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Abstract
With better understanding of what causes complex systems to undergo critical tran-
sitions, unwanted consequences can be avoided or turned into opportunities [23]. In
this thesis I add to that understanding by investigating criticality in an example
complex system called the generalised Lotka-Volterra equations. Exploration of this
system also adds nuance to May’s comment in the diversity-complexity debate [16].
I restrict myself to positive self-growth and random interactions between species
and investigate how system behaviour changes as the average interaction strength
σ increases, using computer simulations and analytical methods. In line with May’s
thesis I find that large systems undergo critical transitions for lower σ than small
systems, but the route to system instability or collapse goes through an intermedi-
ate state where species frequently go extinct and the system is dynamically close to
instability. Structurally on the other hand, the system is resilient to changes to σ,
except when roughly half of the initial amount of species has gone extinct, at which
point either limit cycle behaviour sets in or system collapse occurs. The ecological
realism of the model is difficult to justify, but as an example of a complex system
exhibiting criticality it has many insights to offer.

Keywords: complex system, diversity-stability debate, structural stability, critical
transitions, generalised Lotka-Volterra equations, Hopf bifurcation, extinction, col-
lapse.
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1
Introduction

1.1 Background

How do complex systems behave close to points of transition? This fundamental
question of complex systems was brought back into the spotlight in 2012 in a review
article titled Anticipating Critical Transitions [23]. If one can anticipate how com-
plex systems behave close to critical transitions - point where system behaviour may
change drastically - then the transition can either be prevented, or adverse effects
can be mitigated [23].

One step towards understanding critical transitions is to analyse example systems
which may be specific, but still exhibit behaviour general to more systems. If such
systems can be understood, then perhaps more can be learned about other complex
systems. The generalised Lotka-Volterra is one such example system which is often
used to model interactions between species in ecosystems, and that is the system
investigated in this thesis.

Why should the generalised Lotka-Volterra system be considered? Its relevance
can be traced from a historical so-called diversity-stability debate [15, 19, 5, 20, 17].
Before the 1970:ies it was generally thought that a large number of interacting
species in an ecosystem increases system stability [20, 5], or put differently: diversity
begets stability in ecosystems. However, in 1972 Robert May turned the debate on
its head by arguing that stable systems cannot be both large and have strongly
interacting species [16], the converse to the previous assumption. May, inspired by
Gardner and Ashby [7], based his argument on the stability of equilibrium points
of dynamical systems, which can be used for modelling ecosystems. He did however
make some, perhaps unrealistic, assumptions and this is what motivates the study
of the generalised Lotka-Volterra equations.

One critical assumption made by May, also used in recent advances by Allesina
[2], is that equilibrium points exist and fulfil quite specific criteria. In this thesis
I consider a fairly general system capable of generating such equilibrium points,
namely the generalised Lotka-Volterra system, and investigate how the system be-
haves when the complexity, represented by the average interaction strength, is varied.

I thus aim to answer two questions simultaneously. Firstly, I investigate how a
May-like analysis changes if a critical assumption is relaxed using a model system.
Secondly, I seek to learn what kind of critical transitions can occur in such a system
and how the system behaves close to critical points.

I would like to point out that I am not the first to question May’s assumption of
the existence of feasible equilibria in non-linear systems. Apart from my supervisor

1



1. Introduction

Assistant Professor Kolbjørn Tunstrøm and his colleague Professor Martin Nilsson
Jacobi who introduced me to the idea, Dr Inman Harvey brought forth criticism
against May’s assumption in 2011 [12]. He demonstrated that there exist multiple
equilibria in some example non-linear systems and that the consideration of one
single equilibrium point is insufficient to describe system behaviour. He did not,
however, consider the generalised Lotka-Volterra system as I do in this thesis.

1.2 Objectives and aims
The primary aim of this thesis is to answer the question: Is the stability analysis of
complex systems of interacting species made by May applicable to the generalised
Lotka-Volterra equations? If not, how does it differ?

A secondary aim is to investigate which critical points exist in the generalised
Lotka-Volterra equations with random interaction strengths as the average interac-
tion strength is increased, and how the system behaves close to these points.

1.3 Limitations
I do not consider time dependence of system parameters or stochasticity. I assume
that the interaction strengths between species are zero in the mean. Furthermore,
I do not perform simulations for systems larger than 150 species. I will put emphas
on the equilibria of the system and their stability and focus less on the dynamical
behaviour of the system, i.e. how the system evolves in time other than close to
stable equilibria.

1.4 Methods
A combination of analytical and computer based methods will be used in trying to
answer the questions of this thesis. The computer methods consist of simulating the
model system by solving ordinary differential equations. The analytical methods
come from basic linear algebra and dynamical systems theory.

1.5 Outline of the report
In the second chapter of this thesis I introduce terminology and some basic results
and concepts of dynamical systems and linear algebra. In the chapter that follows,
I return to the topic of the thesis with a review of selected previous work models
concerning the stability of ecosystems. In the fourth chapter, I describe the gener-
alised Lotka-Volterra equations, the equations around which this thesis is centred,
in detail. The fifth chapter presents graphical results on critical points in the gener-
alised Lotka-Volterra equations, along with brief discussions, and is intended to give
an introduction to critical points in this particular system. In the sixth chapter, I
attempt to explain the observations of chapter four, and add to the understanding
of the critical points of the generalised Lotka-Volterra equations by presenting some
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1. Introduction

general and limit results. The seventh chapter describes the methods used in the
simulation of the system, parameter choices and how I have chosen to tackle numer-
ical problems and classification of event. The last two chapters contain a discussion
of the methods and results of the thesis and draw conclusions connecting to the
objectives of the thesis.
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2
Prerequisites

In the first section of this thesis I introduce terminology and basic concepts used
in this thesis. In the second section of this chapter I give some background on
ordinary differential equations and dynamical systems. If you are already familiar
with these concepts, you can read this section briefly only to get acquaintanced with
the terminology.

2.1 Terminology
In this section I establish terminology used throughout the thesis. The meaning of
symbols can be found in the table of symbols.

Vector notation: Vectors are not denoted in any specific way; for instance with
vector bars or bold font. The vector "x" is thus denoted x. The number of compo-
nents of the vector should be clear from the context.

Largest and smallest eigenvalue: The largest eigenvalue of a matrix A is here
taken to mean the eigenvalue with the largest real part. Similarly, the smallest
eigenvalue is taken to mean the eigenvalue with the smallest real part.

ODE: An ordinary differential equation (ODE) is an equation which contains func-
tions of one independent variable and its derivatives. A set of ODE:s, which may
be connected, is called a system of ODE:s. In this report ODE will also be taken to
mean a system of ODE:s.

Dynamical system: A dynamical system is here taken to mean a system in which
a function describes how a state varies in time. Any ODE can be said to represent
a dynamical system.

Inequalities: Inequality symbols between a vector x and a scalar c mean the fol-
lowing in this thesis: x ≥> c means that xi > c for all i except some for which
xi = c. x > c means that xi > c, ∀i. The symbols < and ≤ have corresponding
meanings. x = c means that xi = c,∀c.

Comparison of complex eigenvalues: Whenever I compare a complex num-
ber with another number, unless otherwise stated, I compare the real parts of the
numbers. E.g. λ > γ means Re(λ) > Re(γ).
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Extinction: A species is said to be extinct if its equilibrium population size is
0. If the system is parametrised with some parameter σ, then a species is said to go
extinct if it has a 0 equilibrium population size at the current value of σ, but had a
positive equilibrium population size for a slightly smaller σ.

Resurrection: If a species population size equilibrium changes with some param-
eter σ, then if it is extinct for σ0 but ceases to be extinct for some slightly larger
σ1 > σ0, then a resurrection has occurred.

Units: All quantities in this report are assumed to have dimension 1 and units
are usually not specified.

Structural stability: A system is structurally stable if the qualitative behaviour
of the system, e.g. existence of stable equilibria or limit cycles, is not affected by
small perturbations in its parameters. In this thesis I use the term loosely, such that
extinction, which effectively changes which equilibrium the system converges to, is
still considered structurally stable.

Dynamical stability: I use dynamical stability as an umbrella term for different
notions of stability referring to system sensitivity to initial conditions. In specific, if
the solution to a system is at an equilibrium, then if it stays close to the equilibrium
after being perturbed it is dynamically stable. I will mention different notions of
dynamical stability in Section 2.2.4.

All elements in a set: When I refer to elements in a set, e.g. denoted as Ai,
then it is implicit that the elements are indexed such that i ∈ {1, 2, ..., n}, where n
is the number of elements in a set. The number of elements should be clear from
the context. When writing ∀i (for all) or ∃i (there exists some), then I implicitly
mean that i ∈ {1, 2, ..., n}.

2.2 Concepts in dynamical systems

Here, I introduce some basic concepts in differential equations and stability analysis
required for following through the thesis.

2.2.1 A system of ordinary differential equations
A system of ordinary differential equations with n unknown variables represented
by a vector x(t) dependent on one variable t is described by a general first order
ODE as:

ẋ = F (x, t), x(0) = x0 (2.1)

where ˙(·) denotes a time derivative, F (x, t) is a vector valued function and x0 is a
vector of initial values.
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2.2.2 Equilibrium point
A point x∗ is an equilibrium point if ẋ|x=x∗ = F (x∗) = 0 for some dynamical system
such as the one in Equation (2.1).

2.2.3 Basin of attraction
The basin of attraction of an attractor A (e.g. an attracting equilibrium point) is
the set of initial conditions which converge to A as time goes to plus infinity. An
intuitively appealing example is the following. Consider a volcano with a concave
crater. The bottom of the crater is an attracting point for objects subject to gravity.
All points inside the crater constitute the basin of attraction for the attracting point,
since if one places a marble (experiencing friction) anywhere in the crater, it will
eventually converge to the bottom of the crater. Any point on the volcano not in
the crater is not part of the basin of attraction of the bottom of the crater. (The
analogy fails slightly, since if the marble has non-zero kinetic energy and reaches
the bottom of the crater, it will escape the "attracting point", which is not allowed
according to the definition of an attractor).

2.2.4 Notions of stability
There are several notions of stability. If nothing else is stated, by stability around
an equilibrium point I mean asymptiotic stability, which is slightly stronger than
Lyapunov stability. A distinction between different forms of stability is given below.
If F (x∗) is continuous and x∗ is an equilibrium point, then x∗ is asymptotically
stable if it is Lyapunov stable and ∃δ > 0 such that if ‖x(0) − x∗‖ < δ then
limt→∞ ‖x(t)−x∗‖. Lyapunov stability for an equilibrium point x∗ is in turn defined
as follows: If for any ε > 0 there exists a δ(ε) > 0 such that if ‖x(0)−x∗‖ < δ implies
that for any t ≥ 0 ‖x(t)− x∗‖ < ε then x∗ is Lyapunov stable.

One way to analyse the stability of an equilibrium points is by means of linear
stability analysis. In linear stability analysis, one considers a dynamical system as
in Equation 2.1. For non-linear systems the Hartman–Grobman theorem [10, 11]
states that the local behaviour of a dynamical system close to an equilibrium point
is qualitatively the same as its linearisation, given that no eigenvalues have real
part equal to 0. Such equilibria are called hyperbolic. It follows from this that if
the eigenvalues of the linearisation of the right hand side of Equation (2.1) at an
equilibrium point has only negative real parts, then it is asymptotically stable.

2.3 Smoothness of eigenvalues and matrices and
relations with determinants

In this section I present a set of properties of and facts about eigenvalues and matri-
ces that are used in this thesis. I specifically show a relation between eigenvalues and
determinants, and results regarding smoothness of eigenvalues and inverse matrices.
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2.3.1 Eigenvalues and determinants
A well known result which relates the eigenvalues of a matrix to its determinant is:

Theorem 2.3.1. Let A be an n × n matrix with eigenvalues λi, i = 1, 2, ..., n, not
necessarily unique. Then:

n∏
i=1

λi = det (A). (2.2)

For a proof, see appendix A.

A corollary which will be of use in this thesis is:

Corollary 2.3.1.1. Given a square matrix A, det(A) = 0 ⇐⇒ λi = 0∃i.

So if the eigenvalues vary continuously with some parameter, then a necessary
condition for a real eigenvalue to change sign is that det(A) = 0. This is only a
necessary, not a sufficient, condition for real eigenvalues. Complex eigenvalues may
change sign (of their real parts) without det(A) = 0 and real eigenvalues do not
need to change sign in spite of det(A) = 0.

2.3.2 Continuity and smoothness of eigenvalues
A well known theorem is that if the elements of the matrix vary continuously then
the eigenvalues of a matrix vary continuously as well:

Theorem 2.3.2. Let A be a square matrix. Then if Ai,j(σ) are continuous functions
of σ, then eigenvalues λ if A vary continuously in σ.

Sketch of a proof: The eigenvalues λ of A are solutions to the characteristic poly-
nomial det (A− Iλ) = 0, where I is the identity matrix. Note that the elements of
A− λI also vary continuously with σ.

The determinant function maps the elements of Ai,j(σ) to a polynomial in λ:

p(λ,Ai,j(σ)) =
n∑
k=0

akλ
k

such that the coefficients ak are constructed from additions and multiplications of
elements Ai,j, where n is the degree of the polynomial. Hence, the mapping is
continuous.

A classical result states that the zeros λi of a polynomial p(λ) = ∑
k = 0nakλk

vary continuously if its coefficients ak vary continuously, as long as an 6= 0 (see
for instance [28]). Another way of expressing it is that the function which maps
a characteristic polynomial to its roots is continuous if the leading coefficient is
non-zero. Since the characteristic polynomial is monic, an 6= 0 in this case.

Therefore, since function composition is continuous, the function mapping a
matrix A(σ) to its eigenvalues is continuous.

A stronger result is that a simple eigenvalue λi of a differentiable square matrix
A(σ) in a variable σ is also differentiable in σ. This was proven by Lax (although
he does not make any claims to be the first one to prove it)[14].
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2.3.3 Smoothness of the matrix inverse
In this section I show that the inverse matrix is smooth in the coefficients of the
matrix, as long as the matrix is invertible. More precisely:

Theorem 2.3.3. If A(σ) is an n × n matrix whose entries Ai,j(σ) are smooth
functions, then the inverse A−1(σ) is also smooth to the same order as Ai,j, except
where det (A) = 0.

Proof. The inverse of A(σ) is given by A−1(σ) = 1
det (A(σ))adj(A(σ)), where det (A(σ))

is the determinant of A(σ) and adj(A(σ)) is the adjugate of A(σ). adj(A(σ)) =
p({Ai,j(σ)})1≤i,j≤n ≡ p, where p is a polynomial in {Ai,j(σ)}1≤i,j≤n. Since all Ai,j(σ)
are smooth functions in σ, p is also a smooth function in σ. By an analogous
argument det (A(σ)) = q({Ai,j(σ)})1≤i,j≤n ≡ q where q is a smooth function in σ.
Therefore A−1(σ) = p

q
is a smooth function in σ as long as q 6= 0. In conclusion,

A−1(σ) i smooth in σ at every point where A is invertible.

2.4 Summary
In this chapter, I have introduced terminology, introduced the concepts of ordinary
differential equations and notions of stability, and I have showed some basic theorems
regarding eigenvalues and the smoothness of matrix inverses. In the next chapter I
will present previous work related to this thesis.
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3
Previous studies on the stability of

ecosystems

In this chapter I aim to give a review of previous work on the stability of ecosystem
models and Lotka-Volterra systems with relevance to this thesis. In Section 3.1 I
restate May’s result for equilibria in large complex systems with random interaction
strengths and in Section 3.2 I describe results of Allesina and Tang for systems with
specific interaction types, e.g. mutualistic interactions. Finally, in Section 3.3 I
present models which aim to relax May’s assumption of existence of very specific
equilibrium points.

3.1 May’s result on the stability of large complex
systems

In his 1972 paper May considers the stability around equilibrium points of non-linear
ODE:s, under certain assumptions [16]. One assumption is that an equilibrium
exists. A second assumption is that the self-interactions are −1 for all species at the
equilibrium. A third assumption, which has been relaxed by Allesina and Tang [2],
is that all interactions between species are drawn from a random distribution with
zero mean and some specified average interaction strength. A fourth assumption is
that only a randomly chosen fraction of species are connected, by which it means
that they have non-zero interaction strength. In this section I will first restate May’s
results and then comment on May’s assumptions.

May considers a system of n species, interacting in a way which can be described
by some possibly non-linear ODE. At some assumed equilibrium x∗, the ODE can
be linearised such that its equilibrium can be described by the eigenvalues of the
Jacobian J at x∗. May assumes that at the equilibrium each species is self-sustaining
in absence of interactions with other species, such that if perturbed it will return
to equilibrium with some characteristic damping time, which May sets to −1 such
that Ji,i = −1, ∀i.

Then May introduces interactions between species at the equilibrium, repre-
sented by off-diagonal elements of the Jacobian Ji,j, i 6= j. The random elements are
drawn independently from some distribution with zero mean and standard deviation
σ, associated with the average interaction strength 1.

1The standard deviation σ = 1
m

√∑m
i=1(Xi − µ)2 is associated with the average interaction

strength davg = 1
m

∑m
i=1
√

(Xi − µ)2, where Xi are random variables from the same distribution,
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He then invokes Wigner’s semicircle law, which states that the density of eigen-
values for a large (in the limit as n→∞) Hermitian matrix with all elements drawn
from a zero-mean distribution with standard deviation σ converges to a semi-circle
with radius 2σ

√
n centred around 0. Then the density of eigenvalues in an interval

dx is
p(x) = 1

2πσ2n

√
4nσ2 − x2dx,−2σ

√
n ≤ x ≤ 2σ

√
n.

Invoking some transformation, May claims that the radius is given by
√
nσ in the

asymmetric case (instead of 2
√
nσ in the symmetric case). Consequently, the largest

eigenvalue λmax =
√
nσ. May comments that the matrix he considers is not Hermi-

tian, but argues that the result should apply to the real part of the eigenvalues still.
The importance of the lack of hermiticity decreased as Girko and later Tao and Vu
[9, 26] showed that the relation for the largest eigenvalue result holds for increas-
ingly wider classes of non-Hermitian random matrices. They specifically showed
that for certain non-Hermitian random matrices a circular law holds, which states
that eigenvalues are distributed uniformly on a disk in the complex plane with radius
nσ.

