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Abstract

GPS navigation systems suitable for cars are well presented on the market
but the supply is rather poor when it comes to pedestrians. Cars travels
in relatively high speed compared to pedestrians and therefore the require-
ments on sensor accuracy is lower. In this thesis a platform independent
pedestrian navigation software library for usage on smartphones in an urban
environment has been developed. The GUI was implemented in Android and
navigation instructions are overlayed in the smartphone’s camera view. From
the developed application a picture is snapped of the user’s surroundings, im-
age processing methods such as Canny edge detector and Hough transform
are applied for extracting information out of the snapshot’s content. Map
data, which is requested of surrounding streets based on the smartphone’s
GPS position, is matched with the snapshot content. The outcome is a result-
ing navigation instruction. The algorithm is applicable, however, obstacles
and shadows within snapshots can result in faulty lines which has influence
on the outcome. An accurate GPS position is crucial for retrieving reliable
navigation instructions. Hence, there are room for improvements. This ver-
sion functions best in narrow streets where no interferences of large obstacles
or shadows are present.
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Chapter 1

Introduction

GPS navigation systems suitable for car navigation are already well pre-
sented on the market. An example of such a system is WisepilotTM, de-
veloped by Appello System AB which is the company where this thesis is
executed. When traveling by car, the traveling speed is high leading to low
requirements of the system’s accuracy. Compared to car navigation, a GPS
navigation system aimed for pedestrians require higher accuracy. This is be-
cause the distance between two navigation points in an urban environment
is often much shorter than between corresponding navigation points for car
navigation. A shorter distance along with a relatively low traveling speed
demands low margins of errors. Also, a pedestrian navigation device must
be portable and user-friendly for a stressed situation. The exploited usage of
smartphones laid a suitable foundation of an application aimed for this pur-
pose, fulfilling the portable demand as well as being a device, conveniently
as it is, already in the possession of many potential users.

A well suited concept for pedestrian navigation system could be Augmented
Reality (AR). Using AR, navigation instructions could be displayed on a
real-time display such as a smartphone’s camera view. The user would only
have to hold up their smartphone and the route directives would be overlaid
on the ”real” surroundings seen through the camera view. However, AR takes
up a lot of computational power, resulting in long processing time on smart-
phones, and is thus not suitable for this thesis. Instead, a simplification of
AR is developed. The user snaps a picture with a smartphone’s camera and
gets navigation instructions overlaid on top of the snapshot. Whenever the
user is in need of new directives, a new picture is snapped.

Certain factors must be considered during the development of such a pedes-
trian navigation system. The system must be robust for diversity in street
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qualities and weathers though a street can be made of asphalt, paving stones,
pebbles or be covered in snow. The application has to work properly even
with crowded streets resulting in lost information.

The objective of this thesis is to develop and implement a platform indepen-
dent framework for smartphone pedestrian navigation for usage in an urban
environment. The framework will be implemented in Java and demonstrated
in an Android application where navigation instructions are augmented on a
snapshot.

The step from snapping a picture to receiving navigation instructions is han-
dled by the framework. No trust is put in the smartphone’s compass, there-
fore information in the snapshot must be extracted so it can be matched with
the user’s surroundings for determining their correct direction. The data of
the surroundings is invoked from WisepilotTM where a request is made for
navigation data, consisting of both map and route data. The request is based
on the user’s GPS position and destination target. With obtained data, the
streets located in the vicinity of the user are considered known along with
the route leading to the final destination. Streets constitute intersections in
which routes change their paths, hence, the essential information to be ex-
tracted from the snapshot is thus: is there an intersection present and if so,
how far away is it located. The result is matched with received map data and
as a final step of the algorithm a route directive is overlaid on the snapshot.
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Chapter 2

Background

In this chapter the background theory of used concepts and adopted methods
are presented.

2.1 Android Platform

Android is an open source Operating System (OS) based on a modified Linux
Kernel [1]. It was created by the Open Handset Alliance which was origi-
nally established by 34 companies including among others Google, HTC and
Dell [1]. The OS itself is written in a mixture of C and C++, although the
android applications are mainly written in Java. The applications are run
on a Dalvik Virtual Machine (VM) which converts java classes to a format
of its own (.dex).

Android was released in 2008, but it was not until the beginning of 2009
the first android controlled mobile phone was available on the market. Since
then, several new updates have been released and the most recent one is
Android 3.1 which was released for developers in May 2011 [2].

2.2 Global Positioning System

The Global Positioning System (GPS) was developed by the U.S. Department
of Defence in 1978 [3] with the purpose of reinforcing the U.S. and its allies
military forces [4]. GPS is a satellite system consisting of 24 different units
which are continuously sending out one-way signals of their position and
time. These signals are accessible for any GPS receiver and based on the
transmitted information its current location can be determined on a three-
dimensional form; latitude, longitude and altitude.
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2.3 Canny Edge Detection

John F. Canny developed and gave name to a computationally approach to
edge detection in the year 1986 [5]. By detecting edges in an image, struc-
tural information can be kept and redundant information discarded. The
image of edges, which from this point onwards will be called edge image, is
made binary (black and white) which reduces the amount of data to process
drastically.

Edges are characterized by high 1st and 2nd derivatives [6] and there are
several existing methods taking advantages of these qualities for extracting
edges. Such methods is e.g. the Gradient filter detector which make use of
the 1:st derivative or the Laplacian filter detector which make use of the 2nd
derivative. The Canny edge detector uses both and was chosen because of
its high performance against the simpler filtering methods.

The Canny method is developed based on three basic objectives [6]:

1. Low error rate - true edges should be found, false edges should not be
returned from the detector.

2. Edge points well localized - found edges should be as close as possible
to true edges.

3. Single edge point response - only one response to one single edge.

Finding unequivocal solutions for all these objectives was found to be un-
feasible [6]. Hence, all three are considered and set up with mathematically
equations and an optimized solution is numerically searched for.

