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Chapter 1 – Introduction 

A challenging aspect of system level virtual machine development is how to combine a 

system that executes the guest's code at a high level of performance, yet is capable of detailed 

instrumentation and modification of the guest code.  A significant amount of research in just in 

time (JIT) compilers exists and a number of existing products make this an interesting possibility 

to improve the performance.  However, the performance penalty imposed by machine abstraction 

may outweigh the additional benefits abstraction creates.  Can these techniques can be adapted 

for machine code to machine code translation and thereby prove to be capable optimizers that 

decrease the performance penalty of machine abstraction? 

System level virtual machines are capable of providing a certain level of detail of what their 

systems are doing, but they are insufficient both in detail and in their capabilities to react to the 

system’s behavior.  Other specialized tools exist that are very similar to VMs [12], but are 

designed for individual programs instead of system wide instrumentation.  The requirements we 

expect out of an instrumentation tool are that it must be system wide and it must be capable of 

introducing arbitrary code modification.  The goal is to provide a base where system designers or 

administrators can introduce logging, security checks, or any other desired modification.  How 

can we build a VM that is capable of introducing this level of arbitrary instrumentation into any 

code executing on the system? 

The solution being sought by this paper is to determine the effectiveness of producing a 

system level virtual machine in such a way that it simplifies the process of runtime behavior 

modification and decreases the extra costs of running software on a VM.  This will be 

accomplished by translating machine code through a JIT compiler.  The translation process will 

introduce monitoring and arbitrary code changes. 

The approach we have taken is to alter a portion of the traditional computing platform such 

that the software and its developers are unaware of the changes that are made.  The 

transformation of a piece of software begins with some form of high level source code, such as C 

or Haskell.  If we ignore the case of this code executing through a process virtual machine, such 
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as uncompiled Haskell, a compiler will transform the high level code into machine code.  This 

can be done with any compiler product and is not limited to a specific tool chain which this 

project uses.  The machine code is then given to a physical CPU where the program is executed 

as one expects.  This interaction can be seen in figure 1.1. 

In our system the transformation from source to machine code remains unaltered but 

deviates from the traditional path at the point where the machine code is given to the physical 

CPU.  Figure 1.2 shows a filtering screen after the X86 code block and another filtering screen 

just before the code is passed to the CPU.  Between these two screens is what this paper will 

cover in detail.  The first screen effectively breaks apart the code into its individual instructions 

and groups them into basic blocks.  The basic blocks are then emulated and additional behavior 

may be injected into them depending on the goals of the policy.  The expected goals of the policy 

are up to the designer or administrator, but some examples are to increase security through 

runtime checks, or to introduce logging to a specific portion of the system under execution.  

After this the emulated and transformed code is modified once again by a just in time compiler 

before it is placed in a code cache and executed by the CPU.  This last step represents the second 

filtering screen in figure 1.2.  Figure 1.3 presents a graphical representation of this process. 
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Figure 1.1 - The traditional path of execution from high level source code to execution on a 

CPU. 

 

 

Figure 1.2 - The modified path of execution using code rewriting and virtualization. 

 

Figure 1.3 - Basic model of the system  
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1.1 Background 

Every physical processor inside a machine has a defined set of instructions it operates on.  

These instructions are executed by the processor's internal logic which effectively emulates the 

conceptual view of what the instruction should do within the confines of the system.  This 

abstraction requires significant optimizations before it can reach the levels of executing millions 

and even billions of instructions per second.  Modern processor design has become so effective 

that the abstraction can now be moved into the software stack without suffering from unusable 

performance degradation.  Abstraction of the machine within software has been approached in 

many different ways and each contributes a multitude of benefits to their execution. 

Abstraction of a machine in software is labeled a virtual machine.  Whatever form or 

implementation the VM may take, it provides a platform with beneficial properties when 

executing its guest code on the host machine.  In the server space, the typical VM executes a 

virtualized machine on top of the same type of machine it is emulating.  The benefit of doing this 

is to logically separate every VM from all other VMs as well as the physical machine itself.  The 

first separation protects one kind of service and its user or processes from directly affecting the 

resources and data of another unrelated service on the system.  This way every service can 

receive a dedicated machine from which its users can operate on without complicated control 

mechanisms between them.  The second separation allows a VM to be separated from the 

physical machine it executes on and transitioned from one machine to another machine.  The 

software executing on the VM will be unaware of the transition which allows it to continue 

offering the service it provided without interruption.  These are benefits to a service being 

consumed by other users or machines. 

A more focused benefit of virtual machines can be found in how they allow dynamic 

control of the code being executed on them.  Unlike a physical machine where the behavior is 

typically fixed, a VM can be configured to apply safety checks or behavior modifications at 

runtime.  A typically example of this is a Java virtual machine which applies bounds checking to 

ensure indexing into an array is kept within its defined boundaries.  This is effectively a security 

control to prevent buffer overflow exploits related to overrunning a fixed size array.  Other VMs 

are capable of instrumenting the code they are executing.  This type of behavior modification can 

provide detailed information regarding what the software is doing at arbitrary levels of detail.  
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Every modification the VM supports must be capable of doing its work without committing an 

unintentional change in the state of the system. 

1.1.1 Virtual Machines 

A virtual machine is an implementation of a machine, whether real or conceptual, in 

software that is capable of executing a stream of the machine's instructions.  The execution of the 

instruction stream must conform to the behavior of the machine, which may include unexpected 

side effects in order to support arbitrary code.  Additionally, the software executing inside the 

VM must be limited to the bounds of the VM and be incapable of breaking out of the VM's 

sandbox.  Current technology provides two levels of virtual machines: a high level VM, typically 

modeling a conceptual machine, and a low level VM, typically modeling a physical machine. 

1.1.1.1 Process Virtual Machines 

A process virtual machine targets the execution of its machine code as a process inside the 

confines of an operating system.  The machine code it executes always targets a conceptual 

machine with its own instruction set in order to abstract away the actual hardware or operating 

system.  This choice provides a clean slate from which code targeting the machine can be 

executed upon a variety of hardware and OS configurations.  This is a very popular choice of 

development platforms and languages, such as Oracle's Java and Microsoft's .NET platform.  

While this paper does not focus on this type of VM, its concepts are still applicable. 

The widespread use of process virtual machines means that a great deal of research has been 

invested into how to increase the speed and efficiency of the VMs.  Since these types of 

machines execute code specific to their conceptual machine, the typical usage is to have an 

interpreter that executes arbitrary code and a JIT compiler that optimizes frequently executed 

code into a stream of the native machine's instructions.  Therefore, interesting work into both 

when to transition the code to the native machine's code and how to optimize it with as little 

overhead as possible has been invested.  Andreas Gal's thesis [1] provides an interesting look at 

how to turn typically expensive traditional static compiler optimization techniques into more 

efficient runtime optimizations through the use of hot trace selection.  The insights he provides 

focus on how to structure the code traces encountered at runtime in an efficient way in order to 

ease the JIT optimization overhead. 
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1.1.1.2 System Virtual Machines 

While research into process level virtual machines can be applied to this paper, the majority 

of relevant information comes from system level virtual machines.  This type of machine is built 

to exhibit the behavior of a specific machine at the instruction level.  The particulars of a 

machine below the intended behavior of its individual instructions, such as hardware bugs or the 

implementation of the logic at the silicon level, are typically not emulated.  This level of 

virtualization is sufficient to allow an entire operating system to run completely unaltered on a 

host machine.  The virtualized machine will share all resources with its host machine, but 

typically does so without any realization of this fact.  This allows multiple OSes to run 

concurrently without any specialized hardware. 

