
Ego-Motion Tracking with LiDAR Point
Clouds
An Evaluation of Utilizing LiDAR Point Clouds in Verification
Tools for Ego-Motion

Master’s thesis in Systems, Control and Mechatronics

ERIK HENNING LARSSON
JONATHAN JANSSON

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Ego-Motion Tracking with LiDAR Point Clouds

An Evaluation of Utilizing LiDAR Point Clouds in Verification Tools
for Ego-Motion

ERIK HENNING LARSSON
JONATHAN JANSSON

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2019

Ego-Motion Tracking with LiDAR Point Clouds
An Evaluation of Utilizing LiDAR Point Clouds in Verification Tools for Ego-Motion
ERIK HENNING LARSSON
JONATHAN JANSSON

© ERIK HENNING LARSSON, JONATHAN JANSSON, 2019.

Supervisors:
Karl Granström, Department of Electrical Engineering
Andreas Andersson, Aptiv Contract Services Sweden AB
Karin Brötjefors, Aptiv Contract Services Sweden AB

Examiner:
Karl Granström, Department of Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Division of Signal Processing and Biomedical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visually edited LiDAR point cloud gathered in an indoor garage.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Ego-Motion Tracking with LiDAR Point Clouds
An Evaluation of Utilizing LiDAR Point Clouds in Verification Tools for Ego-Motion
ERIK HENNING LARSSON
JONATHAN JANSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract

In the automotive industry safety is a critical aspect. It is crucial that autonomous
features are thoroughly tested and their functionality verified. In order to perform
testing and verification objectively a reference for correct behaviour or performance
is required. This is often referred to as the ground truth. Commonly ground truth
of ego-motion is obtained with Inertial Measurement Units (IMUs) and Global Po-
sitioning Systems (GPSs). This thesis investigates the feasibility of using Light
Detection And Ranging (LiDAR) point clouds for verification of ego-motion param-
eters speed and angular rates.

The investigation is performed by evaluating the popular Iterative Closest Point
(ICP) algorithm and two of its extensions. Furthermore, different methods to in-
crease robustness are evaluated. In addition, Bayesian filtering techniques are uti-
lized to improve upon the resulting estimates.

The results show that estimation of speed and yaw rate is indeed possible. However,
estimations of pitch and roll rates prove to be difficult. Further analysis shows that
a LiDAR’s procedure for sampling point clouds can cause issues in the process of
estimating ego-motion, and that handling such issues can increase performance sig-
nificantly. In conclusion, the thesis shows promising results for estimating yaw rate
and speed of an ego-vehicle while presenting the importance of different procedures,
as well as discussing possible causes of the difficulties in estimating pitch and roll
rates.

Keywords: LiDAR, Velodyne, Point Clouds, IMU, Ego-Motion, Verification, Itera-
tive Closest Point, Bayesian Filtering

v

Acknowledgements

We would like to express our gratitude towards our supervisors Andreas Andersson
and Karin Brötjefors at Aptiv Contract Services Sweden AB for their engagement
in the project on all levels. We would also like to thank our supervisor at Chalmers
University of Technology Karl Granström for keeping us on track during all compli-
cations throughout the project. Lastly, we would like to thank Mats Björnerbäck,
Jacob Gideflod, Jacob Andrén, Oscar Pantzare, Hugo Drakeskär and Adam Petters-
son for their involvement in the hardware related parts of the project and more.

Erik Henning Larsson & Jonathan Jansson, Gothenburg, June 2019

vii

Contents

List of Figures xi

List of Tables xv

Abbreviations and Wording xvii

1 Introduction 1
1.1 Purpose . 1
1.2 Scope . 2
1.3 Related Work . 2
1.4 Thesis Outline . 4

2 Hardware 5
2.1 Data Gathering Platform . 5
2.2 LiDAR . 6
2.3 IMU . 6
2.4 Wheel Speed - Hall Effect Sensors . 6

3 Point Cloud Matching 7
3.1 Rigid Transformation . 7
3.2 Iterative Closest Point . 8
3.3 Extensions to ICP . 11

3.3.1 Metric-based ICP . 12
3.3.2 Generalized ICP . 16

3.4 Pre-Processing . 18
3.5 Matching Rejection . 19

3.5.1 Disparity Based Rejection . 19
3.5.2 Surface Normal Based Rejection 19

3.6 Cloud Rectification - Velocity Updating ICP 20

4 Filtering 23
4.1 Bayesian Filtering . 23
4.2 Kalman Filtering . 25
4.3 Bayesian Smoothing . 25
4.4 Rauch-Tung-Striebel Smoothing . 26

ix

Contents

5 Implementation 27
5.1 Point Cloud Matching . 28

5.1.1 Pre-Processing . 28
5.1.2 Cloud Rectification . 29
5.1.3 ICP Implementation . 29
5.1.4 Conversion from Transformation to Measurement 30
5.1.5 Point Cloud Matching Configurations 31

5.2 Filtering . 32

6 Testing and Evaluation 37
6.1 Testing Environment . 37

6.1.1 Test Case 1 . 37
6.1.2 Test Case 2 . 38
6.1.3 Test Case 3 . 38
6.1.4 Test Case 4 . 39
6.1.5 Test Case - Roll & Pitch . 39

6.2 Evaluation . 40
6.2.1 Box Plots . 41
6.2.2 Root Mean Square Error . 41

7 Results 43
7.1 Configuration 1 - No Additions . 43
7.2 Configuration 2 - Pre-Processing . 45
7.3 Configuration 3 - Matching Rejection 46
7.4 Configuration 4 - Cloud Rectification 47
7.5 Configuration 5 - Combining Modules 48
7.6 Provoking Roll & Pitch . 49

8 Discussion 51
8.1 ICP and ICP Extensions . 51
8.2 ICP Modules . 52
8.3 Roll & Pitch Rates . 54
8.4 Estimating Ego-Motion with LiDAR Data and ICP 55

9 Conclusion 57

Bibliography 59

A Roll & Pitch Tests I

B Test Case 4 V

C Measurement Noise Characteristic IX

x

List of Figures

2.1 Image of the auto rickshaw used for testing and verification. 5

3.1 Cartesian coordinate system x, y, z with rotations (φ, θ, ψ) around its
corresponding axis called roll, pitch, yaw, respectively. 7

3.2 A visual presentation of how the iterative process of ICP. First, the
points in the two clouds are matched based on distance. Then the
transform which minimize the distance between the correspondences
is applied. These two steps are iterated until convergence, when the
final transform is found by summarizing the iteratively applied trans-
forms. 9

3.3 Demonstration of how gathering a point cloud over time during move-
ment cause distortions in the LiDARs interpretation of the surround-
ing environment. 11

3.4 An arc of points before and after a rotation. The figure displays the
difference in distance between the individual points when a rotation
is applied. 12

3.5 Depiction of how the distance from p1 to the closest point p(λ∗) is
computed depending on its position. dap(p1, [v1, v2]) defines the dis-
tance from the point p1 to the segment between point v1 and v2.
dap(p1, p(λ∗)) defines the distance form the point p1 to the plane
spanned by v. 13

3.6 Two point clouds gathered in a cylindrical room at a constant velocity
of 0.5 units/lap in the x-direction which is rectified to compensate for
the movement while sampling the points. 20

3.7 Simplification of the Velocity Updating Iterative Closest Point algo-
rithm . 21

5.1 Flowchart of the proposed algorithm. Measurements are obtained
through the process in the Point Cloud Matching block to the left,
and is used as noisy observations of the state in the Filtering block
to the right. 27

5.2 Visualization of two point clouds sampled at different locations. Rota-
tional LiDARs create circular patterns in the floor and ceiling, demon-
strating how these circles create similar features at different locations. 29

xi

List of Figures

6.1 Illustration of the motion performed in Test case 1, where pillars and
cars present are included. 38

6.2 Illustration of the motion performed in Test case 2, where pillars and
cars present are included. 38

6.3 Illustration of the motion performed in Test case 3, where pillars and
cars present are included. 39

6.4 Illustration of the motion performed in Test case 4, where pillars and
cars present are included. 39

6.5 Visualization of the motion throughout the roll and pitch rate test
case. 40

6.6 Figure depicts a box plot of a normal distribution N ∼ (0, 1) where
a is the median, b the top 75th percentile, c the top 99th percentile
and d are outliers. 41

7.1 Wheel speed readings and smoothed gyroscope values for test cases
1-4. 43

7.2 Box plots presenting the Speed and Yaw Rate error distributions for
the different test cases and algorithms for Configuration 1. Occasional
outliers for ICP excluded due to their magnitude. 44

7.3 Estimates of speed and yaw rate compared with the ground truth for
Configuration 1 - Test case 1. 45

7.4 Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 2. 45

7.5 Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 3. 46

7.6 Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 4. 47

7.7 Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 5. 48

7.8 Roll and pitch rate estimates and ground truth for the Roll and Pitch
test case. 50

8.1 Depiction of points sampled on a flat surface, where it can be seen
that the samples are in lines and not uniformly distributed. 52

A.1 Roll and pitch rate estimates and ground truth for a test case where
the platform was rolled -45◦ then return to horizontal. I

A.2 Roll and pitch rate estimates and ground truth for a test case where
the platform was rolled -45◦, pitched 45◦, pitched back and then re-
turn to horizontal. II

A.3 Roll and pitch rate estimates and ground truth for a test case where
the platform was rolled -45◦ and pitched 45◦ simultaneously and then
return to horizontal. II

A.4 Roll and pitch rate estimates and ground truth for a test case where
the platform was pitched 45◦ then return to horizontal. III

xii

List of Figures

B.1 Filtered speed and yaw rate estimations for test case 4 for the algo-
rithms ICP, Mb-ICP and G-ICP without any additions. V

B.2 Filtered speed and yaw rate estimations for test case 4 for the algo-
rithms ICP, Mb-ICP and G-ICP where false features such as ground
and ceiling are removed. VI

B.3 Filtered speed and yaw rate estimations for test case 4 for the algo-
rithms ICP, Mb-ICP and G-ICP where false features are removed and
outliers are rejected in the correspondence search. VI

B.4 Filtered speed and yaw rate estimations for test case 4 for the algo-
rithms ICP, Mb-ICP and G-ICP where false features are removed and
the point clouds are rectified. VII

B.5 Filtered speed and yaw rate estimations for test case 4 for the al-
gorithms ICP, Mb-ICP and G-ICP where false features are removed,
outliers are rejected in the correspondence search and the point clouds
are rectified. VII

xiii

List of Figures

xiv

List of Tables

5.1 The different configurations tested and analyzed, where each config-
uration is added onto ICP, Mb-ICP and G-ICP respectively. 31

5.2 The power spectral density value for the different configurations of
the ICP modules. 34

7.1 The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 1. 44

7.2 The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 2. 46

7.3 The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 3. 47

7.4 The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 4. 48

7.5 The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 5. 49

xv

List of Tables

xvi

Abbreviations and wording

LiDAR - Light Detection And Ranging
IMU - Inertial Measurement Unit
GPS - Global Positioning System
ICP - Iterative Closest Point
G-ICP - Generalized Iterative Closest Point
Mb-ICP - Metric-based Iterative Closest Point
V-ICP - Velocity Updating Iterative Closest Point
NDT - Normal Distributions Transform
NDT-OM - Normal Distributions Transform Occupancy Map
SLAM - Simultaneous Localization And Mapping
LOAM - LiDAR Odometry And Mapping
kd-tree - k-dimensional tree
SVD - Singular Value Decomposition
PCA - Principal Component Analysis
KF - Kalman Filter
RTSS - Rauch-Tung-Striebel-Smoother
RMSE - Root Mean Square Error

Transformation - Simplification of proper rigid transformation for convenience
Reading (In the context of LiDAR) - The distance calculated to a point from one
laser firing to its corresponding detector receiving
Measurement (In the context of algorithms) - The observation of a state made by
an algorithm.
Scan - The vertical array of lasers/detectors observing one measurement
Scan-cycle - One revolution of scans
Point cloud - The points sampled during a scan-cycle
Source (cloud) - The point cloud sampled during the previous scan-cycle
Target (cloud) - The point cloud sampled during the current scan-cycle
Match - The pair of points from the source and target cloud which is seen as corre-
sponding points
Point correspondence - The ideal notion of two sequentially measured points repre-
senting the same point in space

xvii

List of Abbreviations

xviii

1
Introduction

Currently, there is a large interest in automation in the automotive industry. Many
vehicles today utilize automated features where collision warning, lane keeping as-
sistance and emergency braking are examples of increasingly common features. For
a vehicle to act autonomously it is critical that every aspect of the system has been
thoroughly tested and verified, such that any action performed is never a possible
safety hazard.

Testing and verification can be done either live, or offline with sampled data. The
advantage of an offline process is that scenarios can be replayed and exchanged to
quickly test the behaviour and performance of implemented features. Thus, enabling
a measure for how performance change throughout development.

To evaluate the feature’s output a ground truth is required, i.e, a reference for
evaluating performance against. By having a reliable ground truth each function
can have its performance evaluated objectively and automatically. A ground truth
can be created manually or generated using a calibrated sensor with low influence
of noise (or some combination thereof). However, manually creating a ground truth
can be time consuming, and sensors with low influence of noise can be expensive.

