
n

p

n

n n

p

n

n

y

x

z

+
π

Convoluted Events
Neutron Reconstruction using Neural Networks

Master’s thesis in Subatomic Physics

MARKUS POLLERYD

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

master’s thesis in subatomic physics

Convoluted Events

Neutron Reconstruction using Neural Networks

Markus Polleryd

Department of Physics
Division of Subatomic and Plasma Physics
Chalmers University of Technology

Gothenburg, Sweden 2017

Convoluted Events
Neutron Reconstruction using Neural Networks
Markus Polleryd

© Markus Polleryd, 2017.

Examiner: Andreas Heinz, Department of Physics

Department of Physics
Division of Subatomic and Plasma Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Schematic of neutron paths in NeuLAND. Only the charged particles (blue
lines) are directly detectable, hinting at the complexity of reconstructing neutron
events.

Chalmers Reproservice
Gothenburg, Sweden 2017

Convoluted Events
Neutron Reconstruction using Neural Networks
Markus Polleryd
Department of Physics
Chalmers University of Technology

Abstract
The R3B experiment at FAIR will study properties of unstable nuclei through detec-
tion of reaction products of projectile-target interactions. It is essential that these
reaction products can be measured with sufficient accuracy. Uncharged neutrons do
not excite the scintillator material in the detector, and therefore can only be detected
indirectly via charged products from neutron-nucleus interactions. These interac-
tions can create multiple new particles including neutrons, in turn, interacting with
other nuclei. Reconstructing the multiplicity and momenta of the neutrons enter-
ing the detector from these shower patterns is not trivial and requires sophisticated
algorithms.
This thesis explores the possibility of reconstructing neutron events with 3-dimensional
image recognition using Convolutional Neural Networks, focusing mainly on neut-
ron multiplicity. When a passing charged particle excites the scintillator material
in the detector, it outputs the spatial coordinates of the excitation point along with
the time and the energy the particle has deposited. The output can be converted
into a sparse 3-dimensional image with time and deposited energy as pixel values.
The 300 000 pixel values in each image make the required amount of parameters,
even in the smaller networks, very large. It is shown that training these large but
simple networks using a Central Processing Unit is not practically feasible, requiring
months to train a single network. The use of a Graphics Processing Unit introduced
a speed up in training with a factor of up to 185.
By accounting only for the total deposited energy and number of hits in the detector,
72 % correct predictions were achieved on a large test set. Accounting also for the
image of each event, an accuracy of 78 % correct predictions was achieved, showing
that the networks are able to extract important features from the images.

Keywords: Neutron detection, convolutional neural networks, machine learning, R3B
collaboration, GSI/FAIR

iii

Acknowledgements
Before jumping to the actual report, I would like to thank everyone who helped
making this thesis successful. First and foremost I would like to thank Andreas
Heinz for his constant support and daily checkups, always keeping me on the right
path, and H̊akan T. Johansson, the computer guru, for many long and short (mostly
long) talks, advice, ideas and support during the whole thesis project.
I also want to thank Hans Salomonsson for leading us to use convolutional neural
networks, the Swedish National Infrastructure for Computing (SNIC) at High Per-
formance Computing Center North (HPC2N) for providing compute time on Tesla
K80 GPUs, Giovanni Bruni for support and small talks and Andreas Johansson for
providing an errata making the final report flawless, I hope.
Finally, a huge thanks to Thomas Nilsson and everyone else at the Subatomic Phys-
ics Group at Chalmers for giving me the opportunity to do a Master’s thesis in
Subatomic Physics.

Markus Polleryd, Gothenburg, November 2017

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Machine Learning . 4

2 Preliminaries 5
2.1 NeuLAND . 5
2.2 Machine Learning . 5

2.2.1 Artificial Neural Networks . 7
2.2.2 Convolutional Neural Networks 8
2.2.3 Optimization Algorithms . 8

3 Setting up a working machine learning model 11
3.1 Simulations using ggland/GEANT4 11

3.1.1 Light propagation in scintillating paddles 11
3.1.2 Neutrons in NeuLAND . 11
3.1.3 What do neutrons in plastic do? 12

3.2 Network implementation in TensorFlow 12
3.2.1 Building a TensorFlow graph 13
3.2.2 Running a TensorFlow graph 15
3.2.3 Storing the TensorFlow graph 16
3.2.4 Challenge of using TensorFlow 16

3.3 Data reading . 16

4 Developing and testing models 17
4.1 Simple multilayer perceptron as accuracy reference 18
4.2 Baseline CNN model . 19
4.3 Attempting to speed up the learning process 19
4.4 Uncertainty in training . 21
4.5 Improving the model . 22

4.5.1 Removing events from the training set 22
4.5.2 Adding total deposited energy and number of hits 23
4.5.3 Data normalization . 24
4.5.4 Reducing the training dataset 26
4.5.5 Variations of the extended baseline model 26
4.5.6 Increasing the number of layers 28

4.6 Evaluating the individual neutron multiplicities 28
4.7 Accounting for light loss due to Birk’s law 28

vii

4.8 Predicting neutron momentum . 29

5 Discussion and conclusion 33
5.1 Training on Graphic Processing Units 33
5.2 CNN for reconstructing neutron events 33
5.3 Accuracy cost due to Birk’s law . 35

6 Outlook 36

viii

Chapter 1

Introduction

1.1 Background
A charged particle propagating through scintillator material in a detector will excite
molecules via Coulomb interaction. The light emitted from a molecule as it returns
to its ground state can then be detected with photomultiplier tubes. Uncharged
neutrons, on the other hand, solely interact with matter via strong interaction and
cannot excite the scintillator material via Coulomb interaction. The neutrons of
interest in this thesis have kinetic energies between 0.1 and 1 GeV, for which scintil-
lating detectors are optimal [1]. Therefore, neutrons can only be detected indirectly
via charged products from neutron-nucleus interactions, i.e. collisions with nuclei.
These collisions can knock out or create multiple new particles including neutrons,
that in turn interact with other nuclei. In this way, each neutron entering the de-
tector typically creates a shower of particles, that is, each neutron-nucleus collision
branches into multiple new particles and neutron-nucleus interactions (figure 1.1).
Reconstructing the multiplicity and momenta of the original neutrons entering the
detector from these shower patterns is not trivial, specially for high neutron multi-
plicities. Figure 1.2 illustrates the complexity of an increased neutron multiplicity.
Currently NeuLAND (new Large Area Neutron Detector) is under construction at
GSI Helmholtzzentrum für Schwerionenforschung. NeuLAND is a scintillator-based
detector with an active face size of 2.5 x 2.5 m2 and a total depth of 3 m. It is
designed to be a key part of the experimental setup for studies of Reactions with
Relativistic Radioactive Beams (R3B) as part of FAIR (Facility for Antiproton and
Ion Research). FAIR, currently under construction at the site of the GSI facility in
Darmstadt, will be one of the largest and most complex accelerator laboratories in
the world.
The R3B experiment will study properties of unstable nuclei near the dripline
through detection of reaction products of projectile-target interactions. The neutron
(proton) dripline marks the limit where a nucleus has no bound states for additional
neutrons (protons). Due to short lifetimes, it is not feasible to create targets of these
unstable nuclei, instead, they constitute an incoming beam bombarding a target of
light nuclei. This process, performed inversely to traditional physics experiments,
is called inverse kinematics. When studying nuclear states with energies above the
particle emission threshold, the relative energy, i.e. the difference in energy of the

1

n

p

n

n n

p

n

n

y

x

z

+
π

Figure 1.1: A schematic illustration of neutron-nucleus interactions in a scintillator-
based detector.

system before and after particle emission, is important. In order to reconstruct the
relative energy, the invariant mass of the system before and after particle emission
needs to be known. Additionally, since the invariant mass is calculated from the four-
momenta of the resulting fragments and emitted particles, it is essential that the
reaction products can be measured with sufficient accuracy. In this thesis, we focus
on detecting and reconstructing neutrons using the neutron detector NeuLAND.
NeuLAND features a higher detection efficiency and resolution along with a better
multi-neutron-hit resolving power compared to the current Large Area Neutron De-
tector (LAND) [2]. For LAND the reconstruction is currently done using the shower
algorithm [3], an algorithm that essentially sorts the hits in time and assigns the
first hit as a neutron interaction vertex. Here, a hit is defined as single detection
of a charged particle traversing a scintillator block in the detector. Further hits
that can be associated as results of scattering from the first vertex are removed as
secondaries. If hits remain, another neutron is assigned by reiterating the routine.
These assignments are sometimes wrong, leading to erroneous event reconstruction.
NeuLAND on the other hand, due to its improved energy resolution, will be able to
correctly determine the number of incident neutrons by examining the total number
of neutron-nucleus hits and total energy deposited with a certain probability. This
can be done using previously gathered distributions (from simulations) for both the
deposited energy and number of hits for each number of incident neutrons. To as-
sign four-vectors, it still needs to inspect the individual interactions. In order to
fully take advantage of the advanced detection capabilities NeuLAND offers, it is
important to also improve and adapt the reconstruction algorithms.