May then states that the Jacobian J can be written as J = B − I where B is
a random matrix with diagonal elements 0 and off-diagonal elements drawn from a
distribution with mean 0 and average interaction strength σ and I is the identity
matrix. The subtraction of the identity matrix gives that Ji,i = −1 and that all
eigenvalues are shifted by −1. The shift stems from that if det (B − λI) = 0, then
λ are eigenvalues of B and any λ′ = λ− 1 is an eigenvalue of B − I since it satisfies

det (B − I − λ′I) = det (B − I − λI + I) = det (B − λI) = 0.

The density of eigenvalues of the matrix B are given by the circular law in the
previous paragraph, and so the largest eigenvalue of J is

√
nσ − 1. This gives the

criterion for stability

Re(λ)max =
√
nσ − 1 < 0 ⇐⇒ σ < n−1/2.

Next, May lets only a fraction C of species have non-zero interaction strengths.
The the "effective variance" of the elements of the matrix off-diagonal elements is
then reduced to σ

√
C. This gives a new stability criterion σ < (nC)−1/2. From

this expression May argues that simultaneously large (large n) and complex (large
σ
√
C) systems can not be stable, which is his main thesis.
May’s result is concise, but leaves many questions. One is whether equilibria with

negative Jacobian elements for any σ exist in real or model systems. This question
is addressed in this thesis, and was tackled previously by Tregonning. Tregonning’s
work will be presented in another section, but in the next section the question of
how special kinds of interaction matrices affect stability is answered.

Before moving to the next section, I would like to note that May did in later work
depart from the assumption of an equilibrium of a general non-linear system. He

m is the number of variables and µ is the mean of the distribution, in the sense that they are
both measures of distance from the mean and σ′ > σ ⇐⇒ d′

avg > davg for variables from two
distributions X ′ and X.
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even considered the three species competitive generalised Lotka-Volterra equations,
but did not scale the off-diagonal elements to perform a structural stability analysis,
nor did he comment his result on stability of complex and large systems [18].

3.2 May-like systems with specific interactions
In 2012 Allesina and Tang continued in May’s tracks and considered systems with
diagonal elements of the Jacobian Ji,i = −1 at an assumed equilibrium point x∗,
but with specific kinds of interactions [2]. Of the kinds of interaction they inves-
tigated, I will only present mutualistic systems Ji,j > 0,∀i, j, competitive systems
Ji,j < 0,∀i, j and predator-prey systems in which sign(Ji,j) = −sign(Ji,j), ∀i, j,
where sign(y) = +1 is the sign of y (with sign(0) ≡ 0).

For all kinds of systems, Allesina and Tang let each pair of off-diagonal elements
be non-zero with probability C. In case of mutualistic systems, for connected (non-
zero) interaction pairs they draw both Ji,j and Jj,i independently from a half-normal
distribution |N ∼ (0, σ2)|. For competitive systems they draw each connected pair
from −|N (0, σ2)|. In predator-prey systems they draw Ji,j from |N (0, σ2)| and Jj,i
from |N ∼ (0, σ2)| with probability 1/2 and with reversed signs of Ji,j and Jj,i with
probability 1/2.

The eigenvalues λ of mutualistic and competitive matrices in the case of zero di-
agonals are related as λcompetitive = −λmutualistic so it is only necessary to investigate
one of the cases. By cleverly observing that for zero diagonal mutualistic matrices
the all-ones vector is an eigenvector to J , Allesina and Tang found that the major
eigenvalue was given by

λmax = (n− 1)CE(|X|).

Shifting the eigenvalues by −1 and letting X ∼ N (0, σ2) gives the stability criterion

σ <
√
π/(
√

2(n− 1)C) ≈ 1.25/((n− 1)C).

In the competitive case the analogous eigenvalue becomes the minor eigenvalue due
to the sign change, so the major eigenvalue needs to be found some other way. After
some machinery, Allesina and Tang found that in the large n limit the stability
criterion is

σ <
1

(1 + 2(1−C)
π−2C )

√
nC(1− 2C/π) + C

√
2/π

.

It is worth noting that the connectivity is not just a scale parameter of n in this
expression. In fact, for small C the instability occurs for smaller σ compared to
the random case, and for large C for bigger σ. For instance, in the large n limit
when the term C

√
2/π can be neglected, the stability criterion is σ < 0.64/

√
nC for

C = 0.1, and σ < 1.66/
√
nC for C = 1. Allesina and Tang did not comment on this

in their paper.
For predator-prey systems, Allesina and Tang used a result of Sommers which

states that asymmetric matrices with Gaussian elements Ji,j ∼ N (0, 1/n) have eigen-
values uniformly distributed in ellipses with real axis 1+τ and imaginary axis 1−τ ,
where −1 ≤ τ ≤ 1 is parameter related to correlation and n is the size of the
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matrix [24]. The result holds in the limit as n → ∞. τ = −1 implies that the
matrix is (anti)symmetric, τ = +1 implies that it is symmetric, and τ = 0 implies
that the matrix is asymmetric. Allesina and Tang conjecture that the result holds
for a wider class of distributions of elements. Drawing elements from ±|N(0, σ)|
such that elements have opposing sign gives τ = −E2[|X|]/σ2 and real half-axis
σ
√
nC(1− E2[|X|]/σ2). If shifting eigenvalues by −1 like May does, a criterion for

stability becomes σ < 1/(
√
nC(1 − 2/π)) ≈ 2.75/

√
nC. This implies that system

instability occurs for larger σ than in the random case.
The stability criteria for mutualistic, competitive and predator-prey networks

can be compared with the results of this thesis.
Allesina and Tang report lastly in the supplemental information in their paper

that the generalised Lotka-Volterra equations can be made to meet the criteria for
their analysis. They consider a scaling of each off-diagonal element by a positive pa-
rameter σi,j and wish to meet the −1 diagonal criterion. To this end, they show that
the self-growth factor needs to be updated in a non-constant, which also preserves
the equilibrium point. The precise expression for the update is given by Equation
(A.1) in the appendix, but it is recommended that the reader becomes familiar
with the generalised Lotka-Volterra equations presented in the next chapter before
looking at the transformation.

One might ask if this transformation of the self-growth and consequent preserva-
tion of equilibrium is reasonable. If the average interaction strength between species
is changed for a given system, would it not be seasonable if the self-growth for each
species remain the same, and that the equilibrium point changes? This is precisely
what is done in the model of this thesis and whose behaviour is investigated.

Some other authors have also questioned the assumed existence of an equilibrium
point which satisfies the requirement of constant negative diagonal entries of the
Jacobian, but from a different angle. Their work is the topic of the next section.

3.3 Existence and generation of feasible and sta-
ble equilibria

Shortly after May published his 1972 paper, Roberts published a paper which would
lead to a cascade of publications on the topic of what kinds of equilibria occur in
ecosystems with random interactions between species [21]. The series of publications
is an inspiration to the approach taken in this thesis.

In Roberts first 1974 paper, he proposes that equilibria should only be considered
for stability if they also fulfil the requirement of feasibility. Feasibility in Roberts’
terminology, which will be used only throughout this section, means strictly positive
population sizes. Note that that this definition differs from the one used in the rest
of this thesis, in that it does not consider population 0 feasible. Roberts considers
the generalised Lotka-Volterra equations for n species

ẋi = xi(ri +
n∑
i=1

Ai,jxj),

where xi is the population size of species i, ẋi is the time derivative of population

14



3. Previous studies on the stability of ecosystems

size i and Ai,j is the interaction between species i and j, with all self-growth factors
ri = c, where c is a positive constant, and self-interaction terms Ai,i = −1 for
species i. The generalised Lotka-Volterra Equations will be presented in more detail
in chapter 4.

Roberts lets all inter-species interaction terms Ai,j be either +σ or −σ, where
the sign is random with equal probability. His main result is that when generating
such systems, the equilibria tend to be stable as long as they are also feasible, for
a given σ. The only σ for which feasible systems tend to be unstable are those for
which the portion of systems that are feasible is also low. Critical to his argument
is that for larger n this effect is more pronounced. Reasons for this will be touched
on in chapter 5. He also argues that species with negative population sizes are the
source of instability in the system, so excluding these species would falsify the the
thesis that ecosystems with strong interactions tend to be unstable. Roberts does
not however comment on the fact that excluding species with negative population
sizes also reduces the number of species in the system.

Gilpin responded to Roberts’ paper, questioning his assumption of all species
being self-sustaining [8]. Gilpin lets all ri and Ai,i be ±1 with equal probability
instead of having all ri = +1 and Ai,i = −1. The percentage of feasible solutions de-
creases with increasing n as in Roberts’ model, but differently from Roberts, Gilpin
means that unfeasible configurations also classify as unstable since negative species
are likely to go extinct for such solutions. He further discredits Roberts’ model for
being biologically unreasonable and non-robust, since his (Gilpin’s) related model
shows in agreement with May that the percentage of unstable solutions decrease
with increasing system size.

In 1979 Tregonning entered the debate alongside Roberts [27] presenting a model
for how stable and feasible can come into being. They heed the advice of Gilpin
and consider models where ri and Ai,i may be both + and − 1 to produce random
realisations of systems, whose stability and feasibility is "highly improbable" in their
words. They then remove the species with the most negative equilibrium population,
arguing that that species would go extinct first. Each time they remove a species
they increase the average interaction strength by a factor m/(m − 1) where m is
the number of species before removal. This they claim is to obtain a constant
"May" number σ

√
mC. They continue removing species this way and report that

whenever a solution would become feasible it would also be stable. After removal
of an average of half of the initial species count, they obtained a feasible and stable
solution. Although May’s stability analysis is not strictly applicable for this kind
of system, it is worth noting that Tregonning and Roberts initially used σ = 1/4,
n = 50 and C = 0.2 in their simulations. This gives that σ was 3/4 of the average
interaction strength required for collapse, as predicted by May.

The following year Tregonning and Roberts return [22]. This time they investi-
gate the stability of subsystems of systems generated by the method of their 1979
paper. For a given stable and feasible system of size n, they remove q species from
the system and check for feasibility. This is done for 20 randomly chosen configu-
rations of n− q species with replacement. They find that for these systems, a high
proportion of subsystems are also feasible, as compared to an initially unfeasible and
randomly generated solution. This they argue is a characteristic of their so-called
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"naturally evolved" solutions; that they are robust to removal of species.

3.4 Summary
In this chapter I have introduced Robert May’s model of the stability of systems
of randomly interacting species around equilibria and demonstrated why the model
concludes that complex systems can not be both large and stable. I have also
presented Allesina and Tang’s extension to May’s model, in which they allow species
to have other distributions of interactions than random zero-mean Gaussians. Lastly,
I showed a series of papers by Gilpin, Roberts and Tregonning taking a different
approach to the question of existence of stable ecosystem, namely that of generating
equilibria of model systems and considering only feasible and stable subsets. In the
next Chapter I will present the generalised Lotka-Volterra equations used by the
latter authors, which is a general model of ecosystems used throughout this thesis.
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4
The Generalised Lotka-Volterra

Equations

In this chapter I introduce the generalised Lotka-Volterra (GLV) equations and some
of their characteristics. The system of equations can be used as a simple and abstract
model for interacting species, among other things. It can be treated analytically,
owing to the closed form expression for equilibrium points and its Jacobian, but is
still capable of generating complex behaviour, such as chaos and limit cycles. At
the end of this chapter I give an expression for the rate of growth of equilibrium
points in a parameter σ. I also show how the spectrum of the Jacobian can be split
into one part containing the eigenvalues of extinct species and one part containing
the eigenvalues of the non-extinct subset of species.

4.1 Description of the GLV
Here, I first give a formal definition of the generalised Lotka-Volterra equations and
then I give them an ecological interpretation.

4.1.1 A definition of the GLV
The generalised Lotka-Volterra equations are autonomous and deterministic and are
defined in this thesis as:

ẋi(t) = xi(t)(ri +
n∑
k=1

Ai,kxk(t)), xi(0) = xi,0 (4.1)

for i = 1, 2, ..., n, where n is the number of species, ri is the self-growth of species i,
Ai,j is the effect that species j has on species i, xi(t) is the size of population i, ẋi(t) is
the time derivative of species i, t is the time variable and xi,0 is the initial population
of species i. Although populations are usually measured in integer numbers, xi(t)
are real and can be interpreted as density, biomass or some other measure which
correlates with the number of species. The matrix A is called the community matrix
and contains all information of how one species interact with another. The explicit
time dependence is often dropped, so that x is taken to mean x(t).

4.1.2 Interpretations of the GLV
One way to interpret Equation (4.1) is that that xi varies according to

ẋi = xiFi(x1, x2, ..., xn), (4.2)
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where Fi is some function describing the rate of change of species i. ri is a constant
rate of growth independent of the abundance of other species. The sum ∑n

k=1Ai,kxk
is a sum of terms Ai,kxk, which describe the influence of species xk on the growth of
species i. Ai,k describes the rate of change of xi per unit of xk. Ai,k > 0 means that
the presence of species xk enhances the growth of species i and Ai,k < 0 means that
it decreases the growth of species i. If xk is small, it affects the growth of species i
little and if it is large it affects species i more.

In absence of interaction in between species, the ODE becomes decoupled and
the growth of species i is determined by:

ẋi = rixi + Ai,ix
2
i . (4.3)

If Ai,i < 0 and ri > 0 then −ri/Ai,i becomes the carrying capacity of species i, since
all i equilibrate to xi = −ri/Ai,i.

From an ecological point of view, negative species is not realistic. Therefore, as is
common practice I do not consider negative xi valid solutions. Solutions x obeying
x ≥ 0 are called feasible solutions. Equilibria x∗ for which x∗ > 0 are called interior
solutions as opposed to solutions which have some component xi = 0.

Interactions pairsAi,j andAj,i can be labelledmutualistic,competitive or predator-
prey to describe how species i and j affect each other. If Ai,j > 0 and Aj,i > 0,
then the species are in a symbiotic relationship where the abundance of one species
reinforces the other and the interaction is called mutualistic. If instead Ai,j < 0 and
Aj,i < 0 then the species compete with each other and the interaction is called com-
petitive. If one species’ interaction coefficient is positive and the other’s is negative,
then the interaction is called predator-prey.

It follows from Equation (4.1) that xi cannot cross 0 such that solutions with
a positive initial condition remain non-negative and solutions with negative initial
condition remain non-positive.

4.2 Equilibrium points of the GLV
In this section I present the equilibrium points of Equation (4.1) and the Jacobian
at the equilibria and I mention some facts regarding its eigenvalues.

4.2.1 General results for equilibria
There are 2n equilibria for the generalised Lotka-Volterra Equations, each corre-
sponding to a different set of species for which x∗i = 0. The remaining equilibria
need to simultaneously satisfy x∗i = ri + ∑n

k=1Ai,kxk, or if we denote the matrix of
non-extinct species Ã and the self-growth vector of non-extinct species r̃, then the
vector of non-extinct species x̃∗ must satisfy x̃∗ = −Ã−1r̃. It is difficult to give an
explicit expression for x̃∗ because of the inverse Ã−1. However, a compact expression
is found if one expresses Ã−1 in terms of minors.

I drop the tilde and let x∗ denote the interior point of some system. A−1 can
be expressed in terms of a determinant det (A) and adjugate adj(A) as A−1 =

1
det (A)adj(A), where the i, j:th component of adj(A) is defined as adj(A)i,k = (−1)i+kKk,i,
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where Ki,k is the i, k minor of A. The minor of A is the determinant of the matrix
obtained if row i and column k is removed from A. The determinant can also be
expressed in terms of minors by Laplace’s formula: det (A) = ∑n

j=1(−1)i+jAj,iKj,i.
We have that x∗ = −A−1r so that:

x∗i =
n∑
k=1

A−1
i,k rk

= 1
det (A)

n∑
k=1

(−1)i+krkKk,i

=

n∑
k=1

(−1)i+kKk,irk

n∑
j=1

(−1)i+jKj,iAj,i
.

(4.4)

4.2.2 Rate of growth of x∗ in σ

If one assumes that A = σB−I, whereB is a matrix with 0 diagonal and independent
N (0, 1) random variables, then at an internal equilibrium x∗ the following relation
holds simultaneously for all i:

0 = ri +
n∑
k=1

Ai,kx
∗
k

x∗i = − ri
Ai,i
− 1
Ai,i

σ
n∑

k=1,k 6=i
Bi,kx

∗
k

(4.5)

where r is the self-growth rate and Ai,i = −1, ∀i. A and x∗ are polynomial in σ and
A−1 is a ratio of polynomials, so as long as A−1 and in turn x∗ exist one can take
the σ derivative of x∗. One may take the simple derivative with respect to σ, since
x∗ is time independent. Doing so gives:

dx∗i
dσ

= −1
Ai,i

(
n∑

k=1,k 6=i
Bi,kx

∗
k + σ

n∑
k=1, 6=i

Bi,k
dx∗k
dσ

). (4.6)

On matrix form the system of equations above can be written, where diag(a) is a
square matrix with diagonal elements Ai,i and off-diagonal elements 0, and I the
identity matrix:

dx∗

dσ
= −diag(a)(σBdx

∗

dσ
+Bx∗)

(−diag(a)− σB)dx
∗

dσ
= Bx∗

dx∗

dσ
= −(diag(a) + σB)−1Bx∗

dx∗

dσ
= (diag(a) + σB)−1BA−1r

(4.7)

where I use that x∗ = −A−1r. As is often assumed in this thesis Ai,i are identical and
equal to −1. In that case the equation assumes the compact form: dx∗

dσ
= A−1BA−1r.
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The differential equation can then be rewritten to express the explicit σ dependence:
dx∗

dσ
= (σB − I)−1B(σB − I)−1r. (4.8)

We will return to this equation later in the thesis.

I would like to remark that it is possible to generalise Equation (4.8) to higher order
derivatives. Take the n:th derivative of both sides with respect to σ in Equation
(4.5) and it follows immediately that:

dnx∗

dσn
= B

dn−1x∗

dσn−1 + σB
dnx∗

dσn
(4.9)

such that
dnx∗

dσn
= (I − σB)−1B

dn−1x∗

dσn−1 (4.10)

where dn−1x∗

dσn−1 are known recursively (I define d0x∗

dσ0 ≡ x∗). This expression shows that
x∗ is infinitely many times differentiable in σ given that σB − I is nonsingular.

