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Enhancing Association Rule Mining for Solving the Storage Location Assignment
Problem
Jonas Bohlin, Tobias Gabrielii
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
In the era of online retailing, reducing the picking time of orders is of great im-
portance. One way of driving the picking time down is to optimise the locations of
articles within the warehouse, a problem which is referred to as the Storage Location
Assignment Problem (SLAP). The SLAP is an NP-hard problem, and it is therefore
desirable to find a relaxation of the problem. In this thesis a rule based approach to
the problem is proposed, focusing on association rule mining and rules created from
a neural network utilising distance metric learning. These rules are then used by a
greedy and a genetic algorithm, to optimise the article placements. The data used
to find rules and evaluate the algorithms come from an online retailer of electronic
spare parts. When evaluating the genetic algorithm on this dataset, it performs
worse than the baseline of storing the most frequently purchased articles closest to
the picking depot. However, the greedy algorithm outperforms this baseline by up
to 11%, showing that there is a lot of promise for this rule based approach.

Keywords: Storage Location Assignment Problem, Association Rule Mining, Dis-
tance Metric Learning, Genetic Algorithm, Warehouse Management.
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Nomenclature

Below is the nomenclature of functions, sets, parameters, and variables that have
been used throughout this thesis.

Problem description

x A set of article placements. xik = 1 if article i is stored at shelf k.
Otherwise, xik = 0.

m Number of unique articles.
n Number of shelves.
U The set of future, unknown orders.
O The set of known orders.
S Number of unknown orders.
h Capacity (height) of each shelf.
f(u, x) A function returning the picking distance of an order u with the

article placements x.
pO, pU The distributions of known and unknown orders.
R A set of rules between articles.
si Support of article i, i.e. the fraction of orders in O containing the

article i.
dk Distance between shelf k and the depot.
Dkl Distance between shelf k and shelf l.
WR
ij Weight of the rule between article i and article j in the rule set R.

Association rule mining

smin Minimum support threshold.
Lmin Minimum lift threshold.
wAR
ij Weight of the association rule between article i and article j.
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Extending association rules

δ, γ Parameters controlling how word weights for the embedding space
are created.

k Maximum number of neighbours to/from which rules will be created
for each regular association rule.

r Maximum distance between two articles to be considered neigh-
bours in the embedding space.

Cp Parameter for weighting parallel rules against nearest neighbour
rules.

wEARn
ij , wEARp

ij Weight of the nearest neighbour rule and the parallel rule between
article i and article j.

wEAR
ij Weight of the final extended association rule between article i and

article j.

Neural network rules

m Dimension of the embedding space created by the network.
k Maximum number of neighbours to which rules will be created from

each article.
r Maximum distance between two articles to be considered neigh-

bours in the embedding space.
Lr(A,P,N) The triplet ratio loss function.
A,P,N Anchor, positive and negative sample articles. For a specific order,

A and P is contained in that order, while N is not.
f Embedding function.
α Parameter controlling the importance of negative samples in the

loss function.
wNNR
ij Weight of the neural network rule between article i and article j.

Rule weights

CEAR, CNNR Parameters for weighting the different types of rules.
Wij Final weight of the rule between article i and article j.
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Greedy algorithm

Cr Parameter for weighting the terms in the articleScore.
Cd, Cp Parameters for weighting the terms in the shelfScore.
si Support of article i.
dk Distance between shelf k and the depot.
Dkl Distance between shelf k and shelf l.
Wij Weight of the rule between article i and article j.
P The set of articles that are already placed in the warehouse.
Pk The set of articles that are already placed in shelf k.

Genetic algorithm

ntour Tournament size for selection.
npop Number of individuals in the population.
nswaps Number of indices to swap in crossover.
ngen Number of generations.
pm Mutation probability.
Cd Parameter for weighting the two terms in the fitness function.
I An individual in the population, represented by its chromosome.
si Support of article i.
dk Distance between shelf k and the depot.
Dkl Distance between shelf k and shelf l.
Wij Weight of the rule between article i and article j.
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1
Introduction

Since the beginning of the 2010s, E-commerce has grown rapidly; see [1]. This
growth can only be sustained if the customer’s packages are delivered on time. There
are three key steps a package goes through before it can end up on a customer’s
doorstep: processing the order through the website, picking and packaging of the
order in a warehouse, and finally delivering the package to said doorstep. All of
these steps have the potential to be optimised further; this Master’s thesis will focus
on the picking and packaging step. When a warehouse receives an order from the
website, a worker is typically sent out into the warehouse to pick the order. This
step can take a very long time depending on how far away from each other the
different articles of the orders are placed; see [22]. Today, most warehouses use
the so called ABC-system which divides the warehouse into three sections based
on the frequency by which the articles are purchased; see [8]. However, there are
likely better ways to distribute the articles. This Master’s thesis will investigate the
possibility of optimising the placements of articles in a warehouse using different
kinds of rules inspired by Association Rule Mining (ARM); see [12].

1.1 Aim

The aim of this project is to develop a model for optimising the article placements in
a warehouse so that the distance travelled during the picking process is minimised.
The model uses transaction data consisting of different orders, and each order in turn
consists of a set of articles. From this data, an improved set of article placements
in the warehouse can be proposed.

1.2 Problem description

The warehouse layout is treated as a 2D grid as in Figure 1.1, with four types of
tiles: shelves, aisles, walkways, and a depot. Each shelf has a capacity, representing
its height, and is only accessible from adjacent aisle tiles. The picker can only move
on aisle and walkway tiles, and the distance between two aisle tiles is set to the
Manhattan distance between the tiles (where the shelf tiles cannot be crossed). As
an example, the distance from tile 4 to tile 11 would be 6 distance units: one unit
out to the walkway, three units down and two units to the left.

1



1. Introduction

Figure 1.1: Representation of a generic warehouse layout, where the grey tiles
represent shelves, accessed from adjacent aisle tiles (blue, numbered tiles). Light
blue tiles represent walkways. Finally, the green depot tile in the upper left corner
represents the depot, i.e. the start and end position of the picker.

The problem is a variant of the Storage Location Assignment Problem (SLAP); see
[16], the aim of which is to place a set of articles at a set of locations, minimising
a cost function. The SLAP belongs to the family of NP-hard optimisation prob-
lems; see [10]. In order to combat this, we intend to place the articles using rules
extracted from historic order data. The problem boils down to two subproblems;
finding meaningful rules in the data, and utilising these rules to improve the article
placements.

More formally the problem to solve can be formulated as:

minx
S∑
j=1

f(Uj,x)

s.t.
n∑
k=1

xik = 1, ∀i ∈ {1, 2, . . . ,m},

m∑
i=1

xik ≤ h, ∀k ∈ {1, 2, . . . , n},

xik ∈ {0, 1}, ∀i ∈ {1, 2, . . . ,m}, ∀k ∈ {1, 2, . . . , n}

(1.1)

where m is the number of articles, n is the number of shelves, S is the number of
orders, f(Uj,x) is the picking distance of an order, Uj, using the article placements
given by the vector x of binary variables, where xik = 1 means that article i is stored
at shelf k, and xik = 0 means that it is not. The first set of constraints ensure that
every article is stored at exactly one shelf. In order to ensure that the capacity of

