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Abstract
Internet of things devices with their inherent convenience factor have exploded in
numbers during the latest decade, however at the cost of rising security concerns.
This is largely due to their incapability of solving complex and computationally
heavy numerical problems especially when dealing with large data-sets, a key com-
ponent for computers in today’s world for fending off attacks.

The main contribution of this thesis is investigating how a dynamic user-level sched-
uler can improve the detection capabilities of AI-based intrusion detection systems
and to enable retraining of an AI algorithm on an IoT device. The models are as-
sumed to be made of lightweight and data-driven machine learning algorithms, such
as ”PASAD” which we chose to utilize for this work. The scheduler was created
after having initially developed a basic framework for allowing the PASAD models
to detect attacks, denoted as our ”baseline” system.

The experiments that followed proved that the dynamic user-level scheduler pro-
vides several additional advantages compared to the baseline, mainly a substantial
throughput increase which reduces the time until attacks are detected, a critical
factor from the security aspect. Additionally, a model prioritization feature was
built to allow the scheduler to allocate more processing resources towards nodes it
is suspecting to be under attack. Both of these variables play an important role in
pawing the way to having our IoT devices being protected by more robust security
schemes, even for those devices considered too resource limited today.

With our scheduler implemented on an Nvidia Jetson Nano, is it possible to calcu-
late approximately 57,000 anomaly scores per second, which are used in the attack
monitoring process, for roughly 97 detection models while simultaneous retraining
is taking place (results are for when PASAD is the utilized detection algorithm).
Furthermore, with 75 PASAD models the scheduler is able reach ≈1.46 times the
performance of the baseline with retraining enabled and with retraining disabled it
reaches ≈2.15 times the performance of the baseline.

Keywords: Internet of things, Anomaly-based intrusion detection system, User-level
scheduling, model training

iv





Acknowledgements
We wish to greatly thank our two supervisors, Magnus Almgren and Wissam Aoudi,
who wisely guided us throughout this work using their exceptional expertise in
computer security. A special thanks to Tobias Bertilsson as well who became our
main advisor when practically building our solutions, even without technically being
required to gift his time for this thesis. Lastly, we want to thank CELTIC-NEXT
AI-NET-PROTECT (C2019/3-4) and Clavister for providing us with the resources
needed to make this a reality.

Aria Mirzai & Ali Zülfükar Coban, Gothenburg, July 2022

vi





Contents

List of Figures xi

List of Tables xiii

1 Introduction 2
1.1 IoT devices in our daily life . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The IoT security trade-off . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Intrusion detection systems . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Signature-based IDS . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Anomaly-based IDS . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 10
2.1 Performance deficiencies in IoT security . . . . . . . . . . . . . . . . . 10
2.2 Anomaly-based IDS for IoT . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Anomaly-based IDS - PASAD . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The Midbro component . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Signature-based IDS - Zeek . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Scheduling algorithm for CPU load-balancing . . . . . . . . . . . . . 16

3 Theory 18
3.1 Parallelizing a program . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Producer - Consumer architecture . . . . . . . . . . . . . . . . . . . . 20
3.3 Performance evaluation metrics . . . . . . . . . . . . . . . . . . . . . 21
3.4 Anomaly-based IDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Supervised learning IDS . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Unsupervised learning IDS . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Advantages and challenges . . . . . . . . . . . . . . . . . . . . 23

viii



Contents

4 Architecture Design 26
4.1 Developing a baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 The producer . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 The consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Developing a Dynamic User-Level Scheduler . . . . . . . . . . . . . . 30
4.2.1 Dynamic resource prioritization . . . . . . . . . . . . . . . . . 31
4.2.2 Minimizing starvation and overhead . . . . . . . . . . . . . . . 32
4.2.3 Model retraining . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Methodology of Experiments 36
5.1 Chosen detection algorithm . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Hardware devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Raspberry Pi 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Nvidia Jetson Nano . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 The steady state phenomena . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Maximum throughput measurement . . . . . . . . . . . . . . . . . . . 43
5.6 Evaluation of model prioritization . . . . . . . . . . . . . . . . . . . . 44
5.7 Evaluation of producer-consumer relationships . . . . . . . . . . . . . 45
5.8 Performance impact of PASAD’s inference-related functions . . . . . 46
5.9 Performance impact of scheduler features . . . . . . . . . . . . . . . . 46
5.10 Runtime measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.11 Scale-up measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Results 48
6.1 Maximum throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 Raspberry Pi 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Nvidia Jetson Nano . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.3 Raspberry Pi 4 versus Nvidia Jetson Nano . . . . . . . . . . . 54

6.2 Model prioritisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 The producer-consumer relationship . . . . . . . . . . . . . . . . . . . 57
6.4 PASAD’s inference-related functions . . . . . . . . . . . . . . . . . . 59
6.5 Scheduler features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.6 Runtime & Scale-up measurements . . . . . . . . . . . . . . . . . . . 60

7 Discussion 62
7.1 Linear behavior in the maximum throughput graphs . . . . . . . . . . 62
7.2 Raspberry Pi’s performance issues . . . . . . . . . . . . . . . . . . . . 63
7.3 The dynamic user-level scheduler . . . . . . . . . . . . . . . . . . . . 64
7.4 Attack detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.5 Model retraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6 Limitations in methodology . . . . . . . . . . . . . . . . . . . . . . . 68
7.7 Hardware requirements for the scheduler . . . . . . . . . . . . . . . . 69
7.8 Ethics & Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.9 Goals reached . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



Contents

8 Conclusion 72
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 74

x





List of Figures

1 An anomaly-based IDS runs its data-driven algorithm to analyse
whether specific units of data are indicating malicious behaviour. . . 4

2 Increasing the number of times the detection algorithm is executed
in parallel raises the computational resource consumption of the IDS. 5

3 High-level scope overview. The image is inspired by a figure from
source [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 IDS for IoT Logistics Systems - architecture overview. The image is
heavily inspired by a figure from source [2]. . . . . . . . . . . . . . . . 12

5 PASAD forms a cluster of training vectors (shown in blue color). Test-
vectors falling close to this area is considered as normal non-malicious
data (image used with permission). . . . . . . . . . . . . . . . . . . . 13

6 Structure of the Zeek system. The image is a remake from source [3]. 15

7 A high-level overview of producer-consumer architectures. . . . . . . . 21

8 Overview of the baseline architecture. Green boxes indicate elements
which have been inserted solely for experimental purposes, and would
likely not be present inside a real IDS. . . . . . . . . . . . . . . . . . 27

9 Example of data-points being distributed into the queues for eight
different instances, with an arbitrarily set standard deviation and
skewed mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 A high-level overview of the multi-threaded scheduler’s architecture. . 30
11 Cropped version of Figure 10. . . . . . . . . . . . . . . . . . . . . . . 33

12 Memory structure of the Raspberry Pi 4. . . . . . . . . . . . . . . . . 38
13 Both the soft and hard threshold (which lies above the vertical range

of this image) are defined to be located above the anomaly score
values produced from the traffic file data. . . . . . . . . . . . . . . . . 44

14 Throughput testing of the baseline architecture. In this case, only
a single consumer thread is responsible for inference monitoring all
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

15 Throughput testing of the dynamic user-level scheduler when utilizing
all the cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

16 Comparison between the baseline system and scheduler, running on
the Raspberry Pi 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

17 Baseline architecture’s throughput performance. . . . . . . . . . . . . 51

xi



List of Figures

18 The dynamic user-level scheduler’s throughput performance. . . . . . 51
19 Throughput performance while conducting continuous re-training of

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
20 Performance comparison with re-training . . . . . . . . . . . . . . . . 52
21 Performance comparison highlighted at 40 or more Pasad models . . . 53
22 Performance comparison normalized on the baseline system. . . . . . 53
23 Throughput comparison between the Raspberry Pi 4 and Nvidia Jet-

son Nano running the baseline system. . . . . . . . . . . . . . . . . . 54
24 Throughput comparison between the Raspberry Pi 4 and Nvidia Jet-

son Nano running the scheduler. . . . . . . . . . . . . . . . . . . . . . 54
25 Each column displays the largest buffer size for each detection model

throughout the complete runtime. . . . . . . . . . . . . . . . . . . . . 56
26 Each column displays the largest buffer size for each detection model

throughout the complete runtime. . . . . . . . . . . . . . . . . . . . . 56
27 Each column displays the largest buffer size for each detection model

throughout the complete runtime. . . . . . . . . . . . . . . . . . . . . 57
28 Experiment where the producer thread is eliminated, hence all buffers

are pre-loaded during runtime initialization with the same amount of
data in total. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

29 Experiment on a simple producer-consumer test-program. . . . . . . . 58
30 Average execution time of the function adding data to the internal

test-set for different numbers of PASAD instances. . . . . . . . . . . . 59
31 Average execution time of the function producing anomaly scores in

relation to the number of PASAD instances. . . . . . . . . . . . . . . 59
32 Comparing our multi-threaded scheduler with a more basic iterative

version on the Nvidia Jetson Nano. . . . . . . . . . . . . . . . . . . . 60
33 Comparing our multi-threaded scheduler with a more basic iterative

version on the Raspberry Pi 4. . . . . . . . . . . . . . . . . . . . . . . 60

xii



List of Tables

4.1 Baseline system requirements. . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Dynamic user-level scheduler requirements. . . . . . . . . . . . . . . . 26
4.3 Conditions for initiating a priority change on a model. . . . . . . . . 31
4.4 An example of how a model is chosen by a consumer thread. . . . . . 32

5.1 Specifications for the Raspberry Pi 4 model B. . . . . . . . . . . . . . 38
5.2 Nvidia Jetson Nano . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Experiments to be conducted. . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Reaching a steady state, 30 versus 90 loops. . . . . . . . . . . . . . . 41
5.5 Breaking the steady state. . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Time measurements averaged over three runs. . . . . . . . . . . . . . 55
6.2 Time measurements averaged over three runs. . . . . . . . . . . . . . 55
6.3 Throughput values chosen from Figure 20. . . . . . . . . . . . . . . . 60
6.4 Runtime measurements with 75 PASAD models. . . . . . . . . . . . . 61
6.5 Scale-up with 75 PASAD models given 290 seconds of execution time. 61

xiii





1
Introduction

The Internet of Things (IoT) signifies a major paradigm-shift, enabling us to have
nodes collecting information and then process that information (at the edge or in
the cloud) to thereafter actuate changes in the physical environment.

1.1 IoT devices in our daily life
The convenience of IoT has caused a rapid surge in the number of such devices.
In fact, McAfee anticipates that the number of IoT devices will have increased to
about 75 billion by 2025 [4]. In addition to low hardware prices and ever-increasing
network communication speeds, the adaption of IoT devices will likely be sped up
by the incoming mainstream use of 5G according to Nokia [5].

The key underlying characteristics that make IoT devices work are what is often
called ”Data acquisition and control“ as well as ”Data processing and storage“ [6].
Essentially, IoT devices can contain sensors that acquire data, and actuators control-
ling or acting upon that data. IoT devices are also incorporated with the computing
capabilities to process and store sensor data locally if necessary.

1.2 The IoT security trade-off
IoT offers many advantages, however there are multiple concerns with regard to
cyber security since these end nodes can easily be attacked and used for massive
attacks. According to the Open Web Application Security Project, the potential
security vulnerabilities of IoT devices most often stem from factors such as weak
passwords, poor default security settings, lack of network communication encryp-
tion, and poor user-serviceable device management [7]. In April 2019, security
researchers in the Microsoft Threat Intelligence Center uncovered that an actor had
used three IoT devices to gain initial access to corporate networks [8]. Two of them
were compromised because of still using the default password given by the manufac-
turer, while the third was caused by not having installed the latest security update.
After having gained an initial network presence through these devices, performing
a simple network scan was all that was needed to look for more insecure devices,
possibly containing higher-privileged data and accounts.

Another example that show how IoT devices can easily be used to perform large
attacks is the Mirai Botnet [9]. Here, malware-infected devices were found through
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1. Introduction

internet scans and essentially turned into a network of remotely controlled bots used
to launch distributed Denial-of-Service attacks. In one famous attack [10], the Mirai
botnet consisted of a hundred thousand hijacked IoT devices and was used to bring
down the Domain Name System (DNS) provider Dyn. As a result, users could not
access popular websites such as PayPal, Amazon, Twitter and many more. Mirai’s
source code still remains a threat to this day due to its ability to mutate, giving
birth to numerous variants that exploit different weaknesses and are equipped with
unique capabilities.

The explanation for manufacturers seemingly treating security in their IoT devices
as an afterthought, is often that it is a natural trade-off for ensuring them being cost-
effective. It is already difficult enough to provide an inexpensive, reliable, resource-
constrained device that can connect to a wireless network while using very little
power.

1.3 Intrusion detection systems
To combat security threats, intrusion detection systems (IDS) have become invalu-
able tools for attack detection. An intrusion detection system is, simply put, a
system that monitors and analyzes an event stream such as network traffic data.
IDS are vital since early reaction and identification of malicious traffic ensures that
the IDS can stop an adversary before they can compromise devices and cause severe
damage [11]. IDS can be of two sorts, either signature-based or anomaly-based.

1.3.1 Signature-based IDS
The essence of Signature-based IDS (SIDS) is storing the signatures of previously
recorded attacks, or intrusions. Through a pattern matching algorithm, it can then
compare incoming network traffic packets with the known attack-signatures to de-
termine if the traffic is malicious or not. This is also referred to as Knowledge based
Detection or Misuse Detection [12]. SIDS are very effective at detecting attacks
due to the comparison of attack-signatures with data streams. However, this is also
their main limitation since it renders them unable to detect zero-day attacks, i.e.
novel attacks that have not occurred previously. Some of the most popular SIDS
are Snort [13] and Zeek (formerly known as Bro) [3] both of them being open source
[14, 15]. We will go into more detail about Zeek in Section 2.1.

1.3.2 Anomaly-based IDS
To make the IDS even more effective, the approach of incorporating machine learn-
ing algorithms has gained momentum. A major reason for using Anomaly-based
IDS is the fact that it gives you the possibility of monitoring communication traffic
through machine learning, based on common techniques such as supervised or un-
supervised learning [16, 17].

It all starts with big data analytics, which enables the discovery of trends, prefer-
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1. Introduction

ences and the prediction of behaviours via either associating dependencies between
input variables or through Data Mining (DM) tools and techniques [1]. Data mining
is the process of discovering hidden patterns, relationships and previously unknown
correlations within the data, which can be used to predict and react properly. Used
widely along with data mining is the artificial intelligence technique known as Ma-
chine Learning (ML), where algorithms are deployed to obtain a predictive analysis
from the data.

