
Machine learning based warning system
for failed procurement classification doc-
uments

Master’s thesis in Data Science and Artificial Intelligence

Anastasios Tzinieris

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Machine learning based warning system for failed
procurement classification documents

Anastasios Tzinieris

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Machine learning based warning system for failed procurement classification docu-
ments

Anastasios Tzinieris

© Anastasios Tzinieris, 2022.

Supervisor: Aila Särkkä, Department of Mathematical Sciences
Advisor: Jonathan Liljegren, Tendium AB
Examiner: Umberto Picchini, Department of Mathematical Sciences

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Machine learning based warning system for failed procurement classification docu-
ments

Anastasios Tzinieris
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Warning systems in the Machine Learning field of study, is a tool that generates a
warning based on a model’s prediction results. This thesis’s study topic is to create
such system to identify possible problematic procurement classification documents.
Given a database of a company, a dataset was created for which a feature anal-
ysis was made to investigate which properties of a document can cause an either
classification or formatting error. The challenging part of the research was the fea-
ture engineering since each feature had to be preprocessed differently based on the
importance of the information contained.

Moreover, different supervised machine learning methods were implemented and hy-
perparameter tuned, using an algorithm called Grid Search. After the evaluation
and comparison of the models, XGBoost Classifier was found to be the most success-
ful both in terms of performance and computational time achieving 90,5% accuracy.
However, by gathering more data, especially containing formatting errors, it is an-
ticipated that the performance of the warning system using the XGBoost will be
improved.

Keywords: Warning system, supervised learning, machine learning, feature engi-
neering, XGBoost Classifier.

v

Acknowledgements
First of all I would like to express my sincerest gratitude to my supervisor at
Chalmers University of Technology, Aila Särkkä whose guidance and constant feed-
back throughout the duration of the thesis have been incredible. Secondly i would
like to thank my advisor in Tendium AB, Jonathan Liljegren who helped me gather
the data needed for the research and gave his input in any challenge i had.
Last but not least i would like to thank my examiner Umberto Picchini for his
collaboration and examination of the thesis.

Anastasios Tzinieris, Gothenburg, June 2022

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2
1.3 Limitations . 3
1.4 Outline of the thesis . 4

2 Theory 5
2.1 Machine learning . 5

2.1.1 Supervised learning . 5
2.1.2 Overfitting - Underfitting . 6
2.1.3 K-fold cross validation . 7
2.1.4 Decision Trees . 7
2.1.5 Random Forest . 9
2.1.6 Gradient Boosting . 9
2.1.7 Logistic Regression . 9
2.1.8 Support Vector Machines . 10
2.1.9 XGBoost . 10
2.1.10 Neural Networks . 11

2.2 Evaluation Metrics . 12
2.2.1 Confusion Matrix . 12
2.2.2 Accuracy . 13
2.2.3 Precision . 13
2.2.4 Recall . 13
2.2.5 F beta - score . 13

2.3 Libraries . 14
2.3.1 Pandas . 14
2.3.2 Scikit-learn . 15
2.3.3 Tensorflow . 15

3 Data 17
3.1 Data gathering . 17
3.2 Data description . 18
3.3 Target label of dataset . 19

ix

Contents

3.3.1 Analysis of annotation data 19
3.3.2 Creation of Target label . 20

4 Feature Engineering 21
4.1 Feature Analysis . 21

4.1.1 Type of document . 21
4.1.2 Document producer . 25
4.1.3 CPV Code . 27

5 Modeling 29
5.1 Data Preparation . 29

5.1.1 Document language . 29
5.1.2 Type of document . 30
5.1.3 Classification Label . 30
5.1.4 Document Producer . 30
5.1.5 CPV Code . 31

5.2 Model implementation . 32
5.2.1 Support Vector Machines . 32
5.2.2 Logistic Regression . 32
5.2.3 Random Forest . 33
5.2.4 XBGoost . 33
5.2.5 Neural Network . 33

6 Results 35
6.1 Important labels . 35
6.2 Results . 35

7 Conclusion 39
7.1 Discussion . 39
7.2 Limitations . 39
7.3 Future Work . 40
7.4 Conclusion . 41

A Appendix 1 I

B Appendix 2 III
B.1 Source code for data preparation . III
B.2 Confusion matrices . IV

x

List of Figures

1.1 Structure of warning system. 3

2.1 Visual difference between Classification and Regression problems . . . 6
2.2 Examples of underfitting and overfitting in comparison to the optimal

scenario. 7
2.3 Illustration of k-fold cross validation. 7
2.4 Example of a decision tree. 8
2.5 Flow of Random Forest Classifier. 8
2.6 Fit of a Logistic function and visualization of the threshold value. . . 10
2.7 Support vector machine hyperplane selection. 10
2.8 Neural Network architecture. The network has one input layer, three

hidden layers and one output layer. 11
2.9 Example of Dataframe and its properties. 14

3.1 Example of a DataFrame containing relevant columns of the dataset. 18

4.1 Pie chart of correct and incorrect classification across the different
types of documents. 22

4.2 Distribution of confidence scores intervals across all the incorrect clas-
sifications. 23

4.3 Distribution of confidence scores intervals across all the incorrect clas-
sifications for each different file type. 24

4.4 Distribution of confidence scores intervals across all the correct clas-
sifications for each different file type. 25

4.5 Ratio of PDF files with and without a producer. 26
4.6 Top 10 producers with the highest percentage of failure. 26
4.7 Percentage of failure for the top 20 most common CPV codes. 27

5.1 Transformation of documentLanguage into categorical features. . . . 29
5.2 Transformation of filepath into categorical features. 30
5.3 Transformation of a sample of labels in classificationLabelId into cat-

egorical features. 30
5.4 Transformation of a sample of documentProducer into categorical

features. The blue color indicates a converter which was previously
seen by the model and the red color an updated converter. 31

A.1 Distribution of confidence scores intervals across all the correct clas-
sifications. I

xi

List of Figures

B.1 Confusion matrix of the Random Forest Classifier. IV
B.2 Confusion matrix of the Logistic Regression. IV
B.3 Confusion matrix of the Support Vector Machines. V
B.4 Confusion matrix of the XGBoost Classifier. V
B.5 Confusion matrix of the Base Neural Network. V
B.6 Confusion matrix of the Advanced Neural Network. VI

xii

List of Tables

2.1 Sample of Confusion matrix containing TP,TN,FP,FN values. 13

3.1 Count of rows in each dataset. 18
3.2 Count of correct and incorrect rows of the dataset 19
3.3 Number of rows with at least one error reported. 20
3.4 Count of errors across correct and incorrect classifications. 20
3.5 Distribution of the rows for the target label needChecking. 20

4.1 Number of datapoints for each type of document (PDF, DOCX, DOC.
XLSX) . 21

4.2 Number of incorrectly classified rows with respect to the confidence
scores. 22

4.3 Number of incorrectly classified rows with respect to confidence scores
for each different file type. 23

4.4 Number of correctly classified rows with respect to the scores for each
different file type. 24

6.1 Performance of the Machine learning models without Grid Search . . 36
6.2 performance of the Machine learning models on important labels

without Grid Search . 36
6.3 Performance of Machine learning models with Grid Search 37
6.4 Perfomance of Machine learning models on important labels with Grid

Search . 37
6.5 Machine learning models performances summary for all metrics both

with Grid Search and without . 37

A.1 Number of correctly classified rows with respect to confidence scores. I
A.2 Count of incorrect rows for different PDF producers. II

xiii

List of Tables

xiv

1
Introduction

This thesis covers the study of feature selection and application of machine learning
(ML) methods to produce a warning system for possible errors in a classification of
procurements. Procurement, by definition, is the process of finding and agreeing to
terms, and acquiring goods, services, or works from an external source, often via a
tendering or competitive bidding process. Today, the public procurement market is
not as technologically advanced as other domains in society [1]. The thesis was done
at a company located in Stockholm called Tendium that has as its goal to make the
public procurement process automated by using machine learning methods.

1.1 Background

Tendium delivers automatically curated data to its customers. This information
is related to a certain flow, among which, several classification models are used to
predict the output along with pre-processing and post-processing steps to prepare
the input for training and deliver the output with the appropriate formatting. Since
the level of automation is not absolute and dependent on predictions, there is a need
in some cases to manually review and potentially correct some of the data before
delivering them to the customers. This process is done by an annotation team whose
responsibility is to go over each output of the classification flow for every document
in a procurement and annotate accordingly the predictions.

