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Abstract

The coupling of the fine-mesh high-order transport operator with a coarse-mesh
low-order approximation, in order to reduce the computational requirements when
simulating whole reactor cores, is studied here through the boundary conditions for
the fine-mesh solver. A recently developed software, solving the neutron transport
equation though a discontinuous Galerkin Finite Element discrete-ordinates method,
is used for the fine-mesh high-order solver, and the coarse-mesh low-order solver is
simulated by a coarsening process.

As a first step, a verification and validation process is necessary to be performed.
This is carried out using the softwares DRAGON and MCNP, respectively, as the
references in the verification and validation processes. A very good agreement is
obtained during the verification process, while for the validation, results show that
different quadratures should be considered in order to improve the accuracy. In
addition, a parametric study is presented, where the different parameters of the
spatial and angular discretizations are analyzed, in order to understand the behavior
of the solver for different configurations.

A second part of the work consists in studying the effect of coarsening the bound-
ary conditions for a particular problem (C5G7 benchmark). This coarsening is per-
formed to simulate the low-order approximation of the boundary conditions obtained
with the coarse-mesh solver. Understanding the loss of accuracy for the fine-mesh
calculations is necessary in order to improve the fine-mesh/coarse-mesh coupling for
the neutronic solvers.
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Chapter 1

Introduction

In the study of nuclear reactors, one of the principal targets is to
understand the behavior of the reactor core for a specific operational
state. In order to know this, it is very important to obtain the different
parameters of the core, such as its k-effective, its neutron flux or its
pin power distribution. Neutronic codes are developed in order to
study the system for the different operating conditions. These codes
solve a module describing the neutron transport phenomena coupled
with the thermal hydraulic of the system.

In the present work we focus on the neutronic module. There are
mainly two approaches for the modeling of neutron transport equation
inside the reactor core. These two approaches are based on stochastic
and deterministic methods. These testings allow us to obtain different
parameters of a studied reactor for several operational states and they
make it possible to predict how the reactor will behave if some of its
initial conditions would be changed.

The stochastic approach is based on the Monte Carlo method. Exam-
ples of such code are MCNP [3] or OpenMC [4], and they simulate the
neutron transport phenomena statistically. This procedure consists in
recording all the events in which neutrons are involved, and for doing
it every particle is followed. Knowing in which nuclear reactions (such
as absorption, fission or capture) neutrons are involved, permits to

1



reproduce precisely the behavior of these particles. The computing
time to reach the results using Monte Carlo codes is larger than the
required time by deterministic codes, but they give more accurate re-
sults. Consequently, these codes are generally validated by using as
reference Monte Carlo results. However, deterministic methods are
capable to give accurate results in a much lower computing time and
because of this reason, they are employed in core simulations.

Deterministic codes, such as DRAGON [5] or OpenMOC [6], solve
an approximation to the transport (Boltzmann) equation, obtaining
a solution that depends on the different methods. This is an integro-
differential equation describing the distribution of neutrons in a reac-
tor core, with the following form:

1

v(E)

∂

∂t
ψ(~r, ~Ω, E, t) + ~Ω · ∇ψ(~r, ~Ω, E, t) + ΣT (~r, E, t)ψ(~r, ~Ω, E, t)(1.1)

=

∫
(4π)

∫ ∞

0

Σs(~r, ~Ω′ → ~Ω, E ′ → E, t)ψ(~r, ~Ω′, E ′, t)d~Ω′dE ′

+
χ(E)

4π

∫ ∞

0

ν(E ′)Σf(~r, E
′, t)

∫
(4π)

ψ(~r, ~Ω′, E ′, t)d~Ω′dE ′,

where the angular neutron flux, ψ(~r, ~Ω, E, t), depends on the following
independent variables: E for energy, ~Ω for direction of travel, ~r for
the position and t for the time. A detailed explanation of the different
terms can be found in [7]. It is because of having seven variables which
are time, energy, three variable in space and two in direction that it
is a very complex problem from the computational point of view.

There exist several variations of the Boltzmann neutron equation, such
as the integral or the differential form of the equation, the even/odd
parity form, or the steady state formulation, depending on the partic-
ular problem being simulated [8].

The equation shown above is solved doing discretizations of the vari-
ables, and more specifically there are an angular, a spatial and an
energy discretization. Several computational methods have been de-
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veloped in order to do these discretizations. Although validated codes
give accurate solutions, they usually combine these different discretiza-
tions in order to solve the neutron Boltzmann equation.

The energy discretization is usually made by collapsing the energy
range in several subdomains. The energy discretized cross-section and
neutron flux are obtained from collapsing the energy-dependent cross-
section with an energy-dependent flux depending on the characteristics
of the reactor being modeled [9].

Regarding to the angular discretization, different options are pos-
sible [10]. Deterministic methods implemented on different codes
are, for instance, the Discrete Ordinates Method, also called the SN
method, used for example by the code APOLLO II [11] and HELIOS
2 [12], the Method Of Characteristics (MOC) used by CRX code [13],
the Collision Probability Method used by HELIOS 2 [12], and the
Spherical Harmonics method used by the code VARIANT [14]. The
method used in this work is the discrete-ordinates.

As for the angular discretization, several methods exist for doing the
spatial discretization, as for example the Finite Element method or
nodal methods used by code VARIANT [14], Flat source arbitrary
spatial mesh used by codes APOLLO II [11] and CRX [13], Cartesian
Finite Differences method used by the code DORT, and the method
of Finite Volumes [15]. The Finite Element Method [16], is the one
used in the present work.

Due to the complexity of the neutron transport equation, and the
way that it is solved, the simulation of nuclear reactor cores is a very
challenging problem from the computational point of view. For this
reason, the spatial resolution is split in two different scales, which are
fine-mesh and coarse-mesh. This division of the problem allows to
reduce the time that is needed for having the results, keeping a high
accuracy.

A fine-mesh transport solver is used for small subdomains, typically
one assembly. This allows us to study the behavior of neutrons on
a reduced scale, reducing errors on calculations. On the fine-mesh

3



solver, the core is divided in independent assemblies, which are then
sub-divided in pin cells, and every pin cell is composed of moderator,
fuel pin, cladding and gap defining a complex geometry. Hence, the
fine-mesh is generally solved by the neutron transport equation solver
to capture the different heterogeneities, although it is possible to solve
it by a low-order solver.

A low-order approximation of the neutron transport equation, such
as the diffusion equation, is generally used in the coarse-mesh cal-
culations. This module is used because it is entended to couple the
calculations of the fine-mesh module for each node, so that a global so-
lution for the whole reactor is determined. Due to the computational
effort necessary to solve the neutron transport equation, low-order
approximations are usually employed for full core calculations.

The aim of the project described in this thesis is the verification and
validation of the code FOREST, as well as the analysis of how changes
in boundary conditions affect the results. Hence, these two tasks have
been studied separately, as it is explained hereafter.

In order to do the verification of a code, the results given by its simu-
lations have to be compared with the solution given by a benchmark,
or other obtained simulating codes that have already been verified. In
this case, for testing the accuracy of the code, results have been com-
pared with solutions given by other codes taken as reference. Several
problems having different geometries and boundary conditions have
been simulated. Firstly, the comparison has been done with the so-
lution given by the collision probability code DRAGON [5]. Then,
results of the code FOREST have been compared with the ones given
in the C5G7 benchmark [2], which have been obtained by using the
Monte Carlo code MCNP5 [17]. Problems named before have been
solved for different combinations of the discretization’s parameters in
order to perform a parametric study. In this way, it is possible to
optimize the calculations.

In the analysis of the boundary conditions, the simulations have been
done only using the problem in the C5G7 benchmark [2]. Firstly, the
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whole core of the C5G7 benchmark problem have been solved for an
specific combination of the discretization parameters. From this simu-
lation, the pin powers of the problem as well as the boundary neutron
fluxes have been obtained. From the results of the pin power calcula-
tions, the pin power of every assembly has been extracted and taken as
reference. Then, different spatial and angular coarsenings have been
done to the boundary neutron fluxes, and for every assembly the pin
power have been recalculated with the new boundary conditions. In
this way, comparing the values of the pin power obtained before and
after the coarsening of the boundary conditions, it is possible to know
how are the errors introduced by the coarsenings.

The structure of this thesis is as follows. In Chapter 2, the charac-
teristics of the code that is being used are exposed and the different
modules of the Python tool that have been developed are explained.
Then, in Chapter 3, the two problems that have been studied in the
work are presented. Chapter 4 studies the verification and validation
of the neutron transport solver and the effect of coarsening the bound-
ary conditions is studied in Chapter 5. Finally, Chapter 6 summarizes
the conclusions of the present work.
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Chapter 2

Methodology

In this chapter, the methodology of the work is exposed. This chapter
is divided in two sections, firstly, the description of FOREST (Frame-
work Oriented to REactor Simulations) is presented, where its charac-
teristics, such as the equations that it solves, the mathematical meth-
ods that it uses, or the parameters that the user can change in simula-
tions, are explained. Finally, the different modules of the comparison
tool developed during this work are presented.

2.1 Description of FOREST

2.1.1 Problem discretization

The solver that has been tested is a discrete ordinates discontinuous
Galerkin fine-mesh solver for the neutron transport equation, and it
allows us to model the behavior of neutrons inside a core. The code
model the steady-state formulation of the Boltzmann equation:
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~Ω · ∇ψ(~r, ~Ω, E) + ΣT (~r, E)ψ(~r, ~Ω, E) (2.1)

=

∫
(4π)

∫ ∞

0

Σs(~r, ~Ω′ → ~Ω, E ′ → E)ψ(~r, ~Ω′, E ′)d~Ω′dE ′

+
1

λ

χ(E)

4π

∫ ∞

0

ν(E ′)Σf(~r, E
′)

∫
(4π)

ψ(~r, ~Ω′, E ′)d~Ω′dE ′,

where the eigenvalue λ determines the criticality of the reactor, mea-
suring the ratio between the loss and production of neutrons in the
reactor [7].