In the area of autonomous drive, both the required amount of information and its
accuracy of the ego-vehicle and surrounding objects grow quickly with the level of
autonomy. Having individual high-quality sensors for verifying all measured param-
eters might not be economically feasible, given a large fleet of test vehicles. However,
information gathered from one sensor can often be used for multiple purposes, thus
minimizing the number of sensors required in each test vehicle.

1.1 Purpose

Using some combination of an Inertial Measurement Unit (IMU), Global Positioning
System (GPS) and a wheel-speed sensor is likely the most accurate way to estimate
the ego-motion parameters speed and angular velocities. Meanwhile, Light Detection
And Ranging (LiDAR) sensors are known for their high accuracy in 3D mapping.
Even though they do not inherently measure ego-motion it is likely that ego-motion

1

1. Introduction

can be derived with reasonable accuracy using LiDAR generated point-clouds.

An accurate IMU is generally quite expensive. Even though accurate LiDARs are
also expensive they are trending towards lower prices [1, 2]. Evaluating if estimates
from a LiDAR are comparable with estimates of an IMU, it could result in that an
IMU no longer is a necessity for verification of ego-motion. Furthermore, if cost is
not an important parameter in a validation setup, a LiDAR’s estimate could either
be fused with an IMU’s estimate, or used for redundancy. Thus, this thesis aims
to evaluate the feasibility and accuracy of using LiDAR generated point clouds for
estimating ego-motion.

1.2 Scope

The goal and objective of this thesis is to evaluate the accuracy of ego-motion
estimations using LiDAR generated point clouds. To achieve this, the scope of the
project is defined as:

• Investigate the feasibility of achieving high-quality estimates of the ego-motion
parameters speed and angular rates.

• Perform estimations in an offline setting.

• Perform estimations on data generated in a static environment with clear
landmarks/way-points.

• Evaluate the quality of estimations in relation to IMU and wheel speed sensors.

The investigation includes finding appropriate models and algorithms for tracking,
filtering as well as correction for point-cloud distortions.

1.3 Related Work

Localization and 3-D mapping is useful in many areas, not least for autonomous
drive. Thus, there exists a lot of research regarding odometry estimation using
LiDAR point clouds. Solutions vary, but a common approach is the relatively simple,
yet effective, Iterative Closest Point (ICP) algorithm [3].

ICP matches the closest points of two clouds and attempts to find the relative pose,
or transformation, that aligns them by minimizing the distance between correspond-
ing points. Some crude assumptions are made for optimal performance, such that
there exists a perfect point correspondence between the clouds, which is generally
not true due to noise, occlusion etc.

2

1. Introduction

Naturally there exists a flurry of extensions to ICP trying to solve this (> 2300 hits
on IEEE when searching for "Iterative Closest Point", where more than 200 were
published in 2018). In the review of ICP algorithms in [4] it is described how there
exists many options, as well as modules which can be added and combined to fit
different applications.

Some extensions of ICP attempts to solve the problem of not having perfect point to
point correspondence by minimizing the distance between a point and a geometric
feature where its corresponding point is contained, such as point to plane[5]. It is
shown in [6] that this type of minimization increases the accuracy in the estimates.

Further the popular algorithm Generalized Iterative Closest Point (G-ICP) [7] ex-
tends this approach by minimizing the distance between two planes, where each
plane contains a corresponding point. It adds a probabilistic framework to the
minimization in an attempt to model the uncertainties generated by measurement
noise of the sensor. There also exists fully probabilistic frameworks as proposed in
the probabilistic Iterative Correspondence[8] and is said to increase robustness in
unstructured environments.

A different approach is performed by the Iterative Dual Correspondence [9] algo-
rithm, which address that the correspondence search does not consider the rotational
components, which could lead to large residual errors. It improves the matching pro-
cess by using two sets of correspondences; rotational and translational components.
The approach is similar in the Metric-based Iterative Closest Point (Mb-ICP) [10]
algorithm where the rotational components is included in their proposed metric.
This paper has been generalized into three dimensions by [11]. Along with the new
metric a point to facet approach is used, where the geometry of the plane containing
the point is limited to only span a facet.

Another interesting approach to matching point-clouds is by utilizing the measured
intensity of a reflected laser scan. This is used in [12] where a mixed correspondence
matching approach is proposed.

Apart from ICP and its extensions, a common approach for point-cloud matching
is the Normal Distributions Transform (NDT) [13]. The scanned area is divided
into cells, where each cell is assigned a normal distribution of the probability of
measuring a point. Two clouds can then be matched without establishing point
correspondences.

As for ICP, NDT has many extensions. An example is Normal Distributions Trans-
form Occupancy Map (NDT-OM) [14], which combines the cell based approach of
NDT with an occupancy grid method. NDT-OM and G-ICP is compared for odom-
etry tracking in the masters thesis by Lindén [15], where similar performance is
obtained. Worth noting is that NDT-OM requires a local point cloud map to match
against.

The family of Simultaneous Localization And Mapping (SLAM) algorithms has sev-
eral high performance variants where some is amongst the top versions of KITTI’s

3

1. Introduction

odometry benchmark charts [16]. SLAM algorithms tries to find the pose of the
sensor while simultaneously updating a local map of the environment. The method
LiDAR Odometry And Mapping (LOAM) [17] uses feature extraction of edges and
planes, similar to to some ICP versions, which is run in parallel with an ego-motion
estimation algorithm to correct for point cloud distortions. A special case called
Velodyne SLAM is proposed in [18], where the method is specifically constructed
for a Velodyne HDL-64E in an attempt to capture the sensors specific characteris-
tics. Both of these SLAM approaches uses some ICP variant for pose estimation.
Versions using a local map of the environment is discarded from the evaluation, due
to them only gaining accuracy if located in a previously visited area.

1.4 Thesis Outline

First of all, the context of the thesis is presented in the Preliminaries chapter in terms
of hardware setup. Next, the theory behind different point cloud matching methods
used for estimating ego-motion is introduced, followed by theory behind utilized
filtering techniques. Then, the Implementation chapter describes how previously
described point cloud matching methods and filtering techniques are composed into
a set of proposed solutions. Following section describes the environment and the
tests which were performed as well as how evaluation is made. Finally, results of the
different proposed solutions are presented and discussed, followed by a summarizing
Conclusion chapter with findings from performed tests.

4

2
Hardware

This chapter defines the context of the thesis in terms of hardware. It presents the
testing vehicle and different sensors used throughout gathering data, and describes
the sensors individual characteristics.

2.1 Data Gathering Platform

The platform to be used when gathering data for evaluation is an electric auto
rickshaw called Zbee and is manufactured by Clean Motion [19].

Figure 2.1: Image of the auto rickshaw used for testing and verification.

On the auto rickshaw’s roof a VLP-16 LiDAR from Velodyne LiDAR [20] is mounted.
Further, an HG1120BA50 IMU from Honeywell Aerospace [21] is mounted close to
the auto rickshaw’s center of rotation, and will be used as reference when estimating
angular velocities.

5

2. Hardware

2.2 LiDAR

The acronym LiDAR comes from Light Detection And Ranging. A LiDAR is a
sensor measuring distances through emitting pulses of light through a laser. The
light bounce on surrounding objects and returns to the sensors detector, which also
registers the returned signals intensity. Distances are then calculated by measuring
time between emitting and receiving. The VLP 16 used is a so called Rotational
LiDAR, which consists of a vertical array of lasers and performs 360 degree scans
by rotating about its z-axis. A point cloud is hereby defined as one lap of sampled
points.

2.3 IMU

An Inertial Measurement Unit (IMU) is a combination of sensors measuring acceler-
ations (accelerometer), angular rates (gyroscope) and sometimes the magnetic field
(magnetometer) acting on the device. Commonly three sets of each sensor type is
included and oriented to make observations of the device axes x, y and z. This
setup can be used to calculate the absolute orientation of the sensor by fusing data
from the sensors, as well as calculating velocity through integration of accelerometer
values.

2.4 Wheel Speed - Hall Effect Sensors

Calculating speed with the accelerometer in an IMU is performed by integrating
the sensors acceleration readings. Thus, the noise from the accelerometers readings
will be integrated and adds up to a bias over time. By measuring the magnetic
field of the brush-less DC motors in the auto-rickshaw using Hall Effect sensors the
wheel-speed can be calculated without integration errors [22].

6

3
Point Cloud Matching

The general approach for estimating ego-motion with LiDAR sensors in this thesis
is to find a transformation which aligns two consecutive sampled point clouds. The
following chapter presents theory behind the point cloud matching algorithm ICP
and its modified versions; Mb-ICP and G-ICP, as well as a range of additions at-
tempting to improve upon the algorithm. All of which provides the foundation for
the final analysis of using LiDARs for ego-motion estimation. First concepts of rigid
transforms are introduced, as they make out the format of which the different point
cloud matching algorithms yield an estimation.

3.1 Rigid Transformation

A local right handed Cartesian coordinate system is defined with x pointing for-
wards, y horizontally orthogonal to x and z pointing up with the sensor in origin.
Rotations around the coordinate systems axes x, y and z are described by the angles
(φ, θ, ψ) called roll, pitch and yaw and can be observed in Figure 3.1 below.

Figure 3.1: Cartesian coordinate system x, y, z with rotations (φ, θ, ψ) around its
corresponding axis called roll, pitch, yaw, respectively.

The relative pose difference (position and orientation) between two points a ∈ A and
b ∈ B in the sensors coordinate system is found through alignment of the points and
can be described by a proper rigid transformation, further called a transformation
for convenience. Transformations preserve the structure of the data set that is being

7

3. Point Cloud Matching

transformed and is defined as

T =
[
R3x3 t3x1
01x3 1

]
, (3.1)

where t3x1 = [tx, ty, tz]> is a translation vector and R3x3 is a rotation matrix. Ro-
tations in the project is described by Tait-Bryan angles with the zyx convention
defined as

Rzyx = RzRyRx, (3.2)

where

Rx =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 , Ry =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 ,

Rz =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ,
(3.3)

describes elemental rotations around the axis indicated by its subscript.

Using homogeneous coordinates, i.e, scalable representations of points, a point is
defined as a′ =

[
x y z 1

]>
indicated by the prime notation. One can describe

the alignment of point a′ to point b′ with transformation T as

b′ = Ta′, (3.4)

where consecutive transformations can easily be applied by sequential multiplica-
tions

b′ = T1T2 . . . Tna
′. (3.5)

Some operations require the normalized point representation, described as

a = a′1:3
a′4

, (3.6)

where subscript indicates position in the vector.

3.2 Iterative Closest Point

The Iterative Closest Point (ICP) algorithm was made famous by Besl and McKays
paper in [3] and is used for alignment of point clouds. ICP can be described in

8

3. Point Cloud Matching

two major steps; find the closest points between two clouds, then minimize the
distance between each point pair. Finding the closest points between the clouds is
a nearest neighbor problem, which can be accelerated by using a k-dimensional tree
(kd-tree)[23, 24].

The alignment process is done iteratively, hence the name, with the aim of finding
the transformation which is the optimum of the minimization problem. For each
iteration the transformation is applied to the source cloud such that convergence is
reached when the source and target cloud are aligned.

A visualization of ICP’s process is displayed in Figure 3.2, where the top right,
and bottom left image demonstrates the iterative process, and the bottom right
demonstrates the result.

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Figure 3.2: A visual presentation of how the iterative process of ICP. First, the
points in the two clouds are matched based on distance. Then the transform which
minimize the distance between the correspondences is applied. These two steps are
iterated until convergence, when the final transform is found by summarizing the
iteratively applied transforms.

Besl and McKay suggests to solve the minimization problem with the quaternion
approach of Horn [25] for lower dimensions to avoid reflections, though for dimen-
sions of n > 3 Singular Value Decomposition (SVD) is suggested. The authors of
[26] states that there is no noticeable difference in accuracy for three dimensions
between the two, while SVD being faster in general.

The minimization method used is the SVD based Least-squares fitting method pre-
sented in [27], which can be read for the complete derivation and proof. Given two
sets of points A = {a′i} and B = {b′i}, i = 1, 2, . . . , Np where corresponding points
share index. The aim is to find the transformation T (as defined in (3.1)) which

9

3. Point Cloud Matching

minimize the distance

d =
Np∑
i=1
||b′i − Ta′i|| =

Np∑
i=1
||bi − (Rai + t)||, (3.7)

such that A is aligned onto B. Initially the centroid of each set is computed as

Ā = 1
Np

Np∑
i=1

ai, B̄ = 1
Np

Np∑
i=1

bi. (3.8)

The non-normalized covariance matrix C is then computed as

C =
Np∑
i=1

(ai − Ā)(bi − B̄)>. (3.9)

Then the SVD of C is found

C = UΛV >, (3.10)

where U is the eigenvectors of CC>, V the eigenvectors of C>C and Λ contains the
singular values (square root of eigenvalues) of CC>. Rotation R can be calculated
as

R = UV >, (3.11)

and translation t as

t = B̄ −RĀ, (3.12)

if det(R) = 1. Meanwhile, if det(R) = −1 the method fails as the solution of the
rotation represents a reflection, although it is stated as unlikely [27].

In order for the residual distances between matched points to be completely removed
ICP require perfect point to point correspondence in the two clouds to be aligned.
For real world applications this is unlikely due to measurement noise, occlusion or
distortions from motion during sampling [28].

Further, ICP is prone to converge to a local minimum given large rotations between
the point clouds [29, 28]. To aid the alignment process an initial transformation
can be passed as a guess such that the algorithm is less likely to converge to a local
minimum [4].

