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Abstract

Long combination vehicles (LCVs) are modular combination vehicles that are longer and heavier than what
currently is allowed on European roads. These vehicle combinations have the potential to cut down overall
transportation costs, but also carbon dioxide emissions. Countries such as Canada and Australia already have
these truck combinations driving on their roads, and their use on European roads is expected to increase in the
near future. The LCVs however bring an undesired effect of increased difficulty of maneuvering on roads and in
traffic. Thus, their increased complexity calls for driver assisting systems. The development of these systems
leads to promising ways of improving traffic flow and increase the use of long combination trucks on current
roads.

In this thesis an existing framework for automated driving has been used which utilizes driver models for the
navigation of the LCV. The trajectories of the LCV are generated using numerical simulations of non-linear
ordinary differential equations (ODEs). The actuation requests, which are front wheel steering, propulsion and
braking are calculated using driver models. Up until now the parameters of the driver models have been fixed,
and were set by fitting data after an on-road study with professional truck drivers.

An approach for optimization of driver model parameters has been proposed in this thesis, which involves
genetic algorithms (GAs) and particle swarm optimization (PSO). In order to achieve a real-time feasible
implementation, the highly parallel nature of the GA and PSO are utilized. OpenCL was used as a platform to
implement the parallel processes for both algorithms which allowed for code execution on either CPU or GPU.

Optimzation of the driver model parameters showed that it could for a given dangerous scenario successfully
abort or complete a driving maneuver within given safety limits. The use of stochastic optimization proved to
be reliable and solutions were often found 100% of the time. As for the real time aspect of the optimization,
the results hinted that by lowering the number of iteration steps, optimizing code and upgrading the used
hardware, a real time implementation is within reach.

Keywords: long combination vehicles, driver models, OpenCL, genetic algorithm, particle swarm optimization
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1
Introduction

Long combination vehicles (LCVs) are here defined as modular combination vehicles that are longer and possibly
heavier than what is currently allowed in Europe today. These are envisioned to be used widely on the roads in
Europe in the near future and have the potential to cut down on the overall cost for road transportation, but
also decrease carbon dioxide emissions [1]. Countries such as Canada and Australia already have these truck
combinations operating on their roads. Surely, there are several advantages of LCVs compared to conventional
combinations, but there are also some drawbacks. Perhaps, the main one is that with LCVs the maneuver
complexity increases, thus limiting their use in different types of roads and traffic. However, a possible solution
for this problem is to incorporate relevant driver assisting systems. The development of these systems and
merging it with autonomous functionalities in trucks leads to promising ways of improving the traffic flow and
safety. For example, Volvo GTT has focused on generating maneuvers for semi-automated LCVs for highway
driving with emphasis on driver acceptance. This framework includes highway maneuvers as well as decisions
for maintaining lane and lane changes [2].

In an existing framework for driving automation [2], the trajectories which the LCV should follow are generated
using numercial simulations of non-linear ordinary differential equations (ODEs). The actuation requests, which
are front wheel steering, propulsion and braking are calculated using driver models. The subject and surrounding
vehicles are modelled in a closed-loop with the driver models to verify the feasibility of the trajectory generated
by the requested actuation. This is sometimes referred to as traffic situation predictions (TSPs). The TSPs
are integrated using the Euler forward method for a given prediction horizon with inclusion of constraints
with respect to vehicle motion, collision to surrounding traffic and road properties. For each update step, the
framework calculates a maximum of three TSPs. These are connected to the current and nearest adjacent
lanes. If a TSP is feasible then the execution of the corresponding actuation is valid. The decision making
architecture later decides how the TSPs are to be used to generate traffic maneuvers.

Currently the framework uses fixed parameters for the driver models. These were set for smooth driving
conditions and give no assurance of their feasibility in more critical driving situations. A hypothesis is that
this could be solved using online updating of the driver model parameters. A possible approach would be
to use online optimization, which also includes constraints of various kinds, such as: vehicle motion, road
boundaries and surrounding vehicles. As was mentioned above, the TSPs were calculated using non-linear,
and non-convex ODEs. This implies that non-linear optimization methods must be considered. Combining
non-linear optimization with short solution times is in general often hard to achieve.

The aim with this thesis is to propose an optimization scheme which will, using the already existing framework,
allow for the generation of vehicle actuation for highway maneuvers of LCVs in safety critical scenarios, such as
abort of safety critical lane changes. Improving and adding this functionality to the framework will enable
LCVs to integrate themselves safely and efficiently on the roads.

This masters thesis will focus on proposing and implementing an optimization scheme that will allow real-time
use. The development of the optimization scheme will be done with the assistance of simulations using
an existing framework with a one-track plant model. In order to achieve a real-time implementation, it is
envisioned to use optimization methods of highly parallel nature, e.g. particle swarm optimization (PSO) and
genetic algorithms (GAs). Having algorithms that exhibit parallel behaviour are excellent to combine with
parallel computation using graphics hardware [3]. Particle swarm optimization is also known to perform well
for optimizing problems with high dimensionality. Other derivative-free optimization algorithms are to be
considered when constructing the thesis work [4].

The interface for the parallel algorithms and the graphics processing unit (GPU) will be Open computing
language (OpenCL) [5]. It is an open standard GPU library for C/C++ and is compatible with many of the
major GPU developers, e.g. Intel, AMD and Nvidia. An alternative to OpenCL is CUDA [6] which is developed
and only supported by Nvidia. Using OpenCL also brings the possibility of porting parallelized code from the
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GPU immediately to the central processing unit (CPU), which is useful for comparison of run times.

This thesis will therefore address and try to answer the following research questions:

• Is it possible to optimize the driver model parameters to handle safety critical situations. What are those
limits?

• Will biologically inspired algorithms be suitable and robust enough, given their stochasticity, for this
given problem?

• Can the optimization be done within a time frame that will allow for real time execution?
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2
Background

For an autonomous vehicle to be able to drive safely by itself it is, in many cases, necessary for it to have
a path that it plans to follow. The previous three decades have brought increased research efforts, both in
academia and industry, towards developing driverless vehicle technologies. Recently a survey was conducted [7]
of the current state-of-the-art planning and control algorithms. By selecting certain proposed algorithms the
authors discussed and analyzed their strengths and weaknesses. The side-by-side comparisons allows for easier
review and gain of insight for the effectiveness and limitations of the reviewed approaches.

2.1 Motion planning

In robotics a common problem that needs to be solved is the path planning problem. It refers to the problem of
finding a path σ(s) : [0, 1]→ X in the configuration space X for a robot, or possibly a vehicle, that starts with
an initial configuration and reaching a final configuration. Most commonly the solution to this problem is to
break down the process into discrete motions that satisfy local constraints, such as feasible kinetic movement,
and global constraints, such as avoiding collisions with obstacles and the given environment. The terms feasible
and optimal may be used to describe a path depending whether the quality of the solution is considered.
Feasible path planning may be viewed as determining a path that only satisfies some given problem constraints,
while optimal path planning takes also into consideration some quality criterion subject to some constraints,
such as finding the shortest path between the configurations, or minimizing or maximizing a certain criterion.

There are several methods available [7] for the generation of valid collision free paths for a robot to follow.
These usually consist of graph search methods such as Dijkstra (see Fig. 2.1), A*, D* or probabilistic sampling
methods such as the randomly exploring random trees (RRT). Other approaches when the problem involves
structured environments, lane graphs and geometric methods are commonly used. Prior work [8] using graph-
based methods for discrete state spaces worked well and resulted in fast algorithms. However, it tends to
produce paths that are non-smooth and do generally not respect the non-holonomic constraints of a vehicle. A
non-holonomic system refers to, in simple terms, a system whose states depend on the path it has taken in order
to acheive the target goal [9]. In another work [10], the authors used a Hybrid A* algorithm to generate paths
that were kinematically feasible and took into account the non-holonomic properties of the vehicle. A different
solution [11] is to incorporate a planner which first planned a path and later was driven by a local obstacle
avoidance controller. The authors proposed an extension to the well-known RRT algorithm to allow integration
with a trajectory parameter space in order to efficiently detect collision-free paths, but also kinematically
feasible paths for arbitrarily shaped vehicles. However, solving the problem on this level alone is not always
enough since using only the spatial information gives no guarantee how well this path will work after a time T
in the future.

Path planning algorithms as those mentioned previously in this section, do not work very well in dynamic
environments, since they lack forms of temporal information. Therefore it might be more suitable to formulate
the motion of the robotic vehicle in a trajectory planning framework. That is to express the solution of the
problem as a path, which is time-dependant. For instance a function with a time dependancy π(t) : [0, T ]→ X
which describes the configuration (such as position, velocity and heading) for the vehicle in time. With
this formulation, it is possible to generate trajectories that react against a dynamic environment and it may
plan around appearing, or disappearing, obstacles. In related work [12], the authors presented a strategy for
trajectory planning and incorporated it in a vehicle that drove 103 km fully autonomously of the Bertha-
Benz-Memorial-Route. Their solution used a local, continuous method that was derived from a variational
formulation. Using a constrained objective function, the solution trajectory is obtained on the constrained
extremum of said function. They considered both static and dynamic obstacle constraints and incorporated it
within the system.
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Figure 2.1: Solution of a path problem using the Dijkstra algorithm. The yellow segment shows the initial
position, and the white segment shows the target position. The surrounding area highlighted in light green
denotes the explored environment, while the dark green segments show the optimal path towards the goal. The
black segments are obstacles, or walls, and the single gray segment is a node never being considered.