2

Particle energy deposition in NeuLAND for 1 incoming neutron

60
50

40

z

30
20

1010
20

30

x

40

50

40

10

30

20

50

y

E
n

e
rg

y
 d

e
p
o

s
it
 (

M
e
V

)

65

70

75

80

Particle energy deposition in NeuLAND for 5 incoming neutrons

60
50

40

z

30
20

1010
20

30

x

40

30

10

40

50

20

50

y

E
n
e
rg

y
 d

e
p
o

s
it
 (

M
e
V

)

60

70

80

90

100

110

Figure 1.2: Simulated output from the scintillator-based detector NeuLAND (see
text), converted into 3-D images showing the deposited energy of particles traversing
the detector, for both 1 and 5 incoming neutrons travelling in the positive z-direction.
The axes, given in pixel number, represent the full geometry of NeuLAND.

3

1.2 Machine Learning
The task of reconstructing neutron events is complex due to the fact that only
charged particles originating from neutron-nucleus interactions are detected. The
number of possible events creating a certain hit pattern in the detector is large
making it impossible to reconstruct the incoming neutrons with 100 % certainty,
and therefore only the most probable event is the one of interest. For instance,
”ghost hits”, where a neutron solely knocks out another neutron, are invisible to the
detector. The two outgoing neutrons can generate new hits that cannot be related
by scattering from one another without breaking causality. The shower algorithm
currently used for LAND will therefore not be able to realize the connection between
hits originating in ghost hits. An improved algorithm [4] taking a probabilistic
approach has been tested, but suffers from becoming too computationally expensive
when the number of interactions increase.
Machine learning can potentially improve the accuracy in reconstructing neutron
events by learning the most probable events without explicitly implementing laws of
physics. The concept of machine learning is to let an algorithm experience data and
by itself extract connections between different features; essentially high-dimensional
curve fitting. Which kind of features the algorithm learns is characterized by their
recurrence in the experienced data, i.e. it learns the most probable features first,
potentially reducing the computational power needed. Machine learning has proven
to be an impressive success story, performing tasks such as language translation [5],
image recognition [6] and even tasks in particle physics [7].
An event of neutrons entering NeuLAND can be represented as a three-dimensional
(3-D) image with time and deposited energy as pixel values. The problem of recon-
structing neutron events is then essentially identical to that of 3-D image classific-
ation and regression. Currently Convolutional Neural Networks (CNN) are one of
the leading machine learning algorithms used in image classification. In this thesis,
TensorFlow [8], an open-source software library for machine intelligence, is used to
develop and test different CNN architectures for reconstructing neutron events in
NeuLAND.

4

Chapter 2

Preliminaries

2.1 NeuLAND
The final design of NeuLAND consists of 3000 plastic scintillator paddles, each
with dimensions of 5 × 5 × 250 cm3 arranged in 30 double planes. Each double
plane contains 50 horizontal and 50 vertical paddles. When the plastic material in
a paddle is excited by a passing charged particle, light will be emitted from the
plastic and detected by PM-tubes (photomultiplier tubes) mounted at the ends of
the paddle. The time and position where the charged particle traversed the paddle
can be calculated using the times t1 and t2 that describe when the light was detected
at each PM tube

t = t1 + t2
2 ,

p = v
t2 − t1

2 ,
(2.1)

where v is the effective speed of light in the scintillator material. Since the paddles
are rotated by 90 degrees for each plane, p, of one paddle, becomes the horizontal
coordinate for even planes and the vertical coordinate for odd planes. From now on,
we define a hit as a single detection in both PM-tubes, unfortunately making the
name somewhat misleading.

2.2 Machine Learning
Machine learning is a subfield of computer science that studies algorithms, which can
learn from and make predictions on data. A widely quoted definition is provided by
Tom M. Mitchel [9, p. 2]: ”A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.”.
Two machine learning approaches are employed in this thesis, namely classification
and regression. For classification the algorithm should specify to which of k categor-
ies some input x belongs, for instance recognizing the number of neutrons in the 3-D
images of neutrons interacting with NeuLAND. Regression is similar to classification

5

apart from the different output; the algorithm is intended to predict a continuous
numerical value from the input data x.
The performance measure P is needed in order to quantitatively evaluate the ability
of the algorithm to perform some task. For classification, P is often defined as the
proportion of the times the algorithm predicts the correct category, known as the
accuracy.
Machine learning algorithms can be divided into supervised and unsupervised learn-
ing determined by the data they are fed during learning. An unsupervised learning
algorithm experiences only the input data x from which it then learns useful features.
Typically, it is desired that the algorithm finds the underlying distribution that gen-
erated the input dataset. During supervised learning the algorithm is also provided
with output data y for each input x corresponding to some mapping y = f(x), where
the objective is to approximate the (unknown) function f . In a classification task,
y would be a label of the category to which x belongs.
In order to achieve good generalization, i.e. good performance on data that is in-
dependent of the data used during learning, the dataset is typically split into three
independent subsets: a training set, a validation set and a test set. The training
set is solely used by the learning algorithm to optimize the ability of the model to
map xtrain to ytrain. Generally, near-perfect performance on the training set can
be obtained by sufficiently increasing the capacity of the model. The capacity is
essentially the variety of functions a model can fit. Good performance on the train-
ing set does however not mean good performance on the test set. Increasing the
capacity of a model eventually leads to overfitting: the model performs well on the
training set while the generalization is bad. With too low capacity, the model is
instead subject to underfitting which means alongside with bad generalization also
poor performance on the training dataset.
The test dataset is used to obtain a final estimate of the ability of the model to gen-
eralize, called generalization or test error. The test dataset gives a good estimation
of the generalization error assuming the examples in each dataset are independent
and that the training and test datasets are identically distributed, both generated
from the same probability distribution. As a result of this assumption, the expected
test error will always be greater than or equal to the expected training error [10,
p. 111].
Machine learning models most often contain hyperparameters, which are parameters
not altered by the learning algorithm itself. These hyperparameters do affect the
overall performance of the model, for instance increasing or decreasing the capacity.
If the test set is used in any way to optimize the performance, e.g. by modifying
the model, it will not provide a good estimate of the generalization error. It is
therefore necessary to include the independent validation dataset to estimate the
generalization error after each training period in order to find the hyperparameters
resulting in best performance. In other words, after the test set has been used to
evaluate a model, the model cannot be changed to get better performance on the
test set without being biased. In practice, this is a problem when dealing with small
limited datasets.

6

2.2.1 Artificial Neural Networks
An artificial neural network is a computational model that loosely mimics the net-
work of neurons and synapses in a biological brain. The networks considered in this
thesis are feedforward networks, or multilayer perceptrons (MLP). Given the input
x and parameters θ, a network defines a function f(x,θ). The goal of a MLP is
to approximate some function f̂(x) by learning the parameters θ that result in the
best function approximation. Typically, a feed forward network can be represented
by a chain of functions,

f(x,θ) = f (N)(...f (2)(f (1)(x, θ1), θ2)..., θN),

forming a network. The functions are called layers in the network and the more layers
the network has, the wider is the variety of functions the network can fit, i.e. the
capacity is increased. The name ”deep learning” originates from this terminology,
where many layers result in a deep network [10, p. 169].
Multilayer perceptrons contain multiple nodes, or neurons, connected to each other.
They are arranged as an input and an output layer with multiple layers in-between,
called hidden layers. The nodes in a hidden layer are called hidden nodes or hidden
units where the usual type computes an affine transformation

z = WT x + b, (2.2)

corresponding to each connection between nodes having a weight W and bias b
acting on the signal. A nonlinear activation function g(z) is then applied to the
output with the most typical being the rectified linear activation function defined
as g(z) = max{0, z}. A node employing this function is called a rectified linear unit
(ReLU).
In classification tasks, a softmax function is typically applied to the final output of a
network. The softmax function, applied to all classification networks in this thesis,
is defined as

σ(y)i = eyi∑n
j=1 e

yj
, (2.3)

where the output represents a probability distribution over the n classes [10, p. 185].
Alongside the depth of a network, the number of nodes in hidden layers can be
increased to gain capacity. In the same way that many layers make the network
deep, we say that a large amount of nodes in the hidden layers makes the network
wide.
Up to this point it may seem that making the network sufficiently deep and wide
one can design a model able to learn any mapping y = f(x). In fact, the univer-
sal approximation theorem [10, p. 198] states that a feedforward network with a
linear output layer and at least one hidden layer, with some mild assumptions on
the activation functions, can approximate any continuous function on a closed and
bounded subset of Rn from one finite-dimensional space to another with any desired
non-zero amount of error, provided that the network contains enough hidden units.
Unfortunately, too large networks encounter problems such as overfitting and being
too computationally expensive. When constructing a neural network, the design of
individual nodes and network architecture that results in best performance, must

7

be found. The architecture is essentially the number of nodes and layers a network
contains and how they are connected to each other. There exists no theoretical
framework for choosing the optimal node design and network architecture, making
the process of designing a network experimental, that is, by trial-and-error while
continuously monitoring the validation error.

