
Designing a Tool for Assisting in the Setup
of Optical Motion Capture Systems
Master’s thesis in Interaction Design and Technologies
Division of Interaction design

EMMANUEL BATIS

MATHIAS BYLUND

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017

Designing a Tool for Assisting in the Setup of
Optical Motion Capture Systems

EMMANUEL BATIS
MATHIAS BYLUND

Department of Computer Science and Engineering
Division of Interaction Design

Chalmers University of Technology
Gothenburg, Sweden 2017

Designing a Tool for Assisting in the Setup of Optical Motion Capture Systems

© EMMANUEL BATIS & MATHIAS BYLUND, 2017.

Supervisor: Morten Fjeld, Computer Science and Engineering
Examiner: Staffan Björk, Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Division of Interaction Design
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2017

iii

Designing a Tool for Assisting in the Setup of Optical Motion Capture Systems
Emmanuel Batis & Mathias Bylund
Department of Applied Information Technology
Chalmers University of Technology

Abstract

As optical motion capture systems grow bigger and more complex, the need for
mobility when interacting with these systems becomes apparent due to the increasing
spatial distances between system components. Seeing how these technologies rapidly
evolve and how their usage is becoming more common, providing a way of assisting
setup technicians is clearly valuable.

This thesis documents the design- and creation process of a tool that provides the
aforementioned assistance. The tool enables its users to visualize the real-time out-
put of every camera in a system. At the same time it provides a way of making
adjustments on-the-fly without the need for excessive maneuvering, effectively re-
ducing the amount of personnel needed for setting up the system.

Moreover, this tool acts as a technological statement which proves that it is possible
to create cross-platform mobile tools that interact with an optical motion capture
system in real-time and by that removes the need to maintain several applications
for different platforms.

Keywords: optical motion capture, motion capture, mobile development, cross-
platform development, real-time data, interaction design

iv

Contents

List of Figures viii

List of Tables x

Acronyms xi

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 1
1.3 Problem Definition . 2
1.4 Research Question . 2
1.5 Proposal . 2

2 Background 3
2.1 Related Work . 3
2.2 Identifying Stakeholders . 4
2.3 Optical Motion Capture . 5
2.4 Qualisys Motion-Capture System . 8

3 Theoretical Foundation 11
3.1 Substantiating Interaction Design Research 11
3.2 Interaction Design Research Contribution 12
3.3 Target Users . 12
3.4 Evaluation Paradigms . 12
3.5 Mobile Computing . 14

4 Methodology 21
4.1 Interaction Design Activities . 21
4.2 Planning the Design Process . 26

5 Design Process 29
5.1 Evaluation of Frameworks . 29
5.2 Requirements Specification . 30
5.3 Ideation . 35
5.4 Early Prototyping . 39

6 Results 45

vi

Contents

6.1 Development Environment . 45
6.2 ArqusFinder . 47

7 Summative Evaluation 56
7.1 Single Ease Question Results . 57
7.2 Observations . 58
7.3 Evaluation of usage data . 60

8 Discussion 62
8.1 Formative Evaluation . 62
8.2 Cross-Platform Development . 63
8.3 Summative Evaluation . 69
8.4 General Usability . 73
8.5 Usage data . 74
8.6 Looking Back at the Design Process 74
8.7 Changing Research Angle . 75

9 Conclusions and Future Work 76
9.1 Conclusions . 76
9.2 Contribution . 78
9.3 Future Work . 78

A Appendix: Brainstorming Ideas I

B Appendix: Requirements III
B.1 ArqusFinder Requirement Description III

C Appendix: Usage data IV
C.1 Screen Layout Toggled Data . IV
C.2 Message Data . IV
C.3 Stream Mode Data . V

D Appendix: Evaluation table VI

E Appendix: Style Implementation VIII

F Appendix: Framework Evaluation Criteria X

G Appendix: Use cases XII

vii

List of Figures

2.1 A side-by-side view of tools that aid in the setup stage of motion
capture system. From left to right: Vicon, ViewFinder 4

2.2 Some examples of how a motion capture system might be used. . . . 5
2.3 An example depicting a high-end gait analysis setup. 6
2.4 The six stages of optical motion capture, preparation being high-

lighted due to the importance it represents to this research work. . . 6
2.5 Exemplified scenario of the preparations stage of an optical motion

capture system. 7
2.6 In left-to-right order, Miqus Video and Oqus. 9

3.1 An overview of the layered architecture of both Android (on top) and
iOS (below). Red indicates close-proximity to hardware. 19

4.1 An overview of the design process. 22
4.2 Two major stages of the different phases in the double diamon design

pattern. 27

5.1 A focus group session with discussions surrounding QTM’s features
and the real-time SDK. 32

5.2 Image depicting one of the scenarios - the ladder scenario - identified
during observations. 35

5.3 KJ-technique brainstorming result 37
5.4 Building on previously-generated ideas. 37
5.5 On the table’s center, ideas that were voted as valuable. At the right-

side of the table, pile of ideas that could be re-visited later on. . . . 38
5.6 Left-side, ideas distributed in a graph according to believed relevance

and time-to-realise idea. Right-side, the model used to determine
which ideas to prioritize . 39

5.7 Overview of critical prototype developed with Xamarin, running on
Android. 40

5.8 The feedback loop that was engaged during low-fidelity prototyping. 41
5.9 The template used when making low-fidelity prototypes of the user

interface . 41
5.10 Low-fidelity modules assembled together to prototype a potential

screen inside the mobile tool. 42

viii

List of Figures

5.11 Model of the navigational flow. Left: Initial model, Right: Re-
designed model after discussion with domain experts 43

5.12 A few screenshots of the prototypes created with Axure. 44

6.1 Pie chart demonstrating platform-specific- versus shared lines of code. 46
6.2 Annotated screens of the home page. 48
6.3 Annotated screens of the camera page. 49
6.4 The circle with numbers represents a potential position for a camera

screen where the circle with number one represents the currently se-
lected camera. Left: Circle in a 3D-coordinate system, Right: Circle
in a 2D-coordinate system . 50

6.5 Order of the cells in the grid, the top-left-corner is the first screen
and the bottom-right corner is the last screen. 51

6.6 The top row is visible during a carousel screen layout and the one
below when in grid screen layout. 52

6.7 Application’s mode toolbar . 52
6.8 Left is the settings drawer when in marker or intensity mode. Right

is the settings drawer when in video mode. 53
6.9 An overview of the MVVM architecture. (Courtesy of Microsoft . . . 53
6.10 An overview of the MVVM architecture. 54

7.1 A bar chart visualizing the score for each task. Score is the y-axis
where higher means easier to complete. The different tasks are placed
on the x-axis. The colors indicate the different users, moreover the
users appear in order where the leftmost is User 1 and rightmost User
6. 57

7.2 Usage data gathered during the user tests 61

8.1 A few examples of common setups outside of a studio 63
8.2 Intersection of platforms and the distinction made between core logic

and user interface. 64
8.3 A Miqus camera with its LED-ring lit. 69
8.4 Storyboard depicting an affordance hint animation of the settings

drawer . 72
8.5 Infinite loading spinner example . 73

ix

List of Tables

2.1 Stakeholders of the ViewFinder application 4

5.1 ArqusFinder application requirement overview 31
5.2 Scenarios . 35

6.1 Lines of code written for each platform 47

7.1 The tasks that support each use case is presented in this table. 56
7.2 User score of each task. Column represents the different tasks and

rows the different users. 58

8.1 An overview of some of the most popular frameworks and their release
dates (in no particular order) . 68

x

Acronyms, Names and Concepts

API Application Programming Interface . 15
CPU Central Processing Unit . 73
DD Double Diamond . 74
DirectX An application programming interface for multimedia purposes,

especially game programming. .73
IP Internet Protocol . 70
JPEG Join Photographic Experts Group . 64
LoC Lines of Code . 46
mocap Motion Capture . 1
MVVM Model View ViewModel . 53
OpenGL Open Graphics Library . 73
OS Operating System . 67
QTM Qualisys Track Manager . 9
RT SDK Real-time Software Development Kit . 45
SEQ Single Ease Question . 13
SDL Simple DirectMedia Layer . 51
TFS Microsoft Team Foundation Server . 29
UI User Interface . 20
UWP Universal Windows Platform . 45
Xamarin Cross-platform framework for mobile applications 68
XAML Extensible Application Markup Language . 50

Android Mobile operating system developed by Google
AndroidTV Android TV is a smart TV platform developed by Google
BlackBerry A line of mobile devices
Cocos2d-x Open-source and cross platform free 2D game engine
Corona Labs Framework for building games/apps for all major platforms
iOS Mobile operating system developed by Apple
Kivy Open source Python library for rapid development of applications that make

use of innovative user interfaces, such as multi-touch apps
libGDX Cross-platform Java game development framework that provides a unified

application programming interface.
Qt Cross-platform software development for embedded & desktop
React Native A framework for building native apps using the React framework

xi

Acronyms

tvOS Operating system for Apple TV
Unity Cross-platform game engine

xii

1
Introduction

1.1 Motivation

Motion capture technologies have come a long way during the past forty years, going
from Calvert’s potentiometer exoskeleton in the early 80’s, to Acclaim’s real-time
solution for one-hundred simultaneous track points in ‘93 [62], and up to Microsoft’s
trackpoint-free Kinect sensor[13]. Current solutions provide a high degree of fi-
delity (depending on their price) and are used in a broad- and ever growing range
of applications such as; sports (e.g. athlete analysis), aerodynamics, health (e.g.
gait research), psychology, movie business and even video games. However, with
better solutions comes more intricate software, complex setups and vast amounts
of information; information that needs to be tracked, organized, queried and pre-
sented, sometimes even in real time. For this reason, pertinent research in the area
of interaction design and motion capture systems is important in order to facili-
tate investigations which make use of this technology, thus increasing the amount
of relevant Motion Capture (mocap) applications.

1.2 Context

Qualisys is a company based in Gothenburg that develops optical motion capture
systems. Their technology has a wide range of applications in fields such as sports,
engineering and medicine[1]. Each field poses different challenges to track motion
data accurately and in way that provides useful data for analysis [42, 39, 41]. All
of these fields share a need for tools that make the use of motion capture systems
more user-friendly and intuitive.

The company currently has two mobile applications which are available in Apple’s
App Store and Google play. The ViewFinder application allows the user to stream
a live camera’s view to a mobile device, which is mainly used when setting up the
cameras for the whole motion capture system. The other application serves as a
remote control which is used to start/stop certain measurements in the software
that is connected to the camera system.

1

1. Introduction

1.3 Problem Definition

After a few years in the market, Qualisys has found that the ViewFinder application
has not aged well; the graphical user interface (GUI) elements are outdated and the
overall app structure is, by today’s standards, subpar. On top of this, new cameras
with more advanced features have been developed since the application was last
updated, features that cannot be used as of now because they are not supported.
This has lead the company to express a need for an updated application with new
features and an improved user experience.

The current ViewFinder application was developed natively for two mobile plat-
forms; Android and iOS, which makes occasional maintenance cumbersome for sev-
eral reasons:

• Need to maintain two separate projects with entirely different toolchains.
• Even when a small change needs to be done, both projects have to be edited

individually.
• It is complex to setup native development tools from scratch, let alone two of

them.

1.4 Research Question

The following research question distills the aforementioned problem, narrowing the
scope of this thesis and laying down the foundation for the results.

What should be considered when designing a mobile tool that aids with the setup
stage of an optical motion capture system?

1.5 Proposal

To address this, an evaluation of currently existing tools will be performed and the
output from this will be used to create a mobile proof of concept that we believe
will be more user friendly and maintainable. More specifically, this work will start
with an extensive assessment of the current state of motion capture systems and
the interaction with these. Then a formative evaluation of existing tools will be
performed to identify a potential room for improvement. These findings will then
be used to ideate upon a solution that will then be prototyped and evaluated.

2

2
Background

This chapter will present the relevant background for this thesis as well as make
the reader accustomed to the subject and prepared for the theory in the following
chapter. Furthermore it will lay the foundation of the research and validate its
relevance.

2.1 Related Work

Currently, a couple of tools are already available to aid the user interaction with a
motion capture system. However the research of this thesis is only concerned with
the setup stage, based on that, only two tools were identified to be of relevance.
One such tool is the ViewFinder mobile application. It provides a set of features to
assist users when setting up cameras so they can detect and calibrate them on the
fly. The following features are supported by the application:

• Connecting to a motion capture system
• Viewing a specific camera output
• Modifying camera settings

The usual approach without the application is to consistently check a monitor con-
nected to a computer that communicates with the system to see how well the camera
setup works. This process demands cooperation and communication when done in
pairs. In contrast, it can be a time consuming process when done without the aid
of a partner due to excessive movement from cameras to computer monitor.

Vicon is another company that develops motion capture systems. The company has
developed a tool similar to ViewFinder called Vicon Control. Apart from the fea-
tures supported by the ViewFinder application it also supports additional features;
Qualisys on the other hand provides additional applications for similar features. At
the time of writing, Vicon Control is more up-to-date and the user rating indicates
a better experience as well[33, 34]. A screenshot of each application can be seen in
figure 2.1.

3

2. Background

Figure 2.1: A side-by-side view of tools that aid in the setup stage of motion
capture system. From left to right: Vicon, ViewFinder

2.2 Identifying Stakeholders

It is important to identify potential stakeholders to understand who a design is for.
That is to say, all the people that might be affected with the success or failure
of the end-result. Commonly there will be different groups of stakeholders with
significantly different backgrounds and expectations, every stakeholder is important
to take into account for a design to be successful. A couple of stakeholders were
identified for this thesis and these were then grouped into the roles that they have
from an organizational context. Additionally, their respective goals for the research
were determined to better understand how they are affected by the product.

Table 2.1: Stakeholders of the ViewFinder application

Stakeholder Goals and Interests
Support Technician Improve efficiency during installations of the camera

systems
Software Engineer An intuitive and maintainable solution that communicates

with the motion capture system.
The Customers A good user experience when interacting with

the camera system
Authors of this thesis Explore potential ways of designing a tool that aids users

during the setup stage of motion capture systems

4

2. Background

Figure 2.2: Some examples of how a motion capture system might be used.

2.3 Optical Motion Capture

Motion capture systems are used to track the movement of physical entities in space
throughout a specific timespan [48]. These physical entities can be anything in the
real world ranging from living beings such as humans and horses, to inanimate things
like vehicles and even sea tides (see figure 2.2).

Various approaches and implementations exist when it comes to ways of doing mo-
tion capture, such as: optical motion capture, electromagnetic trackers, electrome-
chanical devices, radio-frequency positioning and acoustic systems [48]. Qualisys’
systems uses optical motion capture through the use of spherical passive markers,
hence that will be the focus of this research.

These systems generally provide a high level of fidelity, even sub-millimetric reso-
lution when operating a state-of-the-art system. A camera-rig is used to capture
pictures of the desired target and computer vision algorithms are then used to inter-
pret the data, identify markers and convert it into a 2D/3D virtual scene. Sensors
track the markers by detecting a concentration of light in a specific spectrum. This
light can be reflected on the markers (passive markers) or emitted from them (active
markers) [48]. Due to this, it is possible for occlusion problems to arise. Optical mo-
tion capture precision is directly proportional to the amount of trackers and cameras
used, therefore it can quickly become a very expensive solution if extreme accuracy
is needed (see figure 2.3).

This following paragraphs will briefly go through each of the six stages[48] that
comprises the marker-based optical motion capture process, with the goal of getting
the reader acquainted with it (using a high level of abstraction). A visualization of
this model can be seen in figure 2.4.

5

2. Background

Figure 2.3: An example depicting a high-end gait analysis setup.

Figure 2.4: The six stages of optical motion capture, preparation being
highlighted due to the importance it represents to this research work.

Preparation This step consists of setting up the measurement area and perform
adequate calibrations on the equipment to ensure the best system performance under
a specific environment. This is exemplified in figure 2.5. More specifically, this
process includes:

• Setting up the camera rig (i.e. mounting cameras around the area, connecting
them and making sure they aim in the right direction).

• Starting the software and connect to the mocap system.
• Adapting lighting conditions and camera settings such as exposure and con-

trast to adapt to surroundings and ensure tracking quality.
• Performing system calibration. Usually done manually by standing in the

measure area and waving a special wand with markers attached to it. This
provides the system with information that is indispensable to know where the
cameras are located in relation to each other, as well as other important data
such as focal length and lens distortion.

It is one of the main goals of this research team to design and implement an intuitive

6

2. Background

F
ig
ur
e
2.
5:

Ex
em

pl
ifi
ed

sc
en

ar
io

of
th
e
pr
ep

ar
at
io
ns

st
ag

e
of

an
op

tic
al

m
ot
io
n
ca
pt
ur
e
sy
st
em

.

7

2. Background

tool to help with this preparation phase, more specifically with camera placement
and video calibrations.

Measurement In this stage sensor measurements are sampled and marker points
are separated from the original image, this yields two-dimensional information of
key points for each active camera in the set-up.

Reconstruction Using as an input the previous 2D marker information from every
active camera in the rig (at least two are needed) and individual placement and
orientation information for each camera (previously obtained with calibration in the
preparation stage), the system transforms the points into a three-dimensional space
by means of stereo triangulation[51].

Tracking Tracking consists of matching the reconstructed virtual information of
the mocap subject at a given time with the respective information at future time
instances. In other words, this stage follows (tracks) the movement of key points
along a period of time.

Identification For practical purposes, each marker should be labeled and individu-
ally tracked throughout a motion capture session. This is trivial when active mark-
ers are used since they all have specific properties, but this stage requires additional
advanced processing if passive markers are used.

Post Processing This last stage in the pipeline is entirely application-specific.
For example, the resulting data could be exported to a certain file format that
could then be used by film-makers to animate a virtual character in a blockbuster
movie. It could also be used for advanced bio-engineering, linguistic research or
even psychology studies within the field of animal biology. This stage could also be
used to fix potential imperfections in the motion capture data if any of the previous
stages were to alter the measurements in any way.