Even if the algorithms can react given a certain time step to a change in the environment, it is not always
guaranteed to be able to handle the situation well. In order to get around this problem, predictions of the
environment obstacles might be a necessity for certain problems.

Since the LCV kinematics is non-holnomic, planning and control methods that do not update their generated
trajectories, namely the ones that do not predict future events, are not considered optimal for LCVs to use.
With the increased vehicle complexity of a LCV the maneuvers need to be well planned. For instance, a car
driver does not need to pay much attention of the surrounding vehicle when entering a corner. As for LCVs,
or long trucks in general, there are the elements of needing to brake before a corner, or take wider corners
to prevent its trailers from leaving the road or entering the oncoming lane. Therefore, the need of predictive
techniques has emerged. Usually one makes a distinction between two kinds of predictive techniques. The
first uses online optimization [13] whereas the other uses random sampling based methods such as the rapidly
exploring random trees algorithm [14]. However, neither methods do not necessarily provide obvious ways how
to choose constraints, parameter values or objectives to achieve user acceptable driving behaviour.

2.2 Online computation

In order to have a real system, such as a vehicle driving by itself, the solutions for the motion planning problem
are required to be fast, reliable, and reactive. A delayed system will not be able to react properly to changes in
the environment, and without the ability to react fast enough it might inevitably lead to great risks such as
accidents or fatalities if used on the roads. The following will mention a few solutions that have been proven,
in simulation, fast and reliable to generate trajectories for LCVs on highways.

As it has been stated in the section above, path planning in general is a field that is being researched quite
extensively and there are multiple solutions to the problem. When it comes to LCVs and the problem discussed
here, it has been shown [15] that this problem can be solved by using optimization-based receding horizon control.
Formulating a trajectory generation problem as a nonlinear program (NLP), while also using state-of-the-art
solvers, the trajectory generation problem can be solved in real-time. However, it showed that using kinematic
vehicle models with low complexity could affect the stability of the performance.

Other work [16] proposed a nonlinear receding horizon trajectory generator for highway driving of an A-double
combination LCV. With the use of mathematical solution strategies the problem was formulated into an optimal
control problem (OCP) to define the open-loop constrained trajectories. For the solution technique a direct
multiple-shooting solution with a piecewise constant control parametrization was used to obtain a nonlinear
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program. Then the ACADO Toolkit [17] was used to implement the so called Real-Time Iteration algorithm.
By combining these methods it was shown that the system achieved stability and solution times were in fact
real-time feasible. However, the solutions obtained by the system did not reflect well how real humans drive.
This leads to the question whether a system like this will have a high driver acceptance when introducing
automated driving functionalities for LCVs.

A solution that focuses on systems that target high driver acceptance for LCVs has previously been proposed
[18]. The authors hypothesized that a high driver acceptance is achievable by applying driver models inspired by
human perception. The proposed solution is based on driver model control (DMC) theory to direct the vehicle
guidance. The method is based on human perception and optical flow theory and utilizes optical variables,
so called aim-points, to steer and direct the LCV. Thus the trajectory generation follows implicitly with the
proposed method. Numerical simulations proved that it was in fact possible to generate safe lane changing
maneuvers with combined braking and steering. However, since this method does not utilize any optimization,
parameter settings is a limiting factor for different driving conditions and scenarios.

Very similar methods [16, 18] were compared [2] for automated lane change maneuvers on highways for LCVs.
Both methods have traffic situation predictions where motion variable constraints and actuation requests for
steering, propulsion and braking are included. A simulation environment with a high-fidelity vehicle plant
model of the LCV and models of surrounding vehicles was used in the comparison of the automated driving
approaches. The results showed in general that the non-linear model predictive control (MPC) had shorter
times for lane changes as well as lower magnitudes of lateral and longitudinal accelerations. However, the
longitudinal vehicle speed of the non-linear MPC gave rise to unnecessary variation compared to the driver
model control approach.

The mentioned methods above are proven to be robust and work well for highway driving. Unfortunately, the
nonlinear receding horizon optimization [16] is computationally intensive, whereas the use of driver models [18]
depends on parameter settings that are fixed. Reduction of solution times, but also updating of driver model
parameters, could be improved by introducing parallel computation.

2.2.1 Parallel computation

A conventional way to speed up computation time is to find and reduce bottlenecks in the program code. This
might be solved by either writing better and faster algorithms or finding processes which are independent of
each other and try to run them in parallel. Over the last few years, increasing effort has been put into moving
from a sequential to a parallel programming paradigm. An example of that has been the increased development
in various famous frameworks such as CUDA, OpenCL and Open Multi Processing (OpenMP) [19]. All of these
frameworks offer easy use of writing parallel executable code. OpenMP is allows for parallel code execution on
CPU whereas CUDA is used for code execution on the GPU.

The open standard OpenCL, however, allows for execution on both CPU and GPU. Another positive feature is
its compatibility on heterogeneous systems, which allows execution on devices made by such as Intel, AMD
and Nvidia. Constant development of the frameworks is enabling more users to easily optimize and parallelize
their code using the parallel computational power of GPUs using high level programming. With the advance in
both CPU and GPU technology parallelism is becoming the more frequent and obvious choice.

For instance, work has been done where a combination of MPC and PSO with an open-loop simulation to
generate swing-up trajectories for an under-actuated robotic arm in real-time [3]. The PSO is used as an
optimizer for the MPC for a nonlinear system in real-time while considering constraints and handles modeling
uncertainties well. The problem relates well with the open-loop approach used for the actuation and control for
LCVs [16, 18, 2] and indicates to be feasible for a similar implementation approach.

Biologically inspired methods show great possibilities to solve problems with high complexity. An example is the
work [20], where the authors used a GA and PSO to compute feasible and quasi-optimal trajectories in complex
3D environment for unmanned arial vehicles. All while taking into consideration the dynamic properties of the
vehicle. They created paths using different line segments, vertical helices and circular arcs. Given the parallel
nature of the used algorithms, it was possible with parallel programming to acheive a speed-up of factor 7.3
and allowing real-time performance with standard off-the-shelf commercial multicore CPUs.
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3
Method

This chapter will bring to light the methods being utilized in this thesis. Starting from the existing simulating
framework and then moving on to the theory behind the optimization. Lastly the implementation will be
presented together with the inteded simulating scenario.

3.1 Existing framework for automated driving

This thesis has had the advantage to utilize and build upon an existing simulation framework for automated
driving which was provided by VGTT. The following sections in this chapter will therefore describe how the
most important parts of the framework are set up and how they intend to work.

3.1.1 Driver models

The driver model consists of a lateral and longitudinal control for the motion guidance of the LCV. Since
the aim is to have a system that offers high driver acceptance one option is to have a driver model derived
from human perception. In previous work [18], the authors used optic information for longitudinal and lateral
control of a LCV.

Figure 3.1: Illustration over the optical variables used for the control algorithm. Figure taken from [2].

Extensive research has been made on the topic of using optical information. The lateral control that will be used
is the two-point Salvucci-Gray model [21], which takes into account the way humans drive. It demonstrates
properties such as: curve negotiations, corrective steering after a lateral drift, lane changing and individual
differences.

A two-point visual control model of steering The proposed model [21] is based on two perceived visual
points, namely a ’near point’ and a ’far point’. Thus, instead of utilizing only a single variable θ, the model
takes into account θn representing the heading angle towards the near point and θf representing the heading
angle towards the far point. An illustration of the concept is shown in Fig. 3.1, with the definitions of θn and
θf shown. Based on this a control equation is derived as follows

δ̇ref = kf θ̇f + knθ̇n + kIθn. (3.1)
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The first two terms in Eq. 3.1 looks at the change in the far-point direction θ̇f and θ̇n. The last term represents
the visual direction to near point θn since it is the best relating term for the lateral positional error of the
vehicle. By using this control algorithm the model will adjust its steering while trying to maintain the following
criteria:

i Maintain a stable far-point, θ̇f = 0.

ii Maintain a stable near-point, θ̇n = 0.

iii Maintain a near point centered on the middle of the lane, θn = 0.

The benefit with this control is that both the far point and near point do not have to be locked onto the center
of a lane, but can be set to any visual point, thus creating lateral offsets from the center lane. The model was
used by Markkula et al., [22], and was performing very well in the modeling of human evasive maneuvering

Longitudinal control The longitudinal control used by the framework is based on information about time-
to-collision of visual control [23]. It is a feed-forward controller that is updated iteratively using a reference
acceleration ax,ref which can be formulated as

ax,ref = (1 + τ̇m) · ∆v2
x

∆Xf − v0 · th
ax ≤ ax,ref ≤ āx, (3.2)
j
x
≤ jx ≤ j̄x

where ∆vx is the speed difference between the first axle of the LCV and the lead vehicle, ∆Xf is the far point
distance and th is the desired final temporal headway towards the lead vehicle, τ̇m is the approximation of the
time derivative of time-to-collision, and jx is the longitudinal jerk.

With this model, the breaking and propulsion are initialized by utilizing margin values of the optical expansion
rate θ̇p,m and the temporal headway to the leading vehicle thl,m.

θ̇p,m ≤ θ̇p ≤ − θ̇p,m (3.3)
thl,m + εt ≤ th ≤ thl,m.

Here εt is a small constant parameter. The expansion rate θ̇p and the temporal headway th are calculated as

θ̇p = −4 · w ·∆vx
w2 + 4 ·∆X2

f

(3.4)

th = ∆Xf

vx,1

where w is the width of the leading vehicle and vx,1 is the velocity of the front axle of the LCV.