There are many reasons as to why researchers increasingly try to exploit machine
learning for intrusion detection:

• Machine learning offers the potential of detecting zero-day attacks.

• Machine learning can improve both attack detection accuracy and speed.

• Machine learning equipped IDS based on clustering and outlier detection can
learn traffic patterns continuously, meaning that they are more effective at
detecting slightly varied attack patterns. This in turn also means that these
systems require less frequent updates by its developers.

• Traditional solutions need to constantly match each signature with a corre-
sponding IDS database, which is a CPU intensive process.

1.4 Thesis motivation
Despite all of the benefits that machine learning brings, it has caused IDS to in-
creasingly transform into more performance demanding processes. This has mostly
to do with the fact that machine learning models require extensive data collection,
as well as being trained, both of which are computationally demanding processes.
This, along with the resource-limited hardware of IoT devices results in hardships
when wanting to execute the complete system locally on an IoT device.

Figure 1: An anomaly-based IDS runs its data-driven algorithm to analyse whether
specific units of data are indicating malicious behaviour.

Whenever an anomaly-based IDS runs its detection algorithm, it does so to analyse
whether a particular unit of data can be considered malicious or not, a procedure

4



1. Introduction

known as ”inference“ monitoring and is abstractly visualized in Figure 1. Each
of these runs requires a certain amount of computation to occur, and constantly
achieving low execution time is crucial here as the IDS needs to keep up with the
incoming data stream from the end node being monitored, each unit of which should
be checked for potentially malicious indicators.

Figure 2: Increasing the number of times the detection algorithm is executed in
parallel raises the computational resource consumption of the IDS.

Additionally, the IDS could be monitoring multiple nodes simultaneously, leading
to its algorithm having to be executed in parallel as illustrated by Figure 2, further
increasing the need for computational resources.

This thesis intends to investigate how scheduling techniques can be utilized to max-
imize the number of machine learning models that can be run in parallel on IoT
devices with a multi-core processor. As recently explained, this would directly en-
able an IDS to monitor as many end nodes as possible for attack detection. Allowing
such large-scale deployment of the monitoring capabilities of a single IDS increases
its overall effectiveness against attacks, such as the Mirai Botnet described in section
1.1.1, therefore fulfilling a vital security purpose.

In addition, this thesis will investigate whether the IDS can continue its monitoring
tasks even when the need for retraining one of the machine learning models arises.
This is a challenging task for IoT devices, as training is typically the most compu-
tationally expensive part of machine learning. However, achieving this is crucial for
security, since having to pause monitoring tasks in order to retrain a model would
result in blind spots where an attacker can operate freely.

Alternatively, one could offload the training to more capable remotely connected
machines, however this would entail having to transfer sensitive data via networks.
Therefore, executing all parts of the IDS, even the most demanding tasks such as
training, locally still remains the most attractive solution.

5



1. Introduction

1.5 Thesis aim
In this section, we will list our research questions as well as our primary and sec-
ondary goals for the thesis.

Research questions:

1. How can scheduling techniques, which take advantage of the computational
resources found in ordinary IoT devices today, improve the detection capabil-
ities of anomaly-based IDS built upon lightweight and data-driven machine
learning algorithms?

2. How does the performance of the scheduling techniques from (1), react to scal-
ing of the problem size? The ability to anticipate a system’s reaction towards
any particular resource demand is useful knowledge for future users consider-
ing to implement the architecture.

Project goals:

1. Develop a basic anomaly-based IDS. This IDS needs to at least be capable
of capturing communication traffic, parse that traffic for the extraction of
data-points, and thereafter feed the data into detection models that calculate
anomalies.

2. Use the IDS developed for the previous goal as a baseline system, then further
build upon it to incorporate the performance improvements needed to tackle
all the challenges an IDS must be ready to face as described in Section 1.4.
The specific techniques of parallelism utilized to achieve this goal, such as
scheduling, is the main topic of Section 3.1. Some additional features valuable
for security will be incorporated into the architecture as well, and are listed
in the beginning of Chapter 4. The developed IDS must be hardware agnostic
to IoT devices with a multi-core processor.

3. Deploy the solution on suitable hardware for testing. As this thesis is targeting
the IoT environment, it is important that the chosen hardware can be moti-
vated as living up to but not beyond the capabilities of what can be considered
as an IoT device. Details regarding hardware specifications can be found in
Chapter 5.

4. Carry out a performance analysis of the system developed during the second
project goal, and evaluate it against the baseline system in order to draw
conclusions on the project’s level of success. The metrics utilized for this eval-
uation, such as throughput, is the topic of Section 3.3.

5. Finally, this thesis project will also investigate whether it is possible to retrain
a machine learning model on the IoT device locally, without halting the other
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1. Introduction

ongoing tasks of the IDS. As was more thoroughly explained in Section 1.4,
this is a challenging undertaking; however its accomplishment would hold great
value for security.

1.6 Scope

Figure 3: High-level scope overview.
The image is inspired by a figure from
source [1].

Architecture designing for Machine
Learning based systems has become a
broad research area, as it is well-known
that while these systems can thrive on
data today, they are held back by insuf-
ficient architecture practices [18]. It is
therefore important to emphasize that
we are overall only trying to solve a
small problem within this domain. An
example of this is that we will not go
into the details of the detection algo-
rithms themselves, as we would then
have to spend significant time on re-
searching and learning about their in-
ner mathematical workings. They will
rather instead be treated as black boxes,
meaning that the only concern from our
point of view is the amount of resources
needed for their execution. We are also
making the assumptions that there are
not any data dependencies between each
instance of the detection algorithm, and that they are already trained when the pro-
gram starts (although they will still need to be retrained during runtime).

Our solution will act as middleware software, which to a large part incorporates
aspects of the fields shown in Figure 3, and there currently does not exist a single
set of requirements detailing what such software must support, so we will take it
upon ourselves to define them [19]. Firstly, we must limit our solution to work for
lightweight data-driven algorithms, as we obviously cannot satisfy all types.

An IDS relying on a complex deep learning algorithm (for example one with sev-
eral neural network layers), likely requires computational resources that we cannot
squeeze out of common IoT hardware despite optimizing. The selection of which de-
tection algorithm to utilize will therefore be heavily driven by a foregoing literature
review. Having made sure that the pick suits our parallelization plans as well as the
resources available, will in the end make it easier to provide a global performance
guarantee.

Lastly, while we know that it is desirable for the architecture to optimally schedule
the execution of already existing and well-tested code, we cannot promise a complete
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application working out-of-the-box since it can not be assured that the architecture
will be optimally applied by others. Still, this work shall be valuable for any IDS
backed up by machine learning and suitable for resource-limited hardware such as
IoT.

1.7 Thesis Outline
The first chapter consisted of an introduction to IDS and the two common techniques
for performing intrusion detection (SIDS and anomaly-based IDS). In additional to
that, the motivation for the thesis along with its goals were described.

The second chapter consists of related work that aided us in reaching our goals and
find answers to our research questions. Here we are mainly looking at how intru-
sion detection systems work along with scheduling methods to improve performance.

The third chapter goes through important concepts that were briefly mentioned in
the introduction, primarily regarding program parallelization and performance eval-
uation, to then thoroughly detail the theory within these domains. The material
written here, especially regarding system architecture and scheduling techniques, is
essential for solving the overall problems and therefore has considerable impact on
our practical work.

The contributions of this thesis begins from Chapter four, here we go over the archi-
tectural logistics for the developed systems. Chapter five thereafter describes what
experiments were conducted on our developed solutions and why. This chapter also
introduces the machine learning algorithm we chose to use in this thesis as well as
the testing hardware.

The results from our experiments are presented in chapter six. A discussion of the
methods deployed throughout our thesis work, along with whether the project was
successful or not based on its deliveries has been written in chapter seven. Finally,
chapter eight summarises the thesis and provides guideline towards future work.
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Related Work

This chapter begins with providing an overview on how IDS go about when detecting
attacks, covering both signature-based and anomaly-based approaches. Efforts to
improve the performance of these systems on IoT devices are covered as well, such
as the development of a scheduling algorithm.

2.1 Performance deficiencies in IoT security
IoT security has become a rising field as numerous researchers and engineers have
been proposing various kinds of IDS in order to deal with cybercriminals. Khraisat
et al. [16] have constructed a survey paper where they present an in-depth review of
modern IoT IDS, the techniques used in modern IDS, validation strategy, commonly
used datasets for IDS and much more.

The authors highlight the challenges when developing an IDS for IoT. Some of the
issues discussed in the survey have to do with the IoT devices’ restricted hardware
and limited computation power. The restrictions results in a lightweight IDS that
consists of minimal available security measures to drain as little power consumption
as possible. The restricted architecture in IoT devices causes some malware to
bypass the attack detection in the proposed intrusion detection systems.

2.2 Anomaly-based IDS for IoT
As the first IDS example, it would be beneficial to find a system made for a similar
use case to compare with, namely IoT devices. We believe that such a system was
proposed by Hosseinpour et al. [2], who have developed a real-time, distributed and
lightweight IDS for IoT based Logistic Systems. This setup is at its core based on a
so called ”Artificial Immune System (AIS)“-algorithm which allows for an effective
combination of edge, fog and cloud computing.

Fog computing can be described as the layer between IoT devices and the cloud. It is
equipped with enough computing capacity within routers or gateways to reduce the
need of transferring data to the cloud. Fog computing enables low latency attack de-
tection and decision making, close to the source sensors. It also provides the ability
to easily share parameters among neighbouring nodes. However, local processing re-
quires that both the algorithms and applications are lightweight and energy efficient.
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More advanced analysis and processing are offloaded to the cloud layer with the
cost of increased latency. However, these are typically tasks which neither require
real-time computation nor constant communication with the fog layer.

The AIS algorithm used in this anomaly-based IDS is made up of the following three
parts:

1. The training engine:

Uses an initial learning data set to train detectors. This is claimed to be a
complex process which requires execution on powerful processing units in order
for the whole system to perform real-time monitoring. Hence it is offloaded to
the cloud. Importantly, this process does not require extensive communication
with the edge nodes.

2. The analyzer engine:

Whenever the now trained detectors report an anomaly, this engine is respon-
sible to come up with an intrusion alert or reject the false positive signals. As
this step requires more communication between infected edge nodes and the
engine, it is deployed on the fog layer.

3. Detection sensors:

Each node monitoring the network is equipped with detection logic, creating a
collaborative and distributed setup where an attack could be exposed by mul-
tiple detectors. In fact, a number of detectors are specifically generated for
each type of attack during the learning phase, to increase the overall detection
precision. As soon as a threshold is reached, the anomaly is reported to the
analyser engine for further analysis after which an alert is possibly triggered.

Moving on to the whole IDS architecture, the authors have here chosen to go for
a three-layered structure separated between the cloud, fog & sensor layers as can
be seen in Figure 4. The cloud layer is in turn divided into two sub-engines called
the clustering and training engine. The clustering engine divides network traffic
into normal and intrusion packet flows through unsupervised methods. This data
is then used by the training engine to train a set of detectors which are thereafter
distributed to devices at the network’s edge.

The detectors then monitor the behavior of the edge device they have been dis-
tributed to. Whenever an anomaly is detected, its detector will produce a so-called
smart data cell for the purpose of further investigation. However, the smart cell is
only sent up to the fog layer once a specific threshold has been reached, which the
authors chose to set to three detectors. After this, new detectors will be created to
detect this particular novel type of attack and distributed to all other devices at the
edge.
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Figure 4: IDS for IoT Logistics Systems -
architecture overview. The image is heav-
ily inspired by a figure from source [2].

The downside of this approach however,
is that connections failing to breach
the threshold are omitted, hence the
IDS will not continue to monitor its
trends in case a stealthy attack should
occur. To deal with this problem, a
time dimension is introduced to en-
able the detection of long-term at-
tacks. Whenever the number of trig-
gered detectors is less than the thresh-
old, the profile of a suspected con-
nection is encapsulated within a smart
data cell and handed over to the fog
layer. Here, the smart data cell will
be aggregated with other smart data
cells from other devices where a sim-
ilar anomaly has been detected, over
time making the stealthy attack more
visible. Once the number of simi-
lar attacks finally exceeds the thresh-
old, it will be analysed as well so
that an intrusion alert may be trig-
gered.

We should mention why we believe this particular work to have an importance for
ours. First of all, it allows us to weight in all the pros and cons between offloading
difficult tasks to the cloud, versus executing all computations locally as we are trying
to do. Achieving this is not just a matter of being impressive, it is of importance for
security as it allows for further avoidance of having to transfer sensitive data over
networks. The paper also frequently brings up how fog computing reduces latency
compared to cloud computing, and it is an interesting comparison to see if we can
provide further reductions by computing directly on the edge device. Lastly, their
system has one similarity to ours in terms of the chosen detection model as they
utilizes a lightweight AI-algorithm which has been adapted for handling stealthy
attacks.

2.3 Anomaly-based IDS - PASAD
As explained in Section 1.3.2, an anomaly-based IDS monitors communication traf-
fic through the use of machine learning. PASAD is an example of this and has been
described in the following manner [20]:

”a stealthy-attack detection mechanism that monitors time series of sen-
sor measurements in real time for structural changes“

12



2. Related Work

so instead of trying to predict the future, PASAD seeks to decide if present sensor
readings are departing from past readings or not, which would be an attack indica-
tion.

PASAD is capable of sounding an alarm for significant as well as subtle attack-
indicating deviations in the data stream, making manipulations strategically placed
within the noise level harder.

Figure 5: PASAD forms a cluster of training vectors (shown in blue color). Test-
vectors falling close to this area is considered as normal non-malicious data (image
used with permission).

The logical outcomes of the PASAD machine learning (ML) algorithm can be sum-
marised with the following three steps:

1. The ML-algorithm’s training phase forms a cluster of vectors in a special vec-
tor space referred to as the signal subspace, signifying normal behavior.

2. Vectors from continuously incoming observations continue to fall close to the
cluster during normal process operation.

3. Anomaly detection is made by a single matrix multiplication. PASAD has a
lag parameter L that indicates the number of data points needed to calculate
a departure score. If vectors from the most recent observations depart from
the cluster, it is interpreted as a malicious change to the process. Figure 5
displays an example of this phenomena occurring.

PASAD relates to this thesis work by belonging to the category of ML algorithms
that we are aiming our scheduler to be compatible with. More specifically, it has
the qualities of being a lightweight algorithm intended for machine-to-machine com-
munication and which looks at sensor data.
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2.4 The Midbro component
The lightweight data-driven machine learning algorithm PASAD is agnostic to the
specifications of a system as it requires no prior knowledge of the system dynamics
and can work with various types of data streams. This exact property was taken
advantage of when PASAD was deployed to function in a paper factory [21].