2.4 Qualisys Motion-Capture System

Qualisys develops marker-based optical motion capture systems with a wide range
of hardware options and accessories to accommodate for very specific needs like
precision, budget and flexibility. More specifically, they offer equipment such as
cameras, calibration kits, markers (both active and passive) along with convenient
marker-placing accessories, mounting gear and interfaces[1].

Qualisys currently offers a wide variety of cameras with different specifications that
accommodate different needs for special purposes. Examples of these can be seen in
figure 2.6.

The company also offers several software solutions that can be divided in the fol-
lowing categories:

8

2. Background

Figure 2.6: In left-to-right order, Miqus Video and Oqus.

• Tracking software: PC suite that handles camera setup, system calibration
and motion capture.

• Tracking software mobile companion: applications that connect to the tracking
software to offer a remote-control experience and extend some functionality.

• Tracking software 3rd party integration: these integrate the real-time motion
capture data with other popular software in the market.

• Developer tools: toolkits used to develop custom-made applications that make
use of Qualisys’ motion tracking protocol.

• Tracking analysis tools: used to analyze motion capture data for implementation-
specific purposes such as running performance, gait and posture.

Some of these software solutions is of importance for this thesis research since
they will be part of the foundation that the proof of concept will be built upon.
The following subsections will introduce essential details about these software solu-
tions.

2.4.1 Qualisys Track Manager

The Qualisys Track Manager (QTM) software provides a straightforward solution
to capture and store data from a motion capture system. It also integrates signifi-
cant functionality from other hardware solutions such as force plates, gaze-tracking
glasses and electromyography (EMG) sensors. Motion capture cameras in a system
are connected to a desktop computer running QTM, which interprets the data and
transforms it as previously described in section ??. QTM can track and present
motion capture data in 2D, 3D and six degrees-of-freedom (6DOF); it offers both
real-time streaming and playback, as well as a three-dimensional video overlay.

As of now, QTM is indispensable when setting up a mocap system because it is only
through this software that the cameras can stream their information. It is worth

9

2. Background

mentioning that Qualisys’ cameras can provide three different types of output, QTM
can quickly change between these and so can the ViewFinder mobile application.
These modes are:

• Marker Mode two-dimensional marker information
• Marker Intensity Mode color-coded visualization of current camera settings

such as exposure and threshold
• Video Mode high definition video output

2.4.2 Real-time SDK

In addition to the QTM a real-time SDK has been developed that provides ways
of communicating with a running QTM instance. The SDK enables developers
to create applications that can discover nearby QTM hosts and connect to them.
Furthermore it makes it possible to retrieve a wide array of data available to the
connected QTM host. Moreover, it is possible to change the settings of connected
cameras as well as retrieve events when the QTM host is updated. The SDK is
available in the following languages: C++, C#, JavaScript, Python. Although, the
features available for each language may vary.

10

3
Theoretical Foundation

Well-structured theories and solid arguments that provide a strong basis for this
research are described in this chapter with the purpose of solidifying this work as
an interaction design research. Some sections offer a more technical background
with the aim of providing the necessary theory to follow and digest the rest of this
document.

3.1 Substantiating Interaction Design Research

According to Zimmerman et al. research within the area of interaction design can
be evaluated through four criteria: process, invention, relevance and extensibility.
We strongly believe that our work has meaningful impact on each of these and this
small section is dedicated to back it up.

Process It is this research team’s mission to systematically document every step of
the design and development process so that interaction designers conducting research
along the lines of this specific area can reproduce it in its entirety.

Invention The nature of this work is not only theoretical, a working proof of
concept will be developed along the way which will encompass all knowledge gained
throughout every stage. The proof of concept developed along this work will not only
improve the interaction experience within Qualisys’ gamma of software solutions, it
will also put to evidence the processes and methodology exercised to create it.

Relevance This kind of research is very relevant for today’s motion capture in-
dustry because the incorporation of modern, mobile platforms in the mix is fairly
new. Experimentation in this field is still being carried-out and novel uses and in-
teractions are yet to be discovered. It of interest for Qualisys because it would mean
a significant upgrade to their current solution, bringing mocap system-setup time
down through the use of a more powerful, intuitive and responsive tool.

11

3. Theoretical Foundation

Extensibility As previously stated, everything related to the design and imple-
mentation of the research product is thoroughly described in this document, render-
ing other employees, researchers, students and/or enthusiasts able to study it and
carry on with the work. From a more technical perspective, it is one of the main
goals to provide a solution which is highly extensible and easily maintainable.

3.2 Interaction Design Research Contribution

Besides process documentation, contributions from this research will also come in
the form of artifact research. Wobbrock and Kientz summarizes artifact contribu-
tions as something that "arises from generative design-driven activities (invention)".
The first part of this thesis will evaluate existing relevant tools to get an under-
standing of mocap-assisting technologies and their current state. Next, a tool will
presented based on user- and system needs and eventually evaluated in a holistic
fashion. Throughout this work; mock-ups, sketches and prototypes will be made to
substantiate features and design choices. This process will be iterative and part of
re-framing the problem in an attempt of making the right thing, which according to
Zimmerman et al. is the real skill a designer possesses.

3.3 Target Users

It could be argued that optimizing the created proof of concept for experts would
be relevant since the majority of the people that will have use of the final product
will have technical knowledge about the subject. However, it needs to be taken into
account that the usage of the tool won’t be extensive, and thus the learning curve
should not be too steep. Based on that, the aim is to optimize for the perpetual
intermediate. At the same time, emphasis should be put on easing the load for
the users that want to become experts. [43] introduces a threefold approach when
optimizing for intermediates that we believe is valuable for this research:

• To rapidly and painlessly move beginners into intermediates
• To avoid putting obstacles in the way of intermediates who wants to become

experts
• Most of all, to keep perpetual intermediates happy as they move around the

middle of the skill spectrum

3.4 Evaluation Paradigms

Evaluation is an important part of interaction design research to elicit what works in
a given context. Preece et al. describes four paradigms of evaluation that approach it

12

3. Theoretical Foundation

from different perspectives. During this research combination of all four approaches
will be used.

Quick and Dirty Quick and dirty evaluation essentially means getting fast in-
put that is potentially valuable. The documentation process should not be time-
consuming and it usually takes the form of noted key points or rough sketches. This
type of evaluation usually occurs during informal talk where presence is key to un-
derstand the users and enables the designer to put emphasis on what is really going
on. The evaluation method will be used extensively during the initial phase of the
research, and more sparsely during later phases but still very much present.

Usability Testing Usability testing attempts to carefully measure how users per-
form certain tasks. These tasks are usually well defined and performed in a controlled
environment. Data is generally gathered by taking a lot of notes, logging behavior
as well as recording both audio and video. The observational data can then be used
to analyze what users are doing and how much time they spend doing a task. Part
of the goals for this research is to investigate how to go about creating unobtrusive
interfaces, by that usability testing will be a major part when attempting to validate
artifacts throughout the research.

One method that will be used during usability testing is the Single Ease Question
(SEQ). It is a method used in questionnaires with the aim to get perception-metric
results [30]. It is intended to be answered by a user shortly after completing a
specified task. It works by grading the ease of use of a task using a seven-point
rating scale which goes from very difficult to very easy. Obtaining task-performance
satisfaction data from the evaluation stage of this thesis is valuable due to the
iterative nature of the design process. Furthermore, it is imperative to provide an
optimal user experience.

Field Studies Field studies should be carried out in natural settings, which can
be anything from a work place to a bench in a park. Emphasis is put on understand-
ing the natural behavior of the user and how it might be improved. The studies
are usually performed using qualitative research techniques such as interviews and
observations. [58] introduces two approaches to field studies; outsider- and insider-
observer. The former depends on doing observations without interrupting the flow
of the users. Data is then analyzed which might produce qualitative or quantitative
results. The latter involves the researcher taking on the role as someone who is
performing the task in its natural context.

Predictive evaluation The final evaluation method that will be introduced is
predictive evaluation. In contrast to the other methods it depends primarily on
expert evaluators and not the users. Experts commonly base their predictions on
heuristics and perform analysis using evaluation models. The final data output are

13

3. Theoretical Foundation

expert reviews and quantitative data models. Compared to other methods predictive
evaluation is more efficient with a relatively low-cost. However, there is a risk of
being lead astray when using heuristics and care must be taken into which heuristics
to use.

3.5 Mobile Computing

As will become evident in future chapters, during the design process it was decided
that the proof of concept would be a mobile application. Concepts relevant to mobile
computing will hence be introduced in the following sections.

3.5.1 Mobile Interaction Design

Formal interaction design studies within the spectrum of mobile platforms are still
very young, nevertheless this area has been subject to a really fast growth in the past
decade due to important advancements in technology and in the way in which we
interact with it. User-interface guidelines and interaction standards are becoming
more common as the tools for mobile software development become easier to use
and open up to a new set of designers and programmers from different backgrounds.
As both hardware and software evolve, our understanding of how to incorporate
these gadgets in our daily life becomes more apparent. Back in 2007 with the
introduction of the iPhone[57] and the advent of an online application marketplace,
mobile software used to be treated just like any other legacy desktop PC software;
they were costly, standalone experiences that provided very specific functionality.
Nowadays we do not develop such applications, we now focus on complementing and
enhancing a user’s traditional workflow[53]. In other words, mobile applications
are commonly used as tools with limited functionality that extend, simplify and
boost other already-existing services and software. Mobile platforms are useful as
workflow-enhancing tools when dealing with:

Dynamic workplace provides portability by being wireless.
Limited maneuverability relatively small compared to desktops or even laptops.
Physical impediments by providing stripped-down, simpler software that can be

operated by other means than classic computing (keyboard and mouse).
Out-of-the-box interactions through novel motion-enhanced gestures, touchscreens

and even GPS.

They can extend and improve previously developed functionality through faster and
more intuitive ways of interaction, mobile platforms can also offer new interesting
ways of interaction by means of motion gestures, speech and even tactile feedback.
Because of all these reasons motion capture companies have started to invest in

14

3. Theoretical Foundation

mobile applications that can be used to assist with complex tasks. The mobile
application abstracts and isolates particular functionality from a rich mocap desktop
suite; this in turn provides a more intuitive interaction by letting the user concentrate
on the task at hand. The research team considers this to be a strong argument in
favour of using a mobile application as means of aiding with a motion capture
system’s setup.

3.5.2 Cross-platform Development

Software development for modern mobile platforms (i.e. Blackberry, iOS, Android)
has come a long way since the release of the first Blackberry smartphone back
in 2002[57]. Since then, development tools and environments have evolved a lot,
becoming cheaper, more accessible and relatively user-friendly. Each major vendor
offers a separate set of toolchains and software development kits to build applications
for their own platform. This means that in order to create a program that is - for
example - meant to run on Android and iOS, different project instances, codebases,
IDEs and even operating systems need to be used. This makes it highly impractical
when writing, updating and testing features because both ends need to be edited
separately.

There are several frameworks and libraries that try to mitigate this by offering a
common layer of abstract code on-which developers can build shared components,
drastically reducing development time among other difficulties. To fulfill the goal
of easing the maintainability of our proof of concept, one of these frameworks will
be used. The following section provides an insight to some of the more popular
solutions at the time of writing.

To ensure that our proposed solution is maintainable, extendable and relevant, a
rigorous evaluation of several different frameworks was carried-out to conclude how
well they fulfill certain criteria, the most important being the quality and robustness
of the support for most modern platforms. The evaluated frameworks are introduced
in the following sections. However, the actual evaluation will be presented in chapter
5.

Xamarin
Xamarin is an open source cross-platform SDK owned by Microsoft. Applications
developed using Xamarin are written in C#, usually in combination with either
Visual Studio or Xamarin Studio. One of the key features of the framework is that
you can share most of the codebase with other platforms while still being native at
the core. Instead of restricting developers from using platform-specific Application
Programming Interface (API) calls, it encourages an architecture where platform
specific calls are part of the development. This provides developers the ability to
make full use of the platforms but keep repeated code to a minimum.

15

3. Theoretical Foundation

In addition to the SDK they develop a cross-platform UI-generation tool called
Xamarin.Forms that can be used to share even more code among the platforms. It
is a well suited approach to UI creation when platform-specific functionality is of
less importance.

To streamline the development process and automate the testing process Xamarin
offers a service called Xamarin Test Cloud. The service is based on a framework
called Calabash that let’s developers test anything from the user interface down to
the core logic. The fee of using the service depends on the amount of devices and
device hours being used[2].

Qt
Pronounced "cute", it is a cross-platform framework used by several leading com-
panies and organizations. It is designed to let developers create multi-platform
applications and graphical user interfaces [3], making it an attractive choice for
software developers of embedded systems. In contrast to the other evaluated frame-
works, Qt applications are written in the language C++. The framework provides
several individual modules to make development of applications more convenient.
Qt Creator, which is the officially supported IDE, provides tools to optimize build
steps, run environments, UI design tools and others [25]. In addition, Qt Lite was
introduced as a new configuration system to be a part of the Qt 5.8 release that
enables developers to define in greater detail what modules to include in a build,
thus enabling developers to decrease build size [26].

Qt provides a QML(Qt Meta Language) module which can be used to write the
front-end code of the applications. It is a declarative language with JSON(JavaScript
Object Notation)-like syntax that focuses on the visual aspects of components and
their interaction with each other [28, 24].

React Native
Facebook develops and maintains an open source framework called React Native
that lets developers create cross-platform applications using JavaScript and React.
The final build is compiled into native code. A part from writing code in JavaScript
developers can also write native code, something that is useful when optimization
of features inside an application is needed. Motivations behind the framework is to
provide an efficient way of writing cross-platform applications using a language that
are well known to most developers. It is a relatively young framework and as of now
there exists no official documentation about usage of the framework in combination
with 3D graphic libraries, but there are third-party libraries available.

Unity
With industry-leading multi-platform support, Unity is an interesting contender
amongst the candidates. It is a game engine that supports both 2D- and 3D-
graphics, and as the name suggests, it is mainly used to quickly develop video games

16

3. Theoretical Foundation

through the use of highly-abstracted layers. Although Unity focuses on games there
is nothing that prevents developers from using the engine for other purposes such as
cross-platform mobile development, but it has to be kept in mind that its modules
and libraries are mainly focused on interactive media. Unity’s engine cannot be
modified nor extended, but extra functionality and behaviours can be implemented
through the use of scripts which are written in C# or JavaScript, making it attrac-
tive to developers whose proficiency and language preference may vary. A major
drawback comes from the fact that final application file sizes tend to be quite big
compared to other frameworks due to the engine been compiled in its entirety even
when some functionalities are not used.

Kivy
Kivy is an open source framework written in Python. It is free to use under the
MIT License and LGPL 3 for the previous version. The engine used in Kivy sup-
ports hardware-accelerated graphics and thus boasts the ability to create efficient
and fluid user interfaces[14]. Compared to other frameworks it aims to be agnostic
when it comes to look and feel, the motivation behind this is that it will reduce the
need for maintenance and possible bugs[56]. It is a comparably small framework and
community-driven project and by that does not have the same resources for devel-
opment and maintenance of the framework as the others mentioned above[15].

Others
Some additional frameworks were evaluated, besides the frameworks already men-
tioned, but got scrapped early on since the did not meet the criteria. They are
briefly mentioned in the list below accompanied with a motivation of why they were
discarded.

• Cinder: cinder is a C++ library which is mainly used for creative coding,
a term which is used to describe a field that combines art & design with
programming[59]. It is open-source and it has a growing community focused on
creating new and experimental technological experiences. It does not support
Android officially, although due to its open-source nature some developers are
working on this.

• Xojo: uses the Xojo language (not supported by QTM real-time SDK), doesn’t
support Android builds.

• Cocos2d-x : fast multi-platform game engine with small footprint, written in
C++. Doesn’t support native UI calls and the widgets included are limited.

• libGDX : supports plenty of languages (i.e. Java, Kotlin, Groovy, Clojure &
Scala) and platforms, but just as Cocos2d-x, it is mainly oriented towards
game development and UI functionality is very limited.

• Corona Labs: it is a free and powerful tool when it comes to multi-platform
development, as it currently supports iOS, tvOS, Android, AndroidTV, Kindle,
Windows Phone, Mac and Windows with concurrent live builds. However,
code is written using the Lua scripting language (not supported by real-time

17

3. Theoretical Foundation

SDK).

3.5.3 Platform Architecture

When working with cross-platform development it is valuable to understand what is
going on under the hood. This enables developers to make informed decisions on an
architecture that targets several platforms. The platforms targeted in the scope of
this thesis are iOS and Android since they are the most prominent mobile platforms
to date. Their respective architecture will be introduced and briefly described in
the following sections.

Android
The Linux Kernel layer provides low-level functionalities such as threading and low-
level memory management. It provides an abstraction of underlying complexities
that concern hardware, something that in most cases are unnecessarily close to the
hardware for standard mobile application development. There is yet another layer on
top of the previously mentioned that rarely needs to be touched unless very specific
functionality is needed, this layer is called the Hardware Abstraction Layer(HAL).
Its main purpose is to expose device functionality to the higher level Java API
Framework and does this by providing multiple library modules that targets several
different Android devices. Developers are usually working in using the Java API
Framework layer which provides building blocks for development that reaches the
entire feature set of the Android OS. There is one last additional layer in the Android
stack for the System Applications such as messaging, email and calendar that is there
to provide developers with functionality for common use cases[4]. An overview of
this architecture can be seen in figure 3.1.

iOS
The bottom layer is known as the Core OS layer and it contains low-level features
which are closely coupled with the hardware. An example of this is the Accelerate
framework which provides fast calculations in the areas of linear algebra, image-
processing and digital signal processing [9]. The Core Services layer sits on top of
this, providing system services such as location, cloud storage, social media and net-
working [10]. The next layer is the Media layer which is there to provide developers
with functionality to more easily create an application that sounds and looks good
[12]. Finally there is a layer called Cocoa Touch which is the most prominent frame-
work when building iOS applications. It provides an API for touch interactions and
gestures amongst other features. The iOS guide recommends looking into this layer
before going further down in the architecture stack[8].

18

3. Theoretical Foundation

Figure 3.1: An overview of the layered architecture of both Android (on top) and
iOS (below). Red indicates close-proximity to hardware.

