

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, October 2014

A multi-CDN request routing strategy
Master of Science Thesis in Computer Science

OSCAR SÖDERLUND

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

A multi-CDN request routing strategy

OSCAR SÖDERLUND

© OSCAR SÖDERLUND, October 2014.

Examiner: PETER DAMASCHKE

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden October 2014

Abstract

In this thesis, we design and implement a multi-CDN request routing strategy for Spotify’s
audio files. Through A/B testing, we show that our strategy improves median download
latency compared to Spotify’s existing routing strategy.

Our strategy groups Spotify’s users by autonomous system number and country, and
uses a linear programming model on download latency log messages to generate routing
weights on a group-by-group basis.

Our linear programming model generates routing weights with the goal of minimising
request latencies, while also preserving a number of traffic volume constraints.

Acknowledgements

Thank you Niklas Gustavsson of Spotify, for suggesting this thesis, and for your invaluable
guidance and support throughout the whole project.

Thank you Peter Damaschke of Chalmers University of Technology, for your theoretical
advice and for guiding my report writing.

Table of Contents

1 Introduction

Background . 7

Goals . 8

Method . 8

Location . 8

Domain and literature reviews . 8

Data retrieval and analysis . 8

Iterative development. 8

A/B testing. 9

Limitations . 9

Scientific challenges . 9

Significant domain-specific requirements . 9

Unique problem domain . 9

Local versus global optimisation . 10

Ethical aspects . 10

Thesis outline . 11

2 Domain review

Music streaming at Spotify . 12

Interactive streams . 12

Download latency . 13

Audio files . 13

Long-tail popularity distribution . 13

1

Audio file storages . 14

Master storage . 14

production-storage . 14

Content delivery networks . 15

Differences between external CDNs and Spotify’s production-storage 16

A/B testing at Spotify . 17

Overview . 18

Defining groups . 18

Independence across tests . 18

Significance testing . 19

Logging at Spotify . 19

Topics and schemas . 19

Storing log messages in HDFS . 20

Batch processing with Hadoop and Hive. 20

Download latencies. 20

Spotify’s regions . 21

The storage-resolve service. 23

Overview . 23

Routing rules. 23

Routing strategy . 23

Autonomous systems . 24

Overview . 24

Size and numbers . 24

Impact on latency . 26

Summary . 26

3 Literature review

Related work . 27

IDNS . 27

WhyHigh . 27

Latency-based load balancing . 28

Summary . 28

2

Finding an optimisation model . 29

Requirements . 29

Outcome . 29

Linear programming . 29

Overview . 30

Formal notation . 30

Canonical and non-canonical form . 30

The simplex algorithm . 31

4 Routing strategy

Overview . 32

Dividing Spotify’s users into groups . 32

Generating per-group routing weights . 33

Latency log messages as input . 33

Updating the routing weights . 33

Using the routing weights . 34

Linear programming model . 35

Model definition. 35

Decision variables . 35

Input data . 35

Constraint parameters . 35

Objective function . 36

Routing weights . 36

Expected latency. 36

Constraints . 37

Default weights . 37

Preprocessing . 38

Expected latency calculation . 38

Request count filter . 38

Latency difference filter. 38

3

5 Implementation

Overview . 40

Data pipeline . 41

Hive-job . 41

Preprocessing step . 41

GMPL model. 41

Router . 42

Creating per-group and per-storage A/B test groups. 42

Misc . 42

6 A/B test

Test statistic . 44

Test duration . 44

Test population . 44

Excluded requests . 44

Included requests . 45

Included countries . 45

Test groups . 46

Control group . 46

Treatment group. 47

Significance test . 47

Null hypothesis . 47

Model parameters . 47

Storages. 47

Δ = 1 day. 48

α = 10000 requests/storage . 48

γ = 1.20 . 48

Default groups. 48

Constraints . 49

Routing weights. 50

A/A test . 51

4

7 Results

A/B test . 52

Median latency . 52

p-value . 52

A/A test . 52

Median latency . 52

p-value . 52

Analysis . 53

Percentiles . 53

Countries . 53

Higher latency difference filter . 54

8 Discussion

Conclusion . 56

Successful A/B test outcome. 56

Test statistic decrease mainly due to benefits in the US 56

Significant benefits in the Pacific and small markets 57

Correlation between effectiveness and latency differences 57

Extreme routing weights due to linear model . 57

Potential issues . 58

Restrictive filters prevent improvements in small markets 58

Traffic patterns interfering with constraints . 58

Minimum request count filter causing weight oscillation 59

Future work . 59

Experiments with more permissive filter parameters 59

Experiments on all traffic . 59

Publish routing weights as configuration file . 59

Experiment with weekly optimisation . 60

5

9 Appendix

GMPL model . 61

Constraints . 63

Bibliography

6

1
Introduction

Background

Spotify streams music to over 40 million people every month.

Delivering a top notch streaming experience to every user is critically important. A big
part of this is being able to stream music with no perceivable delay.

The technical term for delay is latency. Spotify denotes the time between a user initiating a
stream and the start of music playback as playback latency. An important part of achieving
low playback latency is being able to serve audio files at low download latency. Download
latency is the time between requesting a file and receiving its initial contents.

Spotify streams audio files from their own data centres, but also from content delivery
networks (CDN). One reason for why Spotify uses CDNs is to assure that every user can
stream music from a nearby server, thereby achieving low download latency.

At the time of our thesis work, Spotify is still in the early stages of fully utilising CDNs. As
such, there are many improvements to be made.

In this report, we propose one such improvement; a multi-CDN request routing strategy,
with the goal of routing every user to the lowest latency CDN.

7

Goals

The goal of our thesis project has been to develop a routing strategy for Spotify’s audio
files, with the objective of minimising download latencies.

The important milestones in this project has been to:

• understand the problem domain

• find a suitable optimisation model that fits the problem domain

• produce an implementation of the routing strategy

• measure the performance of the routing strategy

Method

Location

We have carried out our thesis project at Spotify’s office in Gothenburg, together with the
team responsible for music streaming.

Domain and literature reviews

We have conducted a domain review on the subject of Spotify’s music streaming infras-
tructure, with the goal of better understanding our problem and limitations on possible
solutions.

We have also conducted a literature review, where we have looked at related work and a
number of applicable optimisation algorithms.

Data retrieval and analysis

We have used latency log messages as input to our optimisation model.

Access to this data has been provided by Spotify, through their internal toolchains for log
message analysis.

Iterative development

We have used an iterative workflow when developing our routing strategy.

For each iteration; we have implemented, tested and integrated the strategy into Spotify’s
music streaming infrastructure. Every development cycle has ended with a live test.

The end result presented in this report is the product of our final iteration of development
and live testing.

8

A/B testing

We have used A/B testing to evaluate the effectiveness of our routing strategy.

A/B testing is a commonly used methodology, which is described in detail in the paper
Guide to controlled experiments on the web1. Spotify’s specific A/B testing methodology is
described in chapter 2.

We have used Mann-Whitney’s U-test to prove statistical significance in our A/B test re-
sults. The particulars of our A/B test is described in detail in chapter 6.

Limitations

We have limited our work to selecting and implementing one single optimisation model,
as opposed to evaluating multiple optimisation models against each other. Lack of time is
the major reason for this.

Any production code at Spotify, however experimental, must be thoroughly reviewed and
tested. This has required us to spend a significant amount of work on iterative implemen-
tation; involving a rigorous process of code review, unit testing and integration testing.

This limitation has, in the end, enabled us to run live tests, the results of which are pre-
sented in chapter 7.

Scientific challenges

Significant domain-specific requirements

The main scientific challenge in our thesis work has been to develop a request routing
strategy that fits Spotify’s specific needs. Adapting a theoretical model to a set of practical
requirements is always challenging, our case has been no exception.

For example, Spotify already has an existing system for routing requests that we are re-
quired to integrate with. In chapter 2, we learn precisely how Spotify’s storage-resolve ser-
vice works, and what kind of restrictions it imposes upon our routing strategy.

Unique problem domain

Our problem of routing requests to low latency CDNs may seem like a variation of the
general load balancing problem, commonly encountered in distributed systems theory.
This, however, is not the case.

The fundamental load balancing problem concerns distributing units of work across mul-
tiple machines. The concept of a single machine is not part of our domain.

9

We deal with distributing requests across multiple CDNs, which in turn are made up of
many distributed clusters of machines. There is no notion of routing requests to specific
machines. There is also no notion of how our routing affects the load of individual ma-
chines.

Inside a CDN, load is distributed among machines in a way that is opaque to us. Our
problem is solely concerned with making optimal routing decisions to the entry points of
these networks. How requests are routed once inside these networks is out of our control.

In chapter 2, we learn that our problem is rare, albeit not previously unheard of.

Local versus global optimisation

Another important aspect of our problem domain is dealing with global versus local opti-
misation.

We cannot blindly route every incoming request to the lowest latency CDN. We must also
account for how our routing strategy affects overall latency. We must make sure not to
trade slightly higher performance in the present for significantly lower performance in the
future.

For example, in chapter 2, we learn about traffic volume commitments that our routing
strategy absolutely must adhere to. We also learn about how CDN caches work, and how
local optimisation may result in cold caches and future performance degradation.

Ethical aspects

Download latency not only affects the quality of experience for Spotify’s users, it also
affects the energy consumption in mobile devices. Every time someone uses Spotify to
stream music through a smartphone or tablet, that device must divert extra power to its
radio transmitter, increasing energy consumption. Spotify has an environmental respon-
sibility to minimise their impact on energy consumption.