A visualization of the motion distortion is displayed in Figure 3.3, where the dif-
ference in positions, which is unknown for the sensor throughout the sampling pro-
cess, results in a point-cloud displaying a distorted realization of the environment.
This is due to rotational LiDARs sample environments in a sweeping manner over
time, rather than instantly. Addressing this issue is important as suggested in
[15, 18, 30, 31].

10

3. Point Cloud Matching

0 0.5 1

-0.5

0

0.5

0 0.5 1

-0.5

0

0.5

Figure 3.3: Demonstration of how gathering a point cloud over time during move-
ment cause distortions in the LiDARs interpretation of the surrounding environment.

The authors of [4, 6] describe ICP as having distinct computation steps, where
different methods or combinations thereof can be implemented in each step to tackle
some of the issues stated in section 1.3. Due to its modular behaviour it is suitable
to describe the computation steps as modules. In this thesis the alignment process
is described by the following modules:

1. Pre-Processing: Selecting a subset of points from each cloud, either to en-
hance performance or lower computational cost.

2. Cloud Rectification: Minimize distortions in the source cloud.

3. Point Correspondence search: Find the points in the source cloud which
corresponds to points in the target cloud.

4. Matching Rejection: Reject pairs of corresponding points classified as out-
liers.

5. Minimization: Minimization of a distance metric in order to align the source
and target point cloud.

where point 3 and 5 are core modules of the algorithm. If the core modules are
modified then the algorithm is described as an extension to ICP. Some extensions
such as Metric-based ICP defines a new distance metric to be minimized, and as
a result modifies both the point correspondence search as well as the minimization
step. Others such as the Generalized ICP changes only the minimization step,
leaving the point correspondence search unchanged. The theory for these modules
and extensions is described in the following sections.

3.3 Extensions to ICP

There exists many versions of ICP, where some only differ slightly from the base
algorithm, while others redesign the entire core structure. The following ICP exten-

11

3. Point Cloud Matching

sions were chosen such that a module based approach can be used and extensions
which require specific structures which does not comply with the other modules are
discarded. Thus, two different implementations were chosen which do not signifi-
cantly interfere with the other modules, namely the Metric-based Iterative Closest
Point and the Generalized Iterative Closest Point algorithms which are described in
the following subsections.

3.3.1 Metric-based ICP

Originally the Metric-based Iterative Closest Point algorithm was proposed for two
dimensional matching problems [10]. In order to better handle rotational compo-
nents which distorts the correspondence search, as seen in Figure 3.4, it introduces
a new distance metric called metric-based distance.

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

Figure 3.4: An arc of points before and after a rotation. The figure displays the
difference in distance between the individual points when a rotation is applied.

This new distance attempts to consider both translational and rotational compo-
nents. Further, a generalization to 3-dimensional point clouds is proposed by [11].

ICP assumes the existence of true point correspondences in the two clouds, which
is in general false when sampling the clouds with a LiDAR. Mb-ICP solves this
by creating a local structure in which the true corresponding point is likely to lie
within. More specifically, Mb-ICP attempts to minimize the distances between the
each point in the source cloud and the corresponding facet defined by the three
closest points in the target cloud.

The new metric is used to calculate point-to-point distances and is defined as

dap(p1, p2) =
√
||δ||22 −

||p1 × δ||22
k

, δ = p1 − p2, k = ||p1||22 + L2, (3.13)

where L is a weighting factor between rotation and translation.

12

3. Point Cloud Matching

The metric-based distance is then used instead of euclidean distance to perform a
point correspondence search. For each point in the source cloud, Mb-ICP finds the
three closest points, {v1, v2, v3}, in the target cloud. These three points defines a
facet v where the true corresponding point p(λ∗) is likely to lie.

Next, Mb-ICP computes the true closest point within the facet. This is performed
conditionally depending on whether the point is found to lie on the edge of or within
v. Further, as presented in Figure 3.5, depending on along which edge segment the
closest point lies its position is derived slightly different.

Figure 3.5: Depiction of how the distance from p1 to the closest point p(λ∗) is
computed depending on its position. dap(p1, [v1, v2]) defines the distance from the
point p1 to the segment between point v1 and v2. dap(p1, p(λ∗)) defines the distance
form the point p1 to the plane spanned by v.

Consequently, the point is derived either by finding the closest point to one of the
edge segments or plane spanned by v. Mb-ICP solves this search by first deriving
the closest point in the plane spanned by v, and later evaluating where that point
lies relative to the facet.

The closest point in the plane from point p1 in the source cloud is derived by finding
the minimum squared point-to-plane distance as

d2(λ) = λ>Aλ− 2B>λ+ C, (3.14)

13

3. Point Cloud Matching

where λ = [λ1, λ2]>, A =
[
a c
c b

]
, B =

[
d
e

]
, C = f , in which

a = ||v3 − v1||22 −
||p1 × (v3 − v1)||22

k
,

b = ||v2 − v1||22 −
||p1 × (v2 − v1)||22

k
,

c = (v3 − v1)>(v2 − v1)− (p1 × (v3 − v1))>(p1 × (v2 − v1))
k

,

d = −(v1 − p1)>(v3 − v1) + (p1 × (v1 − p1))>(p1 × (v3 − v1))
k

,

e = −(v1 − p1)>(v2 − v1) + (p1 × (v1 − p1))>(p1 × (v2 − v1))
k

,

f = ||(v1 − p1)||22 −
||p1 × (v1 − p1)||22

k
.

(3.15)

The minimum of (3.14) is λ∗ = A−1B which results in the corresponding point being
computed as p(λ∗) = v1 + λ1(v3 − v1) + λ2(v2 − v1).

If p(λ∗) is not contained within the facet, the closest point to one of the edge segments
is computed. Finding a closest point on such a segment defined as s = [s1, s2],
s1, s2 ⊆ {v1, v2, v3}, to point p1, is performed by minimizing the squared distance
between the point and segment. The squared distance from point to segment is
defined as

d2(µ) = asµ
2 − 2bsµ+ cs, (3.16)

where

as = ||s2 − s1||22 −
||p1 × (s2 − s1)||22

k
, (3.17)

bs = −(s1 − p1)>(s2 − s1) + (p1 × (s1 − p1))>(p1 × (s2 − s1))
k

, (3.18)

cs = ||(s1 − p1)||22 −
||p1 × (s1 − p1)||22

k
. (3.19)

The minimum of (3.16) is µ∗ = bs

as
, and the point on the segment is calculated as

p∗ = (1− µ)s1 + µs2. (3.20)

In [11] an efficient way to determine if the closest point lies within the facet or along
which edge segment is presented. This is performed by utilizing information gained
from deriving the closest point to the plane spanned by v as

14

3. Point Cloud Matching

[v1, v2] if λ∗1 < 0 and

λ∗2 > 0 and λ∗1 + λ∗2 < 1,
or λ∗2 < 0 and d < 0,
or λ∗1 + λ∗2 > 1 and e < b

[v1, v3] if λ∗2 < 0 and

λ∗1 > 0 and λ∗1 + λ∗2 < 1,
or λ∗1 < 0 and d ≥ 0,
or λ∗1 + λ∗2 > 1 and d < a

[v2, v3] if λ∗1 + λ∗2 > 1 and

λ∗1 > 0 and λ∗2 > 0,
or λ∗1 < 0 and e ≥ b,

or λ∗2 < 0 and d ≥ a

[v1, v2, v3] otherwise

, (3.21)

where [v1, v2] defines the edge segment between v1 and v2 (etc.), and [v1, v2, v3]
defines the plane spanned by v.

In addition to modifying the point correspondence search, the minimization step of
ICP is altered to fit the new distance function. This is done by using a least-squares
estimator to minimize the squared distance of the corresponding points, where ai,
bi denotes points in the source cloud and target cloud, respectively. That is, by
minimizing

Edist(q) =
Np∑
i=1

d2
ap(ai, bi), (3.22)

where Np is the total amount of points, bi = R(n, θ)ai + t, in which θ is the rotation
angle around unit vector n and q = [tx, ty, tz, θnx, θny, θnz]>. However, this expres-
sion does not have a closed form solution. This is solved by linearizing about θ = 0
resulting in

Edist(q) =
Np∑
i=1

δ>i (q)M(ai)δi(q), (3.23)

where δi(q) = δi + [ai]xθn− t and

M(ai) = I − [ai]>x [ai]x
k

, (3.24)

in which δi = bi − ai and [ai]x is the skew-symmetric matrix

15

3. Point Cloud Matching

[ai]x =

 0 −ai,z ai,y
ai,z 0 −ai,x
−ai,y ai,x 0

 . (3.25)

This can be expanded as

Edist(q) = q>αq − 2β>q + γ, (3.26)

α =
Np∑
i=1

[
M(ai) −M(ai)[ai]x

−[ai]>xM(ai) [ai]>xM(ai)[ai]x

]
, (3.27)

β =
Np∑
i=1

[
M(ai)

M(ai)[ai]x

]
δi, γ =

Np∑
i=1

δ>i M(ai)δi, (3.28)

from which the vector q which minimize the least squares problem can be found as
q∗ = α−1β, where q contains rotational and translational components.

3.3.2 Generalized ICP

Generalized Iterative Closest Point, as described in the original article [7], modifies
the minimization step of ICP by attaching a probabilistic model of local geometric
structures in the point clouds. This aims to resolve not having perfect point corre-
spondences by assuming corresponding points still exist in the same local plane.

Given two sets of points A = {ai} and B = {bi}, the probabilistic model assumes
existence of an underlying true set of corresponding points Â = {âi} and B̂ = {b̂i}.
In other words, it assumes that A and B are sampled according to ai ∼ N (âi, CAi)
and bi ∼ N (b̂i, CBi), where CAi and CBi are covariance matrices associated with the
sampled points.

Extraction of covariance matrices can be done through Principal Component Anal-
ysis (PCA) of the matched points. The local geometry is captured for each point
in the two sets using a bounded radius neighbor search, where neighbors are defined
as the points contained within the neighborhood bounded by a given radius. As
discussed in [32], this radius has to be chosen such that it captures the structure
of the local area, but small enough not to be skewed from including surrounding
features.

Once a neighborhood of point ρ is established the sample covariance of the resulting
neighbors is calculated (similar to (3.9)) as

C = 1
M − 1

M∑
j=1

(pj − E[NN])(pj − E[NN])>, (3.29)

16

3. Point Cloud Matching

where NN = {p1, p2, . . . , pM} is the set of neighboring points of ρ, the point pj ∈
NN , M is the number of neighbors within the given radius and E[NN] the sample
mean of NN .

The eigenvalue equation

C · vj = λj · vj, j ∈ {1, 2, 3} (3.30)

is solved through eigendecomposition where vj is the eigenvectors of unit length and
λj the eigenvalues of the covariance. The eigenvectors form an orthogonal frame of
the neighborhoods principal components.

The order of the eigenvalues is defined as λ1 > λ2 > λ3. The eigenvector v3, which
corresponding to the smallest eigenvalue represents the principal component with
the smallest variance, which in structured environments is likely to be a surface
normal [33].

The distributions are chosen such that it models high covariance in a plane, and low
covariance in the points surface normal direction

Cn =

ε 0 0
0 1 0
0 0 1

 , (3.31)

where ε is a small constant describing the covariance in the plane. Given the surface
normal vector v3 for a point pi the corresponding covariance matrix Ci is rotated
such that ε describes the uncertainty in the respective surface normals as

Ci = Rv3CnR
>
v3 , (3.32)

where Rv3 is the rotation that transforms the standard basis vector e1 → v3.

Assuming perfect correspondence between two clouds they are associated by the
correct transformation T ∗ such that

b̂i = T ∗âi, (3.33)

where T ∗ contains the correct rotation R∗ and translation t∗. Note that the authors
of G-ICP simplify the transform notation, where a transformation is applied to a
point e.g, Tai, it instead implies Rai + t, although dimensions of the operation does
not agree.

However, the assumption of perfect correspondences is contradicted by sampling
clouds with a LiDAR. Thus, a disparity of the association for an arbitrary T is
defined as

di(T) = bi − Tai. (3.34)

17

3. Point Cloud Matching

Since ai and bi are assumed to be drawn from independent Gaussian distributions
the disparity for the transform can be expressed as

di(T) ∼ N (bi − (T)ai, CBi + (R)CAi (R)>), (3.35)

where the distribution of the correct transform T ∗ is expressed as

di(T ∗) ∼ N (0, CBi + (R∗)CAi (R∗)>). (3.36)

The transform which minimize this disparity is found by using Maximum Likelihood
Estimation (MLE) to iteratively compute T by setting

T = argmax
T

∏
i

p(di(T)) = argmax
T

∑
i

log(p(di(T))), (3.37)

which can be simplified to

T = argmin
T

∑
i

di(T)>(CBi + TCAi T
>)−1di(T). (3.38)

In this thesis the minimization problem is then solved with Scipy’s [34] implementa-
tion of the nonlinear conjugate gradient method in [35] and replaces the minimization
step in the standard ICP implementation.

3.4 Pre-Processing

Applications where ICP is implemented generally utilize some pre-processing on
the point clouds. The computational cost of ICP can be large even with a low
computational complexity due to the sheer amount of data. One approach to this
is to down-sample data, as it lowers the computational cost significantly. Common
approaches to this are random and uniform sampling, although it implies loss of
potentially useful information [4].