19

3. Theoretical Foundation

3.5.4 Interaction Design Challenges

Cross-platform mobile development does not come without its set of problems, the
most relevant within the field of interaction design being the fact that there are differ-
ent guidelines and implementations for each platform, these include: color guidelines,
application flow, fonts and UI-control elements amongst several others[53, 19, 11].
It can be tempting for designers to get carried away with native User Interface (UI)
elements and components, altering the application structure and completely chang-
ing the way a user interacts with the system across different platforms. Although
it is virtually impossible to offer the exact same experience on multiple operating
systems, some care needs to be taken to structure interface elements in a similar
manner. Bottom line is, the user experience on one platform should not be better
or worse than on others [53].

20

4
Methodology

Methods relevant for this thesis will be introduced in this chapter. Part of the
methodologies will revolve around evaluating the current state while others are there
to aid in exploring new ideas, iterating upon the ideas that seem valuable as well as
evaluating possible design solutions.

4.1 Interaction Design Activities

[58] identifies four basic activities for interaction design, the necessary methodology
to carry out each individual activity is described throughout this section. Figure
4.1 shows an overview of these activities.

4.1.1 Identifying Needs and Establishing Requirements

Interaction design is about designing for people, and in order to successfully do this
such people - the target group - and their needs need to be thoroughly analyzed.
This phase provides the designer with the necessary information to create a set of
requirements on which the rest of the design-development cycle will be based.

Observations
It is important to understand human behavior in interaction design research, and
by that find a design solution that solves an actual problem. Observations are
one method of doing ethnographic research to understand human behavior. Ob-
servations can be done directly or indirectly, as an observer or participant; it is
not uncommon that the ethnographer switches between these roles to get an even
broader understanding[61].

Researchers can take several approaches when doing observations and most of them
consist of documenting events, behavior, reactions and other aspects that might be
of interest for the research. There is no optimal approach so it is important to be
able recognize suitable and efficient ways in accordance to the context. Since this

21

4. Methodology

Figure 4.1: An overview of the design process.

research approaches experts and possibly intermediate users the observations had
to gather detailed and qualitative data. With that in mind, the following ways of
documenting the process were used:

• Notes: To recognize patterns and phenomena
• Audio- and video-recording: To analyze reaction, behavior and speech
• Screen-casting: Recording of a mobile device’s screen to further identify key

behavioural aspects.

[60] describes a technique when taking notes during observations. The technique
works by taking notes on human action and make ticks on each repeated action.
Actions are then categorized according to how many times they occur. One tick
means that it probably isn’t something of significance, two ticks might indicate that
a pattern is emerging and three ticks that a phenomena has occurred. Phenomena
are something that with high certainty will occur more times and thus should be
given more attention.

Audio and video recording are tools that can be used to make in-depth analysis of
a situation. During live observations there is a possibility that events of importance
are missed. In those cases, an audio or video recording might be proven invaluable.
It is important however to not use this as a substitute for doing real observations
in a natural environment. There are several reasons for this; for example, one may
move around asking questions and perceive reactions more clearly, while performing
live observation than watching it on a recording afterwards[61].

To support the methods mentioned above and get more in-depth data a method
called think aloud was incorporated during observations. Think aloud works by

22

4. Methodology

prompting the subject to constantly speak their thoughts when performing a set of
tasks. It is important that the room facilitates this behavior so the subject can talk
without being disrupted or feel uncomfortable. A think aloud session is typically
recorded and then later on transcribed and analyzed [47]. During the observations
done for this thesis, we made a habit of taking notes and asking questions to clarify
behavior when necessary to get a more full picture of what was going on. Each
session was followed up with a brief and concise semi-structured interview.

Interviews
Interviews were performed in a semi-structured fashion [58]. They were formulated
based on a set of guidelines with relevant questions, the interviewee was then asked to
elaborate on each question to get a better understanding of their intention behind the
answer. During each interview there was an interviewer, one or several interviewee(s)
and a note-taker to ease the load of the interviewer so that full focus could be put
on the interviewee(s).

4.1.2 Developing Alternative Designs

Part of the work consisted of exploring and developing ideas. This is commonly
referred to as the ideation phase, a word that [64] use to describe "generation of many
possible solutions". The main ideation phase should take place after the problem
has been clearly defined. It is only possible to come up with relevant solutions with
a clear understanding of the problem. This understanding can be achieved through
field studies, observations and evaluation of the current state.

Brainstorming
Brainstorming is the act of having intensive discussion about problem solutions
and(or) generation of ideas [7]. [54] argues that brainstorming can be an art; some-
thing that one continuously can become better at. Building on those ideas, the work
done here will embrace previous findings on what makes up a good brainstorming
session and apply them in practice. We will use the following list, based on our own
experiences as well as other researchers within the field [54], to guide us during our
brainstorming sessions. It is our belief that this will help us gather more valuable
ideas.

We aim to:

• Have clear problem statement
• Encourage all ideas
• Number ideas
• Visualize the flow (e.g. using post-its)
• Be creative and visual

23

4. Methodology

We aim to avoid:

• Letting the boss speak first
• Employing a turn based strategy
• Only letting experts talk
• Getting too silly
• Documenting everything

KJ Technique
TheKJ-technique (also called affinity diagram) named after its inventor Jiro Kawakita,
will be used in combination with methods for idea generation such as brainstorming,
with the aim of reaching consensus of top priorities more efficiently through eval-
uation of ideas that encourages collective thinking[17]. A fundamental part of the
technique is that there should be no discussion between the group members until
the very end of the session. The technique consists of several steps that will be listed
in chronological order below:

1. Determine a focus Question
2. Organize the Group
3. Put Opinions onto Sticky Notes
4. Put Sticky Notes on the wall
5. Group Similar Items
6. Naming Each Group
7. Voting for the Most Important Groups
8. Ranking the Most Important Groups

For the work of this thesis there will be no facilitator, even though that is something
that is recommended[17]. This is mainly due to the amount of people available for
the work of this thesis and partly due to our belief that if we are able to obtain more
people for a session then it is better if they are joining the idea generation process
instead of facilitating a session.

4.1.3 Building Interactive Versions of the Designs

After the ideation phase, a somewhat clear vision of the actual product should be
identified. The design activity of building interactive versions of a design consists of
developing an artifact with a specific level of fidelity. This level of fidelity depends
on the current state of the design. The creation of this artifact can be iterative and
build upon previous results once they have been evaluated.

Prototyping
Envisionment of ideas make design work visible to ourselves, and to others[40]. Pro-
totyping is commonly used to create concrete but not fully fledged implementations

24

4. Methodology

of a system or an idea and thereby envision it. One of the skills of a designer is
to find a suitable representation when doing envisionment. A good representation
is according to [40] "accurate enough to reflect the features of the system being
modelled, but simple enough to avoid confusion". This work will be on the more
technical side of interaction design, thus some techniques will be more suitable than
others. The following list will introduce prototyping techniques and motivate why
we believe they are suitable.

Low-fidelity Fast prototypes will be viable in some cases, such as trying out and
do user tests of an interaction.

Sketching Quickly visualizing ideas is an effective way to do prototyping for most
designers. In this work it will be anything from user interfaces to system
architecture.

Mock-ups Wireframes to create early design and test with the users
High-fidelity Prototyped applications of critical features to figure out how the

system should be designed

The goal is to create an environment and a resource that enables developers to create
a novel and intuitive experience when interacting with motion capture systems. To
do this, high-fidelity prototypes will be created to determine feasibility, usefulness
and areas of improvement. This will also help to determine requirements of the final
system.

Designs can always be improved and the same goes for software architecture; it is a
wicked problem and there exists no optimal solution.

4.1.4 Evaluating Designs

In this design activity the usability and acceptability of the produced solution(s) are
measured against specific criteria. This phase determines if the product is indeed
worthy of further development. This stage is also very important when working with
an iterative design process as it will yield critical results that will then be plugged
to another round of ideation and development. [...] without evaluation, designers
cannot be sure that their software is usable and is what users want [58].

What to evaluate depends on the context [58]. The context for this work is mobile
real-time interaction with motion capture systems and a bi-goal is how to design a
software system that supports multiple mobile devices without affecting interaction
negatively.

To guide our evaluations we will be using the DECIDE framework proposed by
Preece et al.. It is an abbreviation of six things that should be taken into consider-
ation before evaluation, they will be explained in the following list.

25

4. Methodology

• Determine the goals to guide and emphasize on what is truly important
• Explore and dissect questions to make the evaluation more specific
• Choose an evaluation technique to add structure
• Identify practical issues that must be addressed
• Decide how to deal with ethical issues that might arise
• Evaluate how data should be collected, interpreted and presented

According to Preece et al., there are two types of evaluation. The first one is
formative evaluation which occurs during the early stages of the design process.
This is used to evaluate current product usability. It helps to understand in what
degree the product meets the user’s needs. At the end of a design process iteration
there is a summative evaluation to asses the result. Any type of evaluation can
always be performed during any stage of the design process, this ensures some level
of quality and helps the designer to focus on the problems at hand. During the work
of this thesis, a major formative evaluation will be performed to evaluate the current
state and will be an important part of the process when defining the problem. A
later summative evaluation will be carried to assure that artifacts (proof of concept)
and potential solutions are adhering to user needs.

4.2 Planning the Design Process

There exists a vast amount of different design processes that organize and further
delve into the previously described design activities[58], this reaffirms the fact that
there is no one way to approach design. Interaction design is essentially about
understanding the users and the actual problem, and then find a way to create a
design that takes the problem to a preferred state.

Our design process will take inspiration from the Double Diamond (DD) Design
Process that was introduced by The British Design Council. The process stems
from qualitative research on design approaches of major companies with leading
corporate designers. Based on their expertise in theories and practices of design
management, they analyzed their findings and found striking similarities, something
that eventually came to be the DD process[44].

Even though our process will be inspired by the process mentioned earlier it is
important to emphasize that our process will not be static but rather dynamic.
There is no obvious way when it comes to how design should be approached and
having some flexibility is good to be able to adapt to changing requirements and
knowledge about the domain. This has been acknowledged before in research about
what should be expected from research through design and [50] states that "..theory
by necessity under-specifies design activities".

The DD design process is structured in a way that addresses design challenges in
four phases:

26

4. Methodology

Figure 4.2: Two major stages of the different phases in the double diamon design
pattern.

• Discover/Research
• Define/Synthesize
• Develop/Ideate
• Deliver/Implement

Furthermore, the phases in the list can be grouped into two major stages. Both
of these have a converging phase in the beginning and a diverging one in the end.
The focus of the first stage is to figure out how the problem should be addressed
and what the questions that should be asked before proceeding towards an actual
solution are. The second stage is about doing the right thing, to accomplish this
it is important to explore possible solutions through ideation and other methods of
exploration. Finally a design solution is evaluated based on the defined problem. A
model of these stages can be seen in figure 4.2.

The following subsections describe the phases in more detail as well as relate to how
they will be integrated as a part of our design process. How the final design process
came to be will be explained in greater detail in chapter 5.

Discover/Research
Consists of exploring and dissecting the challenge in order to get a better understand-
ing of what lies ahead, identifying obstacles and gathering as much information as
possible within related fields of study. Two types of research are done in this phase,
we present these along with the fields concerning our work:

• Primary: Interaction design, motion capture systems, mobile development
and cross-platform development.

• Secondary: Xamarin platform and in-house QTM tracking software along
with its real-time protocols.

27

4. Methodology

Define/Synthesize
After getting all the relevant findings from the previous step, it is important to
summarize them, find similarities between them and discard those that are not
sufficiently relevant. After this, the research question will become more clear which
in turn will make it easier to find a valuable answer. Clear areas become more
apparent and it gets easier to identify problems and ask pertinent questions. Thus,
inherently setting the foundation for the ideation phase.

Develop/Ideate
During this phase, ideas regarding possible design solutions are generated, developed
and iterated upon. Exploring and evaluating different paths is very important for
it enables a team to make thoughtful choices.

Our approach was to ideate on possible features and prioritize them according to
how valuable they were as well as how critical they were to the final product.

Software critical features were to be prototyped as working applications to ensure
expected functionality. It could be argued that this actually belongs to the previous
phase. However, we saw it as an important part during the Ideation Phase so
that we could quickly jump back to the Define Phase and reframe the problem if
necessary.

Deliver/Implement
Based on ideas and prototypes from the Ideation Phase, sufficient data should have
been gathered in order for the actual product implementation to begin. All realiza-
tions made during the previous phases should act as a guide on the design of the
final result.

28

5
Design Process

The purpose of this chapter is to give an understanding of the choices that were
made and how the final design solution came to be. Furthermore it will explain the
design process that was revealed during the work of this thesis as well as the gained
insights.

5.1 Evaluation of Frameworks

Several cross-platform frameworks were introduced in section 3.5.2; these were eval-
uated to figure out which one was more suitable for the proof of concept. The
criteria that were used to evaluate said platforms is listed below.

• Real-time SDK compatibility
• Developing environment
• Compatible platforms
• Deployment process
• Testing
• Look & feel options
• Access to platform-specific APIs
• Filesize
• Access to 3rd party libraries
• Compatibility with Microsoft Microsoft Team Foundation Server (TFS)
• Cost-licensing

The selected framework and environment should preferably be familiar for developers
of the motion capture system used with the proof of concept. To keep the need for
maintenance to a minimum it is important to aim for correctness, with that in mind,
possible testing frameworks for each candidate were also evaluated. Automation of
processes such as publishing and deployment was desirable as well.

Making the application look aesthetically pleasing was not part of the criteria. How-
ever, flexibility for look and feel specification was considered. Using cross-platform
UI code for native look and feel provides a way of automating the graphical inter-

29

5. Design Process

face using autonomous UI generation which in turn reduces the development time
and might result in higher productivity [55]. Moreover, UI generation can provide
a well tested set of modules that works well and at the same time be adaptive to
the context. Even though native components may be adaptive there are cases were
a more customized look is required.

Furthermore, to reduce storage, load- and download-time the file size of the appli-
cation should not be unnecessarily large. Finally, suitable libraries were evaluated
that might ease the load of development time and add reliability due to support
from communities.

Based on all this, Xamarin was the framework which was deemed the most suitable.
It provides a way of sharing a single C# code-base, which is supported by the real-
time SDK. Additionally, it compiles into native code. -This translates to a small
application filesize and good runtime performance. It is important to notice that the
Xamarin framework can be managed within Visual Studio, which is a recommended
IDE when working on a Windows PC. This makes integration with Microsoft TFS
more accessible. Finally, the license cost for Xamarin application development is
dependent on the Visual Studio licensing, thus it may vary depending on customer
needs[35].

5.2 Requirements Specification

This section aims to provide an insight into this work’s requirement gathering pro-
cess. [58] distinguish five different types of requirements (functional, data, envi-
ronmental, user & usability), table 5.1 shows an abstract set of these which were
identified in the early stages of this work. The results and thresholds for the re-
spective criteria and how well they are fullfilled by each framework is provided in
appendix F.

5.2.1 Elicitation

A user-centric elicitation approach was done to find and transform needs to formal
requirements. Instead of having a focus on what the users should be able to do with
the aid application the aim was to understand what the user was doing with the
old application and find out how this experience could be improved further. During
elicitation a couple of techniques were utilized to find out the requirements for our
work, these techniques will be briefly introduced in the following sections as well as
the findings from using them.

Observations
Besides eliciting requirements from the previous ViewFinder application through

30

5. Design Process

Table 5.1: ArqusFinder application requirement overview

Requirement Description
Functional Application must connect to a QTM host through a LAN

and access every camera’s stream and settings, it must
also be able to tweak said settings.

Data Application must present specific real-time motion capture
information based on the user’s input (i.e. marker positional
data, marker intensity feed and camera stream feed).

Environmental The application is intended to run on a controlled environment
(e.g. a studio) where a motion capture system has already
been connected to a QTM instance.

User Intended users must be acquainted with the system
(this includes both hardware and software), after all, it is the
application’s goal to make a mocap technician’s job easier.

Usability Application must be as intuitive and non-intrusive as possible,
it must offer clear functionality through a clean interface to
promote user flow.

feature analysis, there was a need to evaluate how it worked in-action with users.
The aim was to find out what the users used the application for and how well they
were able to perform their intended tasks with the aid of the application. Prior to
observations a couple of preparations were done. Firstly the camera system was
intentionally disarranged to ensure that the subjects had a reason for performing
certain tasks. Secondly the subjects were asked if they were okay being video-
recorded during the observation to enable the authors to go back and analyze the
sessions in a later stage. Additionally an attempt to record the mobile device screen
was done but due to technical difficulties the authors decided not to present nor
employ the data in this work.

Finally the subjects were prompted to do Think Aloud as they performed their
tasks so that their rationale behind their actions could be studied as well. During
observations one observer would take care of the recording whilst the other made
notes on anything potentially interesting. Furthermore, the observers asked the
subject to clarify actions when what was said and what was done was not sufficient
to fully grasp the action. A technique to recognize phenomena and patterns were
employed during the observations to find recurring behaviour which is described in
4.1.1, this technique resulted in a couple of patterns listed below.

• Looking at cameras to identify their order
• Going back and forth to the QTM desktop application
• Putting down mobile device to move cameras
• Moving to pick-up and start interacting with application
• Changing camera focus and tweaking settings while in intensity mode
• Corroborate with QTM after tinkering with a camera with the help of the

ViewFinder application

31

5. Design Process

Figure 5.1: A focus group session with discussions surrounding QTM’s features
and the real-time SDK.

The material was carefully studied and discussed post-observations and a couple of
requirements and scenarios were formalized based on the findings from the observa-
tions. These findings will be presented in chapter 7.

Interviews
Semi-structured interviews were conducted following the observations. These inter-
views were based on the authors findings from previous evaluations of the ViewFinder
application. The formalized questions worked primarily as a catalyst for discussion
regarding how the application could be improved but also as a way for the authors to
confirm that their findings were in-line with the users own thoughts towards the ap-
plication. A major goal with the interview was to let the users elaborate on aspects
of the ViewFinder that were hard to observe and discuss what these aspects meant
for the application. Worth emphasizing is that these interviews did not provide
any results on their own but rather worked as a complement to the result from the
observations conducted previously. Additionally a lot of informal interviews with
key stakeholders were had to discuss relevant subjects for this work.

