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Abstract
A hybrid zone is a spatial area in which two genetically and phenotypically different
populations of the same species (so called divergent ecotypes) meet and produce
viable and fertile offspring. Hybrid zones are commonly observed in nature. Exam-
ples include hybrid zones found in the sea snail Littorina saxatilis on the Swedish
West coast. This species has formed two divergent ecotypes (a crab-exposed and a
wave-exposed one) as a response to the adaptation to the local environmental con-
ditions, primarily the presence and absence of crabs, respectively. However, other
environmental conditions, such as the presence of additional species’ interactions
in a given ecosystem, may have contributed to the formation and maintenance of
the hybrid zones observed. The spatial positions of the environmental transitions
corresponding to different environmental factors may or may not coincide with each
other. Yet, most theoretical studies on hybrid zones assume only a single environ-
mental transition in the habitat in question (Gay et al. 2008; but see Slatkin, 1975).
These studies have shown that allele frequencies at the locus under selection ex-
hibit a sigmoid-like function of the spatial position in the habitat (so called genetic
clines). However, when analyzing empirical data, it is of crucial interest to answer:
Is the hybrid zone in question subject to multiple, spatially separated, environmental
transitions? To answer this question, it is necessary to understand how the pres-
ence of multiple environmental transitions is reflected in spatial patterns of genetic
variation at the loci under selection. Slatkin (1975) considered a model with two
environmental transitions, assuming that two loci are under the selection pressures
imposed by these environmental changes. His main finding concerns the relationship
between the average cline centres at the two loci under selection in dependence of
the recombination rate between the loci, and the distance between the two environ-
mental transitions. However, these results are insufficient to answer under which
conditions it becomes possible to detect multiple environmental transitions in the
habitat based on empirical genetic data on allele frequencies. To answer this ques-
tion it is necessary to estimate the probability distributions of the cline centers at
the two loci, and the corresponding mixture distribution. Notably, in the case of
a single environmental transition the distribution of cline centers is unimodal. By
contrast, and as shown in this thesis, in the case of two environmental transitions
the resulting mixture distribution may be bimodal. A bimodal mixture distribution
is a direct indicator of the existence of two environmental changes. Using a test of
bimodality, I estimate the critical value of the distance between the two environmen-
tal transitions above which a bimodal pattern of the mixture distribution of cline
centres emerges. These results can be further improved by assessing the patterns
of neutral loci linked to the loci under selection, and the bias these may introduce
when inferring the presence of multiple environmental transitions in the hybrid zone
in question.

Keywords: cline, Littorina saxatilis, hybrid zone, genetic drift, bimodality.
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1
Introduction

Speciation is the separation process of one species into two or more distinct species
(Howard & Berlocher, 1998). Speciation can occur in many different ways. Exam-
ples include two populations of one species becoming geographically separated, or a
subset within a population developing some special adaptation to its environment.
An important goal when studying speciation is to fully understand how new species
form and how they are maintained. Also important is to understand why sometimes
new species do not form, even though many necessary prefactors are present.
There are two common definitions of what a species is (Barton & Hewitt, 1985).
They both originate in the definition that species are “groups of actually or poten-
tially interbreeding natural populations which are reproductively isolated from other
such groups” (Mayr, 1942). The controversy lies in the definition of “reproductively
isolated”. One definition of reproductively isolated is based on the amount of gene
flowi; if the gene flow between two groups of one species is limited so that the two
groups do not fuse together into one, then the two groups are reproductively isolated
(Mayr, 1982). Another definition is that if two groups are reproductively isolated,
then no fertile offspring can be formed by individuals of the two groups (Key, 1981).
The latter definition will be used in this Master’s Thesis. The primary reason for
this is that this definition is less ambiguous than the definition based on gene flow.
From the definition of a species above, one species has become two when the gene
flow between two groups is completely gone and impossible to reestablish. The study
of the state where gene flow is low could therefore inform about what is necessary for
a new species to form. When gene flow between two groups is low the two groups
could belong to different variations, genotypes, of the same species. The zones
in which different genotypes of the same species meet and produce offspring are
known as hybrid zones (Barton & Hewitt, 1989). Hybrid zones are found for many
species, for example Bombina bombina (Szymura & Farana, 1978), Campylorhynchus
rufinucha (Selander, 1964) and Littorina saxatilis (Janson, 1983). L. saxatilis is the
inspirational species for this Master’s Thesis.
Littorina saxatilis is a marine snail species that resides in the coastal areas near
Gothenburg. They also reside in Greenland, Spain and the UK among other places
(World Register of Marine Species, 2017). This species has been used as an exam-
ple species in various studies of hybrid zones, both in simulation and in the field
(Janson, 1983; Panova, Hollander, & Johannesson, 2006). What makes L. saxatilis

iGene flow refers to the long-time dispersal of genes.
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1. Introduction

interesting is that it resides almost exclusively where water meets land (Janson,
1983). This makes the effective habitat nearly one dimensional. In some places,
for example near Gothenburg, the frequencies of some allelesii found in L. saxatilis
exhibit clineiii patterns along some coastal areas where the snail resides in a hybrid
zone (Johannesson, Rolan-Alvarez, & Ekendahl, 1995).

Figure 1.1: L. saxatilis can have different sizes depending on whether it lives
among rocks or on a cliff. This is due to differences in natural selection in these
different environments (Janson, 1983).