Since PASAD needs sensor data to be served on the fly during real-time operations,
the authors built the so called Midbro component, which operates in the following
manner:

1. Capture traffic by listening to a network interface. Thereafter, parse each
packet to filter out the payload.

2. Store the packets in a dynamic FIFO buffer until requested by PASAD. As
PASAD is single-threaded and may be busy with other tasks, it is not feasible
for it to directly collect values. The buffer had a two thread implementation:
one ”producer“ thread which constantly listens to the socket and adds values
to the queue, along with a ”consumer“ thread that pops values from the queue
in order to be served to PASAD.

The Midbro component allowed PASAD to be extended into a complete and de-
ployable system. It was however built on top of the Zeek framework (due to Zeek’s
extensibility property), and one major downside mentioned about this is that Zeek
is single-threaded. This ultimately limited the amount of advanced data analysis
techniques that could be deployed.

It is important to keep in mind that when using a buffer and its consumer thread
can not keep up with the data rate, it will fill up. This leads to the detrimental con-
sequence of packets being dropped, and in case this should occur the authors chose
to always drop the oldest packets so that at least the data being fed to PASAD is
up-to-date.

We view the Midbro component as a source of inspiration to our work when develop-
ing our baseline system. This is because Midbro follows a simple producer-consumer
setup that can be further enhanced using scheduling techniques. The decision to
always drop the oldest packets when needed is to be continued with in our work as
well.

2.5 Signature-based IDS - Zeek
Zeek, previously known as ”Bro“ is a signature-based network intrusion detection
system which detects intruders in real-time by passively monitoring a network link
over which the intruder’s traffic transits [3].
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During development, three key requirements were set up to ensure the maximum
efficiency of Zeek:

• High-speed: Zeek must manage the packet monitoring process correctly even
during high volume arrivals, otherwise the queue buffer will drop packets.

• Real-time notification: Avoiding delays is a key factor for detecting attacks
quickly.

• Extensible: Allowing for future additions of not yet known attacks to the IDS.

Figure 6: Structure of the Zeek system. The image is a remake from source [3].

The structure of Zeek can be seen in Figure 6, but we will go through the most vital
components briefly below:

”libcap“ is Zeek’s packet-capturing library which isolates the system from the net-
work link technology, with the added benefit of easing ports to other Unix variants.
It also lets Zeek operate on tcpdump save files, making offline analysis possible. The
key to packet filtering is the selection of which packets to keep or discard.
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Choosing an optimal ”snapshot length“ is also important when collecting traffic,
meaning how many bytes of each packet to capture. A smaller snapshot length
accelerates processing and avoids loss, hence one should aim to only store the bytes
necessary for the particular analysis procedure.
The ”Event engine“ reassembles IP fragments and performs several integrity checks
to ensure that the packet headers are well-formed. Once the check is concluded, the
packet is dispatched to a handler which indicates whether the engine should record
the entire packet, just the header, or nothing at all. The event engine is capable of
identifying over 70 types of unusual behaviours, such as incorrect connection initia-
tions, checksum errors, packet length mismatches and protocol violations.

Once the engine has finished processing, the ”Policy script interpreter“ checks
if any events were generated there, if so they are kept in a "first in first out" queue
for an appropriate response to be executed for each.

The responses are derived by running written scripts where event handlers are spec-
ified. These handlers might generate new events, log real-time notifications, record
data to disc or modify internal state for access by subsequently invoked event han-
dlers.

In our work, we will not use a SIDS but we include it here due to the significant
research effort that has been devoted to Zeek.

2.6 Scheduling algorithm for CPU load-balancing
Due to the hardware limitations of IoT devices, making full use of all available re-
sources is crucial. Performance improving techniques such as an efficient scheduling
algorithm can enable IoT to execute computationally intensive tasks faster. Karsten
et al. [22] have proposed a user-level M:N threading system. The system consists
of a scheduling algorithm for CPU load-balancing and user-level I/O blocking. The
authors have focused on M:N threading for contexts execution. Contexts are de-
scribed as threads but without preemption and the authors denote context execu-
tion as ”freds“. In their system, the number of user-level freds is M and N is the
number of kernel threads (threads provided by the operating system).

The proposed scheduling algorithm maps executable freds to available CPU cores
in order to provide high performance and efficient resource utilization. To keep all
cores busy, the authors have implemented CPU-local queues and a shared queue
among cores for fred execution. The authors are able to increase the scheduler’s
performance by minimizing CPU cores inactivity. They do so through focusing on
even load balancing among CPU cores. If the scheduling algorithm detects load im-
balances among processors, it moves freds from overloaded processors to the shared
queue in order to achieve equal load balancing. To execute a fred, a processor
searches first through its local queue, then the shared queue and lastly by work
stealing.
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The authors tested their architecture in Linux Ubuntu 18.04 environment and used
a 4-socket, 64-core AMD Opteron 6380 with 512 GB RAM. The authors have com-
pared their scheduling against other user-level systems namely Libfiber, Qthreads,
Pthreads, Go, Boost, Arachne, Mordor and uC++. The results are split into two
sections; scalability and efficiency. The test used 32 cores and executed 1024 concur-
rent loops which was set up with 32 locks for synchronization. In terms of scalability,
the authors’ scheduling algorithm along with Libfiber and Qthreads, scale to 25X
where each 32-core throughput is normalized by the throughput of single-core exe-
cution. Go, Boost and Pthread came closely behind at around 20X while Arachne,
Mordor and uC++ did not even reach 15X. To determine efficiency, the identical
circumstance were used as in the scalability experiment where the authors have in-
vestigated the cost of each loop iteration. When utilizing all 32 cores, the proposed
runtime system, Libfiber and Go had the lowest cost at around 50 micro-seconds.
The cost for Qthreads, Arachne and Mordor was approximately 100 micro-seconds
while Boost and uC++ was considerably higher. Karsten et al. have developed a
capable user-level M:N threading system with high scalability and good efficiency,
rendering it almost on par with Libfiber and better than most of the other user-level
runtime systems.

Importantly for this thesis, is the question of how to utilize scheduling algorithms
on IoT, not only from the perspective of performance but also for security. For
instance, can it aid in enabling an anomaly-based IDS to run a higher amount of
machine learning models in parallel?
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This chapter will present the theory necessary to understand and follow our work
in this thesis. The theory presented in Section 3.1 and 3.3, is to a large extend
based on the book ”Parallel Programming for Multicore and Cluster Systems (2nd
edition)“, written by Thomas Rauber and Gudula Rünger [23].

3.1 Parallelizing a program
Parallelization of computer programs is one of the key domains within the field of
High-Performance Computing, as it deals with utilizing the computer architecture
of a hardware to its maximum capacity. Put simply in the form that is most rel-
evant for this thesis, is that it is the concept of making sure that processor cores
can compute independent tasks in parallel, minimizing idleness and communication
among cores.

Chip manufacturers have for several years now been producing processors that con-
tain several power-efficient compute units, so called ”cores“ in the same chip hence
turning them into ”multi-core“ processors. Often times these cores can access the
same memory concurrently, and make each desktop computer a small parallel sys-
tem. Physical reasons drove development towards multi-core processors, as ever-
increasing clock speeds of chips equipped with more and more transistors led to
overheating issues.

Constructing software for parallel execution is challenging but important, as de-
velopers can no longer expect improved performance to take place automatically
with the rise of increased computing power. Several of the most common steps for
building a parallel program are to be described through the following subsections.

3.1.1 Profiling
Profiling requires the developer to complete a performance analysis of the sequential
program/application in order to identify the most time consuming and computation-
ally intensive functions or tasks. In the case of an anomaly-based IDS, the most
time consuming and computationally heavy parts are:

• Data processing: It is rare that raw received data is suited to be fed directly
into the detection algorithm without any pre-processing. Exactly how to pro-
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cess the data is many times dependent on the chosen detection algorithm.
Processing a single unit of data may be done quickly, however as one needs a
considerably large amount of data to train the detection model, data process-
ing as a whole becomes a time consuming part of the system.

• Buffer management: The system needs to hold data until the detection algo-
rithm is ready to receive input, which is a requirement mainly satisfied through
the addition of memory resources. The buffer is also vital for avoiding data
losses in case a short burst of soared input rate level to the system occurs.

• Detection algorithm: The most computationally expensive part of the IDS,
which in turn is split up into two variants: the ”inference phase“, where an
anomaly score is calculated and the ”re-training phase“, where the model
learns what normal behavior of the event stream is.

3.1.2 Partitioning
Partitioning deals with decomposing computations into smaller tasks and identi-
fying dependencies between tasks. Parallelism of tasks can be achieved through
different parallelism methods at different levels of the application. These are called
instruction level parallelism, data parallelism, loop parallelism and task parallelism.
As this thesis aims to practically carry out its investigations at the user-level, data
parallelism and task parallelism are the most suitable methods of the four to explore:

• Data parallelism: parallelizing an operation executed multiple times on el-
ements of a data structure, where each element is independent. The most
common use case for data parallelism is when dealing with arrays. A simple
example is when constructing a new array where each element is equal to the
multiplication of two other array elements. This is also known as single in-
struction multiple data (SIMD). When the elements are independent of each
other, the cores can split work between them where each of them is responsible
for a part of the data structure.

• Task parallelism: involves parallelization of independent tasks of a program
where these can be executed by different CPU cores simultaneously.

3.1.3 Scheduling
Scheduling is the process of assigning tasks to processes or threads. A scheduling
algorithm can either be static or dynamic. Static scheduling maps the order in
which tasks are performed before program execution whereas dynamic scheduling
maps processes/tasks during run-time. There are three important factors to con-
sider when scheduling tasks, load balancing, information/data exchange between
cores and memory accesses.

Load balancing refers to how much work each CPU core performs during execu-
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tion. In an effective parallelized program, the workload is evenly split between CPU
cores. The tasks assigned to a CPU core should involve minimal communication
between other cores since information exchange results in more overhead and thus
longer execution time. In case the need for such communication still occurs, this
may be done via an interconnection network by explicit communication operations.
A CPU’s execution time of a task is correlated to the number of memory accesses it
has to complete and where data lies in the memory structure. Optimizing the tasks
for cache locality, meaning that data is located close to the CPU in cache and not
in memory, results in less memory access overhead.

Furthermore, threads or processes can be assigned different priorities as a means of
resource allocation, since a higher priority results in that element being dedicated
a larger portion of the available execution time on the hardware. One could also
bring to fruition a form of task prioritization at the user-level, meaning that how
often a task is assigned to a thread for execution is proportionate to a set level of
priority for that task. This is the approach being taken in this thesis, since keeping
the prioritization logic at the user-level eases the changing of priority based on set
events during runtime, for example suspicions of an on-going attack.

3.1.4 Mapping
Upon completing the previous steps, the processes/threads will need to be mapped
to different cores for execution. In the simplest case, each thread is mapped to a
separate core. However, should the number of threads exceed the number of cores,
then multiple threads will have to be mapped to the same core to be executed by
sharing the available execution time, commonly known as ”time-slicing“.

If the tasks of a program are constrained by data or control dependencies, a spe-
cific order when mapping parallel tasks for execution could be required. However,
as was stated back in section 1.6, we assume no such dependencies between each
instance of the detection algorithm. Because of this, there are not any performance
improvements to be expected by executing certain tasks before others, even if it
would be fully possible to implement this logic into the IDS software. Therefore,
the responsibility of mapping threads to cores will be handed over to the operating
system.

3.2 Producer - Consumer architecture
A producer - consumer architecture splits up a system into two co-dependent parts,
a producer part and a consumer part. Between them, usually, is a buffer or queue
located. The producer would gather data and prepare it to be consumed by the
consumer by inserting pre-processed data into the buffer. The consumer would then
fetch data from the non-empty buffer and begin its execution.

This type of architecture can practically be achieved through the use of producer
and consumer threads. It is a setup which benefits anomaly-based IDS as the in-
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coming flow of packets may arrive at a higher rate than what the machine learning
detection algorithm can handle, see discussion of the Midbro component in Section
2.4. Therefore, while the consumer is busy processing, for example to calculate
anomaly scores, the producer can keep preparing data units and inserting them into
the buffer.

Figure 7: A high-level overview of producer-consumer architectures.

As Figure 7 hints at, this type of an architecture allows for parallel execution where
the producer and consumer can work independently as long as the buffer is not
empty. Furthermore, due to the likelihood of the machine learning model being
more computationally intensive than pre-processing incoming data, in a producer-
consumer architecture one can allocate cores either statically or dynamically so
that each side gets assigned just enough resources to complete their tasks and thus
minimizing CPU idle time.

3.3 Performance evaluation metrics
Performance metrics play a key role when evaluating success rate of the goals set
up in Section 1.5, and there are several methods for measuring the effects from this
project’s efforts to enhance CPU utilization.

Speedup(n) = T ∗(n)
Tp(n) (3.1)

The traditional way to evaluate the effectiveness of the implemented actions is by
measuring the speedup or scale-up. Speedup, as shown in equation 3.1 is a quanti-
tative evaluation, where the time of the best sequential implementation (T ∗(n)) is
divided by the parallel time for executing the same task (Tp(n)). The total execution
time is actually a summation of the following factors:

• ”Local“ computation time: local meaning for each processor.
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• Data exchange time: sending/receiving data in distributed memory structures.

• Synchronisation time: accesses in shared memory structures.

• Idle time: processor waiting (no progress) / parallel execution management
(overhead).

Scale-up on the other hand, consists of increasing the problem size in order to ob-
serve if the execution time stays the same. This would for example mean doubling
the amount of work while still achieving the same execution time since the tasks
are now run on two separate threads. Scale-up is one of the most common metrics
within the domain of High-Performance Computing, since the essence of implement-
ing parallelism is for the purpose of increasing the CPU’s effectiveness. This leads
to having the ability of running more tasks/processes without overloading the cores.

Moreover, the degree of parallelism as well as the throughput are also useful to
measure. The degree of parallelism involves analyzing how much parallelism can
be done on a given task and how much parallelism can be exploited in regards to
the particular hardware used. Increasing throughput, on the other hand, means at-
tempting to perform more work in the same unit of time instead of executing work
faster.