Ericsson has published a set of guidelines for smartphone app developers2. They strongly
suggest limiting network usage, due to the high energy requirements of network trans-
mitters in mobile devices. A network transmitter can be in several different modes, and
prolonged data transfers requires the device to be in the most energy consuming mode.

Akamai, a global CDN provider, has found that achieving low latency is crucial to also
achieving high data throughput3. Thus, by enabling downloads to start faster, we also
shorten their duration. This leads to a reduction of energy usage for those who use Spotify
to stream music through their smartphones and tablets.

10

Thesis outline

Chapter 2 summarises our domain review. Chapter 3 summarises our literature review,
and presents the basics of linear programming. Linear programming is the foundation of
our routing strategy, presented in chapter 4. In chapter 5, we present the implementation
of this routing strategy.

Finally, chapter 6 describes how we have conducted our live tests, followed by test results
in chapter 7 and our conclusions in chapter 8.

11

2
Domain review

This chapter contains background information on our problem domain.

We start with general aspects of Spotify, their clients and their backend, and then move
on to content delivery networks, finally ending with some background on autonomous
systems and Internet topology.

Music streaming at Spotify

Every instance of a song being played on Spotify is referred to as a stream. An essential
part of the Spotify user experience is having all streams start with no perceivable delay.

For example, when playing music through Spotify’s mobile app, you would expect music
to start playing the moment you tap on a song. A noticeable delay, and the app would
be experienced as sluggish. Ideally, streaming music through Spotify should be indistin-
guishable from playing MP3 files off the local hard drive.

This means that audio file downloads must be handled very swiftly. In order for a stream
to start, the initial part of the audio file must first be downloaded. Spotify uses intelligent
caching and prefetching strategies to make sure that most audio files are available even
before a song starts playing.

However, caching and prefetching is not a universal solution, some streams can never be
prefetched. These streams belong to the category of interactive streams.

Interactive streams

Streams either start as a result of a user action, such as clicking or tapping on a specific
song, or as a result of playback progressing automatically from one song to the next in the
currently playing context, such as a playlist. A stream initiated by a user action is referred
to as an interactive stream.

Interactive streams pose a significant challenge, since user actions are stochastic and can-
not be reliably predicted. This limits the efficiency of caching and prefetching strategies.
Some interactive streams are bound to be uncached. In order for these streams to start no

12

perceivable delay, the Spotify client must be able to download the initial part of audio files
with no perceivable delay.

Download latency

The time between initiating a file download and receiving the initial set of bytes for that
file is formally referred to as download latency, or just latency.

Latency is generally measured in milliseconds (ms). Spotify has found that music playback
delays larger than 250 ms become clearly noticeable to the user. In terms of download
latency, 250 ms is not much time.

As an example, according to regular latency measurements performed by Verizon4, the
average latency of any request from Singapore to the US is around 170 ms, and that only
applies to requests within Verizon’s own network. Requests originating from other net-
works are likely to experience even higher latencies.

According to the same data, the average latency from Malaysia to the UK is just above
250 ms. Spotify has a data centre in London. Were Spotify to stream music from this
data centre to users in Malaysia, those users would unavoidably receive a sluggish user
experience. As such, it is imperative that Spotify route audio file requests to low-latency
audio file storages.

Audio files

Before we look at how Spotify stores and delivers their audio files, it is imperative to un-
derstand that not all audio files are equal. Some tracks are streamed way more often than
others.

Long-tail popularity distribution

The tracks in Spotify’s music catalogue exhibit a so-called long-tail distribution. This distri-
bution is visualised in figure 2.1, which is the result of plotting the number of requests to
Spotify’s 50000 most streamed audio files during a day.

0 10000 20000 30000 40000 50000most popular audio files

numb
er of s

tream
s

Figure 2.1: Popularity distribution of Spotify’s 50000 most streamed audio files.

13

Figure 2.2 shows another aspect of Spotify’s long-tail content distribution; a relatively small
number of audio files (50000) account for over 50% of all streams during a day.

0 10000 20000 30000 40000 50000most popular audio files0%
20%
40%
60%
80%

100%
cumu

lative
 numb

er of s
tream

s

Figure 2.2: Cumulative number of streams for Spotify’s 50000 most streamed audio files.

Audio file storages

Spotify serves their audio files from several sources; their own data centres, and a number
of different content delivery networks.

Master storage

Spotify’s master storage is hosted an Amazon S3. In the master storage, they store every file
for every song in their entire music catalogue.

Amazon S3 provides high storage volumes at low cost, but at a trade-off of low access
throughput. For this reason, Spotify serves audio files through additional storages, serving
as high-throughput caches.

production-storage

Spotify’s production-storage is a distributed content cache, hosted in their own data centres.
Spotify has data centres in four locations: Stockholm, Sweden; London, England; Ashburn,
USA and San Jose, USA.

Figure 2.3 highlights these locations on a map. The darker-shaded countries are markets
where Spotify is officially launched, as of June 2014.

14

Figure 2.3: Deployment map of Spotify’s production-storage.

The strength of Spotify’s production-storage is that it has enough machines in every data
centre to keep every frequently streamed audio file permanently in cache. However, it also
has two major weaknesses; geographical reach and bandwidth capacity.

Spotify’s data centres are located in North America and Europe. As such, South America
and Asia, where Spotify is also available, will inevitably experience higher latency. This
latency is acceptable for many of their backend services, but it is not acceptable for music
streaming.

Moreover, the audio file traffic from the production-storage has to travel across the same
network links that connect the Spotify’s clients with their backend services. As Spotify has
grown to over 40 million active users, in order for their data centre bandwidth to suffice
for their backend services, the bulk of audio files must be served from elsewhere.

As such, to complement the weaknesses of their production-storage, Spotify also streams
music through a number of external content delivery networks.

Content delivery networks

A Content delivery network (CDN) provides a distributed network of cache servers, which
their customers can redirect traffic to. The CDN makes sure that that every request is
served by the nearest available cache server, for example through clever DNS configura-
tion.

When a cache miss occurs in a CDN server, the CDN server will request the file from the
customer’s origin server, cache it and then serve the request. In Spotify’s case, the origin
server is the Master storage on Amazon S3. A cache miss is generally an expensive affair,
incurring a significant latency penalty.

CDN providers offer different payment models. A common model is paying a predeter-
mined cost per gigabyte served. This per-gigabyte price is commonly negotiated through
committing to pay for at least a predetermined amount of gigabytes per month. A higher
traffic volume commitment can help negotiate a lower per-gigabyte price. Spotify makes

15

traffic volume commitments to their CDN providers, which significantly impacts our rout-
ing strategy.

All in all, a CDN works similarly to Spotify’s production-storage, but with different
strengths and weaknesses.

Differences between external CDNs and Spotify’s production-storage

The most important difference between CDNs and Spotify’s production-storage is that
Spotify must compete with other content providers for cache space in external CDN
servers. If an audio file is not requested often enough, it will get evicted from the CDN
caches to the benefit of more frequently requested content, possibly from other content
providers than Spotify.

As such, only the most frequently streamed part of Spotify’s catalogue is viable for stream-
ing via CDN. However, as shown in figure 2.2, this part of the catalogue still comprises
the majority of all streams.

Different CDN providers employ different strategies in their hardware deployment, which
also gives them different strengths and weaknesses.

One strategy, employed by CDN providers such as Level 3, EdgeCast and Amazon Cloud-
Front, is to strategically select a small number of important locations along the Internet
backbone, and serve requests with significant cache and performance capabilities from
these few locations.

Figure 2.4 shows a map of EdgeCast’s hardware deployment. On their website, they de-
scribe their strategy as building what they call SuperPOPs, points of presence at “a small
number of strategic global locations near Internet Exchange Points” 5.

Figure 2.4: Deployment map of Edgecast’s Super-POPs.

A different strategy, employed most prominently by the CDN provider Akamai, is to main-
tain a highly distributed deployment, which in turn is supported by a number of higher-
tier cache layers. Akamai refers to the machines in their outermost cache layer as edge nodes,
and their higher-layer caches as midgress.

16

Akamai argues that the way to consistently deliver high performance is to have servers
close to every potential user 6. The latency measurements from Verizon confirm this no-
tion, geographical distance to the nearest server is highly impactful on latency.

Figure 2.5 shows a map of Akamai’s edge nodes.

Figure 2.5: Deployment map of Akamai’s edge nodes.

The differences between using distributed and centralised CDNs become apparent when
considering how their caching mechanisms affect Spotify’s content.

CDNs with centralised deployments will be able to provide more raw cache capacity, in-
curring fewer cache misses, while only being available at a limited amount of locations.

CDNs with highly distributed deployments will be available closer to the user, in theory
providing lower latency. However, the size of Spotify’s music catalogue, combined with
the limited cache size of smaller edge node machines, increases the probability of cache
misses. Akamai does account for this with their midgress layer, but even a cache miss
in the edge nodes followed a cache hit in the midgress could incur a noticeable latency
penalty.

To sum up, different CDNs have vastly different strategies in their deployments. Most
likely, each CDN, including Spotify’s production-storage, has its own strengths and weak-
nesses. One storage might perform well for some subset of users, while performing worse
for another subset of users.

In our routing strategy, described in chapter 4, we partition our users into such subsets,
and attempt to route the majority each subset to the highest performing storage.

A/B testing at Spotify

A/B testing is a technique for conducting and measuring the outcome of controlled exper-
iments. This methodology has grown popular among data-driven technology companies,
such as Spotify7.

17

Being data-driven means basing important decisions on evidential data, as opposed to
intuition or opinion. This significantly affects how new features at Spotify are developed
and released.

At any given point in time, Spotify will be A/B testing a high number of new features and
tweaks.