4.2.3 Stability of the equilibria
The stability of the equilibria is given by the eigenvalues of the Jacobian, whose
i, j:th component is given by:

Jij = ∂

∂xj
(xi(ri +

n∑
k=1

Ai,kxk))

= ∂xi
∂xj

(ri +
n∑
k=1

Ai,kxk) + xi(
∂

∂xj

n∑
k=1

Ai,kxk)

= δi,j(ri +
n∑
k=1

Ai,kxk) + xiAi,kδk,j)

= δi,j(ri +
n∑
k=1

ai,kxk) + xiai,j

(4.11)

where δi,j is the Kronecker delta, ri is the self-growth of species i and Ai,j is the
effect of species j on species i. The eigenvalues of J at some equilibrium point x∗
are then the λ satisfying:

det (J − λI) = 0 (4.12)
where I denotes the identity matrix.

The eigenvalues of the Jacobian can be split naturally into two sets: the eigen-
values of the extinct species (x∗i = 0) and the non-extinct species (x∗i 6= 0). This
follows from Theorem 4.2.1 that I will present next. As a preparation, observe that
if xi = 0, then the i:th row of J has non-zero elements only on the diagonal.
Theorem 4.2.1. Consider an n species system (4.1) with m extinct species havng
indices E = (e1, e2, ..., em). Assume that an equilibrium point x∗ exists where x∗i = 0
for i ∈ E and x∗i 6= 0 otherwise. Then m eigenvalues are given by λi = ri+

n∑
k=1

Ai,kx
∗
k

and the n−m remaining eigenvalues are the eigenvalues of the interior equilibrium
x̃∗ of the system of non-extinct species.
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Proof. Laplace’s formula for the determinant is det (A) = ∑n
j=1(−1)i+jAi,jKi,j,

where A is a square matrix, n is the size of A and Ki,j is a minor, which is the
determinant of the matrix that remains when removing rows i and j from A. i
may be chosen arbitrarily. The eigenvalues λ of the Jacobian J of (4.1) are given
by solutions to the characteristic equation det (J − λI) = 0 where I is the iden-
tity matrix. Evaluate the determinant with Laplace’s formula at row e1. The only
non-zero element in the row lies on the diagonal, where i + j is even, and hence
det (J − λI) = (Je1,e1 − λ)Ke1,e1 . Next, evaluate Ke1,e1 along row e2. Repeat this
procedure until column em. Then det (J − λI) = M

∏m
k=1(Jek,ek

−λ), whereM is the
determinant of the matrix remaining when columns and rows E have been removed
from A. Hence, m eigenvalues are given by Jei,ei

, ei ∈ E and the remaining n −m
eigenvalues are given by the characteristic equation of the interior equilibrium of the
system of n−m non-extinct species.

The interior equilibrium of a system of species, if it exists, is obtained from
Equation (4.11) by observing that the first term vanishes for every species at the
interior equilibrium. The Jacobian for such a system is consequently given by:

Jij = x∗iAi,j (4.13)

on component form or:
J = diag(x∗i )Ai,j (4.14)

on matrix form, where diag(x∗) is a square matrix with diagonal elements x∗i and
off-diagonal elements 0, and x∗ = −A−1r is the interior equilibrium.

The Jacobian of the interior equilibrium of this model is almost the same as in
May’s model, in which it is Ji,j = Ai,j, with the difference that here the rows of A
are scaled by the elements of x∗.

4.3 Summary
In this chapter I have introduced the generalised Lotka-Volterra equations and made
a heuristic interpretation of them. I have given an expression for their equilibrium
points, which have m species set to population size 0 and the remaining n − m
species being an interior solution to the system where the m species are removed.
Here, n is the number of species of the full system and 0 ≤ m ≤ n. This splitting
up of the species in the equilibria also translates to eigenvalues. In the following
chapter I will give an introduction to the critical points of the generalised Lotka-
Volterra equation, building on the results of this chapter, which will hopefully spur
your interest.
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5
Introduction to critical points in

the GLV

In this chapter I aim to give an introduction to the possible kinds of critical points
in the model of this thesis as the average interaction strength σ is varied. I do this
by treating the mechanisms briefly in text and by providing several figures showing
examples. The critical phenomena extinction, collapse, resurrection and instability
are presented here, but will be treated more in depth in subsequent chapters. All
figures of this chapter are located in a section at the end of this chapter.

Throughout this section and in the Figures shown I assume that ri = 1,∀i and
Ai,i = −1, ∀i, and that off-diagonal elements of the community matrix A are scaled
by a non-negative parameter σ.

5.1 Critical points in GLV
Critical points refer to values of parameters in a model which cause the system to
abruptly change behaviour [23]. One example of a critical point may be a critical
temperature above which the global climate may enter a new regime [6]. Another
example is when an insect population abruptly changes steady state population as
system parameters are varied [25].

If one is interested in no characteristics other than existence and stability of
equilibria of the form of generalised Lotka-Volterra equations in this thesis, then
there are four kinds of critical transitions; extinction, resurrection, collapse and
positive eigenvalue. Since σ is the only parameter that is varied, the critical points
are expressed in terms of σ.

Extinction is one critical point which occurs when the equilibrium of a species
turns exactly zero. A sufficient and necessary requirement for extinction at σ = σe
is composed by two requirements. Firstly, λi(σ0) = 0,∃i (which is equivalent to
x∗i = 0,∃i) needs to hold. Secondly, the species must have been non-extinct (x∗i > 0)
for some slightly smaller σ−e ≡ limε→0+ σe − ε.

Another kind of critical point is resurrection, which occurs if a species has pre-
viously turned extinct at some σe and then gets a positive population size at some
σ > σe.

The third critical point is collapse, which occurs if a previously stable and feasible
equilibrium point ceases to exist. This happens if det (A) = 0 for some σ, since this
is equivalent to Ax+ r = 0 lacking a solution.

The fourth, and most difficult to describe, kind of critical transition is that of

23



5. Introduction to critical points in the GLV

instability. The instability may result in explosive growth of populations, limit cycles
or chaos.

In the remainder of this chapter I present examples illustrating the different
critical transitions.

5.2 Extinction in GLV systems

Extinctions occur when the system has a stable and feasible interior equilibrium
point for some initial sigma σe consisting of n species, but for some σ1 > σe gets
that one of its species i has a zero equilibrium population x∗i = 0. Extinction can
be shown in several ways. In Figure 5.14, which shows equilibrium population sizes
normalised to 1 for increasing σ, extinction is manifested by population sizes going
to zero and staying there. This happens just above σ = 0.04 in this system of
initially 80 species.

Extinction can also be manifested as that one eigenvalue reaches 0, as seen
repeatedly in Figure 5.20. The curves show the real part of the eigenvalues of a
system of 20 non-extinct species initially. Since there is no evident ordering of
eigenvalues when computing them numerically, I have chosen to colour them in
order of size. This makes the curves change colour repeatedly as their size rank
changes with σ. With a little imagination one can however see that there are distinct
curves which vary continuously. In particular, at σ ≈ 0.08 one curve rises to 0 and
then sharply decreases. This corresponds to that one species goes extinct, making
the eigenvalues of the system the union of the eigenvalues of the (n − 1) species
subsystem and the eigenvalue associated with the extinct species, as was shown
in Section 4.2.3. Eventually, the decreasing curve intersects with another curve,
which takes on the lead as the largest eigenvalue, rises to zero and then sharply
begins to decrease. This repeated extinction process is also manifests itself if one
only considers the largest real part of eigenvalues, as is done in Figure 5.11 for an
initially 80 species system. Although the resolution in σ is smaller, which makes
it difficult to discern the repeated extinctions with maximum eigenvalues close to
zero, a comparison with Figure 5.20 should clarify the mechanism. The red lines in
Figure 5.11 will be discussed later in the context of system collapse.

It is natural to ask where the bifurcations of real parts of eigenvalues come from
in 5.20, where one eigenvalue appears to split onto two distinct eigenvalues or vice
versa. The explanation is simply that a complex conjugate eigenvalue pair reaches
the real line and split into two distinct eigenvalues, or that two real eigenvalues
merge and split into two conjugate eigenvalues (with identical real part).

It is important to emphasise, that if an eigenvalue is identically 0 then its real
part is also 0, but the converse does not necessarily hold true. This means that
the real part of an eigenvalue reaching 0 does not imply extinction, although this is
often the case and always so in Figure 5.11 and Figure 5.20.

In the next chapter, we will deal with extinction more in depth: When does the
first extinction occur? What happens with eigenvalues close to extinction? How
frequent is extinction for increasing σ, and which species goes extinct first?
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5.3 Collapse in GLV systems
Another kind of critical point is collapse of the system. Collapse in this context
means that the system lacks a solution and that prior to the point of collapse the
population equilibrium grows rapidly. A collapse occurs when r + Ax∗ = 0 lacks
a solution, which happens when the interaction matrix A is not invertible, as de-
scribed in the introduction of this chapter. This manifests itself in that species grow
unboundedly, but also in that eigenvalues tend to decrease rapidly. The reason for
this is loosely speaking that the Jacobian J depends on det (A) as J ∝ −1

det (A)n−1 .
The resulting plummeting of eigenvalues close to the point of a collapse is illustrated
in Figure 5.12. In this system of initially 80 species eigenvalues are initially on the
order of magnitude 1 but as the σ of collapse is approached at about σ = 14.2, most
eigenvalues dip rapidly.

In the next chapter we will learn when collapse occurs and why systems tend to
collapse first after n/2 species have gone extinct, where n is the initial number of
species.

5.4 Resurrection in GLV systems
Resurrection occurs if one species which has been extinct for some σ0 gets a positive
population size for some σ1. One example of resurrection is seen in Figure 5.21, in
which the species equilibrium population versus σ plot has been zoomed in onto a
region where one species emerges from the 0 axis. The initial number of species was
80 in this simulation run, and this was the only occurrence of resurrection as σ was
increased.

Resurrection will not be discussed in detail in this thesis, but will be of im-
portance in the treatment of uniqueness of stable and feasible points in the next
chapter.

5.5 Instability of solutions in GLV systems
One kind of critical point is when the system ceases to have stable equilibrium points,
or at least tend not to converge to the equilibria. There can be several causes of
instability, but presence of an eigenvalue with positive real part for some equilibrium
point is a requirement.

One example of when the system enters a limit cycle is shown in Figure 5.3. The
shape of the oscillations is reminiscent of the oscillations in the classical two-species
Lotka-Volterra system. An example of what looks like chaotic behaviour is seen
in Figure 5.4. The chaos appears intermittent, with fast oscillations in some time
frames and slower oscillations in other time frames. In both figures the number of
species was n = 80, in the figure with the limit cycle σ = 0.1348 and in the chaotic
behaviour figure σ = 0.1434.

In this thesis I will not go in depth into the nature of limit cycles and chaotic
behaviour, but I will discuss briefly under what circumstances the phenomena occur.
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5.6 The σ of first extinction in GLV systems
A question which deserves particular attention is when the first extinction occurs.
In the next chapter I will show that if extinctions do not occur, then the system is
likely to collapse close to the σ of instability in May’s model. Therefore, extinctions
must occur before the σ of collapse in May’s model to obtain the extinction pattern
demonstrated in e.g. Figure 5.20.

Figure 5.23 shows the average σ for the first extinction σe1 in the model of
this thesis, here called "non-May", and the σ of instability in May’s model σc for
population sizes between 20 and 149 and full connectivity C = 1. The equation
for the critical σ in May’s model according to Girko’s circular circle law assumed
to be valid for n → ∞ is included as a reference. The figure shows that at least
for the selected n, the average σe1 occurs before the average σc in May’s model.
It appears like the rate of decrease of the ratio between σc and σe1 decreases for
increasingly large n. For small n, the empirical average σc appears to overestimate
the prediction by Girko’s circular law. This is not surprising, since Girko’s law
holds with probability 1 only in the n → ∞ limit. Furthermore, the variance in σc
is greater for small n in both the May and non-May model. Figure 5.22 shows σc
and σe1 versus n, but with connectivity C = 0.5. The qualitative behaviour is the
same as in the full connectivity case and the ratio between σc and σe1 appears to be
roughly the same on the average. It appears as if the curves are scaled by C−1/2 as
Girko’s circular law predicts.

In the next chapter I provide an explanation for why a first extinction occurs
and show the distribution of the σ for the first extinction.

5.7 Repeated extinctions
In the previous section I presented evidence for that for large systems with random
interactions tend to have a first extinction. But as can be seen in for instance
Figure 5.14 more than one species tend to go extinct. Figure 5.10 shows the number
of extinct species at a stable and feasible equilibrium for increasing σ for a typical
system of 80 species. The first extinction begins at σ = 0.041 and then the number
of extinct species rises approximately linearly until collapse at σ = 0.163. A linear
least squares fit gives a slope of 4.06 extinct species per 100 σ with R2 = 0.99. The
fit is made on data from the last σ of non-extinction to the σ of collapse σc. I would
like to point out that in most cases the linear fit is not as good, but still good.
Worth noting is also that the number of extinct species at collapse (46) is close to
half of the number of species in the system. This will be explored further in the
next chapter.

5.8 How eigenvalues change with σ

It is illustrative to see how the distribution of eigenvalues in the complex plane
tends to change as σ is increased. Figures 5.5, 5.6 and 5.7 show the eigenvalues
λi, i = 1, 2, ..., n of the Jacobian of an n = 80 species system at the equilibrium for
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σ = 0.022, 0.048 and 0.098. When viewing these figures it is good to keep in mind
that for σ = 0 all eigenvalues λi = −1,∀i. In Figure 5.5 all eigenvalues are in a blob
which narrows toward the real axis, meaning that eigenvalues closer to the real axis
tend to have smaller imaginary parts. In Figure 5.6 the eigenvalues to the left of −1
are more spread out and close to the real axis the tip of the eigenvalue cloud is close
to zero. The red symbol is the eigenvalue attributed to a species which has gone
extinct. This extinction occurred when one the eigenvalue cloud expanded and one
eigenvalue became 0. In Figure 5.7 several species have gone extinct, as indicated
by the red symbols. The eigenvalues are more spread out, and although not clearly
apparent, the average of the real parts of eigenvalues has decreased.

Figures 5.1 and 5.2 show how the eigenvalue distribution in May’s model differs
from the distribution in the model of this thesis. In Figure 5.1 the eigenvalues in a
May n = 50 species system appear to spread out in increasingly larger disks as σ
increases, approximately within the boundary of Girko’s circular law (valid in the
n → ∞ limit), drawn as red circles. In the model of this system, the eigenvalues
become stretched out along the real axis compared with May’s model, as seen in
Figure 5.2. The eigenvalues closer to the imaginary axis tend to have smaller imagi-
nary parts compared with eigenvalues father from the imaginary axis and it appears
like the eigenvalue with real part is also real.

5.9 Summary
Now that we have seen how eigenvalues change with σ and been introduced to the
mechanics of extinction, collapse, resurrection and unstable system behaviour we
are ready to answer the questions posed in this chapter. This will be done in the
following chapter.

5.10 Figures
In this section all figures of this chapter are collected.
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Figure 5.1: Eigenvalues of the Jacobian J = σB−I in May’s model, where I is the
identity matrix, Bi,i = 0, Bi,j ∼ N (0, 1), i 6= j and independent and σ is a parameter.
The number of species n = 40. The dots are eigenvalues of ten realisations of B, for
a given σ. Solid circles enclose disks σ =

√
n which all eigenvalues lie inside with

probability 1 in the limit n → ∞ (for one realisation). The network of species is
fully connected C = 1.
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Figure 5.2: Eigenvalues of the Jacobian J = diag(x∗)(σB − I) of an equilibrium
point x∗ of the GLV, where I is the identity matrix, Bi,i = 0, Bi,j ∼ N (0, 1), i 6= j
and independent and σ is a parameter. The number of species n = 40. The dots
are eigenvalues of ten realisations of B, for a given σ. Solid circles enclose disks
σ =
√
n which all eigenvalues lie inside with probability 1 in the limit n → ∞ (for

one realisation) in May’s model. The network of species is fully connected C = 1.
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Figure 5.3: The system converging to a limit cycle. x(t) is a vector of species
populations and t is a time unit. The initial number of species is n = 80, σ = 0.1348
and xi(0) = 1,∀i.

29



5. Introduction to critical points in the GLV

0 50 100 150 200 250 300 350 400
−1

0

1

2

3

4

5

6

7

8

t

x
(t

)

Figure 5.4: The system exhibiting chaotic behaviour. x(t) is a vector of species
populations and t is a time unit. The initial number of species is n = 80, σ = 0.1434
and xi(0) = 1,∀i.
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Figure 5.5: Eigenvalue plot at an equilibrium point x∗ that the system has con-
verged to. n = 80, σ = 0.0226. No species are extinct at x∗. This is the same
realisation of the interaction matrix as in figures (5.6) and (5.7).
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Figure 5.6: Eigenvalue plot at an equilibrium point x∗ that the system has con-
verged to. n = 80, σ = 0.02. No species are extinct at x∗. This is the same
realisation of the interaction matrix as in figures (5.5) and (5.7).
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Figure 5.7: Eigenvalue plot at an equilibrium point x∗ that the system has con-
verged to. n = 80, σ = 0.0981. Eigenvalues associated with extinct species are
marked as red stars. This is the same realisation of the interaction matrix as in
figures (5.5) and (5.6). The plot window is cropped, so some eigenvalues are not
visible. All eigenvalues are in the negative real plane, however.
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Figure 5.8: The σ of collapse σc, number of extinct species Nextinct at collapse
and the σ of the first extinction σe1 for 125 runs where the system was allowed to
equilibrate for increasingly large σ. The initial number of species was n = 80. The
sample mean and sample standard deviations are: σ̄c = 0.1648 and sσc = 0.0197,
N̄extinct = 39.5 and sNextinct

= 4.62, and σ̄e1 = 0.0450 and sσe1 = 0.0074. In total 150
runs were made, of which 125 ended in collapse, 24 did not converge for some σ and
one was aborted due to the solver having a negative solution.
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Figure 5.9: The first σ for which the system does not converge σc, the number of
extinct species Nextinct at the σ of non-convergence and the σ of the first extinction
σe1 for 24 runs where the system was allowed to equilibrate for increasingly large σ.
The initial number of species was n = 80. The sample mean and sample standard
deviations are: σ̄c = 0.1720 and sσc = 0.0175, N̄extinct = 34.78 and sNextinct

= 4.43,
and σ̄e1 = 0.0445 and sσe1 = 0.0077. In total 150 runs were made, of which 125
ended in collapse, 24 did not converge for some σ and one was aborted due to the
solver having a negative solution.
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Figure 5.10: The number of extinct species at a stable equilibrium x∗ for σ between
0 and 0.1434. The initial number of species was n = 80. A species i is considered
extinct if xi < 10−5. The magenta line shows a linear fit with slope 4.06 extinct
species per 100σ, vertical axis intercept −17.9 and R2 = 0.99. The fit is made on
data from the last σ of non-extinction to the σ of collapse σc.
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collapses.