To ensure that calculations are made on useful information some points in the clouds
can be removed only based on distance from the sensor. Such filters discards points
based on Euclidean or coordinate distance. A lower Euclidean bound can be set such
that readings from the ego-vehicle are neglected. Due to the sensor not measuring

18

3. Point Cloud Matching

at the exact same angle for each scan-cycle point correspondences at large distances
likely result in large disparities, especially throughout motion. Thus, an upper bound
could also be effective. Additionally, as the LiDAR is likely to observe readings from
the ground, a bound in the z-coordinate can be set as well to remove feature-less
points.

3.5 Matching Rejection

A core assumption of ICP is that for each point in the source cloud there exists a
true point correspondence in the target cloud. This assumption is fundamentally
contradicted when sampling the point-clouds with a LiDAR, as with noise each scan
is a unique sampling of the surrounding environment rather than the same, but
transformed, cloud.

Furthermore, if the source and target clouds are sampled from different positions
some occlusion of the environment is likely. Thus, the unique samples also consists
of partly unique environments. There exists different options to handle these issues,
such as defining a threshold for alignment error, or by rejecting matched pairs which
can be ruled out as corresponding points, i.e. outlier rejection. This section describes
the methods used to find and reject these types of points.

3.5.1 Disparity Based Rejection

A simple and intuitive method for measuring the reliability of point correspon-
dences is to observe the euclidean distance between the matched points [36]. Given
a threshold for what qualifies for a probable match one can reject less probable
correspondences. In this thesis this is implemented by using the already computed
distances based on the individual distance metrics for the given ICP algorithm.

3.5.2 Surface Normal Based Rejection

As a perfect point correspondence is unlikely, extra information of the sampled
underlying surface can be extracted to ensure that points are sampled from common
features [6]. The local geometry is captured with PCA (as described in Section
3.3.2). For each matched pair the surface normal orientation is compared, where
orientational deviations over a threshold is rejected.

A pair {pa, pb} is rejected if the relationship
cos−1(va3 · vb3) < α (3.39)

does not hold, where pa ∈ A, pb ∈ B, α is a set threshold, and va3,vb3 is the eigen-
vector corrsponding to the smallest eigenvalue drawn from a surface in the cloud

19

3. Point Cloud Matching

represented by its superscript. The method was highly recommended in [37] due to
its general increase in performance for different configurations and scenarios.

3.6 Cloud Rectification - Velocity Updating ICP

Velocity updating Iterative Closest Point (V-ICP) is an enhancement to the family
of ICP algorithms by compensating for distortions in clouds caused by motion while
sampling, proposed in [38]. The nested structure of V-ICP uses the estimated trans-
formation of ICP to transform individual points in a gathered cloud such that they
are synced to a common point in time, as if the cloud were sampled instantaneously.
A visualization of this is presented in Figure 3.6, where the left image displays two
distorted sequential point-clouds, A and B, and the estimated motion throughout
gathering the clouds. The right image displays the desired result of V-ICP, where
the rectification process successfully restored the point-clouds to accurately repre-
sent the environment.

-1 0 1 2

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Figure 3.6: Two point clouds gathered in a cylindrical room at a constant velocity
of 0.5 units/lap in the x-direction which is rectified to compensate for the movement
while sampling the points.

In order to perform individual transformations to each point in a point cloud, the
discrete transformation estimate from the ICP algorithm is converted to a continuous
transformation. The report in [39] presents a multitude of ways to perform such a
conversion. The version used here is stated as

Tc = ln(Td)
∆t , ∆t = ti − ti−1, (3.40)

where Td is the discrete transform, and ∆t the time between the current source and
target point clouds. The continuous transformation matrix is then converted to a
state transition matrix as

20

3. Point Cloud Matching

Φ(t) = et·Tc . (3.41)

This is then applied to transform each individual point "forward in time" to the time
of the last sampled point, under the assumption that the transformation is constant
throughout gathering the cloud. A visualization of the algorithm is presented in
Figure 3.7, where the transformation estimation with ICP and cloud rectification
is alternated until convergence. Further, a detailed description of the algorithm is
stated in Algorithm 1.

Algorithm 1: V-ICP
xki is a set of points from the cloud
Xk, sampled at time k, and X̂ de-
notes a cloud that has been recti-
fied.
Tc,k = Tc,k−1
while ||T−c,k − Tc,k|| > ε do

Φi(t) = et·Tc,k

for i=1:n do
x̂ki = Φi(tkn − tki)xki

Td,k =
ICP (X̂k−1, X̂k, Td,k−1)
T−c,k = Tc,k

Tc,k = ln(Td,k)
∆t

Return Td,i

Figure 3.7: Simplification of the Veloc-
ity Updating Iterative Closest Point algo-
rithm

21

3. Point Cloud Matching

22

4
Filtering

Bayesian statistics is a statistical approach created in the 18th century, and was in-
troduced in the topic of filtering in mid 20th century [40]. Bayesian statistics treat
results as approximations of parameters or their probability distributions by model-
ing uncertainties in observations and systems. This approach will be used to improve
the ego-motion parameters derived from the point cloud matching algorithms and
IMU readings.

The theory of filtering and smoothing in the following sections will be described
with a Bayesian approach and the fundamental framework is based on the book by
Simo Särkkä [41]. For further understanding, the reader is recommended to consult
this book.

4.1 Bayesian Filtering

The term optimal filtering regards statistical optimality of a filtering process.
Bayesian filtering is a set of methods which with a Bayesian approach estimates
the state xk of a system for a given time k with statistical optimality.

In Bayesian filtering the state is generally expressed as a vector containing the
parameters of interest for a given application. The system is indirectly observed
through measurements yk affected by noise.

The aim of Bayesian filtering is to for a sequence of unknown states

x0:k = {x0,x1, . . . ,xk}, (4.1)

estimate the joint posterior distribution of the states given the measurements

y1:k = {y1,y2, . . . ,yk}. (4.2)

23

4. Filtering

This can be performed through Bayesian inference, i.e, by applying Baye’s rule,

p(x0:k|y1:k) = p(y1:k|x0:k)p(x0:k)
p(y1:k)

, (4.3)

where p(x0:k) is the prior distribution and p(y1:k|x0:k) = l(x0:k|y1:k) is the likelihood
function. Further, the normalization constant p(y1:k) is defined as

p(y1:k) =
∫
p(y1:k|x)p(x)dx. (4.4)

However, this requires a recalculation of the full posterior distribution for each new
observation. By modelling a system as a Markov process, i.e. the future state of
a system is assumed to only be dependent on the current state and none of the
preceding sequence of states, while noise vectors are assumed independent, this
requirement is dropped. Thus, (4.3) can be compute up to proportionality as

p(xk|yk) ∝ p(yk|xk−1)p(xk−1), (4.5)

where we seek to compute p(xk|y1:k).

In Bayesian filtering, three different distributions are of particular interest;

• Predictive distributions, given the current and previous measurements, predict
distributions of future states xk+n, n steps after state xk

p(xk+n|y1:k). (4.6)

• Filtering distributions, given the current and previous measurements, estimate
distributions of state xk

p(xk|y1:k). (4.7)

• Smoothing distributions, given measurements from an interval [1 : N], N > k,
estimate distributions of state xk

p(xk|y1:N). (4.8)

These distributions are utilized in algorithms such as the Kalman Filter (KF) and
the Rauch-Tung-Striebel-Smoother (RTSS) where there exists a closed form solution.
These algorithms will be discussed further in the coming sections.

24

4. Filtering

4.2 Kalman Filtering

The Kalman Filter [42] is a closed form solution for Bayesian filtering equations of
linear and Gaussian models defined as

xk = Ak−1xk−1 + qk−1,

yk = Hkxk + rk,
(4.9)

where xk is the state, yk is a measurement, qk−1 ∼ N (0,Qk−1) is the process noise,
rk ∼ N (0,Rk) is the measurement noise, x0 ∼ N (x̂0,P 0|0) is the Gaussian prior
distribution, Ak−1 is the transition matrix and Hk is the measurement model.

A linear model can be evaluated in closed form with the Bayesian filtering equations
to obtain the following Gaussian distributions:

p(xk|y1:k−1) = N (xk|x̂k|k−1,P k|k−1),
p(xk|y1:k) = N (xk|x̂k|k,P k|k),
p(yk|y1:k−1) = N (yk|Hkx̂k|k−1,HkP k|k−1H

>
k + Rk).

(4.10)

Kalman filters recursively compute a predicted mean and covariance x̂k|k−1, P k|k−1
through a prediction step, then a posterior mean and covariance x̂k|k, P k|k through
a update step:

Prediction step: (Computes predicted mean and covariance, x̂k|k−1, P k|k−1)

x̂k|k−1 = Ak−1x̂k−1|k−1

P k|k−1 = Ak−1P k|k−1A
>
k−1 + Qk−1

(4.11)

Update step: (Computes posterior mean and covariance, x̂k|k, P k|k)

vk = yk −Hkx̂k|k−1

Sk = HkP k|k−1H
>
k + Rk

Kk = P k|k−1H
>
k S−1

k

x̂k|k = x̂k|k−1 + Kkvk

P k|k = P k|k−1 −KkSkK
>
k

(4.12)

4.3 Bayesian Smoothing

For applications where measurements beyond time k is available it is possible to
compute a marginal distributions conditional on the entire measurement sequence up
until time N , where N > k, with the use of Bayesian smoothing. There exists a few

25

4. Filtering

different types of smoothing, although only fixed-interval smoothing is considered
here.

The Bayesian optimal smoothing equations for the smoothing distributions in (4.8)
is formulated as

p(xk+1|y1:k) =
∫
p(xk+1|xk)p(xk|y1:k)dxk,

p(xk|y1:N) = p(xk|y1:k)
∫ p(xk+1|xk)p(xk+1|y1:N)

p(xk+1|y1:k)
dxk+1,

(4.13)

and can recursively be computed backwards after the filtering distributions are ob-
tained.

4.4 Rauch-Tung-Striebel Smoothing

Rauch-Tung-Striebel-Smoother [43], also called Kalman smoother, is a so called
forward-backward smoother. RTSS is based on the Kalman filtering equations, and
computes the closed form smoothing solution

p(xk|y1:N) = N (xk; x̂k|N ,P k|N) (4.14)

to linear and Gaussian filtering models, where N > k.

RTSS perform the same forward recursion as a KF, and further utilize backward
recursion for re-evaluating the posterior densities as

Gk = P k|kA
>
k P−1

k+1|k,

x̂k|N = x̂k|k + Gk(x̂k+1|N − x̂k+1|k),
P k|N = P k|k −Gk(P k+1|k − P k+1|N)G>k ,

(4.15)

where the moments xk+1|k, P k+1|k, xk|k and P k|k are stored during the forward
pass.

26

5
Implementation

Chapters 3 and 4 describe theory behind alignment of point clouds and how Bayesian
statistics is used to improve estimates. The following chapter explains how estimates
of ego-motion are made by utilizing these proposed methods such that an evaluation
can be made. With the modular toolbox for point cloud matching described in chap-

Figure 5.1: Flowchart of the proposed algorithm. Measurements are obtained
through the process in the Point Cloud Matching block to the left, and is used as
noisy observations of the state in the Filtering block to the right.

ter 3 the modules of the point cloud matching algorithm can easily be interchanged,
creating different configurations. The algorithm begins with sampling a point cloud,

27

5. Implementation

defining the first frame as the source cloud, and the following frame as the target
cloud. These clouds are passed through the point cloud matching algorithm, yield-
ing a measurement yk. The measurement is then processed by a Kalman filter as a
noisy observation of the state x for each time instance k. When the complete se-
quence is processed, further improvements of the ego-motion estimations are made
with the backwards pass of an RTSS. An overview of the algorithm can be seen in
Figure 5.1.

The following sections will describe the different implemented configurations of the
point cloud matching block, followed by the choice of models and parameters in the
Filtering block.

5.1 Point Cloud Matching

The Point Cloud Matching block presented in Figure 5.1 illustrates the flow through
different modules. All modules are subject to certain tunable parameters which are
defined in the following sections. Further, all modules are not necessary for the
algorithm to function and can be combined into different configurations. Thus, a
set of configurations which are implemented and evaluated is also presented.

5.1.1 Pre-Processing

Pre-processing is the first module applied to a newly sampled point cloud. As dis-
cussed in Section 3.4 distance based removal of points can be performed in different
ways to handle different issues. First a lower bound on sampled distance is set to
0.5 m in order to discard all points from the ego-vehicle. Secondly, an upper bound
is set to 40 m in order to neglect points with a higher probability to result in larger
disparities.

Further, in Figure 5.2 two LiDAR point clouds gathered at different locations and
times are visualized, where the circular patterns in the center of the images consist
of points which origins from floor and ceiling.

In the sensors local coordinate frame these points appear very similar in the two
frames. Thus, ICP is likely to match the circular patterns generated by the rotational
nature of the sensor itself. In other words, the circular patterns become false features
for ICP. Such false features could cause the ICP algorithm to converge to a local
minimum. In attempt to omit such features a lower and upper bound in z-direction
is set to -0.7 m and 0.3m respectively. This ensures that no readings originates from
floor or ceiling. However, it does neglect small portions of other, relevant, points as
well.

28

5. Implementation

Figure 5.2: Visualization of two point clouds sampled at different locations. Rota-
tional LiDARs create circular patterns in the floor and ceiling, demonstrating how
these circles create similar features at different locations.