While all performance metrics mentioned in this section are both useful and in-
sightful, they are not all well-suited for evaluating the particular type of system
developed for this thesis. Both speedup and scale-up in particular rely heavily
on execution times, while an anomaly-based IDS is meant to keep running for an
undetermined amount of time. The consumer threads of the producer-consumer ar-
chitecture therefore do not keep track of whether, for example, all buffers have been
completely emptied and hence therefore we are ”finished“. Incorporating such logic
into the system only to measure these metrics would not provide a fair comparison,
as the logic of the system has then been significantly altered.

We believe that throughput will be the best method to evaluate the goals of this
thesis. As was stated in Section 3.2, the work of the producer thread can be executed
faster than that of the consumer. Therefore, if the throughput of the consumer is
able to keep up even if the producer’s throughput is increased, an overall performance
enhancement has been proven.

3.4 Anomaly-based IDS
Anomaly-based IDS provides the possibility of detecting anomalies in network traffic,
meaning traffic that behaves differently than normal traffic. It achieves this through
a trained machine learning model based on supervised or unsupervised learning.
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3.4.1 Supervised learning IDS
Supervised learning IDS consists of a training phase and a testing phase. The train-
ing data is labeled as either intrusion or normal so that the system can learn what
behavior is considered as normal or malicious. Additionally, feature selection is usu-
ally used to make computation more efficient, eliminate redundant features (thus
decreasing unnecessary data) and to make the model more general. The essence is
to have generalization so that the model does not overfit or underfit.

The learning algorithm observes the training set and attempts to find common pat-
terns i.e. it generalizes patterns so that it can make accurate predictions when faced
with new data. A model must have reliable generalization (which refers to the
model’s capability to handle unseen data) since that is the essential part to detect
zero-day attacks. Overfitting and underfitting will drastically affect the model’s
prediction accuracy of intrusions and might lead to undesired outcomes (such as
treating normal traffic as malicious or miss zero-day attacks).

The testing phase consists of testing the system on a set of unlabeled and new
datasets in order to observe how the model generalizes new entries as either intrusion
or not. Common machine learning models used in supervised learning are models
such as Decision trees, Naïve Bayes, Support vector machines and Hidden Markov
model [16, 24, 25].

3.4.2 Unsupervised learning IDS
Unsupervised learning deals with unlabeled data. It uses a machine learning model
to analyze the unlabeled data to find hidden correlations between them since no
output labels are given to the model. One common way of accomplishing this is by
grouping similar data into clusters. From an IDS point of view, the collected data
is split into groups where the data points in the same group have some correlation.
Outliers, or data points located outside the bigger groups are, usually, considered as
abnormal behavior and are thus classified as an intrusion. Common machine learning
classification models used in unsupervised learning are K-means and Hierarchical
clustering [16, 24, 25].

3.4.3 Advantages and challenges
One challenge associated with supervised learning is the creation of a general model.
As mentioned above, over-fitting or under-fitting a model drastically impacts the
prediction accuracy. The cause for this lies mostly with the training set’s data
distribution and feature selection, which make it difficult to adapt appropriately
when faced with new entries.

Anomaly-based IDS suffer the issue of delivering higher false-positive rates than
SIDS. The cause of this is new and harmless activity on the network being classified
as an intrusion simply because it deviates from the model’s perception of what
normal network behavior is [16, 24, 25, 26, 27].
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Lastly, a downside of modern Anomaly-based attack-detection techniques overall is
that they often involve solving complex and computationally expensive numerical
problems, especially with large data-sets in the training phase. Not being able to
handle this is a major concern, considering that depending on what the IoT device
is in charge of controlling, even our physical safety could be put at risk by an
attacker [19].
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In this chapter we aim to go through the architecture for our implementation of
an anomaly-based IDS for IoT devices in detail. This will be done for both the
”baseline“ version as well as the fully fledged dynamic scheduler which builds upon
it, as was laid out by the project goals in Section 1.5.

In understand the difference between these two IDS versions, one should begin by
looking at what set of tasks each system is required to achieve. The baseline system,
which primarily builds upon the principles of producer-consumer architectures as
described in Section 3.2, has to fulfill the requirements listed in Table 4.1 below.

Hardware agnostic towards machines with two or more cores (scalable)
Capture communication traffic
Pre-process data for analysis
Insert prepared data into buffers until a detection model is ready to receive it
Feed stored buffer-data to detection models for anomaly score calculations

Table 4.1: Baseline system requirements.

The more advanced dynamic user-level scheduler needs to fulfill all of the require-
ments that the baseline system had, as well as numerous additional ones. All re-
quirements for this system are listed below in Table 4.2.

Hardware agnostic towards machines with two or more cores (scalable)
Capture communication traffic
Pre-process data for analysis
Insert prepared data into buffers until a detection model is ready to receive it
Feed stored buffer-data to detection models for anomaly score calculations
Parallelization through mutiple consumer threads for throughput increase
Dynamic resource prioritization based on determined runtime events
Anomaly detection based on set soft and hard thresholds
Even load balance among consumers

Table 4.2: Dynamic user-level scheduler requirements.

Additionally, model retraining is integrated into the proposed scheduler to fulfill
the final goal of this thesis (see Section 1.5). However, running the scheduler while
retraining models requires a machine with at least three CPU cores or more.
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Figure 8: Overview of the baseline architecture. Green boxes indicate elements
which have been inserted solely for experimental purposes, and would likely not be
present inside a real IDS.

4.1 Developing a baseline
Existing IDS contain numerous additional features that are not relevant for this the-
sis, resulting in needing to spend valuable research hours into fully understanding
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them. Therefore, building an architecture which only contains the most vital fea-
tures allows us to better focus on our main goal, which is running as many detection
models in parallel as possible. The baseline system also partly acts as an experiment
platform, intended to be used for analyzing the impact of features added later in a
comparative manner.

We chose to develop our anomaly-based IDS architecture using C/C++ in a Linux
environment. Based on our related work research, we concluded this to be a common
way of creating an IDS without any reported performance issues. Additionally, it is
also the environment in which we, the authors, feel the most comfortable working
in given our academic backgrounds.

Using the Midbro component [21] as a source of inspiration from Section 2.4, the
resulting anomaly-based IDS developed is capable of capturing communication traf-
fic, extract selected data-points from it to then be fed into the detection models, as
depicted in Figure 8. This basic system is what we consider our baseline architec-
ture. It is at its core a producer-consumer setup as was described in Section 3.2, and
hence ”mutex“ locks are necessary in order to ensure mutual exclusion for accessing
the common buffers, avoiding race conditions. In the following section, we motivate
all design choices further.

4.1.1 The producer
The responsibility of the producer thread is to handle what we have dubbed as the
Listening server in Figure 8. Here, a socket is opened during run-time initialization
to receive data packets sent from the monitored system through a separate client
program. This enables the IDS to eavesdrop and capture communication traffic from
the socket.

Once a package is in possession of the producer thread, the IDS user now has the
opportunity to put an artificial delay on its dispatchment towards the rest of the
system. For example, one could here for the sake of realism mimic the timestamps
etched within the captured traffic through Algorithm 1. After this, the listening
server’s following task is to extract a particular data-point for analysis from the
packet header (the payload is discarded).

Algorithm 1 Variable packet flow
Declare variables timeDif , timeStamp

Require: timeDif = 0 upon start

for all incoming packets do
timeStamp← time stamp from packet header
sleep(timeStamp− timeDif) delays accordingly
timeDif ← timeStamp updates timeDif before next iteration

end for
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Figure 9: Example of data-points being distributed into the queues for eight dif-
ferent instances, with an arbitrarily set standard deviation and skewed mean.

Lastly, our server needs to insert this data-point into a buffer. Depending on how
many instances we are choosing to run, a unique buffer will exist for each one. Ex-
actly in what order the producer distributes each packet in an experimental setting
is completely up to the IDS user. One could for example, recreate a more realistic
scenario where instances receive different amounts of data through a probability
distribution function, see Figure 9 for an example.

Following the case by the developers of ”The Midbro component“ described in Sec-
tion 2.3 [21], we also chose to overwrite/drop the oldest packets in case the buffer
gets full, ensuring that the detection algorithm is always fed with up-to-date infor-
mation. An event like this signifies that the consumer thread is unable to keep up
with the data rate, which should always be avoided, so we implemented a missed
packets counters to keep track of how often it occurs. Additionally, we implemented
counters for the number of insertions and maximum queue size during run-time, as
these are insightful metrics to analyse when testing out the system.

4.1.2 The consumer
While all of the aforementioned tasks are being executed by the producer thread,
the consumer thread is busy popping elements from the buffers and feeding them
to the detection models, as per the requirements in Table 4.1. When a buffer is
not empty, each data-point is sent to the detection instance belonging to the queue
it was taken from, after which an anomaly score gets produced. For this baseline
system, where the consumer side is handled by a single thread, the instances are
executed one by one. Meaning that for each instance, at most one data-point is
added and one anomaly score is calculated before moving on to the next instance
to perform the same actions. If the consumer observes that a buffer is empty, it
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will move on to the next buffer and inspect if there is any data to be added to the
corresponding PASAD instance.

4.2 Developing a Dynamic User-Level Scheduler
By using the knowledge obtained through the theory research from Section 3.1, as
well as the related work teachings in Section 2.6, we developed a dynamic user-level
scheduler (from here on simply referred to as ”the scheduler“) in order to satisfy
all requirements set up in Table 4.2. The scheduler is built as an evolution upon
the baseline system, adding features to increase the performance from a security
perspective without compromising on it remaining agnostic to the hardware and (to
some extent) the utilized detection model.

Figure 10: A high-level overview of the multi-threaded scheduler’s architecture.

Figure 10 displays an overview of the scheduler. The producer thread, represented
by Thread 0 in the image above has identical responsibilities as it did for the base-
line system, which was gone over in Section 4.1.1. The scheduler achieves parallel
anomaly detection by multi-threading the consumer side and placing the detection
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models in a task pool. An in-depth description of this can be read in Section 4.2.1.

Importantly, the scheduler is designed to adapt to available hardware resources (such
as CPU cores and threads). It strives to equally distribute the workload among all
consumer threads to ensure scalability as well as being hardware agnostic, which
is one of the goals stated in Section 1.5. Note that in Figure 10, the number of
consumer threads is less than the amount of detection models.

4.2.1 Dynamic resource prioritization
Since we are detecting anomalies within communication traffic, where each instance
of a detection model monitors a specific edge device for rapid attack detection, prior-
itizing certain models over others is essential for increasing the overall effectiveness
of our IDS architecture from a security perspective. What this means in practice
is that consumer threads execute models with higher priority more frequently than
others. We have chosen three conditions to affects a model’s priority, which are
listed in Table 4.3 below.

Models buffer size exceeding 80% of their maximum capacity
Models producing suspicious scores (surpassing a ”soft“ threshold value)
Models producing alarming scores (surpassing a ”hard“ threshold value)

Table 4.3: Conditions for initiating a priority change on a model.

The size of a model’s buffer during run-time is an indication of how much data it is
receiving, and remember, one of the most important tasks for an IDS is to analyze
every single incoming data packet in order to detect attacks. Missing packets de-
prives us of the possibility to conclude if that traffic was normal or malicious, and is
therefore an event the system must avoid. Increasing the model’s priority level after
reaching 80% of the specified buffer sizes will result in it being chosen for execution
by consumer threads more often. We have set 80% as the limit in order to give the
consumer threads a large enough time margin to detect the priority change before
the buffer overflows, since the producer thread will never concern itself with how
close the buffers are to overfilling but rather keep inserting data as usual.

Producing suspicious anomaly scores is a clear indication that an attack might be
occurring. Because of this it is far more important to allocate more resources to-
wards models producing suspicious anomaly scores than those that are not. Raising
the priority level for models producing suspicious scores can allow for the scheduler
to trigger alarms earlier, increasing its value from a security aspect.

The highest priority level will be given to any node which the IDS has identified
as currently being under attack. Collecting data related to the attack as rapidly as
possible is of utmost analytic value in order for the IDS users to quickly find out
what caused the attack as well as being able to provide a sufficient response.
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4.2.2 Minimizing starvation and overhead
As stated in the previous section, the reason we have associated each detection model
with a priority, is to further help the scheduler to decide which model a consumer
thread should execute next.

When a consumer thread is ready to perform some work again, it calls firstly on the
”Weighted Model Prioritisation Algorithm“ (referred to as WMPA) which returns
the index for which detection model it should execute next. In its essence, WMPA
first calculates the cumulative sum of the models’ priorities and stores them in an
array we named ”sum“. The function thereafter calls for a random number r be-
tween zero and the sum of all priorities. It then compares r to the cumulative sum
of priorities via binary search.

In the example demonstrated in Table 4.4, five detection models have been specified
along with their priorities on the row below. If the random number r is thirteen,
then that value would be within the range [11,14]. WMPA would return the index
for detection model four which the consumer thread then can find stored in an array
containing all detection models as depicted in Figure 10.

WMPA’s most important trait is that it will favour models with higher priorities.
However, this is also the function’s biggest cause of overhead as it does not consider
if a model is available for execution or not. If the highly prioritized model is already
being worked on by a consumer thread, the other consumers will also have a high
chance of receiving the index for that already chosen model. Since a model is only
allowed to be executed by one thread at the time to prevent race conditions, the
other consumer threads will be forced to repeat the call for an index (which could
return the same occupied index again). This results in idleness as consumer threads
keep asking for indexes, negatively affecting the scheduler’s performance.

Detection model (i) 0 1 2 3 4
priority 1 3 1 5 4
sum[i] 1 4 5 10 14
range to choose model i (0,1] [2,4] (4,5] [6,10] [11,14]

Table 4.4: An example of how a model is chosen by a consumer thread.

To eliminate this idleness we implemented an ”availability“-flag to represent each
detection model (zero if available, one if not). If a model’s flag indicates that it
is not currently occupied by another consumer thread, its priority level and index
will be stored as a pair inside a new vector. The recently described function which
returns indexes to waiting consumer threads will now do their pick based on what
is stored inside this vector. Hence what they return cannot belong to that of an
already occupied model.

It should be noted that our implementation can result in low priority models being
chosen by consumer threads far to rarely. However, we conclude that this is not an
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issue since the occurrence of a model remaining at a low priority level is an indication
of it neither producing suspicious anomaly scores or receiving much data. Because
of this, it is better to focus our resources on the nodes needing it according to the
determined priority altering events.

4.2.3 Model retraining
Detection algorithms based on data-driven machine learning models need to be re-
trained once the model’s initial training set is no longer up to date with the incoming
data. Ignoring this will likely result in the model producing inaccurate scores that
could classify normal behavior as malicious, or the opposite.