One concrete example of a cline that is formed is the one concerning the size of the
snail (Janson, 1982). Individuals of L. saxatilis tend to have thicker shells, larger
overall size and smaller aperture if they live among rocks. The contrary is true for
individuals living on cliffs (Wilding, Butlin, & Grahame, 2001). When living on a
cliff a smaller snail has a bigger chance of withstanding waves, while among rocks
a bigger snail has a bigger chance of surviving a crab attack. See figure 1.1 for a
schematic description. This thesis uses this species as a model to study the clines
occuring through this habitat, using one locusiv in the genome for a trait under
selection. While in reality there is generally more than one locus responsible for
each biological trait of a species (Wilding et al., 2001), I make a simplification in
this thesis and assume that only one locus underlies each biological trait of interest.
The clines observed in various species in nature are studied and explained by Barton

iiAn allele is a variation of a gene.
iiiA cline is defined as “a gradient of morphological or physiological change in a group of related

organisms usually along a line of environmental or geographic transition” (MerriamWebster Online,
2017).

ivA locus (loci in plural) is a location on a chromosome.
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1. Introduction

and Hewitt (Barton & Hewitt, 1985). A typical cline shape can be seen in figure
1.2. In this figure, the mean allele frequencies of an allele, denoted by A, have been
plotted as a function of distance from a given reference point in the habitat, averaged
over time. The individuals of L. saxatilis are modelled as diploidv, which they are
in reality. In the simulations resulting in this figure they contain only information
about one locus, denoted A, which can contain one of the two alleles denoted a and
A. The cline in that figure is the result of a balance between divergent selection and
dispersal. A cline can also be formed due to selection against hybrids (Barton &
Hewitt, 1985). The hybrid zones resulting from the clines formed due to selection
against hybrids are also known as tension zones (Gay, Crochet, Bell, & Lenormand,
2008), and will not be considered in this thesis.
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Figure 1.2: A typical cline shape. This cline is the result of a balance between
dispersal of individuals and selection. In the model, an individual can have alleles
A and a. It is assumed that selection favors allele A on the right side of deme 75,
but favors a on the left side. Each deme contains 100 individuals and there are 150
demes in total. Further information about the model can be found in Appendix A.2.

The main aim of this Master’s Thesis is to study how one can determine from the
genome data of a species whether there is one environmental transition, or if there
is in fact two or more environmental transitions. In the example described above
there is only one environmental transition; the one between a cliffy environment
and a rocky environment. Most studies have been carried out on models with one
environmental transition. In reality, there could be a number of such transitions.
These could be related to different kinds of changes in environment such as the
absence or presence of predators, chemicals, other animals etc.
I carried out the simulations in this thesis using parameters that are reasonably
close to those of Littorina saxatilis. I obtained the reasonable parameter values

vDiploidy means that each individual carries two copies of each chromosome.
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1. Introduction

from Roger Butlin and Kerstin Johannesson (personal communication, 2017), and
they were in line with the ones suggested by Johannesson (Johannesson et al., 2010).
Simulations of the same kind as in this Master’s Thesis were first studied by Slatkin
(Slatkin, 1973, 1975). I repeated and improved some of Slatkin’s results. This
was possible primarily due to the large difference in computational power between
2017 and 1973-1975. However, the most important discovery in this Master’s Thesis
concerns the distributions of the cline centers when two loci are under selection.
If the mixture distribution of the two distributions corresponding to the centers
of the clines of the two traits is bimodal, then one can infer that there exist two
environmental transitions.
In the next chapter, the models I created are presented. The details are discussed
and motivated. Also, I discuss the methods and tests that I apply to the models.
In the Results chapter, plots of the results from the simulations are shown. In
the Discussion and Conclusion chapter, the main conclusions from this thesis are
presented.

4



2
Methods and Models

In this chapter, I present the models that I used. First, a model with only one locus
under selection was used. This model was later generalized to account for multiple
loci, with multiple environmental transitions. Although my model can handle a
large number of loci and environmental transitions, I only went so far as to consider
two loci. This is mostly due to the complexity of introducing even more loci.
The model with only one locus served as a verification that my modelling was
correct. It also gave me understanding of the modelling, and helped me prepare for
the development of the main model handling two loci.

2.1 Description of the model

This study concerns an implementation of a hybrid zone model, with a balance
between dispersal and selection due to a discrete change in the environment. I will
continuously refer to the species under consideration as L. saxatilis. This species
was the inspirational species for this thesis.
I start by assuming that L. saxatilis lives in discrete patches, called demes, on a line.
The demes are labelled by numbers from 1 to K as in figure 2.1.

1 2 3 4 ... K

Figure 2.1: The K demes of the
model.

In every deme, there exists in each generation
N individuals. In almost all implementations in
this Master’s Thesis, I use K = 150 and N =
100. This value ofN is derived from the observed
number individuals being between 100 and 1000
individuals per square meter (Johannesson et al.,
2010). The distance between every deme is assumed to be one meter. The individ-
uals are diploid. I assume that there are two abrupt changes in environment (the
model with only one change in environment is discussed in Appendix A.2). An
abrupt change could be, for example, a transition between an environment with
small rocks and an environment with large cliffs. I assume that for each such envi-
ronmental transition, there is one locus under selection that alone underlies the trait
relevant for that transition. This locus will have one allele that is advantageous on
one side of the transition, and another allele that is advantageous on the other side.
The loci under selection are denoted A and B, and can have alleles a or A and

5



2. Methods and Models

a B

A B

Table 2.1: An example of two chromosomes in a diploid individual. In this thesis,
each individual carries two copies of one chromosome that has length two (or length
one in the one-locus case).

aa aA AA
x < ZA/2 1 1− sA (1− sA)2

x ≥ ZA/2 (1− sA)2 1− sA 1

Table 2.2: Fitness values of individuals with the corresponding alleles.

b or B respectively. A diploid individual, then, could for example consist of the
chromosomes as in table 2.1.
In the simpler case that was studied first, locus B was neglected so that only locus
A was assumed to be under selection.
I assume that the life cycle of L. saxatilis consists of 2 phases:

1. Migration. I assume that the N individuals in every deme move independently
on the one-dimensional line that they inhabit. The number of steps is drawn
from a normal distribution with standard deviation σD and mean 0 (rounded to
nearest integer since the demes are discrete). Typically, σD = 3 was used. The
value suggested by Johannesson for L. saxatilis was 2 < σD < 10 (Johannesson
et al., 2010). If the movement exceeds the boundariesi, the individual stays
at the boundary. These type of boundaries I will call absorbing boundaries.
All individuals are assumed to survive dispersal, and also there are no genetic
differences in the dispersal patterns.