5.1.2 Cloud Rectification

After pre-processing a new cloud, it is passed into the cloud rectification module in
order to reduce distortions caused by ego-motion while sampling. This is performed
based on an initial guess of the true transformation. The initial guess is set to
Tk,init = Tk−1, as vehicular motion is expected to be smooth, where the target cloud
is rectified thereafter.

Next, one of the three ICP implementations (i.e. ICP, Mb-ICP or G-ICP) is pro-
cessed which yields a new estimate of the transformation Tk at time k. Cloud
rectification is hereafter re-iterated until Tk converges, i.e. until rectification no
longer affects the estimate returned by the ICP implementation. In order to allow
for noise and imperfections a threshold for convergence is set on the change of Tk
between iterations. Iteration is continued until reaching the threshold quantified as

||T i−1
k − T ik||2 > RT, (5.1)

where T ik and T i−1
k is the current and previous transformation estimate for time k.

Convergence threshold for rectification, RT , is set to 0.01, and is complemented
with a bound of a maximum of 10 iterations.

5.1.3 ICP Implementation

The ICP implementation starts off with a point correspondence search, which for
each point in the source cloud, finds the nearest neighbor in the target cloud. If
Mb-ICP is the implementation of choice, a modified version using metric-based
distance is used instead. This metric contains a design parameter L which weighs
the rotational and translational component of a transformation between two points.

29

5. Implementation

The authors of the article introducing Mb-ICP in [10] suggests using L = 3, which
is used here.

Corresponding points are matched and passed through the matching rejection mod-
ule in an attempt to find and discard any outliers. In this module, disparity based
rejection algorithm is implemented with a disparity threshold of 0.2 m. Meanwhile,
surface-normal based rejection is implemented to analyze the structure of the local
geometry of each point in order to extract its surface normal. Due to rotational
LiDARs having a lower vertical than horizontal resolution the radius parameter has
to be driven by the vertical resolution. That is, the radius has to be large enough to
capture the structure in vertical direction such that measurements from two differ-
ent lasers are obtained. A radius of 0.5 m is chosen, which with the Velodyne VLP
16 LiDAR used throughout testing corresponds to being able to capture readings
from multiple lasers on orthogonal surfaces up to 11.5 m away from the sensor. The
threshold for surface normal deviation α was set to α = 45◦, where matched points
with a larger deviation are rejected.

Remaining corresponding points are then subject to a minimization step, where the
minimization method depends on which ICP implementation was chosen. This step
attempts to find the transformation which minimize the distance between matched
point.

If G-ICP is the implementation of choice, a radius based neighborhood search is
used to compute the structure of the local area around both points in each matched
point pair. The radius for the search was set to 0.5m, similar to surface-normal
based rejection. Meanwhile, ε which describes the uncertainty in the surface normal
was set to ε = 0.001.

The resulting transformation is applied to the source cloud and an alignment error
is computed. If this alignment error is reduced more than a given tolerance, the
process is re-iterated until convergence is reached. The alignment error is defined as

AE =
N∑
i

||b′i − Tka′i||2
N

, (5.2)

where the point a′i from the source cloud is aligned to its corresponding point b′i in the
target cloud with the transformation Tk at time k. The threshold for convergence of
the alignment error is set to 0.01, and is complemented with a bound of a maximum
of 10 iterations.

5.1.4 Conversion from Transformation to Measurement

When convergence is reached, the resulting transformation matrix Tk is converted
into the measurement yk, which is further refined by the Filtering block as described

30

5. Implementation

in the upcoming section. This conversion is performed as

v = ||t||2∆t , (5.3)

(φ, θ, ψ) =

if − 1 < R(3,1) < 1 :

φ = arctan2(R(3,2),R(3,3))

∆t

θ = arcsin(−R(3,1))
∆t

ψ = arctan2(R(2,1),R(1,1))
∆t

if R(3,1) ≤ −1 :

φ = 0
θ = π

2∆t

ψ = −arctan2(−R(2,3),R(2,2))
∆t

otherwhise :

φ = 0
θ = −π

2∆t

ψ = arctan2(−R(2,3),R(2,2))
∆t

, (5.4)

where v is the speed, φ the roll rate, θ the pitch rate, ψ the yaw rate and where
R and t are the rotational and translational components of the transformation, as
defined in Section 3.1.

5.1.5 Point Cloud Matching Configurations

All modules are not necessary for the algorithm to function, as some rather improves
upon the chain of operations. A set of configurations is set up in order to analyze the
feasibility of using the best performing configuration and how individual modules
effect performance. The combination of modules which makes out ICP, Mb-ICP
and G-ICP are the basis for all evaluation and is extended with additional modules
in iterations. The final configurations are listed in Table 5.1. Pre-processing was
found to be necessary to yield reasonable estimates, therefore it is included in most
combinations.

Table 5.1: The different configurations tested and analyzed, where each configu-
ration is added onto ICP, Mb-ICP and G-ICP respectively.

Filtering Pre-Processing Matching Rejection Cloud Rectification
Config. 1
Config. 2
Config. 3
Config. 4
Config. 5

31

5. Implementation

5.2 Filtering

By assuming a system is linear and discrete, one finds the discrete state transition
of the systems state as

xk = Axk−1 +Dqk−1, (5.5)

where x defines the state, A the discrete state transition matrix and q the process
noise of the system.

Here, the motion parameters v, θ̇, φ̇ and ψ̇ are modeled as independent from each
other while dependent on their respective derivative. Thus, a motion model for each
individual parameter and their derivatives can be expressed as

A =
[

1 ∆t
0 1

]
, D =

[
0 0
0 1

]
, (5.6)

where ∆t defines the discrete time step of the system which was set to ∆t = 0.105.
This motion model can be seen as a discretized constant acceleration model where
accelerations are modeled as constant.

Meanwhile, the process noise q for each parameter is unknown, but can be estimated
based on a set of assumptions. The approach in this thesis is to assume the noise
to be white and zero mean, with the distribution as

qk ∼ N (0, Qk), (5.7)

where Qk is the process noise covariance.

Further, as described in [44, p.269], process noise covariance in the continuous do-
main can be expressed as the auto-correlation of the process noise as

Q(t) = E[q̃(t)q̃(τ)>] = ρ̃(t)δ(t− τ). (5.8)

Assuming ρ̃ to be time-invariant, this is simplified as

Q = E[q̃(t)q̃(τ)>] = ρ̃δ(t− τ) ∀t. (5.9)

32

5. Implementation

Meanwhile, the discrete-time domain correspondence of the process noise can be
expressed as

qk =
∫ ∆t

0
eAc(∆t−τ)Dq̃(k∆t+ τ) dτ, (5.10)

where Ac is the continuous-time state transition matrix [44, p.270]. From this, the
process noise covariance can be derived as

Q = E[qkq>k] = E[
∫ ∆t

0
eAc(∆t−τ)Dq̃(k∆t+ τ)q̃(k∆t+ τ)>D>eAc(∆t−τ)>

dτ]

= ADD>A>E[
∫ ∆t

0
q̃(k∆t+ τ)q̃(k∆t+ τ)> dτ]

= ADD>A>ρ̃.

. (5.11)

This results in a process noise covariance as

Q =
[

∆t3
3

∆t2
2

∆t2
2 ∆t

]
ρ̃, (5.12)

which consists only of a single design parameter, the power spectral density ρ̃.

Given a state consisting of all ego-motion and accelerations as

x =
[
v, a, θ̇, φ̇, ψ̇, θ̈, φ̈, ψ̈

]>
, (5.13)

a combined motion model for the system can be expressed as

A =

1 ∆t 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 ∆t 0 0
0 0 0 1 0 0 ∆t 0
0 0 0 0 1 0 0 ∆t
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, D =

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

. (5.14)

Further, noise cross-covariance between individual motion parameters is assumed to
be negligible, resulting in a combined process noise covariance matrix as

33

5. Implementation

Q =

∆t3
3 ρ̃v

∆t2
2 ρ̃v 0 0 0 0 0 0

∆t2
2 ρ̃v ∆tρ̃v 0 0 0 0 0 0
0 0 ∆t3

3 ρ̃θ̇ 0 0 ∆t2
2 ρ̃θ̇ 0 0

0 0 0 ∆t3
3 ρ̃φ̇ 0 0 ∆t2

2 ρ̃φ̇ 0
0 0 0 0 ∆t3

3 ρ̃ψ̇ 0 0 ∆t2
2 ρ̃ψ̇

0 0 ∆t2
2 ρ̃θ̇ 0 0 ∆tρ̃θ̇ 0 0

0 0 0 ∆t2
2 ρ̃φ̇ 0 0 ∆tρ̃φ̇ 0

0 0 0 0 ∆t2
2 ρ̃ψ̇ 0 0 ∆tρ̃ψ̇

, (5.15)

which contains four design parameters, the individual power spectral densities ρ̃
corresponding to v, θ̇, φ̇ and ψ̇, respectively. To simplify the tuning process each
parameter was set to the same value, such that ρ̃v = ρ̃θ̇ = ρ̃φ̇ = ρ̃ψ̇ = ρ̃.

The power spectral density was estimated by non-linear parameter search for all
configurations and extensions, and was chosen to minimize the Root Mean Square
Error (RMSE) of resulting estimates. However, the resulting power spectral density
for the different extensions was vaguely different. Thus, the values for the power
spectral density was defined only by which configuration was used, with the resulting
values presented in Table 5.2.

ρ̃
Configuration 1: 7.4
Configuration 2: 20
Configuration 3: 403
Configuration 4: 20
Configuration 5: 403

Table 5.2: The power spectral density value for the different configurations of the
ICP modules.

Meanwhile, measurements of the state is obtained through the point matching pro-
cess visualized in Figure 5.1, and are noisy observations of the speed and angular
velocities. The measurement vector is stated as

y =
[
v, θ̇, φ̇, ψ̇

]>
. (5.16)

Measurements and state are related through the measurement model, and describes
noisy observations of the state as

yk = Hxk + rk, (5.17)

where the measurement model H is defined as

34

5. Implementation

H =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

 , (5.18)

and the measurement noise rk ∼ N (0, Rk). Measurement noise covariance matrices
Rk for all configurations were sampled with the sensor being stationary and with no
moving objects within the sensors field of view. Thus, the true state is known to be
zero for all parameters, and the characteristics of the noise can be estimated as well
as any potential bias. This was performed for each configuration of the algorithm
to ensure as accurate estimate of the error characteristics as possible. The resulting
measurement noise covariance matrices is listed in Appendix C.

35

5. Implementation

36

6
Testing and Evaluation

This chapter begins by describing the tests set up and the environment they were
performed in. Further, it describes all evaluation metrics and graphs used to quantify
the results.

6.1 Testing Environment

The main goal is to implement a functioning algorithm during strict circumstances
where there exist visible and static landmarks. This will be set up by using a
hand-picked designated area for gathering data which is later evaluated offline.

The chosen environment is the garage floor of an office building, as it is a highly
controllable environment such that tests that follow the scope can be performed
with ease. The garage contains pillars and vehicles, which is in line with the types
of features which was sought for. A few scenarios are staged to test different aspects
of the algorithms and are presented in the following sections.

6.1.1 Test Case 1

In test case 1 the vehicle moves in a circle around a pillar of the garage floor,
attempting to keep a constant speed and yaw-rate. An illustration of test case 1 can
be seen in Figure 6.1. The motion is performed as fast as possible to observe how
the algorithms handle hard cornering.

37

6. Testing and Evaluation

Figure 6.1: Illustration of the motion performed in Test case 1, where pillars and
cars present are included.

6.1.2 Test Case 2

Test case 2 starts from standing still, accelerating for a few seconds, then braking
until standing still. The resulting straight motion can be observed in Figure 6.2.
Through this motion only translational components should be observed, where the
ability to cope with changes in speed is of interest.

Figure 6.2: Illustration of the motion performed in Test case 2, where pillars and
cars present are included.

6.1.3 Test Case 3

Test case 3 is performed similarly to test case 2, where the ego-vehicle started from
standing still. Although throughout the acceleration a turn is made, completing
the motion by braking until standing still. The motion can be seen in Figure 6.3.
The scenario tests similar features as in test case 2 with the addition of rotational
components.

38

6. Testing and Evaluation

Figure 6.3: Illustration of the motion performed in Test case 3, where pillars and
cars present are included.

6.1.4 Test Case 4

For test case 4 a similar motion is performed as in test case 3, although with an
additional turn as can be seen in Figure 6.4. Starting from standing still, accelerating
while turning left, then right, then braking until standing still. The features tested
are similar to test case 3, adding a change of sign to the rotational components.

Figure 6.4: Illustration of the motion performed in Test case 4, where pillars and
cars present are included.

6.1.5 Test Case - Roll & Pitch

The tests in section 6.1.1-6.1.4 are performed on flat surfaces which will not give any
significant change in roll and pitch rates. Due to the LiDARs difference in vertical
and horizontal resolution, the performance for estimating pitch and roll rates can be

39

6. Testing and Evaluation

interesting. Thus, an additional test presented in Figure 6.5 was set up to observe
how changes in roll and pitch rates are handled.

Figure 6.5: Visualization of the motion throughout the roll and pitch rate test
case.

The test starts with tilting the sensor forward, and then back to flat. Second the
sensor is tilted to the side, and then back to flat again.