Verifying a delivery results in an increase both in terms of time and cost. Since
the annotation is very important for every company working with machine learning
methods, it must be used constructively and avoid spending time verifying classi-
fications. For this reason, the thought of a warning system was created which will
notify the users if the output is potentially wrong on either the classification or the
formatting stage. Machine learning is commonly used to create such systems and
thus, it was selected for this research.

1

1. Introduction

1.2 Aim

This research focuses on extracting features and using machine learning methods to
create a warning system which will help the users to distinguish which documents
need checking and which do not. As a result, a serious amount of time will be saved
by this process which will then help Tendium to automate this part of their process.
Every procurement consists of multiple documents and each document is then split
to sections (paragraphs) which are being classified depending on their context. Thus,
the warning system should first evaluate the content of each document and then
provide a final positive or negative output to the user if the procurement needs to
be checked or not.

Since the output will be binary, there are multiple machine learning methods that
can tackle binary classification problems. The methods that will be used and eval-
uated are :

• Random Forrest

• Logistic Regression

• Support Vector Machines

• XGBoost Classifier

• Neural Networks

since they are often successful at solving binary classification problems with mul-
tiple features. The theoretical background needed for these ML methods will be
thoroughly described in Chapter 2.

The input of the methods will be the properties of each document, extracted during
the flow of parsing and classification. After analyzing and selecting the appropriate
features, the methods above will be tested and compared and the model with the
higher performance metric will be selected to be used as the active model of the
system. The output of this system will indicate the procurement needs manual in-
spection by the annotation team. The complete functionality of the warning system
can be shown below.

2

1. Introduction

Figure 1.1: Structure of warning system.

1.3 Limitations

Real data are always a challenge when it comes to machine learning. Firstly, there is
no guarantee that the data will be enough to have an unbiased result since it’s diffi-
cult to avoid having imbalance datasets (datasets that do not have the same amount
of data for every different class). This suggests that the selection of the dataset and
research around it should be the best one possible to achieve the desirable results.
Secondly, the workflow of gathering data changed over time as new methods were
used for classification and a new annotation for parser errors (reporting of wrong
formatting of the output) was introduced after December 2021. As a result, the
dataset used in this project might not include all the data available.

In addition, feature engineering is the most challenging part given that there is a
lot of data available , in comparison to what is needed at the end. For instance,
there is a possibility of including data from the annotation which will affect the
outcome of the ML model and may lead to biased results. Another example is that
there might be irrelevant features available which will increase time of prediction
and might not be of any use to the model or in the worst case scenario even result
in worse performance, since there might be broad and unconnected to the specific
problem of interest.

Last but not least, the human error might affect the results since the data have been
annotated by a team. Specifically, data points similar to each other might have been
annotated differently by separate members of the team. Those data points, given
that they contain valuable information, will confuse the model and may not be taken
into account even though they should.

3

1. Introduction

1.4 Outline of the thesis
This thesis is divided into 7 chapters. Chapter 1 is the Introduction, followed by
Chapter 2 which covers the theoretical background needed for this work including
description of the tools and the ML methods used during the course of the thesis.
Chapter 3 includes a thorough description of the data and the process of acquiring
and preparing them for the feature engineering which is the subject of Chapter 4.
The construction and evaluation of each ML method is presented in Chapter 5. The
comparison of the different models and visualization of their results is covered in
Chapter 6 with the final conclusions and limitations of the research being listed in
Chapter 7.

4

2
Theory

The following chapter consists of the theoretical background of all the different tools
and libraries along with the machine learning models used in this research.

2.1 Machine learning

2.1.1 Supervised learning

Supervised learning, also known as supervised machine learning, is an approach
of creating a machine learning model in which the data of the problem have been
already annotated [2]. In other words, each datapoint has a specific label indicating
what the classification output should be. The most common example is the clas-
sification of spam emails where the dataset consists of texts(emails) and each text
has a label specifying if the text is spam or not. The goal of a supervised learning
model is to use the training data (by the assumption that the data are correctly
annotated) and try to yield a desired output for unknown datapoints.

Supervised learning can be separated into two sub-problems:

• Classification : The process in which a function must be found to map an
input (x) to a discrete output (y). An example for classification problems is
email classification into spam or not spam.

• Regression : The process in which a function must be found to map an input
(x) to a continues output variable (y). Regression problem can be used for
example in weather forecasting.

5

2. Theory

Figure 2.1: Visual difference between Classification and Regression problems

2.1.2 Overfitting - Underfitting

When implementing machine learning models, the main goal is to achieve the best
performance for the model. However, in the machine learning field it is of great
importance that a model will be evaluated before using it on real problems. When
working with real data, obviously, the chances of managing to achieve the perfect
score are very low. Especially in text classification problems, usually texts can differ
a lot from each other and thus, it is impossible for the model to have seen the exact
same example in the past.

The trade off that is important for these problems is the bias-variance trade off or
in a more familiar term underfitting and overfitting of the model [3]. When a model
has high bias and low variance or a model is underfitting (first graph of Figure
2.2), it means that the mapping function has not the necessary properties and input
variables for being able to predict correctly newly seen data. On the other hand,
when talking about overfitting (third graph of Figure 2.2), it means that the model
has high variance and low bias which means that it has seen so many data points
over and over again, at a point which it manages to know everything about the
training set. However, the generalization error is too high, meaning that it cannot
predict correctly new data. The reason behind this might be that there are many
important features and the model now is too sensitive to outliers (datapoints that
differ significantly from the training set). Overfitting can be seen when the training
error is low but the testing error is high [4].

6

2. Theory

Figure 2.2: Examples of underfitting and overfitting in comparison to the optimal
scenario.

2.1.3 K-fold cross validation
A regular process for creating and evaluating machine learning methods is that
usually the dataset is split into training and testing set (70% and 30% respectively)
[5]. To evaluate the performance of the model, the so called k-fold cross validation,
where the complete data set is divided and processed k times or folds, can be used.
Each time, a new test set is created and evaluated upon, leaving the remaining
dataset as a training set. In other words, for k folds there will be exactly k test sets
completely different to each other and when put together they give the complete
dataset (See Figure 2.3). The final evaluation score would be the average score for
all k folds.

Figure 2.3: Illustration of k-fold cross validation.

2.1.4 Decision Trees
For classification problems, a common approach is to use Decision trees. These
are sequential models which represent a sequence of tests (questions) where each
test compares a numerical attribute against a specified, by the model, threshold [6].

7

2. Theory

Figure 2.4: Example of a decision tree.

The tree is divided into non leaf nodes which are questions for a specific feature
and leaf nodes which give the classification output based on the answers. The word
decision tree derives from the hierarchy of the questions, representing the tree and
the class of a datapoint is the first leaf node found for the sequence of tests. The
order of the questions is extremely important and thus, the features (questions)
should be categorised in a way that the first question should be the important for
the prediction. A visualization of such a system is shown in Figure 2.4)

Figure 2.5: Flow of Random Forest Classifier.

8

2. Theory

2.1.5 Random Forest
A random forest (RF) classifier as the name implies is a classification method with
consists of multiple decision trees constructing a forest (Figure 2.5). The number
of decision trees operates as ensemble learning which in ML terms is the way of
combining different models (in this case Decision trees) to achieve better predictive
performance [7]. The concept behind Random forest Classifier is populating the
model with many randomly formed decision trees and from the output of all those
trees, picking the class that was predicted the most among them. The technique
of combining all the models to create a new improved model is called bagging. The
chance of overfitting is reduced because of the decision trees are randomly assembled
and each decision tree has been trained on a different subset of the training dataset
[8].

2.1.6 Gradient Boosting
The term gradient boosting is derived from the concept of "boosting" or enhancing
a single weak model by merging it with a number of additional weak models to form
a collectively strong model. Gradient boosting is a boosting modification in which
the process of building weak models is described as a gradient descent method over
an objective function. Gradient boosting is a supervised learning algorithm which
targets the outcomes for the next model in an attempt to reduce errors in prediction.
Targeted outcomes for each instance are determined by the gradient of the error with
respect to the prediction (hence the name gradient boosting).

Since Gradient boosting is a supervised learning method, it takes a series of labeled
training examples as input and constructs a model that attempts to accurately pre-
dict the label of each training example based on some additional non-label informa-
tion about the example (known as features of the instance). The goal is to create an
accurate model capable of automatically labeling future data with unknown labels.