3.1.2 Vehicle models

The vehicle of interest for this thesis has been an A-double LCV, which is presented in Fig. 3.2. In order
to model a vehicle of this complexity, the vehicle dynamics has to be computed and solved. The following
sections will thus briefly show how the vehicle prediction model and plant model are expressed and also how
the surrounding vehicle in traffic are modelled. The derived vehicle models [24] that are being presented in the
following sections, have already been used previously and showed promising results [2].

Subject vehicle prediction model

The prediction model consists of a one-track model of an A-double combination seen in Fig. 3.2. It was derived
using Lagrangian formalism. The one-track model is presented in Fig. 3.3 where the left hand side shows the
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Figure 3.2: Illustration of the A-double LVC based on the European modular system. Figure taken from [24].

spatial parameters of the vehicle model and the right hand side shows the included motion variables and tyre
forces. In the model all of the effect from tyres on an axle are combined into one virtual tyre and the concept
of an equivalent wheel-base was used.

This model is used to describe the truck motion for the TSPs of the framework. It has been linearised regarding
the kinematics, steering and tire slip using an assumption of small angles. The truck positioning with respect
to the road is obtained by including parametrization of the road curvature and heading angle in the model
equations. Finally, the model differential equations are formed, with the help of another work [25], which
consists of the following

ż1 =47.0 · δ − z10 · z3 + 1.9 · z4 + 0.9 · z6 − 0.002 · z8+
(−70.7 · z1 + 9.7 · z3 + 21.7 · z5 + 4.5 · z7 − 0.02 · z9)/z10

ż2 =z3 − κR,1 · (z10 · cos z2 − (z1 + z3 · 1.5) · sin z2)
ż3 =25.0 · δ − 1.9 · z4 − 0.8 · z6 + 0.002 · z8 + (27.6 · z1

− 174.2 · z3 − 20.8 · z5 − 4.3 · z7 + 0.02 · z9)/z10

ż4 =z5

ż5 =− 25.5 · δ − 4.0 · z4 + 2.5 · z6 − 0.007 · z8 + (−36.5 · z1

+ 165.4 · z3 − 10.9 · z5 + 13.0 · z7 − 0.05 · z9)/z10

ż6 =z7

ż7 =0.6δ + 2.3 · z4 − 22.9 · z6 − 0.9 · z8 + 19.9 · z1

− 216.8 · z3 − 169.7 · z5 − 125.8 · z7 − 7.2 · z9)/z10

ż8 =z10

ż9 =− 0.19 · δ + 5.1 · z4 + 22.7 · z6 − 7.1 · z8 + (−12.5 · z1

−+195.8 · z3 + 168.6 · z5 + 68.2 · z7 − 54.7 · z9)/z10

ż10 =ax,1
ż11 =(ax,1,des − ax,1)/τ
ż12 =1/(1− κR,1 · z13) · (z10 · cos(z2)− (z1 + z3 · 1.5) · sin(z2))
ż13 =z10 · sin(z2) + (z1 + z3 · 1.5) · (z2)
ż14 =1/(1− κR,4 · z15) · ((−24.6 · z3 − 22.7 · z5 − 12.3 · z7 − 7.7 · z9

− z4 · z10 − z6 · z10 − z8 · z10 + z1) · − sin(z2 + z4 + z6 + z8

− θR,4 + θR,1) + z10 · cos(z2 + z4 + z6 + z8 − θR,4 + θR,1))
ż15 =((−24.6 · z3 − 22.7 · z5 − 12.3 · z7 − 7.7 · z9 − z4 · z10 − z6 · z10

− z8 · z10 + z1) · cos(z2 + z4 + z6 + z8θR,4 + θR,1) + z10 · sin(z2 + z4

+ z6 + z8 − θR,4 + θR,1))
ż16 =δ̇
z =[ẏ1, φ, φ̇, θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, vx,1, ax,1, s1, e1, s11, e11, δ̇]
u =[ax,1,des, δ]

where the states ẏ1, φ, and φ̇ are the lateral velocity, yaw angle, and yaw angle rate of the first axle of the
vehicle, θ1, θ2, θ3, θ̇1, θ̇2, and θ̇3 are the articulation angles and the respective articulation angle rates of the
towed units, vx,1 and ax,1 is the longitudinal velocity and acceleration of the first axle, s1, s11, e1, and e11 are
the distances and perpendicular distances of the first and last vehicle axles projected on the road geometry,
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κR,1, κR,4, θR,1, and θR,4 are the road curvature and road heading for the first and last axle. τ is a parameter
denoting a time constant for the longitudinal dynamics. The input u to the model consists of the longitudinal
acceleration of the first axles ax,1,des and the road wheel steering angle δ.

Figure 3.3: Illustration of a one-track model of an A-double combination. The left hand side of the figure shows
the spatial parameters of the vehicle model and the right hand side shows the included motion variables and tyre
forces. Figure taken from [24].

Surrounding vehicle prediction model

The surrounding vehicles were modeled in the most simple way using point-mass models. They were constrained
to always follow the lane center, thus only the longitudinal dynamics were modeled along the road geometry.
The motion of the vehicles can be expressed through the following equation

d

dt

[
so,n
ṡo,n

]
=
[
0 0
0 1

]
·
[
so,n
ṡo,n

]
+
[
0
1

]
· s̈o,n (3.5)

where n is the index of the vehicle, and so,n, ṡo,n and s̈o,n are the position, velocity and acceleration along the
road geometry.

Together with the states, the vehicles store information about their own length and widths, but also in which
lane they are currently in. When the models are used in traffic situation predictions, only a constant velocity is
assumed throughout the entire prediction horizon.

Subject vehicle plant model

For the vehicle plant, a high fidelity two-track model was used in the simulating framework. Fig. 3.4 shows the
spatial parameters and included motion variables together with tyre forces. It is visible from the figure that the
more realistic two-track model has far more degrees of freedom compared to the one-track model.

The framework uses a Volvo in-house developed library to emulate this high fidelity plant model. It includes
detailed sub-models of various components such as vehicle chassis, cab suspensions, steering system, powertrain,
and brakes. The torsion flexibility of the frame of the tractor and semi-trailers is considered and taken into
account by connecting multiple frame bodies through springs. Lastly, the magic formula tire model [26] is used
for all tires in the vehicle combination. The model considers slip, dynamic relaxation and rolling resistance.
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Figure 3.4: Illustration of a two-track model of an A-double combination. The left hand side of the figure shows
the spatial parameters of the vehicle model and the right hand side shows the included motion variables and tyre
forces. Figure taken from [24].

3.1.3 Road modelling

In order to evaluate the automated driving, it is necessary to have a clearly defined road model for the LCV to
drive on. Considering then a global frame G, it is possible to define a road profile(

X
Y

)
= fr(s) (3.6)

where s refers to the arc length of fr for some arbitrary initial point s = 0. The road profile is constructed
using clothoids, since they are widely used and are known to provide smooth driving associated with low jerk
values [27]. Thus, the road profile fr is constructed using clothoid segments in a similar way as Fig. 3.5.

With the road defined, it is possible to express the LCV positions with respect to the road. A certain point of
the truck can be projected onto the road defined by a coordinate s and a perpendicular distance from the road
geometry d. A coordinate (s, d) is not guaranteed to be unique for all coordinates (X,Y ), nor is it guaranteed
to exist for all (X,Y ). During the simulations and evaluations of the vehicle dynamics, the framework uses a
Frenét frame for each position s along the road geometry [16].

Lastly, the road model stores information about the lanes on the current road, providing a topology of current
lane and adjacent lanes, whether there exists a lane to either of the sides, or if it is a road edge. The lanes
contain information about their own widths, maximum distance, adjacent lanes, and clothoid properties such
as curvatures, heading angles and arc lengths.

3.1.4 Traffic situation predictions

With the key components given above, the framework has most of the information present to form a traffic
situation understanding. TSPs are formed for the current lane the LCV is driving in, but also for the adjacent
left and right lanes. The predictions are simulated for a time horizon of th = 3.5s. During this time horizon,
the surrounding traffic is predicted to continue moving along the road geometry with their current respective
velocity by integrating their position using the simple forward-Euler integration with a step size of h = 0.05s.
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Figure 3.5: The clothoid segments are presented above, which can be seen as a piecewise linear curvature
function. Each clothoid segment is described by a pair of kink points, its curvature ci and arc length Li.

Given this information, it is possible to integrate the LCV states together with the predictions of the surrounding
traffic and its corresponding state equations. For each step in the integration the LCV is evaluated given a set
of constratints that are related to the vehicle dynamics and lane boundaries

vx ≤ vx,1 ≤ v̄x (3.7)
ay ≤ ay,1 ≤ āy (3.8)
ay ≤ ay,4 ≤ āy (3.9)
d ≤ d1 ≤ d̄ (3.10)
d ≤ d4 ≤ d̄ (3.11)

where vx and v̄x are the speed limits for the vehicle and, vx,1 is the speed for the first axis of the LCV, ay and
āy are the limits for the lateral acceleration, ay,1 and ay,4 are the lateral accelerations of the first and fourth
axis, and d and d̄ are the limits of the lateral offset towards the center lane. The limits for the lateral offsets
change depending on the internal states of the vehicle.

A final constraint is added that checks collisions against vehicles. It is based by creating bounding boxes for the
LCV units and the surrounding vehicles and each bounding box consists of four lines encapsulating the vehicle.
Then by checking line intersections in 2D it can be decided whether any of the bounding box lines intersect.