However, this type of execution has a clear disadvantage when compared to the same 

software executing on a real machine.  The emulation will severely affect the performance of the 

software executing in the VM.  A system level VM must be heavily optimized so that the code 

running on it is executed efficiently.  Therefore, it must perform as close to physical hardware on 

a wide range of operating systems and their applications before it will gain acceptance by users. 

There are generally two types of transparent system level virtual machines.  The first is a 

system that fully virtualizes the guest machine entirely as a process in the host OS [5].  This 

means that every instructions that executes, from the first instruction at boot up to the last during 

shutdown, is executed via some type of emulation by the VMs software.  However, since this 

type of VM runs as a process on the host system and because the X86 machine instruction set 

contains privileged instructions, it requires special handling to process those privileged 

instructions as their original behavior requires.  Therefore, these types of VMs must inspect 

every instruction executed in ring 0 and rewrite the privileged instruction to manufacture the 

expected behavior.   

An example of an instruction that must be specially handled is POPF [6].  When this 

instruction is executed in user mode the flags are set according to the value on the stack except 

for bits that are privileged.  However, this same instruction when executed in ring 0 is capable of 

also setting the privileged bits.  Consider a VM whose state has the interrupt flag (IF), a 

privileged bit, currently set and the value on the top of the stack has the IF bit unset.  When the 

POPF instruction is encountered as a user level process in the VM then the instruction executes 

as expected because the VM itself is executing as a user level process.  When the POPF 
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instruction is encountered as a root level process in the VM then the instruction will keep the IF 

flag set even though the flags value on the stack has the IF bit unset.  This is contrary to the 

expected behavior of the original code where a root level process is expected to be able to 

modify the privileged IF bit.  In this example, the root level process in the VM executing in a 

virtualized privileged state is unable to perform the privileged action.  Therefore, direct 

execution of instructions in a VM on an X86 processor cannot be done in a VM executing as a 

process on the host.  Privileged instructions must be caught and translated to perform the 

expected behavior. 

The second general type of transparent system level VM is one that fully virtualizes the 

guest machine with the assistance of hardware that traps privileged instruction for emulation by 

the virtual machine monitor.  When a privileged instruction is executed in a non-privileged mode 

hardware state then a hardware trap is issued.  The trap can then use the state of the OS to 

determine the appropriate action to emulate the instruction.  For X86 machines, the trap and 

emulate approach is a relatively new development, existing only since 2006 [5].  Unfortunately 

trap and emulation introduces significant overhead which limits it from becoming the dominant 

implementation of a virtual machine for X86. 

There is another type of system level VM that provides high performance but is not 

considered transparent.  Paravirtualization is a virtual machine monitor that requires the guest 

OSes to be modified to be aware of the VMM.  This awareness permits complicated operations 

to be executed more efficiently than the trap method used in hardware assisted VMs.  The guest 

OS also removes as many complicated instructions as possible, but if they must be executed then 

they are passed onto the VMM which verifies and executes the instruction [7].  To achieve the 

highest performance while abstracting away the hardware, paravirtualization allows guests to 

access hardware devices at near native speeds through drivers. 

The typical benefit attached to the use of virtual machines is server consolidation.  Without 

using a VMM, it is reasonable to setup every service with its own machine to run on.  This 

separation keeps the services isolated from each other, increasing fault tolerance and protecting 

data and resources of the individual services.  However, since a VMM is able to manage multiple 

VMs while maintaining isolation, many of the services can be moved from individual machines 

to individual VMs operating on a single machine.  This migration reduces the cost and storage of 

physical hardware and typically increases the CPU utilization per machine.  A VM instance can 
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be migrated to another physical machine with relative ease unlike an OS running directly on a 

physical machine.  Migration from one set of hardware to another set increases the overall 

uptime by permitting the hardware the VM is running on top of to be serviced without reducing 

or eliminating the services the software provides.  Finally, a virtual machine monitor can inspect 

the internal workings of the machine state, such as view the state of the CPU, as well as log the 

CPU and I/O usage of the guest machine.  This information can be used to dynamically assign 

resources to the VMM in order to effectively and efficiently make use of available hardware. 

Most VMMs focus on performance, but there also exists the need for detailed monitoring 

and even alteration of an executing VM.  The inspection of a VM's internal state is a benefit, but 

the granularity of it is severely limited.  VMs provide an opaque view of anything inside the 

emulated machine.  For instance, a VMM cannot determine which process inside the VM is 

using the majority of the machine's allotted CPU time.  Likewise the usage of I/O is limited to 

analyzing its use in the system as a whole.  This is a problem because the view of guest OS's data 

structures and applications is very limited to nonexistent.  If one of the goals of the VMM is to 

be able to directly inspect the internal workings of the VM, then additions must be made to the 

VMM.  In addition to the limitation of inspection of VMs, there is also a limitation in the ability 

to introduce additional security.  If the security of an operating system inside a VM is in 

question, the VMM is not capable of reconfiguring the OS at runtime in order to patch the 

vulnerability. 

1.1.2 Dynamic Code Modification  

All but the most basic of CPUs modify the code at runtime through reordering in order to 

take advantage of CPU pipelines.  Likewise, dynamic optimizations can be made in software 

through the analysis of usage patterns in executing software.  The usage patterns can either be 

analyzed and optimized immediately or can be deferred until their usage is frequent enough to 

outweigh their cost. 

1.1.2.1 Byte Code Modification  

Byte code modification is performed on process virtual machines.  Due to the limited scope 

of a process machine, this is the most commonly researched and well understood code modifier.  

Most byte code executing in the machine is actually interpreted in software to perform the 

expected behavior of the instruction [13].  However, the VM may decide it is worth the cost to 
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transform a chunk of the operating code and turn it into a form that is much more optimized.  

This modification is akin to a static code compiler, but typically employs cheaper optimizations 

to reduce overhead in both time and space [14].  The benefit to the system is an increase in 

performance in the code that occupies most of the program’s execution time.   

1.1.2.2 Machine Code Modification 

A machine code modifier expects the code stream it encounters to already have been highly 

optimized.  However, despite this there is still room for runtime improvement or introduction of 

new code into the stream.  A highly optimized stream of instructions can still be improved upon 

through the knowledge of its use at runtime.  Dynamo [4] has shown that speculative trace 

generation techniques, such as most recently used tail, can yield increased performance for many 

applications.  This is effectively identical to what byte code modification does.  Additionally, 

new behavior can be added by inserting instructions into the stream without altering the expected 

output, or the behavior can be altered if the intention is to patch the code. 

1.1.2.3 Dynamic Code Modification Components 

All dynamic code modification systems contain a basic set of components that make up their 

design.  At the beginning of the process, code is read from some location in the system as a 

stream of instructions to the machine.  These instructions are executed, whether directly or 

indirectly through emulation on the host machine, and their result continuously modifies the state 

of the machine.  All of this is done in such a way that the host is only altered through expected 

paths of change. 