6.2 Evaluation

In order to evaluate the performance of the proposed LiDAR-based solution the
filtered and smoothed IMU data will be used as a reference in combination with wheel
speed measured by the Hall-sensors. The process of selecting the noise covariance
matrices of the IMU was performed as in Section 5.2. The power spectral density
was set to q̃ = 200, the sample rate of 600Hz leading to ∆t ≈ 0.00167 and the
measurement noise can be seen in Appendix C.

The resulting performance of the different configurations will be presented in two
ways. First, by a Box-Plot, which visualize the distribution of the relative errors.
Secondly, by the Root Mean Square Error metric, in order to quantify performance
and make it easy to compare performance in-between different configurations.

40

6. Testing and Evaluation

6.2.1 Box Plots

In order to present a qualitative comparison of the results it is important that
they are presented in a fashion where drawing unambiguous conclusions is straight
forward. By merely comparing line plots the result can be hard to evaluate.

To provide insight of the algorithms performance, the results will be presented in
the form of Box plots.

Figure 6.6: Figure depicts a box plot of a normal distribution N ∼ (0, 1) where a
is the median, b the top 75th percentile, c the top 99th percentile and d are outliers.

An illustration of a box plot can be seen in figure 6.6 to provide some aid in how to
interpret the results. Some of the plots have some outliers visually removed as the
scale of the figures would otherwise result in difficulty interpreting the plots.

6.2.2 Root Mean Square Error

Root Mean Square Error is a commonly used metric for deviations in estimates
or predictions of values. It presents the mean of the deviation over a sequence of
predicted values. The RMSE of a set of n predicted values x̂, given the true vales x
is stated as

RMSE(x̂) =
√∑n

k=1(x̂k − xk)2

n
. (6.1)

41

6. Testing and Evaluation

42

7
Results

This chapter presents the different results gathered based on the tests defined in
Chapter 6. The results are presented in order, such that additional modules are
added upon previously presented configurations and such that the effect of an indi-
vidual module can be evaluated. Finally, the test case for roll and pitch is presented
separately, as assumptions made in some modules are contradicted under the tests
circumstances.

To begin with, the filtered and smoothed values from the gyroscope in the IMU and
the wheel-speed sensor gathered during tests from Sections 6.1.1-6.1.4 is presented
in Figure 7.1. These values were used as reference throughout all test cases.

Figure 7.1: Wheel speed readings and smoothed gyroscope values for test cases
1-4.

7.1 Configuration 1 - No Additions

In the first configuration no matching rejection, cloud rectification or pre-processing
was performed. The results for the different test cases are presented in Figure 7.2,

43

7. Results

displaying the estimates of ICP, Mb-ICP and G-ICP.

Case 1 Case 2 Case 3 Case 4

-5

-4

-3

-2

-1

0

1

2

Case 1 Case 2 Case 3 Case 4

-15

-10

-5

0

5

10
ICP

Mb-ICP

G-ICP

Figure 7.2: Box plots presenting the Speed and Yaw Rate error distributions for
the different test cases and algorithms for Configuration 1. Occasional outliers for
ICP excluded due to their magnitude.

Further, the RMSE for the different algorithms and test cases are presented in Table
7.1.

Case 1 Case 2 Case 3 Case 4

Speed [m/s]
ICP 0.6642 0.4879 0.7917 0.6342
Mb-ICP 0.7393 0.5636 0.9014 0.6332
G-ICP 0.6644 0.4862 0.7896 0.5382

Yaw Rate [◦/s]
ICP 3.0150 1.2815 2.5058 2.2662
Mb-ICP 5.3260 2.1532 5.0345 3.2347
G-ICP 3.1084 1.2108 2.4602 2.2531

Table 7.1: The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 1.

From the results it can be seen that the three algorithms struggle, especially with
yaw-rate estimation. ICP and G-ICP perform equally poor with Mb-ICP being the
worst in general. Looking closer at Test Case 1 presented in Figure 7.3 there is a
clear bias in both parameters, where speed estimates appear to be affected heavily.

44

7. Results

2 4 6 8 10 12

0

0.5

1

1.5

2 4 6 8 10 12

10

15

20

25

30

Figure 7.3: Estimates of speed and yaw rate compared with the ground truth for
Configuration 1 - Test case 1.

7.2 Configuration 2 - Pre-Processing

For the second configuration, a pre-processing step is applied in attempt to pro-
cess higher quality clouds in ICP. By applying the pre-processing step the results
presented in Figure 7.4 were achieved.

Case 1 Case 2 Case 3 Case 4

-1

-0.5

0

Case 1 Case 2 Case 3 Case 4

-4

-2

0

2

4ICP

Mb-ICP

G-ICP

Figure 7.4: Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 2.

Further, the RMSE for the different algorithms and test cases is presented in Table
7.2.

45

7. Results

Case 1 Case 2 Case 3 Case 4

Speed [m/s]
ICP 0.2470 0.1192 0.1977 0.1276
Mb-ICP 0.2621 0.1229 0.1950 0.1474
G-ICP 0.2048 0.0365 0.1311 0.0878

Yaw Rate [◦/s]
ICP 1.6912 0.9846 1.8336 1.8343
Mb-ICP 1.3950 0.9258 1.5585 1.1287
G-ICP 0.3593 0.2253 0.5064 0.5699

Table 7.2: The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 2.

The results clearly shows how the estimation errors were reduced for the three
ICP implementations, especially considering speed estimates. Both yaw rate and
speed estimates were best performed by G-ICP, with Mb-ICP and ICP being less
accurate. Test case 1 appears to be more difficult than the other cases considering
speed estimates.

7.3 Configuration 3 - Matching Rejection

To further enhance the quality of the data in the final steps of ICP, matching re-
jection is added in addition to the pre-processing step. This in order to neglect
influence from unique points in the source and target clouds. In other words, re-
move points which origin from features which is not present in both clouds. The
result of adding a matching rejection step is presented in Figure 7.5.

Case 1 Case 2 Case 3 Case 4

-0.4

-0.2

0

0.2

Case 1 Case 2 Case 3 Case 4

-6

-4

-2

0

2

4

6ICP

Mb-ICP

G-ICP

Figure 7.5: Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 3.

Further, the RMSE for the different algorithms and test cases are presented in Table
7.3.

46

7. Results

Case 1 Case 2 Case 3 Case 4

Speed [m/s]
ICP 0.2232 0.0912 0.1551 0.1001
Mb-ICP 0.2231 0.1068 0.1577 0.0964
G-ICP 0.2056 0.0359 0.1335 0.0870

Yaw Rate [◦/s]
ICP 0.6477 0.9096 2.2291 1.9679
Mb-ICP 0.7287 0.5701 0.8969 1.1351
G-ICP 0.2331 0.2384 0.3163 0.4636

Table 7.3: The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 3.

The results does not show a clear general improvement from adding the matching
rejection step. However, as seen both from the result from adding a pre-processing
step and from adding a matching rejection step; G-ICP seem to outperform ICP and
Mb-ICP under equal conditions in all test cases, and in estimation of both Speed
and Yaw Rate. Looking closer on the results only from G-ICP, a slight but seemingly
general improvement can be seen in adding the matching rejection step.

7.4 Configuration 4 - Cloud Rectification

The last module tested is the cloud rectification step, in the form of the V-ICP loop.
This in order to compensate for ego-motion induced distortions in LiDAR sampled
point clouds. In this configuration the matching rejection step is excluded in order
to evaluate the effect of the two modules under equal conditions. The result of
adding the cloud rectification step is presented in Figure 7.6.

Case 1 Case 2 Case 3 Case 4

-1

-0.5

0

0.5

Case 1 Case 2 Case 3 Case 4

-10

-5

0

5

ICP

Mb-ICP

G-ICP

Figure 7.6: Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 4.

Further, the RMSE for the different algorithms and test cases is presented in Table
7.4.

47

7. Results

Case 1 Case 2 Case 3 Case 4

Speed [m/s]
ICP 0.2806 0.1350 0.2411 0.1654
Mb-ICP 0.2803 0.1461 0.2158 0.1667
G-ICP 0.2061 0.0416 0.1329 0.0877

Yaw Rate [◦/s]
ICP 2.3445 1.2143 2.0748 1.3917
Mb-ICP 1.6963 1.2012 1.7226 1.0706
G-ICP 0.3504 0.2226 0.4930 0.5277

Table 7.4: The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 4.

Contrary to the result of adding the matching rejection step, adding the cloud rec-
tification step resulted in a worse behaviour in general, with a few small exceptions
for G-ICP.

7.5 Configuration 5 - Combining Modules

The final configuration tested is combining the matching rejection and cloud recti-
fication step. The result of combining the two modules on top of the pre-processing
step is presented in Figure 7.7.

Case 1 Case 2 Case 3 Case 4

-0.4

-0.2

0

0.2

0.4

Case 1 Case 2 Case 3 Case 4

-3

-2

-1

0

1

2

3
ICP

Mb-ICP

G-ICP

Figure 7.7: Box plots presenting the Speed and Yaw Rate error distribution for
the different test cases and algorithms for Configuration 5.

Further, the RMSE for the different algorithms and test cases is presented in Table
7.5.

48

7. Results

Case 1 Case 2 Case 3 Case 4

Speed [m/s]
ICP 0.2816 0.0979 0.1312 0.1045
Mb-ICP 0.2654 0.1231 0.1565 0.1076
G-ICP 0.2077 0.0427 0.1349 0.0863

Yaw Rate [◦/s]
ICP 1.6569 0.7346 1.0623 1.1581
Mb-ICP 1.1212 0.7537 0.6116 0.9108
G-ICP 0.2367 0.2445 0.3365 0.3794

Table 7.5: The RMSE for the parameters Speed and Yaw Rate for the different
test cases and algorithms for Configuration 5.

The result of the two modules seem to differ between scenarios and parameters,
and in comparison to the different configurations. However, one clear difference
which can be observed for G-ICP is that the estimates seem to improve for Yaw
Rate estimates in test case 4. Meanwhile, the effect seems to be larger for ICP and
Mb-ICP, but resulting in both better and worse behaviour for different parameters
and test cases. In summary, the effect of combining the two modules seems to have
larger influence on ICP and Mb-ICP than on G-ICP, but with a varying effect for
different scenarios and parameters.

7.6 Provoking Roll & Pitch

In previous test cases pitch and roll rates were in general close to zero but with some
small oscillation. In these cases all algorithms estimated the roll and pitch rates to
be zero, with small deviations. The last test case, with the attempt to evaluate how
a provocation in pitch and roll is handled, is presented in Figure 7.8. In this test
case the ground and ceiling filter was removed as it does not function properly when
the sensor is tilting. However, the distance-based filter of the pre-processing step
and the matching rejection step is included.

As seen in the figure, none of the algorithms handle the provocation very well and
does not in general follow the trends of the ground-truth. Meanwhile, G-ICP seems
to handle the deviations in pitch and roll rates better than ICP and Mb-ICP. Further,
an interesting aspect of the result is that the yaw rate estimates seem to deviate
from the ground-truth in an unusual manner during periods of larger roll rates. Four
additional test cases for roll and pitch can be found in Appendix A.

49

7. Results

2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

2 4 6 8 10 12 14 16 18 20
-10

0

10

2 4 6 8 10 12 14 16 18 20

-10

0

10

20

Figure 7.8: Roll and pitch rate estimates and ground truth for the Roll and Pitch
test case.

50

8
Discussion

As stated in Section 1.2, the goal of the thesis is to "evaluate ego-motion estimates
from using LiDAR generated point clouds". The results presented in Chapter 7
with all its components will be discussed in this chapter in such that conclusions
regarding the goal can be drawn.

8.1 ICP and ICP Extensions

The Iterative Closest Point algorithm is in a sense naive, although effective. ICP’s
limitations become obvious as a core assumption for optimal performance is that
there always exists true point correspondence. This might be true for some types of
problems, but certainly not for LiDAR point clouds due to measurement noise. In
Table 7.2 the algorithms are compared without any additions except filtering, and
it can be seen that ICP with its minimization of point-to-point distance performs
poorly. This is in line with the comparison performed in [37], which suggested other
methods of minimization. Worth mentioning is that ICP has a computational cost
that was significantly lower than its extensions, and still performs almost as well as
Mb-ICP in many cases.

Metric-based ICP utilize an interesting concept of not only removing the assump-
tion of true point correspondences, but also changing the metric for which corre-
spondences are assigned by. The core reason for this is, according to the authors of
Mb-ICP [10], to increase alignment performance during rotation. Therefore it was
expected to heavily outperform at least ICP in test case 1 where rotation is applied
throughout the whole scenario. As shown in the results there are some improve-
ment compared to ICP in yaw rate, which appears to come with the cost of speed
estimations.

The parameter L in Mb-ICP is the trade-off between rotation and translation [11].
The authors suggested to set L = 3, where it is possible that tuning of this parameter
is necessary to achieve greater results.

Generalized ICP is a commonly used algorithm within the ICP family, and from
the results one can clearly see why, as it performed best in almost every test case.

51

8. Discussion

However, the G-ICP algorithm is by no means perfect and there exists many papers
attempting to improve upon it. The approach of using structural information is
interesting, although the implementation in G-ICP contains some flaws in that a
uniform distribution of points is assumed. Due to how rotational LiDARs operate,
the vertical resolution becomes very low in comparison to the horizontal resolution,
i.e, points are not sampled uniformly on surfaces, but rather in horizontal lines as can
be seen in Figure 8.1. This becomes an issue as the nearest neighborhood method of

Figure 8.1: Depiction of points sampled on a flat surface, where it can be seen
that the samples are in lines and not uniformly distributed.

selecting the k-nearest neighbors in G-ICP possibly only finds a set of points which
origin from the same line. More specifically, the resulting surface normal computed
from PCA might be sampled from a line rather than a surface. Thus, PCA will only
capture the distribution of the measurement noise of the sampled line such that
the estimated normals may differ heavily. The same issue applies to other similar
methods such as surface normal rejection.