This is solved by setting up the following equation system

Pa = Pa,1 + s(Pa,2 −Pa,1)
Pb = Pb,1 + t(Pb,2 −Pb,1)

and solving for s and t when Pa = Pb. Pa,1, Pb,1 and Pa,2, Pb,2 are the start and end points for each line a
and b. A collision occurs between the lines only if |s| < 1 and |t| < 1. By solving this for the bounding boxes
between two objects a collision may be detected.

If any constraints are violated during the iterations of the closed-loop predictions the plan is seen as infeasible,
which the decision making algorithm takes into account [28]. However, take note that the simulation scenario
in this thesis will not emphasize the decision making aspect of the driver model control.
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3.1.5 Control hierarchy

The final control design of the framework is depicted in Fig. 3.6. The driver model control is fed inputs from
measured vehicle states

z = [ẏ1, φ, φ̇, θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, vx,1, ax,1, s1, e1, s11, e11, δ̇] (3.12)

and the observations from the traffic environment; road curvature [κr], road heading angle [θr], road distance [sr]
and max road velocity [vr,max]. The surrounding vehicles relative distance [∆so,n], velocity [ṡo,n], acceleration
[s̈o,n] and lane [lo,n] is also fed. The driver also has the possibility to request a lane change externally from the
framework.

Given the input, the driver model control sets up and evaluates the TSPs for the entire prediction horizon.
After the evaluations are performed, the driver model control outputs the desired longitudinal acceleraton
ax,des and road wheel steering angle rate δ̇. This is then fed as input to the vehicle motion management block
which uses the control actuation signals and integrates them against a vehicle plant model. The vehicle plant
model in this case might be a one-track model or the high fidelity two-track model mentioned in the previous
section.

Figure 3.6: The control design for the automated driving framework. The driver model control requires inputs
from the vehicle state measurements and traffic observations, and outputs the desired longitudinal acceleration
and road wheel steering angle rate.

3.2 Biologically inspired optimization

When optimizing, or mathematically programming, one often manipulates a structure or a system to achieve
a defined goal. The systems are often possible to define in terms of a mathematical function, and is then
given the goal to either minimize or maximize the function value. A few fields that solve problems using
optimization include decision-making, path planning, time-series prediction and various engineering problems
such as construction of vehicles. This is just a very small list of many applications, but it is easily concluded
that optimization plays a major role in science and engineering.

In most real-life applications you are faced with constraints, i.e limits on certain variable ranges. It gives rise
to the question of what is the best thing to do, given a finite set of resources. As it was stated above, it is
possible to formulate many problems as the minimization, or maximization, of a mathematical function, often
denoted as the objective function. To solve problems such as these the wide field of mathematics comes to use.
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3.2.1 Particle swarm optimization

PSO is based on the biological phenomenon of swarms. The algorithm is capturing mathematically the aspects
of swarming which is namely its search efficiency [29]. In PSO the particles are encoded with a position and a
velocity in the search domain, RN . Each individual is then evaluated against an objective function to obtain a
performance. Therefore methods for updating the particles is based on the performance of the particle and
that of the other particles.

Algorithm

The first step of the algorithm is to initialize the position xi and velocity vi of particles pi, i = 1, ..., N ∈ Z.
The most suitable value of N varies often from problem to problem, however, typically the value of N is in the
range of 20-40 particles [29]. The particle positions are often initialized randomly with a uniform distribution
over the search space. Given a variable range the initialization can be written as

xij = xmin,j + r(xmax,j − xmin,j), i = 1, ...N, j = 1, ..., n (3.13)

where xij denotes the jth component of particle pi, i.e the jth variable. r denotes the uniform random number
in range r ∈ [0, 1], xmin,j and xmax,j denote the variable range for the jth component. Finally N denotes the
size of the swarm and n is the dimensionality, or number of variables, of the particle.

Particle velocities are also initialized randomly in a similar fashion

vij = α

∆t

(
−xmax,j − xmin,j2 + r(xmax,j − xmin,j)

)
, i = 1, ..., N, j = 1, ..., n (3.14)

where vij is the velocity of the jth component of particle pi, α is a constant in the range α ∈ [0, 1], ∆t is
the time step, and r is yet again a uniform random number in range r ∈ [0, 1]. In the special case where
xmin,j = −xmax,j the equation above can be reduced to

vij = α
xmin,j + 2rxmax,j

∆t , i = 1, ..., N, j = 1, ..., n. (3.15)

Having initialized the particles, the next step is to evaluate and store the performance, often named cost, for
each particle. How this is done depends on the given problem, but the evaluation is based on feeding the
particle positions as input to an objective function that has the goal to be minimized or maximized.

In order to reach the optimal value of the objective function, the particles have to be updated, meaning that
the positions and velocities need to be updated. The update rule relies on storing the personal best position
xpbi of particle pi and the global best position xgb of any particle in the entire swarm. Thus, after evaluating
particle pi, two performance tests are needed. The first test is comparing the current performance with the
previous best performance. If it is better then update xpbi . The second test can be performed in multiple ways
depending on the definition of the global best performance of all particles in the swarm. It is either assumed
to be in the current swarm, or all particles evaluated thus far, but it also depends whether the global best is
checked against all particles or within a neighbourhood. The latter will be discussed later in the text. After
deciding on the approach for step two, xgb is updated and stored.

With the updated values xpbi and xgb the update rule is given as

vij ← vij + c1r

(
xpbij − xij

∆t

)
+ c2q

(
xgbj − xij

∆t

)
, j = 1, ..., n (3.16)

where r and q are random numbers in the range r, q ∈ [0, 1], and c1 and c2 are constants. The parameter c1 is
often referred as the cognitive component and c2 as the social component. The cognitive component is seen as
the degree of self-confidence of the particle in the swarm, whereas the social component is the particles trust in
the ability of the swarm. Usually c1 and c2 are both set to 2, so that the mean of rc1 and qc2 is the same [29].
When updating the velocities it is necessary to make sure the velocities are restricted to the range |vij | < vmax,
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in order to keep it from expanding uncontrollably. This does not however imply that the position of particle pi
will be constrained within [xmin,j , xmax,j ]. The final step is to update the positions as well which is done as

xij ← xij + vij∆t, j = 1, ..., n, i = 1, ..., N. (3.17)

This concludes one iteration of the algorithm. After updating the positions and velocities the particles are
evaluated again and the steps above are performed again. For further clarity the PSO is presented in Alg. 1.

Algorithm 1 PSO algorithm
1: Initialize particle swarm, i.e positions and velocities of particle pi:

xij = xmin,j + r(xmax,j − xmin,j), i = 1, ...N, j = 1, ..., n
vij = α

∆t

(
−xmax,j−xmin,j

2 + r(xmax,j − xmin,j)
)
, i = 1, ..., N, j = 1, ..., n

2: Evaluate each particle against the objective function f(xi), i = 1, ..., N
3: Update the personal best xpbi position for all particles and and global best xgb

if f(xi) < f(xpbi )
xpbi ← xi

if f(xi) < f(xgb)
xgb ← xi

4: Update particle velocities:

vij ← vij + c1r

(
xpb

ij
−xij

∆t

)
+ c2q

(
xgb

j
−xij

∆t

)
, j = 1, ..., n

if |vij | > vmax
vij ← vijvmax|vij |−1

5: Update paticle positions
xij ← xij + vij∆t, j = 1, ..., n, i = 1, ..., N

6: Unless the termination criterion has been reached, repeat from step 2.

Best in current swarm vs best ever

In the section above we assumed that the xgb denoted the best particle ever thus far in the swarm. It is possible
to follow an alternate approach which is based on the best position xgbc in the current swarm, i.e the best of N
particles in the current iteration. Other than that the algorithm is executed exactly the same. Taking computer
programming into consideration, this modification is implemented with one line of code which resets the best
in swarm position in each iteration.

Neighbourhood topology

Comparing the global best particle xgb can be done in different ways, namely based on neighbourhoods. In
the algorithm described above the neighbourhood included all of the particles, meaning that all particles were
interconnected and that xgbi = xgb. A visual representation is shown in Fig. 3.7a. There are, however, many
alternatives to a fully connected neighbourhood. The fully connected neighbourhood is simply that each particle
is connected to its K = N − 1 nearest neighbours. By letting K = 2 the neighbourhood seen in Fig. 3.7b. The
effect of having a swarm that is has a neighbourhood structure that is less connected serves the purpose of
preventing premature convergence [29]. As a general rule, introduction of restricted neighbourhood structures
slows down the convergence of the algorithm, but it also allows for greater cover of the search space, which in
some cases might lead to better results. It should be noted that the neighbourhood structures normally remain
fixed during optimization.

3.2.2 Inertia weight

The last modification that will be discussed in this thesis is the inertia weight, w. The inertia weight determines
the relative influence of previous velocities of a particle. Applying the concept of inertia the velocity update for
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(a) Fully connected neighbourhood. (b) Neighbourhood with K = 2 connections.

Figure 3.7: Two commonly used neighbourhood topologies. The figure to the left compares uses the global
best particle in the swarm, whereas the figure to the left uses the global best particle compared to its closest
neighbours.

particle pi becomes

vij ← wvij + c1r

(
xpbij − xij

∆t

)
+ c2q

(
xgbj − xij

∆t

)
, j = 1, ..., n. (3.18)

If w > 1, the particle will favor exploration over exploitation, i.e the cognitive and social components will of be
less value. However, if w < 1 the particle will be more attracted to the current best positions. Thus, a common
strategy is to start with a w larger than 1 and reduce it by a constant factor β ∈ ]0, 1[ each iteration until w
reaches the desired lower bound.