2.1.7 Logistic Regression
One of the most popular methods used for supervised binary classification problems
is logistic regression. It is used to forecast the categorical dependent variable
from a group of independent factors and yields a probability between 0 and 1 which,
given a specific threshold, results in the final predicted class. Its name derives from
the logistic function in the form of sigmoid function used for mapping the predicted
values to probabilities (Figure 2.6).

f(x) = 1
1 + e−x

, where x is the value needed to be transformed to probability between 0 and 1.

One can include linear inside the sigmoid function which will result in

f(x) = 1
1 + e−(b0+b1x)

9

2. Theory

, where b0 is the bias or intercept term and b1 is the coefficient for the single input
value x. f(x) is then the predicted output.

Figure 2.6: Fit of a Logistic function and visualization of the threshold value.

2.1.8 Support Vector Machines
Another example of supervised learning that will be used in this research is Support
Vector Machines (SVM). The goal is to find a hyperplane between the datapoints
to distinguish the two different cases in a binary classification problem. The hyper-
plane is created in a N-space where N is the total number of features available. The
algorithm will try to create the hyperspace with as few features as possible and use
additional features until an acceptable hyperplane is created. In the case that there
are more than one desirable hyperplanes, it chooses the one with the higher margin
between the two closest points which are called support vectors [9]. In this way the
algorithm can select and classify unknown datapoints with a higher confidence. An
illustration of SVM is shown below in the case of having only two features and thus
in the 2D space.

Figure 2.7: Support vector machine hyperplane selection.

2.1.9 XGBoost
Extreme Gradient Boosting also known as XBGoost is a scalable and gradient-
boosted decision tree (GBDT) machine learning library. It was selected in this
project, since it is one of the most commonly used machine learning methods in

10

2. Theory

online competitions like Kaggle with extremely high performance. It combines prop-
erties mentioned before like ensemble learning, gradient boosting and decision trees.
It is an implementation of gradient boosting with the difference that it is designed
for maximizing the performance of the model and minimizing the computational
speed. The biggest difference between gradient boosting and XGBoost Classifier is
that, in the latter the decision trees are built in parallel instead of sequentially [10].

2.1.10 Neural Networks
An important subset of machine learning is deep learning which has been evolved
over the years mainly because of the technological advances and the possibility of
running computationally heavy models easily. Deep learning refers to the existence
of neural networks also known as artificial neural networks (ANNs) which are
series of algorithms whose goal is to recognize underlying relationships in a set of
data through a process that mimics the way the human brain operates with neurons
signaling each other based on different mathematical formulas. Neural networks
consist of node layers, one input layer, one or more hidden layers and one output
layer representing the prediction output (see Figure 2.8) . Each neuron (node)
connects to another and has a specific weight and threshold. The neuron is activated
if the output of each node is above a given threshold, resulting in the data to be
sent to the next layer of the network.

Figure 2.8: Neural Network architecture. The network has one input layer, three
hidden layers and one output layer.

Although there are numerous neural networks developed throughout the years, we
will here focus only on the simple architecture of feedforward neural networks, or
multi-layer perceptrons (MLPs) since more complicated NNs need both computa-
tional power and take more time in comparison to simple ANNs. Every layer applies
certain mathematical operations on the inputs, and produces an output. It takes a
vector of real values inputs, performs a linear combination of each attribute with the
corresponding weight assigned to each of them which then is summed into a single
value and passed through an activation function. Although there are a few activa-
tion functions available, the focus of this thesis will be on sigmoid (as mentioned
before) and rectified linear activation function (ReLu) [11]. This function returns 0
if it receives any negative input, but for any positive value x, it returns that value
back. Thus it gives an output that has a range from 0 to infinity. It is commonly

11

2. Theory

used because of its ability to converge faster without having negative values like in
the case of tanh. The formulas for sigmoid and ReLu are shown below.

• Sigmoid :

f(x) = 1
1 + e−g(x)

• ReLu :

f(x) = x+ = max(0, x)

,where g(x) is a function (e.g. linear) and x is the input to a neuron

2.2 Evaluation Metrics

As mentioned above, one of the most challenging parts of machine learning is the
evaluation of the model and avoidance of both underfitting and overfitting. To
do that, there are some metrics which can be used to measure the performance and
target the correct output. However before describing those terms and formulas, there
are some valuable metrics needed regarding the classification. During a classification
prediction , there are four types of outputs that could occur.

• True positives : Actual classification of datapoint is positive and predicted
classification is positive.

• True negatives : Actual classification of datapoint is negative and predicted
classification is negative.

• False positives : Actual classification of datapoint is positive and predicted
classification is negative.

• False negative : Actual classification of datapoint is negative and predicted
classification is positive.

2.2.1 Confusion Matrix

A confusion matrix is a table containing all the information mentioned above and
has the following structure.

12

2. Theory

Table 2.1: Sample of Confusion matrix containing TP,TN,FP,FN values.
ac

tu
al

va
lu

e
Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

2.2.2 Accuracy
Accuracy is defined as the percentage of correct predictions for the total datapoints
of the test data. It can be calculated by dividing the number of correct predictions
by the number of total predictions.

Accuracy = correct predictions

total predictions

2.2.3 Precision
Positive predictive value also known as precision is the fraction of true positives
among all the instances that are predicted to belong to this class

Precision = true positives

(true positives) + (false positives)

2.2.4 Recall
Recall (also known as sensitivity) is the fraction of true positives among all the
instances that actually belong to this class

Recall = true positives

(true positives) + (false negatives)

2.2.5 F beta - score
Although accuracy, precision and recall are very useful metrics for a model to be
evaluated, there is often the need of taking into account both the precision and the
recall like in this research. Fβ score takes into consideration both the recall and the
precision giving a weight (beta) that can be adjusted depending on the requirements

13

2. Theory

of the problem [12].

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

The values of beta can be:
• beta > 1 : Recall is considered more important than precision.
• beta < 1 : Precision is considered more important than recall.
• beta = 1 : There is an optimal trade-off between the precision and the recall

(also known as F1-score).

Since the problem did not require a certain focus to either of them, the F1-score
was used to verify that the precision and recall were equally weighted.

2.3 Libraries

2.3.1 Pandas
Pandas is a software library written for the Python programming language for data
manipulation and analysis [13]. It is commonly used for data analysis because of its
ability to easily manipulate tabular data in a structure called Dataframe. There
are several ways of importing data through different file types such as comma-
seperated values (CSV), Microsoft Excel, Json or SQL database tables. With the
use of Dataframe, pandas allows fast, in terms of computational speed, changes and
manipulations such as selection, merging, and reshaping along with data cleaning
features.

Figure 2.9: Example of Dataframe and its properties.

14

2. Theory

2.3.2 Scikit-learn
The Scikit-learn library (commonly known as sklearn) is an open source learning
library that supports supervised and unsupervised learning. It also provides various
tools for model training, data prepossessing, model selection and evaluation. Many
of the ML methods, used for this research such as Random Forest, Support Vector
Machines and Logistic Regression were implemented with the use of sklearn. In
addition, the library has the ability of using efficiently structures such as pandas
Dataframees.

2.3.3 Tensorflow
TensorFlow is an open source library, created by Google, for numerical computation
and machine learning. It uses Python to create applications such as neural networks
while the execution of those applications are made in C++. Developers can create
graph-structures which describe how the input data are passed through a number of
processing steps. Each step, also known as node indicates a mathematical operation
and each edge between the nodes is a multidimensional data array which is referred
to as tensor. Tensorflow framework is used in this project for creating and evaluating
the neural network.

15

2. Theory

16

3
Data

This research were made on real data provided by Tendium AB. Since the process
evolves information about procurements, the data provides are paragraphs extracted
by text documents. Each paragraph is then classified depending on the context of
the text. All the information about the documents and the classification flow are
located in a database. The following chapter covers the process of data gathering
along with the structure and description of the dataset.

3.1 Data gathering
When working on real problems such as this thesis, the data must be collected
or extracted by a database. In this case, the data were gathered by Tendium’s
database consisting of information for every different section of a document of each
procurement. This information about a section in a dataset will be either referred
to as a row or datapoint in the rest of the research. However, the challenging part
of this process was the selection of the data that would help to solve the problem
because the databases consist of tables containing metadata and information that
in hand were irrelevant.

