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Adaptive downsampling of traces with FPGAs
Anton Fredriksson, Lukas Rahmn
Department of Physics
Chalmers University of Technology

Abstract
Modern nuclear physics experiments produce large amounts of data. It has become
custom to record and store signal traces, which can benefit from compression algo-
rithms. General-purpose compression methods do not exploit the characteristics of
the traces and are ill-suited for implementation on Field-Programmable Gate Arrays
(FPGAs). We propose a lossy algorithm based on downsampling. Data reduction
is achieved by replacing variable-length groups of samples with their average. The
lengths of the groups are chosen according to their significance, which is determined
based on the estimated signal noise. This results in an adaptive downsampling of
the signal trace. The compression routine also assists subsequent analysis, by re-
ducing the stored signal fluctuations due to noise. A detailed algorithm description
is provided, accompanied by openly available implementations for both FPGAs and
PCs (VHDL and C++).

Keywords: VHDL, Data acquisition, Front-end electronics, Downsampling, Lossy
compression.
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Glossary

ADC Analog-to-Digital Converter
ADS Adaptive DownSampling
DWT Discrete Wavelet Transform
FPGA Field-Programmable Gate Array
FIFO First-In First-Out
IIR Infinite Impulse Respone
LUT LookUp table
MAD Mean Absolute Deviation
RAM Random access memory
STD Standard Deviation
SoC System-on-a-Chip
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1
Introduction

1.1 Background
This project concerns software development in the context of large-scale nuclear
physics experiments. The experimental setup uses a heavy ion accelerator to produce
beams of radioactive ions at relativistic energies. Those interact with thin targets
with less than 10% reaction probability. The reaction products are detected with
a multitude of detectors placed at key positions before and after the target. The
detector front-end electronics employs a large number of field programmable gate
arrays (FPGA) for control and signal processing.

The use of FPGAs provides flexibility by allowing changes of the front-end operation
whilst being able to meet the imposed timing and performance requirements. The
FPGAs employed at detector front-ends must process the sampled detector signals
in real time while remaining synchronized with the whole setup. The amount of data
produced by these front-ends can be large, especially if the complete time-series is
of interest, which then require vast amounts of storage. Handling and storage can
be both cumbersome and/or expensive, thus one does not want to record more
than needed. Large data streams also imply a large bandwidth requirement for
the transfer links employed between front end electronics and storage facilities. If
one can somehow reduce the amount of the data produced, then either one lessens
the infrastructure requirements, or for the same equipment increases the amount of
events that can be processed.

The data of concern here are signal traces, which are short waveforms of recorded
detector data. Usually a trace is produced by an Analog to Digital Converter (ADC)
which samples and digitizes an analogue and continuous voltage many times a sec-
ond. The digitized voltage values are called samples and are stored as fixed size
integers. The size in bits of these integers depends on the precision of the used
ADC, where common sizes are ten to sixteen bits. Thus, a trace is an array of
such integer samples, an example trace is shown in figure 1.1. The bits needed to
represent a trace is the number of bits per sample times the length of the trace, i.e
the total number of samples.

This thesis will address how such a trace can be compressed, i.e reduced in size,

1



1. Introduction

Figure 1.1: An example of a detector signal trace. Each yellow dot represents
a signal sample, i.e a data point. The line between samples is added to guide the
eye, it is not indicative of how the original voltage signal progressed between two
samples. Such information is lost when the continuous signal is sampled.

by careful selection of what data to store and an efficient encoding of the selec-
tion. By testing signal significance compared to noise, and selective averaging of
sample groups, the stored signal noise is reduced thus increasing the compression
ratio. Using our algorithm, which will be presented in chapter 2, real world traces
are recorded with an average of one to three bits per sample, depending on set-
tings, instead of the 10 to 14 bits/sample of the original traces. For the trace in
figure 1.1, this average is 2.77 bits per sample, the reconstruction of this compressed
trace is shown in figure 1.2. To experiment oneself with the compression system
please consult our webpage http://fy.chalmers.se/subatom/ads/compressor/.
A description of the webpage is provided in section 3.2.1.

1.2 Aim
The contribution of this project is the development of a data compression scheme
for use in the front-end FPGAs. We produce a reference implementation, consisting
of both an FPGA-based compressor and a software implementation of both the
compressor and decompressor, to facilitate quick and easy integration of compression
in pre-existing front-end FPGAs. The reference implementation has been thoroughly
tested for defects to ensure proper operation.

2
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1. Introduction

Figure 1.2: A example trace before (yellow) and after compression (orange). The
average number of bits per samples needed to store the compressed trace is 2.77
whilst the original trace was recorded with 12 bits per sample. Once again the orange
line is just to aid the eye, no interpolation is done by the compression routine. It is
up to the user of the system to reconstruct the trace from the provided data points
(the orange crosses). Trigger level is K = 3, see chapter 2 for parameter description.

1.3 Scope
The problem of signal compression is widely researched, and numerous methods
have been developed. Examples span from classic methods such as Huffman-coding
[1, 2, 3], Arithmetic-coding and run-length coding to the less intuitive transform-
based compression algorithms such as the discrete cosine transform employed for
the JPEG standard [3]. Compression algorithms can be divided into two categories.
Lossless schemes exploit redundancies, patterns and shared knowledge. They allow
for the creation of alternate representations of the data, from which the original
data can be reconstructed without any loss of information. In contrast are lossy
algorithms that, by forgoing the possibility of perfect reconstruction, can achieve
even higher compression ratios. All of these methods try to exploit some property
of the data under consideration. For example, Huffman-coding exploits non-uniform
symbol probabilities whilst the MP3-format utilizes limitation of the human hearing
system [4]. For our application we have a couple of factors that limit available
methods:

1. The compression algorithm should be well adapted for implementation on
FPGAs. A suitable algorithm should have constant memory requirement, be
sufficiently fast, and at the same time limiting FPGA resource utilization.
This means that the realized design should only use a small part of the logic
and memory elements available on the FPGA.

2. The algorithm must operate on a data stream, as opposed to the complete

3



1. Introduction

signal. Thus the data should be processed as the data is received, using limited
buffering.

3. No configuration parameters which depend on the characteristics of the signal
should be required. The large number of detector channels in the experiments
implies that any calibration or configuration of the compression quickly be-
comes prohibitive.

4. Minimal reconstruction errors of signal pulses. The input data consist of ape-
riodic signal pulses and electronic noise. The pulses need to be recorded as
accurately as possible, whilst the remaining data only need to be recorded to
facilitate so-called base-line corrections.

The first requirement hampers the use of any algorithm that employs floating point
arithmetic, multiplication or division, as these operations require large circuits to
realize. The third requirement removes the possibility to use Huffman encoding
with precomputed probability tables or methods based on vector quantizations.
Vector quantization methods store the difference between the signal and one or
more reference signals [2], a technique which has previously been applied for similar
applications [5].

1.4 Previous work
Difference predicted trace compression (DPTC) is a lossless compression system that
has already been designed for the compression of front-end detector signals [6]. The
authors found that for their system the dominating storage cost was not the pulses
themselves, but rather the signal noise. The aim is to build upon their work and
achieve a greater compression ratio by introducing lossy compression of the parts
of the signal where noise dominates. Previously, this has been achieved by zero
suppression [5, 7], which essentially cuts any part of the incoming data that is not
part of a pulse. The drawback is that this requires detection and localization of the
pulse to decide what to cut. A less intrusive method would be to downsample the
regions outside the pulse. Similar ideas have been presented for the purpose of time-
series comparison [8, 9]. These methods create signal approximations by adaptively
replacing series of samples with a single sample. Ideally, this method replaces long
sequences of samples in regions of little-to-no change while keeping more samples
in regions of rapid change. These downsampling methods are by themselves not
compression schemes, as they lack the ability to reconstruct the original signal,
but adaptive downsampling could be used to derive a compression system by also
recording the downsampling ratios to facilitate reconstruction.

