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Improving Diagnostic Solutions for Heavy-Duty Vehicles through Machine Learning
A study on preventive fault detection in fuel injectors through the use of warranty
claim data, operational data and fault codes
GABRIELLA GALONJA
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Fault prediction in the automotive industry takes on an important role as hardware
failure tends to stem from the hardware degrading over time. Thus, it is of interest to
predict a failure before it occurs, for preventive measures. As data from the workshop
is collected by the electronic control unit (ECU) from the sensors, deviations with
regards to e.g. the engine can be detected, and are in turn saved as diagnostic trouble
codes (DTCs). Based on these generated fault codes, operations are conducted on
the heavy-duty vehicle. This thesis aims to investigate whether warranty claim data,
together with operational data and fault codes generated in the workshop, can be
used in order to predict failures in fuel injectors. Another aim is to gain insights
of how the diagnostic solutions are used in the field when further replacements
of fuel injectors are not required. This was achieved through the development of
two machine learning algorithms: random forest and long-short term memory. The
results imply that the warranty claim data, together with the operational data
and generated fault codes, give useful insights to the failure of fuel injectors and
how they can be prevented. The attained balanced accuracy of the random forest
algorithm was at 82.8%, where the ability to predict a faulty injector was 66.1% as
opposed to 32.2% of the long-short term memory network. Moreover, the vehicle
age and mileage have a particularly strong association to the outcome of replacing
fuel injectors, in addition to testing of various components related to fuel injectors
(especially common rail injectors). Likewise, the generated fault codes tend to be
associated with low/high fuel pressure.

Keywords: machine learning, neural networks, DTC, RNN, LSTM, random forest,
decision trees.
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1
Introduction

This chapter presents a background to the importance of fault prediction, and en-
hances the importance of this work. Next, the aim, objectives as well as previous
work relevant for this thesis, and the scope are presented. Lastly, the disposition of
this thesis is outlined.

1.1 Background

As the automotive industry progresses towards innovative technological develop-
ments, the importance of a more sustainable future increases in order to keep up
with the continuous progress. Hence, fault prediction is taking on an important role
as it reduces unnecessary costs for both the consumers and the company itself. Ad-
ditionally, it is providing a more sustainable future as faults are predicted correctly
and in time. As hardware failures tend to originate from hardware degrading over
time, where the degradation process can occur prematurely due to manufacturing
defects [1], hardware faults are crucial when considering fault prediction as it reduces
downtime for heavy-duty vehicles and thus reducing costs and inefficiency. Insights
of the quality of the products as well as their reliability can be obtained by analysing
warranty claim data as it includes repaired and replaced parts during the warranty
period [2]. With this in mind, it becomes evident that it is critically important for
the automotive industry to assess fault prediction in hardware in order to thrive
even more.

A vehicle’s performance is being tracked by on-board diagnostics. This eases data
collection from the sensors of the network through diagnostic tools in the workshop,
which can be used in order to determine what problem has occurred. On-board
diagnostics were developed due to various reasons, e.g. emission control and elec-
tronic fuel injection, since fuel flow is being monitored through computer systems.
The on-board diagnostics system consists of a central unit called electronic control
unit (ECU), where the data from the sensors are collected which is used for either
controlling the vehicle or monitoring various parts of the vehicle. The data collected
provides information about the engine, chassis and electronic systems. This data
contains information about the source and signal parameters, respectively, which is
read by the ECU. If deviations are detected, the information is saved as a diagnos-
tic trouble code (DTC). This causes a signal to be sent to the indicator light and
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1. Introduction

thereby a fault has been detected [3].

There is no one-to-one correspondence between a DTC and the caused fault. In-
stead, symptoms arises which could point to several different causes. The P0094 is
an example of a DTC for powertrains, denoted by the first letter, where the four
digits indicates a decrease in fuel pressure. Examples of ECUs are engine man-
agement system (EMS) and aftertreatment control module (ACM). As EMS is in
control of the fuel flow that is being injected, the maximum engine power is affected
by the performance of EMS. Thus, expenses could be lowered and sustainability
is guaranteed if the wrongfully replaced parts caused by EMS would be detected
[4]. Additionally, ACMs are critical to emission as they are working with exhaust
aftertreatment systems [5].

As fuel injectors are expensive to replace, great investments are a necessity in or-
der to give room for improvements in quality and performance. By improving the
fault prediction in fuel injectors and associating it with the vehicle data, operational
data and warranty claim data, knowledge could be gained for preventive measures.
Thereby costs could be reduced while simultaneously investing in a better future
for the environment. Hence, it is of foremost interest for Volvo Trucks to utilize
this in the aftermarket aspect of the company for fuel injectors. By utilizing data
concerning various performed operations in the workshop, insights could be gained
about how the diagnostic tools are being used in the field. Data collected on per-
formed operations involving replacement of fuel injectors in heavy-duty vehicles and
operations that do not lead to further replacements give an indication of wrong-
ful workshop actions, as well as flaws in the diagnostic tool. In turn, they can be
improved by applying various machine learning techniques.

1.2 Aim
This thesis aims to develop algorithms with machine learning methods. The intent
is to predict faults in fuel injectors, with the help of data from warranty claims,
operations performed and vehicle information collected from diagnostic solutions
which are retrieved from various databases. Two developed machine learning algo-
rithms will be illustrated: random forest (RF) and long-short term memory (LSTM),
respectively. The feature importance that comes with random RF, and its superi-
ority in comparison to other decision trees models and due to LSTMs documented
performance, make them suited for this type of work. Additionally, the goal is to
determine what fault codes and types of operation contribute to the largest extent
of wrongful replacements. Lastly, to evaluate what types of operations tend to be
the most likely cause of ensuring correctly detected faults.

1.3 Objectives
– How are the diagnostic solutions being used in the instances when the opera-
tions do not lead to a replacement of a part?

2



1. Introduction

– What DTCs are causing the largest amount of wrongfully replaced parts, and
what are the potential causes?

– What faulty components tend to be detected wrongfully and is there any
connection to what type of vehicles, e.g. the vehicle age, mileage, variant and
usage type?

– What types of operations caused by what type of DTC are performed in order
to prevent future replacements?

1.4 Previous work
Preventive fault detection has been used in e.g. IT and telecom environments, where
preventive fault detection can be achieved by different means. These include antici-
pation of faults, detecting faults that impose an impossibility to predict, root cause
analysis of unknown faults and fault prevention/recovery [6]. It has been utilized in
the automotive industry with great success. In [7], an unsupervised DTC pattern
learning framework has been suggested through the detection of new patterns in
addition to applying known patterns that are being recognized accurately. This has
yielded successful results by the usage of data gained from thousands of vehicles.
Moreover, in [8], various machine learning techniques have been used including neu-
ral networks, e.g. convolutional neural network, in order to apply root cause analysis
which was achieved by the use of time-series data analysis.