The chosen method to perform the angular discretization has been
the Discrete Ordinates Method (SN). In this method, the equation in
its multigroup format is discretized by a collocation method on a set
of quadrature points {Ωn}N

′

n=1, with their respective weights {ωn}N
′

n=1.
The order of the discrete ordinates, N , is related to the number of
quadrature points, N ′, as follows:

N ′ = N for d = 1,

N ′ = N(N + 2)/2 for d = 2,

N ′ = N(N + 2) for d = 3,

being d the spatial dimension of the problem.

One of the parameters that it can changed in the input of the problem
is the SN order that will be used in the angular discretization. Theo-
retically, when a higher SN order is used, more angular directions are
considered, so the transport phenomena is better represented.

For the spatial discretization the method applied by the solver is
the Finite Element Method, and more specifically the discontinuous
Galerkin method. This method is the most popular among the Finite
Elements Method, due to its flexibility to deal with complex domains
and the straightforward extension to high order approximations [18].
This method consists in splitting the space in smaller subdomains
called finite elements, where the flux will be expanded in a set of func-
tions. Thus, knowing the boundary conditions of the problem, the
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equation can be solved connecting the individual solutions of every
subelements.

Moreover, in order to implement the Finite Element Method, the
deal.II library [19] has been used. This library allows to reuse a large
amount of code already tested and optimized for this specific method.
We are able, as it was the case for the angular discretization, to change
some parameters for the spatial discretization. In this case, the input
allows us to modify the refinement of the mesh (see Figure 2.1) and the
truncation degree for the polynomial expansions used for the angular
neutron flux. In this way, it is possible to adjust the discretization to
our needs.

(a) Refinement 0 (b) Refinement 1 (c) Refinement 2

Figure 2.1: Mesh of pin cells.

Since the three parameters named above can be modified to adjust
simulations, it is interesting to know which are the most interesting
combinations for reaching a good accuracy without spending too much
computational time. A parametric study has thus been carried out,
as explained at the end of this chapter.
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2.1.2 Inputs to the solver

The characteristics of the studied problems are introduced to the solver
with three inputs. The three inputs describe the geometry, the mate-
rials and the settings of the problem that is analyzed. These inputs
are in a *.xml format file, and all of them have to be defined in order
to run the simulations.

In the input of geometry (see File A.1 in Appendix A), the composition
of the core as well as its size and boundary conditions are defined. The
shape of the input for different problems should be very similar, but
variations exist depending on the problem that is being defined. For
the problems studied in this project, which are described in the next
section of the chapter, there exist some differences due to the fact that
two of them are a one-assembly core, and the other is a core composed
by several assemblies. This input is formed by nested structures as
explained below.

Firstly, the parameters of the whole core, such as its dimensions, its
numbers of nodes, the distribution of the assemblies inside the core
and the boundary conditions on its sides, have to be introduced. After
the core characteristics, the input continues with the description of the
assemblies. Here, the lattice is defined by introducing its geometry,
that is, defining how the different pin cells are arranged inside them,
with every pin cells assigned by a number depending on its material.
Every pin cell has inside a circular pin, and its definition is the last
part of the input. These pins are defined introducing their type (pin
or box), their radius and the material by which they are surrounded.

The properties of the materials that compose the assemblies are de-
fined in the second input(see File A.2 in Appendix A). The first pa-
rameter that has to be defined is the number of energy groups in the
problem. Then for the materials, which are assigned by a number, all
their properties used for solving the problem have to be introduced.
In order to know the behavior of the neutrons on the core, it is essen-
tial to know how the different materials affect the neutron population.
The properties that have to be defined for every material are thus
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the total cross-section, the scattering block, the Nu, the Chi and the
Nu*Fission cross-sections. As the problems that we have to simulate
must be identical to their reference, all the neutron data used have
been taken from their respective references.

The last input that has to be defined concerns the settings for the sim-
ulations (see File A.3 in Appendix A). Here, the angular and spatial
discretizations are defined: the number of SN order, mesh refinements,
and degree of the polynomial expansion. The algebraic parameters to
calculate the eigenvalue are also defined. Those are the maximum
number of iterations allowed and the tolerance used in the group iter-
ations or in the eigenvalue calculations.

2.2 Comparison tool

How accurate the tested solver is, should be determined by comparing
its results with codes like DRAGON and MCNP, which have already
been verified. Since simulations of the same problems have been run
several times and that the output data of every simulation are, among
others, large matrices, in this case 19 x 19 and 51 x 51, it is not pos-
sible analyze these results without a computational help. In order to
calculate the different errors, as well as to obtain graphics for the para-
metric study (which is described in the next section of the chapter), a
comparison tool has been developed.

This comparison tool has been created in the programing language
Python and it is composed by four modules connected between them,
as shown in Figure 2.2.

When the problem is simulated with different settings, inputs of the
solver describing geometry and materials remain constant whereas the
input defining the solver settings is the only one that changes. The
first module generates automatically the settings input file of every
problem and also launches the simulations. Thus, it allows us to run
the code and to obtain the results of the studied cores automating the
process. In this way, the time has been reduced only to the time that
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Module 1.
Generation of
the settings

and launching
simulations

Solver’s results

Module 2.
Results data

Information of
every simulation

Reference data
Module 3. Error

calculations

Comparison
errors

Module 4.
Generating

graphics

Graphics of
the errors

Figure 2.2: Flow chart of the comparison tool.

the solver spends on calculations.

The second module gives the results of the solver, that are the k-
effective and the pin power distribution, specifying the parameters of
the discretization used for reaching these results. Hence, it is only an
informative module in order to quickly check the results for a specific
simulation.

The third module calculates differences generated by two input files.
In this case, the reference file is assigned, and then it uses the results
given by the first module as its second input in order to do the compar-
isons. It is thus possible to automatically obtain errors derivation of
every simulation launched by the first module. The calculated errors
are the average (AVG), the root mean square (RMS) and the mean rel-
ative error (MRE), with the reference solution coming from the C5G7
Benchmark [2]. The two last errors, the RMS and the MRE, have to
be compared with the AVG error, in order to interpret the information
that they provide. The three errors are described as:
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• The average per cent error (AVG) given by,

AV G =

∑
|en|
N

, (2.2)

where en is the calculated relative error in the pin n and N is the
number of fuel pins.

This error gives the average pin power error between the solver’s
results and the reference. It is a useful parameter because it
allows us to quickly know if the pin power distribution given by
the tested solver is close to the reference, but it does not give
information about the power distribution.

• The root mean square of the pin power per cent error distribution
(RMS),

RMS =

√∑
e2
n

N
, (2.3)

This error allows us to know the error distribution with respect
to the AVG error, i.e, an RMS error larger than the AVG error,
indicates larger errors between pins. Even if two solver’s results
have the same AVG error, they will not have the same pin power
values and with RMS error it is possible to know the range of
values for the error of the pin power distribution in a problem.

• The mean relative pin power per cent error (MRE),

MRE =

∑
|en| · pn

N · pavg
, (2.4)

where pn is the power in the pin n, and pavg is the average power
by pin.

The MRE error used in the benchmark allows us to know if the
pin errors are more concentrated in pins which have the highest
or the lowest power, or otherwise if it is concentrated in average
power pins. When the value of this error is larger than the AVG
error, the error is concentrated in the high-power pins whereas if
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it is smaller, the error is concentrated in the low-power pins. If
there are no important differences between MRE and AVG errors,
it means that there are no large errors in pins with high or low
power.

Therefore, with these three errors we can compare our solution with
the one of the reference, and also know the distribution of errors in
our results.

Finally, the fourth module generates graphics with the data obtained
from the comparison with the benchmark data. The parametric study
is done by the analysis of these graphics, and it allows us to see the
behavior of the solver for different values of the mesh refinement, SN
order and truncation degree for the polynomial expansions. The values
that have been analyzed are the AVG, the RMS, and the MRE errors,
the k-effective value and the absolute error of the k-effective. Besides
these graphics, the module gives a map of the pin power relative errors,
which shows the distribution of the pin wise relative errors in the
reactor core.
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Chapter 3

Test Cases

In this chapter, the three problems simulated in this work are de-
scribed in a detailed way. Firstly, the characteristics of the two AS-
SEMBLY problems, and then the C5G7 benchmark problem are ex-
posed.

3.1 The ASSEMBLY benchmark problem

The code DRAGON has been chosen to generate the reference in the
process of verification because, like FOREST, it is a discrete-ordinates
code. Thus, we will be able to know if FOREST solves the mathemat-
ical model of the problem correctly. The problem described hereafter
is a two-dimensional and three-energy group BWR bundle extracted
from [1], and its geometry is shown in Figure 3.1.

The cross-sections used for the fuel (material 1) are shown in Table 3.1,
while the cross-sections for the moderator (material 0) are shown in
Table 3.2.

This problem is an assembly composed by 19 x 19 length cells made
of two materials that are a smeared fuel-clad mixture, and a moder-
ator (water), representing an assembly composed by 9x9 pins. Their
dimensions depend on the material, in this way, the fuel mixture pin
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Figure 3.1: Geometry of the core solved with DRAGON from [1]. Indexes ’0’ and
’1’ represent the fueled and the moderator regions, respectively.