2



1. Introduction

the shelves, h, is not exceeded, the second set of constraints is included. The picking
distance, f , for an order is defined as:

f(U ,x) := TSP(U ,x). (1.2)
That is to say, the travelling salesperson problem (TSP); see [6], consisting of starting
at the depot, picking all the articles in order U from their shelves as defined by x, and
returning to the depot. However, this function cannot be evaluated since it requires
the unknown orders U1 . . .US being known. Evaluating the objective function is also
very computationally expensive since it requires solving S TSPs, where typically
S >> 1. Thus, we assume that using a given set of rules R that describe the set
of known (past) orders, it is possible to estimate the distribution of the unknown
(future) orders. This assumption makes it possible to estimate x as xR, which is
found by the following problem:

xR = arg min
x

m∑
i=1

n∑
k=1

xik

Cdsidk +
m∑
j=1

n∑
l=1

xjlW
R
ij Dkl


s.t.

n∑
k=1

xik = 1, ∀i ∈ {1, 2, . . . ,m},

m∑
i=1

xik ≤ h, ∀k ∈ {1, 2, . . . , n},

xik ∈ {0, 1}, ∀i ∈ {1, 2, . . . ,m}, ∀k ∈ {1, 2, . . . , n}

(1.3)

where si is the support (frequency) of article i, dk is the distance between the depot
and shelf k, Dkl is the distance between shelf k and l, the constant Cd > 0 weight
the two terms against each other, and finally WR

ij is the rule weight between articles
i and j. The first term indicates that it is preferable to place commonly purchased
articles close to the depot, while the second term prioritises placing articles which
have rules between them close together. The rules R are extracted from the known
order data O, using methods that are described further in Chapters 2 and 3.

1.3 Limitations
First of all, it was assumed that each article requires exactly one unit of space, and
can be stored at any shelf in the warehouse. It was also assumed that all shelves
have the same capacity. These limitations were set partly in order to lower the com-
putational complexity and partly because the data on product dimensions varied
extremely, and was in some cases missing altogether. Furthermore, it was assumed
that the warehouse layout was fixed, since allowing for shelves to change locations
would add too much computational complexity.

Another limitation of this thesis was that only orders with 2–20 unique articles were
used throughout the project. One of the reasons for excluding orders of size one was
that orders consisting of one article contain less information. Another reason was

3



1. Introduction

that the dataset used in the thesis contained a large fraction of orders containing
only one article. Including all orders when evaluating the models would make it
difficult to see any significant improvements compared to the baseline of placing the
articles in order by frequency. This limitation is further motivated by the fact that
most of the previous research that applies association rule mining on the SLAP uses
data where order sizes are significantly larger than what is used in this project; see
[2] and [19] for examples. Removing orders of size one could therefore be seen as a
way of making the dataset more suitable for the task, and to make the contributions
of this project more comparable with previous research. The limitations on the
upper bound stems from large orders adding to the computational complexity and
that the rules created from large orders are less informative; see Section 3.1.2 for a
more in-depth explanation.

1.4 Literature review
This section showcases some of the more influential work that inspired the direc-
tion of this thesis. The section considers ways to create association rules, solving
the SLAP and using neural networks for learning similarities between articles in
transaction data.

1.4.1 Association rule mining
In this section, a selection of the research related to association rule mining in the
context of solving the storage location assignment problem is presented.

In [2], the SLAP is solved using a method that extracts association rules from syn-
thetic order history. Then, a set of article placements are proposed by maximising a
fitness score that rewards articles related by rules being placed in adjacent shelves,
and penalises distance to depot (weighted by article importance). The method show
promising results compared to random and dedicated storage.

Another method of solving the SLAP is described in [19], where the approach is to
divide all articles into 8 groups of articles that are connected through association
rules. Then, each group is assigned to a zone in the warehouse. The method was
evaluated using data from an existing warehouse, where it showed a 14% decrease
of travelling distance to pick orders.

In [26], a method that enhances the classical ABC-system using association rule min-
ing is proposed. Along with some other improvements, the original ABC-placements
are updated by making sure that if there are two articles within the same class (A, B
or C) that are strongly correlated, they are placed in adjacent shelves. The proposed
method show significant improvements over the classical ABC-system.

The authors of [9] propose a method for extending association rules between terms
in reviews which are similar in sentiment, using similarity in a semantic vector space.
The idea is that if there is a rule between a and b, and c is very similar to a, a rule

4
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between c and b is added. This method had a promising outcome.

1.4.2 Distance metric learning
The research in this section focus on learning similarities through the use of different
embedding spaces trained by neural networks on articles and images.

In [18], an approach for embedding articles in a space that not only represent se-
mantic similarity, but also what articles are purchased together, is proposed. The
method is used within market basket analysis to suggest what articles should be
bought next, given a current shopping basket. In this task, the method significantly
outperforms the baselines which it is compared to.

Several other approaches to learn item embeddings is proposed in [11] where eight
different embedding methods are tested against each other. In [25] adaptive triplet
loss is used learn similarity between images, utilising the image itself and its product
description. This methods leads to a performance increase across all metrics used.

5
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2
Preliminaries

In this chapter, the most important algorithms and concepts needed to understand
the methods in Chapter 3 are presented. First, the concepts of association rule
mining (Section 2.1) and distance metric learning (Section 2.2) are described. In
this thesis, they are both used for creating rules between articles. Then, the basis
of a genetic algorithm is presented in Section 2.3. This algorithm is then adapted
to optimise article placements based on a set of rules in Section 3.3.2.

2.1 Association rule mining

The purpose of association rule mining is to extract relationships between items
from transaction data; see [21]. A common application of ARM is finding rules
between articles based on order history. For example, the interpretation of the rule
{jeans, socks} ⇒ {t-shirt} would be that if a pair of jeans and a pair of socks are
purchased it is likely that a t-shirt is also purchased. The mining of association rules
is typically divided into two main steps; finding all frequent itemsets and creating
rules.

2.1.1 Finding frequent itemsets

This step serves the purpose of generating all sets of items that occur more frequently
than a predefined minimum support threshold. The support of an itemset X is
defined as the fraction of orders in the entire data set that contains all articles in
X ; see (2.1). The frequent itemset extraction is typically done using methods like
the Frequent Pattern (FP) Growth algorithm; see [4].

Support(X ) = P (X ) = Number of orders containing X
Total number of orders (2.1)

Using the example in Table 2.1, and setting the minimum support threshold to 0.4,
an itemset need to have occurred at least twice to be considered frequent (since
2
4 > 0.4 but 1

4 < 0.4). Thus, the frequent itemsets of this example would be
{jeans, socks, t-shirt}, {jeans, socks}, {jeans, t-shirt}, {socks, t-shirt}, {t-shirt, sweater},
{jeans} and {sweater}, all with a support of 0.5, and {socks} and {t-shirt}, each
with the support 0.75.

7



2. Preliminaries

Order id jeans socks t-shirt sweater
1 0 0 1 1
2 1 1 1 1
3 1 1 1 0
4 0 1 0 0

Table 2.1: An example set consisting of four orders. A value of 1 at position (i, j)
means that item j is purchased in order i, while a value of 0 means that it is not.

2.1.2 Creating rules
After all frequent itemsets are extracted, the next step is to create rules within these
sets; see [21]. This is (in the most naive way) done by, for each frequent itemset,
creating a rule between all combinations of items within that set. Assuming the
itemset {jeans, socks, t-shirt} has a support greater than the minimum support
threshold, the following rules would be created:

{jeans} ⇔ {socks}
{jeans} ⇔ {socks, t-shirt}
{jeans} ⇔ {t-shirt}
{socks} ⇔ {jeans, t-shirt}
{socks} ⇔ {t-shirt}
{t-shirt} ⇔ {jeans, socks},

where the ⇔ symbol indicates that rules in both directions are created. Then, each
rule is given a score and the rule is kept only if that score exceeds a pre-defined
threshold. A common score to use is lift, which is defined as:

Lift(X ⇔ Y) = Supp(X ∪ Y)
Supp(X )Supp(Y) .