A method that bears some resemblance to the above idea is to compress the data
after applying the Discrete Wavelet Transform (DWT); see references [10, 11] for
an introduction to DWT. This method has been applied for trace compression, and
of particular interest is its use in the ALICE experiment at CERN [12]. In the dis-
crete wavelet transform domain, the signal is described by a series of approximation
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1. Introduction

coefficients and several levels of detail coefficients. Each level-of-detail coefficient
describes the presence of features of a specific size. The first detail coefficients de-
scribe feature sizes of roughly two samples, the next level four samples et cetera,
thus level n+1 only contains half the number of coefficients as level n. Compression
is then achieved either by lossless compression of these coefficients, or by selective
removal of them. The latter is in principle very similar to adaptive downsampling,
which also selectively removes details of specific sizes, thus making the DWT very
interesting. An implementation based upon DWT would also have the benefit of
being analyzable using wavelet theory [10, 11]. Despite these similarities and ad-
vantages it was decided against using DWT for the following reason. Computation
of the DWT requires a large number of decimal number multiplications, which are
very expensive to realize on FPGAs. The size of the DWT implementation and
the necessary compression logic would probably become too large for this applica-
tion. Efficient FPGA implementations have been described [13], but all of these
rely on extensive pipelining1, and complicated pipeline folding2 to achieve a rea-
sonable trade-off between speed and area usage. The authors have not made their
implementations freely available, implementing DWT would thus entail duplicating
their efforts. Another argument against DWT is that it might be incompatible with
DPTC as it is designed to compress sample series and not detail coefficients.

1.5 Thesis outline
This thesis describes the development of a compression algorithm based upon adap-
tive downsampling that satisfies the requirements outlined in previous sections. Fur-
ther we answer the following questions:

1. How does one select the downsampling ratio under the constraint that signal
pulses should be stored at full amplitude and time resolution with limited
information loss?

2. How should the downsampling information be recorded? Such information is
required to reconstruct the original signal. If this information is encoded too
spaciously, no data-size reduction will be achieved.

3. How does such a system compare to DPTC?

4. Can the eventual system be combined with DPTC?

Chapter 2 presents the proposed compression routine, a software implementation
of said algorithm and the performance characteristics of the system. In Chapter

1Pipelining - The practice of splitting complex computations into smaller chunks which can be
executed in parallel. The principle is the same as assembly line construction of cars where each
station/stage handles one small task.

2Pipeline folding - Pipeline folding involves reusing the same pipeline for different calculations
by slightly altering how the data travels through it. This would be equivalent of using the same
car assembly line to make two different kinds of cars.
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1. Introduction

3, the FPGA and software implementations are presented and the development
process described. Results, as for example compression performance, are presented
in chapter 4. Finally chapter 5 contains a brief discussion and possible future work.
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2
Algorithm description

This chapter provides a detailed description of the compression algorithm. First
a brief description of possible compression methods, together with the proposed
scheme. This is followed by two sections detailing the main components of the sys-
tem, the compressor and the standard deviation estimator. One of the first decisions
one has to make when designing a compression system is whether to design a lossy or
lossless algorithm. The former achieves compression by selectively discarding parts
of its input data, but it comes with the challenge of deciding what data to remove.
In the latter class one finds DPTC, a preexisting system for trace compression which
reduces data size by employing an alternate on-disk data representation. Further
improvements of the method were deemed to have diminishing returns, especially
as the authors of DPTC found that the dominating cost was representation of the
noise. Thus finding a way to deal with the noise became the primary focus.

To reduce the cost of noise it was decided to conduct data reduction, that is, partial
signal removal in regions where noise dominates. More specifically, by conducting
adaptive downsampling. Downsampling is the process of removing signal samples
and/or replacing groups of samples with a fewer number of samples. The algorithm
downsamples by taking groups of samples and replacing them with their sum. Given
that the length of the groups is known, one can calculate the average sample value
of the group. These group lengths are variable, hence the name adaptive, and
chosen such that they are small in regions with significant signal content and longer
in regions dominated by noise. The effect is that the system will not attempt to
represent the exact details of the noise, but instead only report its average. To
choose the length of group j, denoted Rj, the estimated standard deviation of the
noise is utilized to decide whether signal deviations are significant. A simplistic
example and an overview of the compression system is provided in figures 2.1 and
2.2. A description of the depicted black boxes is provided in the following sections.
First the rules governing Rj are discussed, as these constitute the foundation of the
design. Then follows a description on how to choose Rj while adhering to these
rules. Once the logic behind Rj is known, the problem of noise standard deviation
estimation and how this can be used for significance testing is addressed. Finally,
the issue of data encoding is described and it is shown how DPTC can provide an
efficient data representation.

7
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Figure 2.1: Illustration of adaptive downsampling of a short step function. The
dots (yellow) is the input trace and the arrows (light green) and cups (dark green)
indicate the system output, with downsampling ratio Rj and group sum Xj, i.e the
sum of the Rj samples that is grouped together in group j.

Figure 2.2: Schematic overview of the proposed system. The series xi to the right
denotes the original sample stream, Rj is the downsampling ratio and Xj is the sum
of Rj consecutive samples. Note that this overview lacks the final encoding step for
Xj and Rj.
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2. Algorithm description

2.1 Principle of operation

The first point to address is the rules governing Rj. The length, in samples, of
each group is a power of two, ranging inclusively from 1 to Rmax = 2Lmax . This
size will from now on be referred to as the downsampling ratio and Rmax as the
maximal downsampling ratio. The maximal downsampling ratio is a user-defined
parameter that affects performance, memory and hardware requirements, which will
be addressed later. With Rj denoting the downsampling ratio of group number j,
then only three possibilities are allowed for group j + 1:

Rj+1 =


2Rj

Rj

1
2Rj

(2.1)

1 ≤ Rj+1 ≤ Rmax (2.2)

These restrictions are enacted to aid performance and reduce implementation com-
plexity. Limiting the change of downsampling ratio between groups to three possi-
bilities reduces the coding overhead as only these steps need to be distinguished and
encoded. If arbitrary ratios were allowed, then the selected ratio would have to be
saved for each group. The limited step size smoothes the changes of resolution by
hindering abrupt ratio changes before and after a sample that is deemed significant.
Limiting Rj to a power of two simplifies hardware implementation whilst ensuring
sufficient system response time to changes by reducing the number of steps in the
range from Rmax to 1. The rate at which Rj is allowed to change governs the memory
or buffering requirement of system. Slower rate of change implies that more time
is required to react to changes, thus a greater number of future samples must be
inspected to decide the current downsampling ratio.

To select Rj that adhere to the enacted restrictions, the system splits the problem
into two steps. The first is a group-local decision where the system decides which
downsampling ratios would be acceptable for that given group based on the sample
values and the estimated noise standard deviation alone. The next decision is on
the macroscopic level. Given a series of these local restrictions, the system picks
downsampling ratios so that equation 2.1 is never violated. First consider the local
decision, or rather decisions, since the system needs to investigate if all ratios, two,
four, eight and so on, are acceptable. These decisions are produced by the functions
f2, f4 . . . which depend on the trace samples xi, xi+1 . . . included in that group and
the standard deviation of the noise σ. Of course, if it is decided that a ratio of 2 is
not acceptable then ratios 4, 8 . . . must also be disallowed. To express this formally
some logical notation is needed, ¬ is used to denote logical negation and ∧ denotes
logical conjunction, colloquially known as the and operator. The local decision is

9



2. Algorithm description

then computed as follows:

fk : Zk
+,R→ {0, 1} (2.3)

C(i) =


f2(xi, xi+1, σ)

f4(xi, xi+1, xi+2, xi+3, σ)
...

fRmax(xi, xi+1, . . . , xi−1+Rmax , σ)

 T (i) =


C1(i)

C2(i) ∧ T1(i)
C3(i) ∧ T2(i)

...