The tool used for this process was pgAdmin in which a server of the company’s
database was saved. The programming language that this interface uses for ma-
nipulating tabular data is postgreSQL (also known as postgres) which is one of
the most commonly used languages in database management systems. With the
use of this tool, three different tables containing information about the documents
resulting in an over of 1.600.000 datapoints table. Nevertheless, this table is the
complete database containing both annotated and non-annotated data which in this
case would be impossible to include since supervised learning methods requires a
target label. Including only the annotated data returned about 125.000 rows which
were saved as a excel file to be used in the python environment.

The last part of the process was taking into account any changes of the company’s
process regarding annotations and classifications. Specifically, a new process of
annotating parser errors, which were formatting issues during the post-processing
step of the main flow, was introduced in November 2021. The initial assumption
was that this new field, that was contained in the table extracted, could be of use
in predicting texts with possible formatting issues since there will be information
provided by the annotators and thus, a target label to be used in the training of

17

3. Data

Dataset description Number of rows
Complete dataset 1.674.324
Annotated dataset 125.409
Final dataset 28.790

Table 3.1: Count of rows in each dataset.

a model. Moreover, the classification model used in the main flow was updated
on October 22nd, 2021. To be sure that both arguments were satisfied, the final
dataset gathered was from December 1st, 2021, consisting of 28.790 rows. The
following table describes the number of rows for each step of the process.

3.2 Data description
Before doing the feature engineering, each feature must be thoroughly described
since it was important for the correct selection of the data. Some of the features
contained in the dataset will not be described in this chapter since they were not
used but will be included in Appendix A. The dataset containing features that were
inspected in this research is located below in form of a DataFrame as was described
in 2.3.1 .

Figure 3.1: Example of a DataFrame containing relevant columns of the dataset.

Description of each feature in the DataFrame:
• procurementId : A unique id code indicating the procurement that the

document is included in. Since every document may have more than one
section, multiple rows will have the same procurement id.

• filePath : The filepath of each document in the database. The file types
that can exists are XLSX (Microsoft Excel), DOC (Microsoft Word), DOC
(Microsoft word with Open XML format), PDF (Portable Document Format).

• parserErrors : A list of strings containing any possible errors found during
the parsing of the document or the post-processing of the output.

18

3. Data

• documentLanguage : A string indicating the language code of the docu-
ment.

• documentProducer : In the case of PDF documents, the name of the ap-
plication (string) used to transform the document to PDF.

• classificationConfidenceScore : The prediction score of the classifier used
to classify each section. Since it is a probability the values are between 0 and
1.

• correct : The annotation given for each classification. if the classification was
correct then this field will be True, otherwise False.

• LabelBoxesUpdatedAt : A timestamp suggesting the date of a change that
was made in a specific row.

• classificationLabelId : The predicted label of the classifier. Tendium’s flow
uses a multi-label text classifier to classify each text into one or more labels
depending on the context of the paragraph. The total amount of labels is 145
in the form of "CX", where X is a number between 1 and 145. However,there
are some labels that are more valuable for the company and thus, prioritised.
Those labels are described more in Chapter 6 during the evaluation.

In addition to this dataset, one JSON file was provided by the company, containing
a mapping between each procurement and its CPV codes. These codes are 8-digit
numbers describing an industry. The JSON file provides the information about the
industry importance of each procurement.

3.3 Target label of dataset
Since the goal of the project was to create a warning system for identifying possible
errors in either the classification step or the formatting of the text, it was necessary to
create another column to represent the target label of the dataset. The information
to do that was available on two possible columns, the correct and the parserErrors
columns. The former returns the annotation for the classification step and the latter
the indication of an error in the formatting.

3.3.1 Analysis of annotation data
The data gathered represent all the annotated texts in terms of the classification. In
other words, all 28790 rows contain information (either True or False) in the column
"correct". However, it was important to verify that the data were not imbalanced
which means that there were enough data for both True and False annotations. The
results of this analysis (see Table 3.2) fulfilled the requirements although the number
of correct classifications was more than the incorrect ones.

Classification Datapoints
Correct 18718
Incorrect 10072

Table 3.2: Count of correct and incorrect rows of the dataset

19

3. Data

The second part of this analysis was to check the company’s newly added feature of
report possible errors made during the parsing of the text. Moreover, the user, along
with the annotation of classification, had the option to report in a text field one or
more errors if existed. In terms of data structure, this field contains either an empty
list, indicating that the text had no errors or a list containing one or more string
explaining the problem found such as "incorrectly headline", "missing information"
etc.. Unfortunately, the data regarding parser errors were not as many as we first
thought with only 282 errors reported in a period of five months (Table 3.3).

Parser Errors Datapoints
Exist 282
Not exist 28508

Table 3.3: Number of rows with at least one error reported.

Last but not least, both the features were included to provide information about how
many of the errors were correct classifications or not. The reason behind this test
was to check if both the features were necessary to be included in the target label,
otherwise the parser errors were already covered by the classification annotation.
The results in Table 3.4 revealed that the errors were balanced between correct and
incorrect classifications. Despite the low number of errors which probably would not
affect the results of the warning system, it was an additional information which was
included in the creation of the target label.

Classification Errors
Correct 154
Incorrect 128

Table 3.4: Count of errors across correct and incorrect classifications.

3.3.2 Creation of Target label
After the analysis above,a new column called needsChecking was created which,
in the case of either an error in the classification or the format is reported, was
annotated as zero (0), otherwise it was annotated as one (1). The distribution
shown in the Table 3.5 indicates that there is still an imbalance in the dataset
between the rows that need to be checked and those that do not. Nevertheless, the
amount of data for each class was enough to proceed to the feature extraction.

needsChecking Number of rows
No (0) 18.564
Yes (1) 10.226

Table 3.5: Distribution of the rows for the target label needChecking.

20

4
Feature Engineering

Once the data were acquired, the most important part of the thesis was to select and
analyze all the important features also known as feature engineering. The following
chapter covers the analysis of features, selection and preprocessing of the dataset
before the implementation of the ML models.

4.1 Feature Analysis
The annotation of the target label, as mentioned in the previous chapter, was made
considering the output of the classification and the report of possible parser errors.
Thus, during the feature engineering the focus was on inspecting possible features
available with respect to these two parameters.

4.1.1 Type of document
The initial thought was to investigate the different types of files handled by the
company and observe how many of those contain wrong classifications. It is known
that PDF, DOCX and DOC documents are handled by the same classifier. On the
other hand, XLSX documents classified by another ML model which from previous
evaluations is less effective in the classification. In addition, since procurement
documents usually are in the form of either PDF or DOCX, the number of such
documents was larger than XLSX and DOC documents (See Table 4.1).

Type of Document Datapoints
PDF 25192
DOCX 3655
DOC 522
XLSX 344

Table 4.1: Number of datapoints for each type of document (PDF, DOCX, DOC.
XLSX)

Moreover, for each filetype a check was made to find the percentage of correct
and incorrect classifications. In Figure 4.1, a pie chart is showing, in which the
blue color represents the correct classifications and the orange color the incorrect
classifications. It can be seen that XLSX documents are being falsely classified more
frequently than PDF and DOCX which had similar performances (64.8% and 67.8%
success rate respectively).

21

4. Feature Engineering

Figure 4.1: Pie chart of correct and incorrect classification across the different
types of documents.

Once this first observation was made, it was important to check also the confidence
scores intervals for all documents and separately for file type. The confidence score,
as described in Chapter 3, is a number between 0 and 1 indicating the prediction of
the classifier for each row. The reason of this test was to check if the prediction is
correlated to the annotation. In other words, investigate if the classifier was unable
to predict a certain row with confidence and thus, the classification was wrong. The
percentages were divided into four intervals along with a threshold to indicate the
rows which, although they had high confidence score, they were wrong. Table 4.2
shows the number of falsely classified rows for different confidence score intervals
while Figure 4.2 reveals the percentage of those intervals towards all the incorrect
instances.

Confidence Score Datapoints
0-25 % 6592
25-50 % 1733
50 - 75 % 732
75 - 100 % 1034
>95% 569

Table 4.2: Number of incorrectly classified rows with respect to the confidence
scores.

The results above indicated that in 82.5% of the cases, the model did not predict a

22

4. Feature Engineering

Figure 4.2: Distribution of confidence scores intervals across all the incorrect clas-
sifications.

label with certainty (below 50%) and the result was expected since low prediction
scores result in wrong classifications. However, there was also a need to investigate
each type of file separately to verify that this result follows the same pattern for all
four different type of file. The outcome of this test (Table 4.3 and Figure 4.3) proves
right this assumption. Although for XLSX documents the interval 0-25 % was not
as high as the other file types, in the case of 0-50% the percentage is similar across
all files (80%).