An interpretation of this score is the ratio between the support of the itemset X ∪Y
and the support that would have been observed if X and Y were independent. Thus,
a score of one indicates independence, a score higher than one indicates that the
items are positively correlated, and vice versa for a score below one.

2.2 Distance metric learning
Distance metric learning is a machine learning technique used to learn distances
for similarity based applications; see [20]. These learned distances are often more
informative than distances such as Euclidean and Manhattan. In the context of deep
learning, the distance function learned is the weights of the network in question.
During training the weights are guided by the loss function of the network, ensuring
that the learned distance has the desired properties. A common application of
distance metric learning is facial recognition; see [20]. In this case the Euclidean
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2. Preliminaries

distance between two matrix representations of faces would give some indication to
their similarity. However, there exists several more suited distance functions for this
task.

2.2.1 Triplet loss

One such way of obtaining a more appropriate distance function is to train a network
using triplet loss; see [5], which is defined as:

L(A,P,N) = max
(
‖f(A)− f(P )‖2 − ‖f(A)− f(N)‖2 + α, 0

)
. (2.2)

In (2.2), A is the so-called anchor, P is a positive sample, N is a negative sample,
f is an embedding (the output of the network), and α is a parameter determining
the scale of the embedding space. Being an anchor sample means that A and P
are of the same class while belonging to a different class than N . Since the loss
is minimised, in the best case scenario, anchors and positive samples end up close
together while the negative samples are at least α away.

After training, the weights are used in order to embed the data in the learned space,
i.e applying f on every datapoint. Taking the L2 norm on the difference between
two points in this metric space will, ideally, yield a similarity between two data
points which is more informative than the norm in RN .

2.3 Genetic algorithm

A genetic algorithm (GA) is a method for solving optimisation problems inspired by
natural selection; see [7]. In a GA, a population of individuals, each representing a
candidate solution to the problem, undergoes evolution. This process typically in-
cludes crossover, mutation and selection of individuals to breed (perform crossover).
The algorithm runs for a number of generations, either a fixed number or until a
certain stopping criterion is met. The procedure is illustrated in Figure 2.1.
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2. Preliminaries

Figure 2.1: Flowchart describing a simple genetic algorithm, the components are
described more in depth in the sections 2.3.1 - 2.3.6.

2.3.1 Chromosome
In a GA, an individual consists of genes forming a chromosome, which in turn repre-
sents a candidate solution to the problem. For example, if the goal is to optimise a
schedule, a chromosome could represent an entire schedule with each gene represent-
ing which person works at a certain time slot. During the crossover and mutation
phases described in sections 2.3.5 and 2.3.6, it is the genes that are changed between
generations.

2.3.2 Population initialisation
The population of candidate solutions is typically initialised in one of two ways; cold
start or warm start. During a cold start initialisation, each individual is initialised
randomly somewhere within the search space. In a warm start setting on the other
hand, some or all of the individuals are initialised to a solution that is known or
likely to achieve a better score than random. However, warm starting increases the
risk of premature convergence as it decreases diversity within the population; see
[17].

2.3.3 Fitness function
Just as in nature, an individual’s chance of breeding is dependent on the attributes
of that individual. The analogue of this feature in a GA is the fitness score. The
fitness of an individual is determined by the fitness function, which differs based on
the problem at hand.
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2.3.4 Selection

The main idea in selection is to give all individuals some probability of producing
offspring for the next generation, with the probability being related to the fitness
score. One common method for selection is tournament selection; see [7]. This
selection procedure consists of two steps, which are executed repeatedly until the
new population has reached the same size as the previous population. First, a
number of different individuals are randomly sampled from the previous population.
Then, these individuals are ranked by their fitness, and based on this ranking they
are assigned a probability of having offspring for the next generation. Once the
probabilities have been assigned, an individual is sampled from this distribution.
As these steps are performed several times and individuals are chosen at random,
it is likely that the same individual occurs in the new population more than once,
while others may not be selected at all. The procedure is presented in Algorithm 1.

Algorithm 1 Tournament selection
new population ← empty list
repeat

candidates ← ntour randomly selected individuals from the old population
distribution ← P (C = c) ∼ fitness(c)
selected individual ← choice of one candidate from the distribution
add selected individual to new population

until new population is full

2.3.5 Crossover

When a population of parents is selected, they should breed. This is typically
done by grouping all parents into pairs and for each pair, performing crossover.
When two parents are crossed, they produce two offspring. The chromosomes of the
offspring should, just as in nature, be a combination of the parents’ chromosomes.
One simple crossover method is the one-point crossover, that picks a point in the
parents’ chromosomes and swaps all elements on the right side of that point to
produce the two offspring.
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2. Preliminaries

Figure 2.2: Illustration of one point crossover; the children swap values after the
crossover point.

2.3.6 Mutation
When crossover has been performed on the parents, the last step of constructing a
population for the next generation is to mutate the offspring. Using the example of
a bit array chromosome this is commonly done by, for each bit in the array, flipping
that bit with a small probability.
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3
Methodology

In this chapter, the different methods used in this thesis are described. In Section
3.1, all pre-processing that was made is presented, followed by a description of the
three different ways of extracting rules between articles; see Section 3.2. Finally,
two algorithms for optimising article placements are described in Section 3.3.

3.1 Data pre-processing

Before running the algorithms proposed in this thesis, some pre-processing was ap-
plied to the transaction data. In this section, the different steps of pre-processing
are described.

3.1.1 Warehouse layout
Unfortunately, no accurate representation of the warehouse layout was available.
Thus, a simple layout was created with a total of 1440 shelves, each with capacity
14. The layout is shown in Figure 3.1.

Figure 3.1: Visualisation of the warehouse layout, consisting of 1440 shelves repre-
sented by the grey bordered tiles. Between the rows of shelves are horizontal rows of
dark blue tiles, representing aisles. These are placed so that each shelf has exactly
one adjacent aisle tile. The vertical rows of light blue tiles are walkways, and the
green tile at the top is the depot.
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3.1.2 Order filtering
The majority of orders in the dataset contained only one article. To be able to
extract meaningful association rules, only orders containing two or more articles
were considered when constructing the model. Furthermore, orders containing more
than 20 unique articles were also disregarded. The upper limit was chosen partly to
reduce the computational complexity and partly so that a large company restocking
wouldn’t create associations between articles that in the rest of the data are unre-
lated. Assume, for example, that a clothing store purchased five of each available
t-shirt and a couple of lighters because the store happened to be out of them at the
moment. Associations between lighters and all sorts of t-shirts would be created,
which might not have been purchased together any other time in the dataset. The
distribution of order sizes after filtering is shown in Figure 3.2.

Figure 3.2: Distribution of order sizes in the final data. Note the logarithmic scale
on the y-axis.

3.1.3 Article names
As the names of articles in the dataset were unstandardised, the following operations
were performed on the article names:

• Numbers and units were written together (10 kWh ⇒ 10kWh).
• All letters were changed to lowercase.
• Punctuation, redundant whitespace, and other special characters were re-

moved.
• Some words had been truncated due to a character limit and were therefore

removed.
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3.2 Rule mining
In this section, a number of different methods for finding rules between articles are
described. The purpose of these rules is to indicate which articles would benefit
from being placed closer together.

3.2.1 Association rule mining
The extraction of Association Rules (AR) was carried out in two steps; finding all
frequent sets of items and creating rules. The frequent itemsets were found using
the F-P growth algorithm in the python package mlxtend; see [15]. All itemsets of
size 2 were then used to create the association rules. Using each of these sets {i, j},
the rule (i ⇔ j) was then created and the lift of the rule was calculated. The lift
was then compared with the minimum lift threshold and the rule was kept only if
its lift exceeded the threshold. The reason for only using two-way-rules ((i ⇔ j)
instead of (i⇒ j)) is that the lift is a symmetric score. This means that if the rule
(i⇒ j) is created, so is the rule (j ⇒ i) with equal weight.

