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Popular science presentation
The number of diabetes cases increases every year. It has been estimated that 700 million people
will have diabetes by 2045 [1]. Diabetic neuropathy is a nerve disease that half of all diabetic
patients develop. The nerve disease causes nerve damage or dysfunction, and as a result, patients
suffer from pain and loss of sensation. The cause of diabetic neuropathy is primarily thought to be
correlated with prolonged uncontrolled high blood sugar. However, the specific reason for the de-
generation of nerve cells is yet unknown. This project aims to determine if the nerve deterioration
follows specific patterns of healthy individuals with those of patients diagnosed with mild diabetes.

Neuropathy indicates a problem within the peripheral nervous system: the network of nerves out-
side of the brain and spinal cord. Peripheral neuropathy is caused by the damage or dysfunction
of one or more peripheral nerves. This can lead to weakness, numbness and pain. Usually, the first
incidents of neuropathy occurs in the hands and feet but can later affect other areas and body
functions. The nerves send electrochemical signals all over the body and allow us to see, hear, smell
and feel. Neuropathy may therefore disrupt the communication between the neurons and the brain.
One substantial difference between nerve cells and other cells in the body is that nerve cells have
threadlike outgrowths that lead signals to and from the nerve cells via an axon. More extensive
axons are surrounded by an electric isolation layer of myelin, a fat substance. Diabetic neuropathy
is when the axon worsens, and the myelin layer is damaged, as seen in Figure 1. Early diagnosis
of diabetic neuropathy gives patients the best chance of effective treatment. However, accurate
diagnosis is vital to ensure appropriate treatment since not all feet or limb pain is due to diabetic
neuropathy [2]. Early discovery of diabetic neuropathy can reduce the risk of complications but
unfortunately there is currently no method to detect neuropathy before the symptoms occur.

Figure 1: An illustration of a healthy nerve cell and an unhealthy nerve cell.

The provided data consists of nerve point locations from healthy volunteers and mildly diabetic
patients. Three models that emulate the nerve fibres’ morphological changes were developed. The
nerve patterns obtained using the models will be compared to the empirical data to see how well
they match up. The first model is an independent random thinning model. The main objective
of the model is to test if the nerve thinning happens randomly and independently of the other
points. The results show that the nerve thinning is not completely random. Therefore, model 2
was developed to be conditional on the location of the base points but without any aspect of
randomness. This model showed better promise than the first one, however for a model to be
realistic, it needs an aspect of randomness. This means that model 2 is not a viable option to
emulate the neuropathy. Model 3 was then created to incorporate randomness into an otherwise
deterministic model. The results of model 3 were satisfactory with regards to the statistics is also a
more realistic model if applied to a larger data set. However, it is still not perfect as these models
depend solely on the thinning of the nerves. Creating a more sophisticated model that implements
more spatial variables might answer the question of how the deterioration of nerve cells occurs at
the early stages of neuropathy. If we can solve this problem, we get one step closer to solving the
puzzle of neuropathy with this answer.



Sammanfattning

Diabetes har lett till en epidemi av komplikationer i samband med denna sjukdom. Diabetisk
neuropati, som orsakar smärta och förlust av känsel på grund av förtvining av nervfibrer, är en
av de vanligaste komplikationerna av diabetes. Konfokalmikroskopi har gjort det möjligt att
observera nervändarna i den yttre huden hos sjuka patienter. De tenderar att vara mer samla-
de än hos friska försökspersoner. Därför är det nödvändigt att förstå processen med förtvining
och den spatiala förtunningen av nervfibrer för att upptäcka diabetisk neuropati i ett tidigt
skede.

De två huvudhypoteserna som testades är om nervförtviningen sker slumpmässigt och oberoen-
de av andra punkter och om nervförtviningen är betingad av andra punkter. Tre matematiska
modeller har utvecklats baserade på spatial förtunning. Den första är en oberoende slump-
mässig förtviningsmodell, den andra är en deterministisk förtviningsmodell och den tredje är
en Gaussisk förtviningsmodell. Den andra och tredje modellen förtvinar punkter beroende på
avståndet från baspunkten. När vi utvärderade spatiala statistiken använde vi den centrerade
L-funktionen som en sammanfattningsfunktion när vi genomförde ett globalt enveloptest med
N = 500 simuleringar, där vi testar hypotesen under den empiriska datan från patienterna
med mild diabetes. Vi utvärderade även de olika modellerna baserat på icke-spatial statistik
som kommer att jämföras med datan från patienterna med mild diabetes.

De spatiala resultaten från den första modellen visade att nervförtunning inte sker slumpmäs-
sigt och oberoende (p = 0, 01), således förkastades nollhypotesen för signifikansnivån α = 0, 05.
Nollhypotesen för signifikansnivån α = 0, 05 kunde inte förkastas utifrån resultatet av den and-
ra modellen (p = 0, 624) vilket även gäller för den tredje modellen (p = 0, 056) för signifikans-
nivån α = 0, 05. De icke-spatiala resultaten visade att den första modellen är acceptabel om
det önskade resultatet är att enbart observera icke-spatiala egenskaper hos datan medan den
andra och tredje modellen inte lämpade sig lika väl för de icke-spatiala egenskaperna. En trolig
förklaring till varför den andra och tredje modellen presterade sämre i detta avseende kan vara
att spatial förtunning inte är en tillräcklig förklaring bakom de underliggande mekanismerna.

Abstract

Diabetes has led to an epidemic of complications associated with this disease. Diabetic neu-
ropathy, which causes pain and loss of sensation due to degeneration of nerve fibers, is one of
the most common complications of diabetes. Confocal microscopy made it possible to observe
that the nerve endings in the outer skin of sick patients tend to be more clustered than in
healthy subjects. Therefore, it is imperative to understand the process of degeneration and
the spatial thinning of nerve fibers to detect diabetic neuropathy at an early stage.

The two main hypotheses were tested are whether the nerve thinning occurs randomly and in-
dependently of other points and whether the nerve thinning is conditional on the other points.
Three mathematical models were developed based on spatial thinning. The first is an indepen-
dent random thinning model, the second is a deterministic thinning model and the third is a
Gaussian thinning model. The second and third models are conditional on the location of the
base point and the distance from it. When evaluating the spatial statistics, we used the cen-
tered L-function as a summary function when conducting a global envelope test with N = 500
simulations, where we tested the hypothesis under the empirical mild data. We also evalu-
ated the different models based on non-spatial statistics which were compared to the mild data.

The spatial results from the first model showed that nerve thinning does not occur randomly
and independently (p = 0.01), thus rejected the null-hypothesis for significance level α = 0.05.
The second model could not be rejected under the null-hypothesis (p = 0.624) as well as the
third model (p = 0.056) for significance level α = 0.05. The non-spatial results showed that
the first model sufficed if the desired outcome is to observe just non-spatial characteristics of
the data whilst the second and third model lacked in this area. A likely explanation as to why
the second and third models performed worse in the non-spatial regard, may be that spatial
thinning isn’t a sufficient explanation behind the underlying mechanisms.
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1 Introduction
Epidermal nerve fibers are thin sensory nerve fibers found in the epidermis, the outer layer of the
skin. Diabetic neuropathy is a nerve disease that develops in a diabetic patient and can cause
loss of sensation. It has been observed that the morphology of the nerve fibres in the epidermis
of patients with diabetic neuropathy appears to be more clustered than that of healthy patients.
The endpoints and the structure of the nerve fibres are sensors (i.e for heat and pain). As nerve
fibres form, they eventually pierce through the epidermis. These are so-called base points, shown
in Figure 2. The nerve fibres then extend into the epidermis and branch until they terminate [3].

Spatial point processes are stochastic processes defined in the spatial domain and can be catego-
rized based on their distribution [3]. Therefore, spatial point processes are a suitable mathematical
model to describe the spatial structure of the nerve fibers. Processes, where nerve points tend to
be arranged in groups, are called clusters, while processes, where the points end up uniformly
scattered, are called completely spatially random.

Figure 2: An illustration of the end points and base points in the epidermis.

1.1 Diabetes
Diabetes is a chronic disease that develops either from insufficient insulin production by the pan-
creas or the body’s inability to use the insulin produced by the body properly and effectively.
Insulin is a blood sugar level regulating hormone that is produced in the pancreas. Diabetes, if
uncontrolled, causes hyperglycemia or high blood sugar and can potentially damage many-body
systems, especially the nerves and blood vessels. The two existing types of diabetes (type 1 and
type 2) share several characteristics. Overall, their primary difference is in the occurrence and the
treatment of the disease. [1].