2. Breeding. In every deme a fitness value is calculated for each individual, which
will determine the probability for that individual to generate offspring. The
fitnesses are according to Table 2.2 for locus A. The same respective table is
used for locus B if we consider two loci, with a potentially different selection
parameter sB. ZA and ZB are the values on the x-axis where the environmental
transitions take place for lociA and B respectively. Using the multiplied fitness
values of loci A and B as weights, the individuals are sampled randomly with
replacement to breed. The child receives one chromosome from the mother
and one from the father. I assume that recombination (defined below) takes
place with probability r per gamete.

The favored genotypes for different regions can be found in table 2.3. The size of the
spatial distance (Za−Zb) between the environmental changes ZA and ZB is denoted
as 2Z0. This is centered around x = 0, so that ZA = −Z0 and ZB = Z0. When only
one locus is assumed to be under selection, I use ZA = K

2 .

iThe boundaries occur at deme 1 and deme K, migration outside these limits is not allowed.
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2. Methods and Models

Region x < ZA ZA ≤ x < ZB ZB ≤ x
Favored genotype ab Ab AB

Table 2.3: Favored genotype as a function of x.

2.1.1 Recombination

In the breeding phase, an offspring receives one chromosome from the mother and
one from the father. It could be that the chromosome the child receives from its
mother (or father) is exactly the same as one of the chromosomes that parent had
originally. However, this need not be the case if recombination occurs.
Recombination occurs with probability r per gamete. Say, for example, that a
mother has genotype ab|AB. If r = 0, then one of these chromosomes, ab or AB,
is simply selected randomly to be carried over to the child. But if r > 0, there is a
probability r that we select the first allele from one chromosome and the second allele
from the other chromosome (or the other way around). Say that we start copying
from the second chromosome (in the simulations, there is a 50% chance that we
start copying from either chromosome). We then have a 1 − r chance to take also
the second allele from that chromosome, leaving us with AB to be carried over to
the child. However, there is a chance equal to r that we instead take the second
allele from the first chromosome, resulting in Ab being inherited by the offspring.
In reality, r depends greatly on the physical distance between the loci. There could
be a number of neutral lociii between the ones under selection. Since I consider at
most two loci under selection in this thesis, r will serve as a way to artificially set
a distance between the loci under selection on the chromosome without having to
include the neutral loci that would lie in between in the model.

2.1.2 Mutation

Mutation occurs on each allele individually with probability µ, with µ � 1. This
takes place after breeding. The total number of alleles mutation can act on is

2 · 2NK, (2.1)

where the first 2 comes from the diploidy of the individuals and the second 2 is
the number of loci under consideration per individual. This means that the total
number of mutations per generation can be drawn from a Poisson distribution with
parameter 4NKµ.
Mutation acts by changing one random allele from all the alleles in the habitat into
the other possible allele for that locus. That is, if a random allele A is picked it is
changed to a, and vice versa (or B would be changed into b and vice versa).
Mutation is necessary in this model, because without it we could reach extinction
of an allele.

iiNeutral loci are loci that are not under direct selection.

7



2. Methods and Models

2.1.3 Genetic drift

Genetic driftiii is implicitly included in the breeding phase since the parents gener-
ating offspring are drawn with replacement. Some previous studies have included
genetic drift (Polechova & Barton, 2011; Durrett, Buttel, & Harrison, 2000) and
others have not (Slatkin, 1973, 1975). In my Master’s Thesis the inclusion of geneic
drift is a desired attribute. This is mostly because of the discreteness of the model;
it is impossible to know beforehand the total allele counts at the steady state of the
model. So in order for the steady state to be more like the actual steady state one
would observe in nature given the parameters, genetic drift is required.

2.2 Measurements

In this section, the measurements applied to the model are introduced. Most mea-
surements were made every tenth generation during each simulation. The genera-
tions in which measures were made will be referred to as sample generations.

2.2.1 Width of a cline

When considering one locus, an important measurement is the width of a cline.
The width is defined as one over the maximum slope of a cline. This is equal to
(Polechova & Barton, 2011)

w = 4
∑

i∈Demes
piqi, (2.2)

where pi is the frequency of allele A in deme i and qi is the frequency of allele a
(which is 1− pi).
The average width of a cline will be denoted ¯w(p) and the width of the average
clineiv will be denoted w(p̄). These will, in general, be slightly different.

2.2.2 Cline fitting

I used curve fitting tools to fit cline shapes to simulated allele frequencies. The cline
shapes were assumed to take one of four forms:

1. a sigmoid shape,
2. a sigmoid shape with the right tail transitioning into an exponential decay,
3. a sigmoid shape with the left tail transitioning into an exponential decay,
4. a sigmoid shape with both tails transitioning into exponential decays (Szymura

& Barton, 1986).
iiiGenetic drift is the change over time in the allele frequencies due to random sampling. Random

sampling will over long time promote some alleles and depress others by chance.
ivThe average cline refers to the average allele frequencies over time.
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Figure 2.2: Example fit of a sigmoid function to some allele frequencies. The blue
line are some simulated allele frequencies and the green line is the fit.

The actual theoretical shape of a cline is a tanh shape as derived in Appendix A.1. A
sigmoid shape was used for fitting since it includes fewer parameters, and thereby is
easier to fit. These two shapes are approximately the same (Guedj & Guillot, 2011).
The fits were made either to the allele frequencies at a given generation, or to the
temporal average of allele frequencies. An example fit to some allele frequencies can
be seen in figure 2.2.