Table 3.1: Cross-sections for material 0 (fuel) in Figure 3.1

g = 1 g = 2 g = 3
Σt,g 0.2822058997 0.4997685502 0.4323754911
Σf,g 0.0028231045 0.0096261203 0.1123513981
νg 2.7202775245 2.4338148428 2.4338000000
χg 0.9996892490 0.0003391680 0.0000000000

Σs,1←g 0.2760152893 0.0000000000 0.0000000000
Σs,2←g 0.0011230014 0.4533430274 0.0000378305
Σs,3←g 0.0000000000 0.0014582502 0.2823864370

Table 3.2: Cross-sections for material 1 (moderator) in Figure 3.1

g = 1 g = 2 g = 3
Σt,g 0.3333694980 0.5887110656 1.6512246291

Σs,1←g 0.2432946408 0.0000000000 0.0000000000
Σs,2←g 0.0898364840 0.4533430274 0.4413753398
Σs,3←g 0.0000387911 0.1465683257 1.6300848232

cells have a length of 1.15 cm, while the moderator cell length is equal
to 0.25 cm, apart from the ones placed in the border of the core,
which have a size of 0.825 cm. The overall dimension of the core is
14 x 14 cm. This problem has been solved twice, firstly applying void
boundary conditions (ASSEMBLY-VOID), and secondly applying re-
flective boundary conditions (ASSEMBLY-REFL), in order to verify
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the correct implementation of the reflective boundary conditions in
the solver.

3.2 The C5G7 benchmark problem

The code chosen for the validation of FOREST has been MCNP. This
code uses probabilistic methods in order to solve the problem. It can
give very accurate results, using the exact geometry, and reproducing
the transport behavior of neutrons. Comparing with this code we
will be able to prove if FOREST represents correctly the physical
phenomena.

The problem chosen as reference is the one described in the C5G7
Benchmark of 2003 [2], and here the code used as reference is the
Monte Carlo code MCNP. Characteristics of this problem are different
from the ones of the ASSEMBLY problem described previously. It
is a two-dimensional and seven-energy-group problem with different
boundary conditions on its sides. This problem represents the quarter
of a mini-core, and it is shown in Figure 3.2.

Figure 3.2: A detailed view of the fuel assemblies (left) and the core configuration
(right), from [2].
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This core is composed by 9 assemblies: 2 of MOX, 2 of UO2 and 5
of moderator, arranged in a particular way. Assemblies are formed by
17x17 square lattice of pin cells, so the active core is formed by 34x34
pin cells, every pin cell having a fuel pin inside. Pins have a circular
shape, as can be observed in Figure 3.3.

Figure 3.3: View of the interior of a pin cell, from [2].

Every pin has a radius of 0.54 cm, and the pitch is equal to 1.26 cm.
Thus, the size of each assembly is 21.42 x 21.42 cm, and the overall
dimension for the quarter of the reactor is 64.26 x 64.26 cm.

In addition, as shown in Figure 3.2, assemblies are composed by dif-
ferent materials which are moderator, UO2 fuel, 4.3%, 7.0% and 8.7%
enrichment of MOX, the guide tube and the fission chamber. All
the characteristics of these materials, such as their different cross-
sections are provided in the benchmark [2], in its Appendix A. Re-
garding boundary conditions, reflective conditions are applied in -x,
+y sides, and vacuum are applied in +x, -y sides, as also shown in
Figure 3.2.
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Chapter 4

Verification and validation of the
Neutron transport solver

In this chapter the results of the parametric study are presented. The
conclusions of the processes of verification and validation from the
analysis of the results of the parametric study are also explained.

4.1 Parametric study and results

The three problems simulated in this work have been run several times,
for different angular and spatial discretizations. Discretizations are de-
fined by values of the mesh refinement (nref), the truncation degree
for the polynomial expansions (fedegree), and the order for the dis-
crete ordinates (SN), so these values are different for every simulation.
The main aim of the parametric study is to know if the solver be-
haves correctly, as well as to see where it could have some limitations.
In addition, the study has been done according to the complexity of
the problem being solved. Thus, the one-assembly problem with void
boundary conditions has been studied firstly, then the one with reflec-
tive boundary conditions, and finally the C5G7 problem.

The analysis has been performed from the graphics obtained with the
fourth Python modules and they show the variables analyzed as a
function of the discretization parameters. Graphics that have been
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built represent the variables as a function of two out of the three
discretization parameters, and the third one fixed at its maximum
value. Hence, graphics for a variable are the following:

• fedegree vs nref , with the SN order=20.

• nref vs fedegree, with the SN order=20.

• SN order vs nref , with the fedegree=2.

• nref vs SN order, with the fedegree=2.

• SN order vs fedegree, with nref=2.

• fedegree vs SN order, with nref=2.

Where 20, 2 and 2 are the maximum values chosen here for the SN
order, the mesh refinement, and the finite element degree used in the
simulations, respectively.

Analyzing these graphics, it is possible to know how interesting is for
this solver to change the parameters of discretization, by studying the
variation of the accuracy of the results. On one hand, this is important
because higher discretization values require larger computational time
spend on calculations. On another hand, it allows to see whether the
FOREST code has some limitations in its way of solving a problem,
and where it could be improved.

4.1.1 ASSEMBLY-VOID benchmark problem

Here, the graphics previously described and representing the values
obtained for two different variables are exposed. Through them, the
behavior of the solver for the different values in its discretization pa-
rameters is studied.

In figure 4.1, the AVG error variation is shown, as a function of the
spatial discretization. It is possible to see in Figure 4.1a that the error
of the solution decreases, increasing the mesh refinement. The same
behavior is observed in Figure 4.1b for fedegree. This behavior is logical
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(a) (b)

Figure 4.1: Variation of the AVG error for the ASSEMBLY-VOID problem as a
function of nref and fedegree, for a fixed SN order (Ordinates axis is in log10 scale).

because increasing these parameters, the spatial discretization is being
improved.

As we can see in graphic 4.1a, for nref=0, results have a large amount
of error. This occurs because nref=0 is the coarsest spatial discretiza-
tion, so it does not allow us to have a high accuracy of the calculations.
Comments on the behavior for fedegree=0, hare given for Figure 4.3,
where it is easier to explain.

(a) (b)

Figure 4.2: Variation of the AVG error for the ASSEMBLY-VOID problem as a
function of SN order and nref , for a fix fedegree (Ordinates axis is in log10 scale).

In figure 4.2, the AVG error is represented, for different fedegree and
different angular discretizations. From the graphics 4.2a and 4.2b,
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we can see that increasing the SN order improves the accuracy of the
results considerably, so the part of the error coming from the angular
discretization is being reduced with every higher SN order. Besides,
we can also see that when fedegree is fixed to 2, curves for nref=1 and
nref=2 are overlapping, that means that from fedegree=2, and nref=1
the spatial error is lower than the angular. As we see in 4.2a it is only
when the SN order is very high (SN order=18), that the spatial error
is more important than the angular one. This is due to the fact that
for higher SN orders, the angular error has been very much reduced,
to a point where the spatial error becomes dominant.

(a) (b)

Figure 4.3: Variation of the AVG error for the ASSEMBLY-VOID problem as func-
tion of SN order and fedegree, for a fix nref (Ordinates axis is in log10 scale).

Figure 4.3 shows the AVG error, for different spatial and different an-
gular discretizations. On one hand, we can observe a similar behavior
to the one observed in 4.2a. In this case, for a maximum value of nref ,
we find the same values for fedegree=1, and fedegree=2. This occurs
for the reason explained before, that is, for nref=2 and fedegree=1, the
error coming from the spatial discretization is less important than the
one from the angular discretization, which is the dominant one.

On the another hand, it is also possible to analyse the bad results
given by the simulations with fedegree=0. In Figure 4.3a, we see that
results are not logical, that is, the error stay constant or increases
instead of decreasing when a high SN order value is given. In Fig-
ure 4.3b we can observe the improvement when going from nref=0 to
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nref=1 or nref=2. The explanation of this behavior for fedegree=0, is
that the solution is approximated by a zero-degree polynomial, which
give wrong approximations, thus, the results given by fedegree=0 are
not interesting. Consequently, in the next two problems the results
obtained the by fedegree=0 simulations are discarded.

(a) RMS error for SN=20 (b) RMS error for nref=2

(c) MRE error for SN=20 (d) MRE error for nref=2

Figure 4.4: Comparison of the tendency in the RMS, and MRE error in the
ASSEMBLY-VOID problem (Ordinates axis is in log10 scale).

In Figure 4.4, the RMS and the MRE errors are represented, while
in Figure 4.1a and 4.3b we can find the AVG error. Comparing fig-
ures 4.1a, 4.4a, 4.4c, and figures 4.3b, 4.4b, 4.4d, we realize that for
these three variables the solver behaves identically, that is, the value
of the error is different but tendency of the three errors is the same.
As a consequence, from now only the AVG error is analyzed.
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(a) (b)

Figure 4.5: Variation of the k-effective error in pcm for the ASSEMBLY-VOID
problem as function of the nref and the fedegree, for a fixed SN (Ordinates axis is in
log10 scale).

Figure 4.5 shows the absolute error for the k-effective for the different
spatial discretizations. We can see that, as happens with the AVG
error, the accuracy given by the solver depends directly on the values
of the parameters of discretization. In figures 4.5a and 4.5b we observe
that, the k-effective is closer to the reference value when higher are the
spatial parameters of discretization. We can also see that simulations
for values of fedegree=1 and nref=2, and for values of fedegree=2 and
nref=1, give almost the same results as the ones obtained by fedegree=2
and nref=2, so the maximum accuracy is obtained when one of the
two parameters has its maximum value.