 (2.4)

The meaning of the above definition is that samples {x3, x4, x5, x6} can be grouped
together if and only if T2(3) = 1 which in turn requires T1(3) = 1. The subscript
is used to indicate a specific row of the vector T (3). As a result, a downsampling
ratio of 4 is acceptable only if ratio 2 is acceptable. What constitutes an acceptable
downsampling ratio, i.e, the functional form of function 2.3 will be discussed in the
next section. For now it is sufficient to note that it depends on the the estimated
standard deviation of the signal noise denoted by σ. The function fL should ideally
be designed such that under the assumption that the signal is contaminated by zero
mean additive Gaussian noise, fL is true if the next 2L samples contain nothing but
noise.

The series T (1), T (2), ... constitutes the basis of the macroscopic decision, i.e, the
selection of R1, R2, ... whilst adhering to restrictions 2.1 and 2.2. The system shall
also be correct in the sense that the chosen step sizes never result in an invalid
downsampling ratio being used. In a more compact form: if ratio Ri is used for
sample xk then it holds Tlog2(Ri)(k) = 1. The implication of correctness is that the
system must be non-casual, that is, it must have access to future samples. Consider
the case when the system considers Rj = 16, to make a decision it needs to confirm
that Rj+1 = 8 is valid, which implies checking if Rj+2 = 4 is okay. The worst case
is when Rj = Rmax is being considered, requiring a sample-look-ahead of:

log2(Rmax)∑
l=0

2l = 2log2(Rmax)+1 − 1 = 2Rmax − 1. (2.5)

The implication of equation 2.5 is that to select Rmax, the next 2Rmax − 1 sam-
ples must be considered in order to guarantee correctness. Further, evaluation of
T (2Rmax − 1) requires another Rmax − 1 samples, due to the definition of fl, thus
the total required look-ahead is 3Rmax − 2.

Before examining the details of the proposed system it could be educational to
consider an example. Figure 2.3 shows a trace together with its reconstruction after
compression. As expected, regions dominated by noise are downsampled and thus
the noise is largely removed, whilst the pulse is reasonably preserved. Figure 2.4
shows how the downsampling ratio is varied during the pulse.

10



2. Algorithm description

Figure 2.3: Example test trace, before and after being downsampled. The plot is
produced by our public web utility see chapter 3.2.1

Figure 2.4: Illustration of downsampling ratio selected for the trace in figure 2.3.
The plot is produced by our public web utility, see chapter 3.2.1.
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2. Algorithm description

2.2 Compressor design

In this section the details of the Adaptive Downsampler block of figure 2.2 are de-
scribed. Figure 2.5 presents a schematic overview of this component. The main
components are two First-In First-Out (FIFOs) data structures: the trigger FIFO
which contains the sequence {T (i), T (i+ 1), . . . , T (i+ 2Rmax)} and the two sample
FIFOs which, together, hold the samples {xi, xi+1, . . . , xi+3Rmax}. The purpose of the
FIFOs are two-fold. Firstly, they guarantee a sufficient look-ahead for the computa-
tion of Ri under the correctness constraint. Secondly the FIFO-based design reduces
the length of the critical paths when realized on an FPGA by allowing pipelining
and thus increase the achievable clock frequency of the design.

Compute T(i)Trigger FIFO

Sample FIFO Sample FIFO

EncodeCompressed
Stream

Figure 2.5: Schematic of the Adaptive Downsampler block in shown in figure 2.2.
The dashed lines indicate the depth of the FIFOs. The signal vi indicates if xi is a
valid sample and is used for FIFO flushing.

The selection of Rj+1 is quite simplistic as constraint 2.1 implies that only three
possibilities exist for a given Rj. The fundamental rule is that the system will
select the highest allowable ratio under the constraint that the decision will not
lead to the correctness property being violated now or in the future. To aid the
decision a function is designed, called Down(Rj) such that Down(Rj) = 1 implies
that selecting the ratio Rj guarantees that the correctness property will be violated
at some point and thus forcing the choice of Rj

2 instead. Guaranteed correctness
violation occurs if the the downsampling ratio is reduced at every step but still results
in a violation. Clearly this is as fast as the system can respond under constraint 2.1
and the violation is indeed unavoidable after picking Rj. To evaluate the function
Down for argument 32, one first needs to check that ratio 32 = 25 is acceptable for
the next 32 samples, thus checking T5(1), T5(2), T5(3), . . . , T5(32). Next one checks
whether ratio 16 is acceptable for the following block, given that ratio 32 is chosen
for the current block, that is, samples 33 to 48 are checked. The process then repeats
for each following block whilst halving the ratio at every step until ratio 2 has been
checked. Figure 2.6 illustrates the process of evaluating this function for different
input arguments.

12



2. Algorithm description

1 13 29 615

Figure 2.6: Illustration of Down(Rj). Each dashed (green) line represents an
evaluation of Down(Rj) for a specific Rj. The top curve represents Down(32). The
solid (orange) lines indicate which Tk(x) are required to compute the function.

Definition 2.6 (below) provides a formal formulation of the Down function.

Down(Rj) = ¬
(1+log2 Rj)∧

k=2

(Rj−1)∧
n=0

Tk−1

n+ 1 +
log2 Rj∑

l=k

2l

 (2.6)

Using the fact that the summation in the above equation is a geometric sum, it
simplifies into:

log2 Rj∑
l=k

2l =
log2 Rj∑

l=0
2l −

k−1∑
l=0

2l

= 21+log2 Rj − 1− (2k − 1)
= 2Rj − 2k. (2.7)

Using the closed form formula 2.7 above, one can remove the summation in definition
2.6 and arrive at:

Down(Rj) = ¬
(1+log2 Rj)∧

k=2

(Rj−1)∧
n=0

Tk−1
(
n+ 1 + 2Rj − 2k

) . (2.8)

Using the function Down(Rj) as defined in equation 2.8 the change of ratio is se-
lected by trying each of the expressions below in order and then pick the first true
statement.

13



2. Algorithm description

1. Rj > 1 ∧Down(Rj) =⇒ Rj+1 = Rj
2

2. Rj 6= Rmax ∧ ¬Down(2Rj) =⇒ Rj+1 = 2Rj

3. else =⇒ Rj+1 = Rj

In plain English this logic can be expressed in the following way:

1. If the downsampling ratio is larger than one and the downsampling ratio must
be decreased in order to not violate the correctness property, then go down.

2. Increase the downsampling ratio if possible given that it does not violate cor-
rectness and that the new ratio does not exceed the maximal allowable ratio.

3. If none of the above, then maintain the current downsampling ratio.

Id est, the system will attempt to maximize the downsampling ratio under the
constraint of the correctness property.

2.2.1 Ratio selection

There are many possibilities for the design of the set of trigger functions fk from
definition 2.3. Two such possibilities will be presented below.

A conceptually simple possibility is that the next Rj samples can only be grouped
together if the maximum absolute deviation is within K standard-deviations.

fRj(xi, xi+1, . . . , xi−1+Rj , σ) :=
[
max

(
|xi − x̄i|, |xi+1 − x̄i|, . . . , |xi−1+Rj − x̄i|

)
≤ K · σ

]
(2.9)

x̄i = 1
Rj

Rj−1∑
k=0

xi+k = Xj

Rj

This definition has the interesting property that it limits the reconstruction error of
any single sample to K ·σ. Unfortunately it requires a large number of differences to
be computed. Under the assumption that xi, xi+1, . . . are all independent identically-
distributed Gaussian random variables, the difference xi − x̄i will be dominated by
the variance of the single sample xi.