2.2.3 Linkage Disequilibrium

Linkage disequilibrium (LD) is the “nonrandom association of alleles at two or more
loci” (Slatkin, 2008).
A measure of LD between two loci, denoted A and B below, that can have alleles a
or A and b or B respectively, can be mathematically defined as

D = pAB − pApB, (2.3)

where pAB is the frequency of chromosomes that have both allele A in A and allele
B in B. pA is the frequency of allele A and pB is the frequency of allele B. It holds
that pA + pB = 1 and pab + pAb + paB + pAB = 1.
The measure of LD, D, in equation (2.3) can be calculated in every deme. Assuming
there are multiple demes, which is the case in this Master’s Thesis, and under the
assumption that s� r, we have

D(z) = σ2

r

dpA
dx

∣∣∣∣∣
x=z

dpB
dx

∣∣∣∣∣
x=z

. (2.4)

at deme z (Barton, 1986).
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2. Methods and Models

There are multiple ways of calculating dpA

dx
(and dpB

dx
). One way is to calculate it

directly from the average allele frequencies, as done by Durrett, Buttel and Harrison
(Durrett et al., 2000). This method, however, is subject to large fluctuations. A
more robust way to calculate the derivatives is to first fit a cline shape to the average
allele frequencies, and then after that to take the derivative.
The maximum LD occurs when recombination between two loci is r = 0, since with
no recombination there is maximal association between the two loci. Assume that
these two loci are under selection with an environmental transition at the same place
ZA = ZB. In the steady state at the transition, one will find that

pA = pB = 0.5 (2.5)

and

pAB = 0.5. (2.6)

This steady state will always be reached since the model includes mutation. Muta-
tion ensures that fixation is not a steady state. In the steady state that is reached,
one can see from equation (2.3) that

D = pAB − pApB = 0.25. (2.7)

2.2.4 Bimodality

As mentioned in the introduction, the bimodality in the mixture distribution of
cline centers of two loci under selection is crucial since it could reveal that the
corresponding environmental transitions occur at different places.
Bimodality of a distribution is easily estimated qualitatively by looking at a dis-
tribution; if it has two tops then it is bimodal. For the purpose of this Master’s
Thesis, a quantitative measure will be used instead. Using a quantitative measure,
it is easier to estimate the level of bimodality.
The method used here is taken from Schilling et al. (Schilling, Watkins, & Watkins,
2002). It assumes that the possibly bimodal distribution consists of a mixture of
two normal distributions and that one has information about the sample means
and sample variances of these two distributions. Assume that µ1 and µ2 are the
means and σ1 and σ2 are the corresponding standard deviations of the two normal
distributions. Assume also that µ1 < µ2. Define the separation factor, S(R), as

S(R) =

√
−2 + 3R + 3R2 − 2R3 + 2(1−R +R2) 3

2
√
R(1 +

√
R)

, (2.8)

where

10



2. Methods and Models

R ≡ σ2
1
σ2

2
. (2.9)

Then, the mixed distribution is bimodal if and only if

µ2 − µ1

σ2 + σ1
> S(R). (2.10)

(Schilling et al., 2002).
Note that if σ1 = σ2 then S(R) = 1. In this case the means have to be separated by
exactly two standard deviations for the distribution to be bimodal.
In the next chapter I present results obtained using the model and the methods
explained in this chapter.

11
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3
Results

In this chapter, the results from the simulations are presented. The results from
the case with two loci under selection are presented here. For the results concerning
only one locus, refer to Appendix A.2.

3.1 Linkage Disequilibrium

The Linkage Disequilibrium (LD) as a function of r can be seen in figure 3.1a. In
figure 3.1b the LD has been compared to the theoretical value calculated according
to Barton (1986), as stated in equation (2.4). In these plots, the environmental
transitions take place at the same location ZA = ZB.
The LD reaches its maximum around the environmental change. When there is no
recombination, the maximum LD is 0.25. The deviation from 0.25 in the plot is due
to the following:

1. genetic drift,
2. the discreteness of the model; LD cannot be measured exactly on the envi-

ronmental change which effectively takes place in between deme ZA and deme
ZA − 1,

3. mutation occurs just before calculations of D, meaning that it sometimes will
affect the demes closest to ZA and thereby decrease the average LD.

Since the environmental change is between deme 74 and 75, we cannot get closer
than 0.5 to where the maximum should actually be. The theoretical values seem
to agree with simulations except near the environmental change, where the theory
greatly overestimates the LD. The theory is expected to work when s� r (Barton,
1986), which is not the case here since r = 0.2 and 0.5 and we have s = 0.1.

13



3. Results
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Figure 3.1: Linkage disequilibrium over the habitat for different values of r ob-
tained from the simulations. Panel (a) shows a comparison between results using
different values of the recombination rate r. Panel (b) shows the simulated values as
dots in comparison with equation (2.4). The same selection parameter sA = sB = 0.1
is used for both loci. The dispersal distance is σD = 3 and Z0 = 0.

Instead of using equation (2.4) to calculate D directly on the allele frequencies, an
attempt was made to fit a cline to the frequencies and use this fit to calculate df(A)

dx

and df(B)
dx

. Some plots of this can be seen in figure 3.2. We see that using a fit cline
gives a better agreement with simulations. Theory agrees better overall here since
we use s = 0.01, fulfilling the requirement of s� r.
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Figure 3.2: Linkage Disequilibium. The plots to the right have used a fit cline
to calculate df(A)

dx
and df(B)

dx
, while the plots on the left have used the mean allele

frequencies directly. These simulations have been run for 50000 generations and
sA = sB = 0.01 was the value of the selection parameter. Z0 = 0. The dots are
the average values of D calculated and the lines are the theoretical expectations.
Remaining parameter values are listed on top of each panel.

Figure 3.3 shows an example of two fitted clines and their corresponding LD plot.
The green line, which is the fit, agrees well with the average allele frequencies.
Interestingly, unlike in cases where the two environmental transitions coincide, as in
figures 3.1b and 3.2, in figure 3.3 we see that the LD exhibits a wide peak. This is
an indication of the exsistance of multiple environmental transitions.
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Figure 3.3: An example of two fitted clines (green lines) and the corresponding
LD plot. sA = sB = 0.01 and Z0 = 10.