In [9], DTCs generated in the workshop have been used for anomaly detection. The
paper aims to look at rarely observed fault codes generated for specific operation
modes. The results of this paper points to successful results of detecting anomalies
with the help of various machine learning techniques which shows promising results
of speeding up future fault analyses and in turn, repairs. Although most failures
occur when most vehicles are running, there are also some cases that point to faults
occurring when the vehicle is cold. Additionally, there is more work on using DTCs
and workshop repair data. One more such example is illustrated in [10], where the
purpose is to predict vehicle maintenance. Both on-board and off-board databases
were used as data for supervised machine learning algorithms, as well as repair
history and in order to predict future failures in air compressors.

1.5 Scope
The fuel injector plays an important role when considering on-board diagnostics.
As they are expensive to replace and it can be a tedious job to replace them, they
impose a crucial role when improving diagnostic solutions. Therefore, only DTCs
and operations conducted in the workshop that were involving fuel injectors are
considered. Among all the DTCs available concerning fuel injectors, only EMS and
ACM will be used. The reasons for this are the performance issues to the engine
caused by such failures, as well as the emissions affected by the two, respectively.

3



1. Introduction

Operations that lead to readouts containing general failure information were cho-
sen, and this was due to two reasons. First, as such DTCs are generated due to a
failure belonging to a unique category which cannot be expressed through a stan-
dard assignment or it can be through several subtypes within the same category.
Instead, it consists of a new unique subtype from where no conclusions can yet be
drawn. Second, it is of interest to uncover patterns from such types as the cause
is unknown. Also, certain DTCs were excluded, despite them containing general
failure information, as the cause is known to not be related to the fuel injectors.

Warranty claim data of heavy-duty vehicles from Volvo assembled between the years
2015 and 2017 are considered, since the data from these years are deemed to be the
most stable and refined, regardless of delivery country. Also, the heavy-duty vehicle
models that are included are Volvo FH and Volvo FM, which include more than 200
000 different trucks. As these are popular trucks from Volvo, they could provide
some interesting and useful insights.

1.6 Disposition
This thesis is organized into six different chapters. The first chapter consists of the
introduction which is divided into a background section, which lifts the importance
of the thesis, as well as the aim and previous work related to the subject. The
second chapter gives a brief background to machine learning, neural networks and
algorithms relevant to the thesis. The third chapter contains the method, which
describes the data cleaning as well as the data used and presents the whole process
of the data extraction and creation of the algorithms. Chapter four and five present
the results produced by the algorithms, and the discussion of the results, as well
as further developments. Lastly, chapter six presents the conclusions that could be
drawn from this work.
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2
Machine Learning and Neural

Networks

This chapter presents a background to machine learning and neural networks. Dif-
ferent categories and different algorithms relevant to this thesis will be explained, as
well as how a neural network is built up. Lastly, methods of preprocessing the data
will be briefly explained, as well as the ways of evaluating developed algorithms.

2.1 Supervised and unsupervised learning
Machine learning algorithms can be divided into two types: supervised and unsu-
pervised learning. Supervised learning is done with already assigned classifications
while unsupervised learning, on the other hand, is using unlabelled input data. Since
unsupervised learning algorithms do not work as well as supervised learning algo-
rithms, although they have benefits of their own [11], supervised learning algorithms
will be focused on in this thesis.

Supervised machine learning algorithms are developed under the premise that it
is being taught through examples, where the training data is already labelled into
different categories. During the training process of the algorithm, the used input will
be matched with its output while simultaneously looking for patterns connecting
the input-output pair. When this is achieved, the next step for the supervised
learning algorithm is to process new input data where the correct label will in turn
be predicted. Supervised learning can be divided into classification and regression.
When applying a classification algorithm, categories will be assigned to the data
points as it is being trained. In turn, the algorithm will assign a class to each input
value. In regression, one dependent variable is used together with a multitude of
independent variables, from where a relationship is found in a predictive statistical
manner [12].

Unsupervised learning, on the other hand, is about training unlabelled data in order
to uncover unknown patterns and categories. As opposed to supervised learning,
unsupervised learning is not limited by its training, and the system could potentially
gain the same knowledge as a human being if the technology was to develop to a
greater extent. Despite the fact it does not work as great as supervised learning,
it has its benefits when considering reduction of the dimensionality of datasets, as

5



2. Machine Learning and Neural Networks

well as grouping similar objects and processing noisy data [13].

2.2 Neural networks

There are two main types of neural networks: feedforward networks and recurrent
neural networks. The intention of a neural network is to mimic the knowledge of
a human brain. It does so through neurons, where the neurons are interconnected
and in turn build up the networks through a minimum of two layers as illustrated
in Figure 2.1. The interaction between each layer is through weighted connections,
and they are connected to neurons in other layers such as the input layer, output
layer and the hidden layer [14]. The output of the nth neuron is given by:

yn = σ

(
m∑
i=1

wi,n · xi + bn

)
, (2.1)

where wi,n is the weight, xi is the input of this neuron, bn is the bias term, and
σ is the activation function which can be linear or nonlinear [15]. The sum is the
input to the activation function. If each input in the previous layer is connected to
each one of the activation functions in the next layer, it is a fully connected layer.
In order to determine the performance of a neural network, the loss function has
to be computed, where a minimization of the loss is wanted in order to ensure the
best performance. This is where the training process comes into the picture, as the
purpose of training is to optimize the loss function, where the error value is used in
backpropagation [16].

2.2.1 Deep feedforward networks

Deep feedforward networks are the simplest form of deep learning models that ap-
proximate a certain function f*. By taking some classifier y = f*(x), the input x
will be mapped to the category y and in turn a feedforward network will define the
mapping y = f(x; θ) where θ is the parameter that is supposed to be learnt by the
network in order to obtain the best function approximation [17].

Deep feedforward networks can consist of several layers, as shown in Figure 2.1.
The layers provide the depth of the model through the hidden layers placed between
the input and output layer. The aim of the training part of the neural network
is to force f(x) to become equal to f*(x). The ultimate goal is for the learning
algorithm to utilize the layers in order to obtain the best approximation of f*(x).
The learning algorithm must decide how to use the applied layers to produce the
desired output, but the training data does not tell each individual layer what they
should do. Instead, the learning algorithm must decide how to use these layers to
best implement an approximation of f*(x). As the training data does not show the
desired output for each of these layers, they are called hidden layers [17].