3.2.3 Genetic algorithms

GAs are a type of evolutionary algorithms. This section will try to explain the basic parts of a GA and how it
is implemented to optimize a given objective function. To solve this using a GA the information is encoded
as a string of digits inside of a chromosome, which is essentially a vector holding digits from a programming
point of view. Each of the digits are denoted as a gene, to keep the connection with the biological terminology.
The genes encode the information of the chromosome and there are various encoding schemes. In the first
introduced GA [30], a binary encoding scheme was proposed, where the genes took the values of 0 and 1 only.

The algorithm is initialized by introducing a population of N chromosomes ci, i = 1, ..., N with random values
with equal probability of the gene values 0 and 1. The value of a gene is often called an allele in GA terminology.
The first initialized chromosomes constitute the first generation of the entire population. After the initialization,
the N chromosomes have to decode its genes to form a corresponding individual consisting of n variables
xj , j = 1, ..., n. This can be done in various ways, but most common is to divide the chromosome into even bits
k = m/n, where m denotes the number of genes in a chromosome. The decoding for each variable xj can then
be written as

xj,tmp =
k∑
v=1

2−vgv+(j−1)k, j = 1, ..., n (3.19)

where k is the number of bits of each chromosome. Thereafter the value of xj,tmp is simply scaled to cover the
desired search region of [xj,min, xj,max], j = 1, ..., n as

xj = xmin,j + xmax,j − xmin,j
1− 2−k xj,tmp, j = 1, ..., n. (3.20)

Usually in practical applications the decoding step might be seen as tedious and unecessary, thus it can be
avoided by using real-number encoding instead of binary encoding. In real number encoding the alleles of each
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(a) Two selected chromosome pairs (b) Chromosome pairs after the crossover operation.

Figure 3.8: An illustration of the crossover process. Figure 3.8a shows two chromosome pairs selected from the
tournament selection, while figure 3.8b shows the resulting chromosomes after the crossover operation. The
different colours represent the different alleles of the chromosomes.

genes contain a floating-point number in the range of [0, 1] the decoded variable is simply gotten from

x = xmin + g(xmax − xmin) (3.21)

which results in x being in the range of [xmin, xmax]. There exist more encoding schemes than the two presented
above, but they are out of the scope for this thesis.

Having decoded the chromosome, each individual i is evaluated against an objective function and assigned
a corresponding fitness value Fi, which is later used to select the most fit individuals for reproduction. In
GAs the fitness is usually seen as a goodness measure than an error measure, thus the goal is to maximize it.
However, if one wishes to minimize a measure instead, it is simply equivalent to maximize its inverse. Therefore
in the case of maximization, the objective function can be taken as the fitness.

Assuming that all N individuals have been evaluated and assigned a fitness measure it is time to form the next
generation. In relation to what is observed in biology, there must be a sort of selection present, where the most
fit individuals are selected. To avoid stagnation and resemble reality, this process is not made deterministic so
that it does not always favour the fittest individuals. The most common ways of performing selection in GAs
are through tournament selection and roulette-wheel selection. In roulette-wheel selection the individuals are
selected by forming the cumulative relative fitness value

Φj =
∑j
i=1 Fi∑N
i=1 Fi

, j = 1, ..., N, (3.22)

where Fi is the fitness value of individual i. Thereafter a random number r ∈ [0, 1] is drawn uniformly and the
individual that is selected is the one with the smallest j so that the following is satisfied

Φj > r. (3.23)

Since roulette-wheel selection is not a very likely biological process, an alternative procedure which resembles
nature more is tournament selection. In essence, tournament selection is based on picking two individuals
randomly, and at equal probability for all individuals, from the population. The individual with better fitness
is then selected with probability ptour and the worse individual with probability 1− ptour. The parameter ptour
is called the tournament selection parameter, and is usually set around 0.7− 0.8. The tournament selection
size can be generalized to include more than two individuals.

Sexual reproduction requires two individuals to produce an offspring with a combination of both parents genes.
Thus, for the GA, individuals need to be selected in pairs using the selection method introduced above. Since
the genetic information for each individual is stored in a single chromosome with fixed length, it is fairly easy
to combine the genes of two individuals.

In GAs the crossover procedure consists of cutting the chromosomes at a randomly selected crossover point
and then swap the end parts of each chromosome with each other. Fig. 3.8 shows an illustration of the
crossover operation on two chromosomes. The crossover procedure is also, just like the selection procedure,
non-deterministic. A parameter pcross is defined which is the crossover probability, and decides the probability
of two individuals actually mating.
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The next step in the evolutionary process is to introduce mutations, which is crucial for evolution. Mutation is
introduced to the GAs after the crossover operation by changing the alleles randomly. In the case of binary
encoded chromosomes, this results in flipping the alleel from 1 to 0, or vice versa, with a mutation probability
pmut. If the chromosomes are encoded as floating point numbers, then the mutation process can be done by
using creep-mutations, which will not be discussed in this text. In practice mutation is implemented by drawing
a random number r ∈ [0, 1] and mutating the allele if r < pmut.

After performing all of the genetic operations on the chromosomes, the GA faces the final step, which is
replacement. The simplest way is called generational replacement, where all of the individuals from the first
generation are discarded and the N new individuals take their place. This concludes one generation of the
GA and the new generation is taken back and evaluated and thus the cycle is closed. The entire algorithm is
presented in steps in Alg. 2

Algorithm 2 GA algorithm
Initialize the population by randomly generation N chromosomes ci, i = 1, ..., N . If using binary encoding,
generate chromosomes of length m = kn where k denotes the number of bits per variable.
Evaluate the individuals
1. Decode chromosome ci to form xi.
2. Evaluate each individual against the objective function and assign it a fitness value Fi = f(xi).
3. Repeat the two steps above until the entire population has been evaluated.

Form the new generation
1. Select two individuals i1 and i2 from the evaluated population through means of non-deterministic

selection. Individuals with better fitness should have greater probability of being selected than individuals
with worse fitness.

2. Generate two new chromosomes by crossing the selected chromosomes if r < pcross, where r ∈ [0, 1] is a
random number.

3. Mutate the alleles of each chromosome with probability pmut.
4. Repat the steps above until N new individuals have been generated.

Unless the termination criterion has been reached, repeat from step 2.

3.2.4 Considered variables and cost function

This thesis will focus on optimizing driver model parameters for the lateral and longitudinal control. From the
previous chapter it was stated that the control law for the lateral actuation was given by

δ̇ref = kf θ̇f + knθ̇n + kIθn (3.24)

and the longitudinal control law was given by

ax,ref = (1 + τ̇m) · ∆v2
x

∆Xf − v0 · th
. (3.25)

Depending on the choice of the parameters kf , kn, and kI , it will result in different steering behaviour. One set
of parameter may result in the characteristics of a calm driver, whereas other may reflect a more aggressive
one. Therefore it is of great importance to be able to optimize these parameters on the fly, allowing for a more
dynamic control system. As for the longitudinal parameter τ̇m, it controls how strongly the system reacts to
the acceleration commands.

The used framework currently has a set of preferred driver model parameters denoted: kf,d, kn,d, kI,d, and
τ̇m,d. These were previously set where a genetic algorithm was used to fit the parameters after on-road study
with professional truck drivers [18]. Therefore it is of interest to find solutions that do not deviate too much
from the original desired parameters. Hence the cost function should include a term that benefits parameter
values that are close to the original ones.
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Cost function

As previously stated, the goal is to find parameters that deviate as little from the desired parameters, while
still generating a feasible solution. The set of feasible solutions in this case depends on various complex factors
such as the surrounding traffic observations and road profile. A solution that fulfills all the characteristics such
as minimal lane off-tracking, abnormal lateral accelerations and no collisions would result in a low cost. Taking
inspiration from similar work [20], the cost function was defined as

F = Cp + Co,1 + Co,4 + Ca,1 + Ca,4 + Cc, (3.26)

where Cp penalizes deviance from the desired driver model parameters, Co,1 and Co,4 penalizes solutions where
the LCVs lateral offset for the first and fourth axle becomes larger than the allowed limits, Ca,1 and Ca,4
penalizes solutions that generates large lateral acceleration for the first and fourth axle, and Cc penalizes
collisions with surrounding traffic. The parameters Cp, Co,1, and Co,4 may be viewed as optimization criteria
that will improve the solutions. The remaining three, however, are criteria that determine the feasibility and
thus must be satisfied for a solution to be valid.

In the cost function the parameter term is given by

Cp =
√

(kf,d − kf )2 + (kn,d − kn)2 + (kI,d − kI)2 + (τ̇m,d − τ̇m)2

k2
f,d + k2

n,d + k2
I,d + τ̇2

m,d

, (3.27)

Unless the driver model parameters are enforced to be bound within certain limits there is no guarantee that
Cp ∈ [0, 1]. However, Cp will be in the range [0, 1] only when the following is true

(kn,d − kn)2 + (kn,d − kn)2 + (kn,d − kn)2 + (τ̇m,des − τ̇m)2 ≤ k2
f,d + k2

n,d + k2
I,d + τ̇2

m,d (3.28)

The terms corresponding to the lateral off-tracking of the lane for axle i is defined as

Co,i =
N∑
k=1



|di,k−d̄|
|w−d̄|·N if di,k > d̄
|di,k−d|
|w−d|·N if di,k < d

0, else

 , (3.29)

where di,k is the lateral offset from the center of road lane at time step k for the i:th axle, w is the maximum
allowed off-tracking, in this case one full lane width, and N is the number of time steps of the closed-loop
control algorithm. To get a better understanding, see Fig. 3.9. By designing the constraint in this way we
ensure that Co,i will always be in the range of [0, 1].