In our work, we have used Spotify’s A/B testing methodology to evaluate the effectiveness
of our routing strategy. We have also used tools from Spotify’s A/B testing framework to
implement our routing algorithms.

In this section; we explain Spotify’s A/B testing methodology and the purpose of their
internal A/B testing framework.

Overview

The purpose of an A/B test at Spotify is to compare the performance of multiple different
variants of some feature. The Spotify users are divided into separate groups, each group
being subjected to different variants of the feature being tested.

The group of users subjected to the new variant of a feature is commonly referred to as the
treatment group, while the group of users subjected to the old variant is referred to as the
control group.

The outcome of the A/B test is decided by measuring some test statistic for the treatment
and control groups. At Spotify, this metric could for example be the median length of
listening sessions in minutes, or, as in our case, the median latency of audio file downloads.

The desired outcome of an A/B test is to prove a statistically significant difference in the
test statistic between the test groups.

Defining groups

Spotify has built an internal A/B testing framework that enables them to easily partition
their users into treatment and control groups.

The way this is achieved is by uniformly distributing all Spotify users among 1000 base
groups, numbered from 0 to 999.

When creating a new A/B test, treatment and control groups are formed by partitioning
these base groups.

For example; in a simple A/B test with two groups, group A could consist of base groups
[0, 499], while group B consists of base groups [500, 999].

Independence across tests

At Spotify, any number of A/B tests will be running simultaneously. In order to assure
independence across tests, their A/B testing framework requires that every test be given a

18

unique test name.

The test name, which is a string, is used as entropy when partitioning users into base
groups. Users will thus belong to different base groups across different tests.

Independence is achieved by keeping a separate partition of all users, into 10000 different
buckets. This partition is consistent across tests, it never changes.

1000 unique base groups are created by Fisher-Yates shuffling8 the 10000 buckets, using a
linear congruence generator9 with the test name as entropy.

Significance testing

The outcome of an A/B test is generally the rejection or failure to reject some null hypothe-
sis. A common null hypothesis is that there is no difference in the primary metric between
the test groups.

Rejecting the null hypothesis is achieved through a statistical test, such as Student’s t-test.
The test results in a p-value, which signifies the probability that the null hypothesis is true,
given samples from the treatment and control groups.

A p-value of 0.05 or lower is commonly interpreted as grounds to reject the null hypothesis.

When the sample data does not follow a normal distribution, other tests than Student’s
t-test are better suited. For example, in our own A/B test, we have used Mann-Whitney’s
U-test 10, which does not require the test data to follow a normal distribution.

Logging at Spotify

Spotify is a data-driven company, and the bulk of this data is derived from collecting and
analysing application logs.

The Spotify clients log a lot of valuable information, such as performance metrics. At reg-
ular intervals, these log messages are published to the backend for storage and further
analysis.

The performance metrics from these log messages are for example used to calculate test
statistics in A/B tests.

Topics and schemas

Spotify clients publish their log messages to different topics. Each topic has its own mes-
sage schema and every schema contains one or more fields.

An example of a topic is the Download topic. A log message is posted to the Download
topic whenever a client downloads an audio file. Some of the performance metrics this
log message contains is initial latency to the storage from which the audio file was down-
loaded.

19

We use log messages from the Download topic as input to our optimisation model, de-
scribed in chapter 4.

Storing log messages in HDFS

Every log message posted to every topic by every client eventually ends up in Spotify’s
HDFS cluster.

HDFS is specifically designed to integrate with Apache Hadoop, a popular Map-Reduce
framework for distributed computation on large amounts of data.

Batch processing with Hadoop and Hive

Apache Hadoop 11 is the engine that powers many of today’s data-driven companies. It
enables complex computations on huge data sets.

Hadoop computations are referred to as jobs. Jobs are programmed in Java and submitted
to run in a Hadoop cluster.

Programming and debugging Hadoop jobs can be time consuming. Many times, the com-
putations to be performed are relatively simple, such as computing test statistics for an
A/B test.

For the simple cases, Spotify uses Apache Hive 12, which compiles SQL queries to Hadoop
jobs.

Download latencies

Through a Hive-query on log messages from the Download topic, we have investigated
the frequency distribution of download latencies.

A histogram of 24 hours worth of logged download latencies is shown in figure 2.6.

0 2000 4000 6000 8000 10000latency (ms)

freque
ncy

Figure 2.6: Distribution of logged download latencies.

We see that, similarly to the popularity distribution of audio files, the frequency of logged
download latencies is a long-tail distribution.

20

The plot in figure 2.6 is cut off at 10000 milliseconds, but logged latencies up to the order
of 100 seconds exist. These extreme latencies could possibly be the result of downloads
stalling due to lost Internet connections.

The point to be made about download latencies is that their distribution contains a signifi-
cant amount of high-magnitude outliers. This makes the sample mean of logged download
latencies highly unreliable, since it is sensitive to these many outliers.

This becomes important to our routing strategy, defined in chapter 4, since we calculate
expected values of latency distributions for subsets of Spotify users.

Spotify’s regions

Spotify internally partitions countries into a number of different regions. These are EU 1
to EU 4, NA, LatAm and APAC.

Figure 2.7 show these regions on a map, highlighted with a darker shade.

These regions become important to our routing strategy in chapter 4, when we define per-
region traffic volume constraints in our optimisation model.

An important thing to note about these regions is that they only include countries where
Spotify is officially launched.

21

(a) NA (b) LatAm

(c) EU 1 (d) EU 2

(e) EU 3 (f) EU 4

(g) APAC

Figure 2.7: Spotify’s regions.

22

The storage-resolve service

Spotify has a backend service that is specifically responsible for routing incoming audio
file requests to audio file storages. This service is called storage-resolve.

In chapter 4 and chapter 5, we describe how we have extended the storage-resolve service
to implement our routing strategy.

In this section, we describe in greater detail how the service works and what its purpose
is.

Overview

The purpose of the storage-resolve service is to route audio file requests to storages where
they may be downloaded. As such, whenever a client initiates an uncached stream, it will
make a backend request to the storage-resolve service.

Routing rules

The storage-resolve service is configured with a number of routing rules. These rules
specifically dictate how incoming requests should be routed to storages.

An example of such a rule is a practice called zero-rating, where some specific ISPs offer
unlimited traffic specifically for Spotify usage. The ISPs achieve this by whitelisting specific
IP ranges. The storage-resolve service makes sure that every request originating from a user
with a zero-rated ISP is routed to a storage with a whitelisted IP-address.

As another example is making sure that requests for long-tail content are always routed to
production-storage, since these audio files are unlikely to be available in CDN caches.

The routing rules are manually defined in the service’s configuration file. This configura-
tion file is managed by a configuration management system called Puppet. This makes it
easy for Spotify to publish new versions of the configuration file to every machine running
the storage-resolve service.

Routing strategy

The routing outcome of every request is not specifically determined by any rule. In fact,
the majority of requests can be routed to any audio file storage.

For these requests, Spotify has defined a specific rule, which divides all users into A/B
test groups; one group per storage. The routing outcome for a request that is not rule-
determined is determined by the A/B test group of the requesting user.

Spotify can control the amount of traffic each storage receives by changing the propor-
tions of these per-storage A/B test groups. These proportions are defined in the service’s
configuration file.

23

This is Spotify’s existing routing strategy. The weakness we observe in this strategy is that
requests are randomly routed to storages, since the A/B test group any particular user will
end up in is randomly determined.

We propose a strategy where these requests are instead routed to the storage with the
lowest latency. We describe this strategy in chapter 4.

Autonomous systems

In our previous section on CDNs, we concluded that different CDNs are likely to perform
differently for different groups of users. An important part of our work is to properly
identify these groups.

A naive yet reasonable approach would be to group clients together by geographical prox-
imity, since we know from Verizon’s measurements that geographical distance is highly
correlated with latency.

However, while geographical proximity may be correlated with latency, other factors, such
as routing paths and network link capacity, are equally important to consider.

In our routing strategy, we group our users together both by their country, to capture the
concept of geographical proximity, and by their autonomous system, to capture the concept
of Internet proximity.

In this section, we explain briefly what autonomous systems are, and in what manner they
affect latency.

Overview

The Internet is made up of a large number of smaller, interconnected networks. Such a
smaller network is called an autonomous system (AS). Every AS is identified by a unique
autonomous system number (ASN).

A detailed description of ASes, who operates them and how traffic flows between them can
be found in the paper “The Growing Complexity of Internet Interconnection” 13. The information
in this section is taken from this paper.

Size and numbers

An AS is commonly operated by an ISP, corporation, university or government institution.
The largest ASes are operated by ISPs, these are significantly larger than most other ASes,
both in terms of number of Internet users and geographical spread.

According to a report on AS statistics from June 2014, the number of active ASes on the
Internet is slightly above 47000 14. In 2010, it was reported by Akamai that the single largest
of these ASes represented 6% of all Internet traffic6.

24

Figure 2.8 shows the geographical reach of one of the largest ASes, Cogent, according to
download latency log messages received by Spotify during 24 hours.

Figure 2.8: Map of Spotify requests from AS174, operated by Cogent.

We see that a large AS may span well over 10 different countries.

Figure 2.9 shows cumulative audio file requests received by Spotify during 24 hours, from
the 500 most active ASes.

0 50 100 150 200 250 300 350 400 450 500most active ASes0%10%20%30%40%50%60%70%80%90%100%

fractio
n of a

ll requ
ests

Figure 2.9: Cumulative request count of 500 most popular ASes.

We see that the 500 most active ASes comprise over 95% of all requests.

25

Impact on latency

An AS is a self-contained network. Within an AS, traffic is routed efficiently and latency
is low. Across ASes, traffic has to cross special peering links. These peering links are
generally few in number, prone to congestion and even occasional disconnection.