Figure 4.6 shows the absolute error of the k-effective for different nref
and angular discretizations. We can see in 4.6a that the accuracy in
the k-effective is not improved increasing the nref , after nref=1. Re-
garding the angular directions, we can see that it is from SN order=12
that the behavior turns in a constant tendency, that is, when the abso-
lute error is reduced by increasing the angular directions. Then, from
Figure 4.6b it is shown that by improving the SN order, the error in
the k-effective is reduced.

In Figure 4.7 the absolute error is shown, for different fedegree and
angular discretization. It is possible to observe in Figure 4.7a that
the tendency of the error is similar to the one seen in Figure 4.6a
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(a) (b)

Figure 4.6: Variation of the k-effective error in pcm for the ASSEMBLY-VOID
problem as function of the SN and the nref , for a fixed fedegree (Ordinates axis is in
log10 scale).

(a) (b)

Figure 4.7: Variation of the k-effective error in pcm for the ASSEMBLY-VOID
problem as function of the SN and the fedegree, for a fixed nref (Ordinates axis is in
log10 scale).

for nref=1 and nref=2, but in this case there exist an improvement
between fedegree=1 and fedegree=2. For the variation of the angular
discretization, shown in Figure 4.7b, the behavior as function of the
fedegree, is the same as for the nref in Figure 4.6b, i.e, increasing the
SN order improve the accuracy on the k-effective.

In this part of the parametric study, it has been proved that for the
k-effective, as well as for the pin powers, the higher the SN order is,
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the more accurate the results become, with the error due to the angu-
lar discretization being the dominant one. Moreover, for the spatial
discretization, the fedegree affects more the accuracy in the k-effective
than the nref , whereas for the pin power values their respective effects
are similar.

4.1.2 ASSEMBLY-REFLECTIVE benchmark problem

As was done in the previous subsection, here the graphics for the
problem with reflective boundary conditions are presented, but results
for fedegree=0 was discarded, for the reason previously given.

In Figure 4.8, the graphics describing the behavior of the solver re-
garding the AVG error, are presented. Analyzing these figures, we
can see that, for reflective boundary conditions, the convergence of
the solver behaves in the same way regarding the AVG error as for the
ASSEMBLY-VOID problem.

In Figures 4.8a and 4.8b, we observe that increasing nref as well as
fedegree, the AVG error is reduced, so the pin powers are closer to the
reference. In addition, looking at Figures 4.8d and 4.8f we realize
that, as happened before, as long as the SN order is increased, the
accuracy of the results is improved. Finally, Figures 4.8c and 4.8e,
show that in the spatial discretization, when one of the two parameters
(nref and fedegree) is at its maximum value, until the SN order does not
reach a higher value (SN order=18 in 4.8c, and SN order=16 in 4.8e),
the angular error is still higher than the one coming from the spatial
discretization.

In Figure 4.9 the absolute error of the k-effective for the different
spatial discretizations is presented. Figure 4.9a shows that for the k-
effective, increasing one degree of the fedegree with nref=1 or nref=0
improves the value of the k-effective, while doing the same with nref=2,
the value of the k-effective obtained is worse. In Figure 4.9b, we see
that a better solution is obtained with fedegree=1 than with fedegree=2,
for the higher value of nref . These behaviors are not logical, but we
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Variation of the AVG error for the ASSEMBLY-REFL problem as func-
tion of the discretization parameters (Ordinates axis is in log10 scale).

have to take in account that the range of the differences between the
different solutions is very small, in the order of 1 pcm in Figure 4.9a

26



(a) (b)

Figure 4.9: Variation of the k-effective error in pcm for the ASSEMBLY-REFL
problem as function of the nref and the fedegree, for a fixed SN (Ordinates axis is in
log10 scale).

and of 3 pcm in Figure 4.9b. Being these differences as small as they
are, it does not mean that FOREST does not behave correctly. The
differences can be caused by other factors such as the numerics, or the
fact that the spatial discretization method used in DRAGON is Finite
Differences, while for FOREST it is Finite Elements.

(a) (b)

Figure 4.10: Variation of the k-effective error in pcm for the ASSEMBLY-REFL
problem as function of the SN and the nref , for a fixed fedegree (Ordinates axis is in
log10 scale).

Figure 4.10 shows the evolution of the k-effective for different nref , and
different SN orders. In Figure 4.10a, we can see that for a maximum
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fedegree, the value of the k-effective does not change considerably for
the different nref . However, it is possible to see that for the coarser
refinement (nref=0), values are less accurate than in the other two
refinements. Also, as happened for void boundary conditions, we ob-
serve that is when the SN is higher than 16, that we start to see a
difference between the curve for nref=1 and nref=2. This is explained
by the angular error becoming less important than the spatial error.
In Figure 4.10b, we see that the higher the SN order is, the more ac-
curate the result are, showing the same behavior as what we found for
the previous problem.

(a) (b)

Figure 4.11: Variation of the k-effective error in pcm for the ASSEMBLY-REFL
problem as function of the SN and the fedegree, for a fixed nref (Ordinates axis is in
log10 scale).

Finally, in Figure 4.11, we can study the variation of the k-effective for
different fedegree and different angular discretizations. In Figure 4.11a,
we can see that from SN=8 to SN=20, the behavior for the two values
of the fedegree is not usual because more accuracy is obtained for a
lower fedegree. Looking at Figure 4.11b, we realize that for the angular
discretization, even if the global behavior is logical, there are some
exception as for example for SN=8 and SN=10, where the obtained
values are more accurate than for the other finer angular discretization.
It can be explained because of the global meaning of the k-effective,
improving due to the cancellations of local errors.
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From the graphics studied in this subsection it is seen that the behavior
regarding the pin power error is similar to the problem with void
boundary conditions. Regarding the k-effective accuracy, similarities
and differences have also been found. We have observed, that the
global behavior for the angular discretization was close between the
problems with different boundary conditions.

Simulating with reflective boundary conditions, the mathematical prob-
lem to solve is more challenging than with void boundary conditions.
It has been seen that for the pin power distribution, even if the prob-
lem became difficult, the solver has given good results.

4.1.3 C5G7 Benchmark problem

(a) (b)

Figure 4.12: Variation of the AVG error for the C5G7 problem as function of the
nref and the fedegree, for a fixed SN (Ordinates axis is in log10 scale).

Analyzing the graphics in Figure 4.12, we can see that for a more
heterogeneous problem, the results exhibit the same tendencies as in
Figure 4.1. However, the value of the AVG error is higher for this
problem and the improvement of the accuracy is lower than for the
two other problems. Looking at Figure 4.12a and at Figure 4.12b, we
see that for SN=20 and respectively, at least, fedegree=1 and nref=1,
there is not a considerable improvement of the accuracy by increasing
the values of the discretization parameters.
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(a) (b)

Figure 4.13: Variation of the AVG error for the C5G7 problem as function of the
SN and the nref , for a fixed fedegree (Ordinates axis is in log10 scale).

Figure 4.13a shows that for the C5G7 problem, the simulations with
the maximum fedegree value, for nref =1 and nref=2, give the same
results. In addition, in Figure 4.13b there is an improvement in the
AVG error when the SN order changes from 2 to 8, but for values higher
than 8, the accuracy of the results does not improve considerably.

(a) (b)

Figure 4.14: Variation of the AVG error for the C5G7 problem as function of the
SN and the fedegree, for a fixed nref (Ordinates axis is in log10 scale).

In Figure 4.14 we can see that for simulations with the maximum nref
value, the same results are obtained with fedegree =1 and fedegree=2.
With this information and the one extracted from 4.13a, we see that
when the maximum value of one of the spatial parameters of dis-
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cretization is reached, the other is not important for the final results.
In Figure 4.13b it is also seen, that for nref=2, from SN order=12 to
SN order=20, the AVG error does not improv.

Figure 4.15: Values of the k-effective for different spatial and angular discretization.

In figure 4.15, the behavior of the k-effective value is presented, as a
function of the nref (0,1,2) and the SN (from 2 to 20), together with the
reference eigenvalue (1,18655) shown as dashed a line. We can see that
for the lowest spatial refinement, the k-effective obtained are closer to
the reference. We also observe that the better the angular discretiza-
tion is, a better solution is reached, and for the maximum SN order
the k-effective value is 1.18524, that is, 131 pcm from the reference.
There are some exceptions, such as for SN order=2 or SN order=4,
where we can find a strange behavior. Looking at the global behavior
for the values, results are close to the ones presented on [20], where the
benchmark problem has been solved with the discrete-ordinates code
DORT, so FOREST behaves as other codes using the same discretiza-
tion methods. It is also possible to see in [20] that the k-effective
results are improved with different quadratures.
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4.1.4 Discussion of the most accurate approximations

In this subsection, the results obtained for the most accurate solution,
which are for every problem the simulations corresponding to nref=2,
SN order=20 and fedegree=2.

Void boundary
conditions

Reflective boundary
conditions C5G7

Reference eigenvalue 0.30713 1.31127 1.18655
Eigenvalue 0.30714 1.31125 1.18524

Absolute error (pcm) -1 2 131
Per cent error (%) -0.00193 0.00165 0.09543

Table 4.1: K-effective results.