Furthermore, the weight of the rule (i⇔ j) was defined as:

wAR
ij = Lift(i⇔ j)− 1.

If no rule was found between article i and j, wAR
ij was set to 0.

3.2.2 Extending association rules
While the association rule mining method used above is efficient for finding rules
between distinct articles in a dataset, there exist ways to extend the rules to make
them even more valuable. One way to extend the rules is to take the article names
into account. In this section, two methods for extending the association rules are
proposed.

3.2.2.1 Nearest neighbours extension

The first method relies on the assumption that articles with similar names have
similar properties. For example if there is a rule saying that the article iPhone
12 screen protector is related to the article iPhone 12 lcd display white, it may be
reasonable to think that iPhone 12 screen protector is also related to iPhone 12 lcd
display black. To account for this, a method inspired by the one described in [9] was
developed.

First, all articles were encoded in an embedding space based on their names; see
Section 3.2.2.4. For all rules (i ⇔ j), new rules were then created between i and
the k nearest neighbours of j, provided they lie within a radius r, and vice versa
between j and the k closest articles to i. This procedure is shown in Algorithm 2
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The weight of a nearest neighbour extended association rule (EARn) was defined as
follows:

wEARn
kl = sim(i, k) · sim(j, l) · wAR

ij (3.1)

where sim(i, j) is the similarity between article i and j. The similarity was defined
as:

sim(i, j) = β

dist(i, j) + β
, (3.2)

where dist(i, j) is the distance between article i and j in the embedding space pro-
vided and β ≥ 0 is a small constant with the purpose to make the similarity take
values between 0 and 1.

Assuming a rule has the form (i, j, weight), where i and j are the antecedent
and consequent respectively, the procedure for extending association rules can be
described as follows:

Algorithm 2 Nearest neighbours extension of an association rule
1: function Nearest neighbours extension(i, j, wAR

ij )
2: nearbyRules← empty list
3: Ak ← k nearest neighbours of i
4: Ck ← k nearest neighbours of j
5: for a ∈ Ak do
6: if dist(a, i) < r then
7: Add (a, j, sim(a, i) · wAR

ij ) to nearbyRules
8: for c ∈ Ck do
9: if dist(a, i) < r then

10: Add (c, i, sim(c, j) · wAR
ij ) to nearbyRules

11: return nearbyRules

Note that there may be more than one rule added for a specific pair of articles.
When calculating the final rules, all weights of different rules between the same two
articles were simply added together.
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3.2.2.2 Parallel rules extension

In a similar manner as above, if the iPhone 13 was released towards the end of the
time when the data was gathered, articles related to iPhone 13 may not have been
bought enough to get appropriate rules between them. However, if there is a rule
between iPhone 12 screen protector and iPhone 12 lcd display white, there should
probably be a rule between iPhone 13 screen protector and iPhone 13 lcd display
white as well. To create these parallel rules, Algorithm 3 was developed. This
algorithm was run for all regular association rules. For parallel extended association
rules (EARp), the weight of a rule is simply defined as:

w
EARp
kl = wAR

ij (3.3)

Algorithm 3 Parallel rules extension of an association rule
function Parallel rules extension(i, j, wAR

ij , allArticles)
parallelRules ← empty list
for a ∈ allArticles do

emb ← embed(i) - embed(j) + embed(a)
if emb is the embedding of an article b then

Add (a, b, wAR
ij ) to parallelRules

return parallelRules

where embed(article) is a function returning the embedding of the input article in
the embedding space provided.

3.2.2.3 Combining extended association rules

Once extended association rules of the two types above were extracted, they were
combined using the scaling parameter Cp:

wEAR
ij = wEARn

ij + Cpw
EARp
ij

3.2.2.4 Embedding spaces

In order to compute the similarity between two products, they must first be en-
coded in an embedding space. In this section, three approaches for constructing this
embedding space are described.

Bag of Words

In its simplest form, the embedding space for computing the distance between ar-
ticles was created by converting the article names to a Bag of Words format; see
[14]. In this embedding space each article is represented by a vector of dimen-
sion equal to the number of unique word in the entire dataset. The value of a bit in
this vector is then set to 1 if the word it corresponds to is a part of the article’s name.
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The distance between two articles was then defined as the L1-norm between their
respective embeddings. An interpretation of this distance is the number of words
that differ between the two article names.

Word weight by single co-occurrence

In order to improve the embedding space, each word was weighted in accordance
with a score indicating importance. For example, it would be intuitive to think
that the word iPhone says more about an article than the word and. Thus, it is
desired that the articles ”repair kit and tools for iPhone” and ”repair kit with tools
for iPhone” are considered more similar than the articles ”repair kit and tools for
iPhone” and ”repair kit and tools for Samsung”. In both cases, the number of
words that differ is the same, but if words like iPhone and Samsung were weighted
higher, the second pair of articles would be considered less similar than the first pair.

Since words like and could be very common, just weighting the words by the fre-
quency of which they occur would probably not give the desired effect. Thus, a more
sophisticated weight was constructed and is shown in Algorithm 4. The idea of this
algorithm is to relate the number of times a word occurs in two different articles
within the same order to the total number of occurrences.

Algorithm 4 Single co-occurrence score
initialise count and matches to 0 for all words
for order in allOrders do

for article in order do
for word in article do

count[word] += 1
for all pairs (article1, article2) in order do

for word1 in article1 do
for word2 in article2 do

if word1 == word2 then
matches[word1] ← matches[word1] + 1

for word in uniqueWords do
weight[word] ← matches[word]

count[word]γ

where γ ≥ 0 is a hyperparameter.

The BoW embedding space was then scaled with the word scores. This means that
if two articles differ by the word iPhone, weight[iPhone] was added to the distance
between the articles, rather than just 1 as in BoW.
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Word weight by pair co-occurrence

While the method above captures relationships where two articles containing the
word iPhone are more likely to be bought together than two articles containing the
word and, it fails on capturing others. For example, an article containing the word
display might be likely to be bought together with one containing the word protector
(as in the examples in the beginning of Section 3.2.2). Relationships like this could
also be an indicator for word importance, even though it may not be likely that
two articles both containing the word protector are bought together. To account for
this, Algorithm 4 was modified as follows:

Algorithm 5 Pair co-occurrence score
initialise count, weight and matches to 0 for all words
initialise pairMatches to 0 for all possible word pairs
for order in allOrders do

for article in order do
for word in article do

count[word] += 1
for all pairs (article1, article2) in order do

for word1 in article1 do
for word2 in article2 do

if word1 == word2 then
matches[word1] += 1

else
pairMatches[word1][word2] += 1

for word in uniqueWords do
weight[word] ← matches[word]

(count[word])γ

weight[word] + = matches[word]
(count[word])γ

for word2 in uniqueWords do
if word1 6= word2 then

score ← pair_matches[word][word2]
(count[word]+count[word2])δ

weight[word] += score
weight[word2] += score

where γ ≥ 0 and δ ≥ 0 are hyperparameters.
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3.2.3 Neural network rules
As another way of generating rules, distance metric learning was used by training a
neural network to encode articles in an alternative embedding space. In this space,
the idea is to not only embed semantically similar articles closely, but also articles
that are frequently bought together.