Diabetes is one of the biggest public health concerns on a global level, with a significant adverse
impact on the health of the general population and the socio-economic development of nations.
Although the prevalence of diabetes has decreased in some countries, most developed and devel-
oping countries have experienced an increase in recent decades. The global diabetes distribution is
estimated to be 10.2%, (about 578 million people), and by 2030 it is predicted to increase by 0.7%
to 700 million people by 2045. The prevalence is higher in urban (10.8%) than rural (7.2%) areas
and in high-income (10.4%) than low-income countries (4.0%). Due to the significant increase in
the disease, it has been classified as a global epidemic by the World Health Organization [1]. An
early diagnosis of neuropathy can be crucial for the treatment process.

1



1.2 Statistical scope
Statistics is today regarded by many academics as a tool for which one can analyze and interpret
data. To accurately extract relevant information from data is not only important but also provides
the main empirical and quantitative “proof” for the conclusions of a study. However, the field of
traditional statistics is not defined narrowly enough, which limits the subject in many ways for
different reasons. This is the reason why there are different divisions within statistics for different
applications. One of these divisions is spatial statistics or spatial analysis, which is the subdiscipline
within statistics that deals with spatial data. Within spatial statistics, many models exist when
dealing with spatial data and different kinds of processes to imitate reality better. These different
models have specific methods with regard to validation to assess the accuracy of the models.

There are many applicable fields for spatial statistics, which include: spatial economics, image
processing, earth science, ecology, geography, epidemiology as well as biology, as we will see in this
study. Anything that produces complex location-oriented problems can potentially be analyzed
using spatial statistical methods, and by using the lens of spatial analysis, we can assess spatial
data to find patterns and trends [4]. In our study, these patterns were analyzed using spatial point
pattern methods as the data will take the shape of different points in a rectangular observation
window.

Spatial point patterns are frequently occurring in medicinal and biological data and are specif-
ically defined as a data set that contains the location information of events or things. These events
or things are represented by a point that can have different attributes. The point can vary in size,
colour or shape depending on what sort of data we have. In our spatial point patterns for this
study, we have been looking at points that represent a nerve base or nerve ending in the tissues of
the patients.

1.3 Purpose
The aim of the thesis is to model the physiological changes caused as diabetic neuropathy advances
in the structure of the epidermal nerve fibers. This can be explained in a more digestible manner
as the depreciation of nerve fibers in the top layer of diabetic patients’ skin. Our purpose is to find
a mathematical model that represents this process. This thesis is a small part of a larger study on
diabetic neuropathy, and therefore the results of our study will be used there.

1.4 Problem
The primary objective of this thesis is to improve our understanding of the underlying biological
mechanisms that lead to changes in the structure of nerve fibers in diabetic patients with neuropa-
thy. Through a better understanding of the underlying process, more efficient techniques can be
developed to detect the disease early. In accomplish our objective, the two-dimensional structure
of the nerve patterns has been studied, and models based on spatial thinning have been developed.

There is a significant difference in the number of base and end points in a healthy person compared
to a diabetic person. This can be observed in Table 1, where the intensities are presented. The
hypothesis that nerve removal occurs at random was tested. Two common patterns are shown
when comparing the nerve patterns. One is that there are fewer nerves, and the other is that the
nerves are more clustered, as seen in Figure 8, where the results are shown. Therefore, another
hypothesis is that there is a connection between the thinning of the nerves and the clustering.
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1.5 Data
Data from healthy volunteers and mild diabetic patients comprise the epidermal nerve fiber dataset
since the primary goal of this thesis is to investigate neuropathy at the earliest stages. The data
includes 28 samples from 8 mild diabetic subjects and 112 samples from 32 healthy controls. We
focused on skin samples obtained from the patient’s feet since research has shown that the early
changes in the physiology of the epidermal nerve fibers occur at an early stage in the distant body
regions [3].

The data is treated as realizations of stationary and isotropic point processes in a two-dimensional
box. There are two types of points in each point pattern: base and endpoints. The base points
are clustered because the nerve fibers may branch into deeper skin layers. Since heat and pain are
felt at the endpoints, their spatial structure is critical.

A spatial point process is a collection of random points, and an outcome of such a process is
called a point pattern. A spatial point process can create point patterns expressed in n= 1,2,...
dimensions. This project worked with point patterns in R2, as seen in Figure 3.

Figure 3: Examples of two-dimensional point patterns

1.6 Delimitation
Producing a mathematical model is a relatively difficult problem, especially when working with a
fixed amount of data points. For example, the data we worked with contains a total of 140 samples,
with 28 samples from diabetic patients and the rest from healthy volunteers. In general, models
trained on a few observations tend to overfit and produce inaccurate results.

The dataset contains non-spatial covariates such as age, BMI and gender, which are not accounted
for in the spatial analyses. Due to the small data set, the result might be inaccurate if the covariates
were used.
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2 Theory
In this section, the prominent mathematical concepts used in the process of creating the models
will be listed and explained.

2.1 Bootstrapping
Bootstrapping is the process of resampling from a data set by sampling randomly with replace-
ment. Bootstrapping can be used to derive standard errors, ensure the data is tested efficiently, and
mitigate overfitting risks. In algorithmic terms, the Bootstrapping method consists of choosing a
sample size B from a population N and sampling randomly m times to get the sample estimates [5].

There are two types of bootstrapping methods applicable in statistics and Machine Learning;
the parametric Bootstrap method and the non-parametric bootstrap method. The parametric
bootstrap method assumes a parametric distribution for the parameters, while the non-parametric
method does not. Our model uses a non-parametric bootstrap based on resampling from the
empirical data and acquiring the L-function’s statistic(s) of interest [5].

2.2 Gaussian distribution
The Gaussian distribution, also known as the normal distribution, is one of the most important
distributions in statistics. This continuous probability distribution describes the distribution of a
population centred around its mean, giving it a bell-shaped curve. The distribution is widespread
due to the central limit theorem, which states that the average of a large number of independent
and identically distributed random variables is approximately Gaussian.

The probability density function f(x) with mean µ and variance σ2 is given in the formula below
below [6].

f(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

for x ∈ R (1)

The half-normal distribution is a special case of the folded normal distribution in probability theory
and statistics. An ordinary, normal distribution with a mean zero has a half-normal distribution
with a fold at the mean.

2.3 Euclidean distance
The Euclidean distance is the length of a line segment between two points in the Euclidean space,
which is the fundamental space of classical geometry. The length of the line segment can be
calculated using the Pythagorean theorem a2 + b2 = c2 where a and b are two sides of a right
triangle and c is the hypotenuse. Since we are dealing with line segments in two dimensions, let
point p have the coordinates (p1, p2) and point q have the coordinates (q1, q2). The following
formula is used to calculate the distance between point p and point q and is used in the second
and third model that we will present [7].

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 (2)

2.4 Homogeneous Poisson Processes
Modelling using Poisson point processes works well when the data points are randomly scattered.
If a Poisson point process is termed as homogeneous, it means that the data points are uniformly
distributed across the sample space, meaning that the points are equally probable to appear in
any arbitrary place in the space and are independent of the location of the data point. The space
assumed to be bounded can be denoted as W , and its area denoted as v(W ). Let ds be a small
region by the point s, ds be the area of the region and N a random variable that represents the

4



number of points of the process in an arbitrary region. Then the intensity λ(s) can be defined as

λ(s) = lim
ds→0

E(N(ds))
ds

(3)

In a homogeneous Poisson process, λ(s) ≡ λ > 0. Let λ be the intensity of a Poisson distri-
bution and is the random number of points of the process N in the space W follows a Poisson
distribution with the mean λ · v(W )=E(N(W )). The homogeneous Poisson point process is of-
ten used as a reference to compare and determine whether point patterns are random, regular or
clustered [5].

2.5 Thinning
Thinning is an operation you can do on a spatial data set in order to thin out points. The In-
dependent random thinning model is the simplest form of thinning, and it omits points with a
probability of 1 − p independently of other points. Let Nd be a point pattern of our spatial data
set. After the thinning operation, it will yield Nt ⊂ Nd where Nt is our thinned point pattern [5].

Spatial dependent thinning is an operation which is dependent on the other points in the pro-
cess. The probability of omitting points will be 1 − p(x) where p(x) = p(x|X) where X is the
condition on all other points or the entire process [5].