The simple workaround to bad neighborhood selection implemented, which defines
neighbors as the points within some radius, seemingly works for the evaluated test
cases. However, the radius has to be set to large enough to capture the measurements
from the next channel of the sensor, but low enough to capture the unique structure
in the area. As the resolution of point clouds gathered by this type of LiDARs
deprecate over distance, an interesting area of further development is to evaluate
new approaches to this issue, for example by implementing a dynamic radius. This
would likely increase the performance as well as generalize the algorithm for multiple
environments.

As a conclusion, G-ICP performed better than Mb-ICP and ICP for all parameters
in all test cases and for all configurations. However, both extensions to ICP is
in general more computationally heavy than ICP. Thus, the choice of algorithm
naturally becomes a trade-off between computational cost and performance.

8.2 ICP Modules

The impact of pre-processing is obvious for featureless areas such as ground and
ceiling which can be seen when comparing the results of configurations in section 7.1

52

8. Discussion

and 7.2. By removing the repetitive measurements captured in the top and bottom
of each frame the improvements were very clear. This is a problem that can occur for
many scenarios, such as going through a tunnel where the walls might be identical,
as well as driving in a round-about where the center can appear identical for each
frame to distort the results. An example of this can be seen with the central pillar
in Test Case 1 where the algorithms speed estimations are less accurate in general.
This observation concurs with the ones presented in [45, 37] where pose estimations
in repetitive or featureless environments was troublesome.

The approach for ground and ceiling removal by simply removing points above and
below a set z-coordinate threshold is a naive approach and only works well under
good circumstances. Due to the evidently large impact of the pre-processing step
it would be interesting to evaluate more qualified approaches to ground and ceiling
removal such as the gradient threshold based method in [46]. In addition, it would
be interesting to analyze other methods and ideas for removal of featureless areas.

Another solution to removing the false features which occurs on the ground and
ceiling is to use a sensor which does not suffer from the low vertical resolution of
rotational LiDARs. An example is the LiDAR sensor used in [47], which rotates
in multiple directions and therefor does not generate the same differentiable false
features on the ground and ceiling.

Matching rejection generally had a positive impact on the results, as can be seen
comparing the results in Sections 7.2 and 7.3. This is in line with the results from
[37]. Which of the two implemented methods that had the largest impact were not
investigated. There are other matching rejection methods which could potentially
affect the results even more. The distance based rejection method from Section
3.5.1 has a tuneable parameter in the maximum acceptable distance between corre-
sponding points. There exists some methods with a similar approach, although the
maximum distance is based on the distribution of the points. It is likely to perform
better for different scenarios where the range distributions varies, without having to
be reconfigured e.g. travelling on a highway soon to enter a city.

The concept of cloud rectification seems intuitive at higher speeds. Although as can
be seen when comparing Sections 7.2 and 7.4 there is no clear improvement. By
observing the results of the configurations performance solely on test case 4, as can
be seen in Appendix B, there appears to be some added oscillations for ICP and
Mb-ICP. Tuning of the convergence threshold might be necessary for more accurate
estimates. The speeds which the test cases were run with where relatively low, with
the top speed measured to approximately 2m/s, which translates to a maximum
translational distortion of the point cloud by 20 cm. This would likely not distort
the point clouds severely enough such that rectification is necessary, therefore it is
hard to draw any reasonable conclusion regarding the V-ICP addition. Though as
previously mentioned there are several authors who proves attest to its importance
[18, 30, 15, 47].

Combining both cloud rectification and matching rejection had some expected con-

53

8. Discussion

sequences. The result in Section 7.5 appears to be something in-between the result
of applying the modules individually as in Sections 7.4 and 7.3. Analyzing whether
or not adding the rectification module on top of the matching rejection module is
an improvement or not in general would require further testing under higher speeds.
However, it seems that the rectification process has a tendency to introduce some
oscillations and lower the general performance during lower speeds.

In conclusion, the pre-processing module seems to not only be the most important
module out of the evaluated modules, but its ground and ceiling removal step seems
to be vital for high performance in speed and yaw rate estimates. The matching
rejection module had a positive effect on the estimates, but the magnitude of its
effect results in the question of whether or not the added computational complexity
is worth the trade-off. Lastly, the cloud rectification module has a questionable
effect on performance in the test cases presented, but could possibly have larger
importance when sampling under higher speed.

8.3 Roll & Pitch Rates

Roll and pitch rates estimates presented in Section 7.6 can be seen to perform
poorly. This was expected due to the low vertical resolution of the sensor which can
not properly capture the transformation between the two frames. A possible reason
could be due to that a core assumption of the ICP algorithms is that there is a proper
rigid transformation which aligns the source and target point cloud. Imagining a
simple case of a single channel rotational LiDAR in a square room, where the source
cloud is captured horizontally and the target cloud when the sensor is tilted 30◦.
Naturally the source cloud will represent a square while the target cloud will have a
more rectangular shape in the coordinate frame of the LiDAR, such that a stretch
and/or shear transformation is required to properly align the two clouds. Another
observation that can be made from Figure 7.8 and the figures in Appendix A is that
yaw rate can be affected. This will likely cause faulty estimations when roll and
pitch rates are applied, i.e, driving over some steep curvature such as a speed bump
or a hill.

As previously discussed, the ground and ceiling removal algorithm used in the
pre-processing step simply removes all points below or above a set threshold in
z-direction. This however, is performed under the coordinate-frame of the LiDAR
sensor itself. Thus, if the sensor is tilting in pitch or roll in reference to the ground
or ceiling some faulty points will be removed in the direction in which it is currently
tilting. In other words, the algorithm does not work properly when a pitch or roll is
applied. At the same time, as previously discussed the ground and ceiling removal
algorithm seems to be important for speed and yaw rate estimates, and it would
be interesting to investigate how a properly functioning algorithm would affect the
estimates for pitch and roll rates as well.

Potentially, a LiDAR sensor with a higher vertical resolution and/or field of view

54

8. Discussion

would solve the problems which arose in the presented results. There exists many
other models and types of LiDAR sensors with higher vertical resolution than the
2 degrees for the Velodyne VLP 16 or its 30◦ field of view. It would be interesting
to investigate what vertical resolution and/or field of view is necessary in order to
yield high quality roll and pitch estimates.

Apart from traditional rotational LiDARs, there exists LiDAR sensors such as dis-
cussed for solving issues of false features in the ground and ceiling in Section 8.2.
Possibly, both the issues with estimating roll and pitch rates, and the false features
in ground and ceiling would be solved by simply utilizing a different type of LiDAR
sensor.

Meanwhile, a better solution could for example be to extract the ground plane of
the point clouds and estimate the angles to such a plane instead. In addition, such
an approach would yield an absolute pitch and roll estimate as well, which could
possibly be used to handle yaw rate and speed estimates better.

8.4 Estimating Ego-Motion with LiDAR Data and
ICP

As a summary, the G-ICP extension combined with a pre-processing and matching
rejection module showed the best general performance out of the different configura-
tions. Adding on the cloud rectification module did not show a general improvement
but might be more important when sampling at higher speed. While the resulting
algorithm showed promising performance for estimating speed and yaw rate, the
tests for pitch and roll deemed the algorithms unfeasible for estimating pitch and
roll rates under the circumstances.

Setting the threshold of convergence even lower proved to increase the yaw-rate
accuracy of ICP and Mb-ICP even further, which was expected. G-ICP did not
have much room for improvement as convergence was quick. Lowering the threshold
can increase the general performance of the algorithms to some extent, though it
does not solve the problems stated.

The area of active safety and autonomous drive spans to many different types of
vehicles, all of which have partly unique behaviour on the road. An example is
trucks, which in comparison to, e.g, cars tend to tilt their cabin to a much more
significant degree while turning or braking. Thus, the pitch and roll rates might
be a more interesting parameter to track in a truck than in a car. Going back to
answer on the problem stated in the purpose of the thesis, ego-motion in terms of
speed and yaw-rate can be derived from LiDAR data, while pitch and roll rates seem
to be more troublesome with the proposed algorithms. In other words, depending
on which subset of parameters of ego-motion are interesting for the use-case, the
approach presented in this thesis could be useful.

55

8. Discussion

An interesting topic of further analysis is the neighborhood method of G-ICP, which
could make the algorithm both more accurate and robust. Moreover, the difference
in accuracy between speed, yaw rate and pitch rate, roll rate is an interesting result,
though partly expected due to the structure of the data gathered from a rotational
LiDAR. However, even though the tests performed show an underwhelming perfor-
mance for roll and pitch, the results leave room for further analysis as there are
many other approaches which could handle such estimations better. Lastly, it seems
that some issues for estimating all parameters origin from how rotational LiDARs
sample clouds, and it would be interesting to investigate which problems persist if
using a different type of LiDAR sensor.

56

9
Conclusion

The proposed algorithm for estimating ego-motion from LiDAR data show some
conclusive results under the defined test cases. Under the circumstances of the test
cases and with the proposed algorithm, it is feasible to estimate speed and yaw rate
of the ego-vehicle from LiDAR data. Meanwhile, in order to estimate pitch and roll
rates, further analysis of other modules, completely different algorithms, or other
types of LiDAR sensors is required. Further, a ground and ceiling removal method
is shown to be a vital part of the ICP based algorithms in order to estimate both
speed and yaw rate without any significant bias, at least when using data from a
rotational LiDAR in an enclosed space.

Depending on which parameters are interesting for a specific application, the algo-
rithm could be useful in its presented state. As previously discussed, the algorithm
might not be suitable in applications where significant pitch or roll occur, such as
in trucks. Meanwhile, it could be useful for estimating speed and yaw rate in for
example a car.

As a conclusion, the results of the performed tests indicates feasibility for using
LiDAR generated point clouds for ego-motion estimations. However, further analysis
into handling false features and estimating roll and pitch rates has to be done for
robust, and accurate estimations.

57

9. Conclusion

58

Bibliography

[1] L. Nissen, “Velodyne announces order from ford motor company for its
next-gen solid-state lidar sensor designed for adas safety and autonomous
driving,” 2016, accessed on: February 26, 2019. [Online]. Available:
https://velodynelidar.com/docs/news/Velodyne%20Announces%20Order%
20From%20Ford%20Motor%20Company%20for%20its%20Next-Gen%20Solid-
State%20LiDAR%20Sensor%20Designed%20for%20ADAS%20Safety%20and%
20Autonomous%20Driving.pdf

[2] T. B. Lee, “Why experts believe cheaper, better lidar is right around
the corner,” 2018, accessed on: February 25, 2019. [Online]. Avail-
able: https://arstechnica.com/cars/2018/01/driving-around-without-a-driver-
lidar-technology-explained/

[3] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp.
239–256, Feb. 1992.

[4] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud registration
algorithms for mobile robotics,” Found. Trends Robot, vol. 4, no. 1, pp. 1–104,
May 2015. [Online]. Available: http://dx.doi.org/10.1561/2300000035

[5] Y. Chen and G. Medioni, “Object modeling by registration of multiple range
images,” in Proceedings. 1991 IEEE International Conference on Robotics and
Automation, Apr. 1991, pp. 2724–2729 vol.3.

[6] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in Pro-
ceedings Third International Conference on 3-D Digital Imaging and Modeling,
May 2001, pp. 145–152.

[7] A. Segal, D. Hähnel, and S. Thrun, “Generalized-icp,” in Robotics: Science and
Systems V, University of Washington, Seattle, USA, June 28 - July 1, 2009,
2009. [Online]. Available: http://www.roboticsproceedings.org/rss05/p21.html

[8] L. Montesano, J. Minguez, and L. Montano, “Probabilistic scan matching for
motion estimation in unstructured environments,” in 2005 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Aug. 2005, pp. 3499–3504.

59

Bibliography

[9] F. Lu and Milios, “Robot pose estimation in unknown environments by match-
ing 2d range scans,” in 1994 Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, Jun. 1994, pp. 935–938.

[10] J. Minguez, L. Montesano, and F. Lamiraux, “Metric-based iterative clos-
est point scan matching for sensor displacement estimation,” Robotics, IEEE
Transactions on, vol. 22, pp. 1047 – 1054, Nov. 2006.

[11] L. Armesto, J. Minguez, and L. Montesano, “A generalization of the metric-
based iterative closest point technique for 3d scan matching,” in 2010 IEEE
International Conference on Robotics and Automation, May 2010, pp. 1367–
1372.

[12] H. Yoshitaka, K. Hirohiko, O. Akihisa, and Y. Shin’ichi, “Mobile robot local-
ization and mapping by scan matching using laser reflection intensity of the
sokuiki sensor,” in IECON 2006 - 32nd Annual Conference on IEEE Industrial
Electronics, Nov. 2006, pp. 3018–3023.

[13] P. Biber and W. Strasser, “The normal distributions transform: a new approach
to laser scan matching,” Proceedings 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Oct.
2003.

[14] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. Lilienthal, “3d normal dis-
tributions transform occupancy maps: An efficient representation for mapping
in dynamic environments,” The International Journal of Robotics Research,
vol. 32, pp. 1627–1644, Dec. 2013.