Focus Groups
Exhaustive meetings were held several times with key members and stakeholders.
These meetings were mildly-structured as there were no formal guidelines nor were
they handled by a facilitator, but they were always flowing through a main discussion
theme. These sessions were used to discuss matters such as the current application’s
features, lack of features, strengths and weaknesses. Other matters included cross-
platform mobile development and the challenges that this represented to them and
their teams. During these sessions the stakeholders would extensively talk about how
their software suite had evolved and how it was important to incorporate new func-
tionalities and handle new cases through the use of modern technologies. Without a
doubt these focus groups were extremely important to define the project scope and
describe the key features and requirements of both the application and the toolkit.

32

5. Design Process

Figure 5.1 depicts a typical focus group session.

Output
All together, these different ways of gathering information provided the team with
lots of feedback which could prove to be useful. It was the team’s job to filter-out
the remarks which did not fit in the scope of this research work. The following is a
semi-curated list with some comments and observations that were gathered by the
research team at different stages throughout the whole elicitation process.

Interaction observations

• Previously existing application (ViewFinder) is not used often because it crashes
a lot; reliability is of the essence.

• ViewFinder tries to address the problem where there is only one technician
working with the system.

• Some people do not use ViewFinder very often because it takes some time to
setup, mainly because of networking.

• Changing camera settings is not obvious at first because these options are
hidden, users had a hard time figuring out that they needed to press a specific
icon to bring-up the settings drawer. There was even a specific case in which
a user was so unaware of this that he used the desktop application to change
the settings for the first camera in the test.

• Operating the application whilst standing on a ladder and physically manipu-
lating a camera is no easy task; users typically placed a tablet on the ladder’s
last step and looked at it while operating a camera with both hands.

• On a user’s words, it’s OK because it doesn’t have a lot of buttons and clutter,
but more information or hints about some features would be great.

Technical observations

• Current ViewFinder does not offer a way to exit demo mode, users need to
restart application.

• A camera’s ID can be changed from the desktop QTM application, but not
from ViewFinder.

• Interface feels outdated by today’s standards.
• It is not possible to directly set a specific value for a camera setting, meticu-

lously operating a slider becomes hard when values range from 0 to 30 thou-
sand.

• When ViewFinder crashes, it will sometimes crash the running QTM instance
as well.

• Due to the application’s time of release, it is not compatible with some of the
newest camera features.

It is important to notice that even before the Ideation Phase officially began, lots
of interesting thoughts and schemes were already being discussed. Each interview
and focus group session yielded plenty of ideas and discussions; whether they were

33

5. Design Process

realistic or not in terms of time and scope was still not for debate and so they always
seemed relevant. Some discussions regarding voice-activated commands and audio
feedback were held a couple of times and because of this recurrence we decided to
incorporate related inquiries on some interviews, the response was mixed as some
technicians were very interested in this, others thought it could be annoying and
others just did not care. Another interesting idea that was brought to the table
several times was to make use of the built-in smartphone rumble functionality to
provide fast feedback concerning actions such as system calibration and measure-
ment capture; this was inspired by another thesis work (Franjcic et al.[49]) in which
visual and haptic feedback was used to help with the system calibration process.
Other concepts that never made it to the Ideation Phase included controlling the
system through smartphone motion-gestures and a wireless dongle with communi-
cation scripts to streamline application-host connection.

All this information was then used to produce use cases and scenarios on which the
research team would ideate and design a tailored solution.

5.2.2 Use Cases

After numerous interviews and focus group sessions, we went back to the documented
observations and unveiled very interesting workflow patterns and behaviours, we
wrote these down along with some descriptions and documented them as contextual
tasks [52], for they depict special tasks that occur under certain circumstances.
These contextual tasks were analyzed and transformed in order to convey more
generic cases, therefrom use cases were generated. These recognized use cases would
then be used to analyze and further understand how work flows in a more generic
environment. The following list contains the identified tasks, while elaborated use
cases can be found under appendix G:

• UC1 Connect to QTM host
• UC2 Select camera and view real-time data
• UC3 Change stream mode
• UC4 Change camera settings
• UC5 Browse Cameras

Use cases are great for understanding what should be done in reality, mapping user
profiles and setting development goals and milestones which help determine specific
functional and non-functional requirements. The complete list of such requirements
can be reviewed on appendix B.

5.2.3 Scenarios

Scenarios were created based on previous findings to create a more vivid idea of the
problems that the proof of concept should aim to solve. They are primarily based

34

5. Design Process

Table 5.2: Scenarios

Scenarios Description
Ladder The actor climbs up a ladder to move a camera into

position. Before making adjustments to the camera
position the actor has to put down the mobile de-
vice somewhere. During adjustments the actor will
repeatedly look at the device and climb down to in-
teract with it when needed.

Camera Rotation Actor decides it would be best to physically rotate the
camera for functional purposes. Actor then needs to
rotate the camera view in the application.

Camera Identification Actor looks at camera rig and application, needs to
Identify camera order and correspondence.

Camera Focus The actor needs to adjust the focus of the camera.
To do that it is important to be able to view the in-
tensity of the marker sphere inside the camera and
update the settings accordingly until a desirable re-
sult is achieved.

Figure 5.2: Image depicting one of the scenarios - the ladder scenario - identified
during observations.

on the patterns that were recognized, although adapted in a more generalized way
to include additional supportive tasks. The scenarios are described in table 5.2 and
an example of one such scenario can be found in figure 5.2 with the intention of
making the scenarios more concrete to the reader.

5.3 Ideation

After all functional and non-functional requirements were elicited and documented,
the time had come to make use of all that information, officially giving way to the
Ideation Phase. When it comes to doing idea generation, one of the most important
things to be taken into account is to stay on-track with the objective. Therefore
the very first step taken by the research team was to briefly discuss and agree upon

35

5. Design Process

two very important aspects; a design problem and a goal. Once formulated, these
were written and displayed prominently in the work environment, reminding the
participants to remain focused on the goal of the task at hand. When it came
to managing the session and setting it up, the group did not have a facilitator (as
discussed in section 4.1.2) and so, a session program was produced beforehand and a
visible stopwatch was set to ensure that the everything went according to plan.

5.3.1 KJ-Technique Brainstorming

To kick-start the ideation phase, the KJ technique was chosen between several others
because the research team was well acquainted with it, it had been used more than
once throughout the master’s programme and it never failed to deliver. The KJ
technique is useful not only for the development of new ideas, but also to establish
a common mindset amongst the participants, which is exactly what the research
group wanted at this point. The session started by setting the environment (i.e. a
whiteboard on which to place the sticky notes), procurement of tools (i.e. sticky
notes and markers) and setting a timer with a 40-minutes session goal. For practical
purposes, each member used a different marker color and every sticky note was
labeled with a number. It is important to notice that every idea was accepted at
this point no matter how far-fetched, as long as it aimed to fulfill the ideation goal.
The timer started and the participants began writing down ideas on the sticky notes
and silently placing them on the whiteboard without any particular order. After 40
minutes, the idea generation stopped and the silent grouping of these according to
pattern identification commenced; the timer was restarted and it was set to another
40 minutes. After this phase was completed, we broke silence and began going
through the clustered sticky notes, discussing our reasoning behind its classification
and agreeing upon a name for a category. Twenty-five idea groups were created
and with further discussion we re-organized the sticky notes accordingly; figure 5.3
depicts the result.

5.3.2 Further Ideation

After the traditional KJ technique, the team proceeded to iterate through every
single generated idea and tried to further extend and build upon it. In some cases
new ideas ware found during this process and these were then added to a fitting
group. The results of this exercise are depicted in figure 5.4.

5.3.3 Ordinal Categorization

After a successful brainstorming session, an overwhelming number of ideas will have
been brought to the table, and most of them will not be worthwhile to investigate
further. Kelley reinforces this statement, "... brainstormers may generate a hundred

36

5. Design Process

Figure 5.3: KJ-technique brainstorming result

Figure 5.4: Building on previously-generated ideas.

37

5. Design Process

Figure 5.5: On the table’s center, ideas that were voted as valuable. At the
right-side of the table, pile of ideas that could be re-visited later on.

or more ideas, ten of which may be solid leads.". From the previous step a total of
around 80 ideas were generated. The next step was to employ a strategy to quickly
filter out the least interesting ideas and by that work more with ideas with higher
potential. It was important for the researchers that the selection was a group effort
and thus a democratic approach was employed. The technique can be seen as a
combination of two tools for selecting ideas presented by CreatingMinds, namely
Voting and Negative Selection. Each group member got to categorize all ideas based
on a colloquial ordinal scale described in the list below. Based on the results from this
strategy some ideas were removed, some were to be further evaluated and some were
selected as solid leads, this selection will be further detailed in the next section.

• I love this idea - Highest
• This could be cool - High
• I don’t know about this - Medium
• No way José - Low

5.3.4 Ranked Categorization

When each idea had been categorized, according to the ordinal scale presented in
section 5.3.3, they were sorted based on their average result. This was doable since
the research team consisted of only two people and thus the combinatorial space
was fairly low. We classified ideas according to their combined result and from that
8 relevant piles of ideas were discovered. The piles where opinions lined up were
categorized accordingly, the ideas that received a low score were discarded, and those
where opinions differed were further discussed and evaluated.

38

5. Design Process

Figure 5.6: Left-side, ideas distributed in a graph according to believed relevance
and time-to-realise idea. Right-side, the model used to determine which ideas to

prioritize

5.3.5 Further Discussion

Due to difference in opinions regarding some ideas there was a need for further
discussion. Firstly, to ensure that an idea was of significance the researchers were
given the opportunity to speak up about the ideas and convey why they believed or
did not believe them to be good ideas. The researchers were then given 20 points
to divide between the ideas that they wanted to keep. Depending on the received
score the ideas were grouped with the other prioritized ideas, the higher the score
the higher the priority, the ideas without a score were put in an "idea stack" that
was kept in case ideas needed to be revisited in the future. Figure 5.5 shows the
ideas that were kept after this step.

5.3.6 Modeling Relevance

In the end of the Ideation Phase there was a couple of ideas that were deemed
relevant and valuable for the research. However, one last prioritization technique
was needed to determine what ideas to explore first. For this a graph model was
used to plot the ideas according to their relevance for thesis-work research and how
time consuming an idea might be to realize, the graph is depicted in 5.6. A linearly
increasing slope from the origin was traced, those below the line were branded Low-,
those near the line Medium- and the ones above the line High-priority ideas.

5.4 Early Prototyping

This section covers the team’s prototyping process and outlines the different ways
in which this phase was conducted.

39

5. Design Process

Figure 5.7: Overview of critical prototype developed with Xamarin, running on
Android.

5.4.1 Critical Prototyping

Due to the cross-platform framework evaluation that had to be performed during
the early stages of this research work, a small, barely functional quick solution had
to be developed. This was done in order to test and evaluate a specific set of
features and requirements. For example, software-architecture practicalities, front-
end development, network connectivity, data streaming, platform deployment and
performance. This prototype was developed over the course of two weeks and was
successfully deployed and tested on both iOS and Android devices (see figure 5.7).
It offered the following functionality:

• Displaying and refreshing server list.
• Connecting to a server.
• Selecting between 2D and 3D data visualization.
• 3D scene with touch gesture-based navigation.
• Carousel display of a set of cameras and their respective 2D data.

This greatly helped the team to estimate feature-development times, familiarize with
the toolset’s workflow, identify possible slowdowns, plan for architectural software
modality and test the builds’ performance. This exercise was also very important
because it helped the team to finally settle down for a cross-platform development
framework, Xamarin. After finalizing and evaluating the results, the team moved
from this software engineering approach to a more interaction design-oriented one
by dissecting the previously identified requirements and features and designing UI
and navigational elements to help make sense of it all.

5.4.2 Low-fidelity

When the critical parts had been prototyped it was time to take a step back and
start prototyping on possible design solutions for the toolkit. This was approached

40

5. Design Process

Figure 5.8: The feedback loop that was engaged during low-fidelity prototyping.

Figure 5.9: The template used when making low-fidelity prototypes of the user
interface

in a way similar to the one during the Ideation Phase. Starting with a diverging
phase to find possible design solutions to the prioritized ideas that we already had,
ending with a converging phase to establish the ideas that made sense and needed
further exploration. Early on the aim was to engage in a creative feedback loop, as
visualized in 5.8. This enabled the group to work with ideas efficiently and iterate
when necessary. The team members would start by sketching design solutions to
some of the ideas without any input from the rest of the group, when an idea
had been envisioned to a certain degree it was discussed in the group and eventual
findings were noted and compared with other findings. The idea would then either
be dropped if it felt irrelevant, iterated upon if further investigation was needed or
kept as an potentially valuable design solution.

Later on, the sketches were drawn inside a generic smartphone template that can
be seen in 5.9. This was done to get a feel for the proportion and the used space.
The aim was to get as much relevant information on the screen as possible without
making the interface feel cluttered. Moreover it created a narrative that more clearly
could convey the intention of the user interface elements.

The prototypes started to converge with only slight variations so redoing a full page
for each prototype seemed redundant. Therefore the group started approaching each
UI-element individually which resulted in the creation of design modules that could
be moved around. This provided flexibility and reuseability to the design process,

41

5. Design Process

Figure 5.10: Low-fidelity modules assembled together to prototype a potential
screen inside the mobile tool.

something that proved useful later on. Additionally it emphasized the functional
aspects of each element which was valuable during comparison of different design
solutions. The modules were defined by an evaluation of the wireframe sketches
earlier where the subjectively good parts were picked by the team. The design
solutions were then refined and drawn as modules instead. Finally similar modules
were compared against each other to determine their pros and cons. Figure 5.10
depicts one of these UI module evaluation sessions.

5.4.3 High-fidelity Wireframe

After crafting and reviewing several paper prototypes, a few interface distributions
were identified and the next step would be to digitally prototype them by means
of high-fidelity wireframe software. Two different software suites were used, one by
each member of the team.

• Axure RP is used to create prototypes without any coding. It enables design-
ers to create dynamic content with conditional flows, furthermore it supports
diagramming of user flow [5].

• Mockplus is an easy to use tool for rapid prototyping that support user inter-
action with dynamic content [21].

42

5. Design Process

The goal with the creation of digital wireframes was to get a concrete idea of how the
ViewFinder application could be redesigned to fulfill the imposed requirements. The
prototypes helped in establishing good user flow by providing interactive components
and navigational logic. A couple of tasks were created to validate how well the
prototypes supported the use cases, namely:

• Go to camera X and set the exposure to X in intensity mode.
• Go to camera X an set the flash time to X in video mode.
• Go to camera X and then go directly to camera Y.

The prototypes were evaluated and redesigned until all tasks were supported. This
iterative process was carried along with feedback from the core team at Qualisys.
Furthermore, they revealed the importance of a context aware navigational flow and
an hierarchical model was created to support this, see 5.11. During discussion with
domain experts the model was redesigned to support one extra layer of navigation
to support a dashboard for multiple tools that may aid when interacting with a
motion capture system. The rationale behind this was to have all tools available for
easy access and relieve the users of having to install several applications.

Figure 5.11: Model of the navigational flow. Left: Initial model, Right:
Redesigned model after discussion with domain experts

Apart from the findings mentioned above the prototypes also helped in confirming
that the design met the experts expectations, both in form and functionality. It also
worked as a tool to rapidly prototype the layout of the pages and the color to some
degree. The final high-fidelity prototypes can be seen in 5.12.

43

5. Design Process

F
ig
ur
e
5.
12

:
A

fe
w

sc
re
en

sh
ot
s
of

th
e
pr
ot
ot
yp

es
cr
ea
te
d
w
ith

A
xu

re
.

44

6
Results

This chapter goes through some technical procedures that were taken to implement
a more complete prototype based on the previous iterations. Underlying technolo-
gies, patterns and architectural decisions that were made during development are
presented here, as well as the different application page layouts. These results are
then evaluated in chapter 7.

6.1 Development Environment

Based on the foundation gained from previous stages the team started the devel-
opment of ArqusFinder. The motive during this stage of development was not to
create a production-ready application but rather explore how such an application
might be constructed. The primary objective was to develop the application with
a single codebase and to be able to deploy to different platforms, of course with-
out leaving aside core functionality, performance and usability. The chosen main
target platforms were iOS and Android. This decision was based on the current
mobile-platforms market share [53]. After all the necessary research and technical
decisions (i.e. middle-ware, development tools and platforms) were done, the team
proceeded to set up the development environment; working with Xamarin meant
that Visual Studio could be used to organize, build and deploy the project. On
top of this, version control was hosted on the company’s TFS. The team then
proceeded to incorporate Qualisys’ Real-time Software Development Kit (RT SDK)
and to run a couple of test builds. The research team tried to integrate a Universal
Windows Platform (UWP) build into the testing but compilation was unsuccessful;
this was already expected as some networking components (.NET sockets) used in
the RT SDK are not available on this platform. Some attempts to solve this were
made by incorporating a different cross-platform network library but due to its early
stages and the lack of documentation, these attempts were dropped as they were
consuming a lot of time. A meeting was held and it was agreed that the team would
focus on developing a fully-functional build for both iOS and Android.

45

6. Results

Figure 6.1: Pie chart demonstrating platform-specific- versus shared lines of
code.

6.1.1 A Shared Codebase

An important aspect of the research was to determine how much code that could be
shared without having unreasonable negative impact on performance nor reliability.
This was evaluated by continually building for respective platforms, thus ensuring
that they worked properly.

A deliberate decision to use Xamarin.Forms was made even though the user interface
would be highly specific with a lot of custom views. It can be argued that this
might be a sub-optimal choice since the need for native specific user interfaces is
very high. However, Xamarin.Forms provides ways to implement platform specific
user interfaces through effects and custom-renderers and even though this is added
complexity to some degree it was deemed a worthwhile risk to more thoroughly
investigate how much code that could be shared.