2.6 Ripley’s K-function & L-function
Ripley’s K-function is used to determine the fit of the model as it finds the average number of points
within distance r from a certain point without counting the reference points. It also assumes that
the underlying process is stationary (translation invariant) and isotropic (rotation variant). The
results from Ripley’s K-function are rather difficult to interpret and therefore, according to [5],
modern point process statistics rarely use the K-function and instead utilize the L-function. Both
functions represent the same information, but there are graphical and statistical benefits to using
the L-function. The reason for this is the functions’ proportional properties, since K(r) ∝ rd and
L(r) ∝ r in Rd.
For stationary and isotropic point processes, Ripleys K-function is defined as

K(r) = Eo [N(b(o, r) \ {o})] /λ (4)

where N(b(o, r) \ {o}) is the number of further points of N, within a distance r ≥ 0, from the
origin o where λ is the intensity and Eo(·) is the conditional expectation given there is a point of
the process in the origin. The L-function in R2, which is a normalized version of the K-function
making its expected value linear, is defined as

L(r) =

√
K(r)

π
(5)

One can further normalize the L-function by subtracting r from both sides of the equation, and
make it easier to graphically interpret the results, thus letting

L(r)− r =

√
K(r)

π
− r ≡ 0 (6)

which will be used in this thesis when we analyze our results. The value of L(r) for regular processes
tends to lie in the interval [0, r] and L(r) > r for clustered processes. Thus L(r)− r ≤ 0 for regular
processes and L(r)− r ≥ 0 for clustered processes [5].
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2.7 Isotropic edge correction
When calculating the functions mentioned in the section above, discs of radius r centered at each
point are used. Thus the problem of points being located by the edge of a window arises as section
of the circle constructed around the point by the edge is not used which will lead to points being
missed. Therefore, one has to use edge correction methods in order to make the estimator for the
K-function unbiased. There are plenty of edge correction methods, but the most popular is the
isotropic edge correction. An unbiased estimate for Ripley’s K-function is given by

K̂(r) =
1

λ̂

1

n

n∑
i=1

n∑
j ̸=i

w(xi, xj)1 {xi − xj ∈ b(o, r)} (7)

The weights are calculated by

w1,2 =
1

w(x1, x2)
(8)

w(x1, x2) =
v1(∂b(x1, ∥x1 − x2∥) ∩W )

2π ∥x1 − x2∥
(9)

where the numerator is the length of the circle centered at x1 with radius ∥x1−x2∥ that lies within
the window W . The weight factor is then divided by the circle perimeter length 2π ∥x1 − x2∥, see
Figure 4 [5].

Figure 4: A picture displaying how one can use isotropic edge correction to account for points close
to the edges of a window.

2.8 Global envelope test
The global envelope tests are non-parametric statistical tests recently developed for comparing
functional or multivariate statistics obtained from the data and under the null-model. The method
initially computes the simulated statistics from the model and creates envelopes based on the
extreme ranks of the curves for a pre-selected significance level α. There are different methods
of ranking the curves, and the method that we used is the extreme rank length method. The
constructed envelope has the following interpretation, if the summary function (in our case L(r)−r)
falls outside the envelopes constructed under the null-model, the null hypothesis that the functional
statistics are the same is rejected for significance level α [8].

2.9 Convex Hull
A convex hull or convex envelope of a set X of points in Euclidean space or the Euclidean plane
is the smallest convex set that contains X. When X is a bounded subset of the plane. The convex
hull may be visualized as the shape formed when a rubber band is stretched around X. The convex
hull can be defined as the intersection of all convex sets containing X or as the set of all convex
combinations of points in X. By extending this definition to arbitrary real vector spaces, convex
hulls can also be extended to oriented matroids.
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3 Method
To better understand the problem and formulate the different tasks during the modelling process,
we must first use the appropriate tools. In this thesis, we worked with the programming language
R, which is designed for dealing with statistical analysis but has many more applications. Within
the programming language, there is a package called spatstat that includes many prebuilt spatial
statistical tools that allowed us to better deal with and interpret spatial data [9].

The next step was to conduct an exploratory data analysis, or EDA for short. EDA is the act
of transforming and visualizing data to obtain information that is useful in an iterative way by
asking more and more questions about the data while searching for answers [10]. How are the
nerves oriented in the tissues of the mild diabetic patients? Are the points clustered? How many
clusters on average? How big is the difference between the neuropathic and the healthy patient?
By asking questions like these, we can quickly find interesting and fundamental information about
the spatial data effortlessly, which will narrow our path in modeling the thinning process.

The first thinning model that we used is independent random thinning. This thinning method
uses a fixed probability or a stochastic process that models how the thinning procedure occurs.
This is a basic thinning model that we examined as we delve deeper into the more advanced and
complex models.

When dealing with spatial data, it is sometimes useful to calculate the Ripleys K-function or
alternatively the L-function to detect deviations from complete spatial randomness [4][5]. Not
only can we statistically test and assess the significance, but we can also garner other useful de-
scriptive statistics, such as the scale of clustering or dispersion of the spatial data, which can be
utilized in the final model. After establishing a few thinning models, the fit was evaluated using
the global envelope test with 500 simulations and other non-spatial summary statistics.

3.1 Modeling process
In this section, the three models created for the thesis will be explained along with corresponding
justifications.

3.1.1 Model 1: Independent random thinning model

An independent random thinning model is tested as our first model. The reason for building this
model is to test the hypothesis that there is no underlying mechanism for nerve mortality, and
hence the nerves are removed at random. A non-deterministic model was created to test if the nerve
cluster deteriorates randomly. It works by randomly thinning endpoints with a probability 1− P .
Comparing the two data sets, one could discern that the diabetic data had (roughly) 30.766% fewer
data points than the healthy ones with λ̂healthy = 0.521 · 10−3 and λ̂mild = 0.360 · 10−3. Therefore
the probability is chosen as P̂ = 0.692. The model is then used on data sets from healthy patients
to verify if endpoints disappear. The following equation determines the probability of retaining
points in the thinning process

P̂ =
λ̂mild

λ̂healthy

(10)

3.1.2 Model 2: Deterministic thinning model

The second model that we created is a deterministic model which utilizes the Euclidean distance to
determine which points will be omitted or not. This model was built in order to test the hypothesis
of end points further away from the base point are weaker than those located in close proximity
to the base point. It works by setting the radius parameter manually, which will be used to create
a disc around the base point for each cluster. Subsequently, all points which are inside the circle
will remain, and points outside the circle will be omitted, which can be seen in Figure 5. This
works by using a subsetting function with the logical expression of the radius and the Euclidean
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distance, thus excluding the points further away from the base point than the radius of the circle.
As it is a deterministic model, bootstrapping was introduced in the model to create randomness,
assess the variance of the statistic and correct the sampling bias.

Figure 5: Illustration of the thinning mechanism used in Model 2.

3.1.3 Model 3: Gaussian thinning model

Due to the deterministic nature of the second model, we developed a more sophisticated thinning
model that incorporates the half-normal distribution for the retention probability. This way, the
summary statistics can be estimated without the need of any re-sampling, however to more accu-
rately reflect the sample of the diabetic patients, bootstrapping was used in the same way as the
second model.

Euclidean distance was used in the half-normal distribution, in other words, the further away
the point is from the projection of the base point onto the endpoints, the lower the probability of
retention. The retention probability around the center of the base point will however be constant
at P̂ = 1 as shown in Figure 6. The justification behind the constant retention probability around
the center comes from the fact that the most central points are more significant with regards to
the amount of clustering. The parameters for the distribution and the distance at which the reten-
tion is constant are tuned to match the peak of the centered L-function with that of the diabetic
patients.

Figure 6: The left figure shows the unnormalized probability density as a function of the radius
for the retention probability. The right figure illustrates the thinning mechanism used in model 3.
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3.2 Sustainable and ethical aspects
The sustainable and ethical aspects of the project are beneficial for society, research and the public
in multiple ways. The results of this project will not negatively affect any of these three areas. It
also serves as a great teaching tool for students to acknowledge their work’s ethical and sustain-
able perspective. This allows us to take a step back from the project and contemplate how we
contribute value to society.

Our project will benefit society by enabling researchers to understand diabetic neuropathy better.
Therefore, researchers can use this knowledge to make advancements in that field and eventually
discover the disease earlier than they currently can. By discovering diabetic neuropathy earlier,
doctors can start treatment earlier and decrease the intensity of increasing symptoms. In addition,
earlier treatment will prolong the time spent between stages of diabetes. This is also in line with
goal 3 of the United Nations 17 Sustainable Development Goals, which is “Good health and Well-
being.” Important to note that since our data set is small, we will make no conclusion about the
disease but rather treat the results as indications that require further study.