The first step of the Canny edge detection procedure is to smooth the image
by a 2D Gaussian filter [6] according to

G(xf ,yf ) = e−
x2f+y

2
f

2σ2 , (2.1)

where xf and yf represent the 2D filter cells and σ represent the standard de-
viation. The smoothing filter enhances high intensity transitions in contrasts.
The input image, I(x,y), is convolved with the smoothing filter G(xf ,yf ) re-
sulting in a smoothed image Is, see equation 2.2.

Is(x,y) = G(x,y) ? I(x,y) (2.2)
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The gradient and its magnitude is calculated for each image pixel of the
smoothed image according to equations 2.3 and 2.4 respectively [6].

α(x,y) = tan−1


(
∂Is
∂y

)
(
∂Is
∂x

)
 (2.3)

M(x,y) =

√(
∂Is
∂x

)2

+

(
∂Is
∂y

)2

(2.4)

Regions with high spatial derivatives are used for nonmaxima suppression,
which means that pixels with low gradient magnitude are not interpreted as
true edge points and thus suppressed, see equation 2.5.

gN(x,y) = Is(x,y) > Mmaxima suppression threshold (2.5)

The magnitude of the remaining unsuppressed pixels are manipulated based
on two threshold-values, a high threshold TH and a low threshold TL [6].
Each pixel in gN(x,y) is compared to both thresholds resulting in two fresh
binary (black and white) matrixes. Their pixel values becomes ’white’ if
condition 2.6 or 2.7 is fulfilled and ’black’ if not.

gNH(x,y) = gN(x,y) ≥ TH (2.6)

gNL(x,y) = gN(x,y) ≥ TL (2.7)

The resulting differential matrix becomes the output image, Iout, of the Canny
edge detector, according to equation 2.8.

Iout = gNL(x,y) − gNH(x,y) (2.8)

5



2.4 The Hough Transform

The Hough transform (HT) was developed by Paul Hough in the year 1962
[6]. It is a method for detecting lines in an edge image I(x,y). The princi-
ple of HT is to find the linear equation parameters, k and m according to
equation 2.9, for each straight line representing a distinct edge. To achieve
this, a transformation from Cartesian space (x,y) to parameter space (k,m)
is made for all edge points.

yi = kxi +m, (2.9)

Since a single edge point lacks a slope k a voting system is introduced to
evaluate at which slopes and where edge points lies in straight lines [6]. The
voting system ranks parameter pairs (k,m) for lines in a accumulator matrix
A(k,m). A(k,m) is ranked high if there are many edge points detected in the
corresponding line. A high ranking in turn indicate that those parameters
are more likely to be a line representing a distinct edge.

In practice, each detected edge point (xi,yi) is evaluated. No a priori knowl-
edge of an image’s content is assumed and therefore lines in all possible
directions are searched for. This is done by dividing the total range of all
possible slopes in discrete steps, ∆k, and then determining the matching ∆m
for each of these steps by equation 2.10 [6].

∆m = −∆kxi + yi, (2.10)

For each parameter pair (∆k,∆m) found, the corresponding cell in the accu-
mulator matrix, A(∆k,∆m), is increased by one.

When the parameters for all edge points have been determined, lines in the
edge image are detected by large values in A(k,m) [6]. This is since edge
points which are aligned with each other share parameter pairs k,m but dif-
fers in x− and y−position. Therefore, their cell in A will be increased a
larger number of times than for edge points not being aligned and thus not
sharing parameters.

However, there is an impractical issue when using the linear equation 2.9
which is that vertical lines cannot be found since k approaches infinity for
this slope. Therefore, lines are represented in polar coordinates [7] instead
according to equation 2.11.
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r = xcos(θ) + ysin(θ) (2.11)

The transformation from Cartesian space to parameter space follows the
same principle described above with the difference that parameter space is
constituted by θ and r (illustrated in figure 2.1) instead of k and m. So,
each point is evaluated according to equation 2.11 where discrete steps of θ
is applied resulting in parameter pairs (∆θ,∆r).

- x
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Figure 2.1: Polar parameters illustrated in Cartesian space.
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Chapter 3

Implementation Procedure

This chapter describes the approach for developing the main framework as
well as getting a final usable application. The chapter is divided into four
sections: Camera and sensors, Image processing, Analysis of snapshot prop-
erties and Integration with WisepilotTM.

The different steps of the application’s procedure are listed in the block dia-
gram illustrated in figure 3.1. The main GUI of WisepilotTM is first displayed
when starting the application. The user selects a destination target leading
to a calculated route while the camera view is displayed with a choice of
snapping a picture. The picture is snapped on a street in the surroundings
and the resulting snapshot is processed as explained in section 3.2. The out-
come is analyzed and classified into a snapshot type, see section 3.3. This
type as well as the distance to a potential intersection are used as inputs in
the matching procedure with information from WisepilotTM as is explained
in section 3.4.

The result from the matching procedure determines the final navigation in-
struction. The instruction is displayed as an overlayed arrow on top of the
original snapshot in the application.

3.1 Camera and sensors

The smartphone’s hardware used when implementing the application are the
camera, the orientation sensor and the GPS. The implementation of these
hardware is done using Android Native.

The snapshot obtained from the camera is scaled to 480 × 640 pixels and
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Figure 3.1: Block diagram describing the structure of the developed applica-
tion. 10



delivered as an RGB bitmap. The snapshot size was selected out of a number
of predetermined available sizes because of its relatively small size leading to
a fast application. The camera has a vertical and a horizontal angle of view.
The vertical angle of view is used when estimating distances in the snapshot.