This approach enabled us to share both code concerning the logic as well as the
interface. It posed a couple of interesting challenges such as: native- versus custom
look & feel, logging and error handling, form size and platform specific features.

When the application’s proof of concept was done, the research team proceeded to
quantitatively evaluate the shared codebase, analyzing the percentage of shared- over
native Lines of Code (LoC). It is important to notice that Xamarin only provides an
interface to a platform’s specific code. When a solution is built, a special compilation
stage will generate platform-specific code which will be then compiled into a device.
This code comparison only accounts LoC that were written by the team. The results
of this comparison can be appreciated in both figure 6.1 and table 6.1.

Due to the project’s nature, a 3D graphics library needed to be used in order to
accommodate camera views and marker positions in virtual canvases. At the same
time, these three-dimensional elements were meant to be combined with a 2D in-
terface, so having something that could easily co-exist with Xamarin.Forms was a
huge plus.

46

6. Results

Table 6.1: Lines of code written for each platform

Codebase LoC
Android 51
iOS 52
Shared 4582

6.1.2 Graphics API

Xamarin offers several library options for programming 2D and 3D graphics appli-
cations, mostly oriented towards game development. As of now, there are currently
two powerful and officially supported 3D libraries:

• MonoGame is an open-source implementation of Microsoft’s XNA frame-
work that can be used to develop games for iOS, Android, Mac OS X, Linux,
Windows, Windows RT, and Windows Phone [37].

• UrhoSharp is a .NET binding of the Urho3D game engine which is also a
cross-platform solution for Android, iOS, Windows and Mac; it can render to
both OpenGL and Direct3D [32].

It was an obvious choice for the team to quickly settle down for UrhoSharp since it
offers a specific version of the library that can be easily used together with Xam-
arin.Forms called UrhoForms. Needless to say, only the modules related to computer
graphics were used. Furthermore it had support for Microsoft’s HoloLens which is
something that could be interesting to investigate further in the future, this will be
discussed in greater detail in chapter 9.3.

With the UrhoSharp library selected the team proceeded to create a rapid prototype
to try different features and learn how they could be coupled with data from the
RT SDK. One member of the team worked on displaying 2D marker information
from several cameras on various canvas objects in a scene, then a carousel-type of
navigation was implemented with swipe touch-screen gestures. In the meantime,
the other member worked on displaying markers in a three-dimensional scene along
with different gestures to perform navigation (i.e. rotation, translation and zoom-
ing). This gave the research team important insights into some of the most useful
components of the engine, as well as a general sense of the kind of structures, classes
and data-types that were to be implemented. All this information was vital to esti-
mate development times and evaluate viability of other potential libraries.

6.2 ArqusFinder

This section will go through each major feature of the ArqusFinder application, both
technical and layout design approaches are presented. As previously stated, chapter
7 will evaluate these through usability tests. A video presenting an overview of the

47

6. Results

Figure 6.2: Annotated screens of the home page.

application is available for the interested reader[46].

6.2.1 Connection Page

The Connection Page was naturally placed as the home page since connecting to a
QTM host is a necessity for the application to work. This page had to contain at
least two features, namely: discovery of nearby QTM hosts and connecting manually
to a host. Additionally a button to start a tutorial of the application was added.
The final prototype contained a welcome screen that would show nothing except the
possible options and the logo of the application. The rationale behind the screen
was to let the user feel comfortable with the application before being prompted
to perform tasks. From this screen, the user is able to decide to either connect
manually or do a discovery of nearby QTM hosts. An optional quick tutorial was
planned to be shown here, however the idea was not elaborated since it was deemed
not valuable enough for a prototype, but it is an important feature that could be
incorporated in future development of the application.

When selected, the discovery view provides a list of nearby QTM hosts that the user
may select. During refresh of nearby hosts, a loading spinner is shown to the user to
indicate that the application is still responsive and doing work in the background.
In contrast, when manual connection is selected, input fields are given to the user
instead. These fields are to be filled with the IP-address as well as a password -if
applicable- to establish a connection with a running QTM host.

In the case a password is needed to be able to fully control a QTM host, a field is
provided in which a user can enter it using a native alpha-numeric keyboard. This
field can be ignored to connect to a QTM host without the ability to control the
settings. A screenshot of this page can be seen in figure 6.2.

48

6. Results

Figure 6.3: Annotated screens of the camera page.

6.2.2 Camera Page

The Camera Page offers a detailed view of each individual camera in the system
as well as ways to switch the current streaming mode for that specific camera and
a couple of sliders to change its settings (settings drawer). The controls to switch
modes were added to a bar (mode toolbar) which was located at the bottom of
the screen (it was later moved above), selecting a new mode changes the stream
in the application code and updates the camera screen in the Urho application
accordingly. The most distinctive feature of this view is the carousel-type navigation
which is performed by the UrhoSurface component in the center of the page. This
3D scene takes care of rendering every camera stream to different canvases and of
navigating through these, as well as other gesture-based interactions which translate
into zooming and panning. Figure 6.3 provides an annotated screenshot of this
page.

6.2.3 Camera Carousel

Another design idea from the Ideation Phase was to use a carousel to display the
camera screens in a circular fashion. This was implemented using a mathematical
model of a circle with a set of points along the circumference to represent potential
positions of the camera screens. The currently selected camera is at the first point
of the circle and the neighboring camera screens on the points beside it, an example
of this can be seen in 6.4 where the neighbouring screens in this scenario would be
the two at position 2 and 4. Given an ID the carousel returns the coordinates for
placement of the camera screen. During a swiping gesture an offset is added to the
positions. On a touch release the closest camera screen to the original position of
the first point of the circle will be determined and selected as the current camera
updating the circle model accordingly. The circle lies in the x- and y-axis of the
application and thus the camera screens comes in from the left and the right of the
device screen, this is common behavior for a carousel and the team saw no reason

49

6. Results

Figure 6.4: The circle with numbers represents a potential position for a camera
screen where the circle with number one represents the currently selected camera.
Left: Circle in a 3D-coordinate system, Right: Circle in a 2D-coordinate system

to break this pattern.

6.2.4 Camera Grid-Overview

Based on the results from the Ideation- and the Design-Phase, displaying a grid with
an overview of every camera was a key aspect of the app navigation and general flow.
This grid view primarily shows all the camera views in the similar way to how they
are displayed inside the QTM application. Ordering inside the application is closely
related to how they are ordered inside QTM in relation to their respective camera
ID’s where the first camera in a set starts at the top-left-corner and the last camera
in the bottom-right-corner, a visual representation of this can be seen in 6.5. The
Grid-Overview’s primary functionality is to provide overview an of all the cameras
so the one of greatest concern can be selected quickly by tapping that screen. The
view is also scroll-able so that a larger set of cameras can be visualized without the
camera views being to small due to resizing to fit them all in the screen.

The cells in the grid view contains canvases portraying respective camera informa-
tion, this being markers, intensity feed or video feed. Because of the way Xam-
arin.Forms’ components are built, it is technically challenging and naïve to try and
display marker information with said components, that is why the team opted for
a more sophisticated approach. Crafting a 3D Urho scene in which to display such
markers and rendering it to a render texture would provide Xamarin.Forms with
an Image object that could then be displayed as a cell. This technique is fast be-
cause only references to streams of memory are used, it is also easily maintainable
and neatly organized because it does not use a lot of code, as it makes use of pre-
existing Xamarin classes. Sadly, this could not be successfully implemented due to
memory management constraints and poor Xamarin documentation regarding im-
age streaming. After this, the research team decided to create the Grid View within
an Urho scene and render this through an UrhoSurface, an UrhoForms viewport
that can be managed within Xamarin.Forms and Extensible Application Markup

50

6. Results

Figure 6.5: Order of the cells in the grid, the top-left-corner is the first screen
and the bottom-right corner is the last screen.

Language (XAML). This gave the team more freedom to customize certain ac-
tions like animations and gesture behaviours. Of course nothing comes without a
few disadvantages, the most important one being not using Xamarin’s pre-existing
framework and writing a significant amount of code that could otherwise be omitted.
Unfortunately, this implementation proved to be very unstable as the navigation be-
tween the Grid View Page and the Camera Detail Page was prone to failure; the
application would randomly crash due to an unhandled exception within the Urho
library, a synchronization error regarding Simple DirectMedia Layer (SDL) threads
was all we could get from a bloated stack trace which made it difficult to tackle.
After several days of trying to address this and with the pressure of time, a strategic
decision was made to drop the Grid View from the prototype and concentrate on
delivering a fast and stable build with a Camera Page in which the whole camera set
could be browsed by means of a carousel. After this, the research team found a way
to accommodate both grid mode and carousel mode in a single Urho context, which
was used for this prototype iteration. The grid- and carousel-mode will be referred
to as Grid Screen Layout and Carousel Screen Layout from here on out.

6.2.5 Top bar

A top bar was added with the main purpose of providing interactive elements for
navigation. Apart from a conventional back arrow an additional Screen Layout
toggle button was added to toggle between the Grid Screen Layout and the Carousel
Screen Layout. The two different states of the top bar when in the Camera Page
can be seen in figure 6.6.

51

6. Results

Figure 6.6: The top row is visible during a carousel screen layout and the one
below when in grid screen layout.

Figure 6.7: Application’s mode toolbar

6.2.6 Mode Toolbar

Changing the stream mode is handled by a set of buttons with callbacks which in
turn send a command to the QTM host with the current camera ID and the new
stream mode (markers, video or intensity mode). When either video or intensity
mode are selected, a thread starts buffering the received camera images (compressed
JPEG format), these images are then decoded and used to create texture objects
that are then fed to the respective camera canvas. It should be noted that the icons
used for such buttons were not made specifically for this purpose, they are generic
images retrieved from Google’s material design icons [18] and were hand-picked to
fit the buttons’ purpose as close as possible.

6.2.7 Settings Drawer

Besides switching modes, the application also needs to change the settings of the
cameras depending on the currently selected mode. For this a Settings Drawer
was created that changes layout depending on context, the relationship between
available settings and context is described in figure 6.8. This drawer is composed by
a couple of sliders which represent and set a specific camera setting. These sliders
communicate in both directions; when they are locally set, they send a command
package specifying the type of setting to be changed along with its new value. The
application also listens to changes done at server side, an EventListener object is
always listening to event packets of the SettingsChanged type and it runs on a
separate thread.

6.2.8 Graphic Profile

The application got a dark theme applied to it to keep it consistent with the ap-
plication that it stems from. It takes heavy inspiration from the design guidelines
provided by Google. On another note, instead of defining colors and the general
look & feel of graphical elements for each platform using the native API the group

52

6. Results

Figure 6.8: Left is the settings drawer when in marker or intensity mode. Right
is the settings drawer when in video mode.

Figure 6.9: An overview of the MVVM architecture. (Courtesy of Microsoft

decided to move as much of this code to the shared code base. How these elements
were defined can be seen in listing E.1 in appendix E.

6.2.9 Application Architecture

We decided to employ an Model View ViewModel (MVVM) pattern to attain more
flexibility in the application as well as separate responsibility. The hypothesis was
that this would support the removal of the View for another later on, which could
prove useful when working with support for a platform that is not supported by
Xamarin.Forms.

The reader is encouraged to read more about the MVVM pattern in the references
since it is not really part of the result. However it will be briefly introduced to the
reader in the list below and an overview of the architecture can be seen in 6.9.

• View only concerned with how it looks
• ViewModel represents interactions with the datamodel and reflects changes

made
• Model is the datamodel of the application

After some initial experiments with the pattern the team recognized that the Xa-
marin.Forms support for an MVVM architecture was not fully adhering to the
requirements of the ArqusFinder application. Thus a couple of MVVM frameworks
were evaluated to determine if the team could avoid having to implement this be-
havior themselves. The Prism framework was picked as it seemed the most suitable

53

6. Results

Figure 6.10: An overview of the MVVM architecture.

for the purposes of the ArqusFinder application.

To make it more clear to the reader, XAML-files and the associated code behind will
be briefly introduced before going any further with application development details.
XAML is a language for visual representation that declares graphical components,
their formatting and the layout of the components. A XAML file is usually accom-
panied with a code behind file that provides the functionality for the View[36]. To
adhere to the pattern of MVVM the purpose of the code behind became mainly a
way for Xamarin to compile the XAML file into native UI components (how this
works is out of the scope for this thesis). With the use of bindings the View is
updated when properties change in the ViewModel, this is in contrast to using a
code behind approach where the actual values of the component would be mutated
instead.

With the use of the Prism framework the team managed to quickly move most of
the code from the code behind to the ViewModel. There were however some cases
were this was not possible such as when an XAML component needed to react on an
event during run-time. For example, an UrhoSurface had to initialize the application
when the View appeared due to the fact that XAML has no concept of what Urho is
and thus does not know how to start the application. This could have possibly been
done in the ViewModel but would couple the ViewModel with the View thus pattern
breaking the MVVM pattern. Thereby, it was decided that this would be done in
the code behind as it was reasoned to be part of the View. The architecture of the
proof of concept related to the MVVM pattern can be seen in figure 6.10.

Error handling was a big problem during development and the exceptions thrown
in the native code became hard to debug. In some cases (just as stated in section
6.2.3) the application would crash due to threads that would not be destroyed prop-
erly and the only indication of this would be stack traces of references to missing
objects.

Catching exceptions would improve this to some degree but overall debugging was
quite time consuming and cumbersome. To address this the team decided to ex-
periment with a service released by Microsoft called Mobile Center. It acts as
a platform for automated-build, continuous integration, event tracking, analytics,
tests on several real physical devices and crash reporting amongst other services for
mobile applications to ensure high-quality mobile applications [20]. Moreover the

54

6. Results

event tracking needed to have fine granularity since it was going to be used dur-
ing summative evaluation to analyze how the users interacted with the application.
After some simple tests it was concluded that the Mobile Center event tracking
was lacking that granularity and was only able to visualize daily data at its finest
granularity. Due to that further research was made on platforms that would be
more suitable for the event tracking that was needed for the summative evaluations.
The team ended up using Kibana which is able to visualize data at granularity of
milliseconds and has support for several different visualizations. Kibana depends
on Elasticsearch that is used to store the data. The data gathered as well as the
visualizations of that data will be presented in section 7.3.

55

7
Summative Evaluation

Summative evaluation was carried out based on the developed prototype to deter-
mine how well it worked with actual users. Two different approaches were made
for this evaluation, these will be presented in the following sections along with the
gathered data received through comments and questionnaires. Additionally, the user
data that was gathered during these tests will be presented in the final section of
this chapter.

These were short and fast tests that generally took from five to ten minutes to
complete, they were aimed to provide feedback on very specific system interactions so
that key features could be evaluated. This was very important for the team because
it would not only yield quantitative data, but also feature-specific comments and
in some cases requests for specific functionality. The team approached users with
different technological backgrounds to get a diverse view of how well the application
was received. A running instance of ArqusFinder was readied and a set of four
tasks were given to the users. They were asked to familiarize themselves with the
application so that they could subsequently perform the tasks and rate them by
using the SEQ scale. The following is a list with descriptions of said tasks:

• Task 1 Navigate to camera 2.
• Task 2 Ensure that camera 4 is running in intensity mode.
• Task 3 Switch every camera to marker mode, except camera 4.
• Task 4 Lower the threshold of camera 1.

This task-set was created to support the use cases that were elicited during the
early stages of this research work, described in section 5.2.2. The following table
demonstrates how these relate to each other.

Table 7.1: The tasks that support each use case is presented in this table.

Use case Task
UC1 Task 1, Task 2, Task 3, Task 4
UC2 Task 1, Task 2, Task 3, Task 4
UC3 Task 2, Task 3
UC4 Task 4
UC5 Task 1, Task 2, Task 3, Task 4

56

7. Summative Evaluation

Figure 7.1: A bar chart visualizing the score for each task. Score is the y-axis
where higher means easier to complete. The different tasks are placed on the

x-axis. The colors indicate the different users, moreover the users appear in order
where the leftmost is User 1 and rightmost User 6.

7.1 Single Ease Question Results

The results from the SEQ are presented in table 7.2 and figure 7.1. Performing
these tests on users from different backgrounds naturally meant that ratings for one
specific task would somewhat vary. It is apparent that some tasks were perceived
as being easier to complete than others according to the users. Overall, task 4 was
the least difficult to complete compared to the other tasks according to the answers.
In contrast task 2 was rated the most difficult on average. There might be several
reasons for this, something that is evaluated further in the next section. The two
other tasks score almost the same on average and overall most of the tasks were
perceived as being moderately to very easy.

57

7. Summative Evaluation

Table 7.2: User score of each task. Column represents the different tasks and
rows the different users.

Task 1 Task 2 Task 3 Task 4
User 1 7 1 7 7
User 2 5 2 6 6
User 3 6 4 6 7
User 4 5 6 7 7
User 5 4 4 4 6
User 6 6 7 4 7

7.2 Observations

Besides the users filling the SEQ forms with task ratings, the research team carried
a more qualitative approach at the same time, taking notes based on on-the-spot
observations using a pre-defined table; this table was filled with the features (UI
elements) that were most important for navigation and interaction. Observations
on these features are written in the following sections. The pre-defined table can be
seen in appendix D.

Login Page
The Login Page was considered as a feature in its own even though it provided two
ways of connecting to a QTM host. This was intentional since what was interesting
in this page was the synergy between the two modes and how to switch between
them. During the tasks most people attempted to connect manually, some of those
users noted that it would be more convenient if the application provided a numerical
keyboard instead of a full keyboard layout when entering the IP address since the
only symbols they really needed were either numerical or a dot. In the cases were
they entered invalid information they would receive no response, which made the
users uncertain of the current state of the application. The users that attempted to
make a discovery of nearby QTM hosts had trouble figuring out how to perform a
host refresh, the result of this was that most users ended up connecting manually
in the end.

Carousel Layout
Based on the reactions of the users it seemed like the carousel was a nice-to-have
feature and it was being used by most users without any explanation. However,
there were two users that did not discover this feature until they were told that it
actually existed. One user felt that it was a bit to sensitive which in turn made it
hard to select the intended camera. Another user proposed that it would be nice to
have a view with only one camera instead of the currently implemented views that
were either carousel- or grid-view. A combination of panning and zooming would

58

7. Summative Evaluation

make other cameras appear in the background which seemed like an odd behavior
to those users that manage to get the application into this state. Furthermore, only
half of the subjects attempted to use gestures.