An increase in diabetes has taken place and will continually increase. Therefore, not only will
research advancement be crucial, but it will also spread the necessary awareness of diabetes and
its consequences to the public and society. Furthermore, the results of this thesis could also lead
to an increased demand for other research areas, such as neuronal differentiation. If this modeling
method using spatial statistics proves to be fruitful, this could benefit society by being applied in
research for other diseases.

Since the data we have been working with is collected from real-life patients, either diagnosed
with mild diabetes or healthy, integrity is a major factor. The data set only provides us with
anonymous subject IDs, and therefore no intrusion of integrity has been made. All patients have
given their full consent to participate in the study and let the researcher collect data from them.
We can not think of any malicious acts that our study can be used for.
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4 Results
This section presents the results of the three models and the pre-investigation of the data. The
results of all models will be presented by a table summarizing its non-spatial statistics, a graph
displaying its L-function, and a graph displaying the results of the global envelope test.

4.1 Pre-Investigation of the data
The pre-investigation of the ENF-data contains both non-spatial and spatial statistics to better
compare with the modelled data.

Healthy Mild

Average λ per subject (σ) (10−3) 0.521 (0.256) 0.360 (0.212)

Average cluster size (σ) (10−3) 2.638 (1.705) 2.398 (1.420)

Average area per cluster (10−6 m2) 88.058 63.946

Average λ of clusters (10−3) 0.197 0.150

Table 1: Non-spatial statistics obtained from the original ENF-data.

The non-spatial statistics are presented in Table 1. Here, we can clearly see the difference in clus-
tering between the healthy patients and the diabetic patients, which suggests diabetic neuropathy.
There is also evidence of a reduction in cluster size, indicating that the thinning isn’t exclusive to
the base points.

If we look at the spatial statistics of the ENF-data, it is interesting to test for complete spa-
tial randomness (CSR). To test for CSR, we conduct a global envelope test with the diabetic and
healthy data along with a Poisson point process demonstrated in Figure 7. As we can see, the
empirical function falls completely outside the envelopes created by the Poisson point process. We
also note that the p-value of the test is p ≈ 0.01 thus we reject the null hypothesis that the data
are CSR.
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(a) Healthy data.
(b) Mild data.

Figure 7: Global envelope tests to test the assumption of CSR on the mild and healty data

If we instead look at Figure 8, we observe the centered L-function of the healthy and diabetic
patients. The centered L-function indicates that the end points of the diabetic patients have become
more clustered compared to the healthy patients. The peak of the function for the diabetic patients
is reached at around r ≈ 30 ·10−6 and for the healthy patients, it is reached at around r ≈ 28 ·10−6.
The peak of the centered L-function of the diabetic patients, is at around L(r) − r ≈ 27. The
results of this section will be referenced and compared to when evaluating the different models.

(a) ENF healthy (b) ENF mild

Figure 8: Spatial results of the original ENF-data.

In Figure 9a and in Figure 9b, one can see the distribution of the average cluster size for the
healthy data, respectively the mild data.
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(a) Distribution of the average cluster size for the
healthy data.

(b) Distribution of the average cluster size for the
mild data.

Figure 9: Distribution of cluster sizes for healthy and mild data.

The distributions are fairly different with the healthy data having on average an additional 0.24
points per cluster. There are a couple outliers in the healthy data set which could offset this
statistic. Another important note to add is that the sample sizes differ a lot, which could lead to
a comparatively wider distribution to that of the diabetic patients.

In Figure 10, one can see that the intensity of the mild and healthy data differ. The median
λ̂healthy is 29.25% lower than the median λ̂mild. The whiskers on top of the box plot for the
healthy data is longer than its counterpart for the mild data, thus implying a higher variance for
λ̂healthy.

Figure 10: Box plot showing the quartiles, minimum and maximum value of the intensities for
mild and healthy.
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4.2 Non-Spatial results
In this section we will present the non-spatial summary statistics is summarized in table 2. The
code used for this section will be presented in the appendix.

Model 1 Model 2 Model 3 Mild

Average λ per subject (σ) (10−3) 0.362 (0.184) 0.354 (0.196) 0.322 (0.189) 0.360 (0.212)

Average cluster size (σ) (10−3) 2.110 (0.450) 2.041 (0.403) 1.856 (0.494) 2.398 (1.420)

Average area per cluster (10−6 m2) 59.352 26.422 33.495 63.946

Table 2: Non-spatial statistics of the data obtained from simulated data using models.

4.2.1 Model 1

Table 2 demonstrates how P̂ from model 1 has affected the intensity λhealthy of the healthy patients
end points, to match the intensity λmild of the diabetic patients. The average cluster size has
decreased by around half a point compared to the healthy data and has 12% less average cluster
size than the mild data. This is in contrast to the prior observations, a big difference from the
desired outcome as seen in the cluster size distribution of the diabetic patients in Table 2. Average
area per cluster from the data obtained by model 1 is close to the mild data, thus performing
better than model 2 and 3 in this statistic.

4.2.2 Model 2

Comparing the results obtained from model 2 and the pre-investigation of the data, one can see
that the model closely match the average λ and σλ, in the mild data set. The average cluster
size is on average about 15% lower in the model results but with 71% lower standard deviation.
The average area is about 20.3 · 10−6m2 less than the average area of the mild data. The large
area difference between the model results and the mild data is due to the area being calculated by
constructing a polygon between the spatial points for each clusters. Thus, clusters that are reduced
down to having 1 or 2 points, the area will be 0. As the average cluster size is 2.638 points for the
healthy data, one could expect this problem to occur frequently, hence decreasing the validity of
this statistic.

4.2.3 Model 3

For model 3, the results were relatively similar, only slightly lower in each statistic, than the results
obtained from model 2. The average λ and σλ were both about 10% lower than the mild data.
Model 3 yields the lowest average cluster size out of all the models, with about a half a point per
cluster less than the mild data and with a standard deviation of 0.494. The low average cluster
size will also affect the average area per cluster in the same way as mentioned in model 2 which is
shown by the average area per cluster being 18 · 10−6m2.

4.3 Spatial results
In the following section, the three different models will be evaluated using methods within spatial
statistics and more specifically, the centered L-function and the global envelope test. For the global
envelope test 500 simulations were made.
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4.3.1 L-function for the models

The results of the L-function for all three models are presented in Figure 11. The middle line
of each envelope is the pooled isotropic and the top line is the high isotropic and the low line
is the low isotropic. As one can see, model 1 has a lower curve than the other models with the
highest point of its pooled isotropic at L(r) − r = 21 while model 2 and model 3 has their peaks
at L(r) − r ≈ 28.8 and L(r) − r ≈ 27.5 respectively. Thus the L-functions of model 2 and model
3, closely resembles the L-function of the mild data with its peak at L(r)− r ≈ 27.

Figure 11: The L(r)− r function graph for all models with isotropic edge correction.
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4.3.2 Model 1

From what could be observed in the centered L-function of the diabetic and the healthy patients,
it becomes clear that the clustering of the nerve points is more intense in that of the diabetic
patients, which is also supported by prior literature and shown in Figure 12. A fundamental issue
with Model 1 is that it does not account for the clustering as it is only randomly thinning with
an estimated parameter P̂ . From this, the centered L-function is no different from the centered
L-function of the healthy patients. The only thing affected in model 1 is as expected, only the
actual intensity of the points and their distribution. As one can see in Figure 12, the data function
obtained from model 1 is outside the bounds of the data function for all values of r hence its low
p-value of p = 0.002.

(a) Global envelope test for model 1 using the mild
data as the empirical data (α = 0.05).

(b) Global envelope test for model 1 using the
healthy data as the empirical data (α = 0.05).

Figure 12: The L(r)− r function for the end point patterns with 95% global envelopes constructed
from simulations from model 3.

Figure 12b illustrates how the L-function is invariant to the thinning mechanism of model 1. This
is expected as clustering is independent of intensity and therefore the null hypothesis of the healthy
data under the simulated data is not rejected for significance level α = 0.05.
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4.3.3 Model 2

As one can see in Figure 13, the L-function closely resembles the L-function for the mild data.
The peak of the graph is slightly skewed to the right for the model 2 as it peaks around cluster
radius r ≈ 28.8 compared to the mild data, as it peaks at around r ≈ 30. The narrower interval
given by the low and high isotropic function shows that the results which model 2 yields has less
variance compared to the mild data. For the global envelope test, summarized in Figure 13, one
can see that the data function is inside the borders for all r, but peaks slightly after the central
function. It has a high p-value of p = 0.624 thus making it our model with by far the highest
p-value. Further tuning of parameters, such as the radius in the model could potentially move the
peak of the data function closer to the central function.