2.2.2 Convolutional Neural Networks
A convolutional neural network (CNN) is a type of network that uses discrete con-
volution to process data with grid-like topology such as time-series data or images
[10, p. 330]. The convolution operation, which allows a network to extract features
of a local group of points in the input data, has proven to be essential in the field
of image recognition. A discrete convolution of some data x(i) with a kernel k(a)
taking only integer values of i and a, for instance the pixel values of an image, is
defined as [10, p. 332]

s(i) = (x ∗ k)(i) =
∞∑

a=−∞
x(a)k(i− a). (2.4)

In a CNN, the input data x(i) will only be defined for values of i in some finite
interval [i1, i2] corresponding to, for instance, the width or height, in number of
pixels, of an image or number of samples in a time series. The kernel k(j) is set
to have non-zero values only for j ∈ [−r, r] where r typically is small, hence the
output s(i) is only affected by input points x(i′) with |i′ − i| ≤ |r|. In 2-D image
recognition the input and the kernel are 2-D arrays; the input representing the pixel
values of the image and the kernel consisting of parameters to be learned by the
training algorithm. Employing one convolution operation with one type of kernel
can, loosely speaking, only extract one type of property. It is therefore common
that multiple convolutions with different kernels, which are computed in parallel
to extract more kinds of features. These parallel convolutions result in the output
being wider than the input. The discrete convolution operation can be realized by
matrix multiplication as illustrated in figure 2.1.
A convolution operation in a CNN is usually accompanied by a pooling operation
that computes a summary of nearby outputs. The max pooling operation for ex-
ample, computes the maximum value of a rectangular region in the output. Pooling
introduces a small degree of translational invariance, meaning that a small shift in
the input data does not affect the output [10, p. 342]. This property is very im-
portant in object recognition since it reduces the relevance of the exact position of
an object. A typical layer in a CNN consists of three parts, a number of parallel
convolutions, non-linear activation functions and finally pooling.

2.2.3 Optimization Algorithms
The goal of a MLP is to approximate some function f̂(x) by minimizing the cost
function g(θ), an error measure of the approximation, with respect to the parameters
θ. A common cost function used for classification tasks is the cross-entropy defined

8

a b c d

e f g h

i j k l

nm o p

Input

w x

y z

Kernel

wa+xb+

ye+zj

0 0 0

0

0

0000

0

0

0

Output

Figure 2.1: An example of a two-dimensional pooling operation with a stride between
the pooling operations of two. In the current case, the stride size of two means that
only four pooling operations are needed and will result in an output dimension of
[2x2]. In order to the obtain output of the same size as the input, additional zeros
can be added around the border, called zero padding.

as
H(p, q) = −

∑
i

pi log qi (2.5)

where q is the predicted probability distribution of the model and p the true dis-
tribution [8]. The cross-entropy will be used as cost function for all classification
models in this thesis.
In gradient-based learning the cost function is minimized iteratively by computing
the gradient with respect to the parameters θ, which are then updated by taking
a small step in the gradient direction. In gradient descent [10, p. 82], or steepest
descent, the next point is found by

θn+1 = θn + ε∇θg(θn), (2.6)

where ε is the learning rate and the gradient is calculated on the whole training
set. Computing a gradient on the whole training set is not practically feasible
when the dataset is large. Additionally, gradient descent is prone to get stuck in
local minima since the cost function is generally not convex. A computationally
less expensive optimization algorithm is the stochastic gradient descent (SGD) [10,
p. 294]. In SGD, the gradient is estimated by calculating an averaged gradient
of a loss function ĝm acting on a small batch, called a minibatch, of m examples
randomly sampled from the dataset. Since the gradient estimate is calculated from a
fixed size minibatch of examples, the time per step does not grow when the dataset is
increased. The estimated gradient will introduce noise due to the random minibatch

9

sampling, hence the algorithm is less prone to end up in local minima. In practice,
the learning rate ε needs to be gradually decreased to compensate for noise when
the global minimum is approached.
Adopting the stochastic gradient descent optimization for learning can in some cases
be slow, for instance due to noisy gradients. In order to decrease the learning time,
many optimization algorithms implement the method of momentum [10, p. 296].
The algorithm acquires a momentum, an average of previous gradients, that reduces
the noise from the individual minibatch gradients, smoothing the path towards the
global minimum. The variable v plays the role of momentum and the values are
updated in each step according to

vn+1 = αvn − ε∇θĝm(θn),
θn+1 = θn + vn,

(2.7)

where α ∈ [0, 1). The algorithm accelerates in one direction, if a similar gradient
∇θĝm is obtained at each step, until it reaches the maximum step size

ε||∇θĝm||
1− α . (2.8)

Along with the learning rate ε, α has an impact on the time consumption and conver-
gence of the learning algorithm. Tuning the initial values of these hyperparameters
and how they adapt during training is important although can be time consuming in
itself. Algorithms with adaptive learning rates are designed to find the best learning
rates for each individual parameter of θ and adapt them during the optimization.
Although algorithms with adaptive learning rates have shown robust performance,
no single overall best algorithm exists.

10

Chapter 3

Setting up a working machine
learning model

3.1 Simulations using ggland/GEANT4
In order to train neural networks, a large amount of data is required. In this work,
this data is gathered by simulations using ggland [11], a wrapper program intended to
simplify simulations with GEANT4 [12] in different experimental setups. GEANT4,
provided by an international collaboration including CERN, is a software toolkit for
simulating the passage of particles through matter.

3.1.1 Light propagation in scintillating paddles
When simulating a charged particle traveling through a scintillating paddle in Neu-
LAND, GEANT4 provides ggland with the energy loss of that particle due to Cou-
lomb interaction i.e. the energy transferred to excite the molecules in the scintillating
material. This means that the energy value provided by the detector in the simula-
tions correspond to that of an ideal detector, not accounting for subsequent losses
of scintillation photons propagating towards the PM tubes.

3.1.2 Neutrons in NeuLAND
The geometry and functionality of NeuLAND is easily replicated with ggland and
all that remains to obtain a working simulation is to define a particle source, called
gun.
In the simulations, NeuLAND was placed 15 meters from a neutron source along
the z-axis (figure 1.1). Neutrons with a momentum directed randomly within an
angle of 2.4◦ relative to the z-axis, corresponding to a disc with diameter 1.25 m on
the face of the detector, were generated simultaneously with energies ranging from
550 to 650 MeV. All PM-tube signals with time values larger than 200 ns after the
neutron generation in each event were removed to avoid hits corresponding to, for
instance, particle decay. The hit coordinates were converted into discrete values on
a grid with an x, y and z axis consisting of 50, 50 and 60 points respectively. Each

11

event is now represented as a sparse 3-D image with two pixel values corresponding
to time and energy.
For each neutron multiplicity ranging from 1 to 7, roughly 200 000 events were
simulated. The data was separated into a training, a validation and a test dataset
of 95 000, 1 600 and 100 000 images, respectively, for each neutron multiplicity. The
images were split into different text files, one each for a given number of generated
neutrons. Events with zero neutrons are needed in order to properly train the models
and were created by simply writing blank events to a text file, consequently avoiding
special treatment of zero neutron events.

3.1.3 What do neutrons in plastic do?
A neutron-nucleus collision in the plastic scintillators of NeuLAND can create or
liberate a variety of particles from the nucleus. In order to get an intuition of
products resulting from a neutron colliding with a nucleus in the plastic, neutrons
incident on a 0.01 cm thick plastic slab are simulated. If the neutron deposits less
than 5 MeV with no other particles emitted, it is considered a small-angle elastic
scattering and ignored. For each neutron energy, a total of 108 neutrons illuminate
the plastic slab with approximately 14 000 resulting in a reaction. This corresponds
to a mean free path of 71 cm, and furthermore, that 1.5 % of the neutrons entering
NeuLAND pass straight through without interacting.
It is worth noting that only one of the reactions, presented in table 3.1, lacks an
outgoing neutron, additionally, 12.9 % of the 500 MeV neutron collisions result in
ghost hits, where a neutron solely knocks out another neutron. Most of the reac-
tions also produce gamma rays, although, which travel far in the detector without
interacting, and are thus hard to associate with a certain neutron-nucleus collision.

3.2 Network implementation in TensorFlow
A significant part of this work was spent on understanding and creating a working
TensorFlow program. Even though TensorFlow is well documented, there is a signi-
ficant learning curve, especially for a user inexperienced in both, machine learning
and TensorFlow. This chapter provides a short introduction to the TensorFlow com-
ponents used when building the neural networks presented in this thesis and how
they are implemented in Python code.
TensorFlow is an open source software library written in Python and C++ with
multiple Application Programming Interfaces (APIs) at different levels. The dif-
ferent levels of the APIs makes implementing a simple machine learning algorithm
straight-forward, while still giving the user a lot of freedom and control. A Tensor-
Flow program is created by defining a computational graph representing the ma-
chine learning algorithm and a suitable optimization algorithm for minimizing the
loss function. Many of the usual loss functions and optimization algorithms are
defined in TensorFlow making it simple to use them in a model.
Installing TensorFlow with CPU support is straightforward and only requires an ex-
isting Python installation. However, installing TensorFlow with GPU support has

12

Table 3.1: The 10 most probable products resulting from simulated neutron-nucleus
collisions in the scintillator plastic for neutrons with kinetic energy of 100, 500 and
1000 MeV, respectively. Neutrons which have deposited less than 5 MeV with no
other particles emitted, are ignored. Most reactions result in additional gamma
rays which are not presented in the tables. n: neutron, p: proton, d: deuteron, α:
alpha particle, π: pion.