34



5. Introduction to critical points in the GLV

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−250

−200

−150

−100

−50

0

σ

R
e

(λ
)

Figure 5.12: The real part of eigenvalues λ of the Jacobian J at an equilibrium
point x∗ up until σ = 0.1434 after which the system collapses. The initial number
of species was n = 80.
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Figure 5.13: Proportion of different interaction types for increasing σ. As a species
goes extinct the composition of mutualistic, competitive and predator-prey interac-
tions may change, as is observed. Initial number of species was n = 80.
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Figure 5.14: All components of the equilibrium point x∗(σ) that the system con-
verges to for each σ, until collapse occurs at σ = 0.1434. The equilibrium point
x∗(σ) is normalised such that |x∗(σ)| = 1.
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Figure 5.15: The first σ of extinction σe1 for Neumann series expansions to order
two from 150 realisations of the interaction matrix. The series is convergent since
the eigenvalues of the interaction matrix were less than one. Sample mean and
standard deviations were σ̄e1 = 0.0448 and sσe1 = 0.0069. The initial number of
species was n = 80.
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Figure 5.16: The first σ of extinction σe1 for Neumann series expansions to order
one from 150 realisations of the interaction matrix. The series is convergent since the
eigenvalues of the interaction matrix were less than one. Sample mean and standard
deviations were σ̄e1 = 0.0447 and sσe1 = 0.0089. The initial number of species was
n = 80.
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Figure 5.17: Conceptual explanation for why extinction occurs after approximately
half of the species have gone extinct. By assumption the number of non-extinct
species N decreases linearly. The number of species required for instability in May’s
model, and often collapse in the model of this thesis, is max (Re(λ)) = 0, where λ is
an eigenvalue of a matrix A of N species whose off-diagonal elements are a zero-mean
i.i.d. elements and the diagonal consists of all elements −1. This required number
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max (Re(λ)) = 0 and collapse, see Section 6.5. The blue dots show the intersections
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Figure 5.18: Neumann expansion to first order in σB of the interior n = 80 species
equilibrium point: x∗ = −A−1r = (I−σB)−1r ≈ r+σBr. The marker shows where
the first component intersects with the 0 line.
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Figure 5.19: Neumann expansion to second order in σB of the interior n = 80
species equilibrium point: x∗ = −A−1 = (I − σB)−1r ≈ (I + σB + σ2B2)r. The
marker shows where the first component intersects with the 0 line.
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Figure 5.20: The real part of eigenvalues λ of the Jacobian J at an equilibrium
point x∗. The initial number of species was n = 20.
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Figure 5.21: Zoom in on an example of resurrection in a system of initially n = 80
species. The thick blue line is the equilibrium population size of a species which goes
extinct around σ = 0.151 and gets resurrected around σ = 0.158. The population
sizes of the equilibrium point x∗(σ) are normalised such that |x∗(σ)| = 1.
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Figure 5.22: Critical σ for instability in May’s model and σ for first extinction in
the model of this thesis. The connectivity was C = 0.5. The number of species n
was spaced in intervals of three between 20 and 149. Error bars give the standard
deviation of the sample σc for a given n. The prediction for σc in the large n limit is
given as a magenta curve. The green curve is the ratio between the average σc for
the May model and the other model. The number of averaging rounds was different
for different σ. For details see Section 7.4.1.
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Figure 5.23: Critical σ for instability in May’s model and σ for first extinction
in the model of this thesis. The connectivity was C = 1. The number of species n
was spaced in intervals of three between 20 and 149. Error bars give the standard
deviation of the sample σc for a given n. The prediction for σc in the large n limit is
given as a magenta curve. The green curve is the ratio between the average σc for
the May model and the other model. The number of averaging rounds was different
for different σ. For details see Section 7.4.1.
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6
Understanding Critical Transitions

in the GLV

In this chapter I go deeper into the mechanisms of critical points such as extinction
and collapse in generalised Lotka-Volterra (GLV) model systems. The chapter can
naturally be divided into three parts. First, I describe all possible equilibria for a two
species system and discuss the possible system behaviour as the average interaction
strength parameter σ is varied. I then try to explain the possible critical points
introduced in the previous chapter. In the last part I present an assortment of
unrelated results for the system, such as the uniqueness of solutions under some
assumptions (which are shown not to always hold) and a criterion for which species
go extinct first.

Throughout this chapter, I assume that the self-growth is identical for all species
(ri = rj,∀i, j) and that all diagonal elements of the community matrixA are identical
(Ai,i = Aj,j,∀i, j). In some cases, when specified, I further assume that ri = Ai,j =
1, ∀i. Why this assumption preserves the qualitative behaviour of the system is
motivated in Section 6.4.2.

6.1 Understanding a two species system

I start out the course of trying to explain how GLV systems behave by exhausting
the possible behaviour close to equilibrium points of a two species GLV system.
Since a two species system is exactly solvable, one can gain insights which might aid
the understanding of larger systems for which explicit solutions do not exist or are
unwieldy.

6.1.1 The equilibria, eigenvalues and determinants
In the following section I present equilibrium points, eigenvalues and determinants
of the community matrix A and the Jacobian and discuss how they affect system
behaviour. Derivations can be found in Section A.3.1 of the appendix. I assume
that the self-growth vector ri = 1,∀i and that Ai,i = −d, d > 0. A similar analysis,
but with a different focus, was made by Baigent [3].

Let A =
[
−d a
b −d

]
. For the moment, let a and b be fixed real numbers. Later

they will be parametrized by a parameter σ and also viewed as random variables.
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The determinant of A becomes:

det (A) = d2 − ab. (6.1)

Define D ≡ det (A). Then:

A−1 = 1
D

[
−d −a
−b −d

]
(6.2)

and
x∗ = −A−1r = 1

D

[
a+ d
b+ d

]
(6.3)

where x∗ is the interior equilibrium point. D 6= 0 is assumed. Otherwise x∗ does
not exist. The Jacobian then becomes:

J = diag(x∗)A = 1
D

[
−d2 − ad a2 + ad
b2 + bd −d2 − bd

]
(6.4)

where diag(x∗) is a square matrix with elements x∗i on the diagonals and 0 on the
off-diagonal.

det (J) = 1
D2 (d2(a+ d)(b+ d)− ab(a+ d)(b+ d)) = 1

D
(a+ d)(b+ d). (6.5)

One of the eigenvalues of the Jacobian is λ1 = −1. The second eigenvalue is
− det (J).

We are now ready to introduce a dependence on a parameter σ on a and b by the
transformation a → σa, b → σb. If a and b are viewed as outcomes of independent
N(0, 1) variables, then σa and σb can be viewed as outcomes of N(0, σ) variables.
Then we have that:

D = det (A) = d2 − σ2ab (6.6)
and

λ2 = − det (J) = − 1
D

(σa+ d)(σb+ d). (6.7)

Now we can exhaust possible behaviour of the system by investigating three cases:
a, b > 0, a, b < 0 and (a > 0, b < 0 or a < 0, b > 0). Due to symmetry it is sufficient
to investigate only a > 0, b < 0 but not a < 0, b > 0.

In the showcase of system behaviour in Chapter 5, σ was started out to be 0
and then increased in small steps. In the same vein I will talk about "increasing" σ,
although the system does not have to "start" at any particular σ.

It will be shown in Section 6.4.1 that the x∗ = 0 equilibrium is unstable with all
eigenvalues λi = ri > 0, why this equilibrium will not be further mentioned in this
section.

6.1.1.1 Case a > 0, b > 0 (mutualism)

In this case λ2 < 0 as long as D > 0 and so no species can go extinct (before the
system collapses at least). System collapse occurs when D = 0 at σ = d/

√
(ab).

Before system collapse, the eigenvalues of the interior equilibrium point are λ1 =
−d and λ2 = − 1

D
(|a| + d)(|b| + d) < 0 so point is stable. x∗ is similarly seen to be

positive, so the equilibrium point is feasible.
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What happens for σ > d/
√
ab? Then D < 0 and x∗ < 0 6.3, so the interior

equilibrium is unfeasible.
What happens with the equilibrium with one extinct species? Consider x∗1 = 0

and x∗2 = 1/d. Then according to Equation (4.11) λ1 = 1 + σa/d > 0 and λ2 = −1,
so the equilibrium is feasible but non-attracting for all σ, since one eigenvalue is
positive. The same holds for x1 6= 0 and x2 = 0.

6.1.1.2 Case a < 0, b < 0 (competition)

For both a and b negative extinction can occur since J = 0 if either σ = −d/a = d/|a|
or σ = −d/b = d/|b|. Collapse is also possible, since D = 0 for σ = d/

√
(ab).

As in the a > 0, b > 0 case, the interior equilibrium point is seen to be both
feasible and stable before extinction.

One may ask if collapse can occur before extinction. This is not possible by the
following argument. Consider first the case a = b. Then the critical σ for extinction
is σe = −d/a = d/|a| and for collapse σc = d/|a|. In this case extinction and

collapse occurs simultaneously in some sense, since x∗ = 1
(d+σa)(d−σa)

[
d+ σa
d+ σa

]
and

λ2 = −(d − σ|a|)/(d + σ|a|). If a and b are drawn from independent continuous
random variables, as is often the case in this thesis, then the probability that a = b
is 0, so this case is not of much importance.

Disregarding the case of equality of a and b assume without loss of generality
that a < b. Then the critical σ for extinction is σe = −d/a = d/

√
a2 and for collapse

σc = d/
√
ab. Since |a| < |b| extinction must occur first.

There are two equilibria where one species is extinct, but due to symmetry it
is sufficient to investigate only x∗1 = 0. Case x∗1 = 0 and x∗2 = 1/d the eigenvalues
are λ1 = −1 and λ2 = 1 − σ|a|/d. If |a| > |b|, then λ2 > 0 before extinction and
the equilibrium point is unstable. If |a| < |b| instead, then σ|a| > σ|b| so that
λ2 = 1− σ|a|/d > 1− σ|b|/d > 0 before extinction. Hence the equilibrium point is
always unstable before extinction.

After extinction, the x∗1 = 0 and x∗2 = 1/d equilibrium point behaves differently
depending on which one of a or b is the largest in absolute value. If |a| > |b| then
λ2 = 1 − σ|a|/d < 0 such that the equilibrium is stable. If however |a| < |b|, then
λ2 > 0 at the point of extinction σ = 1− σ|b|/d. For sufficiently large σ, such that
1− σ|a|/d < 0, both single-species equilibria become attracting.

6.1.1.3 Case a < 0, b > 0 (predator-prey)

In this case D = d2 + σ2|a||b| > 0, so collapse cannot occur. Extinction happens for
σ = d/|a| however.

Before extinction the interior equilibrium is feasible and stable by an argument
analogous to the a, b > 0 case.

After extinction, the previous interior equilibrium point is no longer feasible,
since x∗1 = 1

D
(d− σ|a|) < 0.

The x∗1 = 0, x∗2 = 1/d equilibrium point is unstable before extinction, since λ2 =
1−σ|a|/d > 0 then. After extinction this equilibrium point becomes stable however.
The x∗1 = 1/d, x∗2 = 0 equilibrium point never is stable since λ2 = 1 + σ|b|/d > 0.
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6.1.2 Summary of two species cases
In summary, for all two species systems the interior equilibrium point is stable ini-
tially, but eventually either extinction or collapse occurs. The all-extinct equilibrium
is always unstable and all non-interior equilibrium points are unstable initially.

In case of mutualism (a, b > 0) the interior equilibrium is stable until it becomes
unfeasible at σ = d/

√
ab through a collapse.

In case of predator-prey(a < 0, b > 0) the interior equilibrium point becomes
unstable at a point of extinction which occurs at σ = d/|a|. Thereafter the system
remains stable in the x∗1 = 0, x∗2 6= 0 equilibrium for arbitrarily large σ.

In the competition case (a, b < 0) extinction always occurs before collapse, and
at σ = min (d/|a|, d/|b|). Thereafter, the species with the least negative interaction
coefficient survives and remains stable for arbitrarily large σ.

What can be learned about the two species case is that there are two principal
behaviours of the system; it either collapses or one species goes extinct and the other
lives on. Interesting is that there does not always exist a σ for which there exists no
stable feasible equilibria, so the system does not necessarily have to "fail".

6.1.3 Statistical predictions
One may wonder if there exists an expected σ for which collapse or extinction occurs
if elements a and b are drawn randomly. In the previous section (Section 6.1.2) I
showed that one of the two outcomes always occur for some σ (given that both
a, b 6= 0).

In search of an expected σ for when one of the two events occur, one can consider
each interaction type separately rather than considering a random matrix in its
entirety. In 25% of cases a, b > 0, and then a and b can be considered drawn
from some independent random variables |Y | and |Z|, where Y ∼ N (0, 1) and
Z ∼ N (0, 1). In 25% of cases a, b < 0, in which case a and b are drawn from −|Y |
and −|Z|. Similarly, in 50% of cases, either a is drawn from |Y | and b is drawn from
−|Z| or the opposite.

In the mutualist a, b > 0 case, only collapse can occur. The expected σ for
collapse is given by σmut = E[σ] = dE[1/

√
a]E[1/

√
b], since a and b are both

positive and independent. The expectation E[1/
√
b] =

∫∞
0

1√
x
e−x

2/2dx is evalu-
ated by Mathematica to Γ(1/4)/(21/4√π), where Γ(·) is the gamma function. Thus
σmut = −d · Γ(1/4)2/(21/2π) ≈ 2.96 for d = −1.

It should be noted however, that V ar[σmut] = E[σ2
mut]−E[σmut]2 is infinite. This

is because E[σ2
mut] = E[d2 1

a
1
b
] = d2E[1

b
]2 which is divergent since E[1

b
] =

∫∞
0

1
x
e−x

2/2dx
does not converge in the lower integration limit. This caveat implies that the values
of sampled σmut may vary greatly.

I demonstrated in the previous paragraph that E[1
b
] is infinite. This implies that

the expectation of σ for extinction in the predator-prey case (a < 0, b > 0) or (a >
0, b < 0) is infinite as well, such that the critical σ in the predator case σpp =∞. In
the case of competition the σ for extinction is given by σcomp = E[min (d/|a|, d/|b|)].
If this expectation exists, then it should be given by extreme value theory, in which
one studies the distribution of the maximum or minimum of an ensemble of random
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variables. I have not been able to find a closed form expression, but numerical tests
suggest that σcomp ≈ 1.4 for d = 1.

We can conclude that there does not exist an expected σ for which the first
critical occurrence, extinction or collapse, occurs. This is because it is infinite in
the predator-prey case. However, the expected critical σ for collapse σc has a finite
value σc ≈ 2.96.

6.2 Other kinds of critical behaviour in higher di-
mensions

In the two species case, both eigenvalues are necessarily real. This is not the case
for higher dimensions, since eigenvalues can then appear in complex conjugate pairs.
Then the system can become unstable not only by collapse or extinction, but also
by a pair of complex eigenvalues crossing the imaginary axis in what is called a Hopf
bifurcation. This was the case when the system entered first limit cycle behaviour,
and then what looks like intermittent chaos in figures 5.3 and 5.4.

I have not studied Hopf bifurcations or non-equilibrium behaviour in depth, but
I can share a two observations. Just as two imaginary eigenvalues can cross the
imaginary axis to the real half plane they can also return to the negative half plane.
This happened during one simulation of an 80 species system. For small σ the system
showed the usual linear extinction pattern as shown in Figure 5.10 but suddenly did
not converge to a stable equilibrium and instead entered first limit cycle behaviour
and then intermittent chaos, as shown in figures 5.3 and 5.4 (the images are from
the same run, but different σ). For even greater σ the system resumed limit cycle
behaviour and eventually converged to a stable equilibrium once more. Interestingly
enough, the number of extinct species continued along the same line as before limit
cycle and chaos behaviour happened and in the end collapsed when approximately
half of species had gone extinct.

Another observation is that eigenvalues approaching the imaginary axis tend to
be real more often than imaginary. This is suggested by the eigenvalue plot in Figure
5.6. A more quantitative indication of this is that out of 150 simulation runs with
systems of 80 species, 125 of them included no limit cycle or chaotic behaviour in
contrast to 24 runs which did. And in both cases the average number of extinctions
were numerous (on average 39 and 35 respectively). The 24 runs were aborted the
first time that the system did not converge to one equilibrium point and the 125 runs
were aborted when the system collapsed. One round was discarded since a negative
solution was obtained by the solver. Data from these 150 simulation runs were used
to estimate the distributions of critical σ and the average number of extinct species
at collapse and can be seen in figures 5.9 and 5.8, which are the topic of the next
section.
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6.3 Explaining critical values of the model
In this section I try to explain why a system of species tend to have its first extinction
close to a particular σ, why it tends to collapse when roughly half of the species are
alive and why it tends to collapse for a particular σ. Figures in Chapter 5 showed
that extinction tend to occur at an even rate after the first extinction at σe1. They
also showed that when roughly half of the species had died out the system collapsed
at σc. Figure 5.8 quantifies these phenomena. It shows that for 125 simulations of
systems of 80 species when the first instability was due to collapse, the average σe1
was 0.0450, the average σc was 0.1648 and the average number of extinct species at
collapse was 39.5. It also shows that there is a spread in the three quantities, but
that the distributions appear unimodal. I will first try to explain why σe1 is as it is.

6.3.1 The first σ of extinction σe1

As suggested by Figure 5.8, the average first σ of extinction is 0.045. One way to
explain this is to consider a series expansion of the equilibrium solution. I use that
(I − σB)−1 = ∑∞

i=0(σB)i which is convergent as long as max |λ| < 1, where λ are
the eigenvalues of σB and I is the identity matrix. Incidentally, for B = A + I
where A is the interaction matrix of our model, max |λ| ≈

√
n = σc,May if B is fully

connected according to Girko’s circular law for reasonably large matrices. Thus, the
series is convergent for σ less than the expected σ for instability in May’s model
σc,May. Then we have that the equilibrium x∗ is given by:

x∗ = −A−1r = (I − σB)−1r = (
∞∑
i=0

σiBi)r (6.8)

For small σ truncation to first order should be valid, yielding:

x∗ ≈ I + σBr (6.9)

Letting ri = 1,∀i, we have that x∗i = 1 +σ
∑n
j=1Bi,j. Figure 5.18 shows a first order

expansion for an 80 species system. The second order expansion in Figure 5.19 looks
qualitatively more similar to a typical exact solution as shown in Figure 5.14, which
is expected. The smallest component of x∗ does however appear linear up until the
intersection with 0 also for the second order expansion.