Grid Layout
Most users wanted the ability to change stream mode of several cameras at the same
time. Some wanted to change all the cameras streaming mode at once while others
thought it would be nice to be able to select a set of cameras to update. During
the tasks some users also tried to use the back button in the top bar to go back to
the carousel view, this was not the buttons intended purpose and it would navigate
the users back to the home screen instead. One user did not notice the grid layout
throughout the whole test. Another user had concerns regarding the situation where
even more cameras would be available and saw a potential scalability issues.

Mode toolbar
Almost every user made it clear that the icons used for this iteration’s toolbar
were not comprehensible at first glance, it generally took a few tries for them to
understand how they were related to the different camera stream modes. Some users
suggested that adding text to said buttons would improve interaction, especially if
someone were to stop using the application for a month or two. One of the main
problems that recurred throughout every session was the delay when changing to
either video- or intensity mode; this prototype did not have any loading indication
and it proved to be very misleading as some users even thought the application had
crashed. They were also concerned with the lack of a current mode indicator; the
research team thought it would be enough to visualize the specific stream mode,
but these tests proved it wrong. One of the most significant comments from one
of the engineers was that this toolbar was not consistent with the order in which
the items were presented in the QTM software, a seamless, overlooked matter that
can nevertheless break the user flow. This same person also pointed out a potential
problem; the mode toolbar is placed just above the Android navigation bar which
could, in some instances, cause navigation mishaps. The team later decided to move
the toolbar to the top of the view.

Settings Drawer
All users had trouble interacting with the sliders in the settings drawer. It was
not uncommon that users had to try multiple times before succeeding in modifying
the settings according to their intentions. Most users seemed to think that the
responsive area was to small and thus easily missed. Two users expressed interest
in being able to hide the settings drawer to not obscure the view of the cameras
during times when no changes to the settings had to be made. The users had no
problem in understanding how to interact with the input components even though
the interaction in itself was a problem. Finally, a user - with expert knowledge in the
motion capture software that the application communicates with - explained that

59

7. Summative Evaluation

the threshold should be in percentage and not numbers as it were in the current
iteration of the application.

Additional notes
One user questioned why the backdrop of the marker screen was green. The same
user also asked "What is a Camera Page?" when looking at the top bar that was
displaying the title of the current page. Two other users noted that the spheres
would go outside the screen when close to the marker screen edge.

7.3 Evaluation of usage data

Quantitative usage data was gathered during the usability tests and relevant data is
presented in this section. Data was gathered for each user interaction based on the
idea that this would provide a deeper insight into users behavior. Visualizations of
the data can be seen in figure 7.2. The visualizations give an indication that users
mostly toggle to the grid view and thus uses that view to select a camera instead
of toggling back to the carousel. The data also makes it clear that the most used
screen mode during the tests was the video mode.

60

7. Summative Evaluation

F
ig
ur
e
7.
2:

U
sa
ge

da
ta

ga
th
er
ed

du
rin

g
th
e
us
er

te
st
s

61

8
Discussion

This chapter will discuss the approach taken during this research. Moreover, the
evaluation of the end result will be analyzed and dissected to discover important
insights regarding the design solutions with the goal of highlighting factors of im-
portance when designing a tool to aid during the setup stage of motion capture
systems.

8.1 Formative Evaluation

As described in chapter 1, our tool is intended to aid technicians when doing an
initial setup of the motion capture system. These technicians need to assist dif-
ferent companies in all sorts of scenarios. This means that the setup environment
is highly dynamic. For practical purposes, this project’s formative evaluation tests
were performed in a somewhat controlled environment, quite different from what
a real-life scenario would look like as the camera rig, along with cables and inter-
faces were already setup. Furthermore, the technicians had a ladder available to
their disposable which eased the interaction with the mobile device since they could
conveniently place it on top of ladder. Doing evaluation out on the field may have
procured different, interesting results.

Since the research team was not well acquainted with the hardware setup back
when formative evaluations were performed, the only thing that could be done to
counter this optimal setup was to slightly rotate some cameras relative to their
respective bases. These tests paved the way for some interesting results, but the
technicians seemed to run through the tasks fairly easily. The research team cannot
help but wonder if the validity of the gathered observations were compromised due
to familiarity with the environment.

Edge cases such as doing setup in the desert or even under water were not considered.
This was mainly to the group not having knowledge of these. It might have been
interesting to consider some of these edge cases since they call for mobility.

Finally it is worth mentioning that the formative evaluation could have been more
elaborate. Only two experts in the field were evaluated a part from the evaluation

62

8. Discussion

Figure 8.1: A few examples of common setups outside of a studio

done by the team itself. Doing a more substantial amount of tests with different
users might have been valuable.

8.2 Cross-Platform Development

Early on, the team realized that doing cross-platform development comes with a
lot of trade-offs. There are usually ways to target the native APIs but this in turn
means less shared code. In the end it is all about finding a good intersection and do
native specific coding when necessary. The goal for this thesis work was to share as
much code as possible, thus a lot of decision were made based on this. As stated in
the results the application managed to have a shared code base of about 98% of the
total code base. This shows that it is possible to share the majority of code between
iOS and Android with today’s frameworks and by that improve maintainability. It is
important to note that the written native code (2% of the code base) in this project
was updated no more than two times, plus the written methods were fairly small.
This further confirms that it is possible to develop for several platforms without
excessive need to maintain each platform individually.

That is not to say that cross-platform development came without any obstacles
and another approach might have been more efficient to find an answer to the
research question. Doing cross-platform development is essentially added complexity
on top of the native API and by that diverts the goal of researchingwhat should be
considered when designing tools that assist during the setup stage of an optical motion
capture system. However, cross-platform was something that was important for the
stakeholders to increase maintainability and thus this was done to adhere to their
needs.

The research team can only assume that working with constantly changing code
within a cross-platform framework could get messy. No data was gathered with
regards to this but it is definitely something worth considering.

At the end of the development of the ArqusFinder application a distinction was
recognized between the core logic and the user interface logic, a speculative model

63

8. Discussion

Figure 8.2: Intersection of platforms and the distinction made between core
logic and user interface.

of this distinction can be seen in figure 8.2. We believe that it is important to be
aware of such distinction, as it will aid to create a more flexible solution during
development. The distinction can be closely related to doing front-end (User Inter-
face) and back-end (Core Logic) development and thus will be referred to as such
from here on.

Viewing them separately also enables developers to tackle the different challenges
that come with doing front-end and back-end development. These challenges will
be discussed in detail in the subsections 8.2.1 and 8.2.2.

8.2.1 A Shared Back-End

The back-end of the application was concerned with everything that did not have
to do with how the components were to be presented. This included how the state
was handled and kept consistent between the components as well as the core logic
such as mathematical computations and data manipulation. During development it
was decided the application would aim to reflect the state of QTM at all times and
thus it would act as the model of the application. This worked fairly well and it was
easy to share nearly all of the code since the majority of the computations would be
done on the QTM side. However, this was not effortlessly implemented, and it will
be discussed in the coming sections.

Real-time computation
One problematic area was getting raw image data from the image stream received
from QTM. The images would be encoded in a Join Photographic Experts Group
(JPEG) format to keep the data size small during network transfer. A consequence
of this was that the image needed to be decoded when displayed in the 3D scene.

64

8. Discussion

There are a couple of light-weight image processing libraries out there, but it is
hard to find a library with support for both Android and iOS. In the end the team
settled with a library that managed to decode the images in a lower resolution with
reasonable speed. Doing this natively might have made the decoding process more
efficient, but due to time constraints this was not further investigated.

3D Engine
Another area that introduced obstacles was the cross-platform 3D engine used for
the application. During navigation the application would randomly crash due to
some SDL-threads used by the engine not being destroyed properly. A lot of time
were put into solving this and in the end the team managed to get it somewhat
stable, though it still would crash on rare occasions. It does seem like the library
is going through a lot of updates at the time of writing and there has been several
improvements to the library since the beginning of this work giving the indication
that this might not be a problem in the future [22].

Overall having a shared 3D environment has proven very valuable. It has eased de-
velopment through reduction of repetitive code and assured a consistent experience
between the platforms. Code becomes far more maintainable than having separate
code for each platform. We believe that given time, this might be a good approach
for doing cross-platform 3D development.

Networking
Throughout the whole development phase, several issues were encountered that
were related to the way QTM’s real-time protocol was implemented. One of the
biggest challenges came when the team realized it was noticeably easy to cause a
complete crash in the host’s QTM instance. The research team did not consider this
scenario during the early stages of development and therefore strange behaviour
occurred whenever the host suddenly stopped sending network packets. Luckily,
the amount of crashes were diminished significantly when one of the company’s
engineers located and fixed the problem on the host side. The cause for these
severe software malfunctions lied on the research team not deliberating upon a
network connection’s inherited reliability constraints, it was always taken for granted
that the host-end and the protocol worked perfectly. From the beginning it was
known that the networking solution provided by the RT SDK was not compatible
with UWP (as previously mentioned in section 6.1), this lead the research team
to plan an architecture based on networking interfaces and dependency injection to
be able to provide a different socket solution depending on the running platform.
This approach was abandoned after a few days due to time constraints and more
importantly, the fact that redesigning a pre-existing RT SDK is not valuable for this
research work. The application is built in a way that requires four different clients
connected to a QTM host, three handle in-bound data and one handles out-bound
data.

• MarkerStream Streams marker-based positional information.

65

8. Discussion

• ImageStream Streams camera image-based information.
• EventListener Listens to events sent by QTM.
• SettingsService Sends camera-specific settings to QTM.

Regretfully, this was not thoroughly analyzed beforehand, and for a while the appli-
cation behaved oddly. The research team was baffled by this since debugging and
identifying open-connections was not an easy task; a considerable amount of work
had to be put into solving this by manually going through the code and ensuring
that only the needed connections remained open. It was not until the team analyzed
the host’s network connections that this was proved to be working.

8.2.2 A Shared Front-End

The goal for the front-end was to create a similar experience amongst the platforms
without breaking platform specific design conventions. Sharing this part of the code
was suitable for common use cases which in turn enabled the team to quickly create
a functional interface. One approach that worked well for the team was to create
shared style resources for color and general look & feel of interactive components,
see listing E.1 for implementation details. This was done in contrast to relying on
the underlying style API’s for each platform, which made styling confusing due to
a multitude of different style definitions. An example of this can be seen in listing
E.2.

The 3D engine used for the application proved to be really useful when opting for
nearly identical visuals. There are two-sides to this though, on one hand it works
really well for getting a similar experience across platforms, on the other hand it
provides no way of taking advantage of predefined style conventions that the users
are used to. However, being a 3D engine and not a framework for developing cross-
platform mobile applications it is fair to say that it is out of the scope for what the
engine should support. It was a challenge to make the 3D part of the application look
consistent with the standard mobile interface components. Due to time constraints
no investigation was done regarding how those styles could be shared between them
both, thus repetitive code was used to declare a consistent color scheme.

It is also worth mentioning that working with a highly abstracted super-set of in-
terface components -such as the one used in this proof of concept-, translates to the
native platform-specific ones, and thus solid knowledge about these is still impera-
tive. Some implementation-specific features that could normally seem trivial can be
easily missed and cause major usability problems. As an example; if one desires to
use a slider with natural numbers and steps, using an integer variable to store and
set this value will work with iOS but not with an Android slider. It will still require
the precision of a double variable if the slider range grows bigger. Different platforms
have unique interface components and it is virtually impossible to try and use them
through a shared front-end file. Unless one decides to create such interface compo-
nent on another platform, there is no way around this. One could also interpret a

66

8. Discussion

unavailable component as something similar on a different Operating System (OS),
but this will not work all the time. Bottom line is, describing interfaces for different
platforms through a shared code base can increase design complexity depending on
the project.

Animations can be created using the front end framework, it supports basic anima-
tions such as translation, position and color. For more advanced animation features
the native API’s will have to be targeted. In this work it was decided to not care
about specific native animations that users might expect to have so that focus could
be on sharing code instead. This might have lowered the user experience of the
application although we believe this was a worthwhile trade off to investigate how a
user experience can be shared between platforms. It would have been interesting to
research how a shared color theme and a set of shared animations could be combined
with native styles and animations given more time. The user experience is funda-
mentally different between platforms but we do believe that some of the front-end
can be shared without for that matter impacting the native behavior that they are
used to.

8.2.3 Architecture

As stated in chapter 6 an MVVM architecture was used. This was decided not only
to create a separation of concern but also make the application adaptable to changes
of the View. Using a shared front-end was partly an investigation to determine if it
was a feasible approach, even though the application would require somewhat cus-
tomized interactive components. With that in mind it was of importance to be able
to adapt in case the shared front-end approach had to be abandoned. By following
the MVVM pattern we believed that we would be able to go from a shared front-end
to a native one without making any changes to the back-end. It never got to that
point though so this has not been confirmed, but it proved to be useful when making
iterative changes to the View since the back-end could be left untouched.

During discussion about application state, it was suggested that it could be modelled
after the connected QTM host with the goal to stay in sync at all times. This
essentially meant that there would be a mixture of state, one set of states from
the QTM side and another set of states from the application side. This proved
to be more complex than expected and created a high risk of out-of-sync states in
certain parts of the application. A particular symptom of this problem was the
discrepancies between the camera settings stored in the application and the ones
managed by QTM. The research team was surprised to find out how easy it was
for the state to go out of sync. Extra logic had to be written to ensure that this
wouldn’t happen. However, this approach did provide a consistent state between
the mobile application and QTM when set properly.

In hindsight it might have made more sense to handle a lot of the data received
from QTM as a stream of events instead of imperatively acting on it. This could

67

8. Discussion

Table 8.1: An overview of some of the most popular frameworks and their release
dates (in no particular order)

Framework Release
Xamarin 2013
Qt 1995
React Native 2015
Unity 2005
Kivy 2011
Cinder 2010

have made the application more readable since its closer to the nature of how QTM
actually sends the data.

To ensure a proper adherence to the MVVM pattern, a framework was used that
provided convenient functionality. It removed a lot of boilerplate code and did save a
lot of development time that could be used to investigate things more closely related
to the research of this thesis. It is not certain that this was the right approach due
to a higher application size, as well as it coupled the application to the framework to
some degree. The framework made it easy to stick to the pattern and made things
like navigation easier to manage.

8.2.4 Constantly Evolving Frameworks

Most commercially available cross-platform development solutions are still young
and developing (as can be seen in table 8.1) [38, 27, 29, 31, 16, 6], and a whole
book can be written when it comes to analyzing their key features, advantages and
disadvantages. However, there is one specific characteristic that the research empir-
ically learned, a major factor when considering any of these frameworks; continuous
development. For good or for bad, these tools are constantly evolving. For instance,
Cross-platform framework for mobile applications (Xamarin)’s current shared front-
end is missing plenty of features, it is not uncommon to navigate through some files
and find methods with comments along the lines of to be implemented. On the other
side, developers of these tools are implementing new features building upon user-
feedback and needs; some even have public bug databases where users can report
platform errors. Because of this software’s fast-evolving nature, it is common to
find that official documentation sections and articles are outdated, referring to dep-
recated classes and objects that no longer behave as they used to. When thinking of
implementing a complex feature, it is highly recommended to do an extensive docu-
mentation and forums research fist, as some required components that are generally
taken for granted might not work as expected.

68

8. Discussion

Figure 8.3: A Miqus camera with its LED-ring lit.

8.3 Summative Evaluation

This section will discuss our user test approach during the summative evaluation
of the proof of concept. Findings and their implications on how the application
can be improved are also discussed. These results are curated by the specific UI
components that they relate to, similarly to how the results are presented in section
6.2.

8.3.1 User test approach

The proof of concept was never tested with a full camera setup due to technical
difficulties and time constraints. Even though that would have provided a better
understanding and a more elaborate evaluation of how well it performed in real-
life scenarios, it was decided that a test with the full system would have been
too unreliable and thereby would have affected the output of the test negatively.
Instead of doing a test with a full camera system, a smaller setup was created using
four cameras, which is not a common scenario. With that in mind, the goal was
not to evaluate how well it worked in a real-life scenario, but rather evaluate how
the application worked in general when interacting with a set of cameras. This
did provide valuable input for creating an even better user experience and what
previously had been only speculations and assumptions were now backed by real user
data. On the other hand, important aspects of identified scenarios were neglected.
One such scenario was the Ladder Scenario introduced in chapter 5 which could have
provided information regarding how the application worked from a greater viewing
distance. It would also enable evaluation of how well the users are able to locate the
cameras using new features such as lighting the LED-ring when a camera is selected
as seen in figure 8.3.

69

8. Discussion

8.3.2 Observations

Observations made during summative evaluation will be discussed below. Each
component will be discussed individually but also in combination where applicable.
The purpose with this section is to reflect on how well the components performed
and make informed suggestions on how the application can be improved based on
the knowledge gained from evaluations.

Login Page
Both presentation and usability in the Login Page are extremely important as
it is the very first interaction that the user will have with the system. A highly
debated matter within the research team has been related to the way in which the
application will handle the protocol’s master mode selection -this mode lets the
user change QTM’s settings from the application. Accessing this mode requires a
password, but showing a password field to a user if this is not going to be used
can affect usability. An idea is to use a checkbox that will either show or hide this
password field, but this means that if the user wants to access master mode, an extra
touch is required to show such field. Another approach is to let the user connect
normally to a server and then prompt for master mode through a modal dialogue;
this has the disadvantage of modal excise.

When it comes to connecting to a host, there are two ways of doing this (as described
before). Unfortunately, the host discovery routine was not working as expected, plus
the UI component’s pliancy had not been brushed enough so the users did not know
how to operate it. This led the vast majority of the testers to manually enter a host’s
Internet Protocol (IP) address. This manual approach is another important aspect
that must not be overlooked. Using a standard on-screen alphanumeric keyboard
proved to be tedious, so one obvious approach is to just use a numerical keyboard.
This can help mitigate some writing weariness, but the writers of this work wonder
if there is a better way of writing IP addresses on a mobile device. For example
with an application that knows what an IP-address looks like.