100 MeV
14,109 reactions
Products %
n, p 33.3
n 16.4
2n 9.6
n, α 7.5
2n, p 7.1
3n, 2p 3.1
n, 2α 2.8
2n, p, d 2.6
3n, p 1.5
n, 2p 1.4

500 MeV
12,578 reactions
Products %
n, p 28.0
2n 12.9
2n, p 6.2
3n, 2p 5.8
n 5.2
3n, 2p α 3.2
2n, p, d 2.3
n, α 2.1
3n, p 1.9
n, p, π− 1.8

1000 MeV
14,616 reactions
Products %
n, p 24.1
2n 7.4
n, p, π− 6.4
3n, 2p 4.0
2n, p 3.8
2n, π+ 3.1
n 2.9
3n, 2p, α 2.7
2n, 3p, π− 1.8
p, π− 1.6

some additional requirements making it somewhat tedious. For instance, Tensor-
Flow is only compatible with Nvidia GPUs that have CUDA Compute Capability
3.0 or higher [13]. The TensorFlow webpage [8] provides detailed instructions of all
additional libraries and drivers needed and how to install them.

3.2.1 Building a TensorFlow graph
The basic building blocks of a TensorFlow program are tensors, represented by n-
dimensional arrays of a certain data type. All parameters needed in a model will be
represented by these tensors, for instance, the input data and all nodes and layers
in a neural network. A TensorFlow program consists of multiple tensors that are
computed according to a computational graph.
In the case of building a graph for a multilayer perceptron, the first step is to create
a placeholder tensor representing the input data, i.e. setting the same data type and
dimension as the desired input data. The placeholder creates an empty tensor that
requires values to be provided during execution. There are two additional tensors,
namely constants and variables. As the names imply, the values of a constant
can only be set once and never be changed, while the values of a variable can be
updated any time during execution. The variables will be the tensors representing
the trainable parameters in the network, for instance the bias b and weights W in
equation 2.2.
Once the bias and weights for the first layer in the network have been defined,
multiplication of the tensors can be implemented with a TensorFlow function called
’tf.matmul’. To add an activation function acting element-wise on the output from
the tensor multiplication, the output should be provided as an argument to the

13

Neutron kinetic energy (MeV)

100 200 300 400 500 600 700 800 900 1000

R
e

a
c
ti
o

n
s
 (

%
)

0

5

10

15

20

25

30

35

n, p

n

2n
n, α

2n, p

3n, 2p

n, 2α

n, p, π
-

2n, π
+

Figure 3.1: Simulated reaction probabilities of neutrons incident on scintillator ma-
terial. Neutrons which have deposited less than 5 MeV with no other particles
emitted, are ignored. Most reactions result in additional gamma rays which are not
presented in the figure. n: neutron, p: proton, d: deuteron, α: alpha particle, π:
pion.

desired activation function defined in TensorFlow.

Listing 3.1: The code creates two fully-connected layers with 2 and 128 nodes,
respectively, the latter having rectified linear activation functions. The input tensor
is set to have the dimension [None, 2], where None means that the dimension can
be of any length. This allows to process a batch of any number of events during
execution.

1 """ Input """
2 x = tf. placeholder (tf.float32 , [None , 2])
3 """ Weights """
4 W = tf. Variable (tf. truncated_normal ([2, 128] , stddev =0.1))
5 """ Bias """
6 b = tf. Variable (tf. constant (0.1 , [128]))
7 """ Matrix multiplication """
8 y = tf. matmul (x, W) + b
9 """ Rectified linear activation function """

10 relu = tf.nn.relu(y)

It is important to initialize the weights with noise, to avoid zero-gradients and break
eventual symmetry that can aggravate the optimization [8]. In the code above and

14

the models presented in this thesis, all weights are initialized by sampling from a
truncated normal distribution with zero mean and standard deviation of 0.1, where
values whose magnitude is more than 2 standard deviations from the mean are
dropped and re-picked. The bias values are all set to 0.1.
Altering the code above, it is straight-forward to expand the model with more layers
and nodes along with different activation functions or even increasing the input
dimension and performing convolution and pooling operations. The next step is to
apply a desired loss function and optimization algorithm.

Listing 3.2: The cross-entropy is calculated on top of a softmax function applied to
the final layer. The mean value of the batch is then computed and passed to the
ADAM optimizer (see section 4.1). The tensor y final represents the output from
the final layer.

1 """ The correct output from the training datset """
2 y_ = tf. placeholder (tf.float32 , [None , 8])
3 """ Cross entropy of the softmax output of the final layer """
4 cross = tf.nn. softmax_cross_entropy_with_logits (labels =y_ ,
5 logits = y_final)
6 """ Compute the mean over the batch """
7 cross_mean = tf. reduce_mean (cross)
8 """ Set the ADAM algorithm as optimizer """
9 train_step = tf.train. AdamOptimizer (). minimize (cross_mean)

3.2.2 Running a TensorFlow graph
Thus far, we have all we need to create a graph representing a simple multilayer
perceptron. In order to train the perceptron, a TensorFlow session is required.
When run, the session performs a single step of the chosen optimization algoritm,
altering the variables in the model to reduce the loss function. During the training,
the session requires data being passed to it. Reading from a file can be done by
adding file reading instructions to the TensorFlow graph, or by passing the data
directly from python code. In this work, the whole file is read at the start of the
program into a python object dataset. Python then feeds the data to the session
for each run. The function next batch() of the object dataset, generates a batch
of data points from the dataset, which is then fed to session via feed dict.

Listing 3.3: A TensorFlow session used to initialize all variables and run 1 000
training iterations.

1
2 """ Create the session """
3 sess = tf. InteractiveSession ()
4 """ Initializing the variables """
5 init_op = tf.group(tf. global_variables_initializer (),
6 tf. local_variables_initializer ())
7 sess.run(init_op)
8
9 """ Run 1000 training iterations with batch size 50 """

10 for i in range (1000)

15

11 x_train , y_train = dataset .train. next_batch (50)
12 sess.run(train_step , feed_dict ={x: x_train , y_: y_train })

3.2.3 Storing the TensorFlow graph
When dealing with large models, requiring up to days or weeks to train, it is import-
ant to monitor and save learned parameters periodically. The MonitoredTrainingSession
object automates this process, the user only needs to specify a path to the desired
directory where all model summaries will be stored. The method tf.summary()
lets the user choose tensors in the model that will be stored in the summary.
MonitoredTrainingSession also periodically generates checkpoint files, from which
the training can be resumed. Upon starting a Monitored Training Session, the train-
ing is automatically started from the state of the model in the last saved checkpoint
file.

3.2.4 Challenge of using TensorFlow
The main challenge encountered during this work was setting up a working Tensor-
Flow program. TensorFlow provides detailed tutorials of the basic components,
allowing to quickly set up a simple machine learning model, however, straying from
the path of these tutorials required significantly more work. For an inexperienced
user, understanding how to design the code demands some effort due to the way
the user is required to build the TensorFlow graph. This type of programming has
a significant learning curve. For instance, TensorFlow provides routines for sequen-
tially reading files during training, but due to the time needed to understand them,
an easier approach was chosen in this work by reading the whole file at the start of
the program.

3.3 Data reading
Routines for sequentially reading data from files during training are often needed
when processing large data sets of images. For instance, storing the training data
set of 800 000 event images in floating-point format would require a storage size of
about 800 000 · 300 000 · 4B = 960 GB, which is too much to fit into the memory
of a computer with a reasonable price. Although TensorFlow has good file reading
routines, the sparse nature of the neutron event images make it possible to load all
events into memory. The average amount of detected hits in each event is of the order
of 100, which allows to load the coordinates along with time and deposited energy
for each hit into memory. This reduces the memory needed to store 800 000 events
to approximately 320 MB. The images are then created when used by inserting the
time and energy values of each hit into a 3-D image with all pixel values initially
set to zero. This is repeated for each batch of events during training.

16

Chapter 4

Developing and testing models

Developing a deep learning model often requires an extensive process of trial and
error. Following the recommended procedure proposed by Ian Goodfellow, Yoshua
Bengio and Aaron Courville [10, p. 421], this process is systematized and can be
divided into three main parts. First, a working example of a simple CNN is set up
as a baseline model. The performance of this model is analyzed in order to find
potential improvements and the model is adjusted accordingly. This procedure is
repeated until satisfactory results are achieved.
It is important to be able to determine to what extent the CNNs can extract geo-
metrical properties from the 3-D images. Therefore, we start by evaluating models
that only take the total deposited energy and the number of hits as input, serving
as a performance reference. The architecture of the baseline CNN is chosen to be
relatively simple such that the performance of different parts in the network can be
assessed. By individually changing different parts in the network, for instance the
type of activation functions or number of nodes in a layer, their effect on perform-
ance can be determined. In this way, the procedure becomes systematized and we
obtain an indication of how further changes could improve performance.
A significant part of the work was spent while attempting to set up the baseline
model. The main reason for this was the time-wise poor performance of using
Central Processing Units (CPUs). The training could run for weeks without any
indication of learning, only to find errors in the code resulting in, for instance, a
network architecture different from the one intended. An initial benchmark, using
data provided by the TensorFlow web page, indicated that the speed increase of using
a Graphics Processing Unit (GPU) did not justify the work needed to acquire access
to a suitable GPU (see table 4.5). Fortunately, this could later be thoroughly tested,
showing that the speed increase was highly dependent on the size and architecture
of the network, and performing about 145 times faster on the baseline model when
trained on Nvidia’s Tesla K80 GPU [14].