Confidence Score Datapoints
PDF DOCX DOC XLSX

0-25 % 5836 568 106 69
25-50 % 1509 138 14 66
50 - 75 % 223 64 14 21
75 - 100 % 895 107 19 9
>95% 488 11 62 5

Table 4.3: Number of incorrectly classified rows with respect to confidence scores
for each different file type.

One interesting observation from the analysis of incorrect classifications was that
for PDF, DOCX, DOC documents, which are using the same classifier, the amount
of misses with above 75% prediction score was higher than the one between 50 -
75%. This initialized the idea to find how many correct classifications exist. The
desired output was that predictions over a certain threshold (i.e 95%) should most
likely succeed in the classification. The same process was followed, first for all
types of documents and then for each type separately. The results shown below are
specifically for the case of each file type separately. Nevertheless, the overall results
for the correct classifications can be found in Table A.1 and Figure A.1 in Appendix
A.

23

4. Feature Engineering

Figure 4.3: Distribution of confidence scores intervals across all the incorrect clas-
sifications for each different file type.

In comparison to the first investigation(incorrect predictions), the correct predictions
seemed to follow a better pattern since 85% for PDF and DOCX documents have
above 75% prediction score (See Figure 4.4). Moreover, in Table 4.4 can be observed
that, although the majority of the datapoints are above 75%, the rows above 95%
percent are similar. In other words, in most of the cases the model is over 95%
confident for a prediction which is also correct. In addition, considering the two
investigations, the assumption that a specific file type may affect a possible error
in classification was valid along with the fact that the confidence score was highly
correlated with a possible failure. Thus, both of the features were included as data
for the training and testing of the model.

Confidence Score Datapoints
PDF DOCX DOC XLSX

0-25 % 700 74 15 13
25-50 % 689 80 14 21
50 - 75 % 791 104 27 12
75 - 100 % 12974 1404 281 114
>95% 11467 1207 237 89

Table 4.4: Number of correctly classified rows with respect to the scores for each
different file type.

24

4. Feature Engineering

Figure 4.4: Distribution of confidence scores intervals across all the correct classi-
fications for each different file type.

4.1.2 Document producer
To produce a PDF document, someone must use a certain application (i.e Adobe
library) and convert a text document such as DOCX. The information of this ap-
plication is stored in the company’s data since November. However, there are cases
where the extraction of the producer of the PDF document fails thus, not all PDF
documents contain this additional feature. The dataset which will be used contains
this extra information on around 50% of the rows with PDF as filetype (See Table
Figure 4.5).
When it comes to applications, they frequently get updated. Because the informa-
tion, stored in the dataset, contains the full version of application, it was suspected
that multiple documents will have the same converter but a different versions. In
addition, the main goal of the analysis was to check if there are specific programs,
with their respective versions, which frequently fail the main flow.

The process of this inspection was to search only the texts with either error in the
classification or the formatting and select the most common producers of those rows.
After acquiring the count of rows for each (common) producer, we calculated the
ratio of those rows with respect to the total number of incorrect rows which have
the same producer. The percentages of failure for the top 10 common producers
is shown in Figure 4.6. For clarification of the complete names ,the top 20 most

25

4. Feature Engineering

Figure 4.5: Ratio of PDF files with and without a producer.

common producers with their respective number of rows can be found in Table A.2.

Figure 4.6: Top 10 producers with the highest percentage of failure.

Given the results above, it was certain that there were different versions of the same
program and most importantly in the common producers. Grouping the versions
together was impossible since the difference in the percentages of failure were ex-
tremely high. However, keeping both the information about the program and the
version was important and thus, selected as a feature in the research’s dataset.

26

4. Feature Engineering

4.1.3 CPV Code
The last feature that was added was the CPV Code. Having another file with CPV
codes for each different procurement, it was possible to include the information in
the dataset to be further analyzed with respect to errors in either classification or
formatting of the text. The same process was followed as with the most common
producers. For each CPV code, the number of incorrect rows were counted and
resulted in another plot showing the percentage of failure for the top 20 most com-
mon CPV codes (Figure 4.7) . By ocular inspecting the results, the failure did not
exceed the 8% on any of the CPV codes. Despite this, the CPV code was selected
as a feature because it would provide extra information which in this research was
important since the features available were insufficient.

Figure 4.7: Percentage of failure for the top 20 most common CPV codes.

27

4. Feature Engineering

28

5
Modeling

After identifying the most important features with the previous chapter’s analysis,
the next step of the process was the modeling. In this chapter the data preparation
and the different ML methods used along with their architectures will be discussed.
For each model there will be a thorough analysis of the different simulations made
and the different parameters that were manipulated. The results from the evaluation
are shown in the next chapter along with the comparison of all the different models.

5.1 Data Preparation
As it was mentioned in the previous chapter, the features selected contained both
strings (i.e the producer of the document) and integers (i.e the confidence score).
However, when inputting a dataset into a model, the data should be structured in
a way that all the values are normalized values and, specifically for this thesis, are
between zero (0) and one (1). For this reason each feature was transformed to fit
the model requirements.

5.1.1 Document language
Since the data gathered were annotated, the language of the documents was Swedish
because the company does not handle English documents at the time that this thesis
was written. Despite that, the were multiple rows that instead of ’sv’ as a language
they had "language not found". The reason behind this was that the same method
for extracting the producer of the document was used to extract the language and it
did not always succeed depending on the format of the PDF. To be able to handle
the two possible outputs, two columns replaced the one called "documentLanguage"
and instead of a string they could get either zero or one, where one indicated the
language of the document (Figure 5.1). This transformation was made by a function
in pandas library called get_dummies (See B.1).

Figure 5.1: Transformation of documentLanguage into categorical features.

29

5. Modeling

5.1.2 Type of document
The same process was followed for the type of document. First, the name of the
path was removed since it was irrelevant for the research and only the extension of
the path (pdf,xlxs,docx,doc) was kept. The resulted column was then divided into
four different columns, one for each type of document. The transformed columns
contained also the "filepath_" in their header names because it was important to
separate each feature in order not to have any conflicts with other features that may
contain the same name (Figure 5.2).

Figure 5.2: Transformation of filepath into categorical features.

5.1.3 Classification Label
The feature regarding the predicted label during the classification flow is the classi-
ficationLabelId. Each row in the dataset has been predicted as one or more labels
depending on the context of the text. In comparison to the first two features, the
classificationLabelId may have more than one label and thus, after transforming the
column to binarized features, there might be multiple columns activated (Shown in
green color in Figure 5.3). The total number of labels and additional columns that
were created was 145.

Figure 5.3: Transformation of a sample of labels in classificationLabelId into cat-
egorical features.

5.1.4 Document Producer
To convert the documentProducer of PDF files to categorical features, three dif-
ferent approaches were possible. The first one was to create categorical features
based on only the name of the producer of the document (converter) and excluding

30

5. Modeling

the version. However, after the analysis in the previous chapter, there were impor-
tant differences between versions regarding the performance and possible error in
the formatting.

The second approach was to include the version and separate the columns based on
the complete name of the converter. One possible flaw of this approach was the case
were future documents have been converted with an updated version. Moreover, the
model will extract the document producer but it will not find the feature mapped
to this producer and the information will be lost.

The approach that was selected was to divide each converter to tokens where each
token represents a word or a number. In result, the categorical features will be all
the tokens for every converter. In that way, the model will be able to use part of the
information even though the version might be different. To transformation was done
by sklearn-library’s CountVectorizer() to transform the features to categorical
and then add a prefix to each feature to specify the type of the feature in order
to avoid confusion between the numbers of the versions (See B.1) . To illustrate
this approach, Figure 5.4 contains a sample of features created. The last row of the
graph shows a version that the model hasn’t been trained on and the information
that would be extracted in this case.

Figure 5.4: Transformation of a sample of documentProducer into categorical
features. The blue color indicates a converter which was previously seen by the
model and the red color an updated converter.

5.1.5 CPV Code
The last feature needed to be converted before proceeding to the implementation of
the models was the cpvCode. Similarly to the classification label, each row of the
dataset had multiple cpvCodes. To convert these codes into features, the sklearn’s
Multibinarizer() was used resulting in additional 2150 categorical features. The
drawback of this feature was that the size of data was increased which affected the
overall computational speed.

Concatenating all the different categorical features extracted returned 2677 columns
in the final preprocessed and transformed dataset.