14



2. Algorithm description

The limitations of definition 2.9 lead to the development of an alternate definition:

fRj(xi, xi+1, . . . , xi−1+Rj , σ) =
|x̄i − ḡi| ≤

K · σ√
Rj

 (2.10)

x̄i = 1
Rj

Rj−1∑
k=0

xi+k

ḡi = 2
Rj

Rj/2−1∑
k=0

xi+k.

The advantage of 2.10 is that only a single difference comparison is required. In
addition the difference is between averages, thus the impact of the noise is reduced
as Rj increases. The compensation factor 1√

Rj
reflects that the expected variance

of the difference decreases as Rj increases. Once again, assume the input to be
independent identically-distributed Gaussian variables, xi ∼ N (0, σ2),

Var(x̄i − ḡi) = Var
 1
Rj

Rj−1∑
k=0

xi+k −
2
Rj

Rj/2−1∑
k=0

xi+k


= Var

 1
Rj

Rj−1∑
k=Rj/2

xi+k −
1
Rj

Rj/2−1∑
k=0

xi+k


= 1
R2

j

Var
 Rj−1∑

k=Rj/2
xi+k −

Rj/2−1∑
k=0

xi+k


= 1
R2

j

 Rj−1∑
k=Rj/2

Var(xi+k) +
Rj/2−1∑

k=0
Var(xi+k)


= 1
R2

j

Rj−1∑
k=0

σ2

= 1
Rj

σ2. (2.11)

Hence, it is concluded that the standard deviation of the differences x̄i − ḡi scales
as 1√

Rj
σ.

None of the above definitions guarantees a downsampling ratio of one for pulses since
no pulse detection is included. The reasoning is that general pulse detection is very
hard under the constraint that the system should not require manual tuning. Instead
the compression system can be integrated with an external trigger by updating
definition 2.4. Assume that TExt(i) = 1 indicates that the external trigger has
detected an event at sample i, then the updated definition 2.12 guarantees that that
sample is not compressed:

T1(i) = C1(i) ∧ ¬TExt(i). (2.12)

This allows the end user of the system to amend the automatic ratio selection with
an external trigger, if needed.
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An interesting case to consider is when K = 0, as the system then becomes lossless.
In this limit, the algorithm will approximate the standard run-length compression
scheme, but with a constrained range of acceptable run-lengths. The performance
characteristics of this case has not been thoroughly evaluated as the lossless mode
of operation isn’t the primary focus of this work.

2.2.2 Bit encoding and compression ratio
Each sample of the raw signal is encoded using a fixed number of bits denoted
by Abits. To store an uncompressed signal consisting of N samples would require
N · Abits bits. The compression system produces a stream of number pairs, the
downsampling ratio Rj, and the sum of the samples Xj. This sample sum is the
result of adding together Rj integers, each Abits bits long, thus lossless encoding
of Xj requires Abits + log2 Rj bits. Rj is encoded using Huffman coding with a
static Huffman table 2.1, computed from the distribution of steps over several test
traces. Testing showed the system to be significantly more likely to keep the same
compression ratio, thus the cheapest encoding is reserved for the case Rj+1 = Rj.

Table 2.1: Huffman encoding of downsampling ratio steps.

Step Bit representation
Rj+1 = Rj 0
Rj+1 = 2Rj 11
Rj+1 = Rj/2 10

Assume that a signal, which is N samples long, is compressed to M blocks and let
CBits(Rj) denote the cost to encode the downsampling ratio of block j, then the
achieved compression ratio is given by

CRatio = N

M + 1
Abits

∑M
i=1 (log2(Rj) + CBits(Rj))

. (2.13)

2.3 Standard deviation estimation of the noise
The estimation of the standard deviation of the noise is a critical component of the
system as compression is mainly achieved by eliminating noise from the stored signal.
A too low estimate would result in poor compression whilst an overestimation would,
in the worst case, remove significant parts of the pulses. Noise standard deviation
(STD) estimation is achieved by exploiting the fact that pulses occur rarely and
that the majority of the signal is noise. Thus, if a sufficiently small random subset
of the input signal is taken, it is unlikely to contain a pulse. Noise statistics can
then be computed from this set.

Computing the standard deviation from the definition is not viable since it requires
the computation of a square root and raising to powers of two. Such operations are

16



2. Algorithm description

expensive operations in FPGAs and ill-fitted for integer math. A measure of the
variability that is similar but sacrifices differentiability for computational simplicity
is the Mean Absolute Deviation (MAD):

MAD(y) = 1
N

N∑
k=1
|yi − ȳ|. (2.14)

MAD still is not perfect for FPGA implementation as it requires all the samples of
the random signal subset to be available. Further, the mean of the signal is expected
to change over time which will drive up the difference in definition 2.14. Instead an
alternate statistic is proposed, which is schematically presented in figure 2.7. Here
the sample average ȳ is replaced with a moving average x̄i of size N. The absolute
deviation is computed continuously which in turn is randomly sampled to create a set
of approximately independent differences. Given a low enough sampling probability,
together with low-pass filtering, reduces the effect of sampling a pulse. The low-pass
filtering is achieved by feeding the randomly selected absolute deviations through a
moving average filter of size NDeviation followed by an infinite impulse-response (IIR)
low-pass filter defined as

Li = αLi−1 + (1− α)di. (2.15)

Ideally the low-pass filter would only consist of a moving average, but the memory
requirement of such a filter scales linearly with NDeviation. Instead the IIR low-
pass filter is used as an approximate solution, to extend the number of deviations
measurements that affect the deviation estimate without increasing the memory
usage.

1 10 11 23 24

Random sampling

Lowpass

Figure 2.7: Standard deviation estimator block diagram. The absolute differences
are continuously computed for each xi of the input. Random sampling creates a
new subset from these differences which is then passed through a low-pass filter.

2.3.1 Relation to conventional STD
The modified MAD definition can be related to the conventional standard devia-
tion under the assumption that the samples xi are identically distributed random
variables.
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The variance of the difference can be calculated as follows

Var(xi − x̄i+1,N) =

= Var(xi) + 1
N

Var(xi) = N + 1
N

V ar(xi)

=⇒ σMAD =
√
N + 1
N

σ (2.16)

Thus as N increases the standard deviation of this difference approaches the STD of
the noise. In the implementation N is chosen to 16 which results in σMAD ≈ 1.03σ

The expected value of the modified MAD statistic can be calculated as follows:

p(x) = 1
σ
√

2π
e−

1
2( xσ )2

∫ ∞
−∞

p(x)dx = 1

E(MAD) ≈
∫ ∞
−∞

p(x) · |x|dx = 2
∫ ∞

0
x · p(x)dx =√

2
π
σ ≈ 0.79788 · σ. (2.17)

These compensation factors can either be incorporated into the STD estimator or
be accounted for when selecting the trigger level K of the system.

2.4 Decompression
Decompression is a short process involving two steps: Reconstructing Rj from the
Huffman encoded steps and then reconstruction of the signal from Xj and Rj. The
first task is achieved by assuming a value for R1, which can either be transmitted
fully or agreed upon beforehand, then the following values are computed from table
2.1 and the recursive application of equation 2.1.

Given the series Xj and Rj, the simplest reconstruction strategy is to set the first
R1 samples to X1

R1
, then the following R2 samples to X2

R2
et cetera. Whilst simple, the

reconstruction will be overly jagged, and imply that more information is available
than actually is the case.

A more sophisticated approach is to create the series:x̃j

ỹj

wj

 =


∑j−1

k=1 Rk + Rj+1
2

Xj/Rj√
Rj

 . (2.18)

The series 2.18 represents each group is represented by a 3-tuple, x̃j represents the
center of group j and ỹj the mean of the group. The last element, wj is the groups
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statistical weight, which reflect that the uncertainty of ỹj decrease with increased
group size. Reconstruction is then done by fitting a suitable function to this series.
This function needs to be carefully chosen by the experimentalist.