The orientation sensor contains information about how the smartphone is
held. It consist of a roll angle, a pitch angle and a compass direction, the
roll and pitch are illustrated in figure 3.2. Roll is exploited in the distance
estimation and is the only orientation parameter used in this thesis. A di-
rection indication from the compass could be valuable for matching purposes
with data from WisepilotTM. However, the built in compass is unreliable and
does not have an implemented 3D mode which making it unusable in this
application.

x

y

z

Figure 3.2: Adviced smartphone orientation according to navigation instruc-
tions described in Appendix A. The definition of the orientation angles θpitch
and θroll is as quoted: ”Pitch, rotation around x-axis (-180 to 180), with pos-
itive values when the z-axis moves toward the y-axis. Roll, rotation around
y-axis (-90 to 90), with positive values when the x-axis moves toward the
z-axis.” [8]

The position of the user is obtained by the built-in GPS receiver. The ac-
quired parameters are latitude, longitude and altitude.
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3.2 Image processing

The snapshot is processed with the aim of enhancing street properties. In an
urban environment, typical such properties are represented by edges forming
perspective mode lines along with windows and at transitions from street to
buildings. For this purpose it is suitable to apply an edge detecting method
and the Canny edge detector was chosen due to its superior outcome com-
pared to simpler methods. Detected edges are then converted into a more
suitable type of data, i.e. lines. A reliable method for extracting lines out
of edges is to apply Hough transform (HT) which thus is used. The image
processing is made on a gray-scale transformation of the delivered snapshot.

This section describes the developed algorithm for enhancing street proper-
ties. Its input is the gray-scale image and its output the outcome of applied
HT, i.e. Hough lines (HLs). HT is applied twice in the algorithm, once on
the entire image and once on the area represented by cells 4 and 5 in figure
3.3. These cells contain information of the most distant areas in the snapshot
and are handled separately for not being overlooked1.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

x

y

Figure 3.3: Image divided into cells. The most distant area of a snapshot is
represented by cells 4 and 5 if the snapshot is taken as advised in Appendix
A.

1The HLs found in cells 4 and 5 (figure 3.3) are often shorter than HLs found in other
cells and will thus not be ranked as high.
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3.2.1 Gaussian Filtering

The edges representing street properties are denoted by high intensity tran-
sitions. To find these transitions the gray-scale image is blurred by filtering
with a 2D Gaussian formed spatial filter. Before the filter is applied the im-
age is mirror padded to remove border influences in intensity transitions [6].
Filter values are determined by the Gaussian distribution and normalized
according to

f(x,y) =
1∑

x,y e
(−x2+y2

2πσ2
)
e(−

x2+y2

2πσ2
) (3.1)

where x and y represent the 2D filter cells and σ represent the standard
deviation. The filter is applied on the padded image and results in a blurred
image with well highlighted edges, see figure 3.4.

Figure 3.4: Resulting image of blurring with a Gaussian filter.

3.2.2 Canny Detection

The Canny edge detection method is implemented according to the proce-
dure described in section 2.3 but with one exception: The original method
handles an upper and a lower threshold concerning the selection of edges,
this implementation only considers the higher threshold, TH . It is applied on
the resulting Gaussian blurred image from the previous section.

The value of TH is determined by

13



TH =
CUSUM(HM) < (Anon edges)

I
(3.2)

where Anon edges is the number of non edge point pixels detected from the
blurred image, HM is a histogram of the magnitudes calculated by equation
2.4, I is the number of intervals in HM and CUSUM represents the cumula-
tive mass function.

Edges detected with this implementation when the blurred image in figure
3.4 is used as input are illustrated in figure 3.5.

Figure 3.5: Edges detected by implemented Canny edge detector.

Even though edges are clearly visible to human eye the following HT en-
counters problems with edges of one pixel width. Therefore, all edges are
thickened as illustrated in figure 3.6. Before the thickening is done single
edge pixels are removed. The outcome of this Canny edge detector is a bi-
nary (black and white) image.

3.2.3 Hough Transform

The implemented HT is slightly modified from the one presented in section
2.4. Extracted lines have been limited to regions where edge points actually

14



Figure 3.6: Thickened edges.

are detected. These lines constitute HLs and they represent street and build-
ing features in an image. Figure 3.7 illustrate the HLs extracted from the
thickened edge image in figure 3.6.

Figure 3.7: Extracted Hough lines by implemented Hough transform.

A special case is introduced for the area represented by cells 4 and 5 (see
figure 3.3) on which the HT is applied separately. Extracted HLs from this

15



special case is from this point and onwards called distant HLs. The resulting
distant HLs from the same image (figure 3.6) are illustrated in figure 3.8.

Figure 3.8: Extracted Hough lines in distant area.

The ranges for the accumulator array, A(θ, r), are 0◦ ≤ θ < 180◦ and
0 ≤ r < 2D, where D is the diagonal size in pixels. A discretization is
performed of the ranges where the chosen sampling rates are set to ∆θ = 1 ◦

and ∆r = 1. For each detected edge pixel from the outcome of the imple-
mented Canny edge detector, every ∆θ is considered.

The implemented HT require a number of input parameters: A threshold
value for A(θ,ρ) to identify peaks as HLs, the number of peaks accepted,
minimum length of a HL and the maximum gap for being classified as a HL.
The values on these input parameters differ from HLs to distant HLs due to
that distant HLs often are much shorter. If their values had not been changed
for the distant area, distant HLs would risk being overlooked, and contrary,
if the same settings were used for HLs as for distant HLs that would lead to
information overload. One example is paving stones which are rich in edges
and much clearer in cells 11-14 (see figure 3.3) than in cells 4 and 5. The
input parameters used in this implementation are found in table 3.1.
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Table 3.1: Values of input parameters used in implemented HT. ymax repre-
sent the height of an image in number of pixels.