Table 4.1 shows the best values of the k-effective for every problem.
We can observe that the values obtained for the void and the reflective
ASSEMBLY problems have errors of 1 and 2 pcm respectively, which
is a very small value. For the C5G7 problem, there is an error value
of 131 pcm with the reference. It is logical to have a higher value
than the one obtained comparing with DRAGON, because MCNP
represents the transport behavior more accurately than a deterministic
method. Besides the different methods of discretization, because of a
more heterogeneous problem, the convergence of the k-effective is more
difficult to reach. Other discrete-ordinates codes, such as DORT [20],
reached a maximum accuracy of 143 pcm, so FOREST results agree
with other codes for the C5G7 benchmark.

Void boundary
conditions

Reflective boundary
conditions C5G7

AVG(%) 0.000249 0.000320 0.358416
RMS(%) 0.000322 0.000395 0.542631
MRE(%) 0.000212 0.000329 0.252443

Table 4.2: Pin power distribution error measures for the three problems.

Table 4.2 shows the values of the AVG, RMS and MRE errors for the
most accurate solutions of the problems. Analyzing this table we can
study several aspects of the pin power error distribution.
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Firstly, regarding the AVG error, solutions for the ASSEMBLY prob-
lem are more accurate than the one of the C5G7 problem. However
the three solutions have a good accuracy.

Secondly, the RMS error of the two ASSEMBLY problems is closer
to their AVG error, whereas there is an important difference between
these two errors in the C5G7 problem. This shows that for the AS-
SEMBLY problems, the range of pin power errors is close to the av-
erage pin power value, whereas for the C5G7 problem this range is
larger, so there is more heterogeneous distribution of the pin errors.

Finally, looking at the MRE error, distributions of the pin power errors
are different in the three problems. We can see that for the ASSEM-
BLY problem with reflective boundary conditions, the value of the
AVG and MRE error are similar. That means that, in this problem,
power pins with closer values to the average pin power value, are where
the power pin error is higher. For the other two problems, it is possible
to see that MRE error is lower than the AVG error. That shows that,
specially for the C5G7, the power pin errors are more concentrated in
the pins that have lower pin power values.

It is worth to notice that the MCNP calculation of the AVG, RMS and
MRE errors, respectively led to of 0.32, 0.34 and 0.27 [2]. Hence, there
is the same behavior using MCNP than in FOREST, but FOREST
has a larger magnitude.

In table 4.3 values of the maximum and minimum power pin errors
are given, as well as the maximum relative error obtained for every
problem. Analyzing this table, we can confirm that informations given
by MRE error in table 4.2 are correct.

As we can see, for the ASSEMBLY problem with void boundary con-
ditions, the error obtained in its minimum pin power is higher than the
one obtained in the maximum pin power, and also it is the maximum
calculated pin power error. In addition, it is more clear in the C5G7
problem, where the error in the minimum pin power error is more than
10 times higher than the one in the maximum power pin. These two
observations confirm that the information given by the comparison of
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Void boundary
conditions

Reflective boundary
conditions C5G7

Max. reference
pin power 2.05385 1.25611 2.49788
Maximum
pin power 2.05390 1.25610 2.49296
Per cent
error (%) -0.00224 0.0012 0.19695

Min. reference
pin power 0.43165 0.88236 0.23152
Minimum
pin power 0.43170 0.88240 0.23660
Per cent
error (%) -0.01048 -0.00445 -2.19596

Maximum per
cent error (%) -0.01048 -0.00534 -2.57690

Table 4.3: Per cent error results for specific pin powers.

the AVG and the MRE error are correct. There are no relevant errors
for the ASSEMBLY problem with reflective boundary conditions in
its maximum and minimum power pin values, as table 4.2 also shows.

(a) Void boundary conditions (b) Reflective boundary conditions

Figure 4.16: Distribution of the relative error per pin in the ASSEMBLY problems.

In Figure 4.16, distributions of errors for void and reflective ASSEM-
BLY problems are shown. We observe that the two pin power dis-
tribution for the two test cases are very close to the one given by
DRAGON. The highest errors are located at the corners, and also in
the center for the test case with reflective boundary conditions, but
the results remain very close to the reference.
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(a) nref = 2, SN = 10, fedegree = 2 (b) nref = 2, SN = 20, fedegree = 2

Figure 4.17: Distribution of the relative error per pin in the C5G7 benchmark
problem for two different simulations.

Figure 4.18: Neutron flux distribution for the C5G7 benchmark, for energy group
g=7.

In Figure 4.17, two distributions of the relative power pin error for
different angular discretization but the same spatial discretization are
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represented . We can see that the range of the relative error between
Figure 4.17a and Figure 4.17b has not been considerably improved,
even if there is a difference of 10 SN order for the angular discretization.
Different quadratures should be tested in order to circumvent this
problem.

It also shown that the maximum errors are located in the assembly of
UO2 which is in contact with the moderator. These results are logical
because, as we observe in Figure 4.18, it is in the border between fuel
and moderator that the most important differences in the neutron flux
are present. For this reason, there is a worse approximation for the
neutron flux, so the accuracy in the pin power calculations is also worse
than in any other part of the core where the solution is smoother.

In [6], the results for the same problem are given, using a code with
MOC as method of discretization. We observe that the same neutron
flux distribution, as well as the same distribution for the pin power
error are obtained. Hence, results obtained by FOREST are also in
agreement, but having a worse accuracy in the pin power calculation,
as well as in the k-effective.

4.2 Conclusions

On the ASSEMBLY problems, it has been seen that FOREST gives
very accurate results, in the order of 10−2 and 10−3% of pin power
relative error and it also behaves correctly. Hence, the verification
process led to very good agreement with the reference, so it has been
proved that FOREST correctly solves the mathematical model. How-
ever, the parametric study has also proved that the best accuracy was
reached when nref or fedegree has its highest value, suggesting that the
error due to the angular approximation is dominant for a wide range
of values.

In the process of validation it has also been proved that for more
heterogeneous problem, as the C5G7 benchmark problem, the results
obtained and the behavior of the solver are not as good as in the
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ASSEMBLY problems. Even if FOREST behaves in the same way
as the code DORT for the k-effective, and as OpenMOC for the pin
power distribution, the best simulation has a divergence of 131 pcm
for k-effective and a maximum pin power relative error of 2.5%, values
that are higher than for these codes. In addition, when the problem
is solved for a relative low value of SN order, the maximum accuracy
is reached.

With these results it is possible to conclude that the code has been
verified, but there should be some modifications in the discretiza-
tion quadrature, in order to correct the limitations in the angular
discretization for more heterogeneous problems.
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Chapter 5

Study of the boundary conditions

The computational time used by a higher-order solver in the calcula-
tions of a complex and heterogeneous problem, such as the C5G7, is
large due to the complexity of the neutron transport equation. Conse-
quently, the whole core is not, generally, solved by higher-order solvers.
For a studied reactor, every isolated assembly is solved with a fine-
mesh high-order solver, while the whole reactor is solved with a coarse-
mesh. Hence, there is a coupling between both solvers, which allows
the coarse-mesh solver to approximate the flux over the whole reac-
tor core, by using the homogenized cross-sections obtained from the
fine-mesh. As we can see in [21], several iterative transport-diffusion
methods can be used for the whole core calculations and different
types of boundary conditions, such as albedo or incoming flux, can be
considered for the coupling.

In this chapter, for the study of boundary conditions, the problem
used has been the C5G7 benchmark problem, with albedo boundary
conditions for the fine-mesh solver. It is worth to explain, that there
is no coupling in FOREST between fine and coarse meshes. Instead,
the boundary conditions are obtained from the spatial and the angular
coarsening of the fluxes obtained from the fine-mesh calculations.

In the following, the steps used in order to test how the changes in
boundary conditions affect to the final results are explained. Firstly,
the pin power of every assembly (see Figure 3.2 in Chapter 3), as
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well as the boundary fluxes for every assembly have been obtained,
by simulating every problem with the benchmark properties. In our
case, we have studied the two UO2 assemblies, referring by Inner-UO2

the one with is not in contact with the moderator, and by Outer-
UO2 the other which is in contact with the moderator. As the C5G7
is a symmetric problem, only one assembly of MOX has been stud-
ied, because both of them have the same pin power values. Here,
the simulation used as reference has been the one with nref=1, SN
order=8 and fedegree=2, so the reference pin power values for the two
UO2 and the MOX assemblies have been extracted from the pin power
reference of the simulation. Then, in order to simulate a coarse-mesh
calculation, the boundary conditions of the different assemblies have
been approximated for every pin cell size over the boundary of the
assembly. Then, for every spatial and angular coarsening level, the
albedos obtained are reintroduced in FOREST in order to obtain the
pin power distribution of every assembly. Finally, the comparison be-
tween the pin power obtained for the different albedo approximation,
against the pin power obtained for the reference have been obtained.
In this way, it is possible to know how different degradations of the
boundary conditions affects the results of FOREST, that is, we can
know which coarsening introduces more error in the calculations.

5.1 Spatial and angular approximations

The albedo obtained by with the reference is coarsened spatially and
angularly. In this subsection, the approximations on the albedo are
explained.

5.1.1 Spatial coarsening of boundary conditions

From the solution of the simulation with FOREST for the C5G7 prob-
lem, the albedo corresponding to every pin cell of the assembly have
been obtained. Regarding the spatial coarsening of the albedos, this
was by doing the average between the values of different angular fluxes
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for adjacent pins, and recalculating the albedos, as it is shown in Fig-
ure 5.1. That is, the first approximation has been for one albedo
per pin and then, the spatial coarsening continues by using the same
albedo for two pins, until the 17x17 assembly is approximated by only
one albedo for the whole face of the assembly.