17

4.1 Simple multilayer perceptron as accuracy ref-
erence

In order to have a accuracy reference of how well the neutron multiplicity can be
predicted by only accounting for the total deposited energy and the number of hits,
two simple feedforward networks were created with the ambition of reproducing
results similar to the ones presented in the NeuLAND technical design report [1,
p. 57]. The method used in the technical design report additionally uses geometrical
information of the events by merging nearby hits into ”clusters” according to a
certain routine.
The networks have two input nodes (total energy and number of hits), two fully-
connected layers with 128 ReLUs each in the first network and 8000 ReLUs each in
the second network and a final fully-connected layer with 8 ReLUs. In comparison,
the CNN AlexNet [6] with input images of dimension [256x256x3], has two final
4096-node fully-connected layers and one 1000-node output layer.
The output nodes create a vector of dimension 8 where the index of the largest
output value represents the predicted neutron number. The loss function is the cross-
entropy of a softmax function applied to the final layer and the minimization was
achieved with the ADAM optimization algorithm [15] and a batch size of 200 images.
The ADAM optimization, which uses adaptive learning rates, is used throughout
this thesis, with the parameters set to the same values as proposed by Diederik P.
Kingma and Jimmy Lei Ba [15]. Every 2 000 steps the models were evaluated on
the validation dataset containing 1 600 images for each neutron multiplicity (figure
4.1). At the final step of training the models were tested on the large independent
test dataset containing 100 000 images for each neutron multiplicity (table 4.1).

generated
% 0n 1n 2n 3n 4n 5n

de
te

ct
ed

0n 100 3 0 0 0 0
1n 0 93 17 2 0 0
2n 0 4 75 26 4 0
3n 0 0 9 59 28 6
4n 0 0 0 13 47 23
5n 0 0 0 0 20 56
6n 0 0 0 0 0 12

generated
% 0n 1n 2n 3n 4n 5n

de
te

ct
ed

0n 100 2 0 0 0 0
1n 0 89 14 1 0 0
2n 0 9 82 31 6 1
3n 0 0 4 38 14 2
4n 0 0 0 29 69 39
5n 0 0 0 0 10 46
6n 0 0 0 0 0 8

Table 4.1: Neutron identification matrices given by the two-layer fully-connected
models. Both models are tested on the test set containing 100 000 images for each
neutron multiplicity. Left: Model with 128 nodes in each layer. Overall correct
predictions: 71.8 %. Right: Model with 8000 nodes in each layer. Overall correct
predictions: 70.8 %.

18

Training iterations (#) ×104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 ReLU layer model

8000 ReLU layer model

Figure 4.1: The accuracy of the two-layer fully-connected models tested on the
validation set containing 1 600 images for each neutron multiplicity.

4.2 Baseline CNN model
As a starting point for image recognition, a convolutional neural network inspired by
AlexNet [6], consisting of layers with convolution and average pooling together with
a few last fully-connected layers, was employed. Specifically, the network has three
convolutional layers, with two convolution operations, one pooling step each, and
three fully-connected layers. The convolution operations are 3-D, acting on patches
of size [3x3x3], with stride sizes of one. All nodes in the network are ReLUs. Table
4.2 shows the output dimension, number of stored signals and parameters needed
for each operation, providing an idea of the memory consumption of the network.
The final test of the baseline CNN model (table 4.3) shows a large improvement
in accuracy compared to the MLP used for accuracy reference (table 4.1): the
percentage of overall correct predictions increase from 71.8 % to 78.3 %.

4.3 Attempting to speed up the learning process
The time needed to train the baseline model proved to be long, with weeks passing
before any indication of learning was seen. As an attempt to speed up the learning
process, the training was executed on multiple CPUs (table 4.4), i.e. distributed
training, and also on GPUs.
Between-graph replication and synchronous training [16] were implemented in the

19

Table 4.2: Baseline CNN architecture

Action Output size Signals (#) Parameters (#)
Input: [2x50x50x60] 300,000 0
Conv3-16: [16x50x50x60] 2,400,000 16*(3*3*3*2+1) = 880
Conv3-16: [16x50x50x60] 2,400,000 16*(3*3*3*16+1) = 6,928
PoolAvg2: [16x25x25x30] 300,000 0
Conv3-32: [32x25x25x30] 600,000 32*(3*3*3*16+1) = 13,856
Conv3-32: [32x25x25x30] 600,000 32*(3*3*3*32+1) = 27,680
PoolAvg2: [32x13x13x15] 81,120 0
Conv3-64: [64x13x13x15] 162,240 64*(3*3*3*32+1) = 55,360
Conv3-64: [64x13x13x15] 162,240 64*(3*3*3*64+1) = 110,656
PoolAvg2: [64x7x7x8] 25,088 0
FC: [12544x1x1x1] 12,544 (64*7*7*8+1)*12,544 = 314,716,416
FC: [12544x1x1x1] 12,544 (12,544+1)*12,544 = 157,364,480
FC: [8] 8 (12,544+1)*8 = 100,360

Total: ∼7.1M ∼472M

Total memory of signals: ∼7.1M → 7.1M*4 B = 28.4 MB (per image)
Total memory of parameters: ∼472M → 472M*4 B = 1.9 GB

generated
% 0n 1n 2n 3n 4n 5n

de
te

ct
ed

0n 100 0 0 0 0 0
1n 0 96 8 0 0 0
2n 0 4 84 17 1 0
3n 0 0 8 73 23 2
4n 0 0 0 10 61 26
5n 0 0 0 0 14 56
6n 0 0 0 0 1 15

Table 4.3: Neutron identification matrix given by the baseline CNN model. The
model is tested on a test set with 100 000 images for each neutron multiplicity.
Overall correct predictions: 78.3 %.

distributed training program such that each CPU had its own replica of the mod-
el/graph/network. Each CPU loads the whole training data set into memory and
randomly samples a batch of images from which it computes a gradient of the loss
function. One of the CPUs is selected to monitor and control the rest of the CPUs,
called chief, which collects an average of a predetermined number of gradients cal-
culated by the other CPUs. The chief then updates the parameters of the model
according to the learning algorithm and finally passes them back to the other CPUs.
Although running the training distributed even on multiple CPUs did speed up
the training process, running on a GPU turned out to be less time consuming in
both setting up and running the training. Training and using deep neural networks

20

Table 4.4: Distributed CPU test. CPU 2 and CPU 3 have similar computing power
while CPU 1 is slightly more powerful. We do not compare the specification of
the CPUs, instead we benchmark their performance separately (single). When the
training is distributed on multiple CPUs, each CPU computes an average gradient
over the indicated batch size, i.e when using two (three) CPUs, 2 (3) batches are
processed. Initial to a CPU processing a new batch of images, all CPUs have to have
finished their current batch and we see that a larger number of CPUs participating
results in a deacreased training speed per CPU. (seconds per image: s/i).

Batch
size

CPU 1
(single)

CPU 2
(single)

CPU 3
(single)

CPU 1,
CPU 3

CPU 1, CPU 3,
CPU 2

1 9 s/i 18 s/i
2 16 s/i 20 s/i
10 64 s/i 85 s/i 83 s/i 45 s/i 38 s/i

involves a lot of vector and matrix operations; operations which GPUs excel at.
In order to demonstrate the need of GPUs to train the CNNs considered in this
thesis, three CNNs with different sizes and architecture are trained on a CPU and
two different GPUs. The CPU used is an Intel Xeon E5-1650v2 [17] and the two
GPUs, an Nvidia Tesla K80 [14] and an Nvidia Geforce GT 750M [18] (for laptop).
The baseline CNN (table 4.2) and the CIFAR-10 model used in Tensorflow’s deep
learning tutorial [19] were compared to each other. The third model (which we for
now call the reduced baseline model), has the same architecture as the baseline CNN
model, but with 4 096 nodes instead of 12 544, making it small enough to fit in
the lower memory (4 GB) of the laptop GPU. The CIFAR-10 model consists of two
layers with one convolution and pooling each and finally two fully-connected layers.
The CIFAR-10 model takes 24x24 pixel RGB images as input, corresponding to 1728
values compared to 300 000 for the NeuLAND baseline CNN model. The results in
table 4.5 show that Nvidia’s Tesla K80 GPU performs about 7 times faster compared
to the Intel Xeon CPU for the CIFAR-10 model and about 145 times faster for the
baseline model.
Taking advantage of the large speed increase accompanied with the use of GPUs,
further training was performed on resources provided by the Swedish National In-
frastructure for Computing (SNIC) at High Performance Computing Center North
(HPC2N). Our project was approved 40 000 core-hours per month on the super-
computer Kebnekaise [20], corresponding to roughly 1.5 Tesla K80 GPUs running
continuously. Kebnekaise, installed during the summer 2016, consists of 468 Intel
Xeon E5-2690v4 CPUs, 20 Intel Xeon E7-8860v4 CPUs, 36 Intel Xeon Phi 7250
CPUs and 80 Nvidia Tesla K80 GPUs.