As of now, there is no proper error handling when the user attempts to do one of
the following:

• Writing an invalid IP address and trying to connect to it
• Attempting to connect to a computer which is not running QTM

An easy solution would be to show a dialogue with a very specific cause for the
problem and a suggestion for how to solve it. Unfortunately, due to time constraints
this had to be overlooked, but it is definitely a matter for future work.

Carousel Layout
A lot of users seemed to appreciate the carousel layout and most of them find

70

8. Discussion

it to be intuitive, the fact that it is a common interactive component in mobile
application nowadays probably plays a big part in this. However, there are rooms
for improvement of the carousel in the final prototype. For example, there was
no interpolation when the user ended a swiping gesture in the carousel, thus the
camera screens would pop into position upon finger release. This was not really
something that the users noticed during evaluation, but having it would certainly
make the animations feel softer which in turn might have made the application feel
more responsive and user friendly.

The evaluation showed that some users perceived the carousel as being too sensitive
when making a swiping gesture. Which in some cases would result in a user selecting
a camera by mistake. In retrospect this was to be expected since no heavy thought
process besides intuition played apart when the sensitivity was defined for a swipe
gesture.

Grid Layout
Several users expressed an interest in being able to change the mode of more than
one camera at a time when in the grid layout. This was also discussed during
the ideation phase but was abandoned with the reasoning that it would make the
application more complex. Based on this feedback, it might be worth reevaluating
this feature since the users seem to be very open for the idea. This also indicated
that it is important to recognize that the application should not only be designed
with intermediates in mind, but also experts.

Settings Drawer
Users felt that the settings drawer did obstruct the view of the camera screens. This
might partly be due to the drawer taking up too much screen space, but it might
also have to do with the fact that it was static, meaning that there was no way of
hiding it from view. Letting the user hide the settings drawer will enable to view
the camera screen using more of the display. This is important since they will be
far away from the device in certain scenarios (presented in section 5.2.2). The risk
when hiding interface elements is that users might not know where to look for them
[23]. This could for example be mitigated by adding hinting animations of where the
drawer is located when opening the camera page or adding a button that opens the
drawer. This is further exemplified in figure 8.4. An even simpler approach would
be to add a button to toggle the drawer with the disadvantage of taking up more
screen space.

There has been discussion around hiding the drawer when entering landscape mode
as well. This was never implemented and thus has not been evaluated but it is still
believed to be a feature in need for further investigation.

Some users commented that they wanted to be able to add settings values directly.
A potential solution to answer this need could be to integrate an input field where
a user can manually enter a value.

71

8. Discussion

Figure 8.4: Storyboard depicting an affordance hint animation of the settings
drawer

Mode toolbar
While carrying out the usability tests there was a situation that was unexpected,
oddly never accounted for in the design process. During one of the tasks which
required a user to change a camera’s stream mode to intensity mode, two of the six
testers hit a wall because as of then, they were not familiar with all the features
and data that the company’s mocap cameras can produce (one of the users was
fairly new in the company). The target user-base was always assumed to have a
wide technical knowledge with regards to these systems, problems arise when said
users are still not well-acquainted with them. This made the research team start
wondering about practical issues such as usage frequency; how likely would it be for
users to estrange from the iconography used in the application after not using it for a
couple of weeks? These concerns brought-up interesting ideas such as incorporating
text to the mode switch buttons and/or displaying a tip of the day during loading
screens.

Merging Page Functionality
Combining both carousel layout with the grid layout was not something that was
considered from the beginning; they both display what camera x is seeing at a given
time but they do so with different scopes (different number of cameras). They also
serve different purposes, as a user can manipulate specific camera settings through
the carousel layout only. As previously stated in section 6.2.3, the grid view was
dropped for a while due important stability issues. The decision to bring it back
and combine both pages into one came right before the formative test sessions for
the following reasons:

• A considerable amount of work was put into designing and developing the grid
view.

• The research team wanted to test the grid view’s usability.
• It was significant to this research to find out which one was used the most.
• It was even more important to find out how these two views interacted with

each other in the form of usage and flow.

From a user’s perspective, there is virtually no difference between navigating through

72

8. Discussion

Figure 8.5: Infinite loading spinner example

two pages or one (besides loading times), as this behaviour can be emulated. There
is however, a significant contrast when it comes to actual implementation.

Technical Pros

• Since both views are being handled inside the same 3D scene, the Central
Processing Unit (CPU) has an easier time since there is no need to create and
destroy objects and surfaces every time a view gets navigated to/from.

• Helps solving low level threading issues between graphics context (Open Graph-
ics Library (OpenGL) or An application programming interface for multimedia
purposes, especially game programming (DirectX)) and Xamarin’s navigation
stack.

• Navigation becomes visibly faster.

Technical Cons

• Mixed logic gets confined into one single view-model class.
• Becomes easy to mix-up functionality and produce bugs.
• Requires more dedication to get it right (as in clean, functional and under-

standable).

Based on the usage data gathered during the user tests it is clear that the grid view
were used by the majority of the users. This data can be visualized in appendix
C.

8.4 General Usability

Regarding application usability, there are still some previously-discussed things that
need to be addressed. For example, a user needs to know that things are happening
under the hood, especially during a CPU-heavy operation, otherwise the system
"hangs" and it is then considered unresponsive. As of now there are no loading
screens or indicators of any kind to communicate the application’s status to the
user. This has been proven to be a serious problem since the user is bound to get
irritated and tap everything on the screen to corroborate that the application is

73

8. Discussion

indeed frozen. This leads to strange behaviour, actual freezes and even crashes. It
is a top priority to increase performance and responsiveness, but some loading will
still need to be done, which should be addressed with the use of loading indicators
in the form of spinners (such as the one seen in figure 8.5).

As previously discussed in section 8.3.2, user-input validation is not being performed
by the proof of concept. This leads to severe stability issues when a non-valid entry
is produced, ranging from system hangs to sudden crashes. A layer which takes
care of this and handles the situation accordingly still needs to be developed and
tested. Better error handling needs to be implemented to make the application more
fault-tolerant. In the cases where this is not possible, a message should be displayed
to the user explaining to them what happened and the best way to proceed.

8.5 Usage data

The usage data that was gathered during the formative evaluation did provide useful
insights that can be used in a future iteration of the application, but there is room
for improvement when it comes to how this data is gathered. It would be useful to
add data to each user interaction to make it possible to do a distinction between
each user session. This could help when analyzing aspects regarding user flow and
interactions. This was not taken into account before the formative evaluation and
thus it was only possible to determine user flow by manually looking at the time
span.

8.6 Looking Back at the Design Process

As mentioned in chapter 3 we sought out to follow a design process that took in-
spiration from the Double Diamond (DD) design process. This worked well for this
thesis work and we managed to get a strong foundation of what needed to be devel-
oped early on. Emphasizing ideas and evaluation of the state during the early stages
enabled us to get a variety of potential design solutions to work with. Furthermore,
it created discussion material that could be used before and during development,
which in turn made the work adaptable to quick changes.

The development was done by iteratively creating prototypes. This was an appro-
priate approach early on and most of the critical parts of the code were implemented
with ease. It is however important to state that this approach created a lot of tech-
nical depth due to a quick and dirty implementation mindset. A result of this was
that changing one part of the code would affect other parts, in other terms, spaghetti
code; something that was time consuming and the cause for lots of frustration. How-
ever, it did provide a development platform that encouraged experimentation since
breaking the code was to be expected. Furthermore, it gave the group a clear idea

74

8. Discussion

of what worked and what did not, enabling the research group to avoid such imple-
mentations during development of a more refined application.

8.7 Changing Research Angle

This research work’s objective was not always to explore how a mobile application
can aid the setup stage of an optical mocap system. The original proposal had a
much more technical approach and it was aimed to design and develop a software
toolkit, built upon a cross-platform framework that would integrate Qualisys’ real-
time SDK. This toolkit was then to be evaluated by means of a successor application
to ViewFinder, our now proof of concept ArqusFinder. The research team was always
confused about this software toolkit as there was not a clear distinction between the
RT SDK, the toolkit and the applications to be developed using the toolkit. With
hard time constraints, background research, an extensive formative evaluation of
the previous application and a prototype yet to be designed and developed, it was
agreed by both ends (Qualisys team and research team) that the research angle
should be changed to a multi-platform mobile application one.

75

9
Conclusions and Future Work

The motivation behind this thesis work in general was to research how tools for
interaction with motion capture systems might be designed. In particular it was
about designing a mobile tool to aid users during the setup stage of a motion capture
system, as the current solutions were lacking in usability and maintainability. The
question this thesis sought to answer was What should be considered when designing
a mobile tool that aids with the setup stage of an optical motion capture system?
and the following section will conclude our findings.

9.1 Conclusions

The proposed approach to answer the research question was to create a proof of
concept of a more maintainable and user friendly tool than what was currently
available. This research work aimed to investigate the implications of creating the
proof of concept and abstracting specific considerations from these findings. Three
main areas for consideration were revealed by the end of this work and are presented
in the following sections.

9.1.1 Mobile Development

Different evaluations performed throughout this work substantiated our belief that
a mobile approach was necessary for providing simple, fast and intuitive interactions
when working with the setup of a motion-capture camera system. These evaluations
made it clear that users were accustomed to use a mobile device - such as a smart
phone or tablet - as a tool during the setup stage of motion capture. Interactions
between a motion capture system and mobile platforms never revealed to be lacking
in any way, therefore no need for a more novel approach was elicited. Moreover,
formative evaluations made it evident that users will usually be looking at the mobile
device screen from afar while making modifications to the system. Based on this,
it is important to utilize the screen size as much as possible to conform to user
needs.

76

9. Conclusions and Future Work

Different mobile devices behave differently, and their performance can greatly vary.
When working with complex systems such as a motion capture one, it is indispens-
able to constantly perform rigorous testing on multiple devices. This can reveal
important hardware limitations and differences which must be taken into account
to ensure a good user experience.

9.1.2 Cross-platform Development

A mobile cross-platform framework was utilized with the belief that this would im-
prove maintainability. The proof of concept proved that it is possible to create a
mobile, multi-platform tool that aid in the setup of a motion-capture system with
the help of a single developing environment. We strongly believe that working with
this approach greatly increases maintainability, as it was empirically discovered that
building for different platforms from a single code-base is by far faster than taking
the native approach. Most of the testing can also be done using a shared code
base, although testing on all platforms using physical devices is still a necessity due
inconsistent behavior between platforms. Another good reason is that all neces-
sary add-ons can be managed from the same environment, making it easy to share
libraries amongst targets (if available), or using specific ones for some.

Furthermore a common environment to design both the user interface as well as
user interactions was employed. This approach enables designers to come up with a
general look & feel that can be applied to well-known native user interface elements,
thereby reducing the need for repetitive code.

Some of the down-sides of targeting several platforms when designing a look & feel in
a shared environment is that it might be hard to target very specific native elements.
This can be resolved using custom extensions that target specific native APIs, at
the cost of having more code. Although, finding a corresponding interface for the
other platforms might not be possible in some cases. Platform-specific resources and
UI design guidelines still need to be taken into account as ultimately, this shared
interface code is interpreted and compiled into native elements.

9.1.3 Real-time Systems

Apart from being mobile, the application also needs to handle real-time data to pro-
vide an interactive experience with the system. Some of the data demands heavy
computing which can cause severe stability issues and drastically decrease usability.
This needs to be tackled with a set of optimizations spanning different applica-
tion levels; computer graphics, networking and memory usage are some examples of
potential bottlenecks that must always be considered. With the use of such opti-
mization, our proof of concept managed to get close to the performance of the native
predecessors. This shows that performance-wise, a cross-platform framework that

77

9. Conclusions and Future Work

compiles into native code is viable when working with real-time data that demands
heavy computing.

9.2 Contribution

This work’s contribution is a mobile application artifact that demonstrates that it is
possible to develop a cross-platform application that communicates with an optical
mocap system in real-time. This same artifact proves the mocap industry that tools
for interacting with motion camera systems can still be improved. Subsequently, as a
result of the design-driven approach of this research, a blueprint for both design and
implementation of this type of interactive tools has been extensively documented.
This is expected to aid future researchers in the field of real-time motion capture
and mobile computing.

9.3 Future Work

There is still a lot that can be done to create an even better tool to aid the user
during the setup stage of a motion-capture system. Testing the design solution with
real-life scenarios should be done to gain extra insights and valuable information re-
garding user-system interaction to see how this could be improved. More specifically
attention should be put into how the user, the application, the camera system and
the physical components play together. Direct physical interaction with a camera
rig is a subject that still needs to be addressed, especially with regards to safety.
There must be a better way than standing on top of a ladder with a handheld device
on one hand and a camera in the other; unfortunately this topic was out of the scope
of this thesis.

Additionally, handling system scalability is one of the most challenging aspects when
assuring stability and performance; the proof of concept has been tested not more
than a couple of times with a real setup consisting of ten cameras, unfortunately
the results were not positive. Thus investigating potential optimizations is of great
importance to improve user experience.

Further field research could be done to investigate how a tool can help in cases
where there is an even greater need for portability such as setting up motion-capture
systems outdoors or even underwater as seen in figure 8.1.

Finally, the mobile market is a fast-evolving one with new devices and software
being released with each turn of the year, innovative forms of interaction are con-
stantly introduced such as augmented reality. It is our belief that further research
on how these novel technologies could be used with a motion capture system is
relevant.

78

Bibliography

[1] Qualisys | motion capture system. http://www.qualisys.com/. Accessed:
2017-01-25.

[2] Mobile app testing on hundreds of devices | xamarin test cloud. https://www.
xamarin.com/test-cloud. Accessed: 2017-01-30.

[3] About qt | qt wiki. https://wiki.qt.io/About_Qt. Accessed: 2017-01-30.

[4] Platform architecture | android developers. https://developer.android.
com/guide/platform/index.html. Accessed: 2017-05-24.

[5] Prototypes, specification, and diagrams in one tool | axure software. https:
//www.axure.com. Accessed: 2017-04-27.

[6] Cinder’s github repository. https://github.com/cinder/Cinder/tags. Ac-
cessed: 2017-05-16.

[7] Collins dictionary. https://www.collinsdictionary.com/dictionary/
english/brainstorming. Accessed: 2017-02-01.

[8] Cocoa touch layer. https://developer.apple.com/library/content/
documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/
iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/
uid/TP40007898-CH3-SW1, . Accessed: 2017-05-24.

[9] Core os layer. https://developer.apple.com/library/content/
documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/
CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/
TP40007898-CH11-SW1, . Accessed: 2017-05-24.

[10] Core services layer. https://developer.apple.com/library/content/
documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/
CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/
TP40007898-CH10-SW5, . Accessed: 2017-05-24.

[11] Design principles - overview - ios human interface guidlines. https:
//developer.apple.com/ios/human-interface-guidelines/overview/
design-principles/, . Accessed: 2017-05-24.

[12] Media layer. https://developer.apple.com/library/content/

79

http://www.qualisys.com/
https://www.xamarin.com/test-cloud
https://www.xamarin.com/test-cloud
https://wiki.qt.io/About_Qt
https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/platform/index.html
https://www.axure.com
https://www.axure.com
https://github.com/cinder/Cinder/tags
https://www.collinsdictionary.com/dictionary/english/brainstorming
https://www.collinsdictionary.com/dictionary/english/brainstorming
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4

Bibliography

documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/
MediaLayer/MediaLayer.html#//apple_ref/doc/uid/
TP40007898-CH9-SW4, . Accessed: 2017-05-24.

[13] Kinect for xbox one. http://www.xbox.com/en-US/xbox-one/accessories/
kinect. Accessed: 2017-01-25.

[14] Kivy: Cross-platform python framework for nui development. https://kivy.
org/#home, . Accessed: 2017-01-30.

[15] Kivy: Cross-platform python framework for nui development. https://kivy.
org/#organization, . Accessed: 2017-01-30.

[16] Kivy’s github repository. https://github.com/kivy/kivy/tags?after=1.0.
6, . Accessed: 2017-05-16.

[17] The kj-technique: A group process for establishing priorities ux articles by uie.
https://articles.uie.com/kj_technique/. Accessed: 2017-02-10.

[18] Material design - icons. https://material.io/guidelines/style/icons.
html#, . Accessed: 2017-05-05.

[19] Introduction - material design - material design guidelines. https://material.
io/guidelines/, . Accessed: 2017-05-24.

[20] Mobile center | mobile app development | visual studio. https://www.
visualstudio.com/vs/mobile-center/. Accessed: 2017-05-29.

[21] Our vision, values and promises. https://www.mockplus.com/about. Ac-
cessed: 2017-04-27.

[22] Urhosharp.forms. https://www.nuget.org/packages/UrhoSharp.Forms/.
Accessed: 2017-05-26.

[23] What you need to know about popular ux naigation patters. http://www.
freshform.com/blog/popular-ux-navigation-patterns/. Accessed: 2017-
05-17.

[24] Qml applications. http://doc.qt.io/qt-5/qmlapplications.html. Ac-
cessed: 2017-01-30.

[25] Qt - product | the ide. https://www.qt.io/ide/. Accessed: 2017-01-30.

[26] Introducing the qt lite project–qt for any platform, any thing,
any size - qt blog. http://blog.qt.io/blog/2016/08/18/
introducing-the-qt-lite-project-qt-for-any-platform-any-thing-any-size/.
Accessed: 2017-01-30.

[27] History of cute qt. http://www.masteringqt.com/2013/06/
history-of-cute-qt.html. Accessed: 2017-05-16.

[28] Qt qml 5.8. http://doc.qt.io/qt-5/qtqml-index.html. Accessed: 2017-01-
30.