If the Bi,j are jointly independent N (0, 1) variables, then Zi = ∑n
j=1 Bi,j is

N (0, n− 1) distributed and Zi are jointly independent for all i. Since the intercepts
of xi are given by σe,i = −1/∑n

j=1Bi,j the σ for the first extinction is random and
given by σe1 = −min(1/Zi) under the condition that Zi < 0. It might be possible to
find a closed form expression for the expectation of σe1 using extreme value theory,
but I have not looked into that. The sample mean from 150 samples for 80 species
systems is σe1 = 0.0466 and the sample standard deviation was 0.0088. This is
slightly different from the empirical estimate of the mean for the full system 0.0450,
which reflects that the series approximation is not exact. The figures are still similar.

There is one thing with this example which helps to explain why the average σ
for extinction is infinite in the two species case, and why the variation in the average

50



6. Understanding Critical Transitions in the GLV

is large for small n, as observed in Figure 5.23. First of all, for a first σ of extinction
to exist, out of n observations of the row sums at least one is required to be negative,
such that zi < 0,∃i. Since Zi have zero mean and are independent of the number of
negative observations N out of n trials is binomially distributed N ∼ Bin(1

2 , n). So
the probability of having no negative observations is P (N = 0) = 1

2n . For small n this
probability is relatively large, as was noticed for the two-species system, for which
numerical estimation of the mean impossible. For large n however, this probability
shrinks exponentially, and it is possible that P (N = 0) becomes sufficiently small
for large n such that a limit distribution for σe1 exists.

One can expect that the fewer negative elements there are to choose from, the
larger the variation in σe1. This could explain the large variance in σe1 observed in
Figure 5.23.

In conclusion, we have that σe1 is a random quantity σe1 = |min ( 1
Zi

)| where i =
1, 2, ..., N and N ∼ Bin(1

2 , n) is a random variable as well, and Zi ∼ −|N (0, n−1)|.
It remains an open problem to find a closed form expression for the cumulative
distribution function of this random variable, if it exists.

One can observe that the expression for the σe1 from the linearisation agrees
with the exact expression in the two species case and that the problem from the
two species case holds still: For finite n, there is a non-negligible probability that
no observations of zi are negative, in which case σe1 is ill defined as the minimum of
an empty set. Numerical simulations suggest that there exists a well defined mean
for σe1 and yet it is difficult to see from the analytical expression for σe1 how such
a mean can exist for finite n. It would be interesting to see this apparent paradox
solved.

6.3.2 The σ of collapse σc

Figure 5.8 shows an empirical distribution of sigma for collapse σc, from 125 sample
rounds of n = 80 species systems with sample average is σc,obs = 0.1648. One expla-
nation for this value of σc can be given under the assumption that Girko’s circular
law holds sufficiently well for an n under consideration and the assumption that
the community matrix elements σAi,j are randomly and independently distributed
N (0, σ2) in spite of extinctions (this is not the case as shown later). Under these
assumptions, the average σ̄c should be σc ≈ 0.1571, if using the empirical number
of surviving species N = 40.5. It is not really valid to say that σ̄c = (N̄)−1/2, but
we get a decent estimate as long as the spread in N is not too big. Barred variables
denote averages. The estimate is in the region of the observed average σ̂c.

I hypothesise that the biggest contribution to the discrepancy between σ̂c and
σc,obs comes from that the elements of A can not be considered independentN (0, σ2).
In fact, species have been eliminated selectively, as seen in Figure 5.13 which shows
that mutualistic interactions tend to increase and competitive interactions tend to
decrease. A digression into the causes for this is made in Section 6.4.8. Before that,
the cause of the system becoming extinct when approximately n/2 species have gone
extinct is discussed in the next section.
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6.3.3 Why extinction occurs for n/2 extinct species
Figure 5.8 shows that the system tends to go extinct when approximately n/2 species
have gone extinct. One explanation for why this happens can be given under three
assumptions. One is that Girko’s circular law holds for all numbers of non-extinct
species N(σ) under consideration or at least gives a lower bound on σc. The second
one is that the off-diagonal elements of the community matrix A can be considered
identically and independently N (0, 1) distributed, in spite of extinction of species.
A third assumption is that the number of extinct species increases linearly starting
from the σ of first extinction σe1. The third assumption is supported by Figure 5.10
(and similar figures from simulations).

Under these three assumptions, one can observe that the Circular law predic-
tion of the number of species required for collapse Ncircular(σ) = 1

σ2 is larger than
the number of non-extinct species N(σ) at the σ for the first extinction. As σ is
increased, the gap between Ncircular(σ) and N(σ) decreases until it reaches 0 for the
critical σ for collapse σc. The idea is illustrated in Figure 5.17.

This proposed mechanism behind extinction of roughly n/2 species before col-
lapse, however, does not provide any explanation for why the curves intersect for σc.
That is a result of the rate of extinction, which I have not studied in depth. The
reason for the particular rate of species extinction remains an open question.

6.4 Other results for the GLV
In this section I present an assortment of results which do not directly connect to
the objectives of this thesis, but which add to the understanding of the GLV.

6.4.1 Instability of the all species extinct equilibrium
Here, I show that the equilibrium consisting of all species being extinct is unstable
if ri > 0,∀i.

The GLV system 4.1 has a trivial equilibrium x∗ = 0. The Jacobian at the
equilibrium is Ji,j = δi,jri (from Equation 4.11). Since the matrix is diagonal, its
eigenvalues are given by λi = ri, ∀i. Hence, as long as ri ≤ 0,∃i the equilibrium is
not guaranteed to be stable. In addition, if ri > 0,∃i then instability is guaranteed.
This is heuristically reasonable, since if ri > 0 for species i, then that species in
absence of influence from other species will want to increase linearly at a rate ri, if
close to x = 0.

6.4.2 Insignificance of the choice of ri and Ai,i

If one assumes that ri = R > 0,∀i, Ai,i = −d < 0,∀i in the GLV (4.1) and that
Ai,j, i 6= j all are scaled by a common parameter σ, then the parameters and variables
of GLV can be rescaled, showing that R and d can be set to any positive constants
without changing the qualitative behaviour of the equations. Rescaling of equations
is common practice, and a similar rescaling was done by Baigent [3].
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Consider the GLV with the above assumptions:

ẋi = xi(R− dxi + σ
n∑
k=1

Ai,kxk)

dx

dtR
= xi(1−

d

R
xi + σ

n∑
k=1

Ai,kxk).
(6.10)

The constant d should not be confused with the differential operator d
dt
. With the

substitutions tR = τ and yi = xi
R
d
the equations take the form:

d

R

dx

dτ
= d

R
yi(1− yi + σ

d

R

n∑
k=1

Ai,kyk). (6.11)

The substitution σ d
R

= γ gives the final form of the equations:

dx

dτ
= yi(1− yi + γ

n∑
k=1

Ai,kyk). (6.12)

This shows that R and d can be chosen to be 1 without changing the qualitative
behaviour of the equations. Even if all ri and Ai,i are not identical, similar rescaling
can be done for instance to improve numerical properties.

6.4.3 Coincidence of extinction and zero eigenvalues
In Section 2.3.1, I established that λi = 0 ⇐⇒ det (A) = 0 for some eigenvalue λi
of some matrix A. Consider now the Jacobian (4.11) of the n species GLV at an
interior equilibrium x∗ point and its eigenvalues λi. Then the determinant of the
Jacobian can be written as:

det (J) =
= det (diag(x∗)A)
= det (diag(x∗))det(A)

= det (A)
n∏
i=1

x∗i

(6.13)

where diag(x∗) is a square matrix with elements x∗i on the diagonal and 0 on the
off-diagonals. Since an interior equilibrium point is assumed to exist, det (A) 6= 0.
Hence, because det (J) = 0 ⇐⇒ λi = 0,∃i it holds that λi = 0,∃i ⇐⇒ xi = 0,∃i.

6.4.4 The equilibria after a collapse
Under the assumption that the system collapses for some critical σc, how does the
system behave for σ > σc? To answer this question, consider the expression for the
i:th element of the interior equilibrium point (with ri = 1,∀i):

x∗i = −A−1r = − 1
det (A)

n∑
j=1

adj(A)i,j = pi(σ)
q(σ) (6.14)
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where adj(A) is the adjugate of A, n is the number of species in the (non-extinct)
system, pi(σ) =

n∑
j=1

adj(A)i,j and q(σ) = det (A). Note that n is the number of

species in some subsystem of all species, not necessarily the entire system. pi(σ)
and q(σ) are introduced to emphasise that they are both polynomials in σ.

Next, I show under what circumstances x∗i changes sign as a result of collapse. By
the Fundamental theorem of algebra, p(σ) = ∏n−1

i=1 (σ−zp,i) and q(σ) = ∏n
i=1(σ−zq,i)

where zp,i and zq,i are the complex roots to respective polynomials 1. Since all
coefficients are real, complex roots appear in complex conjugate pairs. Assume first
that pi(σ) and q(σ) share a real root of multiplicities mpi

and mq. Then if mpi
≥ mq

there is no collapse for that root. If otherwise mpi
< mq collapse occurs. If mq−mpi

is even x∗i does not flip sign as σ crosses the root. If instead mq −mpi
is odd, then

x∗i does flip sign. The case when pi(σ) and q(σ) do not share roots is covered by
setting mpi

= 0.
I hypothesise that it is rare for pi(σ) and q(σ) to have double roots or to share

roots in the model of this thesis with random interactions, so that x∗i does flip sign
at σc. In that case, any x∗i that was positive before the sign change will change sign
and the old interior feasible point will become unfeasible. If all n components x∗i
become positive once more for some greater σ > σc through sign changes in pi(σ)
and/or q(σ) then x∗ becomes feasible again. In order for it to be a solution which
the system can converge to, all eigenvalues of the full system need also be negative.

That it is rare for pi(σ) and q(σ) to share roots if their coefficients are com-
binations of outcomes of random variables is not self-evident. This is because the
coefficients are not independent, as seen from Equation 4.4. Nevertheless, I have
not observed in any simulations that double roots exist other than for isolated σ,
which have measure 0 in the space of all possible σ.

In the simulations I don’t simulate any longer until the first collapse, if there
is one. It is however good to see why feasible equilibria tend to become unfeasible
immediately after a collapse.

6.4.5 Uniqueness of the solution under assumptions
In this section I show that for a GLV system (4.1)of n species with a stable interior
equilibrium point, there cannot exist a subsystem of dimension m < n with a stable
interior equilibrium point under a set of assumptions:
U1 Extinct species are not resurrected.

U2 All self-growth terms are equal and positive ri = rj > 0,∀i, j.

U3 No two species become simultaneously extinct for the same σ.

U4 When an extinction occurs, the eigenvalue associated with that species is neg-
ative for slightly larger σ.

U5 Eigenvalues with non-zero imaginary part cannot cross the real axis (that is:
instability implies extinction).

1That pi(σ) has degree n− 1 follows from that pi(σ) =
∑n

j=1 adj(A)i,j =
∑n

j=1(−1)i+jKj,i(σ)
where Kj,i(σ) is a minor of size (n− 1× n− 1) and adj(A) is the adjugate A.
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U6 The system has not experienced collapse.

In addition, I show that if one starts with an n species system for which a stable
equilibrium exists, then this equilibrium is the unique equilibrium for any subsystem
of m ≤ n species, where the n −m species not included in the system are extinct.
Assumption U1 will be discussed in Section 6.4.7 and the other assumptions will be
discussed in Section 6.4.6.

Assumption U6 ensures that the equilibrium and in turn all eigenvalues vary
continuously with σ, which is crucial in showing uniqueness.

Consider a GLV system of n species (Equation (4.1)), for which the off-diagonal
elements of the community matrix A are scaled by a parameter σ ≥ 0. I show that
no stable equilibria containing extinct species exist in case that σ = 0. The same
idea will be used to show uniqueness for larger σ.

When σ = 0, the system is stable with equilibrium x∗i = ri/Ai,i,∀i and eigenval-
ues λi = −Ai,i/ri, ∀i. Assume that there exists a stable and feasible equilibrium x̃
for which x̃i = 0 for one species i and x̃j > 0,∀j 6= i. For a system with one extinct
species i, one eigenvalue of the system is given by

λi = ri + Ai,ixi + σ
n∑

k=1,k 6=i
Ai,kxk

and the other eigenvalues are those of the subsystem of non-extinct species (by
Theorem (4.2.1)). Since xi = 0 and σ = 0, the eigenvalue is λi = ri > 0 , so the
equilibrium is unstable, contrary to the assumption.

Consider now the system for some σ > 0 such that no extinction has occurred (in
the full system). The condition for species j to go extinct (from being non-extinct)
is equivalent to that

λj = rj + Aj,jxj + σ
n∑

k=1,k 6=j
Aj,kxk = 0

(see Section 6.4.3). By assumption U3 only one species can become extinct at a time.
This makes the machinery simpler, although it is not certain that the assumption is
necessary for the main result. If extinction is possible, let species l be the species that
goes extinct first. (As we will see in the next section, if extinction is not possible,
then no eigenvalues can get positive real parts with increasing σ by assumption U5
and there are no alternative feasible and stable solutions).

Assume first that species i = l such that it is the first to go extinct in the original
equilibrium x∗. The case i 6= l will be addressed soon. We know from Section 2.3.2
that the eigenvalues of the system vary continuously in σ and are interested in for
what σ the equilibrium x̃ can become stable. For x̃ to be stable, λi must transition
from being positive to negative and pass 0 in the process. If this is possible, then
there exists some σi for which

ri + σi
∑
k 6=i

Ai,kxk = 0.

But this is precisely the condition for the full system equilibrium x∗ to have xi =
0. The full system equilibrium x∗ for which xi = 0 must coincide with x̃, where
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quantities marked with tilde (∼) are those of the subsystem of species with species i
removed, since at x∗ all species k 6= i need to equilibrate without influence of species
i. This is equivalent to solving r̃ + Ãx̃ = 0, whose solution is x̃. In conclusion, this
shows that if i is the first species to go extinct, x̃ cannot be a stable equilibrium
different from x∗ for σ ≤ σi.

Consider the case that i is not the first species to go extinct in the full system,
but instead species l 6= i goes extinct first at σl < σ0. Then λi > 0 for σ ≤ σl,
so the equilibrium is not stable. When species l goes extinct at σl the previously
interior equilibrium x∗ ceases to be an interior equilibrium, so the assumption of x∗
being interior fails. Since by assumption U1 resurrection is not possible, the point
will remain not-interior for all σ > σl.

Removing more than one species at once for a fixed σ cannot produce a stable
solution, since at σ = 0 all eigenvalues associated with those species i would be
ri. Increasing σ successively can not stabilise the equilibrium, without one single
species going extinct in the full system. This is because the associated eigenvalues
λi would all have to become negative, and assuming (U3) that they all become
negative for distinct σ, the last eigenvalue to become negative would have to satisfy
the extinction criterion for a single species, as described in the previous paragraphs.

Thus far I have only considered the case when the n species equilibrium x∗ starts
as at σ = 0. Next, I show that that the case when some subset of species has gone
extinct (at some larger σ) works as the full species system. More precisely, I show
that there cannot exist interior stable solutions for subsystems ofm < (n−1) species,
where the system of n − 1 species is the result of extinction of one species in the
original n species system. Let σl be the σ for which species l in the n species system
goes extinct such that xl = 0. The equilibria of the system of (n− 1) species where
species l has been excluded behave precisely like the full n species system with xl
fixed to 0, except that the latter has one more eigenvalue

λl = rl + σ
∑
k 6=l

Al,kxk.

By assumption U4, λl became negative for σ slightly larger than σl (more precisely
for limε→0 σl + ε), and by assumption U1 the species can not be resurrected. There-
fore, under these assumptions λl remains negative for all σ > σl and species l has
no influence on the subsystem of non-extinct species.

Under the assumption that λl < 0 for σ > σl, consider now the n − 1 species
subsystem in which species l is excluded. I will show that there exists no stable inte-
rior solution to any subsystem of m < (n− 1) species for σ ≤ σl. By contradiction:
Assume that the subsystem with species q removed is stable. Then one eigenvalue
is given by

λq = rq + σl
∑
k 6=q

Aq,kxk.

and it is negative. But this is a contradiction. In the full n-species system, if q were
the species to be removed instead of l, then λq would be given by

λq = rq + σAq,lxl + σ
∑
k 6=q,l

Aq,kxk.
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Since l was the first species to become extinct, λq would have had to be positive for
σ < σl. For σ = σl the population of species xl = 0, so that

rq + σAq,lxl + σ
∑
k 6=q,l

Aq,kxk = rq + σ
∑
k 6=q,l

Aq,kxk.

But this quantity, which implies extinction of species q if equal to 0, cannot be 0
since only one species is assumed to become extinct for a single σ and hence the
quantity cannot have undergone a sign change. It must therefore be positive, and
the assumption that the subsystem for which species q is removed is stable must is
false.

This shows that, under the assumption, if there exists a stable and feasible
solution of a system of n − 1 species for a given σ, then there exists no stable
interior solution to any subsystem of m < (n − 1) species. Then by induction the
same argument holds for any subsystem containing more than one species.

Uniqueness follows from that extinction without resurrection only allows there
to be at most one feasible system of p species, where p ≤ n. Figure 6.1 illustrates
this fact. It shows that as soon as the system has one species i go extinct, then
the only possible equilibria for the system are those with species i extinct. This is
because any equilibria where i is non-extinct cannot be reached, since that would
require the resurrection of species i.

In the next section I discuss the validity of assumptions U2 to U6.

Figure 6.1: Extinction of species without resurrection. A sequence XXX rep-
resents the state of a system of three species. X = 1 means that a species is
non-extinct and X = 0 means that a species is extinct. If assuming that resurrec-
tion is not possible, then the arrows indicate which states the system can go from
and to. If the system started in 111 with all species alive and the first species went
extinct (green arrow), then 011 is the current state (magenta box). The system can
now move to some states with fewer species (blue arrows) but the system 100 (red
box) is unreachable.
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6.4.6 Assumptions in showing uniqueness
The result of uniqueness of a stable and feasible equilibrium relies on a set of as-
sumptions. In this section I discuss if and when assumptions U2 to U5 are valid.
I also discuss the case of system collapse. Assumption U1 is discussed in the next
section.

