 

bending moment in the tower, the reaction stress is compression and tension respectively on 

opposite sides of the tower. On the compression side the global bending moment in the foundation 

gives a horizontal concrete compression stress in all directions under the distribution ring 

connection. This active confinement together with the passive confinement by the flexural 

reinforcement due to the poission ratio 𝜐 = 0.20 gives the confined compression strength. 

𝑓𝑐𝑑.𝑐 = 3𝑓𝑐𝑑 

On the tension side no active confinement will occur and only the passive confinement by the top 

reinforcement corresponding to 𝜐 = 0.20 exists, rearranging gives: 



1.5𝑓𝑐𝑑.𝑐 = 1.125𝑓𝑐𝑘 + 2.5 ∙ 0.20𝑓𝑐𝑑.𝑐 ⟹ 𝑓𝑐𝑑.𝑐 =
1.6875𝑓𝑐𝑘
1.5

 

The strength increase because the confinement can be expressed by the factor “c”=3 and 1.7  

(Choosing 1.5 respectively in the two described cases above. 

Research seem to indicate that the confinement effect for static loading in the ultimate limit state 

decrease at fatigue loading. The confinement effect is here assumed to vanish at a billion cycles for 

R=0. This is illustrated by the line CB in the figure above. 

The compression capacity for a billion cycles becomes: 

𝑓𝑚𝑎𝑥 = 𝑓𝑓𝑎𝑡(𝑐 − (𝑐 − 0.43)√1 − 𝑅) 

The slope of the studied line is: 

𝑚𝐶𝐵 =
log(109)

log (
𝑐𝑓𝑓𝑎𝑡
𝑓𝑚𝑎𝑥

)

 

The partial damage for each row in the matrix becomes: 

𝑑 =
𝑁𝑖
109

(
𝜎𝑚𝑎𝑥,𝑖
𝑓𝑚𝑎𝑥 

)
𝑚

 

If the total damage ∑𝑑 becomes less than 1, the design is OK. The fatigue capacity of the grout below 

the tower T-flange can be assessed with the confinement factor 𝑐 > 1.5, according to above, 

because the thin grout layer is confined by the distribution plate. 

Foundation stiffness 

The concrete slab acts as a beam on elastic layer, see figure below. The fictions length 𝐼0 is an 

important parameter for the calculation of the behavior of the beam.  

𝐼0 = √
𝐸𝐼

𝑏𝑐

4

 

 



Soil properties 

The dynamic compression modulus for the subsoil can several times larger than the static 

compression modulus, which is evident from the figure below. 

𝑀𝑠 =
Δ𝜎

Δ𝜖
 

 

Soft layer 

In order to establish a permanently good dynamic behavior of the foundation it is recommended to 

place a soft layer under the central part of the foundation, see figure below. 

 

The soft layer should be able to contain the weight from the concrete.  

𝑞𝑑,𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝜌𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒ℎ 

The strength capacity of the soft layer is: 

𝜅𝑟 = 0.55 Load type B, depends on load duration 

𝑓𝑘 – Strength of the soft layer 

𝑓𝑑 =
κ∙fk

1.3
 – capacity of the soft layer 



Flexural stiffness of the foundation slab 

The flexural stiffness 𝐸𝐼 of the foundation can be assessed as follows. The bending moment in the 

slab causing slab cracking is assumed to be 1.5 times the average distributed moment over the 

foundation width.  

𝑀𝑐𝑟 = 𝑓𝑐𝑡𝑚
ℎ2𝑏𝑓𝑜𝑢𝑛𝑑

6

1

1.5
 

The maximum tower moment is given by the tower supplier and is assessed as: 

𝑀𝑟𝑒𝑠 = 𝑀𝑡𝑜𝑤𝑒𝑟.𝑛𝑜𝑟𝑚𝑎𝑙 ∙ 0.5

2
3
𝑏𝑓𝑜𝑢𝑛𝑑 − 0.9𝑟𝑡𝑜𝑤

2
3
𝑏𝑓𝑜𝑢𝑛𝑑

 

The dynamic stiffness of the foundation of the square foundation is: 

𝐸𝐼∞ = 𝐸𝑐𝑑
𝑏𝑓𝑜𝑢𝑛𝑑ℎ

3

12
   

The flexural reinforcement for the cracked foundation is calculated as follows. With the average 

reinforcement of the bottom and top reinforcement, the reinforcement amount is expressed as: 