Peering links are an issue since they have to be established as the result of an agreement
between two AS operators. In many cases, the benefits of maintaining a peering link are
not mutual; operators of larger ASes charge operators of smaller ASes for traffic sent across
peering links. As a result of this, operators tend to invest just enough resources into peering
links to maintain an acceptable quality of service, but no more.

When network entities on separate ASes communicate with each other, a routing protocol
called BGP (Border Gateway Protocol) decides how packets are routed across peering links
15.

The default mode of BGP is to send packets across the path that requires crossing the
least peering links. However, BGP routers are controlled by AS operators, and they may
influence this routing to suit their own needs.

As time has passed, peering agreements between AS operators have grown in complexity.
Today, many AS operators will attempt to optimise their peering expenses through a prac-
tice called traffic shaping, where they take special care to route traffic through the peering
links that incur the least cost.

All in all, the aforementioned intricacies of cross-AS routing give us reason to believe that
grouping by AS will help us identify clients with similar CDN performance.

Summary

In this chapter, we have taken a closer look at the most important aspects of Spotify and
Internet infrastructure to our routing strategy.

We will frequently refer back to the information in this chapter when explaining how our
routing strategy works, and in motivating our design choices.

26

3
Literature review

In this chapter, we explore related work and introduce the theory of linear programming.

We motivate why linear programming is a good fit for modelling our problem, and run
through the theoretical prerequisites to understanding our routing strategy.

Related work

IDNS

Intelligent Domain Name Server (IDNS) is a CDN routing strategy developed at AT&T
Labs16. It can be used by CDNs wishing to route portions of incoming requests to other
CDNs. This increases the ability of handling periods of particularly high load and sudden
traffic spikes.

The routing strategy is based on measuring CDN performance and aggregating over over
the IP address prefix of the requesting clients. The method of grouping clients by IP ad-
dress prefix is originally described in another publication from AT&T Labs17.

For every group of clients with the same prefix, they generate a probability-based routing
table that includes every CDN, such that the highest performing CDN for every group han-
dle the majority of requests from that group. They do not specify in detail which method
they use to generate these probabilities.

The report includes test results from a live test where traffic is routed across two different
CDNs. They conclude that their approach both increases overload protection and request
latency.

WhyHigh

The paper “Moving Beyond End-To-End Path Information to Optimize CDN Performance” de-
scribes how Google uses a latency-based routing strategy for routing requests to edge
nodes within their own CDN18.

27

In this routing strategy, requests are consistently routed to the CDN edge node with the
lowest measured latency, except for when that node is under high load. Latencies are mea-
sured and computed on a group-by-group basis. Clients are grouped by their IP address
prefix.

The WhyHigh system, also described in the paper, is an internal diagnostics tool, which
identifies groups of clients for which latency is highly inflated. The authors conclude that
peering issues between autonomous systems is one prominent reason for inflated latencies,
more so than geographical proximity.

Latency-based load balancing

Dynamic load balancing based on latency prediction is the title of Federico Piccinini’s master
thesis at Spotify from 201319.

In his report, Federico develops a routing strategy for load balancing requests between
Spotify’s internal access points. Spotify’s access points are reverse proxies between Spo-
tify’s clients and the services in their backend. As such, every client request has to be
proxied through an access point.

The purpose of Federico’s routing strategy is to route every client to a low-latency access
point.

Federico uses an adapted version of the φ-accrual failure detector, generating per-machine
routing weights from per-machine mean and variance latencies, calculated from incoming
log messages.

Summary

Our study of related work confirms that grouping clients together, most often by their
IP address prefix, and generating per-group routing weights is a successful approach to
optimising latencies.

However, it seems that in most cases where routing weights are used, the algorithms used
to generate said weights do not seem to account for controlling traffic volumes.

We conclude that Spotify’s wish to maintain tight control over traffic volumes, while also
minimising latencies, makes any of the existing solutions unviable. We have instead de-
cided to treat this as a novel problem.

Furthermore, since no related work go into detail in describing how their routing strate-
gies work on an algorithmic level, we have decided that our course of action should be to
identify an optimisation model that can capture Spotify’s specific routing requirements,
and devise a novel solution to the problem.

In conclusion, our greatest takeaway from our study of related work is that grouping
clients together and using some sort of optimisation method to generate per-group routing
weights seems to be a good starting point.

28

Finding an optimisation model

We have boiled down the knowledge from our domain review in chapter 2 into a summary
of the most important requirements.

Requirements

• Our routing strategy should minimise latencies for Spotify’s music streams.

• Our routing strategy must route every incoming request to one of the currently avail-
able CDNs.

• Our routing strategy must ensure that traffic volume commitments to individual
CDNs are met.

• Our routing strategy must keep CDN caches from going stale, by ensuring that each
CDN receives a minimum amount of traffic in multiple geographical regions.

• Our routing strategy must protect Spotify’s production-storage, their own custom
CDN, from excessive traffic volumes.

Outcome

Everything considered, our domain closely resembles a constrained optimisation problem.
Constrained optimisation models focus on minimising some objective function, while pre-
serving a number of constraint equations.

Although we have briefly considered other approaches, we have found no other approach
offering the modelling power of describing constraints that constrained optimisation mod-
els offers.

In our case, we want to model the latencies of Spotify’s music streams as an equation that
can somehow be solved for how those streams should be routed. We additionally want to
model our traffic volume requirements as constraint equations, such as to make sure that
none of the requirements are violated.

We have found that linear programming models can sufficiently capture all of these re-
quirements.

Linear programming

Linear programming is a fundamental subset of constrained optimisation, where every
equation in the model is linear. It is a well-known optimisation method, with powerful
solving tools readily available.

29

While occasionally used to model routing problems, linear programming is most promi-
nently used to solve scheduling, manufacturing and transportation problems.

We base this short introductory section to linear programming on the theory and examples
from the books “Elementary linear programming with applications”20 and “Operations Research:
applications and algorithms”21.

Overview

A linear programming problem has two principal components: a linear objective function
and a set of linear constraint equations.

The objective function contains a number of unknown decision variables. The constraint
equations are inequalities that constrain the possible values of the decision variables.

The goal is to find an allowed assignment of values to the decision variables, such that the
objective function is minimized or maximized.

Formal notation

A linear programming model is formally specified on the following form:

minimise z = c1x1 + c2x2 + ... + cnxn (3.1)

subject to a11x1 + ... + a1nxn ≤ b1 (3.2)

a21x1 + ... + a2nxn ≤ b2 (3.3)

... (3.4)

am1x1 + ... + amnxn ≤ bm (3.5)

and ∀i : xi ≥ 0 (3.6)

The objective function (z) is a linear function of n unknown decision variables (x1...xn).
c1...cn are known coefficients (equation 4.1).

The constraint equations are a set ofm linear inequality functions, containing the decisions
variables.

a11...amn and b1...bm are known coefficients (equation 3.2 - 3.5).

Canonical and non-canonical form

The general linear programming model in equation 4.1 - 3.6 is specified on canonical form.
This is equivalent to maximising the objective function, using the ≤ operator for all in-
equalities, and only allowing positive decision variables.

30

Conversely, a model on non-canonical form means that either the objective function should
be minimised, the inequalities use the ≥ or = operators, or the decision variables can be
negative.

Every linear programming model on non-canonical form can be converted into an equiv-
alent model on canonical form. The purpose of this conversion is to provide a uniform
starting point for solution algorithms.

Since we use a toolkit (the GNU Linear Programming Toolkit, abbreviated as GLPK) to
specify and solve our own linear programming model, we do not need to care about canon-
ical form. Conversion to canonical form is handled automatically by the toolkit.

The simplex algorithm

A common solution algorithm for linear programming models is the simplex algorithm,
which is a geometrical method that systematically explores the allowed solution space
until an optimal solution is found.

GLPK provides an implementation of the simplex algorithm, which we use throughout
our work, without any customisation or configuration. We refrain from going into the
theory behind the simplex method, since this is not necessary to either understanding or
implementing our routing strategy.

31

4
Routing strategy

In the previous chapter, we used a summary of our domain requirements to determine
that linear programming is a suitable optimisation model for our routing strategy.

We used our studies of related work to determine that a good starting point for our own
work is to group clients together and to generate per-group routing weights.

In this chapter, we turn these learnings into a formal routing strategy.

Overview

In short, our routing strategy consists of the following parts:

• A way of dividing Spotify’s users into groups
• A way of generating per-group routing weights
• A strategy for what input data to base the routing weights on
• A strategy for when to update the routing weights
• A way of using the routing weights to route incoming music streams

We now drill deeper into these parts, explaining each one in detail.

Dividing Spotify’s users into groups

We want to find some way of grouping Spotify’s clients together, such that clients within
the same group will share similar connectivity to the available CDNs.

We have seen several instances of related work where grouping clients by IP-address prefix
has proven successful. However, we have also learned that this is a non-trivial task that
requires up-to-date BGP routing table snapshots.

We group Spotify’s clients by their autonomous system number (ASN). This means our
groups are less granular than had we grouped by prefix, which may cause the grouping
to be slightly less effective. However, this way of grouping is simpler, since IP address to
ASN lookup tables are readily available.

32

Some autonomous systems are unproportionally large, spanning multiple countries and
continents. For this reason, in order to make our groups slightly more granular, we add
country of origin as an additional grouping criteria.

We thus create groups for every combination of ASN and country.

Generating per-group routing weights

We want our routing strategy to route each client to the lowest latency CDN. Grouping
clients together makes our problem simpler, since we just need to find the lowest latency
CDN for every group of clients, instead of for every individual client.