The first major component of these systems is an interpreter.  It is needed in order to make 

sense of the instruction under execution and then execute it so that the state of the machine is 

correctly altered.  Typically an instruction is interpreted when the system assumes the cost to 

compile it is greater than the cost to emulate it (see Dynamo [4]).  Since this is executing inside a 

virtual machine, interpretation is an easy way to safely alter the state of the VM without 

worrying about drastically affecting the state of the real machine.  However, for some systems 

the interpreter is not used and is effectively replaced by a component that simply reads in 

instruction groups called basic blocks (see DynamoRIO [11] and Pin [15]).  A basic block is a 

series of instruction that end in a branch to another location. 
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If the interpreter encounters a section of code that is executed frequently, then the cost to 

interpret the code is often higher than the cost to convert it to a non-interpreted format.  This 

component involves the use of a just-in-time compiler that optimizes and outputs code in the host 

machine's instruction set architecture.  In most systems that use an interpreter and a compiler, the 

compiled code typically corresponds to a loop.  For machine code modification systems, the 

compiler is also used to aid linking of basic blocks into traces known as trace linking [15].  The 

newly generated native code now duplicates the original which adds to the overall memory cost 

of the system. 

In order to effectively manage the compiled and duplicated code the system requires a 

special cache to manage their reuse.  This component may be split into a variety of specialized 

caches depending on type of system and how separating caches improves performance (e.g. 

DynamoRIO uses a basic block cache and a trace cache).  The cache never stores code that is 

going to be interpreted.  This component is far from being simple as it must account for such 

difficulties as cache invalidation from dynamic code modification and virtual to physical 

memory mappings in the machine codes. 

1.1.3 Just-In-Time Compilation using LLVM 

The Low-Level Virtual Machine (LLVM) is a compiler framework originally developed at 

the University of Illinois at Urbana-Champaign [8].  It features a large set of tools and features 

that make it very powerful to analyze and generate code.  The compiler is built upon an 

intermediate representation that is primarily focused upon static single assignment (SSA) form 

[9] for dataflow and control flow graphs.  The optimizations can then generate highly efficient 

code from this IR.   

The LLVM package contains an extensive C++ API for building a wide variety of tools that 

take advantage of its optimizations.  The API spans the entire compiler toolset, from 

disassembling machine code to generation of optimized machine code from its original.  

Additionally, the API provides a complete implementation for generating LLVM's IR.  This way 

new languages can easily be supported with a ready to go and robust compiler back end for 

optimization.   

Ready-made tools built upon LLVM's API make up the typical compiler tool chain set, such 

as a disassembler, static compiler and linker.  Additionally it contains an interpreter and dynamic 
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compiler tool that operates on LLVM's bitcode format.  LLVM's bitcode is the encoding of 

LLVM IR into LLVM's container format.  A dynamic compiler can then use this format to 

access its library functions for inclusion to the actual program it wishes to optimize.  Using this 

technique a simple process type of virtual machine can easily be created from any toy language. 

1.1.4 Xen 

Xen is a virtual machine monitor that originally was built to support paravirtualized virtual 

machines.  As of Xen 3.0, it also supports full system virtualization using either AMD or Intel's 

hardware assisted virtualization features.  A single privileged guest operating system executing 

in Xen's dom0 domain is allowed to have direct access to the hardware.  This guest OS must be 

modified to be aware of the Xen hypervisor as well as be modified to operate as Xen's dom0.  

All other guest OSes operate in domU, where the either the OS is modified to operate on Xen's 

hypervisor or it is unmodified because the physical machine supports hardware VMs. 

In order to host a guest OS, Xen provides a sample kernel called Mini-OS and uses newlib 

for its C library.  Mini-OS is designed specifically to demonstrate how a kernel interacts with the 

hypervisor so that other OSes can reference its usage.  However, it does provide a minimal set of 

features that can be used to execute additional services or applications and it has been extended 

for such purposes [10].  For the standard ANSI C library, Xen uses Redhat's newlib.  This 

implementation is intended for embedded systems and lacks POSIX compliance and GNU 

extensions found in glibc.  Therefore, any software ported from glibc to run on Mini-OS requires 

additional changes. 

1.2 Purpose 

System level virtual machines monitors provide a minimal amount of information about the 

software they are executing.  They can know and log how much of the CPU or I/O is being used 

at any point during the runtime.  Unfortunately, their knowledge of what services or processes 

are using these resources is limited or nonexistent and their ability to limit the usage of these 

resources does not exist.  This lack of inspection and behavioral changes is intentional because 

these actions severely limit the performance of the software under execution.  Otherwise such 

changes oppose a VM's goal to provide performance that is as close to bare metal performance as 

possible. 
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The need to provide inspection and behavioral alteration is possible outside the confines of 

the typical virtual machine monitor.  These solutions typically work at the user process level and 

expect intimate knowledge of the application under inspection.  They are nearly unlimited in 

their ability to instrument the code such that programming errors and performance limitations 

can be detected.  One can even consider a debugger, such as GDB, to be an example of an 

instrumentation tool that also allows live updates of the executed code.  While most of these 

tools limit their instrumentation to user level processes, tools like PinOS [2] exist that instrument 

the entire software stack.  These tools are effectively virtual machines themselves as they are the 

first layer of software in the stack and limit the OS they execute. 

In order to turn a VMM into a highly instrumented and modifiable software platform, we 

must determine an effective way to introduce concepts used in the instrumentation tools without 

severely detracting from the already reduced performance incurred by the VM.  An approach 

similar to a debugger could be taken where soft breakpoints are inserted into the locations where 

instrumentation is desired.  The effect of this on performance can be witnessed by running a 

debugger with a conditional breakpoint in code that is often executed.  This choice can 

immediately be disqualified as the cost to handle such an instruction is typically very high and 

therefore restricts its usefulness.  Another approach is to take advantage of the machine's 

memory management unit to detect read or writes to specific memory locations.  While this is 

sufficient if the number of memory locations to instrument is limited to a reasonable level, it is 

too broad in scope and slow for large scale instrumentation.  Finally, emulation of the whole 

system or a specific region of code is another alternative.  The former has already been widely 

used in projects like QEMU [3] but insufficiently equipped for instrumentation.  The latter has 

been used in project like PinOS and is sufficiently equipped but executes on bare metal. 

We desire a system that is high performance, highly instrumentable without limitations in its 

scope, and operates on top of a VMM for wide deployment.  While all of the previously listed 

options can meet at least some of these requirements, all but the last one that provides emulation 

are too slow or insufficiently detailed to provide complete instrumentation.  This is why projects 

like PinOS have employed this form.  This paper will further explore this domain by including a 

ready-made just-in-time compiler to optimize the emulated machine code in much the same way 

as a process virtual machine does.  We will place the LLVM libraries and JIT into a dynamic 

code modification system to optimize the machine code to determine the effectiveness of this 
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approach.  The eventual goal is that this system can be used to dynamically alter the runtime 

behavior of a system in order to improve the overall security of the services provided by it. 