Type Threshold Numb. of Peaks Min. line length Max. gap

HL ymax/3 50 ymax/10 5
Distant HL ymax/30 50 ymax/30 4

3.3 Analysis of snapshot properties

The outcome of previous sections handling image processing is a more infor-
mative and stripped image. This section describes the approach for interpret
this image into useful information. First, an approach for estimating the
street outline is introduced. The outline is represented by two suitable HLs
from section 3.2.3 on which all other extracted HLs are projected. HLs that
overlaps are merged and openings along the reference lines are searched for.
Based on found openings the snapshot is classified into a specific type: inter-
section or straight forward. If its type is intersection an estimation
of the distance to that intersection is performed. The snapshot type along
with a potential distance estimation is used in the final matching procedure
with information from WisepilotTM.

3.3.1 Extracting Reference Lines

HLs suitable for representing the street outline in a snapshot are searched
for. When two such HLs have been found, so called reference lines are ex-
tracted which have the same slopes as the found HLs. The street’s horizon
is optimally located where the two reference lines intersect.

The search procedure starts with the image being divided into 16 regions,
according to figure 3.3. Each region is ranked by its probability of holding
HLs representing the street outline. Region 1–8 are discarded since the ad-
vised smartphone’s orientation while snapping a picture (see Appendix A)
indicate that the horizon will approximately be located in the center of a
snapshot. The remaining regions, 9–16, are all valid for holding reference
lines. However, the regions 9, 10, 15 and 16 are prioritized. This prioritiza-
tion is done after a number of test images showing that those are the most
common regions containing the outline of the street when the picture has
been snapped as advised.

All extracted HL from section 3.2.3 are each handled, dependent on its place-
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ment and parameter values of length r and slope θ, it is either stored or dis-
carded. HLs partly or completely located in section 9, 10, 15 or 16 precede
other HLs; lengths are considered secondary.

The algorithm for locating reference lines are applied on both the left and
right side of an image. Valid HLs on the left side has a slope within the range
0◦ ≤ θ < 75◦ and on the right side within 105◦ ≤ θ < 180◦. Out of the HLs
that fulfills the left side condition as well as being located in region 9 or 10,
the longest will be chosen to constitute the foundation of the left reference
line. The same holds for the right reference line but with the right side con-
dition and region 15 or 16. Scenarios could occur where the foundation of
only one reference line is found by the above criterions. If so is the case, that
extracted reference line is mirrored to compose the reference line on opposite
side. If no HLs fulfill the criterions, the algorithm defaults to reference lines
illustrated in figure 3.9.

(xi, yi) = (xcenter, ycenter)

Figure 3.9: Pre-determined reference lines when no Hough lines fulfill the
criterions of being valid foundations for reference lines.

It is important to emphasize that the most distinct edges which are rep-
resented by the longest HLs not always constitute the outline of a street.
Empirically they are more frequently representing building structures like
windows. It is, however, not crucial to find the exact street contour in an
image — most important is to get an approximate direction and this can be
achieved with help of building structures as well, as long as they are parallel
to the street of interest. However, extracted reference lines located at actual
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ground level are preferable since those results in better distance estimations
(described in section 3.3.5).

3.3.2 Project Hough lines onto ground level

The outcome of the procedure for estimating the street outline are two ref-
erence lines, one for each side. Extracted HLs which do not constitute the
foundation of the two reference lines are still helpful for determining the
snapshot type and are therefore included in the analysis. This is achieved by
projecting them onto ground level, i.e. the reference lines. For this purpose,
the reference lines linear equation parameters, k and m (from equation 2.9)
are determined as well as the point, pi = [xi, yi], where the two reference
lines intersect. These parameter values are set as projection references.

Each HL consist of two points, p1 = [x1, y1] and p2 = [x2, y2], a slope,
θ, and a length, r. All HLs are classified being left or right based on their
values of x1 and x2. If x1 < xi and x2 < xi then it is classified as a left HL
or if x1 > xi and x2 > xi it is classified as a right HL where xi represent
the x-value where the two reference lines intersect, as is illustrated in figure
3.9. Lines having x-values on both sides of xi are discarded. Also, a range
for θ has been set for the projection. This is to sort out HLs that would
not be very helpful but rather interfere with the analysis. HLs with a slope
within 5◦ < θ < 175◦ are valid for projection. A special case is applied on
the distant area represented by regions 4 and 5 in figure 3.3. This is since
it is hard to get reliable information from extracted HLs due to the snap-
shot’s poor resolution and the grand real distance to that area. The most
apparent information obtained is from roof tops and therefore the range of
the distant HLs slopes have been limited to 105◦ < θ < 165◦ on the left side
and 15◦ < θ < 65◦ on the right side.

The projection of HLs is made along the y- or x-axis dependent on their
location. For each HL, y1 and y2 are compared to the reference lines y-value,
yRL, which is calculated by equation 2.9 based on x1 and x2. If a HL is located
above the reference lines, y1 > yRL and y2 > yRL, representing e.g. building
structures the projection is performed along the y-axis. If instead a HL is
located below the reference lines, y1 < yRL and y2 < yRL, the projection is
performed along the x-axis since the HL is located at ground level. This is
also the case if only one point is found at ground level y1 < yRL or y2 < yRL.
The projection scenario is illustrated in figure 3.10. Projection along the
y-axis is made with help of the linear equation 2.9 while projection along the
x-axis is made with help of a shifting of the linear equation according to
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xp =
yp −m

k
. (3.3)

In the ideal case when all valid HLs have been projected onto the reference
lines, intersections are represented by openings along the reference lines, see
figure 3.11.

Reference Lines
Hough Lines
Projecting arrows

Figure 3.10: Lines projected on to reference lines.