However, model retraining is a computationally heavy task even when using a
lightweight algorithm, and is therefore commonly offloaded to the cloud or more
capable hardware. Investigating a solution for performing training directly on an
edge device itself is highly valuable for the research community, even if it were to
take a long time to complete. This is because it would aid in keeping sensitive data
from flowing through the networks.

An additional, perhaps obvious but still vital security requirement for making the
solution serviceable in a real scenario, is that even while retraining is taking place
the IDS needs to still be able to perform all its other tasks for continuous attack
detection.

Figure 11: Cropped version of Figure 10.
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In Figure 11, we have cropped out only the elements of the scheduler that are needed
to understand how our solution for retraining models work. It starts with knowing
that the training phase will require a certain amount of up-to-date training data
in order to be performed. We have therefore incorporated a variable holding the
value for the index of the model that is to be retrained, which is known to all con-
sumer threads. So for example, if detection model of index 2 is to be retrained,
then whenever a consumer thread is taking data from this model’s buffer in order
to calculate an anomaly score, it will also insert a copy of that data into the buffer
for a separate model denoted as the Training Model in the image above. Training
typically requires large amounts of data, hence this model has a larger buffer.

The training model is of the same object type as the other detection models, however
it is not stored within the same data-structure. This is to minimize the interference
of the training phase with the scheduler’s other attack detection functionalities.
Once enough training data has been collected, a new thread will be spawned to
perform the actual training tasks. Again, the reason for a separate thread (denoted
”Thread T“ in Figure 10 & 11) here is to keep all of the elements needed for training
as independent as possible from the rest of the scheduler’s important responsibilities.

Once the training tasks are concluded, it is time to prepare for replacing the detec-
tion model that was to be retrained. In order to do this safely, the training thread
can issue a condition variable indicating the index of the detection model it wishes
to replace. The function on which all consumer threads call whenever they want to
receive a new index (which was described back in Section 4.2.2) can then use this to
make sure that the requested model is only available for the training thread, as soon
as any potential ongoing work with that model by a consumer thread has concluded.
Once the training thread ”sees“ that its condition variable has been serviced, it can
safely replace the detection model with a newly trained one, whereafter it ceases to
exist.

This concludes one whole cycle of retraining. What happens right after this is that
the index representing which model that is to be retrained gets updated, and the
process for retraining another one of the detection models begins.
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As Section 4.1 described, the IDS developed for this thesis is fully capable of listen-
ing to a port. However, in order to correctly measure and compare the performance
of both the baseline system as well as the scheduler system, it is vital to push both
systems to their limits. This entails dispatching as much traffic to the systems as
they possibly can handle, which can yield inconsistent results when done over the
network.

We have in early tests (not included in this thesis) seen the arrival rate of dis-
patched data being bottle-necked by the local network. To avoid this, we have
made the decision to during performance tests, have the producer thread reading
incoming communication traffic directly from a file instead.

We have partnered up with Clavister, a cyber security vendor with over 20 years
of experience who has provided us with a file containing IP-traffic for use in our
experiments, as well as several additional resources to be discussed in this chapter.

5.1 Chosen detection algorithm
Although our scheduler is designed to be fairly compatible with most lightweight
data-driven machine learning algorithms, we have chosen ”PASAD“ as the detection
algorithm to use during testing. Current implementations of this algorithm are only
able to process and analyse a single instance at a time on edge devices (a more in-
depth explanation of PASAD can be found in Section 2.3). Some of our motivations
for using PASAD are:

• PASAD is a lightweight data-driven anomaly detection model based on ma-
chine learning, capable of executing reasonably fast on inexpensive CPU hard-
ware.

• Our supervisors have both been extensively involved in the development of
PASAD, therefore possessing deep knowledge on the algorithm’s logic.

• We have access to a header & binary file for the algorithm, ready for software
integration.

Since the detection algorithm along with its inner workings is a black box from our
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point of view, following the scope for this thesis as was set up in Section 1.6, we are
only able make the following function calls to use it:

• One unique function call is needed for adding a data-point to each PASAD
object’s own test set. The detection algorithm uses this test set to calculate
anomaly scores. Recall from Section 2.3 that each PASAD instance requires
L points of data before it can calculate its first anomaly score, whereafter it
can calculate a new score for each added data-point. Note that the test set
is a separate data-structure from the buffers our scheduler initializes for each
detection model.

• Another function call calculates and returns the anomaly score, using the test
set built through calls to the aforementioned function.

• A third function also takes in a data-point but adds it to a training set instead
of the test set. In the version of PASAD provided to us, 30,000 data-points
have to be added before a model can be fully trained.

• Finally, two additional functions are called consecutively in order to execute
the training of a model, using data from the training set.

5.2 Hardware devices
We tested our solutions on two different hardware devices, both of whom we con-
fidently feel follows the scope for this thesis in terms on focusing on IoT devices,
as laid out in Section 1.6. These devices are the ”Raspberry Pi 4 Model B“ and
the ”NVIDIA Jetson Nano“. The reason as to why we have chosen to utilize these
specific units is because of their interesting hardware differences, especially in terms
of their memory architecture. Both of them are also equipped with quad-core CPU:s
with support for four threads, making it easy for us to deploy our multi-threaded
systems.

5.2.1 Raspberry Pi 4
The processor inside the Raspberry Pi 4 is equipped with 80KB Level 1 (L1) cache
per core, along with 1MB L2 cache which is shared among the cores and a single
memory channel to access the RAM. Its maximum CPU clock speed lies at 1.8 GHz,
and the memory bandwidth is approximately 4.4 GB/s [28]. For a more extensive
specification description, we refer to the official data sheet [29].
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Processor Quad-core 64-bit ARM-Cortex A72 (Broadcom BCM2711) at 1.5GHz
Threads 4 (1 per core, no hyperthreading support)
Memory 4GB LPDDR4-3200 RAM
Graphics VideoCore VI 3D Graphics
Storage Micro-SD card slot for loading operating system and data storage

Table 5.1: Specifications for the Raspberry Pi 4 model B.

In this unit’s memory hierarchy, each of the four processor cores have access to their
own level 1 cache. Whenever any needed data is not stored there, they are forced
to go searching further down among the shared memory components such as the
L2 cache, RAM or in the worst case main memory (Micro-SD card). This setup is
visualized in Figure 12.

Ubuntu Server version 22.04 was loaded on as the unit’s operating system. Remote
access is enabled through SSH.

Figure 12: Memory structure of the Raspberry Pi 4.

5.2.2 Nvidia Jetson Nano
Just as the Raspberry Pi, Nvidia Jetson Nano’s processor is also equipped with
80KB Level 1 (L1) cache per core, with 2MB L2 cache shared among all cores and
dual memory channel access to the RAM. Its maximum CPU clock speed lies at
1.47 GHz, along with a memory bandwidth of 25.6 GB/s. For a more extensive
specification description, we refer to the official data sheet [30].
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Processor Quad-core ARM Cortex-A57 MPCore processor
Threads 4 (1 per core)
Memory 4GB 64-bit LPDDR4 RAM
Graphics NVIDIA Maxwell architecture, 128 NVIDIA CUDA cores
Storage Micro-SD card slot for loading operating-system and data storage

Table 5.2: Nvidia Jetson Nano

In this unit’s memory hierarchy, each of the four processor cores have access to their
own level 1 cache. Whenever any needed data is not stored there, they are forced
to go searching further down among the shared memory components such as the L2
cache, RAM or in the worst case main memory (Micro-SD card).

Ubuntu 18.04.6 LTS (GNU/Linux 4.9.253-tegra) is loaded on as the unit’s operating
system with Nvidia’s Jetson Nano Developer Kit, as is the default configuration
provided by the manufacturer. Remote access is enabled through SSH.

5.3 Experiments setup
In order to fulfill all project goals set up in Section 1.5, we prepared several important
experiments listed in Table 5.3 below. Many of these experiments are performed both
on the baseline system and the scheduler, as well as on two separate hardware devices
in order to conduct proper a comparison and evaluation afterward. The upcoming
sections of this chapter will provide a more detailed walkthrough regarding the
purpose of each experiment as well as their setup.

Maximum throughput measurement
Evaluation of model prioritization
Evaluation of producer-consumer relationships
Performance impact of PASAD’s inference-related functions
Performance impact of scheduler features
Runtime measurement
Scale-up measurement

Table 5.3: Experiments to be conducted.

In order to perform the experiments above, a number of architecture adaptations
had to be made, affecting both the scheduler and baseline system. The first of
these was to decide on how the producer thread should dispatch data-points. We
decided to go for insertion through bursts, in the manner described by Algorithm 2
below, instead of replaying the time-stamps using Algorithm 1. The producer will
also perform its distribution uniformly, meaning all models are to receive the same
amount of data. These alterations are necessary as the burstSize variable enables us
to directly change the rate of incoming data to all detection model buffers. burstSize
is the amount of packets dispatched before waiting one second for the consumers to
have an opportunity of emptying their queues.
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Algorithm 2 Fixed packet bursts
Declare variable burstSize

Require: burstSize > 0

while end of traffic file not reached do
dispatch 1 data-point to consumer thread
i← i + 1
if i ≥ burstSize then

sleep(1 second)
i← 0

end if
end while

Secondly, since our traffic data file might not contain enough packets to keep the
experiment running for a sufficient amount of time, we allow the producer thread
to continuously loop through the file a number of times as determined by the user.
This functionality is also very important when burstSize is large, as that decreases
the amount of time it takes to go through the file.

Thirdly, we decided on a fixed maximum buffer size of 10,000 for all detection mod-
els. This is an arbitrarily set limit, as the scope for this thesis is not concerned
with the actual size of the buffers as long as they are not increasing indefinitely,
causing unpredictable memory usage. In a real-life scenario however, a lengthier
consideration would have to be taken when deciding on the maximum buffer size.
This is because unlike in our test environment, unpredictable bursts of faster incom-
ing communication traffic can occur there. In such a scenario, having the buffer as
temporary storage of data-points acts as a safety margin for not loosing packets in
case the consumer threads cannot keep up with the temporarily higher rate.

Fourthly, the scheduler will be tested with four threads in total, one producer and
three consumer threads. This is because even though the scheduler is developed to
be hardware agnostic, both of our test devices are equipped with quad-core CPU:s
as explained in Section 5.2. We aim to avoid time-slicing of the producer thread
in order to guarantee the intended incoming data rate for each given test, therefore
not executing a higher number of threads than there are cores. When running the
scheduler while also retraining models, one consumer thread will be exchanged for a
separate training thread, following the logic for training as described in Section 4.2.3.

Fifthly, we did not take advantage of the opportunity to control the mapping of
threads for execution on specific cores as described in Section 3.1.4, as we have not
witnessed any performance gain by doing this (test not included in paper). This
task is therefore handed over to the OS.

Finally, it should be mentioned that the results from most of our experiments, if
not all, should be taken with a grain of salt as they inevitably contain some margin
of error. This is because various processes running in the background inside the
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operating system could be affecting the result between test. We conduct different
methodologies to reduce these margins of errors. In certain cases, like when we
measure the maximum throughput, we are required to repeat the same test several
times while slowly iterating the input rate until we find what the system can maxi-
mally handle. In other cases however, such as in the model prioritization evaluation,
averaging the results from three test runs suits better.

5.4 The steady state phenomena
An important concept to grasp before evaluating any of our experiments, is the
assumption that producer-consumer architectures (see Section 3.2 for more details
regarding this architecture category) which both our baseline system and scheduler
basically are, can reach a so-called steady state. To explain this phenomena in the
easiest way, we will focus on the baseline system in this section.

PASAD #0
Insertions 125850
Max buffer size 211
Missed packets 0

PASAD #1
Insertions 787440
Max buffer size 2557
Missed packets 0

PASAD #2
Insertions 1981020
Max buffer size 6699
Missed packets 0

PASAD #3
Insertions 1977360
Max buffer size 6708
Missed packets 0

PASAD #4
Insertions 788550
Max buffer size 2571
Missed packets 0

PASAD #5
Insertions 120990
Max buffer size 200
Missed packets 0

PASAD #0
Insertions 377550
Max buffer size 250
Missed packets 0

PASAD #1
Insertions 2362320
Max buffer size 2599
Missed packets 0

PASAD #2
Insertions 5943060
Max buffer size 6745
Missed packets 0

PASAD #3
Insertions 5932080
Max buffer size 6704
Missed packets 0

PASAD #4
Insertions 2365650
Max buffer size 2580
Missed packets 0

PASAD #5
Insertions 362970
Max buffer size 264
Missed packets 0

Table 5.4: Reaching a steady state, 30 versus 90 loops.

As has previously been explained, the baseline utilizes two separate threads (one
producer thread and one consumer thread, see Figure 8). For this duality to work
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well, both threads need to achieve balanced results. Specifically, there are two sce-
narios where this is not the case; one where the producer is faster than the consumer
and the second being that the consumer is faster than the producer. If the producer
is faster than the consumer, this will eventually lead to packets being missed. On
the other hand, if the consumer is faster than the producer this will result in under-
utilized hardware resources as idleness will occur on the consumer side. Both cases
are considered bad from the performance aspect.

PASAD #0
Insertions 251700
Max buffer size 556
Missed packets 0

PASAD #1
Insertions 1574880
Max buffer size 5290
Missed packets 0

PASAD #2
Insertions 1989182
Max buffer size 20000
Missed packets 1972858

PASAD #3
Insertions 1989305
Max buffer size 20000
Missed packets 1965415

PASAD #4
Insertions 1577100
Max buffer size 5292
Missed packets 0

PASAD #5
Insertions 241980
Max buffer size 504
Missed packets 0

Table 5.5: Breaking the steady state.

Table 5.4 provides a simple way to analyse whether the consumer thread manages
to keep up with the producer. In this case each sub-table displays an example of six
PASAD models being run on the baseline system, however the traffic file is looped 30
and 90 times respectively. Looping the file 30 and 90 times took roughly five minutes
and thirteen minutes respectively until the program execution finished. Each loop
iteration consisted of 192,707 data-points dispatched for analysis by the producer
at a rate of 20,000 data points per second, while the buffer size for each PASAD
instance was set to hold up to 10 000 data-points. ”Max buffer size“ indicates the
maximum buffer size reached during runtime and it can clearly be seen that it re-
mains roughly identical for each PASAD instance despite the variation in execution
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time. This points to the fact that the consumer thread was able to keep with the
producer and thus preventing the buffers from growing ever larger. This is what is
meant when we say that the system has reached steady-state.