1.3 Applications 

It is helpful to gain an understanding of how this type of system is useful.  The most obvious 

use case is for those using it for software development or server administration.  However, it can 

also be a boon for those managing the deployment of their services to a customer through the 

level of invisible control it gives them.  We will first present the behavioral goals of the project 

in order to drive the understanding of their application. 

Transparency is a requirement for most types of system level virtual machines.  The obvious 

exception to this is a paravirtualized one where the OS knows it is executing above another 

software layer.  While this paper has already stated the assumption that it is built on top of Xen 

and the OS knows this (assuming it is not an HVM guest), the presence of a machine code 

modifier should not be known to it.  This simple goal is difficult because the code is transformed 

into another form (further discussion upon its limitations is covered in more detail in section 

3.2.3).  This affects the applications of this system because any software running above it must 

not be aware of its presence.  If it is aware, then it is possible that given enough knowledge of the 

underlying software the security of an application or the entire system could be compromised. 

Inspection is a requirement for the already obvious reason that we desire to look at the inner 

workings of the software.  While this wasn't possible for the typical VM, this system must be 

able to do so if given enough knowledge of the software executing on top of it.  This ensures us 

the capability to fully monitor the state of the machine and provide data to determine an action to 

take if needed.   

Control is a requirement in order to determine when an action should take place that alters 

the runtime behavior of the system.  Given enough knowledge of the underlying software and 

given sufficient inspection of it, the machine code modifier must be able to transform the 

currently executing code in order to inhibit, correct, or alter the software.   

Transformation is a requirement that performs the action that inhibits, corrects or performs 

any other alteration to the system's normal behavior.  The actual action taken may be of any 

scope and may alter the underlying software in any way.   
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Flexibility is a requirement imposed by all of the above.  The instrumentation and 

modifications must be allowed to take place in arbitrary code.  The instrumentation and 

modifications themselves must be able to be placed at arbitrary, yet relevant, points in the 

system. 

Of the five goals above, the first and last cannot be directly shown as specific use case 

benefits.  We could consider them the characteristic traits that the other three possess in order to 

provide the desired behavior.  Therefore, the use cases presented here are limited to inspection, 

control, and transformation. 

1.3.1 Inspection 

Inspection of the system is a passive behavior that either logs what the administrator is 

interested in or is used as a trigger to the other behavioral traits.  Depending on the level of 

insider knowledge of the OS or application under inspection, this may be a significant drain on 

the system resources or it could be acceptable.  In most cases the administrator requires insider 

knowledge of both the OS and the application it tracks in order to confine the inspection to a 

specific task. 

A useful software analysis tool that can be created is to log the execution traces of an 

application at all levels of the software stack.  The trace could then be used by a developer to 

analyze performance improvements or to understand the impact of a particular system call. 

A very intrusive and draining case is one that tracks every memory read or write.  Clearly 

this is so intrusive that it will bring the system to a virtual halt, but it could be limited to a 

specific memory range.  One could think of this as being similar to a debugger's break on 

memory read or write, where the developer wants to know who is accessing that memory 

location. 

1.3.2 Control 

Security checks and enforcement could be the greatest benefit of this type of system.  As 

established in the inspection section, if we have enough knowledge we can stop, alter or 

completely replace the behavior of a piece of code transparently with regards to the executing 

system's knowledge. 

The integrity of the system's software is critical in order to prevent unauthorized code 

modifications from executing.  Many mobile phone chipsets implement this in hardware in order 
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to prevent unauthorized changes to the phone's firmware.  However, this can also be done in 

software by enforcing this as a control policy in this system.  This may be limited to a specific 

application or driver, but it could also be placed as a requirement on the entire system.  For 

example, when an application is loaded into memory but has not yet executed, the integrity of the 

application could be verified through a hash code check.  If the known hash, accessed via Xen's 

dom0, is the same as the one generated then the system permits the application to execute.  

However, if the hashes differ then the controlling software intervenes to prevent the code from 

executing.  A message could then be sent to notify an administrator of the unauthorized code 

change. 

Active monitoring of licensed software is another way this system can control the virtualized 

system.  In this scenario, consider a limitedly licensed piece of software that processes SMS 

messages for a mobile phone service provider.  If the software is licensed to processes no more 

than 50,000 messages in a day, then the control policy can be used to enforce this instead of the 

software itself.  Therefore, the software can be written in such a way that enforcing the licenses 

is not part of its consideration and is left to an external policy developed by the administrator of 

the virtual system.  A user logging in to the virtual system will be unable to manipulate the 

policy because it is outside its logical control.  

1.3.3 Transformation 

Transformation may be performed based on the results of the inspection or the result of 

control actions required by a policy.  For example, it may inhibit the actions of the SMS 

processing application by removing the code that routes the SMS traffic.  Alternatively, it may 

correct the behavior of a piece of code that contains a bug or to temporarily alter the runtime 

behavior.  The following are development focused usage examples. 

Hot patching is the action of applying patches to software without restarting the software or 

the system.  If a bug is found in a piece of code, this type of virtual machine could simply replace 

the afflicted area with new code.  A simple example that should be hot patchable is a common 

off by one error.  Simply changing a JL with a JLE instruction in the emulated instruction cache 

is a simple way to transform the runtime behavior without loading new binaries or altering the 

binary code itself. 
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A common problem in debugging and testing cycle is to alter the behavior of software under 

test without altering the source code.  For example, rather than execute a very time expensive 

function that is called before and is not relevant to the piece of code we are interested in, we 

could eliminate the call to the function itself.  This transformation requires a policy that defines 

what should be removed when writing the new code to the cache and it will be done every time 

the targeted code is executed. 
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Chapter 2 – Problem Statement 

The main problem we are solving is how to create a system level virtual machine that is 

capable of high performance yet is able to modify the executing machine code in order to 

introduce instrumentation and behavior modification.  We will explore this problem from two 

related points.  Firstly, are existing JIT compilers capable enough to improve the inherent 

performance penalty of machine abstraction?  Secondly, can we build a VM that is capable of 

introducing arbitrary instrumentation or machine code modification into any executing code? 

2.1 Known Problems and Solutions 

System level virtual machines monitors are limited in the detail of the inner workings of the 

software executing on them.  While they are able to log coarse grained resources utilization, such 

as CPU utilization or network bandwidth, they are unable to determine the utilization of specific 

software services.  Additionally, they are unable to directly limit the capabilities of specific 

processes or services.  However, the lack of insight into the software executing on the VM is 

intentional due to its effect on performance.  Being able to peer inside the execution of software 

to determine what is happening is intrusive and comes at a great cost in time.  After all, a VM 

must be fast enough otherwise no one would use it. 

In this section we will cover a set of known possible solutions and discuss the benefits and 

problems associated with each.  The solutions are not necessarily restricted to virtual machine 

monitor implementations but they all require fine grained control.  Their outcome must seek to 

develop a system whose performance is sufficient and its capability to transparently inspect, 

control, and transform the executing software is significantly higher than today's VMM.  In order 

to turn a VMM into a highly instrumented and modifiable software platform, we must determine 

an effective way to introduce concepts used in the instrumentation tools without severely 

detracting from the already reduced performance incurred by the VM. 