Figure 13: The L(r)− r function for the end point patterns with 95% global envelopes constructed
from simulations from model 3.
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4.3.4 Model 3

When examining the resulting centered L-function after model 3, it yields some interesting re-
sults when comparing to the centered L-function of the diabetic patients. Here, the graph reaches
reaches the peak L(r)− r ≈ 27 · 10−6 for the pooled isotropic curve at cluster radius r ≈ 30 · 10−6,
which is close to results of the diabetic patients.

For the global envelope test, shown in Figure 14, we see that the empirical function is within
the envelopes for significance level α = 0.05 however we can note that the p-value is a mere 0.056
indicating that the null-hypothesis would be rejected for α = 0.10. When solely observing the
graph, the most likely explanation could be that the beginning of the curve is what affects the
performance the most. Here we see the empirical function being very close to the α most extreme
curve, indicating some error. Perhaps this is due to the retention rate being Pretention = 1.00 when
within a certain distance of the underlying base point, which either should have been tuned better
or maybe used a different mechanism all together for points close to the center.

Figure 14: The L(r)− r function for the end point patterns with 95% global envelopes constructed
from simulations from model 3.
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5 Concluding discussion
This section will discuss the findings that we have made with our models and comment on various
aspects of the models. Evidently, the first model did not work well as seen in section 4.3.1 which
is highlighted in the spatial results. The reason for this is that neuropathy clearly is not a random
independent thinning process, thus spatially dependent hence the construction of the two latter
more complicated models. As we used the λmild and λhealthy, obtained in the pre-investigation
of the data, as a way to estimate the probability P for the first thinning model, the summary
statistics were fairly close to the mild results.

The first idea to increase the amount of clustering by thinning on the data of the healthy pa-
tients, was to thin on the basis of distance beyond the base point. This model was therefore
completely determined by the distance and therefore deterministic. After tuning the distance,
the second model yielded interesting results comparable to that of the diabetic patients as demon-
strated in 4.3.3 and 4.3.4. The problem is however that this is not a realistic way to model the nerve
thinning as it is completely deterministic and needs an aspect that is subject to randomness. The
third model intended to answer this question by introducing a probability based thinning process
dependent on the Gaussian distribution. This way, the model could be evaluated more realistically
as it could simulate multiple samples to be evaluated. The non-spatial statistics of the third model
did worse than the second model, however the L-function of the third model seemed to better
follow the L-function of the diabetic patients. The same could be said for the global envelope test,
however with differing p-values between the two tests. The second model displayed a much higher
p-value compared to the very low p-value of the third model. This could be a result of the second
model being deterministic and naturally overfitting as the distance parameter has been tuned for
this specific dataset. Another possible explanation is that the third model’s retention probability
is constant beyond a certain distance from the base point and thus did poorly in the simulations
if examining the global envelope test at the beginning. Here the central function was much closer
to the α most extreme envelopes, which could give rise to a significantly lower p-value.

As one can see in the results, the areas of the clusters in the results yielded by the models are
greatly reduced compared to the mild data set. This is due to the fact that most of the patients
have a cluster size of around 2.6 points, as illustrated in the pre-investigation of the data. As
the algorithm for calculating the convex hull is based upon having at least three corners for the
polygon which it creates between data points, clusters which are made up of one or two end points,
will have 0 area. We mitigated some of this problem by including the base points thus creating a
polygon by combining endpoints and base points, giving the clusters with two endpoints a non-zero
area. However, the same downside as mentioned above still exists yet will affect the results less.
However since our models thin the healthy data, in combination with the data having its average
cluster size being 2.6, means that a lot of clusters will still be counted as zero area, thus impacting
the validity of this metric. This problem could be worked around if we had a data set with higher
average cluster size.

Throughout this thesis and modeling process, we have had the struggle of having a small data
set to model upon. We tried to combat this by introducing bootstrap sampling in order to make
less biased measurements and thus, less biased inferences. As one can see in the pre-investigation
of the data, there is high variances in the data set, with certain patients having hundreds of points
with clusters up to a size of 20 points. In the graphs for the L-functions, the low variances for the
models could be a result of the limitation of our data as we did 500 sampling simulations for them
which potentially could be too low. Due to our low computational power, 500 simulations took
around 1-1.5 hours thus limiting our ability to explore the effects large simulation numbers could
have on the results.

Further, one could develop additional models building upon the ones that we have constructed
for this thesis. For example, one can use other distributions than the half Gaussian distribution
which we used for the third model. Most importantly would be to obtain a larger data set for the
mildly diabetic patients as the current sample size is inadequate.
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Our models provide an insight into the thinning process and provide a basic method for how
this process might occur outside of simulation. The emphasis on the last two models were distance
beyond the center which was naturally inferred as clustering was the focus but other covariates
such as cluster sizes or areas could have been used. However, the interesting question is if thinning
alone is enough to answer what the natural mechanisms induced in diabetic neuropathy. For a
basic simulation to acquire interesting results in spatial predictive purposes, model 2 or 3 might
suffice. If the focus is solely on non-spatial results, model 1 would be an efficient alternative. For
an even more realistic model, interaction type point processes could be a viable option as it is
unlikely that the only mechanism behind diabetic neuropathy is thinning.
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Appendix - code

l i b r a r y ( spa t s t a t )
l i b r a r y ( t i dyv e r s e )
l i b r a r y ( sp )
l i b r a r y ( f d r t o o l )
l i b r a r y (GET)
l i b r a r y ( patchwork )

setwd ("~/Desktop/B. Sc Matematisk S t a t i s t i k /Kandidatarbete GU")
base <− readRDS("BASEPOINTS_2D")
end <− readRDS("ENDPOINTS_2D")

subject_ID <− unique ( base$SID )

# pooled L−f unc t i on o f mild and hea l thy pat i ent s , works by changing
#the loop from 1:28 to 29 :140 as the f i r s t 28 samples are f o r mild

L_diabetic <− c ( )
t <− 0
f o r ( i in 1 : 28 ) {

t <− t+1
L_diabetic [ [ t ] ] <− Lest ( end$ppp [ [ i ] ] , c o r r e c t i o n=" i s o t r o p i c ")

}

pooled_L_diabetic <− pool . a n y l i s t ( L_diabetic )

p l o t ( pooled_L_diabetic , . − r~r )

#F i r s t model

L_healthy_GET <− c ( )
f o r ( e in 1 : 100 ) {

L_healthy <− c ( )
t <− 0

f o r ( i in 29 :140) {

t <− t+1
L_healthy [ [ t ] ] <− Lest ( r th in ( end$ppp [ [ i ] ] , P=1−(1−0.692) ) , c o r r e c t i o n="

i s o t r o p i c ") #Remove Lest f o r ppp ob j e c t

}

L_healthy_GET [ [ e ] ] <− pool . a n y l i s t ( L_healthy )

}
t e s t <− c ( )
t <− 0
f o r ( i in 29 :140) {

t <− t+1
t e s t [ [ t ] ] <− Lest ( end$ppp [ [ i ] ] , c o r r e c t i o n = " i s o t r o p i c ")

}
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healthy_pooled <− pool . a n y l i s t ( t e s t )
t e s t

p l o t ( L_healthy_pooled ,. − r~r )

#Get t e s t f o r f i r s t model and healthy , switch to L_healthy f o r f i r s t model

s imu l a t i o n s_ f i r s t <− vapply (L_healthy_GET , func t i on (x ) x$poo l i so−x$r , rep
(0 ,513) )

c_test <− create_curve_set ( l i s t ( obs= hea l thy_pooled$poo l i so−healthy_pooled$r
, r = healthy_pooled$r , sim_m=s imu l a t i o n s_ f i r s t ) )

p l o t ( g loba l_enve lope_test ( c_test , alpha = 0 .05 ) ) + ylab ("L( r ) − r ")+ylim
( −2 ,30)

# 2nd model
d i s t <− 20

thinned_L <− c ( )
thinned_ppp <− c ( )
f o r ( j in 29 :140) {

th inned_c lus t e r s <− subset ( end$ppp [ [ j ] ] , subset=FALSE)
f o r ( i in 1 : npo ints ( base$ppp [ [ j ] ] ) ) {

th inned_c lus t e r s <− superimpose ( th inned_cluster s ,
subset ( end$ppp [ [ j ] ] ,

subset=d i s t >sq r t ( ( x−base$ppp [ [ j ] ]
$x [ i ] ) ^2+(y−base$ppp [ [ j ] ] $y [ i
] ) ^2) ) )

th inned_c lus t e r s <− unique ( th inned_c lus t e r s )