Simply routing every client within a group to the lowest latency CDN for that group is
not sufficient. That does not give us control over traffic volumes. Instead we use routing
weights, such that each CDN is given a weight for each group. For a particular group,
a lower latency CDN is given a higher routing weight, and will thereby handle more re-
quests.

We use a linear programming model to generate the routing weights. In this model, we
describe latency as an objective function to be minimised and traffic volume requirements
as constraint equations. The free variables of the model are the routing weights.

This way, we can guarantee traffic volume requirements, while simultaneously minimising
latencies.

Latency log messages as input

We need data in order to figure out the connectivity from our groups to the CDNs. For
this, we use download latency log messages from Spotify’s clients.

Through these log messages, we know the latency of every recent audio file download and
from which CDN the download was made. This information enables our linear program-
ming model to generate routing weights that optimise download latencies.

Through these log messages, we also know the volume of requests from each group. This
information enables our linear programming model to generate routing weights that do
not violate traffic volume requirements.

Updating the routing weights

Since the connectivity on the Internet changes constantly, we update our routing weights
at regular intervals.

An update consists of re-running our linear programming model on the most recent set of
latency log messages, and obtaining a new set of routing weights.

We call the time between two updates a time window. Updates are performed at the edges
between time windows.

33

The question remains of how many latency log messages to consider during each update.
The most recent log messages are the most important, since they most accurately reflect
the current state of connectivity on the Internet.

In our strategy, we include every log message from the most recent time window into our
linear programming model. The resulting routing weights are active during the whole
upcoming time window.

As such, our routing strategy finds an optimal set of routing weights based on latency
data from recent, yet historic requests. We operate on the assumption that an optimal
set of routing weights for the most recent time window will also be effective during the
upcoming time window.

A simple illustration of time windows is found in figure 4.1. Here, Δ signifies the length
of a time window, and T signifies the current time.

TT - Δ T + Δ

}
optimise

these requests}
route

these requests

Figure 4.1: Time windowed optimisation scheme.

Using the routing weights

The final part of our routing strategy concerns how to actually use the per-group routing
weights to route incoming music streams.

We have achieved this by extending Spotify’s storage-resolve service, which is responsible
for routing music streams to CDNs (chapter 2). We have added functionality such that it:

• computes which group the user belongs to
• looks up the current routing weight of every CDN for that group
• uses weighted random selection to determine the routing outcome

One detail worth mentioning is that we do not use pseudorandom numbers as entropy to
the weighted random selection, since we want sequential requests from the same client to
always be routed to the same CDN.

Instead, this entropy is produced through Spotify’s A/B testing framework. We provide a
more thorough description of this in chapter 5.

34

Linear programming model

Model definition

minimise z =
∑
group

∑
CDN

ngroup · wCDN,
group

· E
[
LCDN,
group

]
(4.1)

subject to ∀ CDN :
∑
group

ngroup · wCDN,
group

≤ n · c max-traffic
CDN (4.2)

∀ CDN :
∑
group

ngroup · wCDN,
group

≥ n · c min-traffic
CDN (4.3)

∀ CDN,
region :

∑
group ∈
region

ngroup · wCDN,
group

≥
∑

group ∈
region

ngroup · cmin-region-traffic
CDN,region (4.4)

∀ CDN : wCDN,
group

≥ c group-traffic
CDN (4.5)

∀ group :
∑
CDN

wCDN,
group

= 1.0 (4.6)

∀ CDN,
group : group ∈ Gdefault ⇒ wCDN,

group
= wdefault

CDN (4.7)

and ∀ CDN,
group : wCDN,

group
≥ 0 (4.8)

Decision variables

wCDN,
group

: routing weight of CDN for group

Input data

n : total number of log messages
ngroup : number of log messages from group
E

[
LCDN,
group

]
: expected latency to CDN from group

Constraint parameters

c max-traffic
CDN : maximum share of traffic to CDN globally

c min-traffic
CDN : minimum share of traffic to CDN globally

c group-traffic
CDN : minimum share of traffic to CDN from any group

c min-region-traffic
CDN,region : minimum share of traffic to CDN from region

G default : subset of groups predetermined to get default routing weights
w default

CDN : default routing weight of CDN

35

Objective function

Our model is given as input the most recent latency log messages, each one containing
a recorded latency from when some Spotify client downloaded an audio file from some
CDN.

The objective function models the sum of the most recent logged latencies. This is the value
we aim to minimise.

We already know the true value for the sum of latencies, but we want to infer what the
sum of latencies would have been for varying sets of routing weights.

Through optimising the objective function, we aim to find the currently optimal set of
routing weights, which we then use to route requests in the near future.

Routing weights

Through our latency log messages, we know the number of requests from each group,
denoted in our model as ngroup. The routing weightwCDN,

group
determines the fraction of ngroup

requests that should be routed to a given CDN.

A routing weight is thus a real number between 0.0 and 1.0, and the routing weights within
a particular group always sum to 1.0.

Expected latency

To reason about the expected value of the sum of latencies for varying sets of routing
weights, we use the notion of expected latency.

We represent the latency of a request to a given CDN from a given group in our model as
a random variable. We call this random variable LCDN,

group
. Every log message is considered

a sample from one of these random variables.

Under a certain set of storage weights, the product ngroup ·wCDN,
group

represents the number of

requests from a particular group routed to a particular CDN. It also represents the number
of samples fromLCDN,

group
to include in the sum of latencies. ngroup·wCDN,

group
·E

[
LCDN,
group

]
represents

the expected value of these samples.

Using the model’s latency log messages, we estimate the expected valueE
[
LCDN,
group

]
for every

combination of CDN and group.

The standard estimator of expected value would be the sample mean. However, recall from
chapter 2 the long tail shape of latency distributions. These long tails contain a small but
significant amount of high-magnitude outliers, rendering the sample mean unstable and
prone to excessive variation.

For this reason, instead of the sample mean, we use the sample median as estimator of
expected latency, since the sample median is not as susceptible to variation in the presence
of high-magnitude outliers.

36

Constraints

As we learned in chapter 2, it is crucial that we abide by a number of traffic volume re-
quirements. These requirements are captured by our model constraints.

By the term traffic volume, we mean the amount of individual requests routed to some
CDN. Our domain requires us to manage traffic volume on a number of levels; globally,
per-region and per-group.

On a global level, we must make sure that all traffic volume commitments to the CDN
providers are met. We capture this in our cmin-traffic

CDN constraint parameters. These parame-
ters, defined for every individual CDN, express the minimum amount of global traffic that
each individual CDN must receive. As such, these parameters (and all other constraint pa-
rameters related to traffic volume) are real numbers between 0.0 and 1.0.

Analogously to the minimum global traffic volume constraints, we use our constraints on
maximum global traffic volume, cmax-traffic

CDN , to make sure that Spotify’s own CDN does not
receive excessive amounts of traffic.

On a per-region level, we must make sure that every CDN receives enough requests to keep
the caches from going cold. We learned in chapter 2 that Spotify’s partition of clients into
regions is based on their country of origin. Since every group belongs to exactly one coun-
try, we can trivially infer how our routing weights affect per-region traffic volumes. The
minimum per-region traffic volume constraints are captured in our cmin-region

CDN parameters.

On a per-group level, we must make sure that we always keep receiving logged latencies
to every CDN, even though some CDNs may not currently perform well. Without future
measurements, we would not be able to detect when previously inferior CDN improves.
We capture this in our cmin-group

CDN parameters.

Default weights

Gdefault is a subset of groups for which we do not let the linear programming model gen-
erate routing weights. Instead, these groups receive a set of default per-CDN routing
weights, wdefault

CDN .

Many groups generate too few requests for us to reliably estimate the expected latencies.
We use a default set of routing weights to route requests from all these groups.

For other groups, the differences in expected latency are small or insignificant. For these
groups, the lowest latency CDN might change across samples, without any change in the
underlying conditions to match. Letting the linear programming model generate routing
weights for these groups might do more harm than good, since the weights might then
be subject to frequent oscillation. For these groups, we also use our default set of routing
weights.

37

Preprocessing

We transform latency log messages to input for our linear programming model through a
preprocessing step.

Here, we determine which groups should be included in Gdefault and receive default rout-
ing weights. This is decided by two filters, a request count filter and a minimum latency
difference filter.

During preprocessing, we also calculate the expected latencies E
[
LCDN,
group

]
.

Expected latency calculation

To calculate the expected latencies, we partition all log messages into a set of samples for
every combination of group and CDN. We then take the expected latency for a particular
group and CDN to be the sample median of the sample set for that group and CDN.

Request count filter

To filter out groups without enough logged latencies, we use a request count filter
parametrised by α, a minimum amount of requests every storage must receive per group.

We add every group to Gdefault where at least one storage has less than α logged download
latencies.

Due to the uneven distribution of traffic across ASes, we expect only a small fraction of all
groups to pass this filter. In chapter 2, we established that Spotify receives requests from
around 16000 different ASes, and that the 500 most active ones account for 95% of all the
traffic.

As such, we expect that even if our request count filter removes 15500 of 16000 groups, we
will still be routing 95% of all incoming requests using our optimised storage weights.

Latency difference filter

To filter out groups with insignificant difference in expected latencies, we use a latency
difference filter parametrised by γ, a minimum relative difference between the two lowest
latency CDNs within a group.

γ is thus a real number greater than 1.0. γ = 1.20 means that all groups where the latency
difference between the two lowest latency CDNs is less than 20% will be filtered out and
given default weights.

For example, given expected latencies of two groups in figure 4.2, and a value of γ = 1.20;
the group in figure 4.2a would be filtered out, while the group in figure 4.2b would be
included.