2.1.1 Possible Solutions 

2.1.1.1 Interrupt Solution 

The first proposed solution is to insert X86 INT instructions or similar at locations in the 

executing code that we are interested in.  Then when the instruction is executed it can notify the 
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appropriate inspection handler to perform its duties.  This simple approach is relatively easy to 

implement.  Effectively this is what a debugger does when it a programmer requests a break 

point to be inserted at a specified location.  The downside to this implementation is that it cannot 

maintain a reasonable level of performance.  This is readily apparent when a programmer places 

a break point in a frequently executed piece of code.  Even conditional break points severely 

hamper performance as their condition must still be checked even when the debugger determines 

control should not be restored to the operator.  Using this to gain control of the system under 

execution to monitor and transform its behavior is too expensive. 

2.1.1.2 Memory Read / Write Detection 

Another approach is to take advantage of the machine's memory management unit to detect 

read or writes to specific memory locations.  This provides the ability to inspect, control and 

transform how code uses the system's memory.  However, it is readily apparent that the scope of 

this system is limited.  For example, the possible transformations are likely limited to whatever 

data is being read or written instead of arbitrary code changes.  Additionally, this suffers from 

performance issues if the memory region being read or written to is often used by the system.  

Such cases will likely make the executing software too slow to be useful due to the broadness of 

this type of inspection. 

2.1.1.3 Emulation 

Emulation is a simple idea that can be applied as a solution to a variety of problems.  In the 

scope of our problem it is used in order to have complete control over the software executing on 

it.  Whatever changes required can easily be made because each step of the system is entirely 

controlled by our software.  Therefore it is a solution that easily solves the problem, but its costs 

are very high.  Even a simple add instruction quickly expands to significantly many more 

instructions when it is emulated.  This means the performance is likely too large of a factor and 

will prevent its use. 

2.1.1.4 Code Caching 

An approach that is well explored is one where code caching is applied.  This uses a scheme 

where the code's instruction stream is only slightly modified in order to insert it into a cache or 

apply transformations to it.  This method is well researched by many projects and typically has 

adequate performance.  The benefit of this type of system is that it is highly expressive and most 
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of the code is executed natively without modification.  The system is expressive because at 

nearly any point it can decide to insert new code into the system that may provide 

instrumentation of a software service or transformation of binary code at runtime.  Without any 

transformations applied to the code, it simply needs to be glued together so that it can execute 

entirely out of a code cache instead of the original and unaltered code.  The downside to this is 

that there is an immediate upfront cost to convert the code to a cache and the state of the machine 

is more difficult to save than in emulation. 

2.1.1.5 Emulation, Code Caching, and JIT Compilation 

The final proposed solution combines some of the previous ones with the idea that their 

detracting qualities are mitigated through their combined benefits.  As noted previously, 

emulation is highly expressive but its costs are very high.  However, if the emulation is 

recompiled through a JIT compiler and inserted into a code cache then it may reduce the 

performance issues to a point where the system runs sufficiently fast enough.  The JIT will be 

able to use constant folding, dead code elimination, loop unrolling and other qualities of the code 

that can be taken advantage of by the compiler.  In many regards this will be similar to the 

advantages of a process level virtual machine.  The issue with this type of system is mostly a 

question of performance.  We do not know how much overhead can be eliminated so that it is 

faster than an equivalent system that is pure emulation.  Additionally, the code cache requires a 

significant upfront cost we hope will be mitigated once the system reaches a stable state where 

newly encountered code is limited. 

2.2 Related Work 

2.2.1 Machine Code Modification 

2.2.1.1 Dynamo and DynamoRIO 

A significant amount of research into efficient machine code optimization and modification 

has been performed by Hewlett Packard in their Dynamo [4] project and Bruening's DynamoRIO 

[11].  These systems work off the idea that the cost of interpreting and optimizing code that is 

executed at least once will eventually outweigh the startup penalty involved.  This goal is in line 

with that of this paper and the results and lessons learned from these projects were beneficial to 

this project's development. 
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2.2.1.1.1 Dynamo 

The least interesting and highest cost portion of Dynamo [4] is its interpreter.  Just like a 

process virtual machine, Dynamo is designed to interpret every instruction it executes until it 

discovers a hot spot in the code.  The role of the interpreter is important because it permits 

Dynamo to peer into the instruction stream in order to determine when a piece of code ought to 

be optimized.  This is a trade-off between Dynamo's reduced performance for an infrequently 

executed code block versus the performance and memory costs required to optimize every piece 

of code. 

The interpreter executes all instructions as if they were running on physical hardware.  

When a branch instruction is interpreted, Dynamo performs supplemental operations for the 

instruction in order to determine when the code should be optimized.  When a section of code 

ought to be optimized it is called a trace.  So called "hot traces" are points in the instruction 

stream where Dynamo has determined the trace is executed often enough that it is likely more 

beneficial to analyze and optimize than simply interpret.  Loops are the prototypical hot trace and 

are detected via a record of counters that monitor the execution of a branch's target address.  

Once a counter for a target address is exceeds a value, the point when the amortized cost of 

optimization over interpretation, then the trace is compiled and ready for execution directly by 

the machine.  This is a common design pattern of virtual machines of any flavor and is a 

consideration for specific areas of the execution loop for this paper.  However, our approach 

eliminates the interpreter and instead recompiles the interpreted code. 

However, before a trace that is identified as hot can be optimized Dynamo must discover the 

possible exit points in the trace.  Similar to identifying a trace's beginning, a backwards branch 

terminates the process.  Recorded traces, what Dynamo identifies as fragments, are then 

optimized and ready for direct execution by the machine.  In the event a trace becomes too long 

before an exit from the trace is discovered then Dynamo will cut the trace short. 

Once a trace is optimized and ready for direct execution by the machine then Dynamo must 

be prepared to execute it often.  A newly generated fragment is stored in a cache of fragments for 

future execution.  One possible scenario during the generation of the fragment is for the trace to 

have exits into other locations in the fragment cache.  These possible destinations are linked 

together for increased speed by permitting the direct execution of code on the machine will not 
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be interrupted.  Now a newly compiled trace can be executed directly by other fragments in the 

cache without the need for interpretation. 

As the fragment cache grows and becomes filled with a majority of the programs runtime 

code, the overhead incurred by Dynamo is reduced.  Linked fragments are able to run directly on 

the machine with infrequent uses of the interpreter, optimizer and linker.  Over time the overhead 

incurred during start-up decreases to a point where its cost is negligible.  This paper also seeks to 

amortize the cost of new code generation at start-up, with specific optimizations, in order to 

reduce the cost of its behavioral transformations.  The technique of linking fragments is one we 

hope can be employed by our project in the future. 

One major cost reduction in Dynamo's optimized code generator is that traces eliminate the 

overhead of call instructions and other types of branches.  This allows the optimizer to 

effectively inline subroutines which reduces the overhead costs of Dynamo's system.  

Unfortunately, this method could not be pursued in this project, but Dynamo provides a good 

example of a potential cost reduction.  This decision was influenced by other research [1] which 

has shown that super-blocks, similar to Dynamo's fragments [4], are not influential enough to 

reduce costs. 