6
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...
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Figure 2.1: Visualization of a deep feedforward neural network, illustrating the
various layers and how they are built up by n neurons.

2.2.2 Recurrent neural networks
When feedforward neural networks additionally consist of feedback connections, they
are called recurrent neural networks (RNNs). This is what makes RNNs different
from other neural networks: they are built up by a temporary (short) memory, a
sort of feedback connection where propagation in opposite directions occur for the
signals [18]. This makes them maintain all the previous data. An illustration of a
RNN is shown in Figure 2.2. It is shown that the hidden state ht, which contains all
previous input information, is transferred from the previous time step to the next.

A A A A=⇒A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 2.2: Illustration of an unrolled RNN, where xt denotes the input and ht
denotes the output (hidden state) which contains all previous information.

A drawback with RNNs is their lack of long-term memory, which makes long tem-
poral dependencies being forgotten. Also, this can cause a decrease in accuracy as

7



2. Machine Learning and Neural Networks

an optimal time lag has to be found. This has been proven to be a difficult task as
the method is based on trial and error, and RNNs tend to also suffer from vanishing
gradients due to this [19]. In order to solve this issue, different types of networks
can be used instead, of which long-short term memory (LSTM) will be covered in
this thesis.

2.2.3 Activation function
In order to add complexity to the neural network when considering its learning
and performance measure, a non-linear transformation is being introduced into the
output of the neural network through the use of an activation function. The input
to an activation function consists of a weighted sum and an added bias, as shown
in equation (2.1). The default choice of activation function tends to be the sigmoid
function:

σ (vi) = 1
1 + exp(−vi)

, (2.2)

while the hyperbolic tangent function is an example of a function that converges
faster than the former:

σ (vi) = exp(vi)− exp(vi)
exp(vi) + exp(−vi)

. (2.3)

The most commonly used activation function is, due to its simplicity, the rectified
linear unit (ReLU):

σ (vi) = max (0, vi) . (2.4)

The values can be also be further rescaled to range between -1 and 1 through a
softsign function [20]:

σ (vi) = vi
(1 + |vi|)

. (2.5)

2.2.4 Regularization
Various regularization techniques can be used in order to prevent overfitting. When
the algorithm performs well on the training data and not on the test data, which in
turn can cause an increase of the training error, the algorithm could benefit from
such a technique. When using features that do not have much impact on the target,
it will result in an unnecessary increase of the variance which in turn will make the
model perform worse than it should be. The performance of feature selection can
be improved by using regularization, as the variance can be reduced.

2.2.4.1 Weight regularization

A norm penalty on parameters can be imposed with L1 and L2 regularization, re-
spectively. By applying L1, it will be of help when it comes to feature selection,
as the coefficient of features that are deemed less important will be equal to zero.
In L2 regularization, large weights are being penalized in the cost function which
results in a minimization of the variance which is the most prominent effect of L2

regularization [21].
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2. Machine Learning and Neural Networks

2.2.4.2 Batch normalization

The input layer can be normalized through batch normalization which is done by
scaling the input as well as shifting it. Normalizing layer inputs can also be achieved
by using mini-batches, which deals with each activation separately when estimating
the mean and variance so they can be scaled and shifted independently of each other
[22]. This is done since during the training process, the inputs do not attain the
same distribution. By applying batch normalization, faster training can be achieved
as the learning phase is speeding up as well as increasing stability, all thanks to a
smooth optimization [23].

2.2.4.3 Dropout

Dropout can be used in order to prevent overfitting, as well as increasing the ef-
ficiency when combining a large amount of architectures. The technique is about
temporarily removing both hidden and visible units together with their connections,
in a probabilistic way during training. In turn, this leads to the hidden units being
capable of creating features that are useful, as opposed to being dependent on other
hidden units in order to fix their mistakes. During training, as it proceeds to the
next training sample, a new part of the neurons is used in the dropout. During
testing, the probability of the units’ dropout will be multiplied with the weights
[24].

2.2.5 Backpropagation
The purpose of backpropagation is to assess the weights and biases of a neural
network in order to minimize the cost function, which is achieved through gradient
descent. The initialization is done through random weights and biases, and as the
training process proceeds, the weights and biases will be sequentially improved.
However, this gives rise to the vanishing gradients problem for networks with a
multitude of layers. This appears when useful gradient information is not able to
transverse from the output back to the input layer of the model. In turn, this tends
to lead to a too early convergence which worsens the performance [25].

2.3 Models
Two types of models will be illustrated: long-short term memory and random forest,
respectively. The former is a neural network while the latter is a decision tree model.

2.3.1 Long short-term memory
A long short-term memory (LSTM) network is a type of RNN which has been altered
for past data to be more easily remembered in its memory. In turn, this solves the
issue of short-term memory in RNNs. LSTM recurrent networks consist of cells that
have a self-loop present as opposed to having only outer ones which is characteristic
for RNNs. Additionally, LSTMs have more parameters present when considering
their inputs and outputs in the RNN as well as gating units where the system is in
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2. Machine Learning and Neural Networks

control of the information’s flow. In the LSTM there are three unit gates present:
forget, input and output unit gate, respectively [17].

In order to determine what information could be discarded, the forget gate unit f (t)
i ,

where i is the cell and t is the time step, consists of a sigmoid function where the
weight can take on a value between 0 and 1:

f
(t)
i = σ

bfi +
∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

 , (2.6)

where x(t) is the current input, h(t) is the current hidden layer with all the outputs,
and bf , U f and W f are the biases, input weights, and recurrent weights, respec-
tively. That the parameters are from the forget gate is denoted by the superscript
f . The state unit, s(t)

i , is an important component when considering LSTMs and is
dependent on the conditional self-loop f (t)

i as it is being updated:

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ

bi +
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Ui,jx
(t)
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∑
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(t−1)
j

 . (2.7)

The input gate is given by:

g
(t)
i = σ

bgi +
∑
j

U g
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j

 , (2.8)

and consists of a sigmoid function as well which makes the possible values range
from 0 to 1. The output h(t)

i is:

h
(t)
i = tanh

(
s

(t)
i

)
q

(t)
i , (2.9)

and can in turn be turned off through the output gate q(t)
i :

q
(t)
i = σ

boi +
∑
j

U o
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j

 , (2.10)

which is also dependent on the sigmoid function [17].