3.2.3.1 Creating training samples

The training samples were created by taking the data in BoW-format and creating
triplets consisting of an anchor, a positive and a negative sample. The anchor and
the positive sample belongs to the same order, while the negative sample is chosen
randomly from all articles not in that order; see Algorithm 6.

Algorithm 6 Generation of training samples
samples ← empty list
for each order in allOrders do

for all pairs (anchor, positive) ∈ order do
negative ← random choice among articles /∈ order
append (anchor, positive, negative) to samples

3.2.3.2 Triplet ratio loss

While triplet loss is quite useful when training networks for tasks such as facial iden-
tification and other similarity based applications, there are a couple of drawbacks.
For example, the loss being set to 0 when the first term of Equation (2.2) is negative
leads to the gradient missing information during backpropagation because it is un-
known exactly how negative it was. In order to achieve good results, a large number
of negative samples for each positive sample is required; see [13]. To combat these
factors, a novel triplet ratio loss function was developed; see (3.4). This loss is based
on the same idea of triplets as the triplet loss function in (2.2), but instead of taking
the difference between the positive and negative norm they are divided. This leads
to the network being rewarded more for spacing the anchor and negative sample
further apart. In (3.4), A, P and N are the anchor, positive sample and negative
sample respectively and α is a constant for further weighting the two norms against
each other.

Lr(A,P,N) = ‖f(A)− f(P )‖
‖f(A)− f(N)‖α (3.4)

3.2.3.3 Network architecture

The architecture of the network was relatively simple, consisting of four fully con-
nected layers, and can be seen in Figure 3.3. The first two layers used the leaky
ReLu activation function; see [23], and the last two used linear activation. These
functions were chosen so that the embedding space could include negative numbers;
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if for example sigmoid activation had been used the embedding space would effec-
tively been cut in half. After each of the first two layers, a dropout layer with a
dropout rate of 0.1 was added for regularisation. The sizes of the layers were scaled
with the embedding dimension m.

(a) Schematic view of the network
layout.

(b) The layout of each branch in the
network.

Figure 3.3: Illustration of the neural network design. Each of the three branches
in subfigure 3.3a has the layout of subfigure 3.3b. Additionally, the three branches
have identical weights.

3.2.3.4 Creating rules

When the model was trained, all unique articles were encoded in the model’s em-
bedding space. Then, for each article, rules were created between it and up to k
of its nearest neighbours, provided that they lie within a radius r. The weight of
these rules were assigned the similarity between the two articles, wNNR

ij = sim(i, j),
where sim(i, j) is the same as in Equation (3.2). In Algorithm 7, the procedure for
creating rules from an article i to its nearby articles is shown.

Algorithm 7 Create rules between article i and the k closest articles within r
1: function NNR(i, k, r)
2: nnRules ← empty list
3: ei ← f(i) . f(i) embeds article i
4: Nk ← k nearest neighbours of ei
5: for ej ∈ Nk do
6: if distance(ei, ej) < r then
7: add (i, j, sim(i, j)) to nnRules

return nnRules
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3.2.4 Weighting rule types against each other
Once all rules were created, a final weight matrix representing all rules was con-
structed as follows:

Wij = wAR
ij + CEARw

EAR
ij + CNNRw

NNR
ij ,

where CEAR and CNNR are constants scaling the impact of each rule type.

3.3 Optimisation
After finding finding the set of rules, the next step was to use them and place the
articles into the warehouse. Two algorithms were implemented to solve this task,
one deterministic approach with a greedy algorithm and one stochastic approach
with a genetic algorithm.

3.3.1 Greedy algorithm
In order to utilise the rules in a computationally efficient way, a greedy algorithm
was implemented. This algorithm determines the placement of one article at a time
by executing two main steps; determining which article to place, and where to place
it. An overview of the greedy algorithm is shown in Algorithm 8.

Algorithm 8 Greedy algorithm
articles ← list of all articles
availableShelves ← list containing the shelf or shelves closest to the depot
set the score of all articles to their support
repeat

sort articles in ascending order by score
chosenArticle ← pop last element from articles
chosenShelf ← best scoring shelf in availableShelves
update article scores based on chosenArticle
if chosenShelf is full then

remove chosenShelf from availableShelves
add the neighbours of chosenShelf to availableShelves

until all articles are placed

22



3. Methodology

3.3.1.1 Choosing article

By maintaining an ordered list over all unplaced articles, the article to place is
determined by simply picking the last element in the list. The list is sorted in
ascending order by a score which is calculated as:

articleScore(i) = si + Cr
∑
j∈P

Wij, (3.5)

where si is the support for article i, P is the set of articles that are already placed,
Wij is the weight of the rule between article i and j, and Cr is a constant.

The first term in (3.5) ensures that common articles are picked earlier than un-
common ones. The second term makes the algorithm prioritise articles that have
rules to other articles that are already placed, allowing for them to be placed closer
together. Finally, the constant Cr determines the weighting of the two terms.

3.3.1.2 Determining location

After an article is chosen, the next step of the algorithm is choosing a shelf for
storing the article. This is done by giving each shelf a score, and picking the one
with the lowest score. The score for placing article i on shelf k is defined as:

shelfScore(i, k) = Cdsidk +
∑
j∈P

WijDkl + Cp
∑
j∈Pk

sisj, (3.6)

where si, P and Wij are the same as in (3.5), dk is the distance between shelf k and
the depot, l is the shelf where article j is stored, Dkl is the distance between shelf
k and shelf l, Pk is the set of articles that are already placed in shelf k, and Cd and
Cp are constants.

The first term in (3.6) places frequently purchased articles close to the depot, while
the second term favours grouping articles with rules between them together. The
final term penalises choosing a shelf with other common articles. Assuming that this
term is small compared to the others, it could be a tie-breaker between similarly
scoring shelves to pick the one with the fewest unrelated articles. This would allow
the algorithm to later place other articles related to those in Pk in shelf k.

To improve computational efficiency, the shelfScore is not calculated for all shelves
every iteration. Instead, only the shelves closest to the depot are used in the be-
ginning, and as these are filled up, their neighbours are added to a list of relevant
shelves. Using the example layout in Figure 3.4, the first articles are automatically
placed in shelf 1 until it is full. Then, shelves 2 and 9 are added to the list. Assuming
shelf 2 is the next to become full, shelves 3 and 10 are then added, and when shelf
9 becomes full only shelf 17 is added (since shelf 10 is already added). Using this
pattern, the shelfScore will only be calculated for a small fraction of all shelves each
iteration, while still keeping the shelves that have potential of being the best one.
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Figure 3.4: Warehouse layout for illustrating how shelves are added to a list of
relevant shelves in the greedy algorithm.

3.3.2 Genetic algorithm
In addition to the greedy algorithm, a genetic algorithm was implemented. Instead
of placing articles one at a time, this algorithm attempts to minimise a score that
evaluates an entire set of article placements. In this section, the implementation of
the different steps of the genetic algorithm is explained. These steps were executed
a fixed number of times, ngen.

3.3.2.1 Chromosome

The chromosome of an individual in the population was defined as a list where each
index represents an article and the value at that index represents the shelf at which
the article is stored. An example of a chromosome is shown in Figure 3.5.

Figure 3.5: A chromosome where ten different articles are stored at 5 different
shelves, each capable of storing two articles.
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3.3.2.2 Population initialisation

The population of size npop was initialised using a warm start. This meant that 95%
of the individuals were randomly initialised to any feasible solution, while the final
5% were initialised to a solution where the most common articles were placed in the
shelves closest to the depot.