In figure 3.4, the cline width w is plotted as a function of r. The environmental
change occurs at the same location for both loci. B is more weakly selected for
than A, and the cline of the B locus is drawn towards that of A as recombination
decreases. This is due to the effect of indirect selection on the B locus as a results
of the selection on the A locus. This was also observed by Slatkin (1975).
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Figure 3.4: w as a function of r. For every value of r, the simulation ran for
50000 generations and every 10th generation has been used for averaging. The B
trait is more weakly selected for, sB = 0.01 compared to sA = 0.1. σD = 3. The
theoretical values of w, assuming only one locus is under selection, are 16.4 and 52.0
respectively.

In figure 3.5 we see that if the distance is too large between the environmental
changes for the two traits, then linkage has no appearant effect on the locations of
the clines even with r = 0. This was also a result of Slatkin, where the conclusion
was that for σ/

√
s < 2Z0, linkage will have a smaller effect and eventually no effect

at all. By contrast, when Z0 is sufficiently small the clines will be pulled together.
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Figure 3.5: Clines resulting from using different values of the distance 2Z0 between
the environmental changes. The values of the frequencies have been averaged over
10000 iterations. Thick dots represent the mean of the frequencies of one of the
alleles in each locus. Solid lines represent the theoretical cline shape as in the one-
locus model. Dashed lines represent one snapshot of the frequencies, taken at the
last iteration of the realization. In the left panel, Z0 = 5. In the right panel, Z0 = 10.
σ/
√
s = 9.49 in this case, so the behavior is as expected since this is less than 2Z0

in the left panel but larger by a big margin in the right panel.

In figure 3.6 are shown the resulting clines from simulation using different values
of the selection parameter for each locus. We can see that for higher values of r,
the shapes and locations of the clines are less correlated. Observe also that it is
the cline of the trait with weaker selection that is drawn to the cline of stronger
selection when recombination is low. The weaker cline gets a distorted shape, and
a two-tailed sigmod gives the best fit to this curve.

3.2 Midpoint of the clines

The midpoint of a cline for an allele B is defined (in this thesis) as the point on the
x-axis for which the frequency of allele B, f(B), is equal to 0.5. To estimate this,
I fit cline shapes to the allele frequencies for several time-points and extract the
midpoint data from these fits. This I found to be a more accurate way of finding the
midpoint, rather than directly trying to estimate it based on the allele frequencies
for every sample generation. An example fit can be seen in figure 2.2 for a cline with
no tails and another example in figure 3.7 for a cline with tails at both ends.
In figure 3.8 are shown the midpoints in the x-axis, denoted Z0.5, of clines as a func-
tion of r for some different values of Z0. Again, the effect of linkage is greatest for
σ/
√
s ≈ 2Z0. This is in agreement with Slatkin (1975). However, the plot in sub-

figure 3.8b does not fully agree with the results of Slatkin in the limit of r → 0. In
the results of Slatkin, the clines were joined in the middle between the two environ-
mental transitions. This does not agree either with his other results or my results;
that the cline corresponding to the locus under stronger selection pressure will pull
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(a) r = 0.50.
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(b) r = 0.05.
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(c) r = 0.01.
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(d) r = 0.

Figure 3.6: Thick dots represent the mean of the frequencies of one of the alleles in
each locus. Solid lines represent the theoretical cline shape as in the one-locus model.
Dashed lines represent one snapshot of the frequencies, taken at the last iteration
of the realization. The cline corresponding to the trait more weakly selected for
is pulled more than the other cline for decreasing r. Simulation generating these
plots have run for 20000 generations, and every 10th generation have been used for
averaging. sA = 0.1 and sB = 0.01. Z0 = 0. The value of r is given below each
panel.

more than the one corresponding to the locus under weaker selection pressure. This
could be because Slatkin did not include drift in his model.
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Figure 3.7: An example fit for a cline with tails at both ends.

3.3 Critical value of r

The critical value of r, rcrit, is defined as the lowest value of r for which Z0 is within
the 95% CI of the estimated midpoint of the cline for allele B. In other words,
for r < rcrit, the environmental transition for locus is outside of the 95% CI of the
midpoint of the cline for allele B.
A heat map of rcrit can be seen in figure 3.9. One can see that the critical value of
r increases for increasing sB, and decreases for decreasing Z0. This was expected;
decreasing Z0 means that the pulling together of the clines does not need to be as
strong in order to join them together since they are close even without recombination.
Also, increasing sB means that the pulling together of the clines will be stronger
since there is more overall selection pressure.

3.4 Bimodality in distribution of centers

When the two environmental changes occur close to each other, the cline centers are
pulled together. This is supposed to happen for low values of r (Slatkin, 1975). I
plotted the distributions of the estimations for the centers of the clines along with
their mixture distribution. This can be seen in figures 3.10 and 3.11. Above certain
critical values of Z0, the resulting mixture distribution is bimodal. This critical
value of Z0, which I will call Zcrit, depends on sA, sB and r. Plots visualizing this
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(b) sA = 0.1, sB = 0.01.
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Figure 3.8: Midpoints of the clines as a function of r for different values of Z0.
The dotted lines are the 95% confidence intervals of the midpoints. These data have
been averaged over 5000 sample generations, with a space of 10 generations between
each sample. In the plots to the left, sA = 0.1 and sB = 0.01. In the plots to the
right, sA = sB = 0.1. The environmental changes occur 2Z0 from each other. The
values of Z0 can be found to the right of each panel.

can be found in figures 3.12, 3.13 and 3.14. Values of Zcrit obtained for various
parameter combinations can be found in table 3.1. The general trend is clear; Zcrit
increases for decreasing s, and it increases for decreasing r.
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Figure 3.9: rcrit for different values of sB and z0. sA = 0.1 in these simulations.
The values of rcrit are color coded (see the color bar). Simulation time for every
data point used to generate this figure was 50000 generations.

r = 0.5 r = 0.05 r = 0.005
sA = sB = 0.1 1 2 4

sA = 0.1, sB = 0.01 1 2 7
sA = sB = 0.01 3 4 7
sA = sB = 0.001 14 16 17

Table 3.1: Zcrit for different value of sA, sB and r.
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Figure 3.10: Distribution of cline centers for alleles A and B at the two loci under
selection, along with their mixture distribution. Data have been gathered over 5000
sample generations. The dashed lines are the environmental changes for loci A
(black) and B (red). Remaining parameter values: z0 = 2, sA = sB = 0.1 and r is
indicated above each panel.