3.3.3 Merge projected Hough lines

The projection is made separately for each valid HL and therefore no open-
ings can be recognized directly. Hence, all projected lines is merged to get a
general idea of the situation. The merging procedure loops through all pro-
jected lines and checks for overlaps. Overlapped lines are merged resulting
in longer and a fewer number of lines from which the street structure can be
interpreted. Small gaps between two such lines are disregarded and the lines
are seen as one line, as is illustrated in figure 3.12. Large gaps will not be
disregarded and it is such openings that is considered to be intersections.
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Figure 3.11: Result of line projection.

Figure 3.12: Illustration of how the small gapes are disregarded and concate-
nated.

3.3.4 Classification of snapshot

The snapshot is classified to be matched with map data from WisepilotTM.
There are two kind of classification types, intersection and straight for-

ward. Figure 3.13 illustrate projected lines from section 3.3.3 that results in
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these types. Also, if the type is interpreted to be an intersection then an
estimation of the distance to the mid point of that intersection is performed
as described in section 3.3.5. The resulting type along with a potential dis-
tance estimation is provided to the following matching procedure which is
described in section 3.4.

The classification is made by checking the number of merged lines on the right
and left side respectively. The snapshot is categorized as being straight

forward if the merged lines have no openings. Otherwise, if there is one
opening or more, it is categorized as being an intersection. If so is the
case, additional information is extracted from this intersection by the algo-
rithm described below.

IF ”there is one left line and more than one right line”

RETURN the largest opening on the right side as the
intersection.

ELSE IF ”there is one right line and more than one left line”

RETURN the largest opening on the left side as the intersection.

ELSE IF ”there are more than one line on both left and right side”

IF ”two openings overlap in y-direction”

these openings are selected as being the intersection

ELSE

the largest opening is selected as being the intersection.

END IF

END IF

The outcome of this classification procedure is the snapshot’s categorization
type and if the type is intersection, the value of the y-pixel placed in
the middle of the intersection and the estimated distance length to that
intersection are provided as well.
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Figure 3.13: Example cases of projected and merged lines. The upper figure
is categorized as an intersection and the lower figure is categorized as a
straight forward street.

3.3.5 Distance estimation in image

If the snapshot is interpreted as being of the type intersection then an
estimation of the distance to that intersection is performed which is achieved
with trigonometry calculations. It is the real distance to the detected inter-
section that is of interest and therefore the distance estimation is performed
along the y-axis of a snapshot, see figure 3.3. The snapshot taken is in per-
spective mode (according to Appendix A), this in turn results in that pixel
ranges with high1 y-values represent shorter real distances than pixel ranges
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with low y-values. The part of an image where distance estimation is of in-
terest is along the street which is located in the lower section of the image,
from pixel pymax to the center pixel pymax/2. For each pixel within this range
a distance is calculated, dp. The procedure is described below.

The height above ground level, h, is estimated to be approximately 1.5 me-
ters, a number based on the mid-length of the Swedish population [9]. The
vertical angle of view θview and the orientation angle θroll are stored while
snapping a picture. The value of θview will be constant for a specific smart-
phone while θroll differs from snapshot to snapshot dependent on the smart-
phone’s orientation as is described in section 3.1. The estimation approach
is described below and a visual representation is illustrated in figure 3.14.

1. The angle to the shortest visible distance in a snapshot, θpymax , is cal-
culated according to,

θpymax = θroll −
θview

2
(3.4)

2. Angles, θpy , representing each pixel within the range P = [pymax/2 , pymax ]
is calculated by

θpy = θpy+1 + ∆θ (3.5)

where θpy+1 represent the angle to the pixel below pixel py and ∆θ repre-
sent equally large sub-angles for each pixel in range P. ∆θ is determined
by

∆θ =
θtot

ymax/2
. (3.6)

where θtot is the total angle from the bottom to center part of an image,
θtot = θview/2 and ymax is the total number of pixels along the y-axis of
a snapshot.

3. The distance dp to each pixel py in the range P is calculated according
to

dp = h · tan(θpy) (3.7)

1Observe that high y-values are located at the bottom part of a snapshot
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3.4 Integration with WisepilotTM

WisepilotTM is a navigation system for smartphones developed by Appello
Systems AB. Its structure is based on a client, the smartphone, which makes
requests to a server for navigation information. The client is required to be
online during navigation.

Many of the features in WisepilotTM are useful for the application of this
thesis which therefore is integrated with the system. The features used are
parts of the GUI, the search algorithm for finding a GPS position of specified
destination, the routing procedure1 and requests of map data. Map data is
provided by NAVTEQ, it is split up in pieces by a Drill Down Server (DDS)
which delivers processed data to a server where the data is processed further.
Useful types are created and their description is listed in table 3.2.

Table 3.2: Types used in the application from the integration with
WisepilotTM.

Type Description

vector map Holds map objects

map object Objects of e.g. streets, street names, lakes, pounds,
houses etc.

route Contains navigation parameters which are delivered
when a destination have been chosen

shade point Points defining streets

way point A shade point on a route with an instruction, e.g.
turn left

position range Area which holds current position

current position Position delivered by the built-in GPS

matched position Snapped position from current position to the closest
position on the route

The input parameters to the matching are from the image processing pro-
cedure, the snapshot’s classification type, the center pixel of potential inter-
section and the estimated distance to the point representing that pixel. The

1The navigation route calculated from one location to a specified destination.
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input parameters provided by WisepilotTM are the current position of user
and their destination target, the calculated route, the matched position

and map data on the matched position’s surroundings. The outcome is
a navigation instruction. The following sections describes the approach for
determine that instruction.