Overall Dynamo's goal is to increase the time performance of unaltered machine code.  The 

benchmarks used [4] show performance increases as high as 22% over the same binary executed 

without Dynamo's optimizations.  This is an impressive feat, but unfortunately the goals of 

Dynamo and that of this paper are different enough that this type of performance is unlikely.  

Specifically, this paper seeks to optimize and transform the code in order to alter its behavior.  

This means any behavioral transformations will result in code that has increased in size and 

complexity instead of the opposite. 

2.2.1.1.2 DynamoRIO 

The author of DynamoRIO [11] considers Dynamo to be the precursor to his system.  

Bruening vastly grows the goals, and implementation to encompass a system that maintains high 

performance optimizations but also introduces arbitrary code transformations.  A program 

currently executing under the full control of the target machine as well as any program that could 

be executed are able to be run in DynamoRIO.  As is the case with Dynamo and this project, 

DynamoRIO holds no requirements on the application under execution and from this 

requirement introduces a number of others. 
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DynamoRIO operates under the assumption that the overhead introduced by its 

modifications will eventually be insignificant when averaged over time.  An efficient system that 

approaches or exceeds native performance is a requirement in order to promote significant 

adoption.  However, efficiency is useless if the system fails to produce results identical to that of 

the program executing directly by the machine.  The system must support arbitrary code 

transformations in order to build up additional logging or introduce stricter security checks.  

Finally, the system must be supported on commonly used machines and operating systems and 

must work on any type of program in order to promote adoption. 

Unlike its predecessor this system does not employ an interpreter but instead solely executes 

the program from a code cache.  Bruening determined that the cost to create and store all 

executed code is insignificant over time.  Therefore, we will follow this design choice and cache 

executed code after we’ve modified it via our JIT compiler step instead of interpreting any of it.  

Bruening’s code cache introduces a basic block cache to copy each basic block unit of the 

program that is executed for observation and manipulation. 

DynamoRIO defines a basic block as an entry point to a control transfer.  Every instruction 

will be executed natively with the exception of control transfer instructions.  If these instructions 

point to code that has not been cached yet then they produce stubs that return control back to 

DynamoRIO.  At this point the system is able to generate new code so that the application can 

continue executing. 

Once the connected block is generated and added to the basic block cache then it is time to 

link the two blocks together.  Bruening discovered that each link, whether incoming or outgoing, 

must be kept track of for efficiency and consistency with regards to insertion and deletion of the 

links targeted.  He also discovered that placing the exit stubs in a separate cache was beneficial 

when deleting and reintroducing the exit stubs as well as to reduce the overall size of the basic 

block cache. 

An instruction cache that stores every basic block in an address different than that of the 

original creates a challenging problem to solve.  Since the application is expected to have a state 

identical to that of the original, an indirect branch that is altered to use the new address of its 

target in the instruction cache has a more difficult process to reverse this change.  Bruening 

attempted to two distinct techniques to implement this correctly but found complete replacement 

too challenging.  Specifically, a return address on the stack may be read by another instruction 
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and its value used as part of its operation.  This presents the need to watch every read of the 

application to make sure it is supplied with the correct address.  Bruening considered direct 

replacement promising in terms of performance but practically was infeasible to implement 

efficiently while maintaining correctness. 

Indirect branches may still maintain correctness while achieving satisfiable performance.  

DynamoRIO ended up using an inlined look-up with a hash table to determine the required 

translation.  Bruening discusses a number of possible theoretical hash table optimizations and 

how their performance affected DynamoRIO in reality.  It is interesting to note his observations 

regarding the theoretical performance expectation and the performance observed as the 

machine's architecture design affects the algorithm choice.  However, the performance result is 

noted as being the largest overhead of DynamoRIO. 

The most effective performance increase comes from DynamoRIO's trace cache.  Like 

Dynamo before it, the trace cache follows a long series of instructions that together are often 

executed.  In the case of DynamoRIO the traces are composed of a series of basic blocks that are 

executed together.  It also slightly departs from its predecessor's next executing tail (NET) 

scheme by ignoring backwards indirect branches when determining if a branch target should be a 

trace head.  Naturally this will increase the length of a trace and likely improve the overall 

performance, but it will also increase the usage of the trace cache.  Additionally, the trace size 

must be limited to prevent unlimited loop unrolling.  Bruening discovered his scheme to improve 

performance by as much as 10% over the standard NET implementation. 

One of the DynamoRIO's most straight forward and impressive optimizations is to directly 

connect code that makes an unconditional branch.  Bruening calls this eliding unconditional 

control transfers.  When fetching instructions to complete a basic block, an unconditional branch 

does not stop the process but instead is removed.  The basic block that the branch pointed to is 

then appended to the current block thereby eliminating the cost of the branch.  Bruening notes a 

few issues with this optimization as it may increases memory, pose a problem for infinite loops, 

and invalid memory at branch destination.  Nevertheless a performance increase was seen by 

most test applications and was above 10% for some.  The simplicity of this optimization makes it 

useful for this project. 
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2.2.2 Machine Code Instrumentation 

2.2.2.1 Pin and PinOS 

Machine code instrumentation is similar to pure machine code modification.  The most 

significant additional challenge is how to transform the machine code in a way that is completely 

transparent.  Pin [15] and PinOS [2] cover many problems encountered complete with solutions 

that are applicable to the original ideas behind this project.  The largest differentiation between 

the two systems is that Pin focuses on application level instrumentation while PinOS, much like 

this project, focuses on system level instrumentation.  It is clear there are significant challenges 

for any system that intends to virtualize and modify the runtime behavior of the system. 

2.2.2.1.1 Pin 

A single application can be instrumented at any location and with any kind of inspection 

using Pin [15].  In fact, an application that is already in progress can have Pin attached to it, be 

inspected for a period of time, then have Pin detach without any modifications to the original 

application binary.  This is accomplished via a JIT compiler that inserts the instrumentation into 

the application's own code.  All of this is done completely transparent to the application, thereby 

allowing Pin to operate on any type of application.  While the instrumentation is interesting and 

eventually applicable to this paper's work, the use of the JIT compiler is its most interesting 

aspect at this time. 

Just like Dynamo and DynamoRIO, Pin takes a series of instructions that are supposed to be 

executed and stores the instructions in a cache.  Each exit from the block goes to a stub code 

which returns control directly to Pin.  Once the exit's target is placed in the cache, then the stub 

call is removed if it is a direct branch.  Otherwise Pin transforms the branch instruction into a 

predictive look-up to search for the appropriate cache entry in a very similar way to how 

DynamoRIO does it.  Connecting blocks of code together so that a return to the dispatcher is 

unnecessary clearly increases performance and will be considered for this project. 

However, unlike DynamoRIO, Pin uses a JIT to transform every block into newly compiled 

code.  This occurs regardless of whether any instrumentation is necessary, which corresponds to 

the design of this project.  One of the useful optimizations Pin’s JIT used is liveness analysis for 

the flags register where a write to the flags register that is never read before another write occurs 

can be optimized away.  We will evaluate the performance implications of such an optimization 

as part of this paper in chapter 6. 
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2.2.2.1.2 PinOS 

PinOS [2] is an interesting experiment into how to apply all of the instrumentation concepts 

developed by Pin for a single application into an entire system.  Predictably the system wide 

approach encounters numerous highly complex transparency issues previously undiscovered by 

Pin.  To simplify the implementation, Bungale and Luk used a modified Xen virtual machine 

monitor because it provides a number of features convenient for their type of instrumentation 

system. 