2.5 Boundary conditions
It has yet to be addressed how to handle the boundaries, that is, the last and the
first groups. The simplest solution to this problem is to set the starting ratio to
one and to modify the selection functions 2.4 so that any ratio that is larger than
the number of remaining samples is disallowed, thus reaching the end exactly. The
problem with this naïve approach is that for the majority of traces the compression
would begin with the ratio ramping up, and then, as the end approaches, it would
reduce the ratio back down to one or two in most cases. Thus, for short traces the
storage costs would be dominated by these regions.

The initial boundary condition is resolved by freely picking the initial ratio and
explicitly storing log2(R0) in the compressed stream. The initial ratio is selected by
reusing the down function, equation 2.8:

Initial(R) = ¬Down(R) ∧ ¬Down(R/2) ∧ ¬Down(R/4) ∧ . . . (2.19)

R0 is selected by finding the largest R ∈ {1, 2, 4, . . . , RMAX} for which Initial(R) is
true. The trailing boundary is solved by allowing the ratio of the last block to be
larger than the remaining number of samples, i.e. even if just three samples remain
of the trace, a ratio of four is still allowed. The ratio selection is modified so that
if fR in definition 2.4 can not be calculated due to a lack of samples, then it is
considered to evaluate to true. Missing samples in the calculation of the sum Xi are
replaced by zeros. This modification still allows perfect reconstruction of the last
block given that L, the total number of original samples, is known. To recover the
true length of the last block we use:

RLast = L−
Last−1∑

i=0
Ri. (2.20)

2.6 DPTC Integration
To achieve good compression it is essential to efficiently encode the pairs (Xj, Rj).
An attempt was presented in section 2.2.2 where Rj was Huffman encoded, but
Xj was left uncompressed. An important design goal of this project is to integrate
with the preexisting compression system DPTC. Highly simplified, DPTC can be
described as a lossless scheme that achieves compression by calculating the differ-
ences between two consecutive samples and then storing the differences with only
the number of bits needed to represent them. For a more detailed explanation refer
to the original article [6]. DPTC would be ideal to encode the series of Xj as, espe-
cially for large Rj, the differences between following groups are likely to be small.
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The combination of the two is achieved by replacing our encoding step in figure 2.5
with DPTC, i.e. it is used to compress the stream of sample sums Xj. To achieve
this, some slight modifications of DPTC are needed. Firstly DPTC must be made
aware of the variable length header used to encode the downsampling ratio steps and
include these headers in the output stream. Secondly, DPTC must also output the
initial downsampling ratio. Figure 2.8 illustrates the bit encoding of the combined
system for the previously-discussed example trace in figure 2.3; note that besides
the addition of the ratio bits this is exactly the scheme used by the original DPTC.

Figure 2.8: Binary encoding storage size of the trace in figure 2.3. The plot is
produced by our public web utility, see chapter 3.2.1

.

To achieve good system performance, the DPTC differencing stage is also modified
to account for downsampling ratio changes. Consider the example trace [10, 10, 10],
using only DPTC, this trace would result in the differences [0, 0] which would be
saved with a minimal amount of bits. Now assume that this trace, using our system,
would be compressed into [(10, 1), (20, 2)]. DPTC will then calculate the difference
20 − 10 = 10 which requires more bits to encode. To avoid this, a new difference
method is introduced. Assume that p is the previous sample, s the current sample
and d is the output difference, then the differences calculation depends on how the
ratio was changed as follows:

1. If ratio has increased since the last block then d← s− 2p

2. If ratio has decreased since the last block then d← 2s− p

3. Otherwise d← s− p

After each step, the previous sample is updated to p ← s. Using the above rules,
reconsider the downsampled trace (10, 1), (20, 2). First observe that the ratio used
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increased between the two blocks, hence the first rule applies. Thus d ← s − 2p =
20−2 ·10 = 0, p← 20. This scheme ensures that the difference calculated by DPTC
is as small as possible when the downsampling ratio changes. To reconstruct the
compressed data, first recover the ratio change from the header before the difference
and then solve for s in the above rules to recover the sample.
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3
Software development

The aim of the project is to deliver a ready-to-use reference implementation of
the compression algorithm described in chapter 2. The main component of this
reference implementation is the FPGA firmware written in the hardware description
language VHDL, but surrounding support software and utilities are also included.
This chapter describes the produced software and the development process. In short,
development consisted of three main phases:

1. Initial Matlab implementation,

2. C++ implementation,

3. VHDL implementation.

Producing three different software implementations can appear as an unnecessary
effort, but this is offset by several factors. The implementations are listed in increas-
ing implementation complexity. Writing VHDL code is a slow process. Compared to
higher level languages, such as Matlab, VHDL, by necessity, introduces additional
complexities to consider such as as logic clocking and timing to name a few. Ini-
tial development was instead done in Matlab as the reduced code complexity and
excellent plotting functionality enabled rapid prototype development. Once one im-
plementation was done, it could be used as a schematic for the next, thus allowing
one to focus on implementation complexities and not on algorithm development.
Each implementation was verified to agree with the previous by ensuring that for
the same input data they produce the same output data. To find bugs and to im-
prove confidence, for each implementation the author was switched. Hence each
part of the algorithm has been understood and checked by two individuals.

The source codes for PC and FPGA (C++ and VHDL) are available for download
at [14].
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3.1 Matlab implementation
The Matlab implementation was solely written as a prototyping tool and is not
released as part of the reference implementation. The goal was instead to quickly
develop ideas for a possible algorithm which led to the proposed system. The sound-
ness of these ideas was evaluated using both simple synthetic traces and the same
real world traces used to test DPTC [6]. This version is replaced with a C++ im-
plementation for two main reasons. Firstly, the Matlab source is hard to integrate
with DPTC, which is written in C. Secondly, performance concerns due to the Mat-
lab code having been written to mimic, as close as reasonable, the operation of the
FPGA firmware. Code performance suffers without Matlab-specific optimizations,
such as manual loop unrolling and vectorization, but addressing this sacrifices sim-
ilarity with the final implementation. Finally, and most importantly, is that the
DPTC reference implementation is written in C, so to test DPTC integration a
C-compatible language is preferable.

3.2 C++ implementation
The C++ implementation is not just a stepping stone, but also an important testing
tool and released as part of the reference implementation package. This component
includes compression and decompression routines which utilize DPTC for encoding
of the downsampled trace. DPTC support was achieved by modifying its sources to
include the changes outlined in section 2.6. In addition, the source includes utilities
for monitoring performance and calculating compression ratios. The end user can
either use the source code directly or build the included command-line utility which
provides a command-line interface to all of these functions. This tool was used to
aid and verify the later VHDL implementation.

Software verification is limited to ensuring that it produces the same result as the
VHDL and Matlab implementations for a large number of traces. More details on
these test traces are given in the description of VHDL testing. The motivation is
that extensive testing is only required for the VHDL implementation whilst the rest
is verified by transitivity, i.e. by convincing that the implementations are equivalent.

3.2.1 Website
In addition to the command line tool, the C++ code was also utilized to cre-
ate a demonstration website, available at http://fy.chalmers.se/subatom/ads/
compressor/. This website allows a user to compress a trace of their choosing with
any settings they require. The trace, reconstruction after compression and various
performance statistics are graphically presented in the web browser. Figures 2.3, 2.4
and 2.8 are all produced by this website using the default settings and the example
trace denoted "Real world Example". Figures 1.1 and 1.2 are produced by selecting
"Real world Example 2" and setting the STD to 60.