Figure 5.1: Spatial coarsening levels for the albedo

It is worth to notice that for the first spatial approximation, the albedo
values coincide with the ones given by the reference, but when these
values are reintroduced in FOREST in order to recalculate the power
pin values, results will be different from the reference. This is because
even if it is the albedo given by the reference, two error have been
introduced. The first one comes from considering one albedo per pin
cell, since for nref=1 (as wee can observe in 2.1b in Chapter 2), every
pin cell is divided in two so there should be two albedos for a better
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approximation, and secondly, the other error comes from considering
the albedo as a number, when actually the fluxes are represented by
polynomials.

Next, in Figures 5.3, 5.4, and 5.5 the variation of the AVG error, as
well as the maximum relative error are shown. In this way we can
study how the approximation of the boundary conditions affect the
accuracy for the pin power results, and which assemblies are more
affected by these approximations.

5.1.2 Angular coarsening of boundary conditions

The angular coarsening is produced through projection of the angular
flux on Spherical Harmonics, then the truncation order of the ex-
pansion series of Spherical Harmonics is reduced, and the resulting
coarsened flux is then projected back in the quadrature points used
for the SN approximation.

For the first projection, the Directions-to-moments operator, D, is
applied to the angular flux defined over a quadrature set, {Ωi, µi}Ndir

i=1 ,
as follows

φml (r) = Dml Ψ(r) =

Ndir∑
i=1

µiY
m
l (Ωi)ψi(r) . (5.1)

where Ψ(r) is the vector with all the different angular directions,
[ψi(r)] = [ψ(r,Ωi)].

Then, once all the angular moments have been calculated, we have a
representation of the angular flux in terms of Spherical Harmonics. For
Discrete-Ordinates of order N (SN) the required order of the Spherical
Harmonics is L = N/2,

ψ(r,Ω) =
L∑
l=0

l∑
m=−l

φml (r)Y m
l (Ω) . (5.2)

Once the angular neutron flux is expanded in Spherical Harmonics,
the coarsening is produced by reducing the truncation order of the
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Spherical Harmonics to a smaller value, Lc, and then projecting in a
very natural way to the quadrature set by the Moments-to-directions
operator, M, as follows

ψi(r) =MiΦ(r) =

Lc∑
l=0

l∑
m=−l

φml (r)Y m
l (Ωi) . (5.3)

where Φ(r) is the vector of angular moments, [φml (r)].

In our case, as in this part of the work the simulation done has SN
order=8, the maximum truncation order of the Spherical Harmonics
is L = 4. The truncation order of the Spherical Harmonics after the
angular coarsening of the neutron flux is

Lc = L− ACLevel, (5.4)

where ACLevel is the angular coarsening level. In this way, for the
coarsest level (ACLevel=4) the truncation order of the Spherical har-
monics is Lc=0.

5.2 Results

First of all, in Figure 5.2, the distribution of the relative error for the
simulation used as reference is shown. In this way, we can observe
the existing error in the reference, and later, comparing with the error
introduced by the spatial and angular approximations, it is possible
to know if the error introduced by coarsening the boundary conditions
is canceled with the one of the FOREST. If the error introduced has
the same or higher order of magnitude than the one of the reference,
the error increases the total error in the pin power results, and if it
has a lower magnitude error, the approximations should not affect
considerably the results.

From Figures 5.3a, 5.4a, 5.5a, it is possible to observe that for every
assembly, the behavior for the different coarsening levels, spatial as
well as angular, is very similar for the three assemblies. That is, the
higher spatial coarsening level is used, the larger is the error in the pin

42



Figure 5.2: Distribution for the relative error for the simulation with nref=1, SN

order=8 and fedegree=2.

(a) AVG error (b) Maximum relative error

Figure 5.3: Variation of the AVG and the maximum relative error in the inner-UO2

(Ordinates axis is in log10 scale).

power. For the spatial level 0 and 1, we can see that the differences
are not very important for the AVG error, but from level 1 until level
4, this difference increases considerably. This behavior is totally nor-
mal, because for a higher coarsening level, the approximation of the
albedo becomes worse in every side of the assembly, as it is shown in
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(a) AVG error (b) Maximum relative error

Figure 5.4: Variation of the AVG and the maximum relative error in the MOX
(Ordinates axis is in log10 scale).

(a) AVG error (b) Maximum relative error

Figure 5.5: Variation of the AVG and the maximum relative error in the outer-UO2

(Ordinates axis is in log10 scale).

Figure 5.1. Hence, a consequence of using a higher coarsening level is
the lost of accuracy in the solution.

We observe that for the angular coarsening, as happened for the spatial
one, the AVG error changes in a similar way in the three assemblies,
but the behavior is different from before. We observe that for a spatial
level lower or equal to 1, there is a loss of accuracy, when the coarsening
angular level is increased, whereas for spatial level higher than 1 the
AVG error stays practically constant, except for an angular coarsening
level equal to 4, representing reflective boundary conditions, where the
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accuracy is worse.

In Figures 5.3b, 5.4b, 5.5b, we can see than for the angular and spatial
coarsenings, the behavior is also similar in all assemblies. Here, the
differences between the various spatial discretizations are more obvi-
ous than for the AVG error. Up to the angular coarsening level 3,
increasing the spatial coarsening level increases a lot the errors. We
also observe that for the inner-UO2 (Figure 5.3b) the errors for the
angular coarsening of level 3 are closer than in the other two assem-
blies, being the outer-UO2 (Figure 5.5b) the one with more differences
between errors.

We shall make a few remarks on the results of these graphics: firstly,
for the maximum angular coarsening level (4), for all the spatial levels,
the same values for AVG and maximum relative errors are obtained.
This is because for the lower truncation order of the Spherical Har-
monics, all the angular fluxes have the same value, which is the average
of all the angular fluxes. In this way, all the albedos for the angular
coarsening level 4, are equal to 1, whatever the spatial approxima-
tion is. Finally, we can see that in some cases, between the angular
coarsening level 2, and the level 3, there is a slight improvement of
the accuracy. Some particularity of the flux in the C5G7 benchmark
problem is responsible for this outer-intuitive behavior.

In Figure 5.6, the distribution of the relative error in the three assem-
blies is represented. The assemblies have been located in the same
way as they are in the C5G7 problem, and a different error scale has
been used in every assembly in order to appreciate the errors for each
assembly.

It is worth to remember that the C5G7 benchmark problem represents
the quarter of a whole core. As a consequence, so where the reflective
boundary conditions are applied (albedo=1), the coarsening does not
degrade the solution (upper and left side of the inner-UO2, and upper
side of MOX).

It is possible to see that for the Inner-UO2 (Figure 5.6a), the distribu-
tion of the error is mainly located in its right and bottom sides. This
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(a) Inner-UO2 (b) MOX

(c) Outer-UO2

Figure 5.6: Distribution of relative power pin error for the three assemblies, for
angular and spatial coarsening level 0.

result is normal, because these sides are in contact with the 2 MOX
assemblies, so there exist some strong changes in the flux between
these assemblies. We also observe that in its other sides, the error is
very low because the adjacent assemblies are of the same type. The
corner in the right bottom shows the larger error. It can be due to
the strong change of the flux.

For the MOX assembly (Figure 5.6b), something similar occurs. Its
upper side is the one with the lowest error because the adjacent side
is a MOX assembly, whereas on the other sides, the error in much
higher. Here, the highest errors are located in the face which is in
contact with the moderator, and it is normal because it is there, that
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the neutron flux changes faster (see Figure 4.18) and thus it is more
difficult to approximate it. The place where the error is higher is in
the corner which is in contact with the moderator and the outer-UO2

assembly, due to the same reason.

Finally, in the outer-UO2 (Figure 5.6c) we can observe that is in the
corners where the relative error is more important.

For this configuration of the angular and spatial approximation the
most important error in every assembly is found in the corners which
are in contact with other types of assemblies. This behavior is logical,
because it is where there exist bigger differences between the incoming
and the outgoing flux. We can see that is in the MOX assembly, where
the highest errors are reached. Looking at Figure 5.2, we observe that
the maximum error for this simulation is around 2.5%, which has
the same order of magnitude as the highest error in the whole core
calculation. Thus, the errors introduced by the coarsening affect in an
important way to the global results.

To observe how the error changes in every assembly, in Figure 5.7, the
distribution of the relative error, for angular and spatial coarsening
level 2 is presented. Comparing with in Figure 5.6, the errors in Fig-
ure 5.7 are much higher. Increasing the coarsening level gives worse
approximations of the albedo, so the results obtained are affected by
those approximations. Even if there are some points where the error
remains low, in the corners of the assembly, where we have observed
that it is harder to approximate the neutron flux, errors are increased
one order of magnitude. We also observe than for higher coarsening
levels the outer-UO2 assembly is where the largest errors are found.
This assembly is where stronger changes for the flux happen due to
the other different types of assemblies, including the moderator, sur-
rounding it.
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(a) Inner-UO2 (b) MOX

(c) Outer-UO2

Figure 5.7: Distribution of relative power pin error for the three assemblies, for
angular and spatial coarsening level 2.

5.3 Conclusions

In this chapter, we have tested how the changes in the boundary con-
ditions affects to the pin power results. From the different graphics
and pin power distributions shown above, it has been proved that the
coarsening of the boundary conditions increases the errors in calcula-
tions. It has been also proved that the spatial coarsening introduces
larger errors than the angular one, which effects are considerable for
the coarsest level (which is equivalent to reflective boundary condi-
tions).
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Chapter 6

Conclusions

In the present work, the verification and validation of the code FOR-
EST has been performed. Also, the changes of the boundary condi-
tions for the problem has been studied, simulating an approximative
boundary condition obtained from a coupling of low-order/high-order
solvers by mean of a coarsening process.