One requirement of transparency, just as this paper requires, is that the operating system 

under execution must not be modified nor be aware it is executing by another layer of software.  

Additionally, the instrumentation tool must be independent of any services, such as standard 

library functions or memory allocation, provided by the OS.  Therefore, in order to accomplish 

this goal the memory used by PinOS must not be accessible nor be known of by the OS.  Xen 

makes this a simple task because it can place the guest OS on top of the PinOS layer in such a 

way that the guest OS assumes it is running on a real machine.  This is accomplished via a Xen 

driver that performs memory stealing, attaching/detaching from a running system, and I/O 

services.  Likewise our system is designed identically in order to support the following behavior. 

The process of stealing memory from the guest OS is critical for transparency.  

Unfortunately this requires a modification to Xen in order to support this behavior.  Xen 

maintains domain separation by keeping a map of every page a given domain is able to access.  

PinOS exploits this behavior by allocating a special hidden chunk of the domain's physical 

memory for its purposes and which is not known by the OS.  Virtual addresses are more involved 

as they require stealing the pages from the kernel and detecting if the kernel ever tries to access 

or write into these regions. 

This instrumentation tool does not run on top of an OS which provides plenty of services to 

store its observations to disk.  Therefore, it must find another way to divert its plethora of logs 

into long term storage.  PinOS is able to perform I/O operation with the help of a process running 

on Xen's domain-0.  Xen supports the ability to map memory between the domains which allows 

the given process to store the logs.  This simplifies what would otherwise require a significantly 

more costly development approach without Xen. 

Interrupts and exceptions are problems common to any system that attempts to virtualize 

away the machine.  PinOS solves interrupts with a simple check at the beginning of each trace to 
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query the virtualized interrupt controller to check if any have occurred and then handle them.  

All interrupts that do occur are queued in order to allow the currently executing code to be safely 

free from any instrumentation code.  Unfortunately the solution to exceptions is significantly 

more complex for any system that compiles the original machine instructions.  Since the machine 

code is transformed by a compiler that means the original behavior is intact but the exact steps 

involved in reaching the end result may be mixed around.  Therefore, whenever PinOS generates 

multiple instructions from a single instruction it will emulate these instruction in order to revert 

the state of the machine back to what it should have been if the original instruction had been 

executed.  This is a major issue to tackle for any machine code optimizer that operates on the 

system level rather than the application level and produces highly optimized and mixed up code.  

Unfortunately, this paper must leave this exploration to future work, but the lessons from PinOS 

should be leveraged there. 

Another obstacle to system level virtualization on X86 machine code is called the 

irreversible segmentation problem by Bungale and Luk.  This issue stems from the X86's 

segmentation register behavior of having a selector that points to an entry in the global or local 

descriptor table and an inaccessible cached value of the entry in the descriptor.  When a value is 

stored in the segment register, both the value in the descriptor table entry and the value in the 

cache will match.  However, it is legal to write a new value in the descriptor table entry which is 

not reflected in the descriptor cache.  This is expected behavior, and therefore is not a problem 

when the value in the GDT and the cached value are different.  It becomes a problem once 

control of the machine is transferred away from the guest and the value of the register is 

overwritten.  When that occurs, the value of the descriptor cache cannot be correctly restored 

when context is given back to the guest.  The solution employed is to shadow the descriptor 

caches of the guest and translate the guest's segment instructions so that the segment selector 

value points to the shadowed entry.  When context switch forces a segment register to be saved, 

PinOS is able to restore it by simply pointing the selector value to the shadowed location where 

the original value is relevant and correct. 

One of the problems with implementing a machine code cache is what to do when a program 

modifies its own code.  For application level caches, the only worry is self modifying code which 

is easily detected by write protecting the memory.  For system level caches, the same problem is 

present but the cache must also be aware that multiple virtual addresses may be mapped to the 



32 

 

single physical page that is being altered.  PinOS uses a mapping of physical pages to all virtual 

pages that map to it.  If the OS remaps pages in memory, any generated code in the cache will 

automatically be invalidated when used because the entry into the trace verifies the physical and 

virtual address ID.  This ID will no longer match which will result in the code being invalidated 

and regenerated. 

2.2.3 Advanced Machine Code Optimization 

2.2.3.1 Andreas Gal’s Thesis 

While this paper utilizes LLVM to perform the majority of the optimization that are 

applicable from a process level VM, it is beneficial to look at current research.  This builds 

understanding of the optimization used in LLVM as well as the possible improvements to LLVM 

or even possible implementations for replacement of LLVM's JIT.  Andreas Gal's research into 

improving the current JIT optimizations focuses on static single assignment and how it can be 

simplified. 

Static single assignment (SSA) form is a well known transformation step as part of the 

compiler's intermediate representation (IR).  This form greatly enhances the capabilities of many 

optimization passes to produce a higher performing output.  Unfortunately, as noted by Gal, the 

cost to do this is expensive for basic blocks because the block may be entered from multiple 

locations, or control flow merges.  This occurs despite the fact that at runtime many of the merge 

edges are never executed.  All of these entries into the basic block result in the introduction of 

costly φ-instructions. 

Due to the nature of a JIT, the exact usage of the code is known.  This makes simplifying 

SSA form only into what is needed at runtime a desirable goal.  Gal presents a simplifying 

variant by eliminating such unnecessary factors and eliminating most control flow merges to 

reduce the majority of the cost of conversion to SSA form.  It is done through lazy updates of 

basic block merge points where only the edges actually used at runtime are considered.  This 

reduces both memory and time costs involved in compiling the code at runtime.  In the event that 

LLVM is inefficient in its optimizations and code generation, applying Gal’s work to the project 

will be useful at many stages of the compiler’s development. 
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Chapter 3 – Approach 

This study is based upon readily available tools that when combined are able to evaluate the 

effectiveness of runtime machine code modification in a virtual machine.  The effectiveness will 

be measured through benchmarks in order to identify the design choices and optimizations that 

are most successful.  In this chapter we will look at (1) an in depth description of the architecture 

and present the system design from all levels, (2) a description of the benchmarks used to 

analyze the performance of some of the design choices and optimizations, and (3) the limitations 

of this design and of the tools employed will be noted. 

3.1 Architecture 

The code rewriting system consists of a few high level components executing on top of the 

computer system's hardware (Figure 3.1).   The focus of this paper is on the code rewriter 

portion, but a general understanding of the system as a whole will hopefully answer questions 

regarding why it is useful. 

 

 

Figure 3.1 - Basic architecture of the code rewriting system 
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 The first layer is Xen and it is the main component that everything else is built upon.  Xen 

has some useful features that will be taken advantage of in order to simplify the role of the code 

rewriter, such as secure separation between the trusted domain and its OS and the domains being 

monitored.  The trusted domain provides a safe location for the policies that create 

instrumentation, control and transformation to the monitored domain.  The monitored domain is 

where the code rewriter exists and through the use of Xen features is able to hide itself from the 

OS the code rewriter will work on.  All the output from the policies that control the code rewriter 

is returned to the trusted domain.  This ensures the monitored domain never has access to the 

policies nor their results.  Not all of these components have been implemented so far, but this 

chapter will in part explore their expected use. 