3.3.2.3 Fitness function

The fitness of an individual I was defined as follows:

fitness(I) =
m∑
i=1

CdsidIi +
m∑
j=1

WijDIiIj

 , (3.7)

where m is the number of unique articles, si is the support of article i, Ii is the
shelf article i is stored at, dIi is the distance between shelf Ii and the depot, Wij is
the weight of the rule between article i and article j, DIiIj is the distance between
shelf Ii and shelf Ij, and Cd is a constant. Since this function is very similar to the
objective function in (1.3), a low fitness score is desirable.

3.3.2.4 Selection

The selection of individuals for a new population is done using tournament selection,
as described in Algorithm 1. However, the algorithm was modified so that after the
candidates were scored, the best scoring one was always chosen. This modification
was made in order to reduce the amount of hyperparameters.

3.3.2.5 Crossover

After selecting npop individuals, crossover is performed. The crossover method de-
scribed in this section is inspired by the one proposed in [24]. When two parents
are crossed, their children are first initialised as copies of their parents. A number,
nswaps, of indices are then selected at random and the values at these indices are
swapped in the children.

An example of crossover between two parents is shown in Figure 3.6. For this ex-
ample it is assumed that there are ten articles to be placed in five shelves, each
one with a capacity of two articles. Furthermore, the articles are ordered so that
the article with the highest support corresponds to index 0 and the article with the
lowest support to index 9. The shelves are also ordered so that 0 corresponds to the
shelf closest to the depot.
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Figure 3.6: Given two parents and using nswaps = 3 the children to the right would
be created.

After these swaps have been performed one can observe that there are overfull shelves
in the children; shelf 4 in child 1 and shelf 1 in child 2 each contain three articles.
In order to maintain a feasible solution, some of these articles need to be moved to
a different shelf, namely the closest shelf to the depot with space left over. This is
illustrated in Algorithm 9.

Algorithm 9 Make solution feasible
for each article a do . in reverse order

if shelf where a is stored is overfull then
move a to the shelf with empty space closest to the depot

The reason for iterating through the articles in reverse order is that the least fre-
quent articles should be moved. After these changes in the chromosomes have been
performed they end up as the chromosomes in Figure 3.7.

Figure 3.7: Illustration of Algorithm 9 on the children from Figure 3.6.

3.3.2.6 Mutation

The mutation step is executed for all children obtained after performing crossover.
For each gene in the chromosome, a mutation is performed with probability pm. The
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mutation of a gene corresponds to swapping the value of that gene with the value
of another randomly chosen gene. This is guaranteed to preserve feasibility since it
only swaps two articles’ places in the warehouse.

3.4 Evaluation
The evaluation of the models was performed on a test set consisting of orders from
a separate time period. Each order was treated as a TSP where the location of all
articles in the order were visited, starting and ending in the depot. Using a dynamic
TSP solver from the package python_tsp; see [3], the minimum distance required
to pick all articles in each order was then determined and the mean distance across
all orders was calculated.

3.4.1 Baselines
To make the evaluation meaningful, the models were compared to two different
baselines:

Random: Completely random article placements. However, if there are
more shelf spaces than articles in the warehouse the articles
are pushed towards the depot.

By frequency: An algorithm that orders the articles by frequency and the
shelves by distance to depot, and places the most frequent
articles on the shelves with the shortest distance to the depot.
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4
Tests and results

This chapter presents the tests and results of the hyperparameter tuning and the
evaluation of the two algorithms used to solve the SLAP. The code base produced
during the project can be found at https://github.com/Stickish/EARMfStSLAP.

4.1 Choice of hyperparameters

In this section, the final choices of hyperparameters are presented. The procedure
for tuning hyperparameters is described in detail in Appendix A.

Parameter Value
smin 10−4

Lmin 1

Table 4.1: Chosen hyperparameters for ARM, smin is the minimum support thresh-
old and Lmin the minimum lift threshold.

Parameter Value
k 6
r 6
β 0.6
Cp 1000

Table 4.2: Tuned hyperparameters for EAR using the BoW embedding space. The
parameter k determines the maximum number of rules to create within the radius
r, β scales the similarity between articles, and Cp weight the parallel and nearest
neighbour rules against each other.
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Parameter Value
γ 1.6
δ 3.5
k 2
r 1
β 0.1
Cp 10

Table 4.3: Tuned hyperparameters for EAR using the embedding space based on
the pair co-occurrence score; see Section 3.2.2.4. The parameters γ and δ scale the
embedding space, and the remaining parameters are the same as in Table 4.2.

Parameter Value
α 1
m 256
k 100
r 10−3

β 10−4

Table 4.4: Chosen hyperparameters for NNR. α determines the weight between
positive and negative samples during training, m is the embedding dimension, and
k, r and β are the same parameters as in Table 4.3.

Parameter Value
CEAR 10−4

CNNR 10

Table 4.5: Hyperparameters for weighting different kinds of rules together.

Rule type Cr Cd Cp
AR 1 5 · 104 0

EARBoW 1 108 0
EAR 1 5 · 105 0
NNR 1 104 0

All rules 1 5 · 105 0

Table 4.6: Tuned hyperparameters for the greedy algorithm when using different
kinds of rules. Cr weight the articleScore terms in (3.5) against each other, while
Cd and Cp weight the shelfScore terms in (3.6).
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Parameter Value
ntour 3
npop 10
nswaps 100
ngen 5000
pm 10−3

Rule type Cd
AR 105

EARBoW 3 · 108

EAR 5 · 106

NNR 105

All rules 5 · 106

Table 4.7: Chosen hyperparameters for the genetic algorithm. The parameters in
the left table are kept constant for the different rule types, while Cd varies depending
on rule type.

4.2 Evaluation
With the hyperparameter choices in Section 4.1, the two algorithms were run using
different types of rules and on training data from different time periods. The number
of orders and unique articles in each time period is shown in Table 4.8. A test set
consisting of 59062 orders between December 2021 and January 2022 was used for
evaluation.

Time period Orders Unique articles
1 (dec20-feb21) 63292 15106
2 (dec21-nov21) 697987 19551
3 (sep21-nov21) 70086 14678

Table 4.8: Number of orders and unique articles in the different time periods used
for training. The number of unique articles also include all articles in the test set.

4.2.1 Baselines
In Table 4.9, the average travel distance for the two baselines are shown for the
different training sets.

Training period Random Frequency
1 (dec20-feb21) 116.07 ± 2.01 71.41
2 (dec21-nov21) 133.71 ± 2.47 54.23
3 (sep21-nov21) 112.91 ± 1.08 48.15

Table 4.9: Average distance travelled to pick all test orders for the two baseline
placements. The values for the random baseline are the means and standard devia-
tions over five randomisations.

4.2.2 Greedy algorithm
The greedy algorithm was run using training data from three different time periods.
From each training set, the algorithm was run using five different sets of rules. The
results are presented in Table 4.10-4.12.
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Rule type Distance Change from baseline (%)
Random Frequency

AR 70.85 -39.0 -0.8
EARBoW 70.39 -39.4 -1.4
EAR 70.51 -39.3 -1.3
NNR 68.62 -40.9 -3.9

All rules 67.09 -42.2 -6.0

Table 4.10: Average distance travelled to pick all test orders for the different types
of rules using the greedy algorithm, with rules from a three month training period
between December 2020 and February 2021 (period 1).

Rule type Distance Change from baseline (%)
Random Frequency

AR 53.42 -60.0 -1.5
EARBoW 53.28 -60.2 -1.8
EAR 52.88 -60.5 -2.5
NNR - - -

All rules* 48.24 -63.9 -11.0

Table 4.11: Average distance travelled to pick all test orders for the different types
of rules using the greedy algorithm, and using rules from a one year training period
between December 2020 and November 2021 (period 2). *The neural network rules
were however not generated on this training period due to memory limitations.
Thus, the results for all rules combines AR and EAR for this training period with
NNR from period 3.