3.4.1 Match intersections with shade points

A route is requested by providing the user’s position and destination target
to WisepilotTM. This route provides information about the pathway and its
surroundings. It is the intersections along the route that is of interest and
therefore streets within the position range are examined. These streets
are delivered in vector maps containing map objects. Each map object

is built of arrays containing GPS positions on the form: starting latitude-
longitude position and ending latitude-longitude position. The streets are
checked for intersections using linear equations. Found intersections, which
are close enough for being visible from the matched position, are stored
and matched with the next shade point on the route. If a shade point

matches an intersection, the distance to it is calculated and stored. If there
is no match the distance is set to far away.

3.4.2 Conditions for determine navigation instruction

In the developed application there are four different instruction types for
navigation: turn left, go straight forward, turn right and destination reached.
One of these is overlayed on top of the original snapshot as a navigation in-
struction. Determining this instruction is dependent on a set of conditions
which were designed based on a few assumptions. For instance, an inter-
section was assumed to be visible in a snapshot at a starting distance of 70
meters and ending distance of 100 meters, these values were estimated based
on measurements. The span of 30 meters is set due to the uncertainty of
what part of an intersection the GPS positions represent.

Before the matching is performed calculations on the distance from received
matched position to the following intersection on the route and on the
distance from matched position to the following way point are required.
Also, the following intersection is examined for being a shade point or a
way point.

The matching procedure is explained in detail in Appendix B. Its inputs
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are the calculated distance to the following intersection, the calculated dis-
tance to the following way point, type of intersection (way point/shade
point), type of snapshot (intersection/straight forward) and the dif-
ference between the estimated distance in the snapshot and the calculated
distance to the intersection.
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Chapter 4

Error Sources

Recall that the developed algorithm has not made use of the smartphone’s
compass and the uncertainty of received GPS position in an urban environ-
ment is large. These limitations demand high quality on the analysis of a
snapshot and on the matching with WisepilotTM. Error sources interfering
with the algorithm are described in the following sections.

4.1 Disturbances within snapshots

There are several factors that could result in a fault classification of a snap-
shot. Objects other than buildings can originate HLs which do not represent
the street structure and should therefore not be projected onto the reference
lines. It is a difficult task to sort out valuable HLs from others and therefore
such HLs will be projected as well. Typical error sources in the classification
of a snapshot are listed below.

� Objects — edges of interfering obstacles can result in ”faulty” HLs, e.g.
trees, branches and cars (see figure 4.1).

� Car located at intersection — can originate HLs which might cause a
fault classification of snapshot type from intersection to straight

forward.

� Shadows — likely to be detected as edges. They are most misleading
when their edges are parallel to the street’s direction in a snapshot.

� Faulty detected reference lines — the street outline can be missed com-
pletely or interfering objects can interrupt valuable HLs as a cause of
less distinct edges.
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Figure 4.1: Marked areas which could suffer from problems with branches
and cars present.

� Downhill and upward slopes — will result in inaccurate distance esti-
mation. The distance estimation is assumed flat ground. 3D map data
cannot be obtained and therefore hills go by undetected. A small slope
results in relatively large errors of the distance estimation.

� Estimated height of smartphone — can result in inaccurate distance
estimation. There is no way to determine the actual height while snap-
ping a picture and thus it is estimated.

� Narrow crossing streets — can result in faulty snapshot classifications.
Even for the human eye it can be difficult to detect a narrow crossing
streets and details are even more difficult to detect through a camera
view. The further away the crossing street is located, the more difficult
it gets to detect it.

� Wide streets — difficulties arise when either the right or left side is not
visible in the snapshot.

4.2 Limitations in Android and WisepilotTM

The implementation of the application is performed with the aim of not
changing major parts in WisepilotTM, but rather adapting it to the existing
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code. A such implementation along with smartphone limitations leads to
complications which are listed below.

� The map object data provided by the DDS is delivered in segments of
GPS positions and these do not always overlap at intersections. There-
fore, this problem needs to be considered. An ultimate solution would
be if the DDS also categorized shade points as being intersections or
not and if it is an intersection also specify its type, e.g. T-crossing,
4-way-crossing etc.

� The GPS position is not very accurate, it also becomes worse in an ur-
ban environment [10]. This inaccuracy can result in WisepilotTM gen-
erating a faulty matched position possibly leading to shade points
being marked as passed when they are still located in the up-coming
parts of a route.

� The compass inaccuracy makes it unusable in this thesis. This compli-
cation could be handled if the compass would operate in a 3D mode.
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Chapter 5

Results

The application was evaluated by reviewing six example routes. Every route
is invoked from the inner city of Gothenburg and their paths are illustrated in
figure 5.1. For each route a number of navigation instructions are requested.
For a reliable result it is necessary that the snapshot is taken along the route.
Each instruction is equally considered in the evaluation result. They are
classified either being successful or not, where successful indicates a correct
guiding directive along the route. No consideration is taken to the placement
of the guiding arrow in the snapshot. The result is illustrated in table 5.1.

Table 5.1: Navigation instruction results for each followed route 1–6.

Route Number of snapshots Successful [%]

Route 1 7 7/7 100.0

Route 2 8 4/8 50.0

Route 3 5 5/5 100.0

Route 4 3 2/3 66.7

Route 5 4 3/4 75.0

Route 6 6 4/6 66.7

All snapshots 33 25/33 75.8

For the not successful cases something in the algorithm has failed during its
execution. There are a number of critical steps which can result in complica-
tions. These complications can be crucial for the result or overridden by the
conditions for determining final navigation instruction. Therefore, a success-
ful outcome can still contain errors in certain steps of the algorithm. Critical
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(a) Route 1 (b) Route 2

(c) Route 3 (d) Route 4

(e) Route 5 (f) Route 6

Figure 5.1: Evaluated routes, all located in the inner city of Gothenburg.
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steps are listed in tables 5.2 and 5.3 where an analysis has been performed
of the snapshots applied from table 5.1.