𝐴𝑠,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐴𝑠,𝑏𝑜𝑡𝑡𝑜𝑚 + 𝐴𝑠,𝑡𝑜𝑝

2
 

𝜌 =
𝐴𝑠,𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑑𝑏𝑜𝑡𝑡𝑜𝑚𝑏𝑓𝑜𝑢𝑛𝑑
 

The relative height of the compression zone becomes: 

𝑎𝑒 =
𝐸𝑠
𝐸𝑐𝑑

 

𝜉1 = 𝑎𝑒𝜌√1 +
2

𝑎𝑒𝜌
 

The stiffness in the 45° direction of the square foundation is equal to the stiffness along the main 

axis. The cracked flexural stiffness in the 45° direction with orthogonal reinforcement layout is, 

however, only half the flexural stiffness in the main direction, which is accounted for in the following. 

The flexural stiffness of the cracked concrete section is then: 

𝐸𝐼𝐼𝐼 = 0.5𝐸𝑠𝜌𝑏𝑓𝑜𝑢𝑛𝑑𝑑𝑏𝑜𝑡𝑡𝑜𝑚
3 (1 − 𝜉1) (1 −

𝜉1
3
) 

An estimate of the resulting stiffness according to EC2, section 7.4.3 gives: 

𝜉2 = 1 − 0.5
𝑀𝑐𝑟
𝑀𝑟𝑒𝑠

 

The resulting flexural stiffness can be assessed to: 



𝐸𝐼𝑟𝑒𝑠 = 𝜉2𝐸𝐼𝐼𝐼 + (1. 𝜉2)𝐸𝐼∞  

Behavior of foundation slab 

Required dynamic: 

𝑀

𝜃
= 𝑘𝜑 ≥ 59

𝐺𝑁𝑚

𝑟𝑎𝑑
 

The required bed modules becomes:  

𝑐𝑟𝑒𝑞 =
𝑘𝜑

𝑏𝑓𝑜𝑢𝑛𝑑
4 − 𝑐𝑠𝑙

4

12

 

The fictous length 𝑙0 can then be assessed to: 

𝑙0 = √
𝐸𝐼𝑟𝑒𝑠

𝑏𝑓𝑜𝑢𝑛𝑑𝑐𝑟𝑒𝑞

4

 

𝑏𝑓𝑜𝑢𝑛𝑑
2

𝑙0√2
 

From Handbok bygg 1B, it is evident that as long as 

𝑙

𝑙0√2
≤ 1.6 

The beam is so stiff that the soil deflection varies linearly, which means that the foundation slab 

rotates as an almost rigid body during the tower oscillation. The usual assumption, that the 

foundation stiffness is solely governed by the subsoil is therefore correct in this case – if the tower is 

attached to the top of the foundation by means of prestressed anchor bolts. 

The square foundation is equivalent to a circular foundation with the same rotation stiffness 𝐼. 

𝜋𝑟4

12
=
𝑏𝑓𝑜𝑢𝑛𝑑
4

12
 

For a circular foundation: 

𝑘𝜑 =
4𝑟3

3
 𝑀𝑠

1 − 2𝜐

1 + 𝜐
=
4𝑟3

3

𝐸𝑠𝑜𝑖𝑙

1 − 𝜐𝑠
2 

And the dynamic modulus of elasticity 

𝐸𝑠𝑜𝑖𝑙 =
𝑘𝜑3(1 − 𝜐𝑠

2)

4𝑟3
 

And the required compression modulus of the soil, 𝑀𝑠, becomes: 

𝑀𝑠 = 𝐸𝑠𝑜𝑖𝑙
1 − 𝜐𝑠

(1 + 𝜐𝑠)(1 − 2𝜐𝑠)
 



DNV has a redefined expression to account for a foundation buried in the soil with limited depth to 

rock. 

 

𝐷 -  depth from ground level to the faoundation 

𝐻 – depth from ground level to bedrock 

𝑘𝜑 =
4𝑟3

3

𝐸

1 − 𝜐𝑠
2 (1 +

𝑟

6𝐻
) (1 +

2𝐷

𝑟
) (1 +

0.7𝐷

𝐻
) 

Crack widths 

The bending moment for permanent loads is calculated as follows: 

Axial force from tower gives the bending moment in the foundation 

𝑚𝑓𝑜𝑢𝑛𝑑 = 𝐺𝑡𝑜𝑤𝑒𝑟 (
1

8
−
1

2𝜋

2𝑟𝑡𝑜𝑤𝑒𝑟
𝑏𝑓𝑜𝑢𝑛𝑑

) 

The maximum average bending moment over the foundation width becomes approximately: 

𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0.5
𝑀𝑛𝑜𝑟𝑚𝑎𝑙
𝑏𝑓𝑜𝑢𝑛𝑑

𝑏𝑓𝑜𝑢𝑛𝑑
2 ∙

2
3 − 0.9𝑟𝑡𝑜𝑤

𝑏𝑓𝑜𝑢𝑛𝑑
2

∙
2
3

 

This gives the top and bottom bending moment as: 

𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑡𝑜𝑝 = 𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒 −𝑚𝑓𝑜𝑢𝑛𝑑  

𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑏𝑜𝑡 = 𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒 +𝑚𝑓𝑜𝑢𝑛𝑑  

The maximum bending moment at the edge of the tower is assumed to be 1.5 times the average 

moment. The calculations of the crack widths are performed in accordance with SS-EN 1992-1-

1:2005. 

𝜎 =
1.5𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑡𝑜𝑝/𝑏𝑜𝑡𝑡𝑜𝑚

0.9𝑑𝑓𝑜𝑢𝑛𝑑𝐴𝑠
   

𝜌𝑝,𝑒𝑓𝑓 =
𝐴𝑠

𝐴𝑐,𝑒𝑓𝑓
=

𝐴𝑠

2.4(ℎ−𝑑𝑓𝑜𝑢𝑛𝑑)
 Eq 7.10, with SS-EN 1992-1-1:2005 

Δ𝜖 = 𝜖𝑠𝑚 − 𝜖𝑐𝑚 =
𝜎𝑠−𝑘𝑡

𝑓𝑐𝑡,𝑒𝑓𝑓

𝜌𝑝,𝑒𝑓𝑓
(1+𝛼𝑒𝜌𝑝,𝑒𝑓𝑓)

𝐸𝑠
≥ 0.6

𝜎𝑠

𝐸𝑠
 Eq 7.9, with SS-EN 1992-1-1:2005 

𝑘𝑡 = 0.4 – for long term 

𝑘𝑡 = 0.6 – for short term 

The maximum crack spacing is calculated as: 

𝑠𝑟,𝑚𝑎𝑥 = 𝑘3𝑐 + 𝑘1𝑘2𝑘4𝜙/𝜌𝑝,𝑒𝑓𝑓  Eq 7.11, with SS-EN 1992-1-1:2005 



𝜙 – bar diameter 

𝑐 – concrete cover 

𝑘1 – coefficient for adhesion properties of reinforcement, 0.8 bars with good adhesion and 1.6 for 

bars with practically smooth surface. 

𝑘2 – factor that accounts for the strain distribution, 0.5 for bending and 1.0 for pure tension. 

𝑘3 – recommended value is 3.4. 

𝑘4 – recommended value is 0.425. 

The characteristic crack width becomes 

𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥Δ𝜖 

Lap lengths 

Worst place to splice the reinforcement is where the moment is maximum. 

𝑓𝑏𝑑 = 2.25𝜂1𝜂2𝑓𝑐𝑡𝑑  Eq 8.2, with SS-EN 1992-1-1:2005 

The average moment is calculated by using the maximum moment, previously calculated, acting in 

the foundation. 

𝑚𝑠𝑝𝑙𝑖𝑐𝑒 =
𝑀𝑚𝑎𝑥
𝑏𝑓𝑜𝑢𝑛𝑑

 

𝐹𝑠𝑑 =
𝑚𝑠𝑝𝑙𝑖𝑐𝑒

𝑑𝑓𝑜𝑢𝑛𝑑
 

𝜎𝑠𝑑 =
𝐹𝑠𝑑
𝐴𝑠
=

𝐹𝑠𝑑

𝜋
𝜙2

4 ∙ 𝑠
 

𝑙𝑏,𝑟𝑞𝑑 =
𝜙

4
∙
𝜎

𝑓𝑏𝑑
  Eq 8.3, with SS-EN 1992-1-1:2005 

The splice length is given by: 

𝑙0 = 𝑎1𝑎2𝑎3𝑎4𝑎5𝑙𝑏,𝑑𝑟𝑞 ≥ 𝑙0,𝑚𝑖𝑛  Eq 8.4, with SS-EN 1992-1-1:2005 

Where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are given in table 8.2 in SS-EN 1992-1-1:2005 and 

𝑙0,𝑚𝑖𝑛 = max(0.3𝑎6𝑙𝑏,𝑟𝑞𝑑 ; 15𝜙; 200𝑚𝑚) Eq 8.11, with SS-EN 1992-1-1:2005 

Where 𝑎6 is given in table 8.3 in SS-EN 1992-1-1:2005. 
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