However, this will not stay true under all circumstances. Because while the con-
sumer thread will be able to keep up to a certain level of input rate, at some point
the influx of data will be too large for it to manage. When this occurs the steady
state ”breaks“. Table 5.5 displays the broken steady state where the producer thread
was instructed to dispatch 40,000 data-points per second, which proved too much
for the consumer to handle. This resulted in the buffers of PASAD model 2 & 3
overflowing and caused a large quantity of missed packets. This occurred despite
doubling the maximum buffer size to 20,000 elements.

We emphasize once more the fact that missing packets always hurts the accuracy
of our IDS, as potentially malicious data can get overwritten. This gives us a fixed
upper limit on how much data our system should be given per unit of time to process
when running a certain amount of models.

5.5 Maximum throughput measurement
Evaluating the performance of the scheduler is tricky business, due to it including
multiple different data-structures, features and parameters that can be altered as
one might understand simply by glancing at Figure 10. However, after having con-
sulted with all partners involved with this thesis, we agreed that throughput would
be a crucial metric for determining this project’s degree of success.

ThroughputScheduler > ThroughputBaseline

The core concept is quite simple and summarized through the equation above. If
the scheduler can process data incoming at a higher rate than what the baseline
system is capable of (without missing packets!), it has performed better in terms of
throughput. An alternative description would be to say that we are scaling up the
problem size without granting the system additional execution time (see Section 3.3
for a more in-depth explanation of throughput along with other metrics).

An increased throughput holds value from a security perspective since faster pro-
cessing of the incoming data means that attacks might be discovered earlier. It also
provides an overview for users regarding what resources are available to them when
using the IDS, which could for example be taken advantage of by monitoring more
nodes simultaneously.

The experiment is practically performed by tweaking the rate of incoming data (see
burstSize variable from Algorithm 2) too stress the hardware and see how much
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each system can handle before missing packets, then repeating this with a varying
number of running detection models. In case the consumer thread(s) are managing
to keep up with the rate of incoming data, the throughput, meaning the rate at
which the tested system produces anomaly scored should be equally large. This
is an assumption we are making based on the steady-state phenomena explained
in Section 5.4. We determined that if the system cannot surpass 50 loops of the
traffic file without missing packets, it has failed the test and the program will be
terminated immediately.

5.6 Evaluation of model prioritization
One of the features built into the scheduler to increase its value from a security as-
pect, is that it is able to dynamically allocate more resources towards nodes needing
it based on their level of priority (see Section 4.2.1 for a more extensive explana-
tion). As an additional security metric, we have devised an experiment in order to
quantify solely the effect this particular feature has.

Figure 13: Both the soft and hard threshold (which lies above the vertical range
of this image) are defined to be located above the anomaly score values produced
from the traffic file data.

In Figure 13, the values of all the produced anomaly scores after having iterated
through the traffic file once are printed out. A vertical axis for showing the partic-
ular values of these scores has been left out, as they are of no significant concern to
this experiment.

The way this experiment will be conducted is by intentionally causing just one of the
detection models (model with index zero was chosen) to breach both the soft and
hard threshold values (the meaning of these thresholds is explained in Section 4.2.1).
In order to make sure that no other model causes a breach we defined the thresholds
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to be higher than the scores produced from the traffic file data as indicated in Fig-
ure 13. We then dispatched a different stream of data into the buffer for the model
that is intended to breach the thresholds.

Algorithm 3 Purposeful threshold breaches

modelTurn is index of the model to receive data
The value of X causes anomaly scores above soft threshold
The value of Y causes anomaly scores above hard threshold
Variable loops correspond to current amount of traffic file iterations

if modelTurn = 0 and loops < 30 then
dispatch X as data-point to model 0

else if modelTurn = 0 then
dispatch Y as data-point to model 0

else
dispatch data-point from traffic file to model of index modelTurn

end if

Remember that the producer thread iterates and inserts data-points to all buffers
uniformly as was determined in Section 5.3. Whenever it is time to dispatch a unit
of data towards model ”0“, the producer will then instead dispatch data-points of
a higher value which causes this model’s scores to remain above the soft threshold,
hence making the scheduler increase its priority level (see Algorithm 3 above). Af-
ter having run the program for a certain amount of file loops (30 loops was chosen
arbitrarily), the producer will then start to insert even larger values, causing model
0 to also breach the hard threshold, which the scheduler interprets as an alarm.

We then measure the time it takes until this alarm is detected, both on the scheduler
with and without the model prioritization feature activated, as well as on the baseline
system. The effect that a higher level of priority has on the buffer sizes will also be
analysed, using the counter ”maximum queue size“ introduced in Section 4.1.1.

5.7 Evaluation of producer-consumer relationships
To gain further insight regarding how our architectures react to scaling, we devised
two experiments for observing the relationship between the producer and consumer.
Specifically, how they try to gain access to the mutex locks guarding the buffers
between them.

In the first of these experiments, we built a very simple program where the pro-
ducer thread was eliminated. This meant that all the buffers were pre-loaded with
insignificant variables during runtime initialization and a single producer thread
could freely access them all without needing to compete for a mutex lock. We then
altered the number of buffers while keeping the sum of all data stored inside them
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the same, to then measure the time it takes for the producer thread to empty them
all.

In the second experiment we brought back the producer thread while still keeping
the program very simple. Simply put, the producer thread was to push in total one
million insignificant variables into all buffers as fast as it could, while the consumer
thread kept popping them out whenever it encountered a buffer that was not empty.
To avoid race conditions however, each thread can only perform their task when
gaining the mutex lock for a buffer, and we again measured the total execution time
of this program when altering the number of buffers.

5.8 Performance impact of PASAD’s inference-
related functions

Even if we are viewing the utilized detection algorithm as a black box, it is important
to know at least what it costs us in terms of execution time overhead since that is
affecting our results in other experiments as well. We measured how long each call to
the PASAD functions for producing anomaly scores varied on average when scaling
the number of detection models running simultaneously. The functions needed for
retraining PASAD models are of less concern to us however, since as was explained
in Section 4.2.3 it is considered a non-issue for the scope of this thesis whether the
training phase takes a long time to complete.

5.9 Performance impact of scheduler features
In Sections 4.2.1 and 4.2.2 we discussed dynamic resource prioritization as well
as WMPA. The purpose of the experiment is to get some insight into how much
overhead features like this are actually adding to the system. We will therefore
conduct throughput measurements in the same manner as in Section 5.5, however
on another version of the scheduler where all features except for having multiple
consumer threads are removed. Meaning that this version is actually identical to
the baseline system, except for the fact that multiple consumer threads are iterating
through their own part of the data-structure that contains all detection models.

5.10 Runtime measurement
A valuable performance metric is to observe how the difference between the start
and termination time varies on our architectures. Traditionally, one would do this
by calculating the ”speed-up“, which as explained in Section 3.3 is produced by
dividing the sequential (program run on one thread) version’s total execution time
with that of the parallelized version.

However, this exact evaluation could not be performed since even the baseline sys-
tem is executed using two threads, and would have to be altered severely in order
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to function on a single thread. We therefore decided to instead measure the differ-
ence between our two-threaded baseline system against the four-threaded scheduler
system, using the following equation:

Runtime improvement = Execution time baseline system
Execution time scheduler system

Where a quota greater than one is indicative of an improvement. We argue that
a perfect improvement here would be if the scheduler system displays a three-fold
improvement over the baseline system, since we have shifted from executing only one
consumer thread to having three of them, while remaining with the single producer
thread. The metric can therefore act as an indication on how well the paralleliza-
tion (or threads) have been implemented. Regarding this metric’s importance from
a security analysis perspective, the reasons are alike those stated for throughput in
Section 5.5.

The experiment will be performed by looping the traffic file 50 times just like in
the throughput experiment from Section 5.5, and we will measure the program’s
total execution time. We make the decision of how many models to run in this test,
as well as the data input rate following an analysis of the throughput experiment’s
results. That is because this test should be performed with a large number of models
as the results then become more valuable for any reader considering to follow our
architecture approach, and we need to know what data input rate each system can
handle with that amount of models.

5.11 Scale-up measurement
Scale-up is another valuable performance metric to observe differences in problem
size for the architectures while the execution time remains identical. The general
purpose of measuring scale-up was described earlier in Section 3.3 but in the case of
the thesis, scale-up would indicate how many more data-points the scheduler is able
to perform anomaly detection on compared to the baseline during the same time
period.

We utilize the following equation to measure scale-up:

ScaleUp(T ) = N

M

Where T is the execution time for the baseline system to perform anomaly detec-
tion using M data points and N is the number of data points that the scheduler
accomplishes to perform anomaly detection on during the same period T .

For the same reasons as in Section 5.10, the number of models to run in this test,
as well as the data input rate is determined following an analysis of the throughput
experiment’s results.
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Results

In this chapter, the results from our experiments are presented in the same order
as they are listed within Table 5.3. Certain experiments were carried out on both
hardware devices to enable a comprehensive comparison, while others only required
a single device to provide the needed results. Observe that in some graphs, ”anomaly
scores“ have been denoted as the more general term ”departure scores“.

6.1 Maximum throughput
In this section we will present the maximum throughput test results. The results
for the Raspberry Pi can be seen in Section 6.1.1 and the results for the Nvidia
Jetson Nano can be seen in Section 6.1.2. A comparision between the two devices
is presented in Section 6.1.3.

Important to mention lastly, is that there are three regions of interest shown in the
performance graphs in Figures 14, 15, 17 and 18. The first interesting region is
the linear relationship occurring from one to six PASAD models, the second is the
exponentially decreasing region from six to 20 models, and lastly the plateau after
25 models.

6.1.1 Raspberry Pi 4

Figure 14: Throughput testing of the baseline architecture. In this case, only a
single consumer thread is responsible for inference monitoring all models.
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In Figure 14, the performance of our baseline architecture, described in Section 4.1,
was tested. On the horizontal axis are the number of PASAD instances that were
running. The vertical axis represents the system’s throughput, meaning the number
of departure scores it produces per second.

It is crucial to note here that as long as the producer and consumer threads can
keep up with each others work, the throughput should be equal to the input rate,
meaning the number of data-points being inputted to the system by the producer.
Again, each PASAD model can be seen as an end node being monitored, hence
having the capability of running a higher number of PASAD instances is preferred.

What the blue line shows is the maximum amount of throughput the system is
able to produce, in relation to a certain number of PASAD instances running. If
more data-points per second than what the red dots indicate are dispatched into the
buffers, the consumer thread will not be able to keep up with the producer’s speed
anymore.

For instance, when running ten PASAD models, the throughput the system can
achieve is roughly 47,000 anomaly scores per second. Exceeding this leads to the
buffers being filled faster than they are emptied, and in turn to missed packets due
to buffer element overwrites. As explained in Section 4.2.1, missing packets should
always be avoided in an IDS, and therefore we have chosen this event as the system’s
limit.

From Figure 14 we can see a linear increase up to six PASAD instances which is also
where the system reaches its peak throughput. We can see that the Raspberry Pi
seems to hit a ”performance wall“ at around 6 models whereafter its performance
starts to decrease exponentially and then flattens out when running more than 20
PASAD instances.
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Figure 15: Throughput testing of the dynamic user-level scheduler when utilizing
all the cores.

Similar to the setup for the baseline, the vertical axis in Figure 15 represents the
dynamic user-level scheduler’s throughput. The difference here, compared to the
baseline, is that we make use of all the available cores in our hardware by allowing
multiple consumer threads to work. Again, the red dots on the line indicates the
maximum number of anomaly scores the system is capable of producing before miss-
ing packets, along with the number of PASAD models specified on the horizontal
axis.

Figure 16: Comparison between the baseline system and scheduler, running on the
Raspberry Pi 4.

As demonstrated by Figure 16, the scheduler achieves a significant performance
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boost when running just a few PASAD models in parallel. The scheduler has it
peak at eight PASAD instances compared to six at the baseline. Additionally, we
see a radical decrease in performance going beyond eight PASAD models for the
scheduler to the point that it performs almost identical to the baseline.

Lastly, re-training PASAD models in parallel while other models are used for running
inference on the Raspberry Pi 4 proved to not be possible. Re-training could only
be performed successfully by completely freezing the scheduler’s inference tasks.

6.1.2 Nvidia Jetson Nano

Figure 17: Baseline architecture’s throughput performance.

Identical to the baseline experiment on the Raspberry Pi, Figure 17 visualizes the
performance of the baseline architecture on the Nvidia Jetson Nano. As shown
in the graph, the baseline’s maximum throughput performance occur with six to
10 PASAD models. Adding more than 10 PASAD models decreases the baseline’s
throughput.

Figure 18: The dynamic user-level scheduler’s throughput performance.

Just as in the previous graph, the vertical axis in Figure 18 represents throughput
although now for the dynamic user-level scheduler. As can be seen in the graph,
the scheduler has its peak throughput between nine and 15 PASAD instance with a
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peak at 13 PASAD models. Adding more instances causes the scheduler to decline
in throughput.

Figure 19: Throughput performance while conducting continuous re-training of
models.

Unlike the Raspberry Pi, Nvidia Jetson Nano proved capable of executing model re-
training and inference simultaneously if more than two PASAD models were running.
Figure 19 shows the system’s throughout while continuous retraining is taking place.

Figure 20: Performance comparison with re-training

Figure 20 depicts the difference in throughput for the baseline and the scheduler
with or without model retraining taking place. We can see that the scheduler both
with and without model re-training out-performs the baseline at all occurrences ex-
cept when running only one or two PASAD models. As an added bonus here, we
also tested how many PASAD models each system was capable of running before
the whole process was killed by the OS, indicated by each line ending at different
locations on the vertical axis.

As shown in Figure 20 the Nvidia Jetson Nano was able to run the scheduler with
and without model re-training with no more than 97 and 104 Pasad instances re-
spectively, whereas it could run with 125 Pasad models with the baseline. Linux
killed the program when we attempted to go beyond these end points. The system
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monitoring utility ”jtop“ indicated that the RAM was completely full when adding
more Pasad instances than the end points.

Figure 21: Performance comparison highlighted at 40 or more Pasad models

Figure 21 provides a clearer view of the throughput difference with 40 or more
models.

Figure 22: Performance comparison normalized on the baseline system.

Figure 22 displays the same information as Figure 20, however now normalized on
the baseline’s throughput to demonstrate how our architectures scale in comparison.
We can see that a performance boost is gained with the scheduler, and even with
model re-training enabled it is still able to out-perform the baseline’s throughput.
Note that the dip at 15 PASAD models when retraining is enabled derives from the
fact that in Figure 20 the baseline’s performance does not decrease as fast as the
scheduler’s.
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6.1.3 Raspberry Pi 4 versus Nvidia Jetson Nano

Figure 23: Throughput comparison between the Raspberry Pi 4 and Nvidia Jetson
Nano running the baseline system.