Table 5.2: Critical steps in final algorithm for determining navigation in-
structions for all successful snapshots from table 5.1.

Snapshot processing step Snapshots / Successful1 [%]

Correct intersection detected 2 17/20 85.0

Correct classification of snapshot 24/25 96.0

Correct display of arrow 23/25 92.0

Matching step Snapshots / Successful1 [%]

Approximately correct GPS position 25/25 100.0

Table 5.3: Critical steps in final algorithm for determining navigation in-
structions for all snapshots with incorrect navigation instructions from table
5.1.

Snapshot processing step Snapshots / Unsuccessful3 [%]

Correct intersection detected 2 7/8 87.5

Correct classification of snapshot 7/8 87.5

Matching step Snapshots / Unsuccessful3 [%]

Approximately correct GPS position 0/25 0.0

It is clear that a crucial step for being a successful or unsuccessful navigation
instruction is highly dependent on the GPS position. An incorrect GPS po-
sition will always result in an unsuccessful navigation instruction. A faulty
GPS position is not regarded in this thesis and therefore not evaluated fur-
ther. Most common error sources attached to snapshot classification are
listed in table 5.4, one snapshot can contribute to more than one error cause.
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Table 5.4: Evaluation of image processing

Image properties Part per Snapshot [%]

Reference lines found at both sides 11/33 33.3

Mirrored left/right reference lines used 12/33 36.4

Default reference lines used 10/33 30.3

Obstacle disturbance 18/33 54.5

Shadow disturbance 6/33 18.2

Obstacles and shadows are common in snapshots (as is clear from table 5.4),
these disturbs the detection of HLs. HLs in turn are necessary for finding
good reference lines. Therefore, finding only one or none reference line is not
an unusual occurrence. If one reference line is found, half the street’s outline
is obtained. The street in a snapshot is preferred to be symmetrical located
(see Appendix A) and a mirrored reference line is therefore still representa-
tive. However, default reference lines provides significantly lesser information
and to determine whether they are trustworthy or not is difficult. In spite
of these potential errors the snapshot classification is correct in 31 out of
33 possible cases. This indicates that the snapshot classification is not most
critical for being correct when determining navigation instruction, the GPS
position on the other hand is.

An example of a typical route is presented by the most successful route from
table 5.1, route 1. It is illustrated in figure 5.4 along with locations where
navigation instructions have been requested. The outcome of these requests
are presented in figures 5.5 – 5.11. The snapshot has been taken just before
an intersection, if there is one, for obtaining best result (as is advised in
Appendix A).

1Representing the same snapshots that resulted in successful navigation instructions
from table 5.1.

2Not every snapshot has detected an intersection, only those who has are considered.
3Representing the same snapshots that resulted in incorrect navigation instructions

from table 5.1.
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(a) Successful navigation instruction 1 (b) GPS position for instruction (a)

(c) Successful navigation instruction 2 (d) GPS position for instruction (c)

(e) Successful navigation instruction 3 (f) GPS position for instruction (e)

Figure 5.2: Example images of a successful navigation instruction. The blue
crosses in images (b), (d) and (f) represent the received GPS position while
the green crosses represent the snapped GPS position.
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(a) Unsuccessful navigation instruction 1 (b) GPS position for instruction (a)

(c) Unsuccessful navigation instruction 2 (d) GPS position for instruction (c)

(e) Unsuccessful navigation instruction 3 (f) GPS position for instruction (e)

Figure 5.3: Example images of an unsuccessful navigation instruction. The
red crosses in images (b), (d) and (f) represent the received GPS position
while the green crosses represent the snapped GPS position.
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Figure 5.4: Example route with marked locations for navigation instruction
requests.

Figure 5.5: Point A – Right turn.
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Figure 5.6: Point B – Straight ahead.

Figure 5.7: Point C – Straight ahead.
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Figure 5.8: Point D – Left turn.

Figure 5.9: Point E – Straight ahead.
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Figure 5.10: Point F – Right turn.

Figure 5.11: Point G – Destination reached.
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Chapter 6

Discussion and Future work

Different parts in the developed algorithm are in this section examined and
evaluated separately. The methods used for processing the snapshot content
are classical image processing methods which are selected because of their
simplicity and robustness. Also, they are suitable for extracting informa-
tion from an urban environment where buildings with sharp edges occurs
frequently, like windows, corners and transitions to streets. The Gaussian fil-
ter blurs the snapshot removing redundant information before the remaining
edges are detected by the implemented Canny edge detector. The resulting
edge points are interpreted with help of the Hough Transform (HT) to a more
usable set of data, i.e. lines. The reason for choosing this approach is that
streets often can be defined by straight lines. The HT is a method based on
a ranking system which leads to trustworthy results based on the edge image.

The estimation of the street outline is made with generated reference lines
which are based on suitable Hough Lines (HLs), as described in section 3.3.1.
Such Hough Lines (HLs) are searched for in specific cells where the outline of
the street normally is located. By only searching in those cells, there is a risk
that the street outline is estimated wrong since more suitable HLs could still
be located in other cells. However, even if the other cells can contain well
presented HLs in a certain scenario they can be misleading, i.e. describing
buildings, in other scenarios. The method for detecting reference lines can
be improved if the extraction procedure of snapshot information is improved.

The snapshot classification is divided into two types, intersection and
straight forward. The intersection type could also be classified as its ac-
tual type, however, there are two main reasons why only intersection and
straight forward are considered. Firstly that the procedure for detecting
intersections is not stable enough to always detect their cross-streets. This is
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due to obstacles and shadows in the snapshot disturbs the edge detection pro-
cedure. Secondly it is because that the map data contributed by NAVTEQ
provides streets as unjoined segments. For instance, crosswalks would be
interpreted as ”false” T-crossings and this applies in both directions. The
problem with crosswalks could easily be solved but since the street detecting
algorithm is vulnerable against disturbances it is not carried out in this thesis.