The resulting LSTM system is shown in Figure 2.3. The external outputs, c(t−1)

and h(t−1), are the memory and hidden states, respectively. The forget gate unit is
shown to the far left where σ1 is a fully connected layer, σ2 is where the input gate
is illustrated, whereas the candidate memory is shown after it, and the output gate
is shown to the far right.
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Figure 2.3: The resulting computations of the memory cells in an LSTM system.

2.3.2 Random forest
Random forest (RF) is an example of a supervised learning algorithm. In its essence,
it is simply a collection of decision trees, that can be used for classification, as well as
regression. An example of a decision tree is shown in Figure 2.4. As it is an ensemble
learning method, the method results in trying a multitude of different decision trees
with different splits, where the chosen model will be the one that is the most optimal
which is shown in Figure 2.5. The introduction of RF is thanks to Leo Breiman [26],
where RF today is essentially an extension of his bagging idea, where this "bagging"
method is what RF is being trained with. The training data is used in bagging by
building each decision tree by applying a replacement sample [27]. By combining
and in turn applying a wide variety of learning models, the model will improve
throughout this process. This is achieved by bootstrapping while simultaneously
training the decision trains and lastly bagging. Bootstrapping is a statistical method
where the point is to use small data samples of which the average estimate is taken
in order to estimate the quantity, while bagging concerns reducing the complexity
as there are certain models that lead to overfitting. Boosting, on the other hand,
does the opposite since it helps with underfitting. The variance of RF classifiers
is being minimized as the individual decisions trees remain unique throughout the
classification. Lastly, when it is time for the last decision in the decision tree line, all
results of the individual trees are gathered in order to determine what tree provides
the highest average class probability. Due to this, RF tends to provide the best
performance in comparison to other methods as well as preventing overfitting from
being an issue [28].

Out-of-bag (OoB) error is a commonly used technique used in order to evaluate
the RF accuracy. Also, it can be used for determining the values of the tuning
parameters which are evaluated to be the most appropriate. The downside with
this technique is that it can lead to an overestimation of the true prediction er-
ror when choosing the parameters [28]. RF algorithms can also be used in order
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to obtain feature importance. There are two different types of feature importance
methods: the gini variable importance, and permutation accuracy importance. The
gini variable importance determines the probability that each feature is receiving
an incorrect classification when chosen at random, while permutation feature im-
portance randomly shuffles the values of single features. The permutation accuracy
has been shown to provide more reliable results in comparison to the gini variable
importance if there are a lot of features involved in the model, while the gini variable
importance is also biased towards numerical features [29], [30].

2.4 Preprocessing
There exists a variety of different preprocessing techniques, whereas three will be
presented in this section. The purpose of preprocessing is to e.g. prepare and trans-
form raw data before being used in a machine learning algorithm. This is achieved
by reducing the dimensionality of the data as well as normalizing it, searching for
patterns and extracting features [31]. Feature extraction as well as feature selection
are means of improving learning performance and lowering computational complex-
ity [32].

2.4.1 Principal Component Analysis
One widely used technique for feature extraction and thus reducing the dimension-
ality of large datasets and at the same time preserving both statistical information
and interpretability, is principal component analysis (PCA). New variables are found
which are correlated with the original dataset by applying linear functions of them.
Additionally, the new variables are uncorrelated between themselves while at the
same time maximizing the variance. What PCA turns into is finding a solution to
an eigenvalue/eigenvector problem [33]. However, when applying feature extractions
such as PCA, it imposes problems with mapping the original features to the new
features. Thus, it is more difficult to analyse the resulting features since they lack
physical meaning [32].

2.4.2 Feature selection
Feature selection is used in order to minimize redundancy as well as maximizing the
relevance to for instance class labels when classification is considered. The original
features, as opposed to when applying feature extraction, maintain intact. It is done
by selecting a subset of features without using any type of transformation in order
to reduce overfitting. Additionally, it leads to an increase of accuracy as well as
decreasing the training time [32].

2.4.3 Feature scaling
In order to scale numerical features, there are two popular methods: normalization
and standardization. Normalization rescales the features to range from 0 to 1 or -1 to
1 for neural networks, while a mean of 0 and standard deviation of 1 is achieved for
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Figure 2.4: An example of a decision tree, with four nodes and six different out-
comes.

Figure 2.5: An illustration of an RF, where the sample and feature bagging result
in different tree models, where the selected prediction will be the one with the
majority of all votes for a classifier.
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the features through standardization. Normalization is done through the following
equation:

xnorm = x−min(x)
max(x)−min(x) , (2.11)

where x is the original features. Standardization is achieved through [34]:

xstd = x−mean(x)
std(x) . (2.12)

2.5 Evaluation

In order to determine whether a high-performance model has been built, a confusion
matrix can be computed. It consists of two rows and two columns, as shown in Table
2.1. The rows illustrate the predicted classes while each column represents the actual
class. From this matrix, the true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN) can be obtained. This gives a better picture of the
performance of a model, especially when considering imbalanced datasets [35]. The
recall rate, or the sensitivity, is obtained through:

recall rate = TP
TP + FN , (2.13)

which gives the percentage of how many of the positive class are classified correctly.
Likewise, the precision is given by:

precision = TP
TP + FP , (2.14)

from where it can be determined how precise a model is when it comes to predicting
the positive labels. The F1 score is dependent on recall rate and precision:

F1 score = 2TP
2TP + FP + FN , (2.15)

since it is the harmonic mean of them. Balanced accuracy is an appropriate metric
for imbalanced datasets as it takes into account the recall rate of both classes:

balanced accuracy = TPR + TNR
2 , (2.16)

where TPR is the true positive rate, and TNR is the true negative rate. By not
taking the recall rate into account, the algorithm could give an accuracy of almost
100% if there is less than 1% of the positive class, since it will correctly predict all
samples of the negative class.
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Table 2.1: The outline of a confusion matrix.
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3
Methods

This chapter covers the methodology. The first part describes the data extraction
from various databases as well as an illustration of the preprocessing steps. Next, the
data selection, and how the datasets are built up, is described. Then, the developed
algorithms are illustrated. Lastly, how the results are evaluated is depicted.

3.1 Data extraction and preprocessing
The data extraction involved extraction from databases storing vehicle data, work-
shop data and warranty claim data.

3.1.1 Vehicle data database
The vehicle database provides information about functionality in addition to trans-
actional data and diagnostic session logs of products that have been generated by
the attached workshop tool. It consists of services from where product session infor-
mation (PSI) is received and provided to consumers. Thus, the logged data that is
generated from ECUs and diagnostic session logs which are obtained from workshop
tools can be extracted from the database containing the vehicle data. Through this,
knowledge is gained regarding the usage of products as well as performed workshop
actions in both the maintenance and repair process.