80

https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
http://www.xbox.com/en-US/xbox-one/accessories/kinect
http://www.xbox.com/en-US/xbox-one/accessories/kinect
https://kivy.org/#home
https://kivy.org/#home
https://kivy.org/#organization
https://kivy.org/#organization
https://github.com/kivy/kivy/tags?after=1.0.6
https://github.com/kivy/kivy/tags?after=1.0.6
https://articles.uie.com/kj_technique/
https://material.io/guidelines/style/icons.html#
https://material.io/guidelines/style/icons.html#
https://material.io/guidelines/
https://material.io/guidelines/
https://www.visualstudio.com/vs/mobile-center/
https://www.visualstudio.com/vs/mobile-center/
https://www.mockplus.com/about
https://www.nuget.org/packages/UrhoSharp.Forms/
http://www.freshform.com/blog/popular-ux-navigation-patterns/
http://www.freshform.com/blog/popular-ux-navigation-patterns/
http://doc.qt.io/qt-5/qmlapplications.html
https://www.qt.io/ide/
http://blog.qt.io/blog/2016/08/18/introducing-the-qt-lite-project-qt-for-any-platform-any-thing-any-size/
http://blog.qt.io/blog/2016/08/18/introducing-the-qt-lite-project-qt-for-any-platform-any-thing-any-size/
http://www.masteringqt.com/2013/06/history-of-cute-qt.html
http://www.masteringqt.com/2013/06/history-of-cute-qt.html
http://doc.qt.io/qt-5/qtqml-index.html

Bibliography

[29] React Native’s github repository. https://github.com/facebook/
react-native/tags?after=v0.3.4. Accessed: 2017-05-16.

[30] Measuringu: 10 things to know about the single ease question (seq). https:
//measuringu.com/seq10/. Accessed: 2017-05-10.

[31] Unity - editor version release dates. http://web.archive.org/web/
20141015144227/http://docs.unity3d.com/Manual/ReleaseDates.html.
Accessed: 2017-05-16.

[32] An introduction to urhosharp. https://developer.xamarin.com/guides/
cross-platform/urho/introduction/. Accessed: 2017-05-02.

[33] Control - android apps on google play. https://play.google.com/store/
apps/details?id=com.vicon.control. Accessed: 2017-01-30.

[34] Viewfinder - andoid apps on google play. https://play.google.com/store/
apps/details?id=se.qualisys.magnum.viewfinder. Accessed: 2017-01-30.

[35] Xamarin pricing. https://store.xamarin.com/. Accessed: 2017-05-24.

[36] What is xaml? https://msdn.microsoft.com/en-us/library/cc295302.
aspx. Accessed: 2017-05-25.

[37] Introduction to game development with xamarin. https://developer.
xamarin.com/guides/cross-platform/game_development, . Accessed: 2017-
05-02.

[38] Xamarin delivers tool for building native mac os
x apps with c#. http://www.zdnet.com/article/
xamarin-delivers-tool-for-building-native-mac-os-x-apps-with-c/,
. Accessed: 2017-05-16.

[39] R.P.M Fonseca K. Siewert J.A.A Martins A.L.C. Fujarra, R.T GOncalves. Op-
tical motion capture as a technique for measuring the water wave elevation.
Number 4, 2009.

[40] D. Benyon, P. Turner, and S. Turner. Designing Interactive Systems: People,
Activities, Contexts, Technologies. Addison-Wesley, 2005. ISBN 9780321116291.
URL https://books.google.se/books?id=iWe7VkFW0zMC.

[41] Luc Berthouze and Margaret Mayston. Design and validation of surface-
marker clusters for the quantification of joint rotations in general move-
ments in early infancy. Journal of Biomechanics, 44(6):1212 – 1215, 2011.
ISSN 0021-9290. doi: http://dx.doi.org/10.1016/j.jbiomech.2011.01.016. URL
//www.sciencedirect.com/science/article/pii/S0021929011000467.

[42] Wallace AM Colborne GR, Hadley NR. A novel method for defining the grey-
hound talocrural joint axis of rotation for hinged transarticular external skeletal
fixation. Veterinary and Comparative Orthopaedics and Traumatology, (4):298–
303, 2013.

81

https://github.com/facebook/react-native/tags?after=v0.3.4
https://github.com/facebook/react-native/tags?after=v0.3.4
https://measuringu.com/seq10/
https://measuringu.com/seq10/
http://web.archive.org/web/20141015144227/http://docs.unity3d.com/Manual/ReleaseDates.html
http://web.archive.org/web/20141015144227/http://docs.unity3d.com/Manual/ReleaseDates.html
https://developer.xamarin.com/guides/cross-platform/urho/introduction/
https://developer.xamarin.com/guides/cross-platform/urho/introduction/
https://play.google.com/store/apps/details?id=com.vicon.control
https://play.google.com/store/apps/details?id=com.vicon.control
https://play.google.com/store/apps/details?id=se.qualisys.magnum.viewfinder
https://play.google.com/store/apps/details?id=se.qualisys.magnum.viewfinder
https://store.xamarin.com/
https://msdn.microsoft.com/en-us/library/cc295302.aspx
https://msdn.microsoft.com/en-us/library/cc295302.aspx
https://developer.xamarin.com/guides/cross-platform/game_development
https://developer.xamarin.com/guides/cross-platform/game_development
http://www.zdnet.com/article/xamarin-delivers-tool-for-building-native-mac-os-x-apps-with-c/
http://www.zdnet.com/article/xamarin-delivers-tool-for-building-native-mac-os-x-apps-with-c/
https://books.google.se/books?id=iWe7VkFW0zMC
//www.sciencedirect.com/science/article/pii/S0021929011000467

Bibliography

[43] Alan Cooper, Robert Reimann, and Dave Cronin. About Face 3: The Essentials
of Interaction Design. John Wiley & Sons, Inc., New York, NY, USA, 2007.
ISBN 9780470084113.

[44] The Design Council. Eleven lessons: managing design in eleven global brands
| the design process. 2007.

[45] CreatingMinds. Tools for selecting ideas. http://creatingminds.org/tools/
tools_selection.htm. Accessed: 2017-03-01.

[46] Mathias Bylund Emmanuel Batis. Arqusfinder demo - password: arqus. URL
https://vimeo.com/219486756.

[47] Marsha E. Fonteyn, Benjamin Kuipers, and Susan J. Grobe. A description of
think aloud method and protocol analysis. Qualitative Health Research, 3(4):
430–441, 1993. doi: 10.1177/104973239300300403. URL http://dx.doi.org/
10.1177/104973239300300403.

[48] Zlatko Franjcic. Towards improving performance and user-friendliness of op-
tical motion capture systems. Technical report L - Department of Computer
Science and Engineering, Chalmers University of Technology and Göteborg Uni-
versity, no: Lic. Institutionen för tillämpad informationsteknologi (Chalmers),
Chalmers tekniska högskola, 2015.

[49] Zlatko Franjcic, Pawel W. Wozniak, G. Kasparavičiute, and Morten Fjeld.
Wavi: Improving motion capture calibration using haptic and visual feedback.
In Proceedings of the 18th International Conference on Human-Computer In-
teraction with Mobile Devices and Services, MobileHCI 2016, pages 254–265,
2016. ISBN 978-145034408-1.

[50] William Gaver. What should we expect from research through design? In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pages 937–946, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1015-4. doi: 10.1145/2207676.2208538. URL http://doi.acm.org/10.1145/
2207676.2208538.

[51] Gutemberg B. Guerra-filho. Optical motion capture: Theory and implementa-
tion. Journal of Theoretical and Applied Informatics (RITA, 12:61–89, 2005.

[52] Julie A. Jacko. The human-computer interaction handbook: fundamentals,
evolving technologies and emerging applications. CRC Press, 2012. ISBN
9781439829431.

[53] B. Cameron & W. Josh. Essential Mobile Interaction Design: Perfecting In-
terface Design in Mobile Apps. Addison-Wesley Professional, 2014. ISBN 978-
0321961570.

[54] T. Kelley. The Art of Innovation: Lessons in Creativity from IDEO, America’s
Leading Design Firm. Crown Publishing Group, 2007. ISBN 9780307423863.
URL https://books.google.se/books?id=yjgO70g_qbsC.

[55] Richard Kennard and John Leaney. Towards a general purpose architecture

82

http://creatingminds.org/tools/tools_selection.htm
http://creatingminds.org/tools/tools_selection.htm
https://vimeo.com/219486756
http://dx.doi.org/10.1177/104973239300300403
http://dx.doi.org/10.1177/104973239300300403
http://doi.acm.org/10.1145/2207676.2208538
http://doi.acm.org/10.1145/2207676.2208538
https://books.google.se/books?id=yjgO70g_qbsC

Bibliography

for {UI} generation. Journal of Systems and Software, 83(10):1896 – 1906,
2010. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2010.05.079. URL
//www.sciencedirect.com/science/article/pii/S0164121210001597.

[56] Richard Larkin. Kivy showcase: a short exploration of how kivy is changing
the world. https://www.youtube.com/watch?v=kXLQ_7GGMnM, October 2015.

[57] Mahesh Panhale. Beginning Hybrid Mobile Application Development. Apress,
2016. ISBN 978-1-4842-1315-5.

[58] Jenny Preece, Yvonne Rogers, and Helen Sharp. Interaction Design: Beyond
Human-Computer Interaction. John Wiley & Sons, Inc., New York, NY, USA,
2001. ISBN 0471402494.

[59] K. Rijnieks. Cinder - Begin Creative Coding. Packt Publishing, 2013. ISBN
9781849519564.

[60] Dan Saffer. Designing for Interaction: Creating Innovative Applications and
Devices. New Riders Publishing, Thousand Oaks, CA, USA, 2nd edition, 2009.
ISBN 0321643399, 9780321643391.

[61] Douglas Schuler and Aki Namioka, editors. Participatory Design: Principles
and Practices. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1993. ISBN
0805809511.

[62] D. J. Sturman. A brief history of motion capture for computer character ani-
mation. SIGGRAPH 94, Character Motion Systems, Course notes 1, 1994.

[63] Jacob O. Wobbrock and Julie A. Kientz. Research contributions in human-
computer interaction. interactions, 23(3):38–44, April 2016. ISSN 1072-5520.
doi: 10.1145/2907069. URL http://doi.acm.org/10.1145/2907069.

[64] John Zimmerman, Jodi Forlizzi, and Shelley Evenson. Research through design
as a method for interaction design research in hci. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’07, pages 493–
502, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-593-9. doi: 10.
1145/1240624.1240704. URL http://doi.acm.org.proxy.lib.chalmers.se/
10.1145/1240624.1240704.

83

//www.sciencedirect.com/science/article/pii/S0164121210001597
https://www.youtube.com/watch?v=kXLQ_7GGMnM
http://doi.acm.org/10.1145/2907069
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1240624.1240704
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1240624.1240704

A
Appendix: Brainstorming Ideas

High priority

1. Light-up camera that is currently being viewed
2. Incorporate calibration haptics (magic wand)
3. Hololens to visualize tracking data
4. Color coding joints depending on marker count (average)
5. Pie chart indicating number of potential markers/currently tracked
6. Move in 3D space with gyroscope and accelerometers
7. Grid with cameras

(a) Re-order cameras in the grid with drag-and drop
(b) Able to switch stream mode from each camera

8. Speech recognition
9. Viewport interaction

(a) 3D view: add small buttons of transformation interaction

Medium priority

1. Calibration
(a) Calibration indicator good-bad

2. Navigation/UI
(a) Tabbed view
(b) Navigation bar on bottom
(c) Floating button for changing stream mode
(d) Swipe up/down to change stream mode
(e) Drawer menu
(f) Change orientation by holding and rotating two fingers
(g) Round slider
(h) Button to switch current 2D view to 3D

3. Layout
(a) Dual layout mode with 2D camera feed over 3D or viceversa

4. Settings and Configuration
(a) Side bars/edges to configure exposure/threshold (visualize and/or mod-

ify)

I

A. Appendix: Brainstorming Ideas

Low priority

1. Viewport interaction
(a) Focus button/focus gesture

2. Spatial interactions
(a) Aim phone to camera and get its feed

3. Networking
(a) Automatic server refresh

4. Visualization
(a) Draw bones between joints
(b) Superimposing 3D data on video stream
(c) Displaying cameras in 3D view
(d) Skeleton Mesh

5. Navigation/UI
(a) Vicon-like camera scroll

6. Calibration
(a) Mocap volume real-time preview

II

B
Appendix: Requirements

B.1 ArqusFinder Requirement Description

Functional Requirements

• FR1. Should be able to change camera mode without changing it for all
cameras.

• FR2. Component interaction should be isolated from other components.
• FR3. Should be able to change camera view in camera-detail-view
• FR4. There should be a way of rotating the camera view
• FR5. A way to identify a Miqus camera with the aid of the ID-ring
• FR6. Slider components for camera settings should work smoothly and with-

out any noticeable lag.
• FR7. Slider components for camera settings should make the current changing

value obvious.
• FR8. Device should not go idle when using the application
• FR9. Application should offer an overview of all the cameras
• FR10. If no measurement has started there should be an obvious way of doing

that
• FR11. User should be able to zoom in and out of camera view
• FR12. User should be able to pan camera view
• FR13. Should be able to manually connect to host through IP specification
• FR14. Application should display all hosts running in the LAN

Non-functional Requirements

• NFR1. Error-handling should be done without disrupting the users flow

III

C
Appendix: Usage data

C.1 Screen Layout Toggled Data

Name CameraScreenLayout Count
CameraPageViewModel grid 92
CameraPageViewModel carousel 31

C.2 Message Data

Name Message Count
CameraScreen STREAM_DATA_SUCCESS 1 80
CameraScreen STREAM_DATA_SUCCESS 2 80
CameraScreen STREAM_DATA_SUCCESS 3 78
CameraScreen STREAM_DATA_SUCCESS 4 78
CameraScreen STREAM_MODE_CHANGED1 40
CameraApplication SET_CAMERA_SELECTION 543
CameraApplication SET_CAMERA_SCREEN_LAYOUT 39
Camera STREAM_MODE_CHANGED4 50
Camera STREAM_MODE_CHANGED1 33
Camera STREAM_MODE_CHANGED3 28
Camera STREAM_MODE_CHANGED2 17
Camera STREAM_MODE_CHANGED13 1
App CONNECTED 84
App DISCONNECTED 44
CameraPageViewModel SET_CAMERA_SCREEN_LAYOUT 123

IV

C. Appendix: Usage data

C.3 Stream Mode Data

Name NewMode Count
Camera ModeVideo 49
Camera ModeMarker 42
Camera ModeMarkerIntensity 39

V

VI

D. Appendix: Evaluation table

D
Appendix: Evaluation table

VII

E
Appendix: Style Implementation

Listing E.1: The theme of the application defined in the shared code base.
App.xaml
<Style x:Key="AppBar" TargetType ="Frame">

<Setter Property =" BackgroundColor " Value=" #212121 " />
</Style >

<Style x:Key="Card" TargetType ="Frame">
<Setter Property =" BackgroundColor " Value=" #424242 " />

</Style >

<Style x:Key=" Background " TargetType =" StackLayout ">
<Setter Property =" BackgroundColor " Value=" #303030 " />
<Setter Property =" VerticalOptions " Value=" FillAndExpand " />

</Style >

<Style x:Key=" PrimaryText " TargetType ="Label">
<Setter Property =" TextColor " Value="#FFFFFF" />
<Setter Property =" Opacity " Value="1" />

</Style >

<Style x:Key=" SecondaryText " TargetType ="Label">
<Setter Property =" TextColor " Value="#FFFFFF" />
<Setter Property =" Opacity " Value="0.7" />

</Style >

<Style x:Key=" DisabledText " TargetType ="Label">
<Setter Property =" TextColor " Value="#FFFFFF" />
<Setter Property =" Opacity " Value="0.5" />

</Style >

Listing E.2: An Android style.xml example file that defines styling for a theme.

style.xml

VIII

E. Appendix: Style Implementation

<?xml version ="1.0" encoding ="utf -8" ?>
<resources >

<style name=" MyTheme " parent=" MyTheme .Base">
</style >
<style name=" MyTheme .Base"

parent ="Theme. AppCompat . NoActionBar ">
<item name=" colorPrimary ">

@color / primary
</item >
<item name=" colorPrimaryDark ">

@color / primaryDark
</item >
<item name=" colorAccent ">@color /accent </ item >
<item name=" windowActionModeOverlay ">true </item >

</style >
</ resources >

color.xml

<?xml version ="1.0" encoding ="utf -8" ?>
<resources >

<color name=" primary ">#2196 F3</ color >
<color name=" primaryDark ">#1976 D2</ color >
<color name="accent">#FFC107 </ color >

</ resources >

IX

X

F. Appendix: Framework Evaluation Criteria

F
Appendix: Framework Evaluation

Criteria

XI

XII

G. Appendix: Use cases

G
Appendix: Use cases

XIII

G. Appendix: Use cases

XIV

G. Appendix: Use cases

XV

G. Appendix: Use cases

XVI

G. Appendix: Use cases

XVII

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Context
	Problem Definition
	Research Question
	Proposal

	Background
	Related Work
	Identifying Stakeholders
	Optical Motion Capture
	Qualisys Motion-Capture System

	Theoretical Foundation
	Substantiating Interaction Design Research
	Interaction Design Research Contribution
	Target Users
	Evaluation Paradigms
	Mobile Computing

	Methodology
	Interaction Design Activities
	Planning the Design Process

	Design Process
	Evaluation of Frameworks
	Requirements Specification
	Ideation
	Early Prototyping

	Results
	Development Environment
	ArqusFinder

	Summative Evaluation
	Single Ease Question Results
	Observations
	Evaluation of usage data

	Discussion
	Formative Evaluation
	Cross-Platform Development
	Summative Evaluation
	General Usability
	Usage data
	Looking Back at the Design Process
	Changing Research Angle

	Conclusions and Future Work
	Conclusions
	Contribution
	Future Work

	Appendix: Brainstorming Ideas
	Appendix: Requirements
	ArqusFinder Requirement Description

	Appendix: Usage data
	Screen Layout Toggled Data
	Message Data
	Stream Mode Data

	Appendix: Evaluation table
	Appendix: Style Implementation
	Appendix: Framework Evaluation Criteria
	Appendix: Use cases