Assumption U2: That all species have self-growth ri identical and positive is an
integral assumption of all simulations in this thesis and is thus is not an additional
assumption imposed for showing uniqueness. Its biological validity can however be
questioned.

Assumption U3: The assumption that the σ for extinction for all species is unique
makes showing uniqueness easier, but relaxing it would probably not invalidate
uniqueness. It is important for assumption U4, however, although problems might
arise concerning smoothness. In any case, since coefficients of the system equations
are real and random, it is unlikely that any two species will go extinct precisely
simultaneously.

Assumption U4: When a species l goes extinct, the eigenvalue

λl = rl + σ
∑
k 6=l

Al,kxk

becomes 0 for σ = σl. For σ slightly larger than σl, the eigenvalue can either
become positive, negative, or remain zero. In case the eigenvalue becomes negative,
the eigenvalue can not make an equilibrium unstable. If the eigenvalue becomes
non-negative, then this is not guaranteed however. Next, I motivate why it is that
the eigenvalue tend to become negative, although it is not a proof.

By a theorem of Lax [14], if a matrix J has all distinct eigenvalues and its
coefficients vary continuously in a parameter σ (which they do in this case), then the
eigenvalues vary smoothly. This can be observed, for instance in figure 5.12, where
the eigenvalues appear to vary smoothly everywhere except where two complex
eigenvalues meet or split up (and when a species goes extinct, in which case the
system considered is a different one). The theorem implies that as long as λl has a
negative linear term in the Taylor series with respect to σ at the point of extinction
σl, then the eigenvalue will be negative right after the extinction due to smoothness
and dominance of the linear term for small deviations in σ.

By the same argument the eigenvalues can not have been positive right before
extinction, and thus cannot be right after extinction either. The possibility the
linear term vanishes at σl I consider unlikely and pathological, but I can not prove
it impossible.

I also consider it unlikely that there are two identical eigenvalues at σl because
of the randomness of interaction coefficients. Neither this can I show is impossible,
however.

Assumption U5: This assumption, which states that eigenvalues only cross the
imaginary axis at the origin, is not necessary for showing uniqueness of a stable
and feasible equilibrium conditioned on that one exists, obviously. It is however
elucidating to observe that if a pair of complex eigenvalues crosses the imaginary
axis to the real plane, then any subsystems with some species removed can only
potentially become stable if an extinction occurs, or if the complex eigenvalue pair
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returns to the left half plane. When or if the complex eigenvalues return to the
left half plane I have not found any way to predict. The Routh-Hurwitz criterion
can always be applied, but doesn’t give an easily interpretable criterion for when all
eigenvalues have negative real parts in large systems.

Assumption U6: As mentioned before, the assumption that the system has not
undergone collapse is essential for the assumption of continuity of the equilibrium
point and the eigenvalues in σ. If a collapse occurs, the equilibrium x∗ becomes
unbounded, and immediately after the collapse changes sign. If collapse is allowed,
then the eigenvalues of extinct species can change sign in other ways than through
extinction. Similarly, equilibria can become unfeasible in other ways than through
extinction of a species. What happens in such cases is discussed in Section 6.4.4.

6.4.7 Uniqueness of equilibria in practice
One may question how reasonable the assumption of no resurrection is; resurrection
is in fact possible, as demonstrated in Figure 5.21. The example of a competitive
two-species system showed that it is possible to have multiple stable and feasible
equilibria, although to switch between them resurrection would be necessary. A
simple generalisation can be made as a counterexample to uniqueness of solutions
for a given σ. Consider an n-species competitive system and the equilibrium when
species i is non-extinct and at its carrying capacity and all other species are extinct.
Then one eigenvalue λi = −ri and the rest are given by

λj = rj − σAj,ixi = rj − σAj,iri/Ai,i,∀i 6= j.

Since Ai,i < 0, Aj,i < 0, ri > 0 and rj > 0 by assumption, there exists some σ0 such
that all λj < 0 and consequently all eigenvalues are negative and the equilibrium is
stable. This can be made to hold for all species i, such that there exists some σ0 for
which there are n feasible and stable equilibria. The switching between equilibria
would require simultaneous extinction and resurrection of species, but this is easily
obtained by selecting initial conditions to be in the basin of attraction of a desired
equilibrium.

Evidently, uniqueness fails if resurrection is allowed. A relevant question is how
often this occurs in practice for the GLV system considered in this thesis which starts
with the unique equilibrium x∗ = 1 for σ = 0 and then has σ increased successively.
I mean that this should not happen very often. The eigenvalue associated with an
extinct species i is

λi = ri + σ
n∑

k=1,k 6=i
Ai,kxk.

When species i goes extinct λi = ri + σ
∑n
k=1,k 6=iAi,kxk = 0 so the sum over k

must be less than ri. The following is no rigorous argument, but I hypothesise
that species which go extinct tend to have many negative interactions Ai,j. Then,
as the abundance of species xk increases λi will tend to decrease. The only way
species i can be resurrected is if the configuration of x∗i changes such that the sum
σ
∑n
k=1,k 6=iAi,kxk begins to increase. It is possible, as evidenced, but not likely if

many Ai,j are negative.
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I ran five simulations for a system of 80 species to check if the number of negative
interactions were higher among extinct species. Each species was given a rank
based on the number of negative interactions. In total over the five simulation runs,
196 extinctions occurred and in each case the species that became extinct had the
highest number of negative elements (with possible ties). However, as the number
of rows with a high fraction of negative elements decrease when species go extinct,
resurrection should be more likely. The simulations show that resurrection is indeed
more common when more species have gone extinct (that there are many extinct
species that can be resurrected should also increase the likelihood of resurrection
however).

So although one can not count on there being one unique feasible and stable
equilibrium, the rarity of resurrection means that the equilibrium often is unique in
practice.

6.4.8 Which species goes extinct first
One may wonder which species goes extinct first, if any. A tempting guess is that
species with many and/or negative interactions tend to go extinct first, but such a
guess can be difficult to justify. In the following paragraph I will give criteria that
the species that goes extinct first needs to fulfil.

Define a quantityQi = ri+
∑n
k=1Ai,kxk for each species i. Qi = 0,∀i when x is the

interior equilibrium point x∗. Let the off-diagonal elements be scaled by a positive
parameter σ, such that Ai,j → σAi,j for i 6= j and Qi = ri + Ai,ixi + σ

∑
k 6=iAi,kxk.

A requirement for the interior point to transition to a point on the boundary, that
is to go extinct, is that xi = 0,∃i. For all σ prior to that, Qi = 0,∀i must hold.

Let us now assume that extinction is possible for some σ > 0 and that it happens
for one single species j before the others. Assume also that no collapse occurs before
extinction, such that xi < ∞ for all σ < σe, where σe is σ at the first extinction.
For simplicity of argument, let ri = rj, ∀i, j and ai,i < 0,∀i as is usually done in this
thesis.

Before extinction Qi = 0,∀i, so consider two species i and j:
Qi = ri + Ai,ixi + σAi,jxj + σ

∑
k 6=i,j

Ai,kxk

Qj = rj + Aj,jxj + σAj,ixi + σ
∑
k 6=i,j

Aj,kxk
(6.15)

where ∑k 6=i,j is a sum over k ∈ {1, 2, ..., n}\{i, j}. They both equal zero, so we may
set them equal to each other and cancel out ri = rj.

Ai,ixi + σAi,jxj + σ
∑
k 6=i,j

Ai,kxk = Aj,jxj + σAj,ixi + σ
∑
k 6=i,j

Aj,kxk

(Ai,i − σAj,i)xi = (Aj,j − σAi,j)xj + σ
∑
k 6=i,j

(Aj,k − Ai,k)xk

xi = 1
(σAj,i − Ai,i)

[(σAi,j − Aj,j)xj + σ
∑
k 6=i,j

(Ai,k − Aj,k)xk]

(6.16)

where in the last step I assume that σAj,i−Ai,i 6= 0. In the next paragraph I argue
why this is reasonable.
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Neglecting the specific case that the right hand side of row two in Equation
(6.16) equals zero for precisely the same σ as the denominator σAj,i − Ai,i = 0,
σAj,i−Ai,i = 0 implies that xi is not finite (has collapsed), which is assumed not be
be the case before extinction. Since σAj,i−Ai,i > 0 for Ai,i < 0 and σ = 0, under the
assumption that no collapse occurs before extinction we have that σAj,i − Ai,i > 0
for σ < σe.

Recall that j is the index of the species which goes extinct first. At the point of
extinction xj = 0 and xi > 0,∀i 6= j, so the following relation must hold simultane-
ously for all i:

xi = σ

(σAj,i − Ai,i)
∑
k 6=i,j

(Ai,k − Aj,k)xk > 0. (6.17)

If the inequality does not hold then at least one assumption is violated. In the
previous paragraph, I concluded that σAj,i − Ai,i > 0 for σ < σe, so the only way
for the inequality not to hold is for ∑k 6=i,j(Ai,k − Aj,k)xk ≤ 0. Since all xk > 0 by
assumption when considering a specific i, for the inequality to hold the average of
differences (Ai,k − Aj,k) weighed by xk must be positive.

Since xk is in general given by a complicated expression, it is not possible to
tell only from the interaction strengths which species qualifies as the first to become
extinct. A few things can be said however. No other species i must dominate j in the
sense that Ai,k > Aj,k, ∀k. The species j will likely have smaller interaction strengths
than on average for all inequalities (6.17) and if interaction strengths are drawn
randomly from a zero mean distribution then j should include "many" negative
interaction strengths. The effect of a "large" species k on j should be especially
small compared to the effect of k on other species i 6= j. From the expression
Qj = rj + Aj,jxj + ∑

k 6=iAj,kxk it is obvious that Aj,k < 0,∃k for extinction to be
possible.

In summary, a species j which is the first to go extinct must have small (or
more negative) interaction strengths with other species k on average weighed by xk
at equilibrium compared to other species i 6= j. A specific criterion that must be
satisfied for all other species i is (6.17).

6.5 Distribution of real eigenvalues for random
matrices

At some places in this thesis I combine the result that det (A) = 0 ⇐⇒ λi = 0,∃i
and Girko’s circular law which roughly states that the eigenvalues of an n × n
matrix A are uniformly distributed in a disk with radius

√
σn, where A have i.i.d

N (0, σ2) off-diagonal elements (in the limit of large n). Cirko’s law implies that if
A has diagonal elements −1, then the largest real part of the eigenvalues is 0 with
probability 1 if σ = 1√

n
. It does not however say that the eigenvalue with the largest

real part is real! In fact, one might falsely believe that the probability of finding a
single real eigenvalue is 0, since eigenvalues are uniformly distributed in a disk in
the complex plane and the real line has Lebesgue measure 0 in the plane [4].

Edelman, Kostlan and Shub showed that this is not true, at least not for matrices
with zero-mean normal off-diagonal elements [4]. In fact, they showed that the real

61



6. Understanding Critical Transitions in the GLV

eigenvalues of such a matrix (with zero mea diagonal) are uniformly distributed in
[−
√
σ2n,−

√
σ2n] and that the expected number of real zeros in the limit of large n

tends to
√

2nσ2

π
(I have rescaled the matrix in their paper by σ

√
n).

So in essence, it is not flawed to assume that if the largest real part of eigenvalues
is 0, then if the eigenvalue is not real, there is likely to exist an almost equally large
real eigenvalue close by. This means that det(A) = 0 can be expected to happen for
only slightly larger σ than the σ for which the first eigenvalue gets a positive real
part.

6.6 Asymptotic distribution of feasible equilibria
In previous sections, I have discussed how the feasible and stable equilibria of the
system come into place and that extinction occurs when the full system of species
becomes unfeasible. In this section I aim to show that the probability of having
a feasible equilibrium for large σ is rare and that its rarity scales with the size of
the system and is related to the fraction of species removed. First, I argue that
the equilibria of a system can be approximated for large σ. Then, I discuss the
statistical properties of feasibility.

Consider the ordinary system (4.1) in this thesis with ri = 1,∀i, Ai,i = −1,∀i,
ẋi = xi(ri + Ai,ixi + σ

∑n
k=1,k 6=iAi,kxk). An internal equilibrium (excluding extinct

species) is given by:

x∗ = −A−1r = −(σB − I)−1r = − 1
σ

(B − I

σ
)−1r (6.18)

where B ≡ A + I and σ is assumed positive. We have from Section 2.3.3 that
the matrix inverse of a matrix A is smooth wherever det (A) 6= 0. This means
(from continuity) that, as long as B−1 exist in an open neighbourhood D of B−1,
sufficiently small changes to the elements of B produces arbitrarily small changes
to B−1. In this case we can let B − 1

σ
I ≡ G = B + E, where E is a matrix of

perturbations εi,j. Then by continuity for any δ > 0 there exists some ε ≡ ‖E‖max >
0 such that ‖G−1 −B−1‖max < δ, where ‖ · ‖max is the maximum norm.

E = 1
σ
I, ε can be made arbitrarily small by making σ arbitrarily big. So under

the assumption that B−1 exists in an open neighbourhood there exists some, possibly
very large, σ such that (σB − I)−1 ≈ B−1 in some sense. In the space of real and
random coefficients the probability of B being non-invertible has measure 0, and I
conjecture that so does the probability of picking B arbitrarily close to a singularity.
Therefore, under this assumption I conclude that this large σ approximation is with
probability 1 valid. Note that the "farther" B is from being non-invertible, the better
should the approximation be.

Assuming for large σ that x∗ ≈ 1
σ
B−1r, what is the probability that x∗ is feasible

for any subsystem of species (with some set of rows and columns of B and r removed
and corresponding components x = 0), and for the entire set of subsystems to be
feasible? In answering this question I will make a few assumptions:

I will assume that the elements of B−1 are i.i.d. random variables from a distri-
bution symmetric about a mean µ. This is certainly not true, since for a random
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matrix B, B−1 is a deterministic combination of elements of B, so independence is
violated. I cannot justify this assumption, but I will assume that it is a reasonably
good assumption since it gives good predictions; it "works". Under the assumption
that B−1

i,j are i.i.d., numerical simulations suggest that the fraction of negative ele-
ments appears normal and symmetric, so this assumption does not seem unjustified.

I will also assume that the row sums of submatrices of B−1 resulting from re-
moving rows and columns of B are independent. They would not necessarily be so,
even if the elements of B−1 were i.i.d., but once more, it seems to be a reasonably
good assumption. As usual, I assume also that ri = 1,∀i.

For a subsystem in which k species have been removed, it is required that xi ≥
0,∀xi for the equilibrium point to be feasible. So if we let Zi denote the row sum
of row i, i = 1, ..., n − k, where the rows are appropriately relabelled when rows
and columns are removed, then for the point to be feasible we need that Zi ≤ 0,∀i,
which occurs with probability:

P (Z1 ≤ 0, Z2 ≤ 0, ..., Zn−k ≤ 0) = P (Z1 ≤ 0)P (Z2 ≤ 0)...P (Zn−k ≤ 0) = pn−k

(6.19)
where I have used independence of row sums, and where p denotes the probability
that one row is non-negative (what I also call "success"). For zero-mean symmetric
Zi the probability of success is p = 1

2 . For a general normal distribution p =
Φ(−µZi

/σZi
), where Φ is the CDF of the normal distribution, µZi

is the mean of the
distribution and σ2

Zi
the variance.

Since there are
(
n
k

)
ways of removing k rows (and corresponding columns) from

n rows, the expected number of feasible solutions is
(
n
k

)
pn−k if k rows are removed.

For this to be guaranteed to hold, the probabilities of getting a feasible solution from
each possible configuration must be independent, which it is not as I have pointed
out. I assume it holds nonetheless. By normalising over all possible choices of k
we get a distribution over the probability of finding a feasible solution when k rows
have been removed:

f(k) = 1
C

n∑
k=0

(
n

k

)
pn−k, (6.20)

where C is a normalisation constant and 0 < p < 1. In Section A.4 I compute C to
be (p+ 1)n and derive the other quantities which we will encounter in this section.

A natural guess would be that p = 1
2 for the row sums of the inverse matrix B−1

to be negative, since one could imagine that there would be no bias toward either
positive or negative numbers. This does however not appear to be the case. In lack
of any arguments for a particular value of p one can estimate it from experimental
data. This was done for 200 realisations of size n = 10 matrices B−1, for which
the feasibility of all equilibrium points was determined. In Figure 6.2 the portion
of feasible points having k row-column pairs removed is shown, along with the
theoretical distribution in which the maximum likelihood estimator p̂ = 0.5077
has been used. The qualitative agreement is good, lending support to that the
assumptions hold.

The expected number of row-column pairs removed is E[X] = n
p+1 and the per-

haps more interesting expected proportion of row-column pairs removed is E[X/n] =
1
p+1 . This says that a feasible point is most likely found when 1

p+1 species are set to
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0, or conversely, for a system where p
p+1 species remain. The proportion of feasible

points is given by the sum of expected number of feasible points for k species set to
0, which is ∑n

k=0

(
n
k

)
pn−k = C = (p + 1)n divided by the total number of equilibria

2n. This gives the expression:

ffeasible = (p+ 1)n
2n (6.21)

This fraction decreases for increasing n if p < 1, although the absolute number of
feasible points increases. Two interesting special cases are p = 0 and p = 1. The
case p = 0 corresponds to a mutualistic system, where all row sums are guaranteed
to be positive. Then the only feasible point is x∗ = 0. The case p = 1 corresponds
to pure competition, in which case all equilibria are feasible in the large σ limit.