4.4 Uncertainty in training
During training of the baseline CNN model, the accuracy achieved with the valid-
ation dataset was subject to significant fluctuations, making the final performance
highly dependent on when the training was stopped. Stopping at a maximum in or-

21

Table 4.5: Intel Xeon E5-1650v2 CPU vs. Nvidia Tesla K80 GPU vs. Nvidia
GeForce GT 750M

Model
Intel Xeon
E5-1650v2
CPU

Tesla
K80 GPU

GeForce GT
750M GPU Batch size GPU

speedup

CIFAR-10 0.22 s/batch 0.032 s/batch - 128 images ∼7
Baseline 113 s/batch 0.77 s/batch - 15 images ∼145
Reduced base. 113 s/batch 0.60 s/batch 2.65 s/batch 15 images ∼188/∼43
Approx. cost 4.5 kSEK 46 kSEK 2 kSEK

der to achieve high performance (early stopping) is perfectly fine, although not well
suited when comparing different models. For instance, the two fully-connected mod-
els used as accuracy reference (figure 4.1) show different behaviour during training.
The accuracy of the 8000-node model reaches a higher maximum, but has a lower
average than the 128-node model, due to large fluctuations. Although the 8000-node
model reaches a higher maximum, it is difficult to argue for reproducibility when
trained on a new independent dataset.
We perform five independent training runs of the baseline CNN model and compute
the mean value and standard deviation of the last 21 validation steps, i.e. between
training step 140 000 and 162 000, for each run (figure 4.2). The fact that all five
mean values are well within one standard deviation of each other, indicate that the
fluctuations during a single run have a larger impact than the variations between
different runs. In figure 4.3, the variation from different training runs is compared
to the fluctuations during a single run. For the single run, the graph is smoothed by
a moving average filter along with a shaded area showing the standard deviation of
nearby datapoints. The second graph shows the mean value and standard deviation
of each validation step for the five independent runs.
Henceforth, when comparing the performance of different models, the mean value of
the last 21 validation steps is used. For simplicity, we refer to this as the end mean
value.

4.5 Improving the model

4.5.1 Removing events from the training set
Neutrons entering the detector have a significant probability1 of passing straight
through without any interactions and are then impossible to detect. In the case
where neutrons have passed through undetected we want the model to predict the
number of neutrons that have actually been detected. The events with undetected
neutrons will have a negative effect on training because they will always have a
higher neutron multiplicity than what the event image is indicating. The learning
algorithm will see images that are characteristic to, for instance, four neutrons but

1According to the simulated values in section 3.1.3, approximately 1.5 % of the neutrons do not
react in the detector at all.

22

Training iterations (#) ×104

0 2 4 6 8 10 12 14 16

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

run 1

run 2

run 3

run 4

run 5

Run 1 Run 2 Run 3 Run 4 Run 5
0.74

0.76

0.78

0.8

Mean value and standard deviation of

 step 120,000 to 162,000 for each run

Figure 4.2: The accuracy of the baseline model of five independent training runs,
for every 2 000 steps, tested on the validation set containing 1 600 images for each
neutron multiplicity. The inset graph shows the mean value, with error bars of the
standard deviation, over the steps from 120 000 to 162 000.

will be told that it shows both four and five neutrons or even higher in worse
scenarios. In order to remove this effect a lower energy limit is introduced. Each
individual neutron has to deposit a minimum of 50 MeV in the detector or the event
will be removed from the training set, ensuring that all neutrons have been detected.
Retraining the baseline CNN model on the modified dataset resulted in an end mean
of (77.3 ±1.6) % in comparison to (76.7 ±1.5) % for the original dataset. The error
gives the corresponding standard deviation.

4.5.2 Adding total deposited energy and number of hits
As a first step of improving the baseline model, we extend the architecture by adding
the total deposited energy and the number of hits as input. There is no reason to
assume that the network will, on its own, calculate these values. Two ReLUs,
taking the total deposited energy and number of hits as input, are concatenated
with the output of the last pooling operation, altering the output size from 25 088
to 25 090. Adding the two nodes increases the number of parameters by 25 088
which is negligible compared to the 472 million already existing parameters, thus
not noticeably affecting training time. We refer to this model as the extended baseline
model.

23

Figure 4.3: The accuracy of the baseline model, for every 2 000 steps, tested on
the validation set containing 1 600 images for each neutron multiplicity. Red: The
mean value and standard deviation (shaded area) of 5 individual training runs for
each step in training. Blue: The accuracy of a single training run, smoothed with a
moving average filter along with a shaded area representing the standard deviation
of nearby data points.

The accuracy on the validation set shown in figure 4.4, indicates that no learning was
achieved without properly normalizing the input data (discussed in next section).
When the input data was properly normalized, the training resulted in an end mean
of (77.1 ±1.4) % as compared to (76.7 ±1.5) % for the baseline CNN model.

4.5.3 Data normalization
The absolute values of the total deposited energy and the energy deposited in each
hit will on average be of different scales; the total energy will be larger when meas-
ured in MeV. When the optimization algorithm alters a parameter in the network,
it will have a larger relative effect on the the larger input values. In practice, this
imposes difficulties for the learning algorithm, which is also the current case. In
order to avoid this, the input data is normalized per channel to be in the interval [0,
1]. Here, the pixel energy values, pixel time values, total energy and total hits are
different input channels. Each channel is divided by the channel’s maximum value
of the entire dataset.
Normalizing the data in this way seems to solve the problem of having input channels

24

of varying magnitude (figure 4.4), although, with an end mean of (72.6 ±1.3) %,
showing a lower performance than the baseline CNN model.
Depending on the amount of energy deposited per particle, the images will vary in
brightness, possibly affecting how well the network can extract important features.
This is examined by normalizing each image separately such that they will have
approximately the same brightness. Two normalization procedures are evaluated,
the first was achieved by, per channel, subtracting from each pixel value the mean
value and dividing by the standard deviation such that the images have pixel values
with zero-mean and a standard deviation of one. The second approach was to divide
each pixel value by the image maximum, thus limiting all values to the region [0, 1].
The two per-image normalization techniques both proved to give an increased ac-
curacy (figure 4.5), performing similar to the baseline CNN model. The zero-mean
normalization resulted in an end mean of (77.1 ±1.4) % and the [0, 1] normalization
in (76.7 ±0.7) %. Henceforth, the zero-mean normalized data will be used during
training.

Training iterations (#) ×104

0 2 4 6 8 10 12 14 16

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Baseline extended (unnormalized)

Baseline extended (normalized)

Figure 4.4: The accuracy of the extended baseline model accounting for total energy
and number of hits, tested on the validation set containing 1 600 images for each
neutron multiplicity. The model is trained on both normalized and unnormalized
data. The normalization is obtained by dividing each channel by the channel’s
maximum value of the entire dataset.

25

Training iterations (#) ×104

0 2 4 6 8 10 12 14 16

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Baseline extended ([0, 1] normalized)

Baseline extended (std normalized)

×104

4 6 8 10 12 14

0.72

0.74

0.76

0.78

Figure 4.5: The accuracy of the extended baseline model accounting for total en-
ergy and number of hits, tested on the validation set containing 1 600 images for
each neutron multiplicity. The model is trained on both the zero-mean and [0, 1]
normalized data.

4.5.4 Reducing the training dataset
Up to this point, the accuracy on the validation dataset has shown no significant
discrepancy from the accuracy on the training dataset, and therefore no indication
of overfitting. Whether this is due to the model having a low capacity or that the
training period is too short in comparison to the size of the training dataset is not
obvious. By reducing the size of the training dataset from 100 000 to 10 000 images
per neutron multiplicity, the extended baseline model starts overfitting the training
data after approximately 40 000 training iterations, also at which the validation
error starts increasing (figure 4.6). Although we cannot state whether the capacity
of the model is adequate for the large dataset, the low discrepancy of the training
and validation accuracy suggests a potential performance increase by extending the
training period.