}
thinned_L [ [ j ] ] <− Lest ( th inned_cluster s , c o r r e c t i o n=" i s o t r o p i c ")
thinned_ppp [ [ j ] ] <− th inned_c lus t e r s

}
thinned_L_subset <− thinned_L [ 2 9 : 1 4 0 ]
thinned_ppp_subset <− thinned_ppp [ 2 9 : 1 4 0 ]
thinned_L_pooled_2 <− pool . a n y l i s t ( thinned_L_subset )

# 3rd model with boots t rap
thinned_L_subset_3 <− c ( )
thinned_ppp_subset_3 <− c ( )
thinned_L_pooled_3 <− c ( )

f o r ( e in 1 : 500 ) {
thinned_L <− c ( )
thinned_ppp <− c ( )
samp <− sample (29 : 140 , 28 )
f o r ( j in samp) {

th inned_c lus t e r s <− subset ( end$ppp [ [ j ] ] , subset=FALSE)
f o r ( i in 1 : npo ints ( base$ppp [ [ j ] ] ) ) {

Xc <− base$ppp [ [ j ] ] $x [ i ]
Yc <− base$ppp [ [ j ] ] $y [ i ]
th inned_c lus t e r s <− superimpose ( th inned_cluster s ,

r th in ( end$ppp [ [ j ] ] , P= thin_fun (x=
end$ppp [ [ j ] ] $x ,

y=
end$ppp
[ [ j
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] ]
$y ,

Xc=Xc ,
Yc=Yc ,
sd=16)

)
)
th inned_c lus t e r s <− unique ( th inned_c lus t e r s ) # removes dup l i c a t e

po in t s
}
thinned_L [ [ j ] ] <− Lest ( th inned_cluster s , c o r r e c t i o n=" i s o t r o p i c ")
thinned_ppp [ [ j ] ] <− th inned_c lus t e r s

}
thinned_L_subset_3 [ [ e ] ] <− thinned_L [ samp ]
thinned_ppp_subset_3 [ [ e ] ] <− thinned_ppp [ samp ]
thinned_L_pooled_3 [ [ e ] ] <− pool . a n y l i s t ( thinned_L_subset_3 [ [ e ] ] )

}

#GET fo r 3 rd model

s imu la t i on s <− vapply ( thinned_L_pooled_3 , func t i on (x ) x$poo l i so−x$r , rep
(0 ,513) )

c_test <− create_curve_set ( l i s t ( obs= pooled_L_diabet ic$pool i so−
pooled_L_diabetic$r , r = pooled_L_diabetic$r , sim_m=s imu la t i on s ) )

p l o t ( g loba l_enve lope_test ( c_test , alpha = 0 .05 ) ) + ylab ("L( r ) − r ")

#th inn ing func t i on f o r 3 rd model

thin_fun <− f unc t i on (x , y ,Xc ,Yc , sd ) {

d <− s q r t ( ( x−Xc)^2+(y−Yc) ^2)

thinprob <− phalfnorm (d , sd2theta ( sd ) )
i f ( thinprob <=0.25)

thinprob <− 0

prob <− 1−th inprob

}

# Gaussian th inn ing model

thinned_L <− c ( )
thinned_ppp <− c ( )

f o r ( j in 29 :140) {
th inned_c lus t e r s <− subset ( end$ppp [ [ j ] ] , subset=FALSE)
f o r ( i in 1 : npo ints ( base$ppp [ [ j ] ] ) ) {

Xc <− base$ppp [ [ j ] ] $x [ i ]
Yc <− base$ppp [ [ j ] ] $y [ i ]
th inned_c lus t e r s <− superimpose ( th inned_cluster s ,

r th in ( end$ppp [ [ j ] ] ,
P = thin_fun (

x=end$ppp [ [ j ] ] $x ,
y=end$ppp [ [ j ] ] $y ,
Xc=Xc ,
Yc=Yc ,
sd=16

)

23



)
)
th inned_c lus t e r s <− unique ( th inned_c lus t e r s ) # removes dup l i c a t e po in t s

}
thinned_L [ [ j ] ] <− Lest ( th inned_cluster s , c o r r e c t i o n=" i s o t r o p i c ")
thinned_ppp [ [ j ] ] <− th inned_c lus t e r s

}

thinned_L_subset <− thinned_L [ 2 9 : 1 4 0 ]
thinned_ppp_subset <− thinned_ppp [ 2 9 : 1 4 0 ]
thinned_L_pooled_3 <− pool . a n y l i s t ( thinned_L_subset )

#GET fo r 2nd model with boots t rap
d i s t <− 20
thinned_L_subset_mod2 <− c ( )
thinned_ppp_subset_mod2 <− c ( )
thinned_L_pooled_mod2 <− c ( )

f o r ( e in 1 : 500 ) {
samp <− sample (29 : 140 , 28 )
thinned_L <− c ( )
thinned_ppp <− c ( )
f o r ( j in samp) {

th inned_c lus t e r s <− subset ( end$ppp [ [ j ] ] , subset=FALSE)
f o r ( i in 1 : npo ints ( base$ppp [ [ j ] ] ) ) {

th inned_c lus t e r s <− superimpose ( th inned_cluster s ,
subset ( end$ppp [ [ j ] ] ,

subset=d i s t >sq r t ( ( x−base$ppp [ [ j
] ] $x [ i ] ) ^2+(y−base$ppp [ [ j ] ]
$y [ i ] ) ^2) ) )

th inned_c lus t e r s <− unique ( th inned_c lus t e r s ) # removes dup l i c a t e
po in t s

}
thinned_L [ [ j ] ] <− Lest ( th inned_cluster s , c o r r e c t i o n=" i s o t r o p i c ")
thinned_ppp [ [ j ] ] <− th inned_c lus t e r s

}

thinned_L_subset_mod2 [ [ e ] ] <− thinned_L [ samp ]
thinned_ppp_subset_mod2 [ [ e ] ] <− thinned_ppp [ samp ]
thinned_L_pooled_mod2 [ [ e ] ] <− pool . a n y l i s t ( thinned_L_subset_mod2 [ [ e ] ] )

}

#GET t e s t f o r 2nd model
s imu la t i on s <− vapply ( thinned_L_pooled_mod2 , func t i on (x ) x$poo l i so−x$r , rep

(0 ,513) )
c_test <− create_curve_set ( l i s t ( obs= pooled_L_diabet ic$pool i so−

pooled_L_diabetic$r , r = pooled_L_diabetic$r , sim_m=s imu la t i on s ) )

p l o t ( g loba l_enve lope_test ( c_test , alpha = 0 .05 ) )+ ylab ("L( r ) − r ")

poo l i somode l2 <− l app ly ( thinned_L_pooled , f unc t i on (x ) x$poo l i s o )

#Model 1 L−f unc t i on
ggp lot ( )+geom_line ( aes ( x=L_healthy_pooled$r , y=L_healthy_pooled$hiiso−

L_healthy_pooled$r , c o l o r="High i s o t r o p i c ") )+
geom_line ( aes ( x=L_healthy_pooled$r , y=L_healthy_pooled$pool iso−
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L_healthy_pooled$r , c o l o r="Pooled i s o t r o p i c ") )+
geom_line ( aes ( x=L_healthy_pooled$r , y=L_healthy_pooled$loiso−

L_healthy_pooled$r , c o l o r="Low i s o t r o p i c ") ) +
ylim (0 ,36 )+
labs (x = " r " ,

y = "L( r ) − r " ,
c o l o r = "") +

scale_color_manual ( va lue s = c o l o r s )

#Model 2 L−f unc t i on
ggp lot ( )+geom_line ( aes ( x=thinned_L_pooled_2$r , y=thinned_L_pooled_2$hiiso−

thinned_L_pooled_2$r , c o l o r="High i s o t r o p i c ") )+
geom_line ( aes ( x=thinned_L_pooled_2$r , y=thinned_L_pooled_2$pooliso−

thinned_L_pooled_2$r , c o l o r="Pooled i s o t r o p i c ") )+
geom_line ( aes ( x=thinned_L_pooled_2$r , y=thinned_L_pooled_2$loiso−

thinned_L_pooled_2$r , c o l o r="Low i s o t r o p i c ") ) +
ylim (0 ,36 )+
labs (x = " r " ,

y = "L( r ) − r " ,
c o l o r = "") +

scale_color_manual ( va lue s = c o l o r s )