The results presented in this chapter are further discussed and summarized in the
following chapter.
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Figure 3.11: Same as in figure 3.10, but with sA = sB = 0.01.
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Figure 3.12: Bimodality compared to S(R), as defined in equation (2.10), for
different values of Z0. The dots represent µ2−µ1

σ2+σ1
estimated from the distributions of

the cline centers for alleles A and B. The dashed line is S(R). When µ2−µ1
σ2+σ1

> S(R),
the distribution is bimodal. The values of sA and sB vary as follows: sA = sB = .1 in
the top left, sA = 0.1 and sB = 0.01 in the top right, sA = sB = 0.01 in the bottom
left and sA = sB = 0.001 in the bottom right. r = 0.5 in all figures. Data were
gathered every 10th iteration and the total simulation time was 50000 iterations.
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Figure 3.13: Same as in figure 3.12, but with r = 0.05.
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Figure 3.14: Same as in figure 3.12, but with r = 0.005.
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(a) Bimodality plot.
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Figure 3.15: Top left: The same as in figure 3.14, bottom left. The other plots are
the distributions of the centers and the resulting mixture distribution for Z0 = 5, 6
and 7. These are the values closest to S(R), as can be seen in panel (a). Data were
gathered every 10th iteration and the total simulation time was 50000 iterations
for every data point. Panel (d) shows a bimodal shape of the mixture distribution,
which according to panel (a) is what we would expect since for Z0 = 7 we have
(µ2 − µ1)/(σ2 + σ1) > S(R).
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(b) Z0 = 6
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(c) Z0 = 7
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(d) Z0 = 9

Figure 3.16: Top left: The same as in figure 3.14, top right. The other plots are
the distributions of the centers and the resulting mixture distribution for Z0 = 6, 7
and 9. Data were gathered every 10th iteration and the total simulation time was
50000 iterations for every data point. Panel (c) shows a mixture distribution that
is bimodal according to the test, but the bimodality is not appearant to the eye. In
panel (d), however, the bimodality of the mixture distribution is unquestionable.

29



3. Results

30



4
Discussion and Conclusion

For the parts of my simulations which were run with the same parameters as those of
Slatkin (Slatkin, 1975), my results mostly agreed completely with his. A difference
was found in the plot of the midpoints of the clines as a function of r in figure 3.8.
In Slatkins figure (figure 9 in Slatkin (1975)), the midpoint of the cline for allele B
went to 0 for r = 0 when sA = 0.1 and sB = 0.01. The midpoint of the B-cline in
my case went instead to the midpoint of the A-cline. This controversy is probably
due to the fact that Slatkin did not include genetic drift in his simulations. I would
say that my result is more intuitive; the clines are completely joined together for
r = 0 when Z0 is low enough to allow it. The point on the x-axis where they are
joined are in my case much closer to the environmental change corresponding to the
trait under stronger selection pressure than the one with weaker selection pressure.
This makes sense considering the results in figure 3.6, where we have seen that it
is almost solely the weaker cline that is being pulled towards the stronger cline. In
Slatkin (1975), for r = 0 the clines are joined at x = 0. This means they are joined
in the middle between the environmental changes with no regards to which trait is
under stronger selection pressure. In my view, this does not make sense.
The mixture distribution of the centers of the clines need higher values of Z0 to be
bimodal when selection is weaker. Some concrete values have been presented in the
results (figures 3.12, 3.13 and 3.14). A bimodal pattern directly points towards the
existence of multiple environmental transitions in the habitat in question. However,
for Z0 < Zcrit such an existence cannot be detected based on the mixture distribution
of cline centers. An interesting plot to make in the future would be to map out the
critical values of Z0 for a grid of values of sA and sB. This grid would tell us which
distances between the environmental selection we would need in order to be able to
detect that there are actually two environmental transitions and not just one, for a
large span of parameters.
One thing to point out is that when inferring about the bimodality of the mixture
distribution of cline centers in my simulations, I already have a clustering of the
data used to make up the mixture distribution. That is, I can estimate the values
of µ1, µ2, σ1 and σ2 since I know which data of the mixture distribution comes from
which original normal distribution. When using empirical data, no such clustering
of cline center data is given. Clustering would first have to be made of the data,
separating it into two, or more, groups for which we want to assess whether or
not the clines are the result of two environmental transitions. This could be done
in a trial-and-error fashion; if we assume that bimodality directly implies multiple
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environmental transitions then we cloud try all sorts of clusterings to see if we even
once get bimodality in the resulting mixture distribution. This can also be seen
directly by inspection, if the total distribution does not look bimodal then there will
be no clustering of the data which would make it bimodal according to the formula
in equation 2.10.
An extension of my model would be to include neutral loci. These could tell us
about whether some observations really are a consequence of the loci being under
selection, or if some observations simply are due to linkage between the loci. Neutral
loci would allow me to make this distinction. Another extension would be to handle
fragmentation of the population in my model, where the number of individuals in
some demes is lowered or equal to zero. Such an extension would be particularly
relevant for the analysis of genetic data from L. saxatilis sampled from the hybrid
zones in Sweden (K. Johannesson, R. K. Butlin, personal communication, 2017).
I will now present a reasonable approach to successfully inferring whether or not
there are two environmental changes in a habitat.
Empirical data consists of the allele frequencies of many loci of L. saxatilis as a
function of distance. Let us say it also contains information about local population
sizes, which is a fair assumption. From this, one can estimate selection strength for
each cline shape. Let us also say we have a genetic map of the genome, so that we
can estimate r between all the loci. The problem now is to determine whether these
allele frequencies are the result of one or two environmental transitions. The null
hypothesis is that there is only one environmental transition.