Figure 23 indicates a similar performance for both hardware devices up to six
PASAD models. The Nvidia Jetson Nano is able to stay at its peak throughput
with a few more PASAD models, but just like the Raspberry Pi 4, eventually de-
creases in performance. Interestingly, while the Raspberry Pi 4 reaches a plateau
after 20 Pasad models, the Nvidia Jetson Nano increases in performance again when
executing with more than 25 Pasad models.

Figure 24: Throughput comparison between the Raspberry Pi 4 and Nvidia Jetson
Nano running the scheduler.

Figure 24 demonstrates that the Nvidia Jetson Nano out-performs the Raspberry Pi
4 in the case of the scheduler without model re-training. Interestingly, even though
retraining models is computationally intensive and thus decreases performance, the
Nvidia Jetson Nano remains superior (green graphs) to the Raspberry Pi 4 (recall
that Raspberry Pi 4 could not perform retraining). Recall from Section 6.1.1 that
the Raspberry Pi 4 is not at all capable of executing retraining and inference simul-
taneously.
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6.2 Model prioritisation

System type Time until detecting alarm Extra time taken
Scheduler 98.167 s -
Scheduler (no prioritisation) 104.963 s ≈ 6.8 s
Baseline 187.252 s ≈ 89.1 s

Table 6.1: Time measurements averaged over three runs.

In Table 6.1, the time it took for each system version to detect an alarm has been
listed. In this experiment, each system was processing data at their maximum
capacity for 75 models, which for both versions of the scheduler is 84,000 anomaly
scores per second. The baseline system however, can only produce 39,000 scores per
second while running this number of models. We can see that the lower throughput
has a significant impact on the attack detection speed.

System type Time until detecting alarm Extra time taken
Scheduler 180.643 s -
Scheduler (no prioritisation) 180.742 s ≈ 0.99 s
Baseline 187.252 s ≈ 6.61 s

Table 6.2: Time measurements averaged over three runs.

Table 6.2 displays the results from a similar experiment as for Table 6.2. However
this time the throughput for all system versions was adjusted to the baseline’s max-
imum with 75 detection models, which is 39,000 anomaly scores per second. This
test was conducted to see how the model prioritization feature would perform when
the throughput is equal for all systems. We can see that running the scheduler at a
much lower throughput than what it is able to handle causes the benefits of model
priotisation to almost be eliminated.
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Figure 25: Each column displays the largest buffer size for each detection model
throughout the complete runtime.

Figure 25 displays the maximum buffer sizes after running the same experiment as
in Table 6.1 on the baseline system.

Figure 26: Each column displays the largest buffer size for each detection model
throughout the complete runtime.

Figure 26 displays the maximum buffer sizes after running the same experiment as
in Table 6.1 on the scheduler without the model prioritization feature activated.
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Figure 27: Each column displays the largest buffer size for each detection model
throughout the complete runtime.

Figure 27 displays the maximum buffer sizes after running the same experiment as
in Table 6.1 on the scheduler with the model prioritization feature activated. The
metric for the single model which intentionally breached both the soft and hard
thresholds has been highlighted using a red circle. We can see that the higher
prioritisation has a significant effect on its buffer size, since consumer threads are
”choosing“ to perform work on this detection model more often.

6.3 The producer-consumer relationship
As mentioned in Section 5.7, we conducted experiments to gain a better understand-
ing of the relationship between producer and consumer threads.

As seen in Figure 28, splitting up the data into various buffers does not affect the
speed of the consumer. The consumer’s execution time remains roughly constant
throughout all the different buffer sizes.

Figure 29 displays performance tests on how accessing mutex locks affects the pro-
ducer and the consumer. As seen in the graph, there is a significant difference when
there only exists one buffer between the producer and the consumers.

57



6. Results

Figure 28: Experiment where the producer thread is eliminated, hence all buffers
are pre-loaded during runtime initialization with the same amount of data in total.

Figure 29: Experiment on a simple producer-consumer test-program.
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6.4 PASAD’s inference-related functions

Figure 30: Average execution time of the function adding data to the internal
test-set for different numbers of PASAD instances.

Figure 31: Average execution time of the function producing anomaly scores in
relation to the number of PASAD instances.

Figures 30 and 31 shows the cost in terms of execution time for executing PASAD’s
internal inference-related functions. These are the only two function calls we need
to make from PASAD’s own header file. Especially interesting is that the graph in
Figure 31, which represents the cost for calculating anomaly scores is nearly identical
to the inverse of Figure 14 when the throughput decrease takes place.

6.5 Scheduler features
Figures 32 and 33 shows that the added features for dynamic resource prioritization,
along with our efforts to minimize overhead and starvation (see Sections 4.2.1 and
4.2.2) are actually leading to an increase in throughput compared to letting multiple
consumer threads iterate through their own part of the data-structure that contains
all detection models. It can further be seen that the scheduler with all features en-
abled produces a smoother graph where as the more basic iterative version generates
a graph with several declines before reaching its peak. Note that model re-training
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results in worse performance.

Figure 32: Comparing our multi-threaded scheduler with a more basic iterative
version on the Nvidia Jetson Nano.

Figure 33: Comparing our multi-threaded scheduler with a more basic iterative
version on the Raspberry Pi 4.

6.6 Runtime & Scale-up measurements
Nvidia Jetson Nano

System Throughput [anomaly scores/s] #PASAD models
Baseline 37,000 75
Scheduler w/o retraining 80,000 75
Scheduler w/ retraining 53,000 75

Table 6.3: Throughput values chosen from Figure 20.
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System Execution time 50 loops [s] Improvement faction
Baseline 290 -
Scheduler w/o retraining 163 ≈ 1.78
Scheduler w/ retraining 216 ≈ 1.34

Table 6.4: Runtime measurements with 75 PASAD models.

The runtime measurement indicates how much faster the scheduler is compared to
the baseline. As seen in Table 6.4, with retraining disabled the scheduler is 78%
faster and with re-training enabled the scheduler is 34% faster than the baseline.

System Data points analyzed Scale-up
Baseline ≈ 10.000.000 -
Scheduler w/o retraining ≈ 16.400.000 1.64
Scheduler w/ retraining ≈ 12.400.000 1.24

Table 6.5: Scale-up with 75 PASAD models given 290 seconds of execution time.

The scale-up factor indicates how many more data-points are analyzed by the sched-
uler during an equal execution time compared to the baseline. As seen in Table 6.5,
with retraining disabled the scheduler is able to perform anomaly detection on 64%
more data points while with retraining enabled it can analyze 24% more data points
compared to the baseline.

Note that the throughput of each system was slightly lower in this experiment than
their stated maximum in Figure 20. This is discussed in Section 7.6.

Raspberry Pi

As seen in Figure 16, the scheduler achieves an identical throughput as the baseline
when running 75 PASAD models. Due to this, there are no noteworthy results
regarding runtime and scale-up.
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This chapter deals with analyzing and reflecting upon the findings in Chapter 6. We
mainly discuss the results and behavior in regards to the baseline and scheduler. In
particular, we examine why the Raspberry Pi and Nvidia Jetson Nano produced so
drastically different results with the scheduler.

7.1 Linear behavior in the maximum throughput
graphs

All graphs related to throughput performance for the baseline system and the sched-
uler in Chapter 6 show a linear behavior before reaching their peaks. This is due to
a common problem for producer-consumer architectures and how the threads inside
them access the mutex locks. Recall that in our architectures the producer must
continuously capture communication traffic, push data from it into buffers while the
consumer threads are continuously producing anomaly scores whenever they find
any element stored in those buffers.

When we eliminated the producer however, such as in the simple test seen in Figure
28, the speed of the consumer remains fairly stable even when the data it is access-
ing gets split among an increasing number of buffers. This points to the fact that
execution time on the consumer side does not necessarily need to change drastically
just because more buffers are added or removed inside the system.

Furthermore, in Figure 29 we see that execution time is much higher when there is
only a single buffer between the producer and consumer. This occurs when either
the producer or consumer thread is working so fast that one of them are able to
lock a mutex, finish the task at hand and unlock the mutex. However, the thread
then immediately locks the mutex again (as its work is encapsulated inside a con-
tinuous loop) all while the other thread is still waiting for access to the same mutex
lock. Upon closer inspection of this experiment we realized that not only could the
producer lock out the consumer, or vice versa, which of the two threads that were
locking out the other could also randomly change during runtime. However, when
adding more buffers to the system, the threads started to co-operate in ”harmony“
and the overhead caused by accessing mutexes quickly dropped.

Recall that in our architectures the producer thread and the consumer do not op-
erate at the same speed. The consumer is much slower due to having to produce
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anomaly scores, an event we have very little actual control over as well as insight
into, since it was conducted through calls to PASAD’s own header file. With all
of the observations above in mind, the linear behavior in the beginning of the per-
formance graphs for both hardware devices can likely be explained by the producer
and the consumer not having reached an equilibrium yet in terms of their speed in
relation to the number of mutex locks present. Note that this point of equilibrium is
unique for both the baseline and the scheduler as it appears when different amounts
of PASAD models are running.

7.2 Raspberry Pi’s performance issues
Figure 16 is a particularly important figure to analyse, due to the peculiar perfor-
mance behaviour of both systems there. Especially important to address is the fact
that beyond a certain amount of detection models, our fully fledged scheduler shows
zero performance improvement compared to the baseline. This is a direct threat
to the purpose of our thesis, which to a large part intends to improve performance
through a user-level scheduler that utilizes multi-threading. Most importantly, the
graphs states that executing a system with triple the threads (on the consumer side)
results in no performance gain when scaling the system which does not fit within
reason.

After an extensive period of analyzing and pondering however, we realized that pro-
cessing power was actually not the bottleneck causing this, as previously assumed.
The reason why both systems appear to hit some sort of “performance wall”, and
then remain at the same throughput, is actually most likely due to them experienc-
ing a variant of being memory bound, happening between the CPU and Random
Access Memory (RAM). This occurs when an application is dependent on data in
order to perform its computations, but has already reached the limit of how fast
that data can be retrieved from the RAM. The graph in Figure 16 shows a drastic
decrease already before ten PASAD models are running. We do not have enough
information regarding PASAD to calculate how much memory each model occupies
(running ”sizeof()“ is not sufficient), but Figure 16 suggests that from ten mod-
els and beyond we are exceeding what fits inside the L2-cache and begin accessing
the RAM. Add to this the fact the hardware device itself only has a single memory
channel between the L2 cache and RAM and the plateau becomes much more logical.

The downwards slope can then be described by the consumer thread(s) starting to
access the RAM more frequently as more and more models are added, and when we
are going beyond roughly 20 modes they are accessing the RAM constantly. At this
point, the memory bandwidth, meaning how fast data can be retrieved from RAM
becomes a limiting factor. Additionally, when having multiple consumer threads as
with the scheduler, the single memory channel causes significant idleness. That is
because only one consumer thread is able to go through the channel at the time,
while the others can not do anything but wait.

At that point, throwing additional processing power at the problem will not be of

63



7. Discussion

any aid, which is precisely why the scheduler’s throughput results get bottlenecked
at the exact same level as the baseline system. More powerful cores would only aid
in making the tasks of the consumer threads finish faster once they actually have
the data they need in possession.

This performance issue is not caused by any functionality of the scheduler itself
however, but rather that we have employed PASAD as our detection algorithm. As
can be seen in Figure 31, the cost of producing anomaly scores increases drastically
as soon as we deploy more than approximately four models. The other function
that has been supplied to us for adding data-points to each PASAD object’s inter-
nal buffer, seen in Figure 30 also increases in cost, however it always remains at a
significantly lower level comparatively. As was stated back in Section 1.6, we treat
the detection algorithm itself as a black box and hence do not possess full knowledge
of what exactly is occurring internally inside PASAD whenever these two functions
are called. Important to point out is that Figure 31 is suspiciously similar to the
inverse of the baseline’s throughput graph in Figure 14 right after the downward
slope has begun. As we increase the number of models, the cost for calculating
anomaly scores increase as well (most plausibly due to accessing RAM more often),
significantly hurting overall performance.

We believe that the single memory channel is also why the Raspberry Pi was com-
pletely unable to perform model retraining and inference simultaneously. Retraining
is not only a computationally heavy task, it also requires a lot of data (30,000 data-
points in our case as stated in Section 5.1). What is occurring then is that as soon
as the training phase begins, the memory channel gets fully occupied by the training
thread while all consumer threads are waiting idly, putting a halt to all their tasks.

7.3 The dynamic user-level scheduler
In the case of running the dynamic user-level scheduler, the Jetson Nano proved to
be vastly superior than the Raspberry Pi despite having less capable CPU cores. As
seen in Figure 24, the scheduler running on the Raspberry Pi has the worst scaling
performance. We explained in the previous section that the reason why the Rasp-
berry Pi was performing poorly was not due to computational power, but rather the
structure of its memory hierarchy.

Firstly, since the Jetson Nano has an L2-cache size of 2MB (double the Raspberry
Pi’s capacity) it is able to fit a higher number of PASAD instance inside its cache
memory. This is the reason why its throughput decline occurs later, and the higher
memory bandwidth aids performance as well since the constantly required data can
be accessed faster. But even more significant for this thesis, is that the Jetson Nano
is equipped with dual channel memory. This significantly reduces idleness as there
are now two ways instead of just one that the threads can take to access the RAM.

As can be seen in Figure 16 and 20, this leads to the Jetson Nano’s performance
never dropping to the exact same throughput as the baseline system, contrary to
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the Raspberry Pi. It also enables for simultaneous training and inference to take
place, as one memory channel may be occupied for each of these data-heavy tasks.

In Sections 4.2.1 and 4.2.2, we described how the scheduler dynamically prioritizes
its resources as well as minimizes starvation and overhead. Figure 32 and 33 show
that these features enables the scheduler to reach slightly greater throughput levels
(when not retraining models), compared to simply letting each consumer thread it-
erate through their own part of the data-structure that stores all detection models.
Especially noteworthy is the jagged behaviour seen in the graph for the iterative
version. This takes place when the number of PASAD models in the system cannot
be evenly split between the consumer threads for optimal load balance.

Moreover, with our added features, the scheduler seems to achieve better load bal-
ance across the consumer threads since we are not experiencing the same perfor-
mance drops as the iterative version whenever the number of PASAD models cannot
be evenly divided among them. Our explanation for this is that allowing models
to be prioritized results in models already brought into cache to occasionally be
re-selected, while each consumer thread in the iterative version has to go through
all its models before performing work on the same one again, forcing it to constantly
access the RAM.