The website was created by compiling the C++ code into web-assembly [15], which is
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a standardized assembly language targeting modern web browsers. When a user con-
nects to the website, his or her browser will download the web-assembly executable
from the web server and then place the executable code into memory. The user inter-
face and plotting functionality of the website are implemented in JavaScript, which
in turn calls functions of the web-assembly binary for compression-related tasks.
Thus the website and command line utilities not only execute the same compression
algorithm but they share the same source code. Except for compiler or runtime
defects it is highly unlikely that the website would produce a different result.

3.3 VHDL
The FPGA version of the algorithm consists solely of the compressor routine and
is written in the hardware description language VHDL. All sources are written as
to adhere to the VHDL-2002 standard, as the later revision, VHDL-2008, suffers
from poor FPGA vendor support. All development was done using GHDL [16], an
open source VHDL simulator, thus eliminating the need of vendor-specific toolchains
during initial development.

Development was split into four main phases: component implementation and ver-
ification, system integration and verification, system testing and hardware testing.
Component implementation consisted of splitting the algorithm into distinct com-
ponents, such as sample FIFOs, trigger calculator, etc. and then implementing them
in VHDL. Correctness of each component is verified by simulating it using GHDL
whilst a test-bench script stimulates the module inputs and monitors its outputs.
These test scripts serve as basic functionality checks and early bug detection. More
complex functionality is realized by combination of more basic components.

The second phase, system integration, consists of integrating all components to-
gether to create the complete compression system, which is once again verified using
GHDL. The emphasis of verification is to detect interface and logic errors rather
than algorithmic errors. Algorithmic errors are captured in the third phase, sys-
tem testing, in which the complete compressor is simulated using GHDL and fed
numerous test traces and the compressed data is checked for errors. Setting the
trigger level, K, to zero makes the algorithm lossless, thus simple comparisons be-
tween original and reconstructed traces are possible. Assume that the compressor
produces block Xi = 8, Ri = 4, then the testing routine will decompress this block
to [2, 2, 2, 2] and then compare it to the original trace. If different, the test is con-
sidered to fail. The test trace collection consists of 22 artificial traces and 1723 real
traces. The former consists of carefully crafted traces designed to provoke possible
errors, for example traces which jump between the extreme representables given the
number of bits allocated to each sample. The latter category consists of the real
world examples bundled with the DPTC release [6].

The final step of VHDL implementation is synthesis and hardware testing. The
current version of GHDL does not support design synthesis, i.e. transforming the
VHDL code into a design fit for realization on an FPGA. Thus, for this step two
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vendor toolchains were used, Xilinx ISE and Xilinx Vivado. The latter is Xilinx’s
newest toolchain targeting their latest generation of FPGAs, whilst ISE is their
legacy offering. ISE was used to target the Spartan 6 FPGA and Vivado was used
to target the ZYNQ-7000 System-on-a-Chip (SoC). These tools were used to charac-
terize resource utilization and timing. An important goal was to find and optimize
critical paths of the design in order to maximize the achievable clock frequency.
Timing can be described as a signal race: each signal starts at a register; when the
start signal sounds every single signal rushes along their signal paths through a maze
of logic desperate to reach the finishing line, the next register, before a clock period
has passed. If the logic is too convoluted, or the distance too great, signals will
timeout before reaching their goal. The Xilinx tools was used to provide indication
of signals failing the race, which in turn led to modification of the VHDL to either
reduce logic complexity along the signal path or by pipelining, i.e split calculations
over several clock cycles.

Limited on-hardware testing of the VHDL downsampling implementation was done
on both FPGAs. The tests were done with the encoding step disabled, i.e. without
DPTC, as this simplified the necessary data transfer protocols between the FP-
GAs and the host PC. The first test was using a Mojo v3 development board [17],
equipped with a Spartan 6 FPGA. For this board, a simple implementation was
created that allowed streaming downsampling of traces using the UART over USB
interface of the board. Using this setup all artificial test traces were downsampled
and verified to agree with the GHDL simulations. A second hardware test was
done on a Digilent Arty Z7 board [18], equipped with a Zynq-7000 System-on-a-
Chip . This SoC contains both an ARM processor and a FPGA on a single chip,
with interconnects in-between to allow high-speed communication. Test traces were
transferred from the host PC using Ethernet to the Zynq processor, which in turn
transferred the trace to the FPGA for downsampling. Once completed, the transfer
direction is reversed and the downsampled trace was transmitted back to the PC
where the result could be verified. Compared to the Mojo test, this board allowed
much higher data rates due availability of high speed interfaces. The purpose of
testing on hardware is to verify that no unexpected behaviour occurs on hardware
and that the GHDL simulations are indeed truthful to reality.
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Results

In this chapter, the results of this work are presented, consisting of compression
statistics, system characterization, VHDL design resource utilization and timing
statistics.

4.1 Compression performance
The first and maybe most important statistic to consider is the compression perfor-
mance, presented in table 4.1, which is a modification of table III from the DPTC-
article [6]. All columns except the last two are replicated from the article. For
each trace category, the following information is given: number of traces, number
of samples per trace, estimated noise standard deviation and average bits per sam-
ple for DPTC only, for Adaptive Downsampling only and for the combined system.
When using Adaptive Downsampling only, the stored trace is encoded as outlined in
section 2.2.2, whilst in the combined system DPTC provides the output encoding.
The two columns were produced by compressing each trace in the collection and
then calculating the average number of bits per sample. For these runs the follow-
ing settings were used: K = 3, Rmax = 64, Abits = 14 and the standard deviation
estimator was disabled and replaced with the category estimate in column six. The
STD-estimator was disabled as the total trace lengths compared to the convergence
time of the estimator was too short. The STD-estimator is designed to operate over
much longer intervals and sample the ADC output, regardless of whether a trace is
currently being compressed or not. Reconfigurating the STD-estimator to operate
on shorter timescales and faster sampling was not an option, as for these short traces
the assumption of events being rare is no longer valid. Thus a faster STD-estimator
would characterize not only the noise, but also be affected by the signal.

Table 4.1 seems to indicate that Adaptive downsampling on its own greatly reduces
the storage costs, but to draw this conclusion one also needs to consider that the
system is lossy and any gains must be weighed against potential information loss.
Requirements might dictate a more conservative trigger level of K = 2, as shown in
table 4.2, which naturally leads to worse performance. Thus performance numbers
presented herein only serve as an indication of what is achievable, but results will
vary depending on a given application. What can be concluded is that in all cases
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Label Category Details Traces # Samples # σ DPTC ADS ADS + DPTC
— — — Bits/Sample — — —

a core signal 40 5000 2.16 3.89 1.70 0.79
b γ in segmented BEGe segment 1 40 5000 2.16 3.86 1.81 0.85
c segment 5 40 5000 2.21 3.91 1.81 0.85
d Ionisation chamber 200 200 71.2 9.16 1.84 1.53
e n/γ discrimination n-det, anode 200 200 4.88 5.36 2.67 1.72
f n-det, cathode 200 200 6.20 5.71 2.48 1.59
g position-sensitive α-particles 50 1000 29.7 7.81 1.13 0.81
h Si pin-diode 40Ar 50 1000 6.36 5.58 2.28 1.35
i no signal split 100 200 5.30 5.55 3.88 2.51
j γ from 137Cs signal split 1:2 100 200 3.90 5.08 3.46 2.15
k in LaBr3 signal split 1:4 100 200 3.23 4.81 3.20 1.95
l signal split 1:8 100 200 3.05 4.65 2.78 1.69
m 350V 100 600 0.25 1.67 1.90 0.62
n cosmic µ in LaBr3, 400V 100 600 0.25 1.67 2.22 0.74
o varying HV of PMT 450V 100 200 4.28 5.55 4.55 3.01
p cosmic µ in LaCl3, CAEN DT5730 100 400 3.88 5.00 2.50 1.49
q different digitizers CAEN DT5751 100 400 0.86 2.72 2.95 1.28
r all values 0 1 1000 0 1.51 0.34 0.06
s Flat traces all values 10 1 1000 0 1.51 0.34 0.09
t all values 100 1 1000 0 1.51 0.34 0.10

Table 4.1: Storage efficiency of DPTC and adaptive downsampling (ADS) for
different trace categories with K = 3. The three right-most columns present the
average number of bits per sample, i.e the total compressed size divided by number
of samples in the trace. This table is a replication of table III presented in the
DPTC-article [6], but adopted to demonstrate ADS performance.

both ADS and DPTC by themselves reduces storage costs, but their combination
provides even greater gains. Assuming losses are acceptable, ADS+DPTC have the
potential to provide a significant data size reduction compared to using only DPTC,
this is illustrated by figure 4.1.