The distance estimation to intersections is vulnerable due to a number of
factors. For instance, the smartphone’s height while snapping a picture is
estimated and not measured. While performing the trigonometry calcula-
tions, the height is relatively short compared to the distances to intersec-
tions. Therefore, it has a critical role and a poor estimation leads to large
errors. Also, the street on which a snapshot is taken is not always completely
flat. If there is a slope, uphill or downhill, it will cause errors in the distance
calculations since the angle to the street cannot be calculated. This problem
could be dealt with if 3D map data was available and included an altitude
component was included. Furthermore, the number of pixels in the snapshot
are few. This is a problem when distances far away are estimated, result-
ing in that in the center part of the snapshot, one single pixel can represent
several meters in the real world. Errors in one pixel might not seem to bad
but will cause errors of several meters. This problem could be decreased if
the snapshot size is chosen bigger, however, then other problems arise as the
need for extended computational power which results in longer processing
time. An accurate distance estimation would also be of use when merging
projected HLs in section 3.3.3. The merging algorithm discards small gaps
and consider them as false openings. The best way of implementing this
would be by discarding gaps smaller then a certain distance rather then a
certain amount of pixels. The current algorithm takes no consideration to
the real distances of the gaps when discarding them.

The performance of the application was evaluated based on reviewing six
routes along with the resulting outcome instructions. The routes have mostly
been acquired where streets are quite narrow. This is because it is consider-
ably easier to detect reference lines from buildings on both sides of a street
when navigating though narrow streets than broad streets. The matching
procedure, resulting in a navigation instruction, of snapshot properties with
map data uses the intersections along the route as well as the current GPS
position. It is clear from the evaluation result that the application is more
successful than unsuccessful. From the result it is also clear that the by far
largest error source is an inaccurate GPS position. This is due to that the
GPS position is the only existing localization parameter and that all match-
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ing conditions are based on it. For instance the delivered GPS position is
snapped to the closest position on the route, calling it a matched posi-

tion. Hence, if the GPS position is off, so is the matched position which
is snapped to another part of the route that could be another street from
where the user stands. This would mess up the matching between snapshot
content and map objects leading to errors in navigation instructions. The
poor GPS position is difficult to strengthen in an urban environment due to
that GPS signals bounces on buildings. However, since the GPS receiver is
the only ”reliable” locator provided in a smartphone, it is used regardless of
its limitations.

For improvements of the matching with WisepilotTM, usage of a reliable
compass orientation of the smartphone while snapping a picture would be
of great asset. The reason for not using the built-in compass is due to the
lack of a 3D mode. By using a 3D mode compass the user would not have to
follow the route in order to get reliable results.

Considering future work, a suggestion is that it will only be possible to snap
a picture for navigation with an accurate GPS signal. In the case of having
an inaccurate GPS signal the user should have the alternative to see a map
of the route. As soon as the smartphone obtain a strong enough signal, the
possibility of snapping pictures for guidance should be available again.
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Chapter 7

Conclusions

The algorithm used for processing and analyzing the snapshot is in need of
improvements for always supplying the matching procedure with reliable in-
formation. Improvements on the method for classifying the snapshot into a
type would be helpful if the method can be kept robust, if different kinds of
intersections were considered it would result in more informative data.

If the direction of which a picture is snapped was considered improvements
in the matching procedure would be possible. A reliable built-in compass
would have been helpful for this purpose.

Regardless of these needs for improvements, the resulting navigation instruc-
tions of the application are more often successful than unsuccessful. How-
ever, for a complete evaluation of the applications performance, more data
sets have to be considered.

From the results it is clear that the GPS position by far is the largest error
source.

Finally, the application as it is implemented today, does not provide enough
reliable results to be commercialized.
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Appendix A

Navigation Instructions

When taking a snapshot for navigation a few things can be considered for
enhancing the performance of the system. These are described in the list
below.

� The snapshot should be taken in landscape mode, i.e. horizontal posi-
tion of camera.

� For best result, snap the picture for navigation:

– as symmetrically as possible

– just before reaching an intersection

– when it is assured that street lines are visible in the picture

– with a minimum number of obstacles present to avoid interference
on determined instruction

– without too much light falling in with the camera lens
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Appendix B

Conditions for Matching

On the delivered route a number of shade points are examined in the
following order from matched position: current shade point, next shade

point, previous shade point, second next shade point and so on. The
matching conditions are explained in the pseudo code below.

FOR ”shade points to be examined <= 7 OR condition has been ful-
filled”

IF ”snapshot type is intersection, next shade point is a way

point, 2 meters < distance to way point < 100 meters AND
difference between estimated distances and calculated distance <
70 meters” THEN

RETURN way point instruction

ELSE IF ”snapshot type is straight forward, next shade point

is the destination way point AND the distance to it is shorter
then 70 meters” THEN

RETURN destination target reached

ELSE IF ”snapshot type is straight forward AND ( distance to
next intersection > 100 meters OR distance to next intersection
> distance to next way point )” THEN

RETURN straight forward instruction

ELSE IF ”snapshot type is intersection AND ( distance to next
intersection < 70 meters OR distance to the next way point >
100 meters )” THEN
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RETURN straight forward instruction

END IF

END FOR

IF ”no condition was fulfilled AND snapshot type is intersection

AND ( distance to next intersection < 70 meters OR distance to next
way point > 70 meters )” THEN

RETURN straight forward instruction

ELSE IF ”no condition was fulfilled”

RETURN instruction of snapping a new picture

END IF
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