It is important to add however that these features do still add some overhead, espe-
cially when a large number of models need to be checked before a decision regarding
which one to execute is taken. This can be seen in the runtime measurements from
Section 6.6 that are not scaling linearly between the baseline system and the sched-
uler (although several additional factors are likely also contributing to this which
will be discussed).

We argued in section 5.10 that a perfect runtime improvement would be of the value
”3“, indicating a performance tripling. But our results are showing an improvement
of 1.78 for the scheduler system compared to the baseline, and drops even further to
1.34 when retraining is enabled. Both of these scheduler versions could also perform
64% and 24% more anomaly detection respectively during the same execution time
compared to the baseline, judging from our scale-up results.

Figure 22 is also showing some interesting variances where the throughput per-
formance has been normalized on the baseline system. Without retraining, the
scheduler even reaches upwards of five times higher throughput when running a low
number of models, then two times the performance once the slope evens out.

Remember though that one of the most important contributing factors for us not
reaching closer to a perfect speed-up result is the chosen detection algorithm PASAD.
Improvements to its implementation would reduce the overhead when calling on its
functions.

Another factor can be that the mutex locks for guarding buffer accesses are having
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an effect even when running a large amount of detection models. In Figure 26 we
can witness this through the fact that there are large differences in terms of how
sizeable each model’s buffer got, even though the consumer is instructed to pop
elements from them one by one. This is most likely due to the consumer thread oc-
casionally being denied the mutex and therefore carries onto the next buffer. What
is even more interesting is that the differences seen in this diagram appear to be sig-
nificantly greater than in Figure 27, where our model prioritisation feature handles
the choice of which buffer to remove an element from.

Lastly, we need to mention that our baseline’s architecture (and to some extend
the scheduler built upon it) is likely far from the perfect implementation of a two-
threaded IDS. Our approach when developing it was to satisfy the requirements in
Table 4.1, which mainly entailed the creation of a simple producer-consumer archi-
tecture with one producer and consumer thread. Because of this, there still exists
room for optimization work to be made and the results from Figure 22 would differ
if normalized on a ”perfect“ two-threaded IDS.

We are without a doubt sure that there are several additional factors contributing
to our performance results, which we were unable to fully uncover within the time-
frame of this thesis. Embedded systems like the IoT-devices we have utilized are
complex and they differ from usual computer systems as there is a wide range of
components fitted in to interact together on a single small chip.

7.4 Attack detection
The reason as to why the system throughput and our model prioritization feature
are important for attack detection as well as from a security perspective in gen-
eral has been thoroughly explained in Section 5.5 and 5.6 respectively. Therefore, in
this section we will focus on the results obtained concerning the latter in Section 6.2.

The most important takeaway from Table 6.1 is that model prioritization allowed
the scheduler to detect an alarm almost seven seconds faster, even though all other
parameters of the experiments were the same. A perhaps more appealing way to
visualise the reason for this would be to compare Figures 26 and 27. Here, we clearly
see that the consumer threads have performed much more work on the single model
that was set to breach our thresholds judging from how much smaller its queue size
got. We do not believe however that the much longer time it took for the baseline
system to detect an alarm in Table 6.1 is particularly interesting, since that is cer-
tainly mainly due to it being unable to run at an equal data input rate.

Therefore, in order to obtain some sort of comparison with the baseline we ran the
tests again, however this time while all of them were getting the same input rate as
what the baseline can maximally handle. We can from the results of this experiment
shown in Table 6.2 see that the scheduler is able to detect the alarm over six seconds
faster. But what is also interesting about these results is that the benefits of acti-
vating model prioritization on the scheduler almost completely disappeared. That
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is because in order to witness an effect of model prioritization, there must actually
exist some margin of data within the buffers for the consumer threads to work with.
But since the scheduler is running here on a much lower rate of input than what it is
able to handle, the data stored inside each buffer gets processed almost immediately
anyway, hence the benefit of prioritizing vanishes.

Lastly, we wish to briefly mention our thoughts on that it might be possible for an
adversary to take advantage of our scheduler’s model prioritization. This entails
however that the adversary is informed about the existence of these logistics inside
the IDS guarding the targeted node. The attacker could for example intentionally
cause alarms to happen on insignificant nodes, in order to make the scheduler allo-
cate its resources there, hence distracting it from the real target. Anyone intending
to take inspiration from this thesis work for their own implementation should take
this possibility into account.

7.5 Model retraining
Model retraining has been one of the most interesting parts to have been investi-
gated in this thesis, and as shown in Chapter 6, it was only possible to perform on
the Jetson Nano. As was gone over thoroughly in Section 7.2 and 7.3, we strongly
believe that the reason for this is that retraining fully occupies one of the memory
channels between the CPU and RAM while it is happening.

On the Raspberry Pi then which is only equipped with one such channel, the idleness
caused by consumer threads waiting to use it freezes all inference-related tasks until
retraining is concluded. This leads to packets being missed and therefore failing our
project goal of achieving simultaneous inference and training.

We should mention that although the Jetson Nano succeeded very well in this re-
gard, retraining of machine learning models still remains the most heavy task our
scheduler has to perform and leads to a noticeable performance drop as can be seen
in graphs such as Figure 22.

It is our belief that simultaneous execution of inference and training of machine
learning models on an IoT device is the true highlight of this thesis. It is the aspect
that delivers the most research value in terms of future work for all communities that
are passionate about performance as well as security. Our thesis has demonstrated
that by using our scheduler, it is possible to retrain one detection model in parallel
with 96 other active detection models producing 57,000 departure scores per second.

Both the level of anomaly score throughput as well as performing continuous train-
ing is an overkill of what would actually be needed in a realistic scenario. This is
because there is a low likelihood of needing to continuously retrain detection models
one after the other. In a realistic scenario, the detection models would also not
receive such large quantities of data. However for this thesis, we always aimed to
stress the hardware to its limit during performance tests, meaning that there is still
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a good amount of headroom left in case one would like to allocate resources for
something else.

This ensures that there is not a necessity for anomaly-based IDS, based on lightweight
and data-driven ML-algorithms running on IoT devices to transfer sensitive data
over networks in order to offload heavier tasks. Everything remains at the edge
layer close to the monitored nodes.

Simultaneous inference and training still remains a significantly unexplored research
area however, and we believe to have only scratched its surface. We therefore hope
that this thesis will act as an inspiration for further research, as there is still a lot
of potential to be gained within the domain of security and elsewhere.

7.6 Limitations in methodology
As in most research, certain limitations that influence the quality of the results are
present in this work as well. One of these limitations is that we measure a system’s
throughput while dispatching data to it in bursts from a single source. The realistic
scenario that a system like what we have developed would encounter is a lot more
complex, and difficult to recreate.

As already explained in Section 1.4, each node that the IDS is monitoring is repre-
sented by a unique instance of the detection model. In reality, each of these instances
would have a separate stream of incoming data, meaning not from as single producer
as in our system although we have tried to simulate this behavior by allowing the
user to alter the distribution pattern. Each node would also often produce different
event streams from one another, which in addition could be highly irregular, mean-
ing that the rate of incoming data varies with time. Some nodes might only produce
bursts of event streams for a short period of time, while others might produce them
with no apparent pattern and be nondeterministic.

Important to discuss next are the runtime and scale-up measurements from Sec-
tion 6.6. To perform these tests, the throughput in all three cases had to be lowered
a bit from what had been stated as their maximum values earlier in Section 6.1, as
can be seen in Table 6.3. The reason for this is because the execution time was now
being monitored using the ”Chrono“ library included in C++ as well as the ”time“
command in Linux. Profiling tools such as these come with their own contributions
of overhead. This caused our systems to miss packets if they were trying to achieve
their maximum throughput levels.

Perhaps the largest setback and cause for confusion in this thesis was that the
hardware devices utilized in our experiments prevented us to from seeing important
metrics needed to further validate our theories. This is mainly due to the manu-
facturers of their ARM-based chipsets having chosen to not provide many hardware
supported events for profiling tools. Being able to view statistics such as ”Last Level
Cache Misses“ or ”Stalled Cycles“ would have been a valuable asset when explaining
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the consumer thread idleness in Section 7.3 and the Raspberry Pi’s memory bound-
edness in Section 7.2.

Lastly, we do not have control over how the Linux kernel chooses to prioritise pro-
cesses and what it is working on in the background. The background processes can
impact the memory and computational resources available to us, and therefore in-
fluence our results when conducting experiments. Additionally, the kernel and the
activities it performs can change over time.

7.7 Hardware requirements for the scheduler
In order to be able to run our scheduler on an IoT device one must choose a device
capable of satisfying certain requirements, in order to not run into the same issues
as the Raspberry Pi did in our experiments.

Deploying the scheduler without retraining models requires a CPU containing at
least two cores, so that the producer and consumer threads can work in parallel.
Enabling simultaneous retraining will require an additional core, as this is executed
on a separate thread. Retraining will also require at least two memory channels
between the RAM and CPU to allow for the needed data transfers for all the tasks
executed by the scheduler.

Beyond what is stated above, the scheduler is relatively hardware agnostic towards
the number of cores, and users are free to make engage additional ones to enable
more consumer threads. The current implementation does not support GPU uti-
lization however.

One should also remember that the number of detection models that can be run is
highly dependent on how much memory each of them require and how much the
IoT device grants. In our case, 4GB of RAM was enough to run roughly 97 PASAD
models while retraining was taking place.

7.8 Ethics & Sustainability
Back in Section 1.2, we outlined some of the existing concerns regarding IoT devices
and their vulnerabilities towards cyber attacks, as well as what damaging conse-
quences such events can have. The work of this thesis may lead to a reduction
of those consequences, by allowing attacks to be detected earlier. Faster detection
paves the way for a faster response, preventing the devices from being misused and
thereby making this thesis important for sustainability.

We deliver on this point by having created a scheduler which can take advantage
of the processing cores available on the device it is being deployed on to increase
the system’s throughput, as well as with its capability to allocate resources towards
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nodes needing it.

Another contributing element for preventing the misuse of IoT devices is the work
made to keep the execution of model retraining local and without interrupting any
other important tasks of the IDS. As described in Section 1.4, this is an important
outcome as the risk for blind spots where an attacker may operate freely is elimi-
nated.

There is also an ethical component for not needing to offload the training-related
tasks. Information read by an IDS is often sensitive, and transferring that data
over networks could lead to it being leaked in case an attack should occur. In order
to also ensure that we ourselves do not expose any personal information during
this project, our partner company Clavister provided us with traffic data that had
already been anonymized and pre-processed in a way that makes it suitable for
creating AI/machine learning models intended for outlier/attack detection.

7.9 Goals reached
In Section 1.5 we listed our goals for the thesis. They consisted of developing a simple
anomaly-based IDS capable of capturing communication traffic and feed data from
it to a machine learning model for anomaly detection. We would thereafter incor-
porate further enhancements to this IDS using parallelism techniques from Section
3.1, such as mainly scheduling to increase the system’s throughput and performance
from a security perspective.

An analysis using primarily the metrics described in Section 3.3 needed to be done
afterwards for drawing plausible conclusions regarding the project’s level of success.
Lastly, we stated that we would investigate whether it is possible to retrain a machine
learning model locally on the IoT device in parallel with ongoing intrusion detection.

Following the self-evaluation of our thesis in this chapter’s previous sections, we feel
confident with stating that we have successfully accomplished all of thesis goals from
Section 1.5.
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8.1 Future work
In order to fully optimize the scheduler, one would need to evaluate it on an IoT
device that supports cache and CPU metrics. Since the available hardware in this
thesis did not provide support for those metrics, we were unable to fully examine
how memory efficient the scheduler actually is. For example, analyzing the sched-
uler through metrics such as ”last level cache references and misses“ would clearly
indicate the cache hit rate for the scheduler. A high hit rate on the last level cache
means that the scheduler is less often in the need of accessing data from the RAM.
This would improve the performance of the scheduler since accessing the RAM is
much slower than the cache. There are of course more metrics that would be bene-
ficial to analyze in order to make the scheduler as efficient as possible.

Additionally, to make the scheduler memory efficient one should investigate how the
buffer system between the producer and consumer(s) can be improved. In the cur-
rent implementation, many elements are constantly being pushed and removed from
multiple buffers simultaneously, resulting in extensive memory copying. A reduction
of memory requirement for the buffers could also enable the scheduler to run more
detection models without reaching the RAM’s maximum capacity.

Currently, the scheduler is coded as a single large program, however we realized
that splitting it up into separate processes would provide us with the benefit of
easily being able to instruct the Linux kernel to assign a different priority level for
each one of them. This would eliminate our fear expressed in Section 5.3 regarding
the producer thread being time-sliced, as we could assign it the maximum prior-
ity hence allowing its execution to never be compromised by other processes. This
would in turn lead to us being able to declare more consumer threads, making the
total amount of threads exceed the number of available cores, in order to squeeze
out the CPU:s last remaining computing resources.

While the scheduler is capable of re-training models and run inference in parallel, it
would be intriguing to explore the performance gains from a GPU. GPU:s are better
designed than CPU:s for computationally intensive operations since the purpose of a
GPU is precisely to maximize throughput. As we move forward in technology, better
GPU:s are incorporated within IoT devices and in the case of the NVIDIA Jetson
Nano, there exists a GPU with 128 CUDA cores that we have not even touched yet.
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Offloading the retraining of models to the GPU could make that task execute faster,
as well as freeing up those resources on the CPU for additional inference monitoring.

Another aspect to investigate for future work is to analyze PASAD’s internal func-
tions and how PASAD works. We chose to view the chosen detection model algo-
rithm as a black box but one would be naive to assume that its implementation is
perfect. It is our function calls to PASAD that costs us the most in terms of mem-
ory and computational resources, therefore improving it internally would benefit the
whole system. Lastly, it would be interesting to observe the scheduler’s performance
when using other lightweight and data-driven machine learning models. These as-
sessments would aid the scheduler to be even more agnostic to the chosen detection
model.

8.2 Conclusion
We have constructed an anomaly-based IDS for IoT devices, which utilizes PASAD
as its detection algorithm by developing our own dynamic user-level scheduler. The
results show great promise as our solution is able to calculate 57,000 departure scores
per second for roughly 97 detection instances while simultaneously training models
using the NVIDIA Jetson Nano. Additionally, our scheduler performs ≈1.46 times
better than the baseline even with retraining enabled.

In order to run the scheduler with all of its features enabled the IoT device needs
to be equipped with a multi-core processor (containing at minimum three cores), as
well as having at least two memory channels for RAM access.
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