Figure 3.9: Illustration of the lateral constraints.
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The acceleration term is a hard constraint, meaning that if it is violated the entire solution is infeasible. It is
defined as the following for an axle i

Ca,i =
{

0 if a ≤ ai ≤ ā
P else

(3.30)

therefore
Ca,i ∈ {0} ∪ {P} (3.31)

where a and ā are the limits for the acceleration for the i:th axle. P is a penalty term that if set to P = 2 it
will encourage feasible solutions over infeasible ones.

The collision term is also, in the same way as the acceleration term, a hard constraint and defined as

Cc =
{

0 if no collision
P else

(3.32)

therefore
Cc ∈ {0} ∪ {P} (3.33)

where P is the same parameter defined for the acceleration term. The collisions were calculated in the same
way as presented in section 3.1.4.

3.3 Implementation

In order to maximize the efficiency of the algorithms mentioned above, it is necessary to utilize the parallel
nature they offer. This means simply that it is necessary to find a way to implement this in the software stack.
The solution for this problem comes in the form of a framework called OpenCL, which was briefly mentioned in
section 1 and 2.2. The framework allows for writing programs that are able to execute across heterogeneous
platforms consisting of CPUs, GPUs, digital signal processors, field-programmable gate arrays and other similar
processors. OpenCL uses a specific programming language that is based on C99, which is a standard C coding
language. Thus, all devices or programs that are supposed to use the framework will have to be written in the
C99 language. The parallel computing interface OpenCL offers is task-based and data-based parallelism.

The hierarchy of OpenCL may be viewed as if it consists of a number of compute devices and are passed
instructions to perform specific tasks given by the framework. The number of available compute devices
are hardware specific and thus GPUs generally have more devices than CPUs, which is an effect of their
parallel architecture. A compute device is made up of several compute units, which in turn consists of multiple
processing elements (PEs). Since OpenCL is an open standard, it is up to the hardware vendors how to divide
up a compute device into compute units and PEs. To use the OpenCL framework, one has to write functions
that are denoted as kernels. Depending on how the kernel is written, it is possible for it to run over all or many
compute devices in parallel.

Alongside the C-like programming language, OpenCL has also defined an application programming inter-
face (API) that allows regular programs running on the host to launch kernels on the compute devices and
manage device memory which is separated from the host memory. OpenCL programs are mostly intended to
depend on online compiling, meaning that it is compiled at run-time. This allows OpenCL to be portable
between implementations for various host devices. The OpenCL standard defines host APIs for C and C++,
where the latter will be used in this thesis. An illustration of the overview is shown in Fig. 3.10.

Driver model control interface

The interface with the host code and OpenCL for this thesis is a task-based parallel implementation. The way
the host code uses the static driver model parameters to evaluate a plan each iteration can be viewed as a task.
Therefore by porting the framework to OpenCL we allow for it to use its parallel structure to distribute and
run the tasks in parallel, which means that it is possible to evaluate a different set of plans, given different sets
of driver model parameters.
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Figure 3.10: A simple illustration over the program flow with OpenCL.

However, for this to work all of the data concerning the current TSP has to be passed to the OpenCL device
memory since it does not share the same memory with the host side. Thus, for each iteration it is necessary to
set up a data transmission between the host and device side, which for a real time implementation can quickly
become a bottle-neck.

After the host side has sent all of the needed information to the OpenCL device side, the optimization is
performed on the device side with instructions from the host side. Therefore the host side may tell the device
that it should run N iterations of the PSO or GA. With the API, the host code then calls the OpenCL kernels
to exectue the algorithm steps N times. No data needs to be sent during these steps since it is all still loaded
and updated on the device side, only an instruction has to be sent from the host telling the device it should
run the code. When the kernel finishes with its instructions, the output data of the kernel is read back to the
host side. With the received data it is then possible to see wheather any feasible solution was found or not.
If there does exist a new solution, the host side will update its parameters and simply run with the freshly
updated ones. If not, then the framework will follow its decision making system to decide the next step.

3.3.1 Pseudo random number generation

The proposed algorithms that will be used for optimization have one common factor, namely stochastic processes.
Since the algorithms depend on randomness, it is of great essence to have a good random number generator.
However, one problem is that creating purely random numbers in a computer is not possible. What is instead
used are so called pseudo random number generators (PRNG). OpenCL by nature does not support, or have,
any random generating function as one can find simply in most other programming frameworks. This creates a
problem, since the algorithms to be used in the optimization rely on random numbers to be successful.

A solution for this problem is to implement a reasonably fast PRNG on the OpenCL device side. Existing
work shows theoretic approaches for PRNGs and prove that they work well [31]. The algorithm itself is simple
and an excerpt from the OpenCL code is presented below. In the original work by the authors, the algorithm
generated pseudo random integers. Since the PSO and GA wants random variables in the range of r ∈ [0, 1]
the algorithm is just rescaled to fit the correct ranges.

// Pseudo random algorithm to generate random numbers on GPU.
// Input 0 < seed < 1, and get a new one within same range.
float rand(float seed)
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Figure 3.11: Differences between the PRNG and Matlab rand() function.

{
unsigned int const a = 16807;
unsigned int const m = 2147483647;

int tmp = seed * m;
tmp = (tmp * a) % m;

return tmp / (float)m;
}

As a test of the algorithm a random seed is initialized using Matlab and the seed is used to generate a sequence
of one million random numbers. The distribution can be seen in Fig. 3.11.

One could also solve the random number problem by generating random numbers for each iteration of the
algorithm on the host side and keep sending random numbers to the buffer. This solution works fine in theory,
but is in practice is very unpractical. It creates a dependency between the device and host side, where the device
will have to wait for the host to send new random numbers before continuing. Due to the time consumption of
transferring memory between each iteration, this solution is not good in a real-time application.

3.4 Scenario

In order to evaluate how well the optimization works, it is desired to try it on a rough scenario. Since the
optimization parameters are including both the lateral and longitudinal parameters the scenario which utilizes
a maneuver that takes into account both braking and steering, is namely a lane change. This section will
paint the proposed scenario to test the functionality of the framework given the optimization scheme. It will
therefore be investigated under which circumstances the system manages to perform safe lane maneuvers.

Figure 3.12: Set up of the lane change scenario.
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The start of the scenario consists of the LCV driving in a given lane, and an obstacle with a temporal headway
th ahead is in the right lane of the LCV. At a given signal the LCV will get a request to make a right lane
change. Thereafter a lane change will be initialized when the frameworks decides that the conditions for a lane
change initialization is fulfilled, which is handled by the decision-making of the framework [28]. As the LCV
passes into the target lane, the vehicle in front instantly starts to decelerate with 6.9 m s−2 to a target velocity
vf . The main illustration can be seen in Fig. 3.12. The possible solutions by the framework then are to either
continue the lane change and brake behind the vehicle or abort the lange change and return to the original
lane. In some cases the abort lane change is the only feasible solution. Actuator limits, together with small
headways and large velocity differences makes it not possible to brake behind the vehicle.

The parameters that will be altered in the scenario are vi, vf and th. vi denotes the intial velocities for the
truck and the vehicle, and they will always be the same. vf is specific for the braking vehicle. By changing
these parameters it is easy to find situations where the scenario becomes too critical, in which it is not possible
to complete a lane change given the dynamics of the LCV.

3.4.1 Previous results

The used framework has been evaluated on the same scenario [2], however at that time it was still using static
driver model parameters. An extract from the results can be seen in Fig. 3.13, which shows how well the
framework performed in more critical situations. It is visible that having a very low temporal headway, the
framework did not manage to handle the cases very well with high differences in the initial and final velocities.

The interesting aspect here is that given the results from the braking lane change [2], they serve as a benchmark
for the optimization. Thus, the expecting outcome is to clearly see the effect of optimization, and to see whether
it is possible to find solutions that do not end up in an emergency braking or preparing for a collision.
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(b) Temporal headway th = 0.5

Figure 3.13: Performance of the framework while changing lane to the right. The unfilled boxes correspond to a
succesful lane change, the red boxes correspond to a successful abort maneuver and the black boxes correspond
to an emergency brake maneuver. The initial velocities of both the truck and vehicle were set in the range of
vi ∈ [20, 80] km h−1 and the final velocity of the vehicle was in the range of vf ∈ [20, 70] km h−1. The two
figures show the temporal headways for the initiation of the lane changes.
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4
Results

The reason for simulating an emergency behaviour was to confirm and to answer the reasearch questions of
the thesis. The results will show if optimizing the driver model parameters may lead to avoid dangerous
situations which would end up in collisions if nothing were to be done. Thus, this chapter will show how well
the framework performed given an emergency scenario. Simulation times of the optimization were tracked as
well as different states throughout simulation.

Using the simulating framework the presented scenario described in the previous chapter was implemented.
The results shown were gathered using a single track bicycle model throughout the closed-loop but also from
Matlab/Simulinks outer-control loop. Therefore the validity of all results, at least in the extreme cases, should
be taken with a bit of caution. Having a simplified bicycle model to describe the dynamics of a LCV might
cause significant differences when putting actutation requests on the vehicle.