4.5.5 Variations of the extended baseline model
A few different variations of the extended baseline model where evaluated without
any increase in performance. All changes were done separately with regard to the
extended baseline model. The effect on the end mean values from three of the
variations was too small to make any statement of the effect on performance. The

26

Training iterations (#) ×104

0 2 4 6 8 10 12 14 16

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100,000 images per neutron multiplicity. Validation dataset

100,000 images per neutron multiplicity. Train dataset

10,000 images per neutron multiplicity. Validation dataset

10,000 images per neutron multiplicity. Train dataset

Figure 4.6: The accuracy of the extended baseline model accounting for total energy
and number of hits, tested on the validation set containing 1 600 images for each
neutron multiplicity. The model is trained on the entire training dataset containing
100 000 images per neutron multiplicity and a subset only containing 10 000 im-
ages per neutron multiplicity. The curve of the accuracy on the training dataset is
smoothed with a moving average filter over nearby data points.

variations included the following changes to the extended baseline model:
• changing the training batch size from 15 to 30 and 50 images, respectively,
• changing the number of nodes from 12 544 to 4 096 in each of the FC-layers,
• increasing the number of parallel convolution operations by a factor of two in

each layer and reducing the number of nodes in the FC-layers from 12 544 to
8 000.

The time per iteration during training increased from approximately 0.77 s to 1.23
s and 1.75 s for training with batch size of 30 and 50 images, respectively, and
additionally had no effect on the accuracy as a function of iterations. In conclusion,
the training period was increased without affecting the accuracy.
Reducing the number of nodes to 4 096 in the FC-layers decreased the time per
iteration to around 0.6 s, i.e. reducing the training time by roughly 22 %. The fact
that the model performs similar when the number of parameters in the network
is reduced by almost 75 %, suggests that the baseline model has as an excessive
number of nodes.
Changing all average pooling operations into max pooling operations, on the other
hand, did have a negative effect on the accuracy, resulting in an end mean value of

27

(76.6 ±1.1) %. The decrease of 1.4 percentage points from the extended baseline
model is larger than the standard deviation, and is therefore more likely caused by
a lower performance of the model.

4.5.6 Increasing the number of layers
Since the variations of the baseline model did not show any clear increase in per-
formance, a different architecture is evaluated (table 4.6). The network has five
convolutional layers with two convolution operations and one pooling each, and four
fully-connected layers. Since this network has two additional pooling operations,
the final convolutional layer has an output of dimension of [256x2x2x2] instead of
[64x7x7x8] for the extended baseline model, i.e. the number of output signals of the
final convolutional layer is reduced from 25 088 to 2 048. Since the performance was
unaffected when the number of nodes was reduced in the extended baseline model,
we reduce the number of nodes in the fully-connected layers to 2 048. While the
memory consumption of the signals remains roughly the same, the number of para-
meters is significantly decreased, which results in a 20 % shorter training time per
image batch. The model resulted in an end mean of (78.2±1.3) %, compared to (77.1
±1.4) % for the extended baseline model with per-image zero-mean normalization.

4.6 Evaluating the individual neutron multiplicit-
ies

The learning algorithm is designed to maximize the total accuracy without any lim-
itations on the individual neutron multiplicities. This allows the learning algorithm
to change the accuracy of the individual multiplicities in any way as long as the total
accuracy is increased. The individual accuracies on the validation dataset during
training show large fluctuations (figure 4.7).

4.7 Accounting for light loss due to Birk’s law
In an attempt to approximate the light yield in the paddles, Birk’s law [21] is
implemented in the simulations. Birk’s law is an empirical formula for the light
yield per path length as a function of the energy loss per path length for a particle
traversing a scintillator. Both the baseline model and the two-layer fully-connected
model only accounting for the total energy and the number of hits, are trained on
the new dataset. Both models suffer from a significant decrease in accuracy and the
baseline model does no longer show capability of extracting important features from
the images (figure 4.8), i.e. the performance is the same as when only using the now
detected number of hits and total light.

28

Table 4.6: CNN with increased number of layers architecture

Action Output size Signals (#) Parameters (#)
Input: [2x50x50x60] 300,000 0
Conv3-16: [16x50x50x60] 2,400,000 16*(3*3*3*2+1) = 880
Conv3-16: [16x50x50x60] 2,400,000 16*(3*3*3*16+1) = 6,928
PoolAvg2: [16x25x25x30] 300,000 0
Conv3-32: [32x25x25x30] 600,000 32*(3*3*3*16+1) = 13,856
Conv3-32: [32x25x25x30] 600,000 32*(3*3*3*32+1) = 27,680
PoolAvg2: [32x13x13x15] 81,120 0
Conv3-64: [64x13x13x15] 162,240 64*(3*3*3*32+1) = 55,360
Conv3-64: [64x13x13x15] 162,240 64*(3*3*3*64+1) = 110,656
PoolAvg2: [64x7x7x8] 25,088 0
Conv3-128: [128x7x7x8] 50,176 128*(3*3*3*64+1) = 221,312
Conv3-128: [128x7x7x8] 50,176 128*(3*3*3*128+1) = 442,496
PoolAvg2: [128x4x4x4] 8,192 0
Conv3-256: [256x4x4x4] 16,384 256*(3*3*3*128+1) = 884,992
Conv3-256: [256x4x4x4] 16,384 256*(3*3*3*256+1) = 1,769,728
PoolAvg2: [256x2x2x2] 2,048 0
FC: [2048x1x1x1] 2,048 (256*2*2*2+1)*2,048 = 4,196,352
FC: [2048x1x1x1] 2,048 (2,048+1)*2,048 = 4,196,352
FC: [2048x1x1x1] 2,048 (2,048+1)*2,048 = 4,196,352
FC: [8] 8 (2,048+1)*8 = 16,392

Total: ∼7.2M ∼16M

Total memory of signals: ∼7.2M → 7.2M*4 B = 28.8 MB (per image)
Total memory of parameters: ∼16M → 16M*4 B = 64 MB

4.8 Predicting neutron momentum
Predicting the momentum of a single neutron entering the detector was attempted
by altering the number of output nodes of the baseline CNN from 8 to 3. The three
output nodes will be the the prediction of the three spatial components xi of the
momentum. Since the cross-entropy loss function acts on probability distributions,
it does not make sense in the context of regression and therefore a new loss-function
is needed. The mean squared error

gmse =
3∑

i=1
(yi − xi)2, (4.1)

is chosen as a new loss function, where yi are the correct momentum components
and the factor of 1

3 has been omitted. The training is achieved with the ADAM
optimization and the datasets only contain events where a single neutron has entered
the detector.
The root mean squared error at the last training step is of the order of ∼ 17 MeV/c
(4.9), for each spatial component. For a neutron with energy within 550 and 650

29

Figure 4.7: The accuracy of the extended baseline model accounting for total energy
and number of hits, tested on the validation set containing 1 600 images for each
neutron multiplicity. The curves are smoothed with a moving average filter along
with a shaded area representing the standard deviation of nearby data points.

MeV, the z component can have a momentum between 1156 and 1282 MeV/c. The
momentum difference of ∼ 17 MeV/c thus corresponds to an error of 1.3 to 1.5
%. This might seem promising, however, keep in mind that during training the
model only sees momentum values in the z direction between 1156 and 1282 MeV/c,
corresponding to a maximum error of 11 %. Furthermore, the error declines steady
during training with no clear indication of convergence, suggesting that a lower error
can be achieved by further training.

30

Training iterations (#) ×104

0 2 4 6 8 10 12 14 16

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 ReLU model

Baseline model

Figure 4.8: The accuracy of both the baseline model and the two-layer fully-
connected model only accounting for the total energy and the number of hits, tested
on the validation dataset containing 1 600 images for each neutron multiplicity. The
datasets are altered in order to account for the light yield loss due to Birk’s law.

31

Training iterations (#) ×104

0 2 4 6 8 10 12 14 16

R
o

o
t

m
e

a
n

 s
q

u
a

re
 e

rr
o

r

101

102

Root mean squared error validation dataset

Root mean squared error train dataset

x error train dataset

y error train dataset

z error train dataset

Figure 4.9: The root mean squared error of the momentum prediction of a single
neutron entering the detector from the extended baseline model, tested on both
the validation dataset, containing 1 600 images, and the training dataset. The plot
shows the total root mean squared error along with the error of the individual x, y
and z axes. The factor of 1

3 has been omitted in the root mean squared error.

32

Chapter 5

Discussion and conclusion

5.1 Training on Graphic Processing Units
The documentation of TensorFlow recommends the use of GPUs and provides some
benchmarks for different models trained on different GPUs. However, the lack lack
of CPU benchmarks makes it harder to appreciate the actual gain of switching to
a GPU. During this work we have learned, the hard way, the significant increase in
speed obtained when using GPUs for training CNNs. The speed increase factor of
185, when using the expensive Nvidia Tesla K80, clearly advocates the use of GPUs,
although, this is highly dependent on the architecture and size of the model. With a
price tag approximately half of the cost of the Intel Xeon E5-1650v2 CPU, the Nvidia
Geforce GT 750M reaches a speed increase factor of 40. In comparison, distributing
the training on multiple machines would require at least 40 CPUs in order to obtain
a similar increase in speed. An upside is that this kind of distributed training is
possible also with GPUs, further increasing the potential increase in training speed.