Figure 4.1: Sweep of trigger level for all test traces in table 4.1 except for the flat
traces. The y-axes indicates the total average number of bits/sample for all of these
traces after compression with ADS+DPTC. For K > 1.1 ADS+DPTC provides
better compression than only using DPTC.

28



4. Results

Label Category Details Traces # Samples # σ DPTC ADS ADS + DPTC
— — — Bits/Sample — — —

a core signal 40 5000 2.16 3.89 4.80 2.08
b γ in segmented BEGe segment 1 40 5000 2.16 3.86 4.76 2.07
c segment 5 40 5000 2.21 3.91 5.06 2.20
d Ionisation chamber 200 200 71.2 9.16 5.41 4.08
e n/γ discrimination n-det, anode 200 200 4.88 5.36 5.48 3.06
f n-det, cathode 200 200 6.20 5.71 5.42 3.06
g position-sensitive α-particles 50 1000 29.7 7.81 2.93 1.93
h Si pin-diode 40Ar 50 1000 6.36 5.58 4.77 2.60
i no signal split 100 200 5.30 5.55 5.61 3.34
j γ from 137Cs signal split 1:2 100 200 3.90 5.08 5.76 3.17
k in LaBr3 signal split 1:4 100 200 3.23 4.81 5.75 3.03
l signal split 1:8 100 200 3.05 4.65 5.83 2.99
m 350V 100 600 0.25 1.67 3.74 0.95
n cosmic µ in LaBr3, 400V 100 600 0.25 1.67 4.41 1.13
o varying HV of PMT 450V 100 200 4.28 5.55 5.80 3.58
p cosmic µ in LaCl3, CAEN DT5730 100 400 3.88 5.00 5.86 3.00
q different digitizers CAEN DT5751 100 400 0.86 2.72 5.67 2.14
r all values 0 1 1000 0 1.51 0.34 0.06
s Flat traces all values 10 1 1000 0 1.51 0.34 0.09
t all values 100 1 1000 0 1.51 0.34 0.10

Table 4.2: Performance of DPTC and adaptive downsampling (ADS) for different
trace categories with a reduced trigger level of K = 2 instead of 3. Reducing K
increases system sensitivity making downsampling less likely. Thus the signal is
recorded more accurately at the cost of on average allocating more bits per sample.
The three right-most columns present the average number of bits per sample, i.e the
total compressed size divided by number of samples in the trace.

4.2 Noise STD estimator characteristics

The noise STD estimator was tested by comparing its estimate to two conventional
methods when executed on synthetic noise with a known STD. The first method is
the cumulative STD, i.e. to compute the STD from the definition using all samples
before the current sample. Whilst such a method would be accurate, it is not viable
for real-time usage due to the large memory requirements. A more realistic method
is windowed STD, which limits memory usage by computing the STD using the
definition but only the last N samples are considered. Nonetheless, windowed STD
is very expensive to compute as it requires the computation of square roots and
that has higher memory requirements than the proposed STD estimator. Figure
4.2 illustrates how all three methods behave when used on generated noise with
a known STD of ten. Using this figure some conclusions can be made. Firstly,
the proposed method converges much slower than the other methods, but this is
not necessarily a bad thing. The standard deviation estimator is designed to be
connected directly to the continuously sampling ADC and do random sampling
regardless of whether a trace is being recorded. In many use-case such an ADC will
operate at frequencies around of 50–100 MHz and above. Thus even a filter that
requires a hundred million samples to converge will have done so after a second or
two of the system being turned on. See table 4.3 for example convergence time.
Being this slow the STD estimator operates at a much larger timescales than the
important signal pulses. If these signal pulses are rare enough then one can argue
that it is the background noise that the STD estimator characterizes, and not the
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signal pulses. For applications where this assumption is not valid one can still apply
the compression system, but then the STD estimator needs to be replaced by an
alternative way of providing the standard deviation of the noise.

Figure 4.2: Comparison of STD estimation methods on synthetic noise with a
known STD of ten. The green line indicates the STD estimator proposed in this
thesis whilst the others represent different applications of computation using the
standard deviation definition. The x-axis is the current sample index and the y-axis
indicates the estimated STD after inspecting that number of samples, i.e. the y-
value at x = 10000 indicates the estimated STD after the filter has been provided
10000 samples. Note that the STD estimators random sampling was disabled when
generating this figure to make comparison easier. Enabling it would only result in
the green line being further elongated along the x-axis with a factor equal to the
inverse of the probability of to take a sample.

To try to answer the question of how rare the pulses need to be for the application
of the STD estimator, a simple test was devised. Synthetic noise with a known STD
was generated, and the a number of Gaussian pulses (see equation 4.1) was added
to the noise to create a noisy pulse train.

f(x) = a · e−(x2/(2·c2)) (4.1)

The STD estimator was then used on this data and the resulting STD was compared
to the to the true STD of the noise, each generated trace’s length was selected to

STD Samples until convergence
1 14881
10 8799
100 10807

Table 4.3: STD estimator convergence times in number of samples when operated
on synthetic noise.
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Figure 4.3: Relative STD error as a function of pulse percentage. Data is averaged
over 100 traces. The pulses was generated with function 4.1 with a = 160 and c = 7,
the noise had a STD of ten.

account for the convergence time of the estimator. This experiment was repeated
multiple time with a different number of pulses to understand the STD estimate
error as a function of pulse content. Each pulse of the generated trace are identical,
with fixed width (c) and amplitude (a), and equidistantly separated. Figure 4.3
shows the relative STD error of the estimator versus the signal pulse percentage.
The pulse percentage is the number of samples of the trace which contains samples
which are part of an Gaussian pulse. If a Gaussian pulse consisting of 100 samples is
added to a trace of length 1000 then the signal pulse percentage is 10%. From these
test it can be concluded that a very low pulse percentage is required for the STD
estimator to be reliable, though the overestimation can be somewhat compensated
by selecting selecting a smaller K. To improve the STD estimator one would need to
add an outlier/pulse rejection filter to it, which actively reduces the risk of including
pulses into the STD estimation process.
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4.3 FPGA resource utilization and timing
The characteristics of the VHDL design was evaluated on four different FPGAs,
which are presented in tables 4.4 and 4.5. The total resource utilization is quite low
and several circuits could be realized on the same FPGA, in case of the Zynq-7000
the usage is less than 3% of available resources. LookUp Tables (LUTs) are con-
figurable FPGA elements with a small number of inputs on which it can perform
arbitrary logic functions. LUTs serve as the basic building blocks of FPGAs which
are combined to realize complex logic. The Virtex-4 has significantly higher LUT
usage, as its LUTs have only four inputs instead of six as the others, hence the func-
tions realizable by a single Virtex-4 LUT are fewer. The two other major building
blocks are memory elements, Flip-Flops (FF) and Block RAMs, of which only the
former is shown in the table. Flip-flops are small memory elements which, depending
on FPGA, are able to store just a few bits, often just one bit per Flip-flop. These
small memory elements can be be interconnected to create larger memory arrays,
with the possibility to intersperse these arrays with LUTs to implement arbitrary
logic circuits. Block RAMs are much larger, fixed function memory arrays, able to
store larger amounts of data, but often comes with the restriction that only one or
two elements of the array can be accessed per clock cycle. Consider figure 2.5, the
large sample FIFO can be realized using a block RAM as only the ends of the array
is accessed, whilst the smaller Sample FIFO and the trigger FIFO has more com-
plex access patterns and thus require another approach. Exactly how the different
elements are implemented depends on FPGA and the decisions made by the FPGA
vendor-supplied synthesizer tool.