4.1 Lane changes with a lead vehicle braking

Figs. 4.1 and 4.2 presents how well the framework complied to a lane change where a vehicle in front brakes
heavily as soon as the target lane is reached. The results were gathered using the proposed parallel optimization
scheme where driver model parameters are optimized. The population and swarm size for the simulation was
fixed to 128.
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(a) Temporal headway th = 1.0 for the GA
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(b) Temporal headway th = 1.0 for the PSO

Figure 4.1: Performance of the framework while changing lane to the right. The colored boxes represent the
percentage of successful completed or aborted lane changes. A maneuver is seen as a failure if the system has to
resort to an emergency brake solution. The initial velocities of both the truck and lead vehicle were set in the
range of vi ∈ [20, 80] km h−1 and the final velocity of the vehicle was in the range of vf ∈ [20, 70] km h−1. Each
box corresponds to 20 simulations where an average of the passed and failed maneuvers were taken. The lane
change was initiated with a temporal headway of 1.0 s.

Fig. 4.1 shows the simulation for when the LCV had a temporal headway of th = 1.0 s behind the leading
target vehicle. It is visible that the GA only had a 80 % success rate for the lane change maneuver when the
initial velocities were set to 60 km h−1 and the final velocity of the vehicle was set to 20 km h−1. It did however
manage to successfully complete all other simulations. The PSO on the other hand showed to be successful for
all test cases.

Studying the results in Fig. 4.2 it is visible that the difficulty of the problem has increased, thus the high
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(a) Temporal headway th = 0.5 for GA
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Figure 4.2: Performance of the framework while changing lane to the right. The colored boxes represent the
percentage of successful completed or aborted lane changes. A maneuver is seen as a failure if the system has to
resort to an emergency brake solution. The initial velocities of both the truck and lead vehicle were set in the
range of vi ∈ [20, 80] km h−1 and the final velocity of the vehicle was in the range of vf ∈ [20, 70] km h−1. Each
box corresponds to 20 simulations where an average of the passed and failed maneuvers were taken. The lane
change was initiated with a temporal headway of 0.5 s.

failing percentage of certain test cases. Neither of the two algorithms were able to find solutions in the range of
having an initial velocity from 60 km h−1 to 80 km h−1 and the final velocity of the vehicle at 20 km h−1. With
the initial velocity of 60 km h−1 and a final velocity of 30 km h−1 the GA has a 95 % success rate. However,
increasing the initial velocity to 70 km h−1 or 80 km h−1 brings the success rate down to 75 %. The PSO on
the other hand manages always to find solutions when the initial velocity is 60 km h−1 and the final velocity
is 30 km h−1. Increasing the initial velocity further to 70 km h−1 or 80 km h−1 results in the algorithm always
failing and having a success rate of 15 % respectively.

For the initial velocities of 70 km h−1 and 80 km h−1, and final velocity of 40 km h−1 the GA has a success
rate of 85 % and 95 % respectively. The last deviating result is seen at the initial velocity 80 km h−1 and final
velocity of 50 km h−1 where the GA only finds a solution 45 % of the time. The PSO, while being more prone
to errors in the more critical part of the test cases, shows a 100 % rate on the rest of the cases.

4.2 Run time of the optimization

When gathering results for the timing of the algorithm the following hardware was used:

• 2.6GHz Intel Core i5 CPU

• Intel Iris 1536 MB GPU

In order to gather run time data, only the part of the DMC with predictions was used. By enforcing that the
prediction loop always ran for the entire prediction horizon, 75 time steps, a fair upper limit estimate could be
obtained. Table 4.1 and 4.2 shows the average run times and the standard deviation of the GA when changing
the number of iterations and population size. After passing the a population size of 256 the run times of the
GPU is lower than of the CPU. Table 4.3 and 4.4 shows the average run times and the standard deviation of
the PSO when changing the number of iterations and swarm size.

4.3 Swarm and population sizes

Here the number of iterations were constantly set to 20 and the population size and swarm size for the GA and
PSO were changed in the range from 64 to 1024. Fig. 4.3 shows the outcome from the algorithms running a
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Table 4.1: GPU run times for the GA.
(a) Average times across different population sizes and iteration numbers

Population size 20 iterations [s] 40 iterations [s] 60 iterations [s] 80 iterations [s]
64 0.145 79 0.276 43 0.384 82 0.563 59

128 0.146 32 0.282 79 0.418 45 0.570 13
256 0.268 31 0.516 75 0.850 16 0.997 97
512 0.365 55 0.641 13 0.916 31 1.306 37

1024 0.467 32 0.904 24 1.290 23 1.707 90

(b) Standard deviation across different population sizes and iteration numbers

Population size 20 iterations [s] 40 iterations [s] 60 iterations [s] 80 iterations [s]
64 0.016 782 0.036 27 0.003 60 0.091 52

128 0.003 222 0.023 17 0.050 15 0.043 12
256 0.006 189 0.022 07 0.111 01 0.008 22
512 0.047 193 0.024 64 0.018 63 0.060 45

1024 0.013 336 0.032 84 0.012 38 0.007 52

Table 4.2: CPU run times for the GA.
(a) Average times across different population sizes and iteration numbers

Population size 20 iterations [s] 40 iterations [s] 60 iterations [s] 80 iterations [s]
64 0.058 66 0.114 06 0.168 43 0.233 81

128 0.101 81 0.190 55 0.286 08 0.375 84
256 0.193 69 0.387 96 0.562 87 0.794 13
512 0.471 21 0.804 33 1.219 23 1.590 47

1024 0.691 23 1.350 74 2.852 09 2.767 81

(b) Standard deviation across different population sizes and iteration numbers

Population size 20 iterations [s] 40 iterations [s] 60 iterations [s] 80 iterations [s]
64 0.016 78 0.036 27 0.003 60 0.091 52

128 0.003 22 0.023 17 0.050 15 0.043 12
256 0.006 19 0.022 07 0.111 01 0.008 22
512 0.047 19 0.024 64 0.018 63 0.060 45

1024 0.013 33 0.032 84 0.012 38 0.007 52

similar simulation as in section 4.1. The scenario was set out to start its lane change with a temporal headway
of 0.5 s and the initial velocities of 80 km h−1, and the final velocity of the leading vehicle of 30 km h−1. The
best outcome was given by the GA at a population size of 512 individuals. Lane changes that were successfully
completed or aborted were counted as a success, whereas a lane change that entered the emergency brake state
at any time was discarded as a failure.

Fig. 4.4 shows the characteristics of a successful abort from a initialized lane change. From t = 0 s the lane
change is initialized with a temporal headway of th = 0.5 s. At t = 4.35 s the first axle of the LCV has
passed into the target lane and the vehicle in front starts to deceellerate constantly with −6.9 m s−2. The LCV
continues to try to complete the lane change until t = 5.0 s where the framework no longer can find a solution
to complete the lane change. From that point the LCV starts an lane change abort plan. Fig. 4.5 shows the
active driver model parameters for the same simulation as above. Throughout the simulation it was required to
update the parameters five times in total.

Adding to the simulation that the acceleration of the vehicle ahead is known, and not approximating each
closed loop to have a constant velocity, the optimization is able to pass even the toughest scenario of having an
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Table 4.3: GPU run times for the PSO.
(a) Average times across different swarm sizes and iteration numbers

Swarm size 20 iterations [s] 40 iterations [s] 60 iterations [s] 80 iterations [s]
64 0.164 29 0.313 08 0.441 68 0.538 21

128 0.173 41 0.326 97 0.451 97 0.564 51
256 0.222 26 0.396 18 0.551 41 0.685 95
512 0.295 68 0.578 97 0.828 88 1.055 59

1024 0.405 44 0.807 77 1.215 41 1.572 85

(b) Standard deviation across different swarm sizes and iteration numbers

Swarm size 20 iterations [s] 40 iterations [s] 60 iterations [s] 80 iterations [s]
64 0.005 25 0.007 66 0.020 35 0.010 62

128 0.007 11 0.005 66 0.006 82 0.006 78
256 0.055 82 0.011 12 0.012 10 0.008 79
512 0.009 87 0.011 91 0.017 63 0.017 73

1024 0.007 30 0.038 38 0.049 88 0.065 91

Table 4.4: CPU run times for the PSO.
(a) Average times across different swarm sizes and iteration numbers

Swarm size 20 iterations 40 iterations 60 iterations 80 iterations
64 0.053 26 0.110 31 0.155 28 0.200 39

128 0.092 81 0.179 54 0.285 61 0.366 63
256 0.164 59 0.326 48 0.479 85 0.638 66
512 0.317 39 0.645 23 0.886 68 1.196 43

1024 0.597 58 1.174 18 1.771 13 2.384 26

(b) Standard deviation across different swarm sizes and iteration numbers

Swarm size 20 iterations 40 iterations 60 iterations 80 iterations
64 0.007 79 0.019 47 0.018 69 0.020 26

128 0.006 76 0.021 88 0.051 68 0.050 59
256 0.012 77 0.037 21 0.042 22 0.053 35
512 0.027 81 0.098 74 0.024 96 0.053 22

1024 0.026 02 0.008 37 0.042 31 0.100 32

initial velocity of 80 km h−1 and final velocity of 20 km h−1 with 100 %, given by a total of 20 simulation runs.
For the generated results the PSO algorithm was used having a swarm size of 512 particles and 20 iterations of
the algorithm was used.
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Figure 4.3: Benchmark of the two optimization algorithms on how well they perform on a given specific scenario
with only 20 iterations left for the optimization. The population and swarm sizes were varied in the range from
64 to 1024 with a power of two in between. A statistical average was taken of 20 independant simulations for
each populaiton and swarm size.
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Figure 4.4: Characteristics of a succesfully aborted lane change where the vehicle starts breaking when the target
lane is entered. The initial velocities of both vehicle and LCV was set to 80 km h−1, and the final velocity of the
vehicle was decellerated down to 30 km h−1. The lane change was initiated with a temporal headway of 0.5 s.
The figure displays the longitudinal velocity (top left), longitudinal acceleration (top right), steering wheel angle
(bottom left) and lateral accelerations on the first and last axle (right).
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5
Discussion

The initial process of the thesis was to implement functionality to an existing framework in form of parallel
processing. OpenCL was used and allowed for the opportunity to run the simulations both on the CPU and
GPU hardware without any difficulty or necessity to rewrite any of the existing OpenCL code. The open
standard is well documented and easy to use since it is very similar to the C/C++ language.