On one hand, the verification process has been carried out satisfac-
torily. The code FOREST has been tested against DRAGON for a
single assembly problem, considering void and reflective boundary con-
ditions. The agreement of the higher -order approximation with the
solution provided by DRAGON is of the order of 1 or 2 pcm for the
eigenvalue, and around 0.01% for the pin power distribution. We have
proved that the code was verified, due to the high agreement of the
solution with respect to the one obtained by DRAGON. We conclude
that FOREST solves the mathematical model (discrete-ordinates ap-
proximation) correctly.

On the another hand, in the process of validation done for the C5G7
problem (which reference is calculated by MCNP), we have observed
that the convergence of the k-effective as well as the accuracy in the
pin power calculations had to be improved. The actual quadrature
used in the angular discretization has to changed in order to correct
these limitations. In any case, the results agree with the ones provided
in [20] for the convergence of the eigenvalue, and the pin power error

49



distribution agrees with the one obtained by OpenMOC [6], showing
a good behavior when comparing with state of the art codes.

The changes in the boundary conditions have shown to affect the pin
power distribution as expected. It has been observed that the spatial
accuracy of the boundary conditions is more important, in order to
preserve a good approximation when doing an isolated assembly cal-
culation, that the angular accuracy. It is in agreement with the use
of a fine-mesh low-order solver for the whole core, instead of a coarse-
mesh high-order approximation. Moreover, it has been shown that
the isolated assembly calculations with reflective boundary conditions
(angular coarsening equal to 4) results in a very bad approximation
for the neutron power distribution.

It has been proved here that reflective boundary conditions provides
unacceptable results when calculating the power distribution, being
one of the most used approaches in todays calculations. Thus, a low-
order/high-order coupling methodology should be taken into account
in order to improve the accuracy of these calculations.
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Appendix A

Input files for FOREST

In the following the input files for FOREST are presented. First, in
File A.1 we can see how the geometry of the problem is introduced
in the solver. Secondly, in File A.2, we can observe how the materi-
als used in the problem are defined. Finally, in File A.3, the input
containing the different values of the parameters of discretization is
presented.

File A.1: input.geometry.xml
1 <?xml version="1.0" encoding="UTF-8"?>

2 <geometry>

3 <!--

4 This geometry is composed of nested structures. The first definition

5 is for the core, which is composed by assemblies, which are composed

6 by pins.

7 -->

8 <!-- Here is the core description-->

9 <core composed="true">

10 <name>C5G7</name>

11 <dimension> 2 </dimension>

12 <nnodes> 3 3 </nnodes> <!-- xnodes ynodes znodes -->

13 <length>

14 21.42 21.42 21.42; <!-- X- X+ AXIS -->

15 21.42 21.42 21.42; <!-- Y- Y+ AXIS -->

16 </length>

17 <components> <!-- LAT or BOX or PCNW PCNE PCSW PCSE -->

18 2 1 0;

19 1 2 0;

20 0 0 0;

21 </components>

22 <boundary> <!-- ALB or VOID or REFL -->

23 2; <!-- X- AXIS -->

24 0; <!-- X+ AXIS -->

25 0; <!-- Y- AXIS -->

26 2; <!-- Y+ AXIS -->

27 </boundary>

28 </core>

29 <!-- Here is the lattice description -->

30 <lattices>

31 <lattice id="0">

32 <name>moderator assembly</name>

33 <nnodes> 17 17 </nnodes> <!-- xnodes ynodes znodes -->

34 <components> <!-- PIN or BOX -->

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
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42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

52 </components>

53 <type>pin_map</type>

54 <pitch>1.26</pitch>

55 </lattice>

56 <lattice id="1">

57 <name>MOX</name>

58 <nnodes> 17 17 </nnodes> <!-- xnodes ynodes znodes -->

59 <components>

60 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2;

61 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2;

62 2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2;

63 2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2;

64 2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2;

65 2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2;

66 2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2;

67 2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2;

68 2 3 6 4 4 6 4 4 5 4 4 6 4 4 6 3 2;

69 2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2;

70 2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 2;

71 2 3 6 4 4 6 4 4 6 4 4 6 4 4 6 3 2;

72 2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 2;

73 2 3 3 6 3 4 4 4 4 4 4 4 3 6 3 3 2;

74 2 3 3 3 3 6 3 3 6 3 3 6 3 3 3 3 2;

75 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2;

76 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2;

77 </components>

78 <type>pin_map</type>

79 <water_gap>0. 0. 0. 0.;</water_gap>

80 <pitch>1.26</pitch>

81 </lattice>

82 <lattice id="2">

83 <name>UOX</name>

84 <nnodes> 17 17 </nnodes> <!-- xnodes ynodes znodes -->

85 <components>

86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

88 1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1;

89 1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1;

90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

91 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1;

92 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

94 1 1 6 1 1 6 1 1 5 1 1 6 1 1 6 1 1;

95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

97 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1;

98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

99 1 1 1 6 1 1 1 1 1 1 1 1 1 6 1 1 1;

100 1 1 1 1 1 6 1 1 6 1 1 6 1 1 1 1 1;

101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

102 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;

103 </components>

104 <type>pin_map</type>

105 <water_gap>0. 0. 0. 0.;</water_gap>

106 <pitch>1.26</pitch>

107 </lattice>

108 </lattices>

109 <!-- Here is the pin description -->

110 <pins>

111 <pin id="0">

112 <name>moderator</name>

113 <type>box</type>

114 <materials>0;</materials>

115 </pin>

117
117 <pin id="1">

118 <name>UO2</name>

119 <type>pin</type>

120 <materials>0 1;</materials>

121 <fuel_radius>0.54</fuel_radius>

122 </pin>

124
124 <pin id="2">

125 <name>MOX4.3</name>

126 <type>pin</type>

127 <materials>0 2;</materials>

128 <fuel_radius>0.54</fuel_radius>

129 </pin>

131
131 <pin id="3">
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132 <name>MOX7.0</name>

133 <type>pin</type>

134 <materials>0 3;</materials>

135 <fuel_radius>0.54</fuel_radius>

136 </pin>

138
138 <pin id="4">

139 <name>MOX8.7</name>

140 <type>pin</type>

141 <materials>0 4;</materials>

142 <fuel_radius>0.54</fuel_radius>

143 </pin>

145
145 <pin id="5">

146 <name>fissionchamber</name>

147 <type>pin</type>

148 <materials>0 5;</materials>

149 <fuel_radius>0.54</fuel_radius>

150 </pin>

152
152 <pin id="6">

153 <name>guidetube</name>

154 <type>pin</type>

155 <materials>0 6;</materials>

156 <fuel_radius>0.54</fuel_radius>

157 </pin>

159
159 </pins>

161
161 </geometry>

File A.2: input.materials.xml
1 <?xml version="1.0" encoding="utf-8"?>

2 <materials ngroups="7">

4
4 <!--

5 Here we define the different materials associated to the

6 material id specified when defining the geometry

7 -->

9
9 <mix id="0">

10 <name>water</name>

11 <SigmaT>

12 0.159206 0.41297 0.59031 0.58435 0.718 1.25445 2.65038;

13 </SigmaT>

14 <Chi>

15 0.58791000000 0.41176000000 0.00033906000 0.00000011761 0.00000000000 0.00000000000 0.00000000000;

16 </Chi>

17 <SigmaS>

18 0.044477700000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

19 0.113400000000 0.282334000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

20 0.000723470000 0.129940000000000 0.345256000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

21 0.000003749900 0.000623400000000 0.224570000000000 0.091028400000000 0.000071437000000 0.000000000000000 0.000000000000000;

22 0.000000053184 0.000048002000000 0.016999000000000 0.415510000000000 0.139138000000000 0.002215700000000 0.000000000000000;

23 0.000000000000 0.000007448600000 0.002644300000000 0.063732000000000 0.511820000000000 0.699913000000000 0.132440000000000;

24 0.000000000000 0.000001045500000 0.000503440000000 0.012139000000000 0.061229000000000 0.537320000000000 2.480700000000000;

25 </SigmaS>

26 <NuSigF>

27 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000;

28 </NuSigF>

29 <SigF>

30 0.0000000000 0.0000000000 0.0000000000;

31 </SigF>

32 <Nu>

33 0.0000000000 0.0000000000 0.0000000000;

34 </Nu>

35 <SigmaA>

36 0.00060105 0.000015793 0.00033716 0.0019406 0.0057416 0.015001 0.037239;

37 </SigmaA>

38 </mix>

40
40 <mix id="1">

41 <name>fuelUO2</name>

42 <SigmaT>

43 0.177949 0.329805 0.480388 0.554367 0.311801 0.395168 0.564406;

44 </SigmaT>

45 <Chi>

46 0.58791000000 0.41176000000 0.00033906000 0.00000011761 0.00000000000 0.00000000000 0.00000000000;

47 </Chi>

48 <SigmaS>

49 0.127537000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

50 0.042378000000000 0.324456000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

51 0.000009437400000 0.001631400000000 0.450940000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

52 0.000000005516300 0.000000003142700 0.002679200000000 0.452565000000000 0.000125250000000 0.000000000000000 0.000000000000000;

53 0.000000000000000 0.000000000000000 0.000000000000000 0.005566400000000 0.271401000000000 0.001296800000000 0.000000000000000;

54 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.010255000000000 0.265802000000000 0.008545800000000;
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55 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000010021000 0.016809000000000 0.273080000000000;

56 </SigmaS>

57 <NuSigF>

58 0.0200599843 0.002027303 0.0157059918 0.0451830102 0.0433420839 0.2020900962 0.5257105352;