The perhaps most interesting result of this section is that there is a low prob-
ability to find feasible equilibrium points for large submatrices (meaning small k)
for large σ, as shown in Figure 6.2. Although we can not say anything about the
stability of equilibria with this analysis, we can at least say that the probability of
finding a feasible and large equilibrium for large σ is low. This is an argument for
why species tend to go extinct for increasingly large σ increases, although I have
not investigated whether the "large σ regime" is reached in any of the simulations
carried out in this thesis.
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Figure 6.2: Frequency of feasible equilibria per number of species removed, in
the large σ limit for a system with n = 10 species. Blue dots show empirical
relative frequencies of feasible equilibria from 200 randomly generated community
matrices. The red line shows the theoretical probability mass function (PMF) f(k) =

1
(p̂+1)n

(
n
k

)
p̂n−k, where p̂ is the maximum likelihood estimate (MLE) of the probability

that one equilibrium solution component x∗i is feasible, based on the empirical data.
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6.7 Summary
The findings of this chapter has led closer to an understanding of critical points
in Lotka-Volterra systems. The introductory two species example showed how ex-
tinction and collapse can occur and highlighted the problem of finding an expected
parameter value of σ for which criticial points occur if system parameters are ran-
domly chosen. I then provided suggestions for why the expected first σ of extinction
and the first σ for collapse for large systems have the values that they do, but the
description is not complete. In the remaining part of the chapter I present general
facts about the stability and critical points of the system, which in part explains how
the system behaves as the average interaction strength parameter σ is changed.
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7
Methods for Simulation

In this chapter I present methods used in simulation, for instance to solve differential
equations, detect unstable solutions and detect when species have gone extinct. I
also discuss problems in the methodology and describe how I have chosen to tackle
these problems. One section at the end is devoted to explaining in particular how
data was obtained for the plots showing the relationship between system size and
critical σ in the model of this thesis and May’s model.

7.1 A method for solving ODE:s
Almost all the results in this report are based on the solving the GLV, which are a
system of ODE:s. The solver used was ode23s in Matlab. It is a stiff, low accuracy
solver using a Rosenbrock method of order (2, 3). The solver was chosen to be able
to handle stiffness, which may arise when the system exhibits chaotic behaviour.
The method uses an adaptive time step.

For all solutions to differential equations in this thesis I use an absolute error
tolerance of 10−3 and a relative error tolerance of 10−7.

7.2 Detecting events in the solution
To detect when the solution of the system fulfils certain critera, such as having
equilibrated or diverged to infinity, one has to use approximate methods. One
reason for this is numerical limitations, as in the case of determining if a solution
has converged or not, and another is a difficulty to quantify when an event has
occurred, e.g. if the system has entered a limit cycles. In the following sections I
describe the criteria used for detecting the different events.

7.2.1 Detecting when an equilibrium has been reached
A fact to consider is that a solution which approaches an equilibrium asymptotically
does not reach it in finite time. This imposes a practical constraint when trying to
classify if an equilibrium point has been reached or not. One way to work around
this used in this thesis is to set an absolute tolerance parameter δeq and saying
that any solution, whose maximum difference in any component of a solution vector
between two consecutive time steps is less than δeq has converged to an equilibrium.

This has several caveats. One is that if one uses a sufficiently small time step
between consecutive evaluations, then the convergence criterion will be met for any
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continuous solution, no matter how far it is from equilibrium. The time step between
consecutive solution iterates also affects at which time the solution is considered to
have reached an equilibrium.

Another caveat is that solutions with components which approach close to an
equilibrium for some time t0 might move far away from it at some later time t1 >
t0. This has been showed to be possible for purely competitive Lotka-Volterra
systems [1]. This problem cannot be escaped; one simply has to assume that not
all components of a solution simultaneously go below the equilibrium threshold and
later increase in number.

A third problem is how to choose δeq. I set it δeq = 10−7, such that convergence
would be possible in a time span of 400 time units in most instances, without
accepting too fluctuating solutions as being convergent. When eigenvalues are close
to zero the solution converges slowly, as described in Section 7.5. Therefore I choose
to accept solutions as convergent if they at the end of the time span has a smaller
deviation between consecutive time steps than 10−2.

7.2.2 Detecting chaotic and limit cycle solutions
I choose not to make any distinction between solutions which are both bounded dur-
ing the time span of simulation and do not converge to an equilibrium point. There-
fore, both limit cycles attracting α-orbits (at t → ∞) and chaotic non-exploding
solutions are included. To classify such a solution, I require that the deviation be-
tween the last two time steps at the end of the simulation time span must be greater
than or equal to 10−2 (complementing the criterion for an equilibrated solution).

I simulated a large number of systems and found that this criterion identified
few systems as false positives (the solutions did indeed appear to exhibit chaotic or
limit cycle behaviour).

7.2.3 Detecting collapse and explosions
A criterion for considering collapse as having occurred is that at least one component
of the solution must have reached above a certain threshold, set to 104 and that the
absolute value of the determinant of the community matrix A must be smaller than
a critical threshold set to 10−3. This is to differentiate the collapses from other
divergent solutions, which typically do not also have a small determinant. It is of
course possible that the solution to have small determinant and still diverge not as
a consequence of collapse, but in this case I consider the solution close to collapse
in all relevant aspects anyway.

Explosions are defined negatively as a solution having reached a large maximum
amplitude, without having a sufficiently small det (A) at the previous iteration.

7.2.4 Detecting negative solutions
Occasionally, the numerical solver would return negative solutions, in spite of this
not being possible in theory if initial conditions are strictly positive. In these rare
cases I discarded the solution, with the motivation that their exclusion probably
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does not affect statistics greatly. As an example, over a set of 150 simulations of an
80 species system only one solution was aborted due to having a negative solution.

7.3 Choosing initial conditions
How to select initial conditions in simulations is not a trivial question. All equilibria
and other attractors have basins of attractions, such that if the state of the system
is situated in the basin at some time t0, then it will converge to the equilibrium or
the attractor. Therefore, different initial conditions can lead the system to converge
to different attractors or even diverge.

Several authors have concerned themselves with the possible behaviour of purely
competitive and mutualistic systems [1, 13, 29, 3], where it has been shown for
instance that competitive systems are bounded and that all orbits converge to a
carrying simplex. None have to my knowledge found any results that hold in general
for Lotka-Volterra systems. In lack of general results, to completely exhaust the
space of initial conditions for a given parameter set (including σ) is the only option
to know all possible behaviour. But this is clearly intractable, even if one confines
the system to some finite subset of initial conditions in the non-negative subset of
R. Therefore a pragmatic approach is necessary.

One option is to let the system initialise in the old equilibrium when σ is per-
turbed slightly. This can be motivated from a biological perspective in that a system
continually adapts to some externally imposed change reflected in a change of pa-
rameters. But it limits the scope of of the results. Are we not interested in learning
about the stability of any system, without prior assumption on initial conditions?

A way out of this would be to select initial values randomly (from some subset of
the positive real space which one has to motivate). The drawback of this approach
is that it restricts reproducibility of results and the ability to compare systems
starting in different initial conditions. Say that we wish to investigate how the
system behaviour changes if σ is increased slightly. If the initial conditions in one
case are x(0) = 10−6 and x(0) = 106 in another case, then the system might exhibit
very different behaviour in spite of the systems being similar.

A third approach, although not perfect, is to use the same initial point for all
problems. In this thesis I do this and choose the initial condition x(0) = 1, which
coincides with the only stable and feasible equilibrium for σ = 0. This enables
comparison between different runs and σ, but explores only a tiny subspace of system
behaviour. Starting the system in a point with all species equally populous can also
be argued to make the least assumptions about the system.

7.4 Classifying species as being extinct
Ideally, a species is extinct only if its equilibrium population is 0. In practice, no
solution can reach zero in finite time with exponential convergence. Therefore it is
necessary to set a threshold for when a system is to be considered extinct. For the
results of this thesis I considered a species extinct if its population size went below
10−5. This gave a fairly good correspondence between the σ for which species went
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extinct and the σ for which the real part of eigenvalues turned sharply (see Figure
5.11).

7.4.1 Obtaining data for the σ versus n plot
The data shown in Figure 5.23 and Figure 5.22 was obtained as follows. For each
value of n, a binary search was made in the interval [0, 10] to find the smallest σ
yielding a positive eigenvalue, in the May case of the interaction matrix A, and in
the other case of the interior equilibrium Jacobian J = x∗A. It was assumed A and
J respectively would have at least one positive eigenvalue for σ1 > σ0 if they would
have one positive eigenvalue for σ0. A minimum difference between consecutive σ in
the binary search was set to 10−5, giving a maximum error 2 · 10−5 in the estimates
of σc. This error was considered negligible compared to the variance of the true
σc for the tested n, but should have a greater effect for larger n since the variance
appears to decrease with n.

For the same reason, that the variance in σc appears larger for smaller n, more
averaging rounds Navg were used for small n, according to the following formula:
Navg(n) = round(Nmin(n/m)α), where Nmin is the smallest allowed number of aver-
ages for any n, m = max (n) is the largest tested n, and α < 0 is an exponent. The
parameters were set to Nmin = 20 and α = −3/4.

In the figures, only the standard deviations for the σc are shown, and not the
standard deviation of the averages. Confidence intervals for the ratio between the
two σc can be obtained by a Fieller test, but was not done here. The same interaction
matrix A was used for estimating σc,May and σc,non−May for each n and averaging
round.

7.5 Convergence to equilibria for small negative
eigenvalues

Consider a general system of ODE:s with a stable interior equilibrium point x∗.
Let λmin be the smallest eigenvalue of the Jacobian J at x∗. Close to the equilib-
rium point, a perturbed solution δx(t) in the eigendirection of the eigenvector with
eigenvalue λmin behaves as δx(t) = δx(0)e( − λmint), where δx(0) is the initial per-
turbation. This implies that if λmin is decreased by a factor c, then the characteristic
time to convergence is increased by a factor c.

This has consequences when trying to numerically have the system converge
to a stable equilibrium point. Assume that one starts the system in the basin of
attraction of some stable equilibrium point. Assume also that one sets a tolerance
T on how much the solution can deviate from the equilibrium point (in e.g. the
Euclidean or maximum norm) in order for it to be considered to have converged.
Then in the limit λmin → 0 the time for convergence t → ∞. Hence, T and λmin
put limits on the time of convergence such that smaller T and λmin require longer
simulation times.

To handle the increase in the time until convergence for decreasing λmin a max-
imum evaluation time tmax = 400 time units was used. If the system had not
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converged after tmax, then x(tmax) was taken to be an approximation to x∗. A con-
sequence of accepting points which have not converged as being equilibria is that
the Jacobian will not be correctly calculated and hence the eigenvalues will not be
the eigenvalues of the actual equilibrium point. Furthermore, there will be a delay
(in σ) for when a species is classified as extinct, since convergence to 0 might only
be fast enough when the maximum real part of any eigenvalue of the system moves
away from 0.

7.6 Summary
In this chapter I have presented the methods used for simulating the system of
equations in this thesis. I have discussed the problem of choosing parameters and
initial conditions, and when applicable motivated my choices.
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8
Discussion

In this chapter I discuss the assumptions made in this model and their plausibility
from both a mathematical and ecological perspective. I also connect to the objectives
of this thesis; How the results of this thesis relate to those of Robert May and what
can be said about the critical points of the Lotka-Volterra equations of this thesis
in which the average interaction strength is varied.

8.1 Assumptions in the model

Are the assumptions of the model justified? One can answer this question from
either an ecological or a mathematical perspective.

One assumption that can be questioned from both perspectives is that of identical
and positive self-growth ri for all species. This means that in a system of species, all
species grow in absence of others. This description does not fit a typical predator,
which typically is in need of the existence of a prey to survive. In a food chain,
one can imagine that only the bottom layer species, or possibly omnivores both
consuming other species and some external food source (not considered part of the
ecosystem of species), have positive self-growth. That the self-growth should be
equal for all species is also a simplifying assumption that can be criticised also from
a mathematical perspective. Small deviations from equal self-growth should not
make a big difference to the system dynamics, but it is possible that large deviations
requires another analysis to be made.

The assumption of equal and negative self-interaction Ai,i might also be a crude
assumption. That the self-interaction is negative is not very controversial since
competition for resources within one species is likely to increase with the abundance
of that species. That the self-interaction should be identical is however harder to
justify, and as for the self-growths ri, a new analysis would have to be made to cover
the case of non-identical self-interaction.

One reason for the choice of ri and Ai,i was to make the system similar to
one of May’s systems valid for small values of σ, which is stable in absence of
interactions. There is however no reason to believe that a system in absence of
interactions should have a stable equilibrium. Therefore, a more realistic assumption
would be to start with some positive average interaction strength σ and set r and
Ai,i as to obtain a stable system fulfilling the criteria of May’s equilibria and then
varying the parameter σ (both to be smaller and bigger).
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8.2 Ecological implications

Next, I discuss ecological implications of the results of this thesis. Before doing this
however, I would like to point out that the model is highly abstract and idealised.
While this makes it clear to analyse, it might omit features in real world systems
crucial for system behaviour [19].

8.2.1 Implausibility of collapse
One thing about the model which speaks against its plausibility as a realistic ecosys-
tem model is the existence of collapse. No real world system would have its species
populations diverge toward infinity. Even though an increase in the total number
of species can be expected in some circumstances, there should mechanisms which
bring down extremely large populations. A simple remedy which could eliminate
collapses, is to introduce a quartic self-interaction term, as proposed by Professor
Martin Nilsson Jacobi and Assistant Professor Kolbjørn Tunstrøm. If would then
be difficult, if even possible to find a closed form of the equilibria however, and it is
not easy to motivate the addition from an ecological point of view.

8.2.2 Does May’s conclusion apply to the GLV?
If one does take the model for what it is and neglect the mathematically convenient
assumptions currently made, then one can interpret the results of this thesis to say
something about ecosystem system behaviour.

The main question of this thesis: "Does May’s analysis and conclusions also apply
to the example non-linear model system the generalised Lotka-Volterra equations?",
can be given both a positive or a negative answer depending on what one means by
stability. If one means that instability occurs when an equilibrium consisting of a
set of non-extinct species ceases to be stable and feasible, then the answer is yes.
This occurs for the first σ of extinction, which almost always is smaller than May’s
predicted σ for instability.

One could however mean that the extinction of one species and a continued
existence of a stable and feasible equilibrium consisting of the remaining surviving
species does not mean that the system is unstable, since the system still manages to
stabilise to some equilibrium. In that case, species go extinct in increasing numbers
for larger mean interaction strengths and as such manage to cope with the increasing
mean interaction strength. Eventually, the system does however become unstable,
either through a limit cycle or system collapse.

In the case of transition into a limit cycle one can discuss whether this is equiv-
alent to system "failure"; the species do remain bounded and vary predictably in
cycles. Requiring that all populations remain precisely constant in time might be a
too narrow definition of stability [19]. If accepting limit cycle behaviour as a viable
ecological state, then one can question whether May’s requirement of negative real
parts of eigenvalues of the Jacobian does imply "stability" in the wider sense. In case
one does require stability in the conventional sense, then the system does become
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unstable for large interaction strengths also for the GLV system, as hypothesised by
May.

System collapse is more difficult to translate into instability in May’s sense. It is
true that for σ larger than the σ for collapse, the previously stable solution becomes
unstable and the system fails to converge to some stable state. But the instability
does not arise as the result of one eigenvalue of the system transitioning smoothly
from having negative to positive real part. It occurs because the equilibrium, is spite
of being stable, grows unboundedly and then sharply (in σ) ceases to exist. This
kind of transition does not exhibit the "critical slowing down" so often associated
with critical transitions [23]. Critical slowing down means that recovery from small
perturbations takes longer time the closer to a critical point the system is. In
dynamical systems language this means that one eigenvalue has a negative but close
to zero real part. A warning signal for collapse would instead be quick convergence
to increasingly large equilibria. One complication is that for the GLV at the σ of
collapse, at least for a large number of species, there are often eigenvalues close to
0, which slow down convergence to the equilibrium, possibly masking the collapse
as a smooth eigenvalue sign change.

If one wholly accepts collapse as a kind of instability, then May’s thesis does
hold: Complex (strongly interacting) systems tend to be unstable, and for smaller
σ for larger systems. The instability does however occur later than in May’s model
(if one allows extinction and considers the size of the system to be the initial size of
the system).

8.2.3 Resilience of the GLV
The repeated extinction of species as exemplified in Figure 5.11 has interesting inter-
pretations. On the one hand side, the ability of the system to counter an increase in
average interaction strength σ by letting some species become extinct can be viewed
as a kind of "structural resilience"; For small perturbations of σ the system remains
stable at the expense of "sacrificing" (for positive perturbations) or reintroducing
(for negative perturbations) one species.

On the other hand side, between the σ of first extinction and the σ of collapse
the eigenvalue with the largest real part is close to 0. This means that perturba-
tions of the population densities die out slowly, at least in some eigendirection(s)
and that the system is close to instability in that sense. From this point of view the
system is not very resilient to perturbations.

The combination of the two interpretations of resilience give the somewhat para-
doxical description of the system as being insensitive to changes in the environment
(σ), but sensitive to disruption of the equilibrium.

8.2.4 Recovery from instability
As was mentioned in Section 6.2, it occurred on one occasion that the system went
into limit cycle behaviour for some σ, but resumed convergent equilibrium behaviour
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for even greater σ. If the GLV is assumed to be an accurate model of ecosystems,
then this implies that increasing average interaction strength not only can cause
instability, but that it can also stabilise a system (at the price of having more
species go extinct possibly).

8.3 Comparison with Tregonning’s model
In their 1979 paper [27], Tregonning and Roberts found feasible and stable point by
a process where they randomly generated coefficients ri and Ai,j, checked if there
were any species with negative equilibrium solutions, and if there were, removed the
species with the most negative solution. They repeated this process until they found
a feasible (and stable) equilibrium. They found that after removing on average half
of the species the system would have a stable and feasible point.

The parallels to the model of this thesis; repeated removal of species and abrupt
change when on average half of the species are removed, are apparent. They might
be superficial however, since their approach differs significantly from that of this
thesis. For one thing, Tregonning and Roberts allowed for negative self-growths ri,
which I do not.

Secondly, the species which has the most negative equilibrium population in their
model does not need to be the one which would go extinct first in the model of this
thesis, had the average interaction strength σ been increased from 0. Although the
relative order of species extinction might not matter much, this is still a difference
between the models.

Thirdly, Tregonning and Roberts changed the average interaction strength by
a factor σ each time a species was extinct, independent of the initial interaction
strength. This means that although the average interaction strength is increased
in absolute numbers in their model, as in the model of this thesis, the interaction
strength for a given number of species depends on the interaction strength chosen
for the initial random system. This is not the case for the model system of this
thesis, in which a stable and feasible equilibrium will be found regardless of which
σ is chosen, given that one such exists.