3.1.2 Workshop data
The workshop data was extracted through SQL queries from the databases which
contained information from diagnostic sessions. The data was stored in DB2, which
is a relational database management system developed by IBM [36]. This database
contains vehicle information as well as information about the workshop sessions.

The vehicle data consists of one row per vehicle, that contains basic vehicle informa-
tion about each vehicle, e.g. chassis number, chassis series, country and assembly
date. The chassis number is what denotes each vehicle’s uniqueness, from where e.g.
the vehicle ID can be retrieved which can be used in order to obtain information
from other tables in the database.

Product session information (PSI) contains information about diagnostic sessions
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that are retrieved from the workshop. This information consists of what type of
operation was performed in the workshop, including e.g. fault tracing, calibration
and testing which are all relevant for this thesis. Faulty parts of a vehicle will only
be replaced after fault tracing has been performed. Therefore, operations performed
on unaffected vehicles which do not have any warranty claim give an indication of
what actions tend to prevent unnecessary replacements. Moreover, each operation
where testing or calibration was performed contains an operation identifier. This
identifier is unique for what type of operation has been performed, and example of
such identifiers are system testing of rail fuels and calibration of the injectors.

Each performed operation, which has been stored in the database, consists of a
diagnostic path which indicates the path to the tree in the authoring environment,
where only the variable path is visible from the data extraction. Typically, the last
part of it contains the DTC readout when the performed operation is fault tracing.
However, this is not always the case for older readouts and DTCs generated for
certain sensors. When an older fault tracing is being done but not for that specific
DTC, it can be linked to an old file. This tends to be the case when the hardware
has barely been changed over the years.

3.1.3 Warranty claim data

A warranty claim is made as soon as a vehicle has been repaired or if it happens
to have a part that is defective which was discovered during the workshop visit.
The warranty claims data is collected from live data from the workshops containing
logged session information from where fault tracings and operations can be retrieved.
Fault tracing can be retrieved as this live data provides access to all fault codes that
have been fault traced onto each claim, and in turn it becomes evident whether the
fault tracing has been successful or not. This gives a large amount of DTCs which
have been tested for in the diagnostic tracing and an indication of the performance
of the diagnostic sessions.

Both chassis with repeated claims and with only one claim were considered faulty.
If there are several claims for a particular vehicle, it gives an indication of faulty
replacements since it has to return to the workshop. Likewise, it gives an indication
of a defective component. Altogether, the warranty claim data consisted of 18000
claims from all around the world, although the workshop sessions consisted of many
more operations as there were multiple DTC readouts during each session. As
fuel injectors were to be considered, claims related to solely fuel supply related
components were of importance. The fault date together with chassis number were
used in order to link the claim data with the workshop data. Despite the fact that
part number and name were included in the claim, they were not used as there was
insufficient data containing this information in the workshop data. Furthermore,
the emission level provides information about what vehicle variant the claims were
connected to.
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3.1.4 Preprocessing

Some of the columns in the dataset retrieved from the databases through SQL queries
contained missing values. This occurred in values related to e.g. vehicle information
such as mileage, as mileage is only present in diagnostic session logs when a part has
been replaced. Numerical values as input data tend to be a requirement for most
machine learning algorithms since neural networks and RF algorithms cannot handle
missing data. Due to this, the numerical values had to be preprocessed while the
duplicate entries were removed as there were some duplicates of the same operation
which did not provide any new information. The missing values can be handled by
applying an imputation technique which statistically will calculate a value that is
most likely and in turn replace the value with this statistical value in each column.
This is a common way of approaching this problem, due to the simplicity that comes
with using the training dataset. Additionally, it tends to provide a good performance
where the performance of such a technique is independent of the amount of missing
values as well as the dataset [37]. The preferred way could be, to simply remove all
the rows containing missing data. As there is close to a million readouts, this could
be done and a large amount of data would still be present in the dataset. Both
methods were tried, the imputation did however seem to give more weight to the
numerical values, while less weight was put on other features of interest. Therefore,
the final results did not involve imputation as there were only two numerical features.

Normalizing numerical values tends to give better results for neural networks as they
are very sensitive to scaling, while this is usually not the case for RF algorithms as
it tends to not change the performance of the algorithm. Vehicle information such
as mileage and vehicle age which consisted of numerical values were normalized
before being used as input to both the RF and LSTM algorithms. Since there were
both categorical variables and continous variables, some type of encoding had to be
done before feeding them as inputs to the models. If there would have only been
categorical features in the dataset, the choice of using an embedded layer instead
of dense layers would have been the better choice. The reason for this is that it
is speeding up the training process due to the fact that it reduces the complexity.
While using a method such as one-hot encoding would lead to more features and in
turn a very sparse matrix, and thus slowing down the training speed as it involves
more matrix multiplications which increases the computational complexity [38].

3.2 Data selection

Two datasets, one containing vehicles with warranty claims and another one with ve-
hicles without warranty claims, were used when extracting data from the databases.
In the end, two datasets were finalized: one with all types of fuel injectors and one
with common rail fuel injectors.
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3.2.1 Datasets

There were two datasets: one containing all the vehicles assembled between the years
2015 and 2017, and another dataset which consisted of all the warranty claims made
on the vehicles in the first dataset. Since not all the vehicles assembled between those
years have a warranty claim, those vehicles are unaffected by repairs, and should
give an indication of what operations were performed that (possibly) prevented
the vehicle from repeatedly going back to the workshop and in turn getting claims
attached to them. Since workshop repairs are made within a 6 week interval before
the claim is created, operations conducted within this time interval were considered
and extracted from various databases for the created warranty claims. They were
found by matching the chassis ID from the vehicle in the warranty claim data within
that period of time, where also the fault codes were denoted. Although the warranty
claim data also had all the fault codes generated for each diagnostic session, what
types of operations that were performed are not visible. Moreover, Volvo has 2
years fitted parts warranty. As the heavy-duty vehicles used in the analysis were
produced between the years 2015 and 2017, readouts that took place in 2019 the
latest were therefore extracted. Also, the operations performed in the workshop for
the unaffected vehicles include only fault codes which are overrepresented in the
warranty claim data.