The lane change scenario with optimized parameters managed to solve up to nine cases more than previously
possible when having static driver model parameters. An interesting observation was that the GA and PSO
had different success rates at different cases. Most of the cases had 100%, or very close to 100%, success rates.
Thus the stability of the solutions seem to be working well enough, however in order to implement this in a
real production vehicle it would need to be evaluated more extensively with more simulations and different
scenarios. Since the predictions assumed a constant velocity at each time step, there is an introduced mismatch.
With the lack of information about the acceleration, the framework is thus tricked into trying to complete a
lane change, even if it is dangerous and it should abort earlier. Each time step the vehicle in front will be closer
than previously predicted and thus most likely another optimization will be required for that case. Because of
the problem being continuous the PSO in this case shows small tendencies to being advantageous between the
iterations since all but one scenario where the solution was found a success rate of 100% was achieved. The GA
on the other hand managed to find solutions in more cases, but less frequent than the PSO.

The reason behind this difference might be seen in the way how both algorithms work. The PSO in essence
follows a swarm that is occupying the search space and thus more likely to follow in the direction towards the
best particle. With the problem being continuous, and a mismatch is introduced, it would be possible that the
best solution is therefore shifted only a little bit between the iterations and the PSO needs only to make a little
change to account for the mismatch. The GA on the other hand works in a bit more of a stochastic way, since
crossovers and mutations of the chromosomes can have drastic effects in to the decoded search space. Thus, it
cannot utilize the search direction effectiveness of the PSO and perhaps that is why it is not always able to
find solutions and fails more frequently. The whole process could be seen as walking on a narrow beam. The
solution is only found along the thin path, and everywhere else it is invalid. Thus the PSO is advantageous
given its information about the search direction while the GA is jumping around in a more random manner.

The run times indicate that the PSO implementation was marginally faster than the GA. The reason behind
this is that the PSO has the positions encoded already and acted upon during the updating process, whereas
the GA needs to decoded each chromosome into the search space, and then later on update the population by
looping through each allele of the chromosome. Thus by lowering the number of genes for each variable the
speed for the GA should increase, but the resolution of the search space is thus lowered in return.

The run times per se showed that they only favored the GPU at high numbers of population and swarm sizes.
This is to be expected since the GPU was designed to have a parallel architecture. What it does lack though is
the flexibility of the CPU and is therefore not as fast in the lower numbers. What limits the GPU in this case
is the amounts of data transfer needed for the algorithms. Sending the data to the GPU memory buffer takes
time and is a bottle neck in this case. The difference of changing from 64 to 128 particles or individuals is
barely visible in the timing results for the GPU. The run time for the CPU is affected almost twice by the
same change.

With the given problem at hand, it was from the start hinting that the GPU would have a hard time keeping
up with the CPU if one would compare the threads with each other on an individual level, since a single CPU
thread is clearly more powerful than a single GPU thread. The part of the framework that was ported to
OpenCL was the entire time horizon prediction, which included multiple integrations of the complex non-linear
vehicle model, but also a number of non-linear constraint checks. In essence, the code that ran through OpenCL
was not broken down in smaller pieces, because of it being impractical, but actually ran in whole as it was
running previously in the non-modified framework. What this means for the GPU, is that each thread was
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given a large complex task to complete, compared to what GPUs usually are meant to do. In general each
thread should handle an easy and small task instead of the given rather large and complex task.

Ideally it would be best to break down the problem into multiple pieces that exhibited linear properties, so
that it would be possible to perform parallel computation in a form of matrix multiplication at the lower levels,
instead of the higher levels as it currently has been implemented. However, as the problem is formulated now,
it is not possible to do so because of the non-linear properties. Therefore the most straight forward solution was
to implement the parallel computation on a higher level, with the down side of having a rather complex task.

If it is envisioned to have a real time system with an update frequence of 10− 20 Hz, and provided with the
current hardware of the system, the CPU shows tendencies to be the better choice for this problem. Even
though its parallel capabilities are less than of the GPU, the CPU has the strength and speed to overtake
the power of the GPU. What should be noted in this specific case is that the implemented OpenCL code is a
rewritten version of normal code that usually runs on the CPU. This means that the GPU is not being used
in the conventional way of performing a large number of repeated tasks, but instead is solving a larger task
that is often suitable to be run on a CPU, with conditionals statements and integrations etc. Currently the
optimization is performed on either CPU or GPU, meaning that while the CPU or GPU is running, the other is
waiting. To increase effectivity a proposed improvement is to interface both CPU and GPU in order to utilize
most of the resources at hand.

It should be noted that the computational system used for the evaluation of the optimization did not use
state-of-the-art hardware. Therefore, by upgrading both CPU and GPU hardware, it should be possible to
decrease the run times even further. It may be argued that the advancement of CPU technology has stagnated
a bit, but a new generation of GPUs are on the rise. With the coming years bringing newer and better GPUs,
the importance of GPU programming will probably become of higher importance and by then this problem
might be more suitable for the GPU.

GAs and PSOs are generally known to work well with a limited population and swarm size, and instead
using a higher number of generation or iterations. From a real time perspective this is not suitable since each
iteration step depends on the other, the population and swarm size on the other hand benefits from the parallel
properties. From the run time table it is visible that real time possibilities are achievable with at least 20
iterations. From the specific lane change scenario the effect of lowering the iteration steps but varying the
population and swarm sizes. The PSO performed better with 64 particles at 20 iterations with 30% success rate
than it did for 128 particles at 80 iterations. Whereas the GA reached 70% success rate with 512 individuals,
which is a slight decrease in performance from the previous 80% with 128 individuals and 80 generations. This
shows tendencies that it is possible to reach valid solutions with lower iteration steps and thus achieve a real
time feasible implementation.

As it was stated in the results, including also surrounding vehicle accelerations, the introduced mismatch to the
framework is removed and the system is given the best case scenario to work with. With this information the
framework immediately predicts that the vehicle in front is decelerating, and assuming it will come to a full
stop, it realizes that it cannot complete the lane change. Therefore it initiates the lane change abort maneuver.
However, estimating acceleration of other moving vehicles is not always an easy task and it gives rise to very
noisy data. Using at least any information regarding the acceleration should give rise to better performance of
the framework in general.
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6
Conclusions

The effect of optimizing driver model parameters has been studied in this thesis using an existing framework
for automated driving. The framework uses a driver model for the navigation of a LCV in order to achieve
high driver acceptance behaviour. In order to research of the effect of changing driver model parameters, an
optimization scheme has been proposed and implemented in the existing framework. The underlying methods
for the optimization consisted of biologically inspired algorithms such as the well-known GA and PSO. The
algorithms were implemented and used due to their simple form, but also highly parallel nature. It was
envisioned that exploiting the parallel nature of the algorithms, the optimization would be suitable for real-time
applications.

In addition, the programming framework OpenCL was used in order to efficiently implement the parallel
optimization. Using OpenCL, it was possible to execute the code on either GPU or CPU hardware, without
any modification of the code. This property made it easy to perform a comparison of performance for both
hardwares. However, in order for this to work a large part of the existing automated driving framework needed
to be rewritten and implemented in the OpenCL standard. This included implementing the integration for the
LCV and surrounding vehicle in the closed-loop prediction horizon.

The parameters for the longitudinal and lateral driver models were used as variables for the two algorithms.
The GA encoded its chromosomes with values for each parameter, whereas the PSO used the spatial position
of its particles to encode the variables. Each particle, or individual, was evaluated under a prediction horizon,
where a performance value was obtained. Implementing the update rules for each algorithm and iterating a
fixed number of steps, convergence to a set of feasible parameters could be achieved for both algorithms.

Evaluation of the proposed optimization scheme was done by comparing results from a previous study where
the driver model parameters were fixed. The scenario consisted of a lane change with a breaking lead vehicle.
By altering the initial temporal headway and initial and final velocities between the LCV and the leading
vehicle, dangerous situations could arise which the previous framework could not handle.

Optimization of driver model parameters showed that for the same given dangerous scenario it successfully
aborted or completed the maneuvers within the safety limits. The framework managed to safely perform
most of the scenarios except when the initial velocites were 60 km h−1 to 80 km h−1 and the final velocity was
20 km h−1 but also when the initial velocities were 70 km h−1 to 80 km h−1 and the final velocity was 20 km h−1.
Comparing to the previous framework with static driver model parameters, this was clearly an improvement.

Even though using a stochastic optimization approach, the cases where the algorithms did succeed to find
solutions was very seldom far away from 100%. However, in order for this to be used in practice, the convergence
assurance needs to be investigated further. If the automated driving framework were to include any form of
estimated acceleration of surrounding traffic, should improve the performance of the framework and allow it to
react to certain events just in time before it is too late.

With the parallel optimization approach it was visible that the number of iterations was the key factor affecting
the run-time since it could not be done in parallel. The results hinted that by lowering the number of iteration
steps for the algorithm, a real-time implementation lies within the limits given the current implementation.
However, it would be preferred to use upgraded hardware and optimization of the code in order to bring the
run-times to a possibility of a real time feasible implementation.
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