The most notable difference between the models is however that in the model
of this thesis, when approximately half of species have gone extinct feasible and
stable equilibria cease to exist, as opposed to the model of Tregonning and Roberts,
in which a feasible and stable equilibrium appears! That Tregonning and Roberts
find a stable and feasible equilibrium when approximately half of species have been
removed should be dependent on the initial σ. Two particular choices of initial σ for
a system of n species are σ = 0 and σ close to infinity. If σ were 0 in their model,
the interaction strength would not be changed by species extinction. Furthermore,
a stable and feasible equilibrium would be found when all species with non-negative
self-growth would have been eliminated (on average half of species, incidentally).
If σ would be close to infinity on the other hand, it is unlikely that any moderate
number of species removals would give a stable and feasible equilibrium, since the
system would always have a σ beyond collapse in the model of this thesis.

In conclusion, although the model of Tregonning and Roberts and the model of
this thesis bear superficial resemblance, they are indeed fundamentally different and
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I do not see how their respective implications can be meaningfully compared.

8.4 Limitations from choice of initial condition
In Section 7.3 I discussed in length the difficulties choosing initial values for the
solution of differential equations. I would like to emphasise that the inability to
survey the entire space of initial conditions limits the implications one can draw
from the results in this thesis. It has been proven for competitive systems that an
invariant subspace attracts all orbits [29], but unfortunately I am not aware of any
such result for general Lotka-Volterra equations. Therefore, since choosing initial
conditions differently can give different system behaviour, it is important to keep in
mind that the results of this report pertain to the special case that all species start
with equal population sizes 1.

8.5 A weakness in the methodology
One weakness in the methodology is that most simulations in the report were made
for one number of species 80. It would be good to test and show results for more
number of species. In general, when testing for a smaller number of species the
same general behaviour is found as in larger species system, but the results are less
consistent due to increased variability.

8.6 Summary
The discussion in this chapter has covered the plausibility of assumptions made in
this thesis and what can be said about the system from an ecological implications. In
conclusion, I find it difficult to motivate assumptions from an ecological perspective,
but choose to adopt them for mathematical convenience and for limiting the scope
of the analysis. A main point from the discussion of ecological implications is that
Robert May’s analysis hold in essence; sufficiently complex (strongly interacting)
systems tend to become unstable and it happens for lower interaction strengths for
larger systems. However, the system enters a regime before the point of collapse
or instability, in which species go extinct frequently, while retaining stability of the
system. The model of Tregonning and Roberts is however difficult to relate to the
model of this thesis, in spite of the superficial resemblance between the models.
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9
Summary and Conclusions

In this thesis, I have investigated critical points of a special class of generalised
Lotka-Volterra systems (GLV), where self-growth is identically 1 for all species,
self-interactions are identically −1 for all species and the species interactions are
outcomes of random independent Gaussian variables with zero mean and variance
parametrised by a variable σ2. For this system I have emphasised checking for
instability of equilibria, when species have gone extinct and when solutions have
ceased to exist, rather than on the nature of instability, e.g. basins of attraction or
limit cycle/chaotic behaviour. As a basis and benchmark I have used Robert May’s
analysis of the stability of large and complex systems from his 1972 paper [16].

I have found that the GLV system considered can resist instability resulting from
increased interaction strengths by letting species go extinct. Extinction begins for
lower interaction strengths than in May’s model, but system collapse or instability
in the form of limit cycles is delayed compared with May’s model. System collapse
means that feasible and stable solutions to the system cease to exist, and the typical
"critical slowing down" warning signal often observed close to critical points does
not apply for this kind of critical point.

I have presented some explanations for why few equilibria tend to be simultane-
ously feasible and stable in the GLV and for why critical behaviour typically occurs
for certain average interaction strengths σ and number of extinct species N . More
reasearch is needed however, to fully understand the mechanisms behind the critical
behaviour.

9.1 Conclusions
Connecting to the objectives of this thesis one can say that May’s thesis that large
systems cannot be simultaneously complex and stable in essence holds true for the
example system GLV investigated in this thesis. There is more however, to the
behaviour of the system than that the system becomes unstable as soon as one
equilibrium under consideration becomes unstable, as claimed by May. The multiple
equilibria of the system enables it to adapt to increasing complexity, to some extent,
by having some species go extinct. Collapse is a kind of critical point not very well
described my May’s analysis, since the instability does not occur as a result of the
real part of one eigenvalue smoothly becoming positive.

As an example complex system exhibiting critical behaviour, the GLV does offer
insights. The critical behaviour when repeated extinction occurs is interesting, since
the system is structurally resilient in the sense that it can withstand perturbations of
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a parameter and yet dynamically non-resilient in that the system has an eigenvalue
with a real part close to zero. The lack of critical slowing down warning signals
close to the collapse critical point is also an unexpected aspect of the system. One
thing that enables the rich behaviour of the GLV is the multitude of equilibria, such
that the system stability is contingent not only on the stability of one equilibrium.
The feasibility constraint present in the GLV also sets it apart from many other
dynamical systems.

The GLV lends itself well to mathematical analysis due to its simplicity and
linearity of the equilibria. The bareness and simplicity of the model might reduce
its relevance as a realistic model of ecosystems. Therefore, ecological implications
of the model should be interpreted with caution. As a generic mathematical model
however, it exhibits rich and diverse critical behaviour. The success in mapping out
the critical behaviour in this model calls for exploration of other generic dynamical
systems capable of critical behaviour, to create a larger portfolio of knowledge to be
used in the quest of gaining greater understanding of criticality in complex systems.

9.2 Open questions and future work
In this thesis I barely scratch the surface of what can be known about both the GLV
and complex systems with critical behaviour. Concerning the GLV much research
has been made on either small dimensional examples or narrow classes of species
interaction such as competitive systems, but little research has been done on large
systems with arbitrary or random interactions. In this respect the model of this
thesis can be extended in many ways, e.g. by allowing for negative self-interaction,
food-web interaction structure, non-zero average interaction strength or a greater
selection of initial values.

Concerning other complex systems, the GLV studied in this thesis is only one ex-
ample from which one can not draw general conclusions regarding complex systems.
If more systems are studied, one might to be able to find differences and similarities
between systems and perhaps find general results regarding the nature of critical
transitions.
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A
Appendix 1

In this appendix lengthy derivations are presented.

A.1 Relation between the eigenvalues and the de-
terminant of a matrix

Proof of theorem 2.3.1. Every square matrix A has a Jordan normal form, such that
A = QKQT , where Q is some change of basis matrix and K is an upper triangular
matrix. Note that QT = Q−1. The proof follows from a combination of elementary
results:

The determinant is invariant under a change of basis: This fact follows
from that:

det (A) = det (Q) det (K) det (QT ) = det (Q)(1/ det (Q)) det (K) = det (K)

where the multiplication law of determinants has been used.

The determinant of a triangular matrix equals the product of diagonal
elements: Laplace expansion of the determinant of an n× n matrix U gives that

det (U) =
n∑
j=1

(−1)i+jUi,jMi,j

whereMi,j is the minor (the determinant of U when row i and column j are removed)
and the row i may be chosen at will. Hence, if U is triangular (upper or lower) then

det (U) =
n∏
i=1

Ui,i.

The eigenvalues of a triangular matrix equal the diagonal elements: The
eigenvalues λ of a matrix U are the solutions to det (U − λI) = 0, where I is the
identity matrix. If U is triangular, then so is U − λI, and

det (U − λI) =
n∏
i=1

(Ui,i − λI).
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Thus Ui,i are the solutions to det (U − λI) = 0 and λi = Ui,i,∀i.

The eigenvalues are invariant under a change of basis: Assume λ is an eigen-
value of a matrix A. Then det(A− λI) = 0. Under a change of basis K = QAQT :

det (K − λI) = det (QAQT − λI)
= det (Q(AQ−1 −Q−1λI))
= det (Q(A−Q−1λIQ)Q−1)
= det (Q) det (A− λQ−1Q) det (Q−1)
= (det (Q)/ det (Q)) det (A− λI)
= det (A− λI) = 0

showing that the eigenvalues of K and A are identical.

Using the above results, we have that if K is the Jordan normal form of some
matrix A then: det (A) = det (K) = ∏n

i=1 λi, where all λi are an eigenvalues of both
A and K.

A.2 Transformation of r to preserve constant di-
agonal of the Jacobian

Allesina and Tang considered the generalised Lotka-Volterra equations (4.1) (with
a slightly different naming of constants) and showed how the self-growth factors
ri needs to be transformed in order to preserve constant diagonal elements of the
Jacobian, if the off-diagonal elements are scaled by factors σi,j. The expression, for
σi,j ≡ σ, ∀i, j is:

r′i = riσ + x∗iAi,i(σ − 1) (A.1)

where r′i and ri are the new and old self-growth factors respectively, x∗i is the (inte-
rior) equilibrium population, Ai,i is the self-interaction of species, all for species i,
and σ is the scaling of off-diagonal elements.

A.3 Identical self-growth R
Often in this report the assumption is made that all self-growth rates are identical,
i.e. ri = rj,∀i, j. Here I show that scaling all elements of such a self-growth vector
by a parameter R scales all eigenvalues by R.

Assume x∗ is an equilibrium interior point for some ri = R, ∀i and that λ is an
eigenvalue of the Jacobian J = diag(x∗)A at that equilibrium point, where diag(x∗)
is a square matrix with elements x∗i on the diagonal and 0 on the off-diagonals. Then
λ satisfies:

det (J − λI) = 0 (A.2)

Now let r′ = Rr such that x′ = −A−1Rr = Rx∗ is an interior equilibrium point
of ẋ = x(Rr + Ax). Then the Jacobian J ′ at x′ is given by J ′ = diag(Rx∗)A =
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R · diag(x∗)A = RJ . Hence any eigenvalue λ′ of J ′ must satisfy

det (J ′ − λ′I) = 0
det (RJ − λ′I) = 0

(Rn) det (J − (λ′/R)I) = 0
(A.3)

under the assumption that R 6= 0 and where n is the number of species in the
system. If R = 0 then J ′ = 0 where 0 is the zero matrix and hence λ′i = 0,∀i. Thus
λ′ = 0 = Rλ for any λ as claimed. A comparison with A.2 shows that λ′/R = λ for
R 6= 0 and hence λ′ = Rλ as claimed.

A.3.1 Analytical solution of a two species system
In this section the determinant of the interaction matrix A, the determinant of
the Jacobian J of the GLV equations at the internal equilibrium point x∗ and the
eigenvalues of J are derived.

I assume that ri = 1,∀i and that the diagonal elements of A are all −d. Let

A =
[
−d a
b −d

]
. Consequently:

det (A) = d2 − ab. (A.4)

Let D ≡ det (A). Then:

A−1 = 1
D

[
−d −a
−b −d

]
(A.5)

x∗ = −A−1r = 1
D

[
a+ d
b+ d

]
(A.6)

J = diag(x∗)A = 1
D

[
−d2 − ad a2 + ad
b2 + bd −d2 − bd

]
(A.7)

This is under the assumption that D 6= 0. Otherwise x∗ does not exist. x∗ is the
interior equilibrium point. The determinant of J becomes:

det (J) = 1
D2 (d2(a+ d)(b+ d)− ab(a+ d)(b+ d)) = 1

D
(a+ d)(b+ d). (A.8)

The eigenvalues λ for a 2× 2 matrix J are:

1
2[tr(J)±

√
(tr(J))2 − 4 det (J) (A.9)

Since in this case tr(J) = − 1
D
d(2d+ a+ b) we have:

λ = 1
2[− 1

D
d(2d+ a+ b)±

√
1
D2 (d2(2d+ a+ b)2 − 1

D
4(a+ d)(b+ d)

= 1
2D [−d(2d+ a+ b)±

√
(d2(2d+ a+ b)2 − 4D(a+ d)(b+ d).

(A.10)
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The expression under the square root can be simplified as follows:

d2(4d2 + 4d(a+ b) + (a+ b)2)− 4d2(a+ d)(b+ d) + 4ab(a+ d)(b+ d) =
d2(4d2 + 4d(a+ b) + (a+ b)2)− 4d2(ab+ d(a+ b) + d2) + 4ab(ab+ d(a+ b) + d2) =
d2((a+ b)2) + 4ab(ab+ d(a+ b)) =
d2((a+ b)2) + (2ab)2 + 2(2ab)d(a+ b)) =
(2ab+ d(a+ b))2.

(A.11)
Then the eigenvalues become:

λ = 1
2D [−d(2d+ a+ b)± (2ab+ d(a+ b)] (A.12)

such that:λ1 = 1
2D [−d(2d+ a+ b) + (2ab+ d(a+ b)] = −2(d2−ab)

2(d2−ab) = −1
λ2 = 1

2D [−d(2d+ a+ b)− (2ab+ d(a+ b)] = 1
2D2(−d2 − d(a+ b)− ab) = − det (J)

(A.13)
where det (J) is given in (A.7).

If one scales all off-diagonal elements by some parmeter σ > 0 by letting a →
σa, b→ σb then det (A) becomes:

det (A) = d2 − σ2ab (A.14)

and det (J) becomes
det (J) = 1

D
(σa+ d)(σb+ d). (A.15)

This leads to λ1 = −1 and λ2 = 1
d2−σ2ab

(σa+ d)(σb+ d).

A.3.2 One constant eigenvalue
Here, I show that −R always is an eigenvalue of the Jacobian (4.11) at an interior
equilibrium, if assuming that ri = R and Ai,i = −d,∀i ∈ 1, 2, ..., n. Let I denote
the identity matrix. For simplicity of notation, I do not distinguish between the
full system and the reduced system and let n denote the number of species of any
reduced system. The assumption that A is invertible is included in the assumption
of existence of an internal equilibrium point.

We have that −R is an eigenvalue of J = diag(x∗)A, where diag(x∗) is a square
matrix with elements x∗i on the diagonals and 0 on the off-diagonals, if and only if

det (J − (−R)I) = 0) (A.16)

Assuming that A−1 exists the condition can be written

det (diag(x∗)A+RA−1A) = 0
det ((diag(x∗) +RA−1)A) = 0

det (diag(x∗) +RA−1) det (A) = 0
(A.17)
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where the last step follows from the multiplication rule for determinants. Since A is
assumed non-singular det (A) 6= 0 and is it required that

det ((diag(x∗) +RA−1) = 0. (A.18)

Since the i:th diagonal element of diag(x∗) is −R
n∑
k=1

A−1
i,k the matrix ((diag(x∗) +

RA−1) has the following structure:



RA−1
1,1 −

n∑
k=1

RA−1
1,k RA−1

1,2 . . . RA−1
1,n

RA−1
2,1 RA−1

2,2 −
n∑
k=1

RA−1
2,k RA−1

2,n

... . . . ...
RA−1

n,1 . . . RA−1
n,n −

n∑
k=1

RA−1
n,k



=R



−
n∑

k=1,k 6=1
A−1

1,k A−1
1,2 . . . A−1

1,n

A−1
2,1 −

n∑
k=1,k 6=2

A−1
2,k A−1

2,n

... . . . ...
A−1
n,1 . . . −

n∑
k=1,k 6=n

A−1
n,k



(A.19)

From this expression it is obvious that the sum of all columns or rows is the zero
vector which means that the matrix is rank-deficient. This is turn implies that the
determinant is 0, which concludes the proposition that −R is an eigenvalue of any
Jacobian satisfying the above assumptions.

A.4 Derivations for the distribution in Section 6.6

Consider the distribution f(k) = 1
C

∑n
k=0

(
n
k

)
pn−k, where p is the probability of

success, k is the number of elements removed, n is the total number of elements and
C is a normalisation constant. I later derive the expectation of a random variable
with this distribution, but first I derive the normalisation constant.

By the binomial theorem (a + b)n = ∑n
k=0

(
n
k

)
akbn−k. If we set a = 1 and b = p

we get that

(p+ 1)n =
n∑
k=0

(
n

k

)
pn−k, (A.20)

so that C = (p + 1)n. I next derive the expectation of a random variable X with
this distribution.
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Taking the derivative with respect to p of Equation (A.20) gives that

n(p+ 1)n−1 =
n∑
k=0

(
n

k

)
(n− k)pn−k−1

np(p+ 1)n−1 =
n∑
k=0

(
n

k

)
npn−k −

n∑
k=0

(
n

k

)
kpn−k

n∑
k=0

(
n

k

)
kpn−k = n(p+ 1)n − np(p+ 1)n−1

n∑
k=0

(
n

k

)
kpn−k = n(p+ 1)n(1− p

p+ 1)

n∑
k=0

(
n

k

)
kpn−k = n(p+ 1)n( 1

p+ 1).

(A.21)

Now, we identify the left hand side as CE[X], where E[X] is the expectation of a
random variable X with this distribution. Dividing by C, we get that:

E[X] = n

p+ 1 . (A.22)

If we instead are interested in the expected proportion of elements removed, we get
E[X/n] = 1

p+1 , which is decreasing in p and 2
3 in case p = 1

2 . If we furthermore seek
the expected proportion of feasible solutions (see Section 6.6), then we sum over the
expected number of solutions per number of removed rows k and divide by the total
number of solutions 2n to get:

∑n
k=0

(
n
k

)
pn−k

2n = (p+ 1)n
2n , (A.23)

which converges to 0 as n → ∞, if p < 1. In the special case of p = 1 we get the
proportion 1. This corresponds to purely competitive systems, for which the row
sums are guaranteed to be negative. On the other extreme p = 0, we get that only
1

2n solutions are feasible (which is the solution x∗ = 0).
If p is not known, a solution is to try to infer it from data. One method for doing

so is called the maximum likelihood method, in which one seeks to find an estimate
of some parameter p which maximises the likelihood function L(p;x1, x2, ..., xm) =∏m
i=1 f(k|p), where x1, x2, ..., xm are outcomes of i.i.d variables following some hy-

pothesised distribution.
Sometimes, as is the case now, it is more convenient to maximise the logarithm

of the likelihood function. I take the derivative of log (L) wth respect to p and get:

d

dp
log (L) = d

dp

m∑
i=1

(log
(
n

ki

)
+ (n− ki) log (p)− n log (p+ 1))

= (mn−
m∑
i=1

ki)
1
p
−mn 1

p+ 1 .
(A.24)

In order to find the p which maximises the likelihood, I set the derivative to 0 and
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solve for p:
0 = (mn−

m∑
i=1

ki)
1
p
−mn 1

p+ 1
0 = (p+ 1)(n− k̄)− np
0 = −pk̄ + (n− k̄)

p = n− k̄
k̄

(A.25)

where k̄ ≡ 1
m

∑n
i=1 is the sample mean. This gives the minimum likelihood estimator

(MLE) p̂ = n−k̄
k̄
. Apparently k̄ is a sufficient statistic and incidentally the MLE is

identical to the method of moments estimator.
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