59 </NuSigF>

60 <SigF>

61 0.00721206 0.000819301 0.0064532 0.0185648 0.0178084 0.0830348 0.216004;

62 </SigF>

63 <Nu>

64 2.78145 2.47443 2.43383 2.4338 2.4338 2.4338 2.4338;

65 </Nu>

66 <SigmaA>

67 0.0080248 0.0037174 0.026769 0.096236 0.03002 0.11126 0.28278;

68 </SigmaA>

69 </mix>

71
71 <mix id="2">

72 <name>fuelMOX4.3</name>

73 <SigmaT>

74 0.178731 0.330849 0.483772 0.566922; 0.426227 0.678997 0.682852;

75 </SigmaT>

76 <Chi>

77 0.58791000000 0.41176000000 0.00033906000 0.00000011761 0.00000000000 0.00000000000 0.00000000000;

78 </Chi>

79 <SigmaS>

80 0.128876000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

81 0.041413000000000 0.325452000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

82 0.000008229000000 0.001639500000000 0.453188000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

83 0.000000005040500 0.000000001598200 0.002614200000000 0.457173000000000 0.000160460000000 0.000000000000000 0.000000000000000;

84 0.000000000000000 0.000000000000000 0.000000000000000 0.005539400000000 0.276814000000000 0.002005100000000 0.000000000000000;

85 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.009312700000000 0.252962000000000 0.008494800000000;

86 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000009165600 0.014850000000000 0.265007000000000;

87 </SigmaS>

88 <NuSigF>

89 0.0217530045 0.0025351033 0.0162679915 0.0654740997 0.0307240878 0.6666509616 0.7139904304;

90 </NuSigF>

91 <SigF>

92 0.00762704 0.000876898 0.00569835 0.0228872 0.0107635 0.232757 0.248968;

93 </SigF>

94 <Nu>

95 2.85209 2.89099 2.85486 2.86073 2.85447 2.86415 2.8678;

96 </Nu>

97 <SigmaA>

98 0.0084339 0.0037577 0.02797 0.10421 0.13994 0.40918 0.40935;

99 </SigmaA>

100 </mix>

102
102 <mix id="3">

103 <name>fuelMOX7.0</name>

104 <SigmaT>

105 0.181323 0.334368 0.493785 0.591216 0.474198 0.833601 0.853603;

106 </SigmaT>

107 <Chi>

108 0.58791000000 0.41176000000 0.00033906000 0.00000011761 0.00000000000 0.00000000000 0.00000000000;

109 </Chi>

110 <SigmaS>

111 0.130457000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

112 0.041792000000000 0.328428000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

113 0.000008510500000 0.001643600000000 0.458371000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

114 0.000000005132900 0.000000002201700 0.002533100000000 0.463709000000000 0.000176190000000 0.000000000000000 0.000000000000000;

115 0.000000000000000 0.000000000000000 0.000000000000000 0.005476600000000 0.282313000000000 0.002276000000000 0.000000000000000;

116 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.008728900000000 0.249751000000000 0.008864500000000;

117 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000009001600 0.013114000000000 0.259529000000000;

118 </SigmaS>

119 <NuSigF>

120 0.023813952 0.0038586888 0.0241340014 0.09436622 0.0457698761 0.9281814045 1.0432001182;

121 </NuSigF>

122 <SigF>

123 0.00825446 0.00132565 0.00842156 0.032873 0.0159636 0.323794 0.362803;

124 </SigF>

125 <Nu>

126 2.88498 2.91079 2.86574 2.87063 2.86714 2.86658 2.87539;

127 </Nu>

128 <SigmaA>

129 0.0090657 0.0042967 0.032881 0.12203 0.18298 0.56846 0.58521;

130 </SigmaA>

131 </mix>

133
133 <mix id="4">

134 <name>fuelMOX8.7</name>

135 <SigmaT>

136 0.183045 0.336705 0.500507 0.606174 0.502754 0.921028 0.955231;

137 </SigmaT>

138 <Chi>

139 0.58791000000 0.41176000000 0.00033906000 0.00000011761 0.00000000000 0.00000000000 0.00000000000;

140 </Chi>

141 <SigmaS>

142 0.131504000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

143 0.042046000000000 0.330403000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

144 0.000008697200000 0.001646300000000 0.461792000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;
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145 0.000000005193800 0.000000002600600 0.002474900000000 0.468021000000000 0.000185970000000 0.000000000000000 0.000000000000000;

146 0.000000000000000 0.000000000000000 0.000000000000000 0.005433000000000 0.285771000000000 0.002391600000000 0.000000000000000;

147 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.008397300000000 0.247614000000000 0.008968100000000;

148 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000008928000 0.012322000000000 0.256093000000000;

149 </SigmaS>

150 <NuSigF>

151 0.0251860041 0.0047395095 0.029478054 0.1122499985 0.0553030128 1.0749988378 1.23929836992;

152 </NuSigF>

153 <SigF>

154 0.00867209 0.00162426 0.0102716 0.0390447 0.0192576 0.374888 0.430599;

155 </SigF>

156 <Nu>

157 2.90426 2.91795 2.86986 2.87491 2.87175 2.86752 2.87808;

158 </Nu>

159 <SigmaA>

160 0.0094862 0.0046556 0.03624 0.13272 0.2084 0.6587 0.69017;

161 </SigmaA>

162 </mix>

164
164 <mix id="5">

165 <name>fissionchamber</name>

166 <SigmaT>

167 0.126032 0.29316 0.28425 0.28102 0.33446 0.56564 1.17214;

168 </SigmaT>

169 <Chi>

170 0.58791000000 0.41176000000 0.00033906000 0.00000011761 0.00000000000 0.00000000000 0.00000000000;

171 </Chi>

172 <SigmaS>

173 0.066165900000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

174 0.059070000000000 0.240377000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

175 0.000283340000000 0.052435000000000 0.183425000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

176 0.000001462200000 0.000249900000000 0.092288000000000 0.079076900000000 0.000037340000000 0.000000000000000 0.000000000000000;

177 0.000000020642000 0.000019239000000 0.006936500000000 0.169990000000000 0.099757000000000 0.000917420000000 0.000000000000000;

178 0.000000000000000 0.000002987500000 0.001079000000000 0.025860000000000 0.206790000000000 0.316774000000000 0.049793000000000;

179 0.000000000000000 0.000000421400000 0.000205430000000 0.004925600000000 0.024478000000000 0.238760000000000 1.099100000000000;

180 </SigmaS>

181 <NuSigF>

182 0.0000000132340 0.0000000143450 0.0000011285993 0.0000127629932 0.0000003538502 0.0000017400989 0.0000050633019;

183 </NuSigF>

184 <SigF>

185 0.0000000047900 0.0000000058256 0.0000004637190 0.0000052440600 0.0000001453900 0.0000007149720 0.0000020804100;

186 </SigF>

187 <Nu>

188 2.76283 2.46239 2.4338 2.4338 2.4338 2.4338 2.4338;

189 </Nu>

190 <SigmaA>

191 0.00051132 0.000075813 0.00031643 0.0011675 0.0033977 0.0091886 0.023244;

192 </SigmaA>

193 </mix>

195
195 <mix id="6">

196 <name>Guidetube</name>

197 <SigmaT>

198 0.126032 0.29316 0.28424 0.28096 0.334440 0.56564 1.17215;

199 </SigmaT>

200 <Chi>

201 0.58791000000 0.41176000000 0.00033906000 0.00000011761 0.00000000000 0.00000000000 0.00000000000;

202 </Chi>

203 <SigmaS>

204 0.066165900000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

205 0.059070000000000 0.240377000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

206 0.000283340000000 0.052435000000000 0.183297000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000;

207 0.000001462200000 0.000249900000000 0.092397000000000 0.078851100000000 0.000037333000000 0.000000000000000 0.000000000000000;

208 0.000000020642000 0.000019239000000 0.006944600000000 0.170140000000000 0.099737200000000 0.000917260000000 0.000000000000000;

209 0.000000000000000 0.000002987500000 0.001080300000000 0.025881000000000 0.206790000000000 0.316765000000000 0.049792000000000;

210 0.000000000000000 0.000000421400000 0.000205670000000 0.004929700000000 0.024478000000000 0.238770000000000 1.099120000000000;

211 </SigmaS>

212 <NuSigF>

213 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000;

214 </NuSigF>

215 <SigF>

216 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000;

217 </SigF>

218 <Nu>

219 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000;

220 </Nu>

221 <SigmaA>

222 0.00051132 0.000075801 0.00031572 0.0011582 0.0033975 0.0091878 0.023242;

223 </SigmaA>

224 </mix>

225 </materials>

File A.3: input.settings.xml
1 <?xml version=’1.0’ encoding=’utf-8’?>

2 <settings>

3 <dim>2</dim>
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4 <input_files>

5 <geom>input.geom.xml</geom>

6 <mat>input.mat.xml</mat>

7 <out>output_c5g7_2_20_2.xml</out>

8 </input_files>

9 <geometry>

10 <n_ref>2</n_ref>

11 </geometry>

12 <problem type="transport">

13 <approximation type="sn">

14 <sn>20</sn>

15 </approximation>

16 </problem>

17 <algebra>

18 <eig_solver type="PI">

19 <tol>1.e-6</tol>

20 <max_it>500</max_it>

21 </eig_solver>

22 <inner_solver type="Krylov">

23 <tol>1.e-7</tol>

24 <max_it>400</max_it>

25 </inner_solver>

26 </algebra>

27 <fe_settings>

28 <degree>2</degree>

29 </fe_settings>

30 </settings>
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