38

production-storage CDN A CDN B0
100
200
300
400
500
600

expec
ted la

tency
(ms) 1.00 1.14 1.20

(a) Excluded under γ = 1.20.

production-storage CDN A CDN B0
200
400
600
800

1000
1200

expec
ted la

tency
(ms) 1.54

1.00
1.65

(b) Included under γ = 1.20.

Figure 4.2: Expected latencies from two example groups.

The number of groups filtered out under different values of γ is hard to predict, since the
expected latencies vary over time.

We believe that the behaviour of our linear programming model makes the latency differ-
ence filter is essential, since to to minimise our linear objective function, a solver will give
the highest weight possible to the storage with the lowest in the majority of groups.

For groups with high differences in expected latency, these extreme weight differences are
desirable. For groups with low differences in expected latencies, this may be counterpro-
ductive and even be harmful. By filtering out these groups, we avoid unnecessary and
possibly counterproductive optimisation.

39

5
Implementation

In this chapter, we give some technical insight into how we have implemented our routing
strategy, and what tools we have used.

Overview

Our routing strategy consists of two major components:

• a data processing pipeline starting with latency log messages and ending with rout-
ing weights

• an extension to Spotify’s storage-resolve service enabling it to use routing weights

Figure 5.1: High-level overview of our routing strategy implementation.

40

Data pipeline

Our data processing pipeline consists of three parts. A Hive-job written in SQL, a prepro-
cessing script written in Python, and a linear programming model written in GMPL (GNU
MathProg).

Hive-job

Our Hive job transforms latency log messages from an interval in time into per-group and
per-CDN expected latencies and request counts. It is written in SQL and compiles to a
MapReduce job.

The Hive-job takes as input a starting date T, and a time window size Δ. It collects all
latency log messages logged within the time window

[
T − Δ,T

]
.

The output of the SQL-query is rows on the schema described in figure 5.2.

(group, CDN, region, request count, expected latency)

Figure 5.2: Schema of Hive query output.

Preprocessing step

Our preprocessing step filters out all groups which should receive fixed, default storage
weights. It is implemented in Python using the NumPy22 and pandas23 libraries.

This step takes as input request count filter α, and a latency difference filter γ.

GMPL model

Once the output from Hive has been preprocessed, we interpolate the resulting data, to-
gether with our traffic constraints, into our GMPL model. The GMPL model is the imple-
mentation of our linear programming model described in chapter 4.

Our full GMPL model is included in the appendix in chapter 9.

We solve the resulting linear programming problem using the Simplex method included
in the glpsol program in GLPK24 (GNU Linear Programming Kit). We do not override any
configuration parameters to the solver.

The solver calculates and outputs our routing weights. The formal output from the solver
is a list of rows on the following format:

(group, CDN, routing weight)

Figure 5.3: Schema of GMPL model output.

41

Router

We use an extension of Spotify’s storage-resolve service to route requests according to the
routing weights generated by our linear programming model.

We use MaxMind’s GeoIP25 database to determine the ASN of an incoming request. This
database maps IP ranges to autonomous systems. The country of origin is determined the
same way.

Every instance of our extended storage-resolve service also runs a Memcached26 daemon.
When new routing weight have been generated, we use a remote Memcached client to
put the routing weights into memory on all service instances. We associate the routing
weights with the composite key formed by concatenating their corresponding ASN and
country code.

Creating per-group and per-storage A/B test groups

Using Spotify’s A/B testing framework, we have defined an A/B test specifically for
weight-based routing. Each storage is assigned to an A/B test group, and the storage
weights determine the sizes of the groups.

After having obtained the storage weights from Memcached, we look up which base group
the client belongs to. We then determine which storage that base group is assigned to, and
route the request to that storage.

Misc

As an example, consider figure 5.4. Here, we show how storage weights determine how a
particular group of clients will be routed.

All clients in group g originate from the same country and ASN. There are three storages,{
s1, s2, s3

}
, each with an assigned weight

{
wg,s1 = 0.1,wg,s2 = 0.1,wg,s3 = 0.8

}
.

Using the storage weights, we form an A/B test group for each storage from the 1000 base
groups (see chapter 2 for a detailed introduction to Spotify’s A/B testing framework). The
sizes of the storages A/B test groups are proportional to their storage weights.

42

0 - 99 200 - 999100 - 199

} } }wg,s1
= 0.1 wg,s2

= 0.1 wg,s3
= 0.8

g

all spotify
clients

10 %
routed

to s1

10%
routed

to s2

80%
routed

to s3

Figure 5.4: Example of weight-based routing within a group of clients.

A client from group g will with 10% probability belong to the A/B test group who gets
routed to storage s1, with 10% probability belong to the A/B test group who gets routed
to storage s2 and with 80% probability belong to the A/B test group who gets routed to
storage s3.

This means that the magnitudes of a group’s storage weights proportionally determine the
amount of traffic routed to each storage.

By using a linear programming model that assigns high storage weights to storages with
low latency, we expect to reduce download latencies.

43

6
A/B test

We have conducted an A/B test with the purpose of comparing the effectiveness of our
linear programming-based routing strategy to Spotify’s existing routing strategy.

Test statistic

Our primary test statistic is the median of logged download latencies during the test.

Test duration

We have run our A/B test during exactly one day, a full 24 hours.

Test population

Our test population are all interactive streams handled by Spotify’s San Jose data centre
for the duration of the A/B test.

We have kindly been allowed to deploy our customised storage-resolve service in the San
Jose data centre for the duration of the test. Since this is one of four data centres in total,
we expect around 25% of all streams to be handled by this data centre.

Excluded requests

We have excluded all streams from zero-rated clients from the population. We have also
excluded streams for long-tail music. The reason for excluding zero-rated clients is that
they must always be routed to a whitelisted CDN. The reason for excluding long-tail music
streams is that they must always be routed to Spotify’s production-storage. See chapter 2
for a detailed discussion on zero-rating and long-tail music.

We have also excluded all requests for which the country or ASN of the requesting client
can not be determined. This occurs when the IP of the requesting client is not present in
MaxMind’s GeoIP database.

44

Included requests

In order to determine the relative size of our test population, in relation to the total number
of streams during the test, we have analysed the download log messages from a 24-hour
period prior to the test.

Figure 6.1 shows the relative size of our test population during this 24-hour period, ac-
counting for excluded streams, in comparison to the total number of streams (across all
data centres).

19%81%

Requests in test population (globally)

Figure 6.1: Pie chart showing amount of streams included in test population.

In total, our test population accounts for approximately 19% of Spotify’s interactive streams
during a 24-hour period.

Included countries

Figure 6.3 shows a geographical heat map of streams from our test population. A darker
shade means more requests. The shades are assigned on a logarithmical scale.

45

Figure 6.2: Heat map of per-country traffic from test population.

We see that our test population mainly consists of requests from the US, LatAm and APAC
regions. More specifically, the vast majority of requests originate from USA, Mexico, Aus-
tralia, and a number of South American countries.

Test groups

We have used Spotify’s A/B test framework to partition the test population into two
equally sized groups; a control group and a treatment group.

Figure 6.3: Treatment group and test group split of our test population.

Which test group an incoming request belongs to is determined by which base group the
requesting user belongs to in our A/B test. Base groups 0 to 499 make up the treatment
group and base groups 500 to 999 make up the control group.

Due to the independence of test groups in Spotify’s A/B testing framework, we expect
every group of ASN and country to contain an equal number of requests from our control
and treatment groups.

Control group

Streams from the control group are exclusively routed by Spotify’s existing routing strat-
egy. This strategy is explained in detail in chapter 2.

46

Treatment group

Streams from the treatment group are routed according to the routing weights generated
by our linear programming model. Our routing strategy is explained in detail in chapter
4.

Significance test

We use Mann-Whitney’s U-test to determine if there is a statistically significant difference
in the test statistic between the treatment and control groups.

We use Mann-Whitney’s U-test since the test statistic is measured on a latency distribu-
tion. We know from chapter 2 that download latencies are prone to non-normal long-tail
distributions.

This makes the more common Student’s t-test inappropriate, since it is only suited to sig-
nificance testing on data sets with a normal distribution.

Null hypothesis

Our null hypothesis is that the latency distributions of the treatment and control groups
are identical.

By refuting the null hypothesis, we accept the alternate hypothesis that our treatment is
effective.

We use the U-test to obtain a p-value for a double sided confidence interval that the null
hypothesis is true, given 10000 randomly sampled latencies from both test groups.

If the p-value is less than 0.05, we refute the null-hypothesis and conclude that there is a
statistically significant difference between the treatment and the control group.

We use the mannwhitneyu function from the SciPy statistics module to calculate the p-value.

Model parameters

Storages

During our test, Spotify was using 3 different audio file storages; their own production-
storage and 2 different CDNs.

From here on out, we refer to the CDNs as CDN A and CDN B.

47

Δ = 1 day

The time window size of our optimisation data has been 1 day.

The input to our optimisation model has thus been all download latencies logged by the
test population during the 24 hours prior to our test.

α = 10000 requests/storage

We have used a per-storage request count filter α with a value of 10000.

We have chosen this value by examining how different values of α affect the number of
filtered out groups, and the amount of requests originating from these groups.

We have found that for Δ = 1 day, a value of α = 10000 makes Gdefault account for less than
10% of total traffic.

γ = 1.20

We have used a latency difference filter γ with a value of 1.20.

For the input data, we have found this value to strike a balance between filtering out groups
with low latency difference, while still generating optimised weights for a majority of the
traffic.

Default groups

With α = 10000 and γ = 1.20, we generate optimised weights for 101 different groups,
less than 2% of the total amount of groups in the model. This means that Gdefault contained
the remaining 6074 groups.