31

5. Modeling

5.2 Model implementation
Although the models tested in this research had different architectures, the evalua-
tion was performed in the same way and followed the same process. As mentioned in
Chapter 2, a k-fold cross validation was used for every model with k=5 which means
that the dataset was divided five times into different training and testing sets. The
results of the k-fold cross validation were combined and returned the average F1-
score which was the main metric of evaluating the models. In addition, depending
on the performance of some models, a method was used to further investigate and
possible increase the performance.

The method used is a function which belongs to sklearn library called GridSearch()
which takes as an input, a model and a list of parameters to be evaluated. Each
model architecture has multiple parameters to be considered and it is challenging
to select the optimal values for each parameter. GridSearch trains and tests the
same model with different combinations of these parameters and returns the optimal
values of those parameters. However, it was not used for every model since in the
case of neural networks, the computational time for doing such search was increased
drastically compared to other models.

5.2.1 Support Vector Machines
To implement the model using the Support Vector Machines Algorithm, the sklearn
was used which provides a method for creating such algorithm. The most important
parameter of the SVM is the kernel which is the way of separating the features
within a dataset. There are four different kernels:

• linear : A linear kernal which is a dot product of any two given observations
• poly: A polynomial kernel is a more generalized form of the linear kernel and

can distinguish curved or nonlinear input space.
• rbf : A Radial basis function kernel that can map an input space in infinite

dimensional space.
• sigmoid : A sigmoid kernel which is similar to the sigmoid activate function

in neural networks.

During the testing, the linear kernel was used for its two characteristics:

• It is mostly used when there are a large number of features in a data set.
• It is faster compared to the other kernels.

5.2.2 Logistic Regression
One of the most commonly used methods in binary classification problem is the Lo-
gistic Regression. Sklearn provides the function LogisticRegression() which contains
multiple parameters. The optimization algorithm (solver) which is the algorithm for
optimizing the performance of the model depending on the features and the penalty

32

5. Modeling

which is the regularization (either L1 or L2) corresponded to the solver. To further
investigate the model, all the different solvers where tested in the GridSearch and
the default values of the model (solver=’lbfgs’ and penalty = ’l2’) were returned
and thus used for the final evaluation and comparison. The solver lbfgs stands
for Limited-memory Broyden–Fletcher–Goldfarb–Shanno and it approximates the
second derivative matrix updates with gradient evaluations.

5.2.3 Random Forest
An ensemble model used next in this research was Random Forest Classifier. In
addition to the first two models, the RF is also a built in function of sklearn. The
main difference is the amount of parameters that need to be checked and can affect
the performance. the two parameters that were manipulated were:

• n_estimators : The number of trees in the model (default = 100)
• max_depth: The maximum depth of the tree. If the value is "None" all the

nodes are expanded until all leaves have been discovered.
To find the optimal parameters, a grid search was made with a list of possible value
that can be found in B. The resulted values were 100 n_estimators and "None" as
the max_depth of the tree.

5.2.4 XBGoost
The most effective model in terms of computational speed and performance was
the XGBoost Classfier. To implement this algorithm although, a new library called
xgboost was installed, the functionality along with most of the parameters in the
Random Forest Classifier were the same. The difference is that XGBoost also con-
tains some additional parameters regarding the boosting phase of the algorithm.
One of those parameters is called learning rate which determines the step size at
each iteration while the algorithm optimizes toward its objective. A low learning
rate makes the computation slower, and requires more rounds to achieve the same
reduction in residual error as a model with a high learning rate. But it optimizes the
chances to reach the best optimum. The learning rate along with the n_estimators
and max_depth as in the case of RF were used in the Grid Search to provide the
best possible set up given a list of values for all three parameters. The optimal set
up provided by the GridSearch was:

• learning_rate : 0.1
• n_estimators : 500
• max_depth : 5

5.2.5 Neural Network
Although in all the previous models, it was possible to do an effective Grid Search
to approach an optimal set up, in neural networks is usually challenging to achieve
that. Neural networks was dependent on the number of layers, number of neurons for
each layers along with the rest of parameters such as learning rate or loss function.
To have a unbiased way of comparing the performance between all the models, two
neural networks were created.

33

5. Modeling

The first one was a simple MLP neural network containing one hidden layer with
10 neurons. The activation function for the hidden layer was ReLu and as this
was a binary classification problem, the sigmoid function was used as the activation
function in the output layer. After designing the architecture of the network using
the keras library binary_crossentropy was used as the loss function and adam as
the optimizer in the compiling step. Adam stands for Adaptive Moment Estimation
and is a stochastic gradient descent method that is based on adaptive estimation of
first-order and second-order moments. The method is efficient when working with
large problem involving a lot of data or parameters. The performance of the model
during the training was calculated by monitoring the accuracy.

The second neural network had the same properties as the first one in terms of acti-
vation functions, loss function and optimization algorithm. The difference between
them is the architecture which was more advanced. The second model contained
three hidden layers with 512, 256, 128 neurons for each layer respectively. This
change although in the next chapter will be proven better in terms of performance,
it was the most computational expensive in terms of training speed.

To avoid overfitting, an Early Stopping function was added to both neural networks
and were trained for 10 epochs each using a 5-fold cross validation. The use of early
stopping was to monitor the loss during the training and if the loss had an increase
for three straight epochs, the training would be stopped.

34

6
Results

The next chapter is focusing on the results and a comparison between them. As
mentioned before, all models followed a 5-fold cross validation and were evaluated
on the accuracy, f1-score, recall and precision.

6.1 Important labels
During the data description in Chapter 3, it was brought up that the labels of the
classification in the company’s flow are divided into two categories, important and
unimportant labels. Specifically, some labels are more common within a procure-
ment than others and thus, makes them more important and worthy to be evaluated
separately. The total number of labels is one hundred and forty five (145) but only
thirty one (31) of them are more likely to be located in a procurement. In addition
to the evaluation metrics that were used using the sklearn library, one metrics was
created to calculate the accuracy based on only the important labels. The classifier
in the main flow is a multi-label classifier which means that one or more labels can
be classified for a certain text. To implement this metric, all the rows containing
only labels which do not belong to the important set were excluded. The accu-
racy was then calculated by evaluating how many correct predictions were found for
each model, divided by the total number of datapoints located in the test set. This
accuracy will be referred to as Acci in the results in the next section.

Acci = correct predictions of important labels

total number of rows with important labels

6.2 Results
For every method covered in Chapter 5 there were two runs of evaluation. The first
run was using the default values of each model that are provided by the built in
functions in sklearn. The second run was made using the optimal values provided
by the Grid Search. Specifically, every model apart from the neural network was
given as an input in the Grid Search module. After running each method for every
possible combination of the parameters specified, a set of optimal values for the
input was returned. This input was used to run the cross validation after which, the
average value for each metric was calculated. In addition the separate evaluation
metric Acci was calculated regarding the important labels only.

35

6. Results

An exception during the second test is the absence of the neural networks because
they contain many parameters that can be optimized and many different values that
each parameter can take. Thus, the architecture was already specified and tested
using the parameters mentioned in Chapter 5.

The results for the 5-fold cross validation with the default values for each method can
be shown in Table 6.1. The algorithms using decision trees ensembles like XGBoost
and Random Forest performed better in comparison to simpler methods as Logistic
Regression and Support Vector Machines and they had a slight improvement over
the neural networks and specifically the case of the advanced, three hidden-layers
neural network. In terms of the weighted ,between the precision and the recall, F1-
score, the best model was XGBoost achieving 89,9% on the test set. Evaluating the
accuracy for only the 31 important labels (See Table 6.2), the XGBoost Classifier
outperformed every model achieving 91,2%.

Model F1-score Precision Recall Accuracy
Random Forest 89,5 % 89,5 % 89,6 % 89,6 %
Logistic Regression 87,1 % 87,1 % 87,2 % 87,1 %
Support Vector Machines 87 % 87 % 87,1 % 87,1 %
XGBoost 89,9 % 90 % 89,8 % 89,9 %
Base Neural Network 87,8 % 87, 9 % 87,7 % 87,8 %
Advanced Neural Network 89,5 % 89,6 % 89,4 % 89,5 %

Table 6.1: Performance of the Machine learning models without Grid Search

Model Acci

Random Forest 90,8 %
Logistic Regression 88,5 %
Support Vector Machines 88,8 %
XGBoost 91,2 %
Base Neural Network 88,9 %
Advanced Neural Network 89,9 %

Table 6.2: performance of the Machine learning models on important labels with-
out Grid Search

In addition, running the 5-fold cross validation with the optimal parameters given
during the Grid Search, verified that XGBoost was the most effective model for this
problem. Each model improved less than XBGoost Classifier which had a signifi-
cant 0.6% increase in the f1-score in comparison to the default values (Table 6.3).
Moreover, XGBoost achieved 91,8% on the important labels which also increases
0,6% over the first run (See Table 6.4).