#Model 3 L−f unc t i on

c o l o r s <− c (" High i s o t r o p i c " = "blue " , "Pooled i s o t r o p i c " = " red " , "Low
i s o t r o p i c " = " green ")

ggp lot ( )+geom_line ( aes ( x=thinned_L_pooled_3$r , y=thinned_L_pooled_3$hiiso−
thinned_L_pooled_3$r , c o l o r="High i s o t r o p i c ") )+

geom_line ( aes ( x=thinned_L_pooled_3$r , y=thinned_L_pooled_3$pooliso−
thinned_L_pooled_3$r , c o l o r="Pooled i s o t r o p i c ") )+

geom_line ( aes ( x=thinned_L_pooled_3$r , y=thinned_L_pooled_3$loiso−
thinned_L_pooled_3$r , c o l o r="Low i s o t r o p i c ") ) +

ylim (0 ,36 )+
labs (x = " r " ,

y = "L( r ) − r " ,
c o l o r = "") +

scale_color_manual ( va lue s = c o l o r s )

#Dataset f o r p l o t t i n g combined

df_mod3 <− t i b b l e ( r=thinned_L_pooled_3$r , high=thinned_L_pooled_3$hiiso , low=
thinned_L_pooled_3$loiso , pooled=thinned_L_pooled_3$pooliso , Model=
mod3_factor )

df_mod2 <−t i b b l e ( r=thinned_L_pooled_2$r , high=thinned_L_pooled_2$hiiso , low=
thinned_L_pooled_2$loiso , pooled=thinned_L_pooled_2$pooliso , Model=
mod2_factor )

df_mod1 <− t i b b l e ( r=L_healthy_pooled$r , high=L_healthy_pooled$hiiso , low=
L_healthy_pooled$loiso , pooled=L_healthy_pooled$pool iso , Model=mod1_factor )

#Creat ing f a c t o r s to d i s t i n g u i s h the models
mod3_factor <− as_factor ( rep ("Model 3" , nrow (df_mod3) ) )
mod2_factor <− as_factor ( rep ("Model 2" , nrow (df_mod2) ) )
mod1_factor <− as_factor ( rep ("Model 1" , nrow (df_mod1) ) )

df_L_func <− rbind ( rbind (df_mod1 , df_mod2) ,df_mod3)

test_df <− df_L_func %>% mutate ( High_iso=high−r ) %>% mutate ( Pooled_iso=
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pooled−r ) %>% mutate ( Low_iso=low−r )
test_df %>% group_by (Model ) %>% summarise (max( pooled−r ) )#max value o f pooled

−r

#Al l graphs combined

ggp lot ( data=test_df , aes ( x=r , c o l o r=Model , l i n e t yp e=Model ) )+geom_line ( aes ( y=
High_iso ) )+

geom_line ( aes ( y=Low_iso ) )+geom_line ( aes ( y=Pooled_iso ) )+
ylim (0 ,36 )+
labs (x = " r " ,

y = "L( r ) − r ")

#### Non s p a t i a l s t a t i s t i c s

#Histogram c l u s t e r s i z e d i s t r i b u t i o n mild

dist_mild <− c ( )
f o r ( i in 1 : 8 ) {

temp <− 0
f o r ( j in 1 : l ength ( subjects_b [ [ i ] ] $SID ) ) {

temp [ j ] <− marks ( subjects_b [ [ i ] ] $ppp [ [ j ] ] ) %>% s e l e c t ( s i z e )

}
dist_mild [ [ i ] ] <− temp

}
#SD of c l u s t e r s i z e f o r mild
sd ( dist_mild_vec )

#SD of c l u s t e r s i z e f o r hea l thy
sd ( dist_healthy_vec )

#Histogram c l u s t e r s i z e d i s t r i b u t i o n hea l thy
dist_mild_vec<− un l i s t ( dist_mild )
ggp lot ( )+geom_bar ( aes ( dist_mild_vec ) , width =0.75)+labs ( t i t l e ="D i s t r i bu t i on

f o r mild pa t i e n t s ")+xlab (" Clus te r s i z e ")

d i s t_hea l thy <− c ( )
f o r ( i in 9 : 40 ) {

temp <− 0
f o r ( j in 1 : l ength ( subjects_b [ [ i ] ] $SID ) ) {

temp [ j ] <− marks ( subjects_b [ [ i ] ] $ppp [ [ j ] ] ) %>% s e l e c t ( s i z e )

}
d i s t_hea l thy [ [ i ] ] <− temp

}

dist_healthy_vec<− un l i s t ( d i s t_hea l thy )
ggp lot ( )+geom_bar ( aes ( dist_healthy_vec ) )+labs ( t i t l e ="D i s t r i bu t i on f o r

hea l thy pa t i e n t s ")+xlab (" Clus te r s i z e ")

#Averages c l u s t e r s i z e mild and hea l thy
sum( dist_healthy_vec ) / l ength ( dist_healthy_vec )
sum( dist_mild_vec ) / l ength ( dist_mild_vec )

#Average c l u s t e r s i z e per sub j e c t on thinned data

ave_clust_s ize <− c ( )
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f o r ( i in 1 : l ength ( thinned_ppp_subset ) ) {

ave_clust_s ize [ i ] <− l ength ( thinned_ppp_subset [ [ i ] ] $marks$Tree ) / l ength (
unique ( thinned_ppp_subset [ [ i ] ] $marks$Tree ) )

}
sum( ave_clust_s ize ) / l ength ( ave_clust_s ize )

#Average amount o f c l u s t e r s on thinned data
ave_amount_clust <− c ( )
f o r ( i in 1 : l ength ( thinned_ppp_subset ) ) {

ave_amount_clust [ i ] <− l ength ( unique ( thinned_ppp_subset [ [ i ] ] $marks$Tree ) )

}

sum( ave_amount_clust ) / l ength ( ave_amount_clust )

#Total po in t s on thinned data
to ta l_po in t s <− c ( )
f o r ( i in 1 : l ength ( thinned_ppp_subset ) ) {

to ta l_po in t s [ i ] <− thinned_ppp_subset [ [ i ] ] $n
}

#Average po in t s per sub j e c t
sum( to ta l_po in t s ) / l ength ( to ta l_po in t s )

#Clus te r s i z e d i s t r i b u t i o n
c lu s t_s i z e_d i s <− l i s t ( )
f o r ( i in 1 : l ength ( thinned_ppp_subset ) ) {

c lu s t_s i z e_d i s [ [ i ] ] <− tabu la t e ( thinned_ppp_subset [ [ i ] ] $marks$Tree )
}

c lust_s ize_dis_vec <− un l i s t ( c lu s t_s i z e_d i s )
c lust_s ize_dis_vec <− c lust_s ize_dis_vec [ ! c lust_s ize_dis_vec %in% 0 ]

ggp lot ( )+geom_bar ( aes ( c lust_s ize_dis_vec ) )+labs ( t i t l e ="D i s t r i bu t i on f o r
thinned model ")+xlab (" Clus te r s i z e ")

#Area c a l c u l a t i o n s with base po int f o r mild , hea l thy and a l l models . Just
switch the datase t to get the answer f o r

#the d i f f e r e n t models and mild e t c .
po l y_ l i s t <− l i s t ( )

super impose_l i s t <− l i s t ( )
size_rem <− base

f o r ( i in 1 : 140 ) {
size_rem$ppp [ [ i ] ] $marks <− size_rem$ppp [ [ i ] ] $marks [ c ( 1 , 2 ) ]

super impose_l i s t [ [ i ] ] <− superimpose ( end$ppp [ [ i ] ] , size_rem$ppp [ [ i ] ] )

}

f o r ( j in 1 : 112 ) {

test_df <− t i b b l e ( t r e e=super impose_l i s t [ [ j ] ] $marks$Tree , x=super impose_l i s t
[ [ j ] ] $x , y=super impose_l i s t [ [ j ] ] $y )

poly_create <− l i s t ( )
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area_vec <− c ( )
f o r ( i in unique ( t e s t_d f$ t r e e ) ) {

test_1 <− test_df %>% f i l t e r ( t r e e==i ) %>% sl i ce_head ( )
poly_df <− test_df %>% f i l t e r ( t r e e==i ) %>% rbind ( test_1 ) %>% s e l e c t (−

t r e e )
poly_create [ [ i ] ] <− Polygon ( poly_df )
area_vec [ i ] <− poly_create [ [ i ] ] @area