The design can processes up to one ADC sample each clock cycle, thus the clock
speeds presented in tables 4.4 and 4.5 is also the highest achievable sampling rate.
For example, the Zynq-7000 achieves 244 MHz at Abits = 14 and is thus able to
handle data input flows up to 14 · 213 · 106 bits/s or 373 MB/s. It is possible to
further improve the maximal clock frequencies by optimizing the VHDL.

FPGA Family Part number Max frequency LUT usage FF usage
Zynq-7000 xc7z020-1 213 MHz 1329 1177
Spartan-7 xc7s75-1 215 MHz 1335 1177
Spartan-6 xc6slx9-2 100 MHz 1206 1123
Virtex-4 xc4vlx15-12 155 MHz 1741 1136

Table 4.4: Design performance and resource utilization on different FPGAs. Max
frequency is the maximal achievable clock frequency of the design as currently im-
plemented. LUT stands for lookup table. These are the elements that realize com-
binatorial logic in the FPGAs. FF are Flip-flops which are a type of FPGA memory
unit. The design is synthesized with Abits = 12, RMAX = 64.

The current DPTC compressor/decompressor implementation restricts the choices of
ADC widths and max ratio somewhat. These restrictions are very much a limitation
of current implementation and not inherent to the algorithms them-self, thus if the
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FPGA Family Part number Max frequency LUT usage FF usage
Zynq-7000 xc7z020-1 213 MHz 1437 1289
Spartan-7 xc7s75-1 215 MHz 1437 1289
Spartan-6 xc6slx9-2 100 MHz 1314 1227
Virtex-4 xc4vlx15-12 175 MHz 1882 1242

Table 4.5: Design performance and resource utilization on different FPGAs. The
design is synthesized with Abits = 14, RMAX = 64.

need arises one can modified the source to remove these limitations. To strike a
balance between performance and usability, the software DPTC implementation is
limited to processing 32 bits data words at a time, the effect of this when combined
with ADS is that the following must hold:

2 + log2(RMAX) + Abits < 32 (4.2)

The above equation is a result of DPTC being limited to ADC sizes of 31 bits, with
the addition of ADS, the output is extended by an additional log2(RMAX) to account
for the fact that the DPTC input is now a sum of samples. The two is the worst
case size of the step header.

The DPTC VHDL implementation is even more conservative as it limited to emitting
32 bits per clock cycle, which, in the worst case, must fit all of the above and a DPTC
long header.

Abits + log2(RMAX) + 2 + 2 + ceil(log2(Abits + log2(RMAX)− 4)) < 32. (4.3)

Assuming RMAX = 64, which is at the upper limit of a reasonable realworld value
yields

Abits + ceil(log2(Abits + 2)) < 22 (4.4)

Solving the above equation numerically yields a maximum ADC size of 16 bits. If
larger ADC sizes are required one would need to slightly modify the output encoding
step of the DPTC implementation to handle the potentially larger data overflows. As
of current, these implementation specific requirements are not deemed to constitute
significant restrictions in real-world scenarios, hence no effort has been made to
remove these.
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5
Discussion

Based on the results of this work, it can be concluded that the goals and requirements
of the project have mostly been met. The motivation behind this statment will
be provided in this section. First follows a discussion regarding the fulfilment of
algorithm requirements as presented in chapter 1.3, after which interesting features
and future work are addressed.

The first requirement, suitability of algorithm for FPGA use, can safely be deemed
as fulfilled, as the system can be realized with integer operations such as bit shifts,
differences and a few multiplications. The heavy reliance on FIFO data structures
makes it ideal for FPGAs, as any issues could easily be solved by lengthening queues
and separating calculations over several steps. The increased latency introduced by
these extra steps is of minimal concern for this application. Clearly this approach
also satisfies the second requirement of streaming compression, but the requirement
of minimal buffering is less obvious. In chapter 2 it was shown that the required
FIFO length, and thus latency, scales linearly with the the allowable max ratio.
The end user can freely choose the max ratio to strike a balance between resource
utilization, latency and achievable compression ratios. In addition to the max level,
the user needs to select number the of ADC bits and the trigger level K. Even with
these, the third requirement, to have no signal dependent configuration parameters,
is deemed to be satisfied as these are not calibration settings. Users willing to
conduct system calibration can bypass the standard deviation estimator and provide
their own estimate, thus gaining a more predictable system.

The fourth statement, minimal reconstruction errors of signal pulses is the only
requirement for which fulfillment is difficult to establish. An answer requires knowl-
edge on what constitutes minimal reconstruction errors. Of course, setting the
max-ratio to one achieves this, but fails to achieve data compression. If one guar-
antees no downsampling of the event pulse, then this can be accomplished with the
caveat of requiring pulse detection. This is hard to do in a system agnostic of signal
properties. If guaranteed perfect pulse reconstruction is required, then the compres-
sor should be integrated with an external trigger as proposed in equation 2.12. The
answer is further complicated by the fact that what constitutes signal versus noise
depends on the chosen application. Ideally, each real-world trace should be analyzed
before and after compression with the same methods employed by the producer of
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Figure 5.1: Illustration of a signal together with three different filtered versions,
adaptive downsampling with the STD fixed to 200 and moving averages of two
different lengths. Do note that a moving average does not provide data compression
as the number of samples remains the same.

that trace to understand possible information loss. Unfortunately the effort to do so
would be prohibitive and is considered outside the scope of this project. Ultimately
what are acceptable errors must be decided by the user with help of the presented
material.

It is interesting to also consider other possible applications for this method of adap-
tive downsampling, for example data analysis. Adaptive downsampling can be
thought of as an averaging filter where the averaging window length is modulated
to preserve level changes. Removing the STD estimator then allows the user to set
the STD, which regulates the degree of signal smoothing. Figure 5.1 illustrates how
adaptive sampling compares to two different sizes of moving averages. The mov-
ing average is calculated by replacing each sample with the average of the sample
together with its N closest neighbours. From this image one could possibly argue
that Adaptive downsampling smoothes the signal whilst preserving the general sig-
nal shape better than the moving average. Adaptive downsampling also reduce the
number of trace samples thus potentially making function fits easier. A reduced
number of samples can speed up function fitting. The impact of noise on the fit is
somewhat reduced, as the downsampling process reduces stored signal noise. Re-
gardless this paragraph only serves as an curious remark, as this application has not
been thoroughly studied.

Future development work of the compression system should focus on testing the
complete system in real-world scenarios. That is testing the system installed on
a front-end card complete with the STD estimator and ADCs. With this setup
one would then evaluate how the compressed and reconstructed traces compare
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to to the raw trace with an emphasis on how compression affect possible function
fittings. Unfortunately, for the traces employed in testing the system, the functional
form used for fitting the pulse shape is unknown, and thus evaluating the effect
of compression is hard. This problem is further aggravated by the fact that what
constitutes acceptable loss is not known for each trace. Given that the compression
system is lossy and that the possible information loss is governed byK from equation
2.10, such testing is anyhow required by the end user to find an acceptable K for
their specific application.
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