1. First, one would look at the shape of the clines. From my results, if the distance
between the environmental transitions is large enough, but not too large, then
the cline(s) corresponding to the trait more weakly selected for could exhibit
a two-tailed shape. This could be quantitatively tested by fitting both a no-
tail cline and a two-tailed cline and compare some test of goodness of fit,
for example using the Akaike information. If the fit of a two-tailed shape is
significantly better then we could reject the null hypothesis that there is only
one environmental transition.

2. If the fit of a two-tailed shape is not significantly better, one would have to
look at the distribution of centers as discussed above. If it yields a significantly
bimodal distribution then we could reject the null hypothesis.

3. Finally, one could look at the shape of the LD plots between the two groups
of loci derived in 2). A wider peak in the LD plot could point to there being
more than one environmental transition.

If none of there three tests point towards there being more than one environmental
transition, the null hypothesis that there is only one transition would be accepted.
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A
Appendix

A.1 Theoretical shape of a cline

In this section, the formula for the deterministic shape of a cline is derived. This is
done in more or less the same way as in Ståhl (Ståhl, 2016), but with some steps
being described in more detail.
This formula is valid in the following model:

• One locus is under selection.
• The environment is a step change around x = 0 with selection parameters

according to Table A.1.
The following limits are considered:

• local population size is infinitely large, i.e. N →∞,
• the distance between demes → 0,
• the number of patches is infinitely large, i.e. K →∞.

This means we are considering the entire x-axis as our habitat with infinitely many
individuals on each point. This approximation will work better for larger K and
smaller s in the original discrete model. Larger σD will also make the approximation
work better as long as K is large enough to support the entire cline.
Assume p(x, t) is the frequency of allele A after migration, and q(x, t) ≡ 1−p(x, t) is
the frequency of allele a. Let p′(x,t) and q′(x, t) denote the frequencies after selection
and reproduction, but before migration.
This derivation of the cline shape will consist of first writing p in terms of p′, and
then p′ in terms of p. Insertion of one of these formulas into the other will reduce
the model to a differential equation, which can be solved.
Let M(x, x′) be the probability that an individual migrates from x′ to x in one time

aa aA AA
x < 0 1− s 1 1 + s
x ≥ 0 1 + s 1 1− s

Table A.1: The selection parameters as used in the derivation of the theoretical
cline.
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step. One time step will be denoted as δt. Since M is a probability distribution,

∫ ∞
−∞

M(x, x′) dx =
∫ ∞
−∞

M(x, x′) dx′ = 1.

We will assume that M is independent of direction, i.e. an even function in both x
and x′ centered around x = x′.
Now, we can write p in terms of p′ as

p(x, t) =
∫ ∞
−∞

M(x, x′)p′(x′, t− δt) d(x′ − x) (A.1)

By Taylor expanding p′ around (x, t) we find

p′(x′, t− δt) = p′(x, t) + (x′ − x)∂p
′(x, t)
∂x

− δt∂p
′(x, t)
∂t

+ (x′ − x)2

2
∂2p′(x, t)
∂x2 −

(A.2)

− (x′ − x)δt∂
2p′(x, t)
∂x∂t

+ δt2

2
∂2p′(x, t)
∂t2

+ . . . (A.3)

By inserting equation (A.2) into equation (A.1) we find

p = p′ − δt∂p
′

∂t
+ δt2

2
∂2p′

∂t2
+
∫ ∞
−∞

M(x, x′)(x′ − x)2

2
∂2p′

∂x2 d(x′ − x), (A.4)

where p = p(x, t) and p′ = p′(x, t). The linear part of the Taylor expansion vanishes
since M is even.
If M(x, x′) ∼ Normal(x′ − x, σD) we have

p = p′ − δt∂p
′

∂t
+ δt2

2
∂2p′

∂t2
+ ∂2p′

∂x2
σ2
D

2 . (A.5)

To write p′ in terms of p we will look more in detail on the frequencies of each allele.
Since the frequency of allele A is p, the frequencies of each possible genotype are
according to the following table:

aa aA AA
(1− p)2 2p(1− p) p2

These frequencies sum to 1.
The contribution to the total frequency of allele A for each genotype is therefore
aa aA AA
0 p(1− p) p2 .

These frequencies sum to p.
Multiplying these frequencies with the relative fitness values for these genotypes,
according to Table A.1, will be the exact effect of selection when x > 0. The
resulting formula is
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p′ = p(1− p) · 1 + p2(1 + s)
(1− p)2(1− s) + 2p(1− p) · 1 + p2(1 + s) . (A.6)

Here, we have divided by the total fitness to get the relative fitness.
This equation can be simplified to

p′ = p+ sp2

1 + s(2p− 1) . (A.7)

By Taylor expanding around s = 0 and neglecting terms of order s2 and higher we
find

p′ = p+ s(p− p2) + . . . (A.8)

We now assume that we are in the steady state, meaning p(x, t) = p(x, t′)∀t, t′.
Inserting equation (A.7) into equation (A.5) we get

p = p+ s(p− p2) + ∂2(p+ s(p− p2))
∂x2

σ2
D

2 . (A.9)

Neglecting terms of order sσ2
D we get

p = p+ s(p− p2) + d2p

dx2
σ2
D

2 . (A.10)

Now it remains to find the solution to the differential equation

d2p

dx2 = − 2s
σ2
D

(p− p2). (A.11)

Using g = dp
dx

yields

g
dg

dp
= − 2s

σ2
D

(p− p2)⇒∫
g dg = − 2s

σ2
D

∫
p− p2 dp⇒

1
2g

2 = − 2s
σ2
D

(
p2

2 −
p3

3

)
+ C.