36

6. Results

Model F1-score Precision Recall Accuracy
Random Forest 89,7 % 89,6 % 89,8 % 89,7 %
Logistic Regression 87,2 % 87,3 % 87,2 % 87, 2 %
Support Vector Machines 87,1 % 87,1 % 87,2 % 87, 2 %
XGBoost 90,5 % 90,6 % 90,5 % 90,5 %

Table 6.3: Performance of Machine learning models with Grid Search

Model Acci

Random Forest 91,1 %
Logistic Regression 89 %
Support Vector Machines 89,1 %
XGBoost 91,8 %

Table 6.4: Perfomance of Machine learning models on important labels with Grid
Search

A summary with all the results for every model, including the evaluation metrics
for both with and without grid search, can be shown in the table below. Based on
the evaluation results, it was concluded that XGBoost was the most effective model
both in computational speed and the performance in both precision and recall. Since
the topic of the thesis was to be able to identify documents with possible errors in
either the classification or in the formatting, recall was an important metric to look
at, apart from f1 score. The reason was the trade off between the importance of
missing problematic documents and reporting correct documents as problematic. To
further investigate this, a confusion matrix was created for each model, showing the
percentage of correct and incorrect predicted rows in comparison to the actual values.
These plots (See Appendix B.2) indicated that all the models were more capable of
miss-predicting problematic rows as correct rather than predicting correct rows as
problematic. The confusion matrices were calculated given the optimal values from
the Grid Search.

Model Without Grid Search With Grid Search
F1-score Precision Recall Accuracy Acci F1-score Precision Recall Accuracy Acci

Random Forest 89,5 % 89,5 % 89,6 % 89,6% 90,1 % 89,6 % 89,6 % 89,7 % 89,7 % 91,1 %
Logistic Regression 87,1 % 87,1% 87,2 % 87,1 % 88, 7 % 87,2 % 87,2 % 87,3 % 87,2 % 89,2 %
Support Vector Machines 87 % 87 % 87,1 % 87,1 % 88,9 % 87,1 % 87,1 % 87,2 % 87,2 % 89,1 %
XGBoost 89,9 % 90 % 89,8 % 89,9 % 90,7 % 90,5 % 90,5 % 90,6 % 90,6 % 91,8 %
Base Neural Network 87,8 % 87, 9 % 87,7 % 87,8 % 88,9 % - - - - -
Advanced Neural Network 89,5 % 89,6 % 89,4 % 89,5 % 89,9 % - - - - -

Table 6.5: Machine learning models performances summary for all metrics both
with Grid Search and without

37

6. Results

38

7
Conclusion

The final chapter covers the summary and discussion of the results along with the
certain limitations which were noticed during the thesis. In addition, some sugges-
tions were given regarding possible future work to improve the results.

7.1 Discussion
Given the data provided and the feature extraction and transformation steps added
to the research, the most effective model in terms of f1-score was XGBoost as shown
in the previous chapter. The best f1-score that was found within all the tests was
90,5%. The initial assumption was that all models will have difficulties in predicting
problematic texts since the quality of the data and the possible features that could
have been extracted were not enough. However, when it comes to classification
problems, the result of XGBoost Classifier is promising and indication that the
model can be used for this warning about problematic documents.

On the other hand, considering that each document has more than one paragraph
(previously mentioned as row or datapoint of the dataset) and given that the model
has 90,5% it might not be as effective in the document level since there is a high
probability of missing one paragraph in a document. In addition, as mentioned in
the previous chapter, even the highest evaluated model, had more false positives
than negatives which makes the model sensitive in allowing problematic rows and
predict them as correct.

Finally, since the data are increasing and the model will be trained frequently,
XGBoost Classifier, as suggested by many researchers will be useful not only because
of its performance results but also for its computational speed which was better in
comparison to an advanced neural network or a Random Forrest algorithm with the
same properties (number of trees and depth).

7.2 Limitations
During the research, two types of challenges were encountered. First, in Chapter
3 during the data gathering, it was mentioned that the data gathered were for a
period of five months because of the new model, introduced in October 2021, and
the formatting error reporting feature, introduced in November 2021. Although the
total amount of data were enough for an initial testing and evaluation, there was a

39

7. Conclusion

need for more datapoints which would improve the results. In addition, despite of
the annotations for the classification flow in company’s process, the data regarding
formatting issues were extremely insufficient (almost 1% of the total data) and the
model would perform dramatically worse if implemented for predicting only rows
that may contain formatting errors.

Second, in the process of feature engineering, the features selected were the ones that,
initially thought, would have an impact in resulting in problematic classifications.
However, there were more data available in different databases of the company that
could potentially improve the results. Due to time limitation, not all features could
be investigated and used in the best way possible to achieve better performance.
Moreover, constructing a more advanced neural network with more layers and tuning
its parameters was impossible due to both time limitation and computational power
needed for these tasks.

7.3 Future Work
In a future research, it would be important to repeat the process and evaluate again
the methods, given that the quality of the data would be better and the volume
would be larger. In specific, when there will be enough data with formatting errors,
a new analysis can be made to evaluate the model on only rows containing such
errors and verify that the model can be useful in such errors as well.

Moreover, there can be an additional analysis on other databases or new metadata
which could be added in the future and possibly extract more features that would
help to identify whether a document to be problematic. For any new feature and for
the existing ones would be worth to evaluate the results with different approaches
of data preparation. For instance, in the document converter, it was mentioned
that the approach followed was because of the version of the program as it was
important to the label classification in the main flow. However, there might be
other approaching of keeping the versioning and grouping of the features that would
result an improvement of the results.

Last but not least, given that the time and hardware capabilities, it is important
to further investigate different architectures of the model and especially in the neu-
ral network case. Although XGBoost classifier is commonly used in competition
regarding binary classification, it is often neural networks that achieve the best
performance. Thus, evaluating different architectures in terms of not only hidden
layers and neuron but also different algorithms like Convolutional Neural Networks
(CNN) or Long-Short Term Memory Neural Networks (LSTM) might result in an
improvement of the performance. There are also additional techniques that prevent
the model to overfit and improve its predictive capabilities such as Drop Out layers
that can be inputted between the hidden layers whose functionality is to discard
some training batches in order to reduce the risk of training on similar data. The
reason why this was avoided in this thesis was because the data available were not
enough and thus, such technique could not be used.

40

7. Conclusion

7.4 Conclusion
In the machine learning area, binary classification with supervised learning methods
is a common problem which can be tackled via different methods. The goal of this
research was to evaluate different ML algorithms than can be used for predicting
problematic rows is a document based on either classification or formatting errors
during the main flow of the company. During the data gathering, there was an
uncertainty of succeeding in the research given the fact that the amount of data that
were given seemed to be insufficient to perform such task. After analyzing the data,
it was found that certain features resulted in problematic texts more frequently than
others. A thorough investigation and preprocessing of those features was necessary
before inputting them into the models in which each feature had to be transformed
into categorical values. The approach for doing that was different for each feature
with the producer of the document being the most challenging feature given that it
was necessary to include the version of the program since it was found that different
versions had differences in the percentage of failure.

The ML algorithms selected during the research were the Logistic Regression, the
Random Forest, the Support Vector Machine, the XGBoost Classifier and two neu-
ral networks with different complexities. To evaluate the methods, the F1 score,
precision, recall and accuracy were used along with an additional metric which cal-
culated the accuracy of only texts in which at least a label from a set of important
labels (provided by the company) were classified during the main flow. Those met-
rics were calculated after a 5-fold cross validation performed for each model and
using an algorithm for tuning the parameters called Grid Search for every model
except the two neural networks

Given the time and resources that were given, XGBoost Classifier managed to
achieve 90,5% F1 score and accuracy and 91,5% accuracy on the set of special
labels and thus can be used for identifying problematic documents. Its advantage
compared to the other methods investigated in this thesis was the computational
speed in addition to high performance results. However, the results would improve if
more data were available and more features for each document could be be extracted
and analyzed.

41

7. Conclusion

42

Bibliography

[1] Wikipedia contributors, “Procurement — Wikipedia, the free encyclope-
dia.” https://en.wikipedia.org/w/index.php?title=Procurement&oldid=
1086380929, 2022. [Online; accessed 6-May-2022].