Each row in the dataset consists of one unique DTC, unique for a particular oper-
ation. This means one workshop session can contain several relevant DTCs which
were collected during the fault tracing by the diagnostic tool, all of which were re-
lated to powertrain. Additionally, each row contained what types of operation were
performed, operation identity, as well as the mileage, vehicle age, emission level in
order to distinguish what type of vehicle each particular readout is related to, etc.
Moreover, as the intended problem was to classify whether a vehicle was faulty which
the vehicles with warranty claims are considered, each operation where a warranty
claim was created afterwards was considered faulty while vehicles without a claim
were considered not faulty. Hence, there was a binary classification problem at hand,
where the faulty vehicles belonged to the positive class and the unaffected vehicles
without claims belonged to the negative class.

As it was interesting to see what conclusions could be drawn from all parts of fuel
injectors and of common rail fuel injection, two separate datasets were finalized.
One of them consisted of a positive class of warranty claims of all parts of fuel
injectors, while the second dataset consisted of only common rail fuel injection for
the positive class. Since it is also of interest to uncover patterns between the failure
of fuel injectors through the operations performed based on the generated DTCs,
the different operations as well as the different types of generated DTCs were used
as features as inputs to the RF algorithm and LSTM network. For RF and the
LSTM network, some type of encoding had to be done for categorical variables in
Python. One-hot encoding was chosen for this thesis, not only due to its simplicity,
but also because it gives us a clear picture of what effects the operational data and
generated fault codes have on the outcome.
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3.2.2 Class imbalance
There was an existent class imbalance in the dataset, as the majority class which
comprised of vehicles that had undergone operations which did not lead to a wrong-
ful replacement of a component and did not have a warranty claim, was much larger
in comparison to the affected vehicles. This causes an issue when looking at the
training aspect of the classification system, as the prediction accuracy will be in fa-
vor for the majority class [39]. One way to deal with class imbalance is by imposing
a class weight, which gives more weight to the minority class. Also, undersampling
the majority class while simultaneously oversampling the minority class is another
way. When oversampling, samples are added to the minority class by duplicating
them, while it is the opposite in the case when undersampling is done. Instead, sam-
ples are removed from the majority class [40]. Additionally, a combination of both
ways is also possible. In this thesis, several techniques were tested since imposing
class weights was in some cases not sufficient, due to the fact that certain datasets
consisted of less than 1% of the positive class. Therefore, undersampling was used.

3.3 Machine learning Frameworks
TensorFlow is an end-to-end open-source software which covers all aspects of ma-
chine learning: everything from development to training. On top of TensorFlow,
Keras can be run, which is used for deep learning as it is a high-level API used
for neural networks, as opposed to TensorFlow which is a lower level API. Keras
cannot be run without a backend, however it does not necessarily have to be with
TensorFlow as a backend framework as there are other frameworks that can be used
as well. Scikit-learn is another machine learning library built on top of Python
packages such as NumPy. It tends to be used for general machine learning prob-
lems whereas TensorFlow is usually used for deep learning and also provides more
efficient training in comparison. However, due to its simplicity, it could be the pre-
ferred library, on the other hand it cannot be applied on deep learning methods.
However, the flexibility and control of the networks that comes with TensorFlow is
what makes TensowFlow the preferred choice in some cases.

3.4 Algorithms
Two algorithms were implemented: one through neural networks and one through
decision trees.

3.4.1 Long-short term memory
LSTM has the benefit of containing far more hyperparameters that can be tuned
in comparison to decision tree models, and it also has the possibility of adding
more complexity to it. Two simple LSTM layers tend to be sufficient in order to
detect complex features, whereas one layer is generally enough when considering
datasets that do not contain any further complexity. For the architecture of this
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problem, three LSTM layers were stacked on top of each other, where the first LSTM
contained a ReLU activation function. Each LSTM layer contained 128-512 hidden
states, and were wrapped up by dropout layers. This was followed by a multitude of
deep layers stacked up on each other which were not connected horizontally. In turn,
a dropout layer was applied between each fully connected layer in order to prevent
overfitting, each with probability 0.2. However, applying too many hidden layers
will lead to overfitting, since it results in unnecessary parameters. Additionally,
the batch normalization layers were applied between linear and non-linear layers as
it normalizes the input to the activation functions. The last layer consisted of a
sigmoid activation function as the classification is considering binary classification,
while a combination of ReLU and sigmoid activation functions were used for the
other layers.

3.4.2 Random forest
The choice of an RF algorithm was due to the feature importance that comes with it,
and due to its high performance. The RF algorithm was implemented through the
Scikit-Learn library in Python. RF contains far less hyperparameters in comparison
to LSTM networks. This includes choosing the number of decision trees which
regulates its depth and tuning the number of features, as well as imposing class
weights into the classifier. The number of decision trees did not have much effect
when comparing a couple of hundred to a couple of thousand, at the cost of resulting
in an increase of computing time. Thus, 400 decision trees were chosen. At each
leaf node, the maximum number of features considered at each time the splitting
was taking place could be chosen [41]. When considering each leaf node, a random
subset of all features which can be tuned are considered.

3.5 Evaluation of results
In order to figure out how each individual feature affects the output of the model,
the feature importance and the permutation feature importance were computed.
These are means to determine what is going on in the machine learning model and
what effect each feature has on it. Additionally, the balanced accuracy for the RF
algorithm as well as the precision, recall rate and F1 score were taken into account,
as the problem at hand is a class imbalance problem.
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Results

In this chapter, the results from the developed algorithms are presented. This
is done by first illustrating the results from the complete model setup with the
performed operations in the workshop and the generated fault codes obtained from
the fault tracing, from where the most important DTCs are obtained. The second
part consists of results from the operations that were shown to be the most important
from the complete model setup.

4.1 Results of fault code and operational data
Here, the results of the performance of the algorithms are presented, both for the
all types of fuel injectors and common rail ones. Additionally, feature importance
illustrating the faultcodes and operations with the most impact are shown.

4.1.1 Replacement of all types of parts in fuel injectors
In order to determine the performance of the models, balanced accuracy, precision
and recall rate were computed, as well as the F1 score. As the accuracy does not
provide sufficient information about the accuracy for highly imbalanced datasets, the
accuracy for RF is in fact the balanced accuracy. While for the LSTM it is not the
balanced accuracy that is being taken into account, thus it is heavily influenced by
the class imbalance. The results from the dataset containing performed operations
of all warranty claim data involving all parts of fuel injectors are labelled as faulty,
whereas vehicles assembled from the same years that do not have a warranty claim
are labelled as not faulty, are shown in Table 4.1.

Table 4.1: The performance of the RF and LSTM algorithms with operational
and fault code data for all warranty claims involving all parts of fuel injectors. The
accuracy for the LSTM network is not the balanced accuracy.