(A.12)

In the limit of x→∞, we must have g → 0 and p→ 1. This yields

C = s

3σ2
D

. (A.13)

So now we have
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dp

dx
=

√√√√− 4
σ2
D

s

(
p2

2 −
p3

3 −
1
6

)
. (A.14)

This differential equation was solved by using Mathematica. The final equation for
the slope of the cline is

p(x) = −1
2 + 3

2 tanh

√
s/2
σD

x+ atanh
(√

2/3
)2
 . (A.15)

Differentiating this and evaluating at x = 0 gives

dp

dx
(0) = 1

σ

√
s

3 , (A.16)

which is the maximum slope of the cline. The width of a cline, w, is defined as
w = 1

maximum slope (Bazykin, 1969).
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A.2 Results using one trait and one locus

In this section, results from running the reduced model with one trait and one locus
are presented.
First is the exact shape of the cline resulting from averaging the allele frequencies
of allele A. The shape has been derived in the theoretical limit in Appendix A.1.
Some plots can be seen in figure A.1. The frequencies were initialized according
to the deterministic limit in equation (A.15). I let the simulations run for 500
generations before I begun averaging. This was to ensure that the model had reached
its equilibrium state in terms of fluctuations. f(A) are the frequencies of allele A
across the demes, also denoted as p in the main text of this Master’s Thesis.
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(a) K = 150, N = 100, σD = 1, s = 10−2.
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(b) K = 150, N = 100, σD = 1, s = 10−3.
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(c) K = 37, N = 400, σD = 0.25, s = 10−3.
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(d) K = 750, N = 100, σD = 1, s = 10−3.

Figure A.1: Average frequencies of allele A. Black: The theoretical cline shape
according to equation (A.15). Red dots: Average frequency of allele A. Dashed red
line: One snapshot of f(A). In total the simulations were run for 10000 generations,
and every 10th of these generations were used for averaging.

The simulated values agree with the theory for certain values of s and σD. For some
values, the theory fails. More specifically, the theory fails when s is too low or σD is
too high. This is because the width scales as 1

σ

√
s
3 (see Appendix A.1). When the
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width is too high the boundaries start having an effect on the cline shape, which is
undesirable.
Indeed, as can be seen in figure A.1b the width is high in relation to the amount of
demes; cline width is more than half of the total habitat length. The boundaries then
have a high impact on the shape of the cline. Two workarounds can be considered
to deal with this, if these values of the width are to be studied. One way is to rescale
the parameters according to

K → K

R
N → N ·R

σD →
σD
R
,

where R is a rescale factor. One result from using the rescaling can be seen in Figure
A.1c. The fit to the cline is better here than in A.1b, where the unscaled parameters
were used.
Another way to avoid the effect of the boundaries is simply to use a higher K. The
tradeoff is that simulation time grows linearly with K. One result from running the
simulation with K = 750 can be seen in figure A.1d. Compare to figure A.1b where
the same σD and s have been used but with a lower K.
Another reason why the fit of the theoretical slope is not perfect is due to the
discreteness of the model. The theoretical cline shape has been derived in the limit
of continuous space. Using high values of both K and σD, the effect of discreteness
can be lowered.
And lastly, one more reason why the fit is not perfect is due to the neglection of
terms of order s · σD, s2, σ4

D and higher in the derivation of the cline shape (see
Appendix A.1).
The path to convergence of the width of the cline has been plotted in figure A.2 for
some values of s and σD. For lower values of s, and higher values of σD, it takes
longer to reach equilibrium. F is defined as

F (x, t) ≡ var(p(x, t))/( ¯p(x, t) ¯q(x, t)), (A.17)

where q = 1−p. Averages are taken over time. (1−F )w(p) is equal to w(p) according
to theory (Polechova & Barton, 2011), and this agrees with my simulations presented
in this figure. w(p) is the width of the average cline and w(p) is the average width
of a cline. My results regarding the average width of a cline and the width of the
average cline also agree with Polechova, J. and Barton, N. (2011).
In Figure A.3 is presented the width as a function of s compared to the theoretical
width for one value of σD. The corresponding plots for other values of σD can be
seen in Appendix A.3. We are supposed to see w(p) equal to the theoretical values
of w. According to Polechova, J. and Barton, N. (2011), we are also supposed to see
(1− F )w(p) = w(p). In figure A.4 is the relative difference between the theoretical
width and the width from the simulations. For low values of 1/

√
s, theory deviates

from simulation. This is most easily seen in figure A.4. The deviation is due the
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discreteness of the model; higher values of s mean that the cline will be steeper and
hence discreteness has a larger effect. For high values of 1/

√
s, theory fails since the

width becomes too large in relation to the habitat size. When the cline is close to
being as wide as the habitat, the boundaries can have a larger effect on the outcome
of the simulation.
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A.3 Additional plots

In this section additional interesting plots are presented.
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Figure A.2: Travelling mean of w as a function of time for different values of s
and σD. These values have been averaged over 20 realizations of the model. Note
the time required to reach equilibrium and the amplitude of the fluctuations in
equilibrium. w(p) is the average of the widths measured each realization. w(p) is
the width measured from the average gene frequencies across the realizations. The
dashed lines are the 95% CI for w(p). F is the standardized local variance in allele
frequency defined therein.

√
3
s
σ is the theoretical cline width derived in Appendix

A.1. K = 150.
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Figure A.5: Width of the two clines for increasing Z0. s1 = s2 = .1, r = .5.
For these values of s1 and s2, the width is clearly increasing as I separate the
environmental transitions. As I decrease s, the trend becomes weaker.
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Figure A.6: w as a function of 1√
s
. We are supposed to see w(p) equal to the

theoretical values, but because of the discreteness of the model this isn’t the case.
According to Polechova, J. and Barton, N. (2011), we are also supposed to see
(1− F )w(p) = w(p). The theoretical width is defined as w =

√
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σ
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