[2] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” in Machine
learning techniques for multimedia, pp. 21–49, Springer, 2008.

[3] W. Koehrsen, “Overfitting vs. underfitting: A complete example,” Towards
Data Science, 2018.

[4] D. Bashir, G. D. Montañez, S. Sehra, P. S. Segura, and J. Lauw, “An
information-theoretic perspective on overfitting and underfitting,” CoRR,
vol. abs/2010.06076, 2020.

[5] D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, and S. Ridella, “The ‘k’in k-
fold cross validation,” in 20th European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning (ESANN), pp. 441–
446, i6doc. com publ, 2012.

[6] S. B. Kotsiantis, “Decision trees: a recent overview,” Artificial Intelligence
Review, vol. 39, no. 4, pp. 261–283, 2013.

[7] Wikipedia contributors, “Ensemble learning — Wikipedia, the free encyclope-
dia.” https://en.wikipedia.org/w/index.php?title=Ensemble_learning&
oldid=1067251577, 2022. [Online; accessed 11-May-2022].

[8] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of appli-
cations and future directions,” ISPRS journal of photogrammetry and remote
sensing, vol. 114, pp. 24–31, 2016.

[9] D. Meyer and F. T. Wien, “Support vector machines,” R News, vol. 1, no. 3,
pp. 23–26, 2001.

[10] T. Chen and C. Guestrin, “XGBoost,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, aug 2016.

[11] Wikipedia contributors, “Rectifier (neural networks) — Wikipedia, the free
encyclopedia.” https://en.wikipedia.org/w/index.php?title=Rectifier_
(neural_networks)&oldid=1086744769, 2022. [Online; accessed 12-May-
2022].

[12] Wikipedia contributors, “F-score — Wikipedia, the free encyclopedia.” https:
//en.wikipedia.org/w/index.php?title=F-score&oldid=1086969326,
2022. [Online; accessed 4-June-2022].

[13] Wikipedia contributors, “Pandas (software) — Wikipedia, the free encyclope-
dia.” https://en.wikipedia.org/w/index.php?title=Pandas_(software)
&oldid=1079541180, 2022. [Online; accessed 8-May-2022].

43

https://en.wikipedia.org/w/index.php?title=Procurement&oldid=1086380929
https://en.wikipedia.org/w/index.php?title=Procurement&oldid=1086380929
https://en.wikipedia.org/w/index.php?title=Ensemble_learning&oldid=1067251577
https://en.wikipedia.org/w/index.php?title=Ensemble_learning&oldid=1067251577
https://en.wikipedia.org/w/index.php?title=Rectifier_(neural_networks)&oldid=1086744769
https://en.wikipedia.org/w/index.php?title=Rectifier_(neural_networks)&oldid=1086744769
https://en.wikipedia.org/w/index.php?title=F-score&oldid=1086969326
https://en.wikipedia.org/w/index.php?title=F-score&oldid=1086969326
https://en.wikipedia.org/w/index.php?title=Pandas_(software)&oldid=1079541180
https://en.wikipedia.org/w/index.php?title=Pandas_(software)&oldid=1079541180

Bibliography

44

A
Appendix 1

Confidence Score Datapoints
0-25% 804
25-50% 808
50-75% 937
75-100% 937
>95% 14806

Table A.1: Number of correctly classified rows with respect to confidence scores.

Figure A.1: Distribution of confidence scores intervals across all the correct clas-
sifications.

I

A. Appendix 1

N
am

e
of

P
ro

du
ce

r
N

um
be

r
of

ro
w

s
iT

ex
t®

7.
1.

16
©2

00
0-

20
21

iT
ex

t
G

ro
up

N
V

(M
er

ce
ll;

lic
en

se
d

ve
rs

io
n)

;m
od

ifi
ed

us
in

g
iT

ex
t®

7.
1.

16
©2

00
0-

20
21

iT
ex

t
G

ro
up

N
V

(M
er

ce
ll;

lic
en

se
d

ve
rs

io
n)

88
5

un
kn

ow
n

44
8

M
ic

ro
so

ft®
W

or
d

20
16

20
8

Ex
pe

rt
Pd

fv
16

.0
.0

18
8

M
ic

ro
so

ft®
W

or
d

fö
r

M
ic

ro
so

ft
36

5
18

0
iT

ex
t

7.
1.

16
20

00
-2

02
1

iT
ex

t
G

ro
up

N
V

(M
er

ce
ll;

lic
en

se
d

ve
rs

io
n)

;m
od

ifi
ed

us
in

g
iT

ex
t

7.
1.

16
20

00
-2

02
1

iT
ex

t
G

ro
up

N
V

(M
er

ce
ll;

lic
en

se
d

ve
rs

io
n)

18
0

iT
ex

tS
ha

rp
4.

1.
2

(b
as

ed
on

iT
ex

t
2.

1.
2u

)
12

9
A

do
be

PD
F

Li
br

ar
y

20
.4

.6
3

11
9

M
ic

ro
so

ft®
W

or
d

20
13

85
A

do
be

PD
F

Li
br

ar
y

21
.1

1.
71

34
M

ic
ro

so
ft:

Pr
in

t
To

PD
F

32
M

ic
ro

so
ft

W
or

d
20

16
29

M
ic

ro
so

ft
W

or
d

fr
M

ic
ro

so
ft

36
5

26
N

O
N

E
26

A
do

be
PD

F
Li

br
ar

y
15

.0
25

Sk
ia

/P
D

F
m

79
20

M
ic

ro
so

ft®
W

or
d

fö
r

O
ffi

ce
36

5
20

H
iQ

Pd
f1

0.
17

15
Bl

ue
be

am
Br

ew
er

y
5.

0
14

A
do

be
PD

F
Li

br
ar

y
21

.7
.1

31
13

T
ab

le
A

.2
:

C
ou

nt
of

in
co

rr
ec

t
ro

w
s

fo
r

di
ffe

re
nt

PD
F

pr
od

uc
er

s.

II

B

Appendix 2

B.1 Source code for data preparation

% Convert columns containing string to categorical columns
% Applied to filepath, classificationLabelId, documentLanguage
pandas.get_dummies(dataframe, columns = categorical_column)

% Count vectorizer to transform non categorical features
% Applied to documentProducer
vectorizer = CountVectorizer()
transformed = vectorizer.fit_transform(df_column.tolist())
df_producer = pd.DataFrame(transformed.toarray(),

columns=vectorizer.get_feature_names()).add_prefix(prefix)

%MultiLabelBinarizer to transform columns containing multiple labels
%Applied to cpvCode
mlb = MultiLabelBinarizer()
res = pd.DataFrame(mlb.fit_transform(column),

columns=mlb.classes_,
index=cpv_codes.index).add_prefix(prefix)

III

B. Appendix 2

B.2 Confusion matrices

Figure B.1: Confusion matrix of the Random Forest Classifier.

Figure B.2: Confusion matrix of the Logistic Regression.

IV

B. Appendix 2

Figure B.3: Confusion matrix of the Support Vector Machines.

Figure B.4: Confusion matrix of the XGBoost Classifier.

Figure B.5: Confusion matrix of the Base Neural Network.

V

B. Appendix 2

Figure B.6: Confusion matrix of the Advanced Neural Network.

VI

	List of Figures
	List of Tables
	Introduction
	Background
	Aim
	Limitations
	Outline of the thesis

	Theory
	Machine learning
	Supervised learning
	Overfitting - Underfitting
	K-fold cross validation
	Decision Trees
	Random Forest
	Gradient Boosting
	Logistic Regression
	Support Vector Machines
	XGBoost
	Neural Networks

	Evaluation Metrics
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F beta - score

	Libraries
	Pandas
	Scikit-learn
	Tensorflow

	Data
	Data gathering
	Data description
	Target label of dataset
	Analysis of annotation data
	Creation of Target label

	Feature Engineering
	Feature Analysis
	Type of document
	Document producer
	CPV Code

	Modeling
	Data Preparation
	Document language
	Type of document
	Classification Label
	Document Producer
	CPV Code

	Model implementation
	Support Vector Machines
	Logistic Regression
	Random Forest
	XBGoost
	Neural Network

	Results
	Important labels
	Results

	Conclusion
	Discussion
	Limitations
	Future Work
	Conclusion

	Appendix 1
	Appendix 2
	Source code for data preparation
	Confusion matrices