Rule type Distance Change from baseline (%)
Random Frequency

AR 47.28 -58.1 -1.8
EARBoW 47.32 -58.1 -1.7
EAR 46.72 -58.6 -3.0
NNR 45.83 -59.4 -4.8

All rules 46.71 -58.6 -3.0

Table 4.12: Average distance travelled to pick all test orders for the different types
of rules using the greedy algorithm. The rules were mined from a three month
training period between September and November 2021 (period 3).

4.2.3 Genetic algorithm
The results of the genetic algorithm were not very promising, mainly in terms of
travel distance but also in terms of computational time. Therefore, it was only run
on training period 3. The results are shown in Table 4.13.
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Rule type Distance Change from baseline (%)
Random Frequency

AR 81.85 -37.5 +70.0
EARBoW 88.79 -21.4 +84.4
EAR 78.16 -23.6 +79.1
NNR* 48.15 -57.4 0

All rules* 48.15 -57.4 0

Table 4.13: Average distance travelled to pick all test orders for the different types
of rules using the genetic algorithm. The rules were mined from the three month
training set between September and November 2021 (period 3). *For NNR and All
rules, the GA did not manage to find a better fitness score than that of the warm
start solution. Thus, the results for these instances are the same as the frequency
baseline.
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5
Discussion

This chapter reviews and analyses the performance and implementations of the
methods used. While the greedy algorithm outperformed both baselines for all rule
types, its genetic counterpart only outperformed one. Thus, all results discussed in
this chapter relates to the greedy algorithm, if not otherwise stated. Furthermore,
the strongest performing set of rules were the combination of all three rule types,
although it underperformed on the last dataset (period 3). Looking at the rule types
separately, the NNR performed the best. However, they were unable to be trained
on the full dataset due to a lack of computational resources.

5.1 Hyperparameter tuning
With the number of hyperparameters being large and the algorithms time-consuming
to run, the hyperparameters where tuned using a simplified scheme (described in
Appendix A). Thus, the chosen hyperparameter values are likely not the truly opti-
mal values. If a more extensive hyperparameter tuning was performed, it is therefore
possible that the results could be improved further.

5.2 Rule mining
In this section, the creation of different rule types are analysed from a critical per-
spective. Furthermore, the results from running the greedy algorithm using all rule
types are, both individually and combined, are discussed.

5.2.1 Association rules
The performance of using association rules was better than both baselines for all
time periods of training data. This is consistent with the improvements made by
others using association rules for the SLAP; see for example [2] and [19]. However,
since data sets, warehouse layout, problem formulation, and baselines differ, it is
difficult to make a fair comparison to the results of these articles.

5.2.2 Extending association rules
When only using extended association rules, the average picking distance was slightly
lower than with regular association rules on all training periods. This is an indi-
cation that there are relationships between the names of articles that AR fails to
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uncover. Furthermore, the original association rules are not included in EAR. The
full potential of EAR would therefore be expected when it is combined with other
rules.

When it comes to the embedding space used for creating extended association rules,
scaling the words using the measure of pair co-occurrence described in Section 3.2.2.4
was beneficial in two out of three training periods. Although the differences are quite
small, it is worth noting that the largest difference comes in period 3. The differ-
ence is slightly smaller for period 2, and the smallest for period 1 where EARBoW
even outperforms EAR with a small margin. While the co-occurrence score seem
promising for period 2 and 3, a possible explanation for the lower performance dur-
ing period 1 is that the time gap between training and testing introduces a larger
number of unseen words in the test set. Thus, article names differing by unseen
words would be considered more similar than those differing by other words, which
might not be beneficial. A way of mitigating this problem could be to use some
word embeddings that take into account similarities between words. However, for
our particular dataset, the vocabulary is very different from that of any embeddings
available online which makes it difficult to implement.

While no results were explicitly generated for the single co-occurrence score, one
may observe that both scores are the same for δ → ∞. Thus, the single score was
discarded during hyperparameter tuning of the pair co-occurrence score. However,
these scores were not based on any scientific literature study and there are likely
better ways of scaling the embedding space than the scores used in this thesis.

5.2.3 Neural network rules
The results of the NNR are promising, outperforming the other rule types on all
training periods. However, when creating the training samples for the whole year
period, even when saving them as 8bit integer vectors, they require ≈ 37 GB of
memory. This leads to training taking extremely long and periodically crashing,
meaning that it was infeasible to let the training run long enough to be confident
in the embedding space learned. This is the reason why the September–November
rules were used in Table 4.11. One way we could have decreased the space necessary
to train on period 2 is to have performed some sort of dimensionality reduction,
for example principal component analysis. This was not implemented due to time
constraints and early testing did not seem promising.

A caveat with the network is that there is no way of guaranteeing that it embeds the
articles in a space with the same scale each time. This affects the hyperparameter
r, the radius within which articles must be to form network rules between them. In
order to combat this problem some kind of normalisation could be implemented to
force the embedding spaces to share a common scale, ensuring that the hyperpa-
rameters are sufficiently optimal for all training sets.

Another potential avenue of improving the performance of the NNR is to look into
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more advanced language processing tools such as n-grams. With our particular data
however it is unlikely that this would have yielded any improvement due to the
unstandardised article names. They did not follow a uniform order and the names
cut off after 50 characters, leading to several “halfwords” being included in the data
since we decided against manually combing through all article names and removing
these halfwords.

5.2.4 Combining rule types
The result using all rules on period 1 and 2 can be seen as an indication that combin-
ing rule types could be an efficient strategy. However, it is not always beneficial, as
NNR outperform the combination of rules for period 3. A possible explanation for
this is that combining rules introduces two additional hyperparameters. With the
simplified tuning scheme, adding more parameters could lead to hyperparameters
values further the from optimal values, leading to decreased performance. Another
reason for this decrease in performance could be the absence of normalisation dis-
cussed in Section 5.2.3. The rule combination result for period 3 is very similar to
that of EAR, which could be an indication that the scale of the other rule types was
negligible compared to EAR.

5.3 Optimisation
This section compares the performance of the two optimisation algorithms used.
Possible flaws in the two algorithms, especially flaws associated with the genetic
algorithm, are also analysed.

5.3.1 Greedy algorithm
As can be seen in Tables 4.12 and 4.13, the greedy algorithm performed significantly
better than its genetic counterpart. However, this is more indicative of the poor GA
results than an indication of the greedy algorithm’s performance. Due to the fact
that the dataset used is unique to this project, it is also difficult to compare the re-
sults of the greedy algorithm to that of previous research within the area. However,
it is very unlikely that the greedy algorithm manages to find the optimal solution.
Thus, a more sophisticated optimisation algorithm would probably be able to show-
case the full potential of the rules that were created.

Furthermore, the hyperparameter tuning gave a value of Cp = 0 in (3.6). While it
is possible that there might be some favourable way of penalising unrelated articles
being placed close together, Cp = 0 being the optimal value show that the penalty
term used in this thesis was not beneficial.

5.3.2 Genetic algorithm
By comparing the results from the genetic algorithm in Table 4.13 with the fre-
quency baseline, it is evident that the performance of the GA is unsatisfactory. The
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reasons for the poor results using the GA are however unclear. Previous research
applying genetic algorithms for solving the SLAP has shown promising results; see
for example [24]. Thus, the overall idea should not be rejected. However, while the
crossover and mutation operations of this project were inspired by [24], they had
to be adjusted for our problem. As our objective was different, the fitness function
also differed, and it is therefore possible that the combination of genetic operators
used was simply not suitable for the problem.