As shown in figure 7.3, the optimised groups account for 81% of all requests. This is con-
sistent with what we learned about AS traffic in chapter 2; that the top 500 ASes account
for over 90% of Spotify’s requests worldwide. The optimised groups are likely a subset of
these 500 ASes.

48

1016074

Groups with optimised weightsGroups with default weights

81%19%

Requests from groups withoptimised weightsRequests from groups withdefault weights

Figure 6.4: Pie chart of optimised groups vs. default groups.

Constraints

For the minimum group traffic per-storage constraint, we have required that every storage
receives at least 10% of requests from every group (equation 6.1).

∀ CDN : c group-traffic
CDN = 0.1 (6.1)

Since Spotify has to compete for cache space in the external CDNs, we have required that
every such CDN receives at least 20% of requests from every region (equation 6.2). Since
our test population mainly consists of requests from LatAm, US and APAC, we have in-
cluded only these regions in our constraints.

∀region ∈
{

LatAm, US, APAC
}

, ∀ CDN ∈
{

CDN A, CDN B
}

: c min-region-traffic
CDN, region = 0.2 (6.2)

For capacity reasons, we have required that Spotify’s production-storage should receive at
most 50% of requests globally.

c max-traffic
production-storage = 0.5 (6.3)

Our default routing weights reflect how Spotify’s existing routing strategy routed traffic
at the time of the A/B test, which was to route 40% of requests to CDN A and CDN B
respectively, with the remaining 20% being routed to production-storage (6.4).

49

w default
production-storage = 0.2 (6.4)

w default
CDN A = 0.4 (6.5)

w default
CDN B = 0.4 (6.6)

Routing weights

Figure 6.5 shows the routing weight output from our linear programming model as a scat-
ter plot.

CDN A CDN B production-storage0.00.10.20.30.40.50.60.70.80.91.0

weigh
ts

Figure 6.5: Scatter plot of routing weight values.

The x-axis indicates a CDN and the y-axis indicates weight. The point size indicates the
amount of groups that received the routing weight indicated by the x and y-axis.

The scatter plot shows that CDN B received the highest possible weight in the majority of
groups, while Spotify’s production storage consistently received the lowest possible weight
in every group.

50

A/A test

To complement the results from our A/B test, we have also performed an A/A test on the
day preceding the A/B test.

In our A/A test, the treatment and control group are both routed using Spotify’s existing
routing strategy.

The test population during the A/A test is the same as during the A/B test.

The primary purpose of this test is to verify that the U-test works as intended on our latency
distributions. Due to the amount of outliers, it might be the case that the U-test always
gives a low p-value.

To show that this is not the case, we observe the results of the U-test on data sampled from
a day where our A/B test is not active. We then know that the sampled data is taken from
identical distributions.

The desired outcome of our A/A test is a p-value well above 0.05. If we also see a p-value
well below 0.05 for our A/B test, we will be more certain that our outcome is not the result
of random measurement variations.

51

7
Results

A/B test

Median latency

Median latency
Control 242.5 ms

Treatment 233.0 ms

p-value

p = 0.016

A/A test

Median latency

Median latency
Control 248.8 ms

Treatment 247.3 ms

p-value

p = 0.233

52

Analysis

Percentiles

Table 7.1 shows additional latency percentile values, for the control and treatment groups
during the A/B test.

Control Treatment
5th 37.5 34.6

25th 116.2 108.1
50th 242.5 233.0
75th 542.7 532.8
95th 2225.8 2255.8

Table 7.1: Latency percentiles for control and treatment groups.

Countries

Figure 7.1 shows the per-country improvement in median latency for all countries in the
test population containing at least 1 group (ASN and country) with optimised weights.

SV DO NZ PA SG UY MY US MX NI HK CO AU PH TW BR CR PE GT CL EC AR DEcountry
-15%
-10%
-5%
0%
5%

10%
15%

relativ
e med

ian lat
ency d

ifferen
ce

Figure 7.1: Latency improvement of countries containing groups with optimised weights.

Figure 7.2 shows a heat map of the data presented in figure 7.1. Darker shade means higher
improvement.

53

Figure 7.2: Heat map of per-country median latency improvement.

Higher latency difference filter

We suspect that higher differences in expected latency increases the likelihood that a group
will benefit from our optimised routing.

To investigate this, we shrink the population by increasing γ to 1.50, meaning streams are
only included into the population from groups where the latency difference between CDN
is 50% or higher.

The median latency of the resulting population is presented in table 7.2.

Median latency
Control 154.4 ms

Treatment 132.6 ms

Table 7.2: Median latency of groups with at least 50% expected latency difference.

Figure 7.3 shows the amount of groups and traffic included under the latency difference
filter γ = 1.50.

54

296146

Groups with optimised weights

23%77%

Requests from groups withoptimised weights

Figure 7.3: Pie chart of optimised groups vs. default groups for γ = 1.50.

We find that 23% of requests originate from groups where the difference in expected la-
tency between storages is more than 50%.

For these requests, the measured improvement in median latency is approximately 11%.

55

8
Discussion

Conclusion

Successful A/B test outcome

From the results of our A/B test, we conclude that our routing strategy results in lower
median download latency than Spotify’s existing routing strategy.

The relative decrease in median latency between the control group and the treatment
group is 9.5 milliseconds, or approximately 4%. Our U-test determines that this decrease
is statistically significant.

With a p-value of 0.016, we refute the null hypothesis that the latency distributions of the
treatment and control groups are identical.

Our A/A test reinforces our faith in the U-test, by giving a p-value of 0.233 for distributions
that we know are identical.

We see decreases in all measured percentiles except the 95th percentile, where we see a
1.3% increase. We believe the reason that we fail to see an improvement in the 95th per-
centile is random noise in the long tail of the latency distributions. These latency measure-
ments are likely the result of other phenomenons than ineffective routing.

Test statistic decrease mainly due to benefits in the US

Requests from the US make up the vast majority of requests in the test population. So
much that the observed benefits in markets other than the US have no noticeable impact
on the test population as a whole.

This can be seen in figure 7.1, where the latency improvement for the US, approximately
4%, is indeed the measured improvement of the entire population.

This is positive in the sense that our routing strategy is effective for the majority of incom-
ing requests. This is important if the routing strategy is to be used to route every incoming
request.

56

This is negative in the sense that by including requests from the US in the test population,
we occlude more significant improvements in smaller markets.

Significant benefits in the Pacific and small markets

By looking more closely at subsets of the test population specific other countries, we see
that the improvements are as high as 10% in El Salvador and the Dominican Republic. The
relative amount of requests from these countries are however low enough to not affect the
population as a whole.

The same conclusions apply to smaller countries in the Pacific, such as Malaysia and New
Zealand.

We believe the increased effectiveness of our routing strategy in smaller markets to be
closely tied to the deployments of CDN in these markets.

In large markets, such as the US, the CDNs are bound to have extensive deployments, and
differences in performance are less likely.

In small markets, however, the nearest CDN edge node is more likely to be further away
from the clients, both in terms of geographical distance and hops across peering links.

ASNs in these smaller markets are then more likely to have differences in expected latency
to the various storages, which increases the effectiveness of our routing strategy.

Correlation between effectiveness and latency differences

Our measurements on the reduced population containing only groups where the latency
difference is 50% or higher, we see that the test statistic improved by 21.8 milliseconds, or
11.4%.

Since these groups comprise 25% of the requests in the total population, we conclude that
while the overall improvement in the test statistic is 4%, there are groups where the im-
provement is much more significant.

We believe these improvements to correlate with the difference in expected latency.

Extreme routing weights due to linear model

By looking at figure 6.5, which visualises the routing weights during our A/B test as a scat-
ter plot, we see that our linear model results in what can only be referred to as “extreme”
weight assignments.

By this we mean that across groups, the lowest latency storage will consistently be given
the highest possible weight, except for some exceptional cases where the linear optimiser
will the routing weights for a few groups to fulfil traffic volume constraints.

57

We see an example of this in figure 6.5, where the most common weight assignments for
the three available storages are some combination of the weights

{
0.1, 0.1, 0.8

}
.

Only one single group diverges from this pattern, with a weight assignment of{
0.3, 0.6, 0.1

}
. We see this as a clear example of the optimiser meeting traffic vol-

ume constraints.

However, the extreme weight assignments resulting from our linear model are not neces-
sarily a bad thing.

Due to our latency difference filter, we only allow optimised weights for groups where
the latency difference is big enough that extreme weights are warranted. The remaining
groups, where extreme weights are not appropriate, are instead assigned a default set of
weights.

Potential issues

Restrictive filters prevent improvements in small markets

We have seen that our routing strategy is likely to work well for groups with higher dif-
ferences in expected latency. However, during our A/B test, we used a fairly restrictive
request count filter.

This restrictive request count filter does not affect the test statistic as a whole, since these
requests originate from the major ASes with high request counts.

It is however entirely possible that there are markets where these major ASes are not
present. The groups in these markets would then be prevented from receiving optimised
routing weights under restrictive request count filters, resulting in suboptimal routing.

Traffic patterns interfering with constraints

Upholding the traffic volume constraints from our linear programming model when rout-
ing future requests using the generated routing weights depends on the traffic patterns
between time windows to be approximately similar.

For example, by generating routing weights using log messages from a Monday, we assume
that the traffic patterns during the upcoming Tuesday, when the routing weights are used
to route traffic, are similar enough that the traffic volume constraints will be upheld.

This is a problem since Spotify’s traffic patterns are not only daily, but also weekly. People
tend to stream more music on Fridays than Thursdays, which could cause problems when
using optimised weights from a Thursday to route requests during a Friday.