Random Forest Long-short term memory
(Balanced) accuracy 82.8% (95.6 %)
Precision 86.3% 76.2%
Recall rate 66.1% 32.2%
F1 score 74.9% 45.4%
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In Table 4.1, it is evident that RF most likely has the highest balanced accuracy as
it has the highest precision and recall rate. As the dataset is highly imbalanced, the
recall rate gives a better estimate of whether a faulty fuel injector can be estimated.

4.1.2 Replacement of common rail fuel injectors

Table 4.2 illustrates the performance of the RF and LSTM algorithms based on all
operations with a warranty claim data only containing replacements of common rail
fuel injectors.

Table 4.2: The performance of the RF and LSTM algorithms on both operational
and fault code data for replacement of common rails of the fuel injectors. The
accuracy for the LSTM network is not the balanced accuracy.

Random Forest Long-short term memory
(Balanced) accuracy 70.8% (98.6%)
Precision 75.3% 74.1%
Recall rate 42.0% 41.6%
F1 score 53.9% 53.3%

Here, the performance is similar when considering the RF and LSTM algorithms,
both when it comes to determining whether a not faulty fuel injector is not faulty,
and whether a faulty fuel injector is in fact faulty.

4.1.3 Feature importance

The feature importance could be obtained from the RF algorithm, which was done
for both the dataset with all features and the dataset which concerned parts related
to common rail fuel injectors. As both operational data as well as the generated
fault codes were considered, all of them are shown in the results. The most common
DTCs were used later in order to deep dive into what operations are being performed
that do not lead to replacement of fuel injectors. The results are illustrated in the
table below.
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Table 4.3: Feature visualization obtained from RF for all types of fuel injectors
and common rail ones.

Feature visualization all types Feature visualization on common rail fuel injector
Mileage Vehicle age
Vehicle age Mileage
DTC A DTC A
Test common rail fuel injector DTC B
DTC B Test common rail fuel injector
Euro 6 Euro 6
Rail pressure system DTC C
Emissionlevel Euro 6 Rail pressure system
DTC C DTC D
DTC D DTC G
DTC E DTC F

In Table 4.3, it is evident that mileage and vehicle age have a great impact on the
replacement of a part. Moreover, DTC A is a fault code that is generated when the
fuel pressure regulator is too high, while DTC B is indicating that the fuel pressure
has essentially decreased a severe amount. Operation identity A denotes testing
of common rail fuel injectors. DTC C, on the other hand, simply indicates that
the coolant level is low. The fault code D is triggered when the target angle and
phase-control have a gap between the two, which in turn will cause the valve to stop
working. DTC E occurs when fuel system with a low pressure is reaching a pressure
that is way too low. DTC F is low fuel pressure while DTC G indicated that the oil
level is fairly low. Lastly, the emission levels indicate what type of vehicle it is that
these faults tend to be present in, where Euro 6 is for light-duty vehicle produced
from 2015.

4.2 Results of the operational analysis

The operations performed on the most important fault codes were obtained by using
only the most important fault codes. Therefore, insights could be gained about what
types of operations have a big impact on whether a fuel injector will be wrongfully
replaced.

4.2.1 Replacement of all types of parts in fuel injectors

Here, the accuracy, precision, recall rate and F1 score, respectively, were computed
for the operations based on the most important fault codes. The results are shown
in Table 4.4.
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Table 4.4: The performance of the RF and LSTM algorithms on warranty claim
data for both operational and certain fault code data for replacement of common
rail fuel injectors.

Random Forest Long-short term memory
(Balanced) accuracy 75.1% (94.4)%
Precision 73.1% 72.4%
Recall rate 51.7% 35.6%
F1 Score 60.6% 47.7%

In Table 4.4, it is evident that the performance has decreased in comparison to when
considering only certain fault codes.

4.2.2 Replacement of common rail fuel injectors

Below is the performance of DTCs A-E on replaced parts of the fuel injector.

Table 4.5: The performance of the RF and LSTM algorithms on both operational
and fault code data for replacement of of common rail fuel injectors.

Random Forest Long-short term memory
(Balanced) accuracy 69.6% (97.3%)
Precision 84.2% 57.2%
Recall rate 39.1% 67.8%
F1 score 53.4% 62.1%

Interesting enough, the LSTM seems to be able to handle this problem better than
the RF algorithm.

4.2.3 Feature importance

The DTCs A-E depicted in the previous section were used in order to see whether
there is a strong association to the operations performed. The results are shown in
the table below.
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Table 4.6: Feature visualization of the operations performed on DTCs A-E, ob-
tained from Random Forest for all types of fuel injectors and common rail ones.

Feature visualization all types Feature visualization on common rail injectors
Testing of common rail fuel systems Testing of common rail fuel systems
Rail pressure system Rail pressure system
Testing of fuel consumption Engine start
Fuel injector shut off Testing of fuel pressure
Low fuel pressure Testing of fuel consumption
Cylinder compression test Fuel consumption data
High pressure sensor Exhaust aftertreatment
Injector function Testing of fuel pressure
Testing of fuel pressure Testing of cylinder balancing

In Table 4.6, it is evident that tests have usually been performed related to the fuel
injector, in order to observe its performance when it comes to fuel pressure. Also,
it appears to have been done in order to see whether it works as intended. Mo
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5
Discussion

The purpose of this work is to investigate whether warranty claim data together
with operational data and fault codes provide sufficient information in order to
predict whether a fuel injector has failed using machine learning methods. This has
been achieved by the development of an RF and LSTM algorithm, which will be
evaluated in this section, followed by the ethical aspects, the contribution to the
field and suggestions for future work.

5.1 Model performance
The performance of the two algorithms, for all types of fuel injectors and for common
rail fuel injectors, was measured. As the balanced accuracy was only obtained from
the RF algorithm, recall rate and precision are in focus instead.

5.1.1 All types of fuel injectors
The results are pointing to a relatively high balanced accuracy of 82.8% for the RF
algorithm, and the precision and recall rate are relatively high as well, 86.3% and
66.1%, respectively. The LSTM network did not outperform the RF algorithm, as
the recall rate was much lower with 32.2%, while the precision was slightly lower in
comparison but still acceptable. Possibly the RF algorithm was better at handling
the class imbalance while the LSTM was more prone to it, as the recall and thus
its ability to predict faulty fuel injectors was higher. Perhaps the architecture was
not well-suited for this type of data, i.e. perhaps embedding layers, one handling
the numerical variables, and one handling the categorical ones instead of using one-
hot encoding, would have improved the model. Another reason could be that there
were too many irrelevant features whose effect was not great enough, as it is enough
that there is one operation performed on such a feature for it to be considered.
Otherwise, one could expect the LSTM to outperform the RF algorithm as it has
more potential in regards to the hyperparameters. When choosing only 5 DTCs with
the intention to see what performed operations were being crucial, it was evident that
the performance decreased in comparison, when it came to the balanced accuracy,
precision and recall rate. Most likely this gives an indication of that more parameters
have to be taken into account, alternatively handling the numerical and categorical
parameters in a different way. Additionally, DTCs related to low/high fuel pressure
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tend to be recurrent.