5.2 CNN for reconstructing neutron events
The accuracy increase obtained when going from the MLPs used as accuracy refer-
ence to the extended baseline CNN model, indicates a great potential in using CNNs
for neutron reconstruction. The results, particularly from the momentum predic-
tion, suggest that the CNNs are able to extract important geometrical features from
the images, although, the models do have some flaws.
Due to the significantly varying accuracy during training, it is not a trivial matter
how the performance of different models should be evaluated. The different models
evaluated in this thesis produce similar results and only in some cases are the differ-
ences large enough to allow to to rank them performance-wise, with certainty. Using
the end mean value, we obtain an indication of the performance of the models. A
summary of the different models is presented in table 5.1.
Additionally, since we set the learning algorithm to minimize the total accuracy of
all neutron multiplicities, the learning algorithm is free to alter the accuracy of the
individual multiplicities in any way as long as the total accuracy increases. As is
evident in figure 4.7, the individual accuracies fluctuate significantly, particularly
for high neutron-multiplicities. Whether this is due to the small batch size and that

33

Table 5.1: The end mean value of the accuracy of the different models evaluated.

Model End mean
Baseline CNN. (76.7 ± 1.5) %
Baseline CNN. Training dataset with a limit of 50
MeV minimum deposited energy per neutron (see
section 4.5.1).

(77.3 ± 1.6) %

Extended baseline. Normalizing over the entire dataset. (72.6 ± 1.3) %
Extended baseline. Per-image zero-mean normalization. (77.1 ± 1.4) %
Extended baseline. Per-image [0, 1] normalization. (76.7 ± 0.7) %
Extended baseline with max pooling. (76.6 ± 1.1) %
Increased number of layers. (see section 4.5.6). (78.2 ± 1.3) %

the model locally overfits the data, should be further investigated. The fact that
there was no noticeable effect on the accuracy when the number of nodes in the
FC-layers of the extended baseline model was significantly reduced, suggests that
the extended baseline model has an excessive amount of nodes, making it capable
of overfitting. The improved accuracy of the model with an increased number of
layers (see section 4.5.6), further argues that a larger number of convolutional layers
is more important than having many nodes in the fully-connected layers.
Training the extended baseline model without normalizing the data shows that the
ADAM algorithm encounters difficulties when the values of the different input chan-
nels are largely separated in magnitude. The model reaches an accuracy on the val-
idation dataset of approximately 65 % after only 2 000 training iterations: quicker
than all the other models accounting for the images. Following the discussion about
data normalization (section 4.5.3), this indicates that the learning algorithm has a
larger relative effect on the larger input channels i.e. the total energy deposited and
the total number of hits. The explanation of why the accuracy suddenly drops is a
matter outside the scope of this thesis.
Both of the two per-image normalization techniques resulted in larger end mean
values of the accuracy compared to the technique normalizing over the entire dataset.
A perhaps, hasted conclusion could be that the model is better suited to extract
features from images of approximately equal brightness. If this were the case, the
performance of the baseline CNN model trained on unnormalized data, should be
closer to the performance of the extended baseline model trained on data normalized
over the entire dataset. Instead, the discrepancy in performance could originate from
a too short training period, not letting the model reach its full potential.
The training period for most of the models lasted roughly 40 h, including the accur-
acy tests on the validation dataset. Due to time constraints and certain priorities,
the training period was not increased. In future research this should be highly pri-
oritized. On the other hand, reducing the dataset (section 4.5.4) had a significant
negative effect on performance and resulted in a textbook example of overfitting.

34

5.3 Accuracy cost due to Birk’s law
Accounting for the light yield loss due to Birk’s law, resulted in a considerable
decrease of accuracy. A decrease was expected, although, not to the extent that the
CNNs no longer are able to extract geometrical features that result in an increased
accuracy. The short time spent on studying Birk’s law in detail was insufficient to
make any qualative statements that explain the large decrease in performance.

35

Chapter 6

Outlook

Although the decrease in performance due to the implementation of Birk’s law is a
considerable setback, this thesis proves that CNNs are able to extract geometrical
features from the neutron images (without Birk’s law), motivating future research.
Viewing the neutron events as 3-D images was done in an attempt to reduce the
size needed of the CNNs. In further investigations the neutron events can instead
be viewed as 3-D videos, where the classification and regression could be achieved
with a CNN and a Recurrent Neural Network (RNN) together, thus ”absorbing” the
time information. The combination of CNNs with RNNs has shown state-of-the-art
performance on video recognition tasks [22].
Working with simulated data is beneficial since it provides a practically unlimited
dataset: once you run out of data, you run further simulations. This removes the
otherwise time consuming task of collecting data, which many other image recog-
nition projects are subject to, allowing future research to solely focus on designing
the optimal model for reconstructing neutron events.

36

Bibliography

[1] GSI. Technical Report for the Design, Construction and Commissioning of
NeuLAND: The High-Resolution Neutron Time-of-Flight Spectrometer for R3B.
http://www.fair-center.de/fileadmin/fair/experiments/NUSTAR/Pdf/
TDRs/NeuLAND-TDR-Web.pdf. 2011. (Visited on 2017-06-10).

[2] GSI. Neutron ToF Spectrometer NeuLAND.
https : / / www . ncbi . nlm . nih . gov / pmc / articles / PMC4300861/. 2016.
(Visited on 2017-01-16).

[3] J.G. Keller and E.F. Moore. Shower Recognition and Particle Identification in
LAND. GSI Annual Report 1991, 1992, p. 39.

[4] Hans Törnqvist and Linus Trulsson. “Probabilistic Neutron Tracker: Making
Good Guesses on Invisible Interactions in Subatomic Physics”. MA thesis.
Chalmers University of Technology, 2009.

[5] DeepL. AI Assistance for Language.
https://www.deepl.com/. 2017. (Visited on 2017-08-31).

[6] Alex Krizhevsky and Ilya Sutskever and Geoffrey E. Hinton. ImageNet Clas-
sification with Deep Convolutional Networks.
https://papers.nips.cc/paper/4824-imagenet-classification-with-
deep-convolutional-neural-networks.pdf. 2012. (Visited on 2017-08-03).

[7] Adrian Cho. “AI’s early proving ground: the hunt for new particles”. In:
Science 357.6346 (2017), p. 20. doi: http://science.sciencemag.org/
content/357/6346/20.full. (Visited on 2017-08-31).

[8] TensorFlow. TensorFlow.
http://tensorflow.org. 2017. (Visited on 2017-08-28).

[9] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.
[10] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning.

http://www.deeplearningbook.org. MIT Press, 2016.
[11] H̊akan T. Johansson. ggland - command-line simulation wrapper.

http://fy.chalmers.se/˜f96hajo/ggland/. 2017. (Visited on 2017-08-08).
[12] CERN. GEANT4.

http://geant4.cern.ch/. 2017. (Visited on 2017-08-20).
[13] Nvidia. CUDA GPUs.

https://developer.nvidia.com/cuda-gpus. 2017. (Visited on 2017-09-10).

37

[14] nvidia.com. NVIDIA TESLA K80.
http : / / www . nvidia . com / object / tesla - k80 . html. 2017. (Visited on
2017-08-09).

[15] Diederik P. Kingma and Jimmy Lei Ba. ADAM: A Method for Stochastic
Optimization.
https://arxiv.org/pdf/1412.6980.pdf. 2015. (Visited on 2017-08-29).

[16] TensorFlow. Distributed TensorFlow.
https://www.tensorflow.org/deploy/distributed. 2017. (Visited on
2017-08-28).

[17] intel.com. Intel Xeon Processor E5-1650 v2.
https://ark.intel.com/sv/products/75780/Intel-Xeon-Processor-
E5-1650-v2-12M-Cache-3_50-GHz. 2017. (Visited on 2017-08-10).

[18] nvidia.com. NVIDIA GeForce GT 750M.
https://www.geforce.com/hardware/notebook-gpus/geforce-gt-750m.
2017. (Visited on 2017-09-14).

[19] TensorFlow.org. Convolutional Neural Networks.
https://www.tensorflow.org/tutorials/deep_cnn. 2017. (Visited on
2017-08-08).

[20] HPC2N. Kebnekaise.
https : / / www . hpc2n . umu . se / resources / hardware / kebnekaise. 2017.
(Visited on 2017-09-16).

[21] J.B. Birks. “Scintillations from Organic Crystals: Specific Fluorescence and
Relative Response to Different Radiations”. In: Proc. Phys. Soc. A64.10 (1951),
pp. 874–877.

[22] Li Yao and Atousa Torabi and Kyunghyun Cho and Nicolas Ballas and Chris-
topher Pal and Hugo Larochelle and Aaron Courville. Describing Videos by
Exploiting Temporal Structure.
http : / / www . cv - foundation . org / openaccess / content _ iccv _ 2015 /
papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf. 2015. (Visited
on 2017-09-12).

38

Glossary

3-D - Three-dimensional
API - Application Programming Interface
CNN - Convolutional Neural Network
ConvM-N - 3d convolution of patch size [MxMxM] to same size image with N

output features.
CPU - Central Processing Unit
FC - Fully-connected layer.
GPU - Graphics Processing Unit
MLP - Multilayer Perceptron
PM-tube - Photomultiplier tube.
PoolAvgN - 3d average pooling over patch size [NxNxN].
PoolMaxN - 3d max pooling over patch size [NxNxN].
ReLU - Rectified Linear Unit.

39