In this case, it might be beneficial to use a weekly time window instead of a daily. This
would account for varying, intra-week traffic patterns.

58

Minimum request count filter causing weight oscillation

In our A/B test, we have used a fairly restrictive minimum request count filter (α = 10000
requests / storage), while also allowing the linear programming model to assign relatively
low weights (∀s ∈ S : wmin-group

s = 0.10).

Groups with low request counts, who just barely make the cut of having 10000 logged
requests per storage, might not receive enough requests per storage during the upcoming
time window, due to unbalanced routing weights.

Future work

Experiments with more permissive filter parameters

We believe more experiments are necessary to determine appropriate values for the request
count filter. By allowing more groups with low request counts to receive optimised routing
weights, we expect to see greater improvements in the test statistic in smaller markets.

Experiments on all traffic

We believe the traffic constraints to be a significant and powerful aspect of our routing
strategy.

Through them, Spotify can use the existing per-region, and possibly in the future also per-
country constraints to perform traffic shaping. That is, exercise granular control over traffic
patterns.

One possible reason for Spotify performing traffic shaping would be meeting CDN traffic
quotas. A common practice when dealing with CDN is to agree on paying for some mini-
mum traffic quota. Using our routing strategy, Spotify could be very specific in deciding
which traffic from which regions and countries should be allocated to meeting such traffic
quotas.

The power of controlling traffic through our routing strategy is dependent on actually us-
ing the generated routing weights to route all incoming requests. During our A/B test, the
linear programming model generated optimised weights based on 100% of the requests in
the test population, but only 50% of those requests were subsequently routed using our
routing strategy.

If our traffic constraints are to be 100% effective, the amount of requests routed by our
strategy should be increased to 100%.

Publish routing weights as configuration file

The reason we used Memcached for storing weights in the implementation of our routing
strategy is mainly to allow the weights to be frequently updated with low effort.

59

Having the storage-resolve service perform a Memcached lookup for every incoming re-
quest is however not desirable, since it increases the complexity of the service, and intro-
duces a number of new failure modes.

A less complex way of implementing the weight-based routing would be for the service
to look up the routing weights in a configuration file stored on disk. Since Spotify already
uses Puppet to manage and publish their routing rules, we can imagine a similar solution
for our routing weights.

Experiment with weekly optimisation

We believe that it would be very interesting to experiment with larger time windows for
our routing strategy, for example by generating routing weights on a weekly basis as op-
posed to a daily basis.

Larger time windows means less effort in running the optimisation model and updating
the routing weights.

The size of the time window is largely tied to our perception of how often we believe that
expected latencies within groups are bound to significantly change.

60

9
Appendix

GMPL model

The following listing contains the implementation of our linear programming model in
GNU MathProg.

The data definitions are to be provided as a separate file to the solver.

Listing 9.1: ”GMPL implementation of our linear programming model.”

Copyright (c) 2014 Spotify AB

set STORAGES;
set REGIONS;
set GROUPS;
set GROUPS_TO_OPTIMIZE within GROUPS;
set GROUPS_WITH_DEFAULT_WEIGHTS within GROUPS;

param ExpectedLatencies{group in GROUPS , storage in STORAGES };
param RequestCounts{group in GROUPS , storage in STORAGES };

param GroupRegions{group in GROUPS}, symbolic;
param DefaultWeights{storage in STORAGES };

param MinGroupTraffic{storage in STORAGES} default 0.0;
param MaxGlobalTraffic{storage in STORAGES} default 1.0;
param MinRegionTraffic{region in REGIONS , storage in STORAGES} default 0.0;

var weights{group in GROUPS , storage in STORAGES}, >= 0, <= 1;

param GroupRequestCounts{group in GROUPS} :=
sum{storage in STORAGES} RequestCounts[group , storage];

param GlobalRequestCount :=
sum{group in GROUPS} GroupRequestCounts[group];

param RegionRequestCounts{region in REGIONS} :=
sum{group in GROUPS} if (GroupRegions[group] == region)

then GroupRequestCounts[group]
else 0;

param MaxGlobalRequestCounts{storage in STORAGES} :=

61

GlobalRequestCount * MaxGlobalTraffic[storage];

param MinRegionRequestCounts{region in REGIONS , storage in STORAGES} :=
RegionRequestCounts[region] * MinRegionTraffic[region , storage];

minimize total_latency:
sum{group in GROUPS , storage in STORAGES} (weights[group , storage] *

GroupRequestCounts[group] *
ExpectedLatencies[group , storage]);

subject to weight_sums{group in GROUPS }:
sum{storage in STORAGES} weights[group , storage] = 1.0;

subject to min_group_traffic{group in GROUPS , storage in STORAGES }:
weights[group , storage] >= MinGroupTraffic[storage];

subject to max_global_traffic{storage in STORAGES }:
sum{group in GROUPS} (GroupRequestCounts[group] *

weights[group , storage])
<= MaxGlobalRequestCounts[storage];

subject to min_region_traffic{region in REGIONS , storage in STORAGES }:
sum{group in GROUPS} (if GroupRegions[group] == region

then GroupRequestCounts[group] *
weights[group , storage]
else 0)

>= MinRegionRequestCounts[region , storage];

subject to default_weights{group in GROUPS_WITH_DEFAULT_WEIGHTS ,
storage in STORAGES }:

weights[group , storage] = DefaultWeights[storage];

solve;

for {group in GROUPS_TO_OPTIMIZE} {
for {storage in STORAGES} {

printf "%s\t%s\t%.2f\n", group , storage , weights[group , storage];
}

}

end;

62

Constraints

These are the constraints we used for our model during the A/B test described in chapter
6.

Listing 9.2: ”GMPL implementation of our linear programming model.”

param DefaultWeights :=
CDN_A 0.40
CDN_B 0.40
storage 0.20;

param MinGroupTraffic :=
CDN_A 0.10
CDN_B 0.10
storage 0.10;

param MaxGlobalTraffic :=
storage 0.50;

param MinRegionTraffic :
CDN_A CDN_B :=

APAC 0.20 0.20
NA 0.20 0.20
LatAm 0.20 0.20;

63

Bibliography

1. R. Kohavi, R. M. Henne, D. Sommerfieldet al., in Proceedings of the 13th aCM sIGKDD
international conference on knowledge discovery and data mining, (ACM, 2007), pp. 959–967.

2. Ericsson et al., A smartphone app developer’s guide (2014).

3. Akamai et al., Highly distributed computing is key to quality on the hD web (2007).

4. Verizon et al., IP latency statistics (2014) (available at http://www.verizonenterprise.
com/about/network/latency).

5. Edgecast et al., Edgecast - cDN locations (2014) (available at http://www.edgecast.com/
network/map).

6. E. Nygren, R. K. Sitaraman, J. Sunet al., The akamai network: a platform for high-
performance internet applications, ACM SIGOPS Operating Systems Review 44, 2–19 (2010).

7. H. Kniberg, A. Ivarsson et al., Scaling agile@ spotify (2012).

8. R. A. Fisher, F. Yates, otherset al., Statistical tables for biological, agricultural and medical
research., Statistical tables for biological, agricultural and medical research. (1949).

9. D. E. Knuth et al., The art of computer programming, 3rd edn., vol. 2, Seminumerical
Algorithms (1998).

10. H. B. Mann, D. R. Whitney, otherset al., On a test of whether one of two random vari-
ables is stochastically larger than the other, The annals of mathematical statistics 18, 50–60
(1947).

11. T. A. S. Foundation et al., Hadoop - open-source software for reliable, scalable, dis-
tributed computing. (2014) (available at http://hadoop.apache.org/).

12. A. Thusoo et al., Hive: a warehousing solution over a map-reduce framework, Proceed-
ings of the VLDB Endowment 2, 1626–1629 (2009).

13. P. Faratin et al., The growing complexity of internet interconnection., Communications &
Strategies (2008).

14. T. Bates et al., CIDR report (2014) (available at http://www.cidr-report.org/as2.0).

15. I. Van Beijnum et al., BGP: Building reliable networks with the border gateway protocol (O’Reilly
Media, Inc., 2002).

16. A. Biliris et al., CDN brokering, Computer Communications 25, 393–402 (2002).

17. B. Krishnamurthy, J. Wang et al., in ACM sIGCOMM computer communication review,
(ACM, 2000), vol. 30, pp. 97–110.

18. R. Krishnan et al., in Proceedings of the 9th aCM sIGCOMM conference on internet measure-
ment conference, (ACM, 2009), pp. 190–201.

64

http://www.verizonenterprise.com/about/network/latency
http://www.verizonenterprise.com/about/network/latency
http://www.edgecast.com/network/map
http://www.edgecast.com/network/map
http://hadoop.apache.org/
http://www.cidr-report.org/as2.0

19. F. Piccinini et al., Dynamic load balancing based on latency prediction, (2013).

20. B. Kolman et al., Elementary linear programming with applications (Gulf Professional Pub-
lishing, 1995).

21. W. L. Winston, J. B. Goldberg et al., Operations research: applications and algorithms,
(1994).

22. E. Jones, T. Oliphant, P. Peterson, otherset al., SciPy: Open source scientific tools for
Python (2001–2001--) (available at http://www.scipy.org/).

23. W. McKinney et al., in Proceedings of the 9th python in science conference, S. van der Walt, J.
Millman, Eds. (2010), pp. 51–56.

24. GLPK et al., GNU linear programming kit.

25. MaxMind et al., GeoIP Organization (available at http://www.maxmind.com).

26. B. Fitzpatrick et al., Distributed caching with memcached, Linux journal 2004, 5 (2004).

65

http://www.scipy.org/
http://www.maxmind.com