5.1.2 Common rail fuel injectors

The results for the replacement of common rail fuel injectors points to a large portion
of the faulty injectors being misclassified since the recall rate was about 42% for
both algorithms, while it was 68% for LSTM and 39% for RF when considering
the operations performed. The decline in recall rate and thus balanced accuracy
when considering only certain types of fuel injectors could be due to the heavy class
imbalance. The negative class, which consists of the unaffected vehicles which do
not have any warranty claims attached to them, was not filtered more than only
containing the same fault codes that were present in the affected dataset. As the
part name often is left out in the database from where the operation sessions were
retrieved since they are not always replaced, they could not be taken into account
and in turn all operations considering all parts of the fuel injector were included.
If this would not have been the case, that the entire dataset could have contained
only these types of parts, other conclusions could have been drawn as more relevant
data is considered. Nevertheless, various methods such as over- and undersampling
and class weights as well were used in order to deal with the class imbalance for
this case, although this could potentially leave out some useful information. The
LSTM algorithms higher recall rate when considering the operations performed,
could additionally be due to a better class weight tuning.

5.2 Performed operations with respect to vehicle
information and generated fault codes

The results point to a strong connection between the failure of fuel injectors and the
vehicle information. The replacement of a fuel injector appears to be heavily influ-
enced by the mileage and the vehicle age, which was expected due to the hardware
degrading over time as it is being heavily used indicated by the mileage. However, it
could also be due to numerical values being biased when considering feature impor-
tance. The results from the operations performed in the workshop give an indication
that for the most part they have involved testing of the fuel injectors. As the nega-
tive class consists of the major part of the extracted operations that were conducted
in the workshop, it indicates that performing testing of fuel injectors have lead to
the fuel injector not being replaced. This could indicate that fault tracing is not
being used as frequently as it should be, thus resulting in faulty fuel injectors as it
comes into the workshop a multitude of times when it is not being replaced when it
should be. Alternatively, the diagnostic solutions do not work to its full potential,
as fuel injector are being replaced even though the same type of fault codes appear
to have been generated even when there is only testing of the fuel injector.
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5.3 Ethical aspects
As the data extraction involved vehicles used for private use as well, one aspect to
consider is invasion of privacy. On the other hand, as the customers have actively
chosen to seek help from a workshop which have plugged in the diagnostic solutions,
the customer should be well aware of that this imposes a risk for invasion of privacy.
Nevertheless, the data extracted for this thesis does not tie the vehicle in question
to anyone on an individual level and as the vehicles have not been considered in-
dividually during the data extraction this has in turn been respected. Also, as the
results of this work points to insufficient testing in the workshop, further research
on this matter could in the end result in more work in the workshop. However, this
could lead to less work for factory workers as the production of fuel injectors would
decrease as a result of improved fault tracing, hence resulting in people losing their
jobs.

5.4 Contribution
There has been related work concerning on-board and off-board diagnostics, where
fault codes and operational data together with repair history have been used to
predict future failure in order to improve maintenance with various machine learning
techniques which have been achieved through both supervised and unsupervised
methods. It does, however, not appear to have been done before with deep learning,
and not with warranty claim data. The difference here is that the warranty claim
data has been used as an indication of an existent fault in the component. The
reason for this has been assumed to be either due to manufacturing faults or due
to the wrong workshop actions as a result of either misinterpreting the action that
should have been performed, alternatively the diagnostic solution is not working
as fully intended. Instead, these types of data have been used either for anomaly
detection in order to capture fault codes occurring in rare instances, or to predict
upcoming failures based on all repair history in air compressors. It does not seem
to take into account that the failure could be pre-determined by its production.
Neither does it appear to have been done with fuel injectors in such a way.

5.5 Future work
Although there was lots of data included in this work, only fault codes in which very
little about the cause of them is known, as the source cannot be pinpointed, it would
be interesting to analyse the anomalies. As very little weight was given to them in
this work, insights could be gained which could perhaps have an effect on the more
frequently appearing faults. There are more factors based on the warranty claim
data that could be taken into consideration but were not, in order to get a better
understanding of why faulty components are being replaced. As the effects could
be due to human error as well, and not only due to how the diagnostic solutions
are working in the field. Lastly, by adding more data when considering the positive
class for the LSTM network, an improvement in performance could be possible as
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neural networks are best suited for large datasets.

Other ways of improving the results is by improving the quality of the data, which
could be achieved by collecting the data differently. As the sensors and thus signals
consist of a limited amount, implementation of more sensors could create more
well-defined data, and in turn would make fault tracing more accurate. Also, by
collecting data more frequently with e.g. a smartphone, fault prediction would be
more easily accessible. In turn, issues that lead to unnecessary replacements could
be prevented if faults prior to them are detected in time.
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6
Conclusion

In conclusion, this thesis has explored factors that could help preventing wrongful
replacements of fuel injectors by utilizing data collected from diagnostic solutions,
together with vehicle information and warranty claim data, that in turn have been
used as inputs to various machine learning techniques. This has been achieved
through an RF algorithm and LSTM network, where the performance of the RF
algorithm has shown better results with a balanced accuracy of 82.8%, with a better
ability to correctly predict faulty fuel injectors as it is 66.1% in comparison to 32.2%
of the LSTM network. The high balanced accuracy implies that there is a strong
connection between the features and the failure of a fuel injector, and that warranty
claim data therefore can be used in order to predict the failure of the component
or whether it will be replaced a multitude of times. As the vehicle age as well as
the mileage carry a strong connection to the replacement, it could indicate that
it is not due to manufacturing faults that these replacements occur, instead it is
due to either the software in the diagnostic solutions or the customer’s usage of the
trucks. Alternatively, it is just due to numerical features being biased. Moreover,
testing of fuel injectors, especially of common rails fuel systems, seems to have
a connection to fuel injectors not being replaced as they are over represented for
operations performed on vehicles that do not have any warranty claims. Recurrent
generated fault codes tend to be associated to low/high pressure in the fuel injector,
also light-duty vehicles produced from 2015 and onward tend to be particularly
affected.
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