Moreover, the genetic algorithm had a large number of hyperparameters and was
very time-consuming to run. Therefore, the hyperparameters were tuned in a less
extensive manner than those of the greedy algorithm, which could have made them
further from the optimal values.

However, the most likely reason for the unsatisfactory performance is that the fitness
function was somehow inappropriate. This theory comes from the fact that when the
fitness score improved during training, the performance decreased. Since the fitness
function builds on the same principles as in the greedy algorithm, we believe that
the fitness function as a whole was not the problem, but rather that the parameter
Cd was not tuned correctly.

5.4 Performance on different time periods
To evaluate the robustness of the different methods, they were run on three different
periods of training data; a three month period starting a year before the test set
(period 1), a one year period also starting a year before the test set (period 2) and
a three month period ending just before the test set (period 3).

When comparing all three periods, one may observe that the results are the best for
period 3 in all cases. One reason for this is likely that the dataset is temporally sen-
sitive, with some articles becoming outdated and newer ones being launched. Thus,
having recent data seem more important than the amount of data. Another possible
explanation is that the model is constructed so that all articles bought at least once
in either the train or test period have to be stored in the warehouse. Using period
1 and 2 will therefore keep more articles that have become outdated, increasing the
average distance between articles. However, performance on period 2 is significantly
better than on period 1. Since the number of articles that are never bought in the
test set is larger for period 2, this indicates that recency and quantity of the data is
in this case more important than number of “redundant” articles.

Furthermore, the results for period 3 is consistently better that those of period 1,
even though the number of articles to place in the warehouse is very similar; see
Table 4.8. This indicates that, for this particular dataset, recency in the data is
more important than the time of year (as the first training period takes place at
almost the same time of the year as the test set). However, this may of course differ
from dataset to dataset. For example, a company selling ski wear at winter and
hiking equipment at summer may benefit more from using data from a specific time
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of the year.

When comparing the results with the random baseline, it is natural that the differ-
ences in performance are largest for period 2. The reason for this is that while the
other algorithms may benefit from the larger amounts of training data, the random
baseline cannot, and would therefore only get the negative consequences of large
amounts of data. Furthermore, the improvements over the random baseline are
much larger for period 3 than for period 1. This could be seen as a further indica-
tion that the recency of data is far more important than the number of outdated
articles.

5.5 Evaluation
While orders are typically batched before picking, this thesis uses an evaluation
scheme which simulates picking orders individually. The main reason for using this
scheme is that batching the orders would add more stochasticity to the results.
Using some sophisticated batching method could however simulate reality better,
but would be more costly with respect to both computation and implementation
time. A reasonable idea for further developing this project would therefore be to
implement a more advanced evaluation method using order batching.
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6
Conclusions and future work

In conclusion, the rule based approach proposed in this thesis outperforms the in-
dustry standard of storing the most frequent articles closest to the depot between
0.8% and 11%. The best result is achieved when combining the different rule types
in the greedy algorithm. Looking at the rule types separately, NNR consistently out-
performs both EAR and AR. The fact that the GA performed only slightly better
than fully random article placements is not indicative of genetic algorithms in gen-
eral, rather that the combination of genetic operators used were faulty for this task.
The two biggest contributions of this thesis are the novel approaches to creating
neural network rules and extending association rules, both outperforming regular
association rules.

Looking forwards, there are many different ways of building upon this thesis. First of
all, the optimisation algorithms used are likely far from reaching optimal solutions.
Thus, it would be interesting the solve the problem with other methods, for example
using mixed integer linear programming. Furthermore, both the word scores of EAR
and the network architecture of NNR have potential for further improvements. Other
areas suitable for development include more extensive hyperparameter tuning and
a more sophisticated evaluation method.
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A
Hyperparameter tuning

Since the number of hyperparameters was quite large and some algorithms were
time-consuming to run, a full grid search was not feasible. Thus, the tuning was
divided into five phases, as can be seen in Figure A.1. For a given set of parameters
to be tuned, a grid search was performed on those parameters, keeping all other
parameters constant.

Figure A.1: Illustration of the hyperparameter tuning scheme. First, the parame-
ters for creating the rules are tuned, followed by tuning the weights that combine the
rules (these were not tuned using EARBoW as it was noticed early on that weighted
EAR outperformed BoW). Finally the two optimisation algorithms are tuned.

To make the tuning feasible, it was only performed using a part of the training data
consisting of 80000 orders. These orders were divided into four folds of 20000 orders
each. Each set of parameters was then evaluated on each of these folds separately
using 15000 orders for training and 5000 for evaluation, and the parameters with
the best performance across all folds were chosen.

A.1 Rule mining
The first step was to tune the rule mining parameters, which was performed sepa-
rately for each of the rule types. In order to evaluate a combination of parameters
the corresponding rules were extracted. These rules were then fed to the greedy
algorithm in order to find the article placements x, using the parameters Cp = 0,
Cr = 1 and with the support set to 0 in equations (3.5) and (3.6). The reason for
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excluding the article supports at this stage of tuning was to ensure that the greedy
algorithm focuses solely on rules. Once x was found, a TSP was solved for each
order in the current evaluation set. As opposed to the evaluation method described
in Section 3.4, these TSPs did not include the depot in order to only evaluate the
rules.

A.1.1 Association rules
For ARM, there were only two hyperparameter choices that had to be made; the
minimum support threshold and the minimum lift threshold. Instead of tuning the
minimum lift threshold, it was set to one, as all values greater than one indicate
positive correlation between the articles in the rule.

Due to this property of the lift threshold it is desired to set smin = 0, since all
rules with a lift over one was expected to have a positive impact on performance.
However, lowering smin came with a dramatic increase in run time. A compromise
between the number of rules found and run time was therefore made.

A.1.2 Extending association rules
Due to the increase in hyperparameters and computational complexity compared to
ARM, the tuning process was split into three steps. The first step concerned the
tuning of the parameters related to the embedding space, γ and δ. They were tuned
using k = 5, β = 1, Cp = 0 and ignoring the radius r.

Once chosen, these parameters were used to tune k and r, keeping Cp = 0. In order
to reduce the number of hyperparameters to tune, β was set to r/10. This choice
was made as the value of β depends on the distances between neighbouring articles,
which is in turn controlled by r. The final step consisted of tuning Cp using the
tuned values of the other parameters

A.1.3 Neural network rules
Just as for the EAR parameters, the NNR parameters were tuned in steps. First,
the network parameters α and m were tuned using k = 5, β = 1 and an infinite
radius r. Then, using the chosen values of α and m, k and r where tuned. Once
again, β = r/10 was used.

A.2 Rule weights
After choosing all parameters for rule creation, the constants used to combine dif-
ferent rule types; CEAR and CNNR, were tuned. They were tuned by performing a
grid search using the chosen rule creation parameters from above. The evaluation
of each set of parameters was performed in the same way as described in Section A.1.
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A.3 Optimisation
Using the parameters from above, the hyperparameters of both optimisation algo-
rithms were tuned. Just as for the rule mining parameters, this was done by creating
rules from a training set and evaluating the algorithms on a test set. However, the
evaluation was done using the method from 3.4.

A.3.1 Greedy algorithm
The greedy algorithm was tuned once for each rule type, plus an additional time for
the combination of all rules. This was done using a simple grid search on the three
parameters Cr, Cd and Cp.

A.3.2 Genetic algorithm
For the genetic algorithm, the weight in the fitness function, Cd, was tuned sepa-
rately for each combination of rules as in Section A.3.1. However, the other param-
eters for the genetic algorithm were tuned only once as the optimal values of these
parameters were expected to remain similar regardless of rule type.

III
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