[15] L. Richard, “Estimation of ego vehicle motion from lidar point cloud data,”
Master’s thesis, Chalmers University of Technology, 2015.

[16] A. Geiger, “Are we ready for autonomous driving? the kitti vision
benchmark suite,” in Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), ser. CVPR ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 3354–3361. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2354409.2354978

[17] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time,” in
Robotics: Science and Systems, 2014.

[18] F. Moosmann and C. Stiller, “Velodyne slam,” in 2011 IEEE Intelligent Vehi-
cles Symposium (IV), Jun. 2011, pp. 393–398.

[19] “Clean motion zbee product specification,” Lerum, Sweden: Clean
Motion, n.d, accessed on: February 4, 2019. [Online]. Available:
https://cleanmotion.se/zbee/specification/

[20] “Velodyne vlp16 product page,” San Jose, U.S.A: Velodyne Lidar, n.d,

60

Bibliography

accessed on: February 5, 2019. [Online]. Available: https://velodynelidar.com/
vlp-16.html

[21] “Honeywell aerospace hg1120 product specification,” Honeywell International
Inc., n.d, accessed on: February 4, 2019. [Online]. Available: https:
//aerospace.honeywell.com/en/products/navigation-and-sensors/hg1120

[22] Electronics Tutorials, “Hall effect sensor,” n.d, accessed March 22, 2019.
[Online]. Available: https://www.electronics-tutorials.ws/electromagnetism/
hall-effect.html

[23] S. Maneewongvatana and D. M. Mount, “Analysis of approximate nearest
neighbor searching with clustered point sets,” CoRR, vol. cs.CG/9901013,
1999. [Online]. Available: http://arxiv.org/abs/cs.CG/9901013

[24] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975. [Online].
Available: http://doi.acm.org/10.1145/361002.361007

[25] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” J. Opt. Soc. Am. A, vol. 4, no. 4, pp. 629–642, Apr. 1987.
[Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-4-4-629

[26] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3-d rigid body
transformations: a comparison of four major algorithms,” Machine Vision
and Applications, vol. 9, no. 5, pp. 272–290, Mar. 1997. [Online]. Available:
https://doi.org/10.1007/s001380050048

[27] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d
point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-9, no. 5, pp. 698–700, Sep. 1987.

[28] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing icp variants
on real-world data sets,” Autonomous Robots, Apr. 2013.

[29] J. Lv, K. Yukinori, A. A. Ravankar, A. Ravankar, and T. Emaru, “A solution
to estimate robot motion with large rotation by matching laser scans,” in 2015
54th Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE), Jul. 2015, pp. 1083–1088.

[30] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier,
“Lidar point clouds correction acquired from a moving car based on
can-bus data,” CoRR, vol. abs/1706.05886, 2017. [Online]. Available:
http://arxiv.org/abs/1706.05886

[31] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low drift, ro-
bust, and fast,” in IEEE International Conference on Robotics and Automa-
tion(ICRA), Seattle, WA, May 2015.

61

Bibliography

[32] R. B. Rusu, “Semantic 3d object maps for everyday manipulation in human
living environments,” KI - Künstliche Intelligenz, vol. 24, no. 4, pp. 345–348,
Nov. 2010. [Online]. Available: https://doi.org/10.1007/s13218-010-0059-6

[33] M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and J. Hertzberg,
“Evaluation of 3d registration reliability and speed - a comparison of icp and
ndt,” in 2009 IEEE International Conference on Robotics and Automation, May
2009, pp. 3907–3912.

[34] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, accessed on: March 5, 2019. [Online]. Available:
http://www.scipy.org/

[35] E. Polak and G. Ribiere, “Note sur la convergence de méthodes de
directions conjuguées,” ESAIM: Mathematical Modelling and Numerical
Analysis - Modélisation Mathématique et Analyse Numérique, vol. 3, no. R1,
pp. 35–43, 1969. [Online]. Available: http://www.numdam.org/article/
M2AN_1969__3_1_35_0.pdf

[36] Z. Zhang, “Iterative point matching of free-form curves and surfaces,” Interna-
tional Journal of Computer Vision - IJCV, vol. 13, Oct. 1994.

[37] F. Donoso, K. Austin, and P. McAree, “How do icp variants perform
when used for scan matching terrain point clouds?” Robotics and
Autonomous Systems, vol. 87, pp. 147 – 161, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889016301282

[38] S. Hong, H. Ko, and J. Kim, “Vicp: Velocity updating iterative closest point al-
gorithm,” in 2010 IEEE International Conference on Robotics and Automation,
May 2010, pp. 1893–1898.

[39] L. Shieh, H. Wang, and R. Yates, “Discrete-continuous model conversion,” Ap-
plied Mathematical Modelling, vol. 4, no. 6, pp. 449 – 455, 1980. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/0307904X80901778

[40] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York: Aca-
demic Press, 1970.

[41] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press,
2013.

[42] R. Kalman, “A new approach to linear filtering and prediction problems,” Jour-
nal of Basic Engineering (ASME), vol. 82D, pp. 35–45, Jan. 1960.

[43] H. E. Rauch, C. T. Striebel, and F. Tung, “Maximum likelihood estimates of
linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450, 1965.
[Online]. Available: https://doi.org/10.2514/3.3166

62

Bibliography

[44] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with applications to
tracking and navigation. Wiley-Interscience, 2001.

[45] G. Bolmvall and M. Östman, “Precision localization in dense point cloud maps,”
Master’s thesis, Chalmers University of Technology, 2018.

[46] H. Vu, H. T. Nguyen, P. M. Chu, W. Zhang, S. Cho, Y. W. Park, and K. Cho,
“Adaptive ground segmentation method for real-time mobile robot control,”
International Journal of Advanced Robotic Systems, vol. 14, no. 6, 2017.

[47] J. Zhang and S. Singh, “Laser-visual-inertial odometry and mapping with high
robustness and low drift,” Journal of Field Robotics, Aug. 2018.

63

Bibliography

64

A
Roll & Pitch Tests

Further tests of roll and pitch rates which was not presented in the results chapter
are presented here.

2 4 6 8 10 12 14
-5

0

5

2 4 6 8 10 12 14
-5

0

5

2 4 6 8 10 12 14
-10

0

10

Figure A.1: Roll and pitch rate estimates and ground truth for a test case where
the platform was rolled -45◦ then return to horizontal.

I

A. Roll & Pitch Tests

2 4 6 8 10 12 14 16 18

-5

0

5

10

2 4 6 8 10 12 14 16 18
-10

0

10

2 4 6 8 10 12 14 16 18

-10

0

10

Figure A.2: Roll and pitch rate estimates and ground truth for a test case where
the platform was rolled -45◦, pitched 45◦, pitched back and then return to horizontal.

2 4 6 8 10 12 14

-5

0

5

2 4 6 8 10 12 14
-10

0

10

2 4 6 8 10 12 14
-10

0

10

Figure A.3: Roll and pitch rate estimates and ground truth for a test case where
the platform was rolled -45◦ and pitched 45◦ simultaneously and then return to
horizontal.

II

A. Roll & Pitch Tests

1 2 3 4 5 6 7 8 9 10 11
-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11
-10

0

10

1 2 3 4 5 6 7 8 9 10 11
-4

-2

0

2

Figure A.4: Roll and pitch rate estimates and ground truth for a test case where
the platform was pitched 45◦ then return to horizontal.

Noticeable in the figures is that almost nothing is captured in the roll and pitch
rates, except for with G-ICP where small hints which follow the general trends can
be seen. It appears that the roll and pitch rates influences the yaw-rate quite much.

III

A. Roll & Pitch Tests

IV

B
Test Case 4

The resulting graphs for all configurations for test case 4 is presented below.

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

-30

-20

-10

0

10

20

Figure B.1: Filtered speed and yaw rate estimations for test case 4 for the algo-
rithms ICP, Mb-ICP and G-ICP without any additions.

V

B. Test Case 4

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

-20

-10

0

10

20

Figure B.2: Filtered speed and yaw rate estimations for test case 4 for the algo-
rithms ICP, Mb-ICP and G-ICP where false features such as ground and ceiling are
removed.

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

-20

-10

0

10

20

Figure B.3: Filtered speed and yaw rate estimations for test case 4 for the algo-
rithms ICP, Mb-ICP and G-ICP where false features are removed and outliers are
rejected in the correspondence search.

VI

B. Test Case 4

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

-20

-10

0

10

20

Figure B.4: Filtered speed and yaw rate estimations for test case 4 for the al-
gorithms ICP, Mb-ICP and G-ICP where false features are removed and the point
clouds are rectified.

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

-20

-10

0

10

20

Figure B.5: Filtered speed and yaw rate estimations for test case 4 for the al-
gorithms ICP, Mb-ICP and G-ICP where false features are removed, outliers are
rejected in the correspondence search and the point clouds are rectified.

VII

B. Test Case 4

VIII

C
Measurement Noise Characteristic

The measurement noise covariance matrices for the different algorithms and config-
urations used in the filtering process is presented below. These were sampled with
a stationary LiDAR in an enclosed room such that E(y) = [0, 0, 0, 0]>.

RIMU =

57.4563 1.1818 1.1156
1.1818 75.0010 −2.6799
1.1156 −2.6799 99.8949

 10−4 (C.1)

RICP−Conf.−1 =

17.5817 172.3560 −1.0683 0.9663
172.3560 1689.6285 −10.4734 9.4748
−1.0683 −10.4734 16.4318 18.4323
0.9663 9.4748 18.4323 65.6044

 10−5 (C.2)

RICP−Conf.−2 =

14.1032 138.2638 0.3573 0.7296
138.2638 1355.5034 3.4910 7.1519
0.3573 3.4910 8.2432 0.3109
0.7296 7.1519 0.3109 2.7740

 10−5 (C.3)

RICP−Conf.−3 =

32.9479 1245.4638 18.2649 2.9004

1245.4638 67603.1733 1143.4261 162.9006
18.2649 1143.4261 22.4236 2.5445
2.9004 162.9006 2.5445 3.9503

 10−5 (C.4)

RICP−Conf.−4 =

9.4134 92.2853 −0.2162 −0.0113
92.2853 904.7310 −2.1206 −0.1070
−0.2162 −2.1206 8.0170 −0.0027
−0.0113 −0.1070 −0.0027 1.9728

 10−5 (C.5)

RICP−Conf.−5 =

9.4798 92.9381 −0.1301 0.1169
92.9381 911.1495 −1.2759 1.1496
−0.1301 −1.2759 6.8466 0.2338
0.1169 1.1496 0.2338 1.8128

 10−5 (C.6)

(C.7)

IX

C. Measurement Noise Characteristic

RMb−ICP−Conf.−1 =

2.9965 29.3746 −1.4526 −3.5028
29.3746 287.9538 −14.2397 −34.3364
−1.4526 −14.2397 6.7355 4.6584
−3.5028 −34.3364 4.6584 17.2495

 10−5 (C.8)

RMb−ICP−Conf.−2 =

14.1032 138.2638 0.3573 0.7296
138.2638 1355.5034 3.4910 7.1519
0.3573 3.4910 8.2432 0.3109
0.7296 7.1519 0.3109 2.7740

 10−5 (C.9)

RMb−ICP−Conf.−3 =

14.3558 140.7386 0.5157 0.7857
140.7386 1379.7490 5.0499 7.7001
0.5157 5.0499 6.9395 0.4968
0.7857 7.7001 0.4968 2.5948

 10−5 (C.10)

RMb−ICP−Conf.−4 =

13.8362 135.6179 −0.6991 0.0040
135.6179 1329.2855 −6.8515 0.0386
−0.6991 −6.8515 23.6742 0.2208
0.0040 0.0386 0.2208 6.1537

 10−5 (C.11)

RMb−ICP−Conf.−5 =

0.0420 0.4116 0.1196 −0.0090
0.4116 4.0350 1.1725 −0.0881
0.1196 1.1725 22.7582 −0.0851
−0.0090 −0.0881 −0.0851 5.2612

 10−5 (C.12)

(C.13)

RG−ICP−Conf.−1 =

0.3676 3.6033 −0.1264 −1.3635
3.6033 35.3239 −1.2392 −13.3663
−0.1264 −1.2392 326.3219 152.6730
−1.3635 −13.3663 152.6730 789.6554

 10−5 (C.14)

RG−ICP−Conf.−2 =

0.3639 3.5676 0.3416 −1.5491
3.5676 34.9785 3.3344 −15.1955
0.3416 3.3344 167.1495 15.0715
−1.5491 −15.1955 15.0715 256.0464

 10−5 (C.15)

RG−ICP−Conf.−3 =

0.3672 3.6005 0.2433 −1.5750
3.6005 35.3015 2.3725 −15.4485
0.2433 2.3725 169.9439 12.1531
−1.5750 −15.4485 12.1531 255.5510

 10−5 (C.16)

RG−ICP−Conf.−4 =

0.3526 3.4572 0.3107 −0.5417
3.4572 33.8955 3.0303 −5.2982
0.3107 3.0303 140.6032 10.9047
−0.5417 −5.2982 10.9047 263.6631

 10−5 (C.17)

RG−ICP−Conf.−5 =

0.3549 3.4801 0.3313 −0.5332
3.4801 34.1215 3.2350 −5.2134
0.3313 3.2350 144.7536 8.2088
−0.5332 −5.2134 8.2088 263.8649

 10−5 (C.18)

X