}
po l y_ l i s t [ [ j ] ] <− area_vec

}

po l y_ l i s t

al l_area_vec <− un l i s t ( po l y_ l i s t ) [ ! i s . na ( u n l i s t ( po l y_ l i s t ) ) ]
sum( al l_area_vec ) / l ength ( al l_area_vec )

#29:140 ger area p 88.05824 med base po in t s
#1:28 ger area p 63.94629 med base po in t s
#59.35185 f r arean p f r s t a model len med base po in t s
#26.42194 f r arean p andra model len med base po in t s
#33.49481 f r arean p den t r e d j e model len med base po in t s
#Ca l cu l a t ing area o f models

po l y_ l i s t <− l i s t ( )

super impose_l i s t <− l i s t ( )

size_rem <− base [ 2 9 : 1 4 0 ]

#This i s f o r c a l c u l a t i n g area o f the c l u s t e r s f o r the models , j u s t switch
the thinned_ppp_subset

#To the models r e s p e c t i v e ppp_subset and then run the code above
f o r ( i in 1 : 112 ) {

size_rem$ppp [ [ i ] ] $marks <− size_rem$ppp [ [ i ] ] $marks [ c ( 1 , 2 ) ]
super impose_l i s t [ [ i ] ] <− superimpose ( thinned_ppp_subset [ [ i ] ] , size_rem$ppp

[ [ i ] ] )
}

#Code below i s used to c a l c u l a t e average amount o f c l u s t e r s

ave_amount_clust <− c ( )
t <− 0
f o r ( i in 1 : 28 ) {

t <− t+1
ave_amount_clust [ t ] <− l ength ( unique ( end$ppp [ [ i ] ] $marks$Tree ) )

}
sum( ave_amount_clust ) / l ength ( ave_amount_clust )
#Average amount o f c l u s t e r s on model 1 i s 23 ,5625
#Average amount o f c l u s t e r s on model 2 i s 24 ,65179
#Average amount o f c l u s t e r s on model 3 i s 23 ,74107
#Average amount o f c l u s t e r s on hea l thy data i s 28 ,21429
#Average amount o f c l u s t e r s on mild data i s 21 ,42857

#Box p l o t s f o r i n t e n s i t y
i n t e n s i t i e s_hea l t hy <− c ( )
f o r ( i in 29 : l ength ( base$ppp ) ) {

i n t e n s i t i e s_hea l t hy [ i ] <− i n t e n s i t y ( base$ppp [ [ i ] ] )
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}

i n t en s i t i e s_mi l d <− c ( )
f o r ( i in 1 : 28 ) {

i n t en s i t i e s_mi l d [ i ] <− i n t e n s i t y ( base$ppp [ [ i ] ] )
}

median ( i n t e n s i t i e s_hea l t hy [ ! i s . na ( i n t e n s i t i e s_hea l t hy ) ] ) #mean o f i n t e n s i t y
f o r hea l thy 0.0001975019

median ( i n t en s i t i e s_mi l d [ ! i s . na ( i n t en s i t i e s_mi l d ) ] ) #mean o f i n t e n s i t y f o r
mild 0.0001502455

1 −(0.0001191112/0.0001683502) #29.25% lower

a l l _ i n t e n s i t i e s <− c ( i n t en s i t i e s_mi ld , i n t e n s i t i e s_hea l t hy [ 2 9 : 1 4 0 ] )

f a c s <− c ( rep (" Mild " ,28) , rep (" Healthy " ,112) )
boxp lots <− t i b b l e (" va l s " = a l l_ i n t e n s i t i e s , " f a c t s " = f a c s )
boxplots_2 <− boxplots %>% mutate (" f a c t s " = as . f a c t o r ( f a c t s ) )

boxplots_2 %>% ggplot ( ) + # basepo in t s boxp lots .
geom_boxplot ( aes ( x=fac t s , y=va l s ) )+labs ( t i t l e ="Box p lo t f o r the i n t e n s i t y

o f the mild and hea l thy data ")+xlab ("")+ylab (" ")

#L−f unc t i on graph f o r non model led data
#This i s f o r mild
L_non_modelled_m <− c ( )

f o r ( i in 1 : 28 ) {
L_non_modelled_m [ [ i ] ] <− Lest ( end$ppp [ [ i ] ] , c o r r e c t i o n=" i s o t r o p i c ")

}

pooled_non_mod_m <− pool . a n y l i s t (L_non_modelled_m)
pooled_non_mod_m

co l o r s <− c (" High i s o t r o p i c " = "blue " , "Pooled i s o t r o p i c " = " red " , "Low
i s o t r o p i c " = " green ")

non_mod_plot_m <− ggp lot ( )+geom_line ( aes ( x=pooled_non_mod_m$r , y=
pooled_non_mod_m$hiiso−pooled_non_mod_m$r , c o l o r="High i s o t r o p i c ") )+

geom_line ( aes ( x=pooled_non_mod_m$r , y=pooled_non_mod_m$pooliso−
pooled_non_mod_m$r , c o l o r="Pooled i s o t r o p i c ") )+

geom_line ( aes ( x=pooled_non_mod_m$r , y=pooled_non_mod_m$loiso−
pooled_non_mod_m$r , c o l o r="Low i s o t r o p i c ") ) +

ylim (0 ,36 )+
labs (x = " r " ,

y = "L( r ) − r " ,
c o l o r = "" , t i t l e ="Mild ") +

scale_color_manual ( va lue s = c o l o r s )
max( pooled_non_mod_m$pooliso−pooled_non_mod_m$r)#Highest peak o f the L−

f unc t i on f o r the mild data

#This i s the L−f unc t i on graph f o r hea l thy

L_non_modelled_h <− c ( )
t <− 0
f o r ( i in 29 :140) {

t <− t+1
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L_non_modelled_h [ [ t ] ] <− Lest ( end$ppp [ [ i ] ] , c o r r e c t i o n=" i s o t r o p i c ")

}

pooled_non_mod_h <− pool . a n y l i s t (L_non_modelled_h)
pooled_non_mod_h

non_mod_plot_h <− ggp lot ( )+geom_line ( aes ( x=pooled_non_mod_h$r , y=
pooled_non_mod_h$hiiso−pooled_non_mod_h$r , c o l o r="High i s o t r o p i c ") )+

geom_line ( aes ( x=pooled_non_mod_h$r , y=pooled_non_mod_h$pooliso−
pooled_non_mod_h$r , c o l o r="Pooled i s o t r o p i c ") )+

geom_line ( aes ( x=pooled_non_mod_h$r , y=pooled_non_mod_h$loiso−
pooled_non_mod_h$r , c o l o r="Low i s o t r o p i c ") ) +

ylim (0 ,36 )+
labs (x = " r " ,

y = "L( r ) − r " ,
c o l o r = "" , t i t l e = "Healthy ") +

scale_color_manual ( va lue s = c o l o r s )

#p lo t us ing the package patchwork which combines the p l o t s
non_mod_plot_h+non_mod_plot_m

#CSR, s imu la t ing d i f f e r e n t po i s son p ro c e s s e s in the same windows as e i t h e r
the mild

#or hea l thy data . From that we c a l c u l a t e the r e s p e c t i v e L−f un c t i on s and
conduct a GET.

lambda_mild <− 0.0003603452
lambda_healthy <− 0.000521
p o i s_ l i s t <− c ( )
L_pois <− c ( )
f o r ( j in 1 : 100 ) {

f o r ( i in 1 : 28 ) {
window <− subset ( end$ppp [ [ i ] ] , subset=FALSE)$window
po i s_ l i s t [ [ i ] ] <− Lest ( rpo i spp ( lambda = lambda_healthy , win=window) ,

c o r r e c t i o n=" i s o t r o p i c ")
}
L_pois [ [ j ] ] <− pool . a n y l i s t ( p o i s_ l i s t )

}
L_healthy_pooled

s imu la t i on s <− vapply ( L_pois , f unc t i on (x ) x$poo l i so−x$r , rep (0 ,513) )
c_test <− create_curve_set ( l i s t ( obs= L_healthy_pooled$pool iso−

L_healthy_pooled$r , r =L_healthy_pooled$r , sim_m=s imu la t i on s ) )

p l o t ( g loba l_enve lope_test ( c_test , alpha = 0 .05 ) ) +
ylab ("L( r ) − r ")+ylim ( c ( −4 ,30) )
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