 Xen is a system level virtual machine monitor used by this project in order to provide 

security through logical separation of machines and to logically separate the code rewriter from 

the software it operates on.  The first and main component is the hypervisor that maintains 

control over the computer system.  The second component is the trusted domain that effectively 

controls the monitored domain.  The final component is the monitored domain that executes the 

code rewriter which in turn executes the OS. 

 The Xen hypervisor is a thin layer between the physical hardware and all the software that 

executes on the machine.  The purpose of this layer is to abstract away the details of the physical 

machine in order to allow multiple operating systems to execute on a single machine.  This 

means it has control over the processor, and therefore the scheduling of the virtual machines, as 

well as the distribution of memory, and therefore logical separation of the virtual machines.  

However, the hypervisor gives the trusted domain the power to control nearly everything 

unrelated to CPU scheduling and memory distribution. 

 The first virtual machine executed by Xen is the trusted domain VM.  It mostly plays the 

same role as that of an OS executing directly on the hardware.  However, it is modified and fully 

aware it is executing on the hypervisor in order to share most of the I/O hardware.  In this project 

the trusted domain, or domain 0, will be the manager of the code rewriter's policy which controls 

the transformations made to software that executes on the rewriter.  A policy may be as simple as 

a count of all the memory writes to specific range of addresses or as complicated as a system that 

actively monitors for security breaches in order to deploy silent responses that halt the intrusion.  
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Unfortunately the definition of the policies is outside the scope of this paper and will not be 

covered in detail. 

 All other virtual machines are unprivileged monitored domains also known as domain U.  

These VMs are not able to access hardware directly and are either modified OSes that are aware 

they are paravirtualized on Xen, or are unmodified but executing as hardware assisted virtual 

machines.  In this paper we focus on paravirtualized software.  All I/O communication will pass 

through the hypervisor to the trusted domain where the action, such as sending data on the 

network, takes place.  However, since the code rewriter is the first layer of software and not the 

OS, we must take special care to hide it as the OS assumes it has full control of the machine.  

This is done in the same way that PinOS used Xen to steal memory.  A special chunk of physical 

memory will be reserved exclusively for use by the code rewriter.   

 Finally, the last piece of Xen used is its mini-OS.  This is a sample kernel Xen provides and 

uses newlib for its C library.  Mini-OS is designed specifically to demonstrate how a kernel 

interacts with the hypervisor so that other OSes can reference its usage.  However, it does 

provide a minimal set of features that can be used to execute additional services or applications.  

For the standard ANSI C library, Mini-OS uses Redhat's newlib.  This implementation is 

intended for embedded systems and lacks POSIX compliance and GNU extensions found in 

glibc.  Therefore, any software ported from glibc to run on Mini-OS may require additional 

changes.  Specifically, all the basic dependencies LLVM has must be ported to link with newlib. 
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Figure 3.2 - The general architecture of Xen  

 

 The code rewriter is the main focus of this project.  It combines a disassembler, a code 

generator, a virtualization of an X86 machine, an emulation of an X86 machine instructions, a 

JIT compiler and a generated X86 code cache.  Figure 3.3 shows the basic layout of the rewriter 

and the flow of data through it.  The exact operation will be furthered described in the design and 

implementation section of this chapter. 

 Each piece of the code rewriter is built on top of or uses the Low Level Virtual Machine 

(LLVM) tool chain.  For example, the disassembler uses a C++ API provided by LLVM to take 

an instruction stream and decipher its bytes into their operation names and operands.  This is a 

convenient tool because it provides most of the behavior needed in order to refactor the machine 

code into something new.  The emulated instructions can even be precompiled into LLVM's IR 

format for easy code generation. 
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Figure 3.3 - The structure of the code rewriter.  The code cache begins execution, gives control 

to the disassembler if it cannot execute the given address, the disassembler passes a block of 

instructions to the code generator, the code generator uses the implementation of the emulated 

instructions to stitch the code back together, and finally the JIT compiler generates new machine 

code that is given back to the code cache before it is executed on the CPU.  The executed code 

will adjust the state of the virtualized machine code in memory that is hidden from the actual OS. 

 

 The final piece of the architecture for this project is the software under execution by the 

code rewriter.  This is expected to be an operating system and furthermore is expected to be 

Linux.  The kernel version must be known in order for the policies applied to the system to be 

effective.  For example, a policy that monitors the execution of a specific application must be 

able to instrument certain parts of the system in order for it to determine when and where the 

application is loaded to memory. 

3.2 Design and Implementation 

 This section will cover the design and implementation of the code rewriter only.  The design 

and implementation of the policy component and LLVM's integration with newlib standard 

library will not be discussed.  The approach will be bottom up beginning with the first code that 

needs to be rewritten up to the point where the rewritten code is executed on the machine. 

 The current state of the project does not use a virtual machine in order to execute the code.  

Although that is the desired goal, the current design is similar to a process virtual machine as it 

executes as a Linux user space process.  However, this does not limit it to executing user space 

applications.  A significant amount of testing has been done on the L4 microkernel's [12] boot 

loader, called Kickstart, to introduce more of the instructions used in loading an OS into 

memory.  To be able to execute Kickstart, or some other application, its executable file format 
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must be decoded so that it can be placed in memory at the correct locations and then executed 

from its predefined starting location.  This is the first component of the code rewriter. 

3.2.1 Loading Binaries into Memory 

 The executable file format supported by the code rewriter is the Executable and Linkable 

Format (ELF).  ELF is used by many operating systems and most importantly by the OS used to 

evaluate this project.  Its format is well documented and there are many tools and libraries for 

reading and writing these files.  In this project we use Red Hat's elfutil library for parsing ELF 

files due to its simplicity and common usage across many Linux distributions. 

 The loader begins by reading the file's ELF header.  Once all the data structures are filled in 

by elfutil, we begin by fetching the entry point address which is where the first instruction to 

execute is located.  Next the file's memory segments defined in the ELF are loaded with their 

respective data.  A simple executable's file segments are named .text, .bss, .rodata, etc..  Finally, 

the machine type is defined in the ELF header and it is used by the code rewriter to initialize 

LLVM with the proper configuration for disassembling the machine code.  Figure 3.7 displays 

the basic flow of the ELF loader. 
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Figure 3.4 - The ELF loader is the first component of the code rewriter.  It takes as input an ELF 

file and performs the following actions: (1) gets the entry point address, (2) loads segments into 

memory and (3) gets the machine type definition of the ELF file. 

3.2.2 Deciphering Machine Code 

 Now that the starting address and the machine's type have been identified, the next step is to 

begin deciphering the instruction stream of the program's code.  At this point LLVM's 

MCDisassembler (MC stands for machine code) interface is used to determine the instruction’s 

operation and operands.  The stream of instructions is disassembled until an instruction is 

encountered that may alter the instruction pointer register.  Alternatively it could ignore 

conditional jumps and continue disassembling until an instruction is encountered that guarantees 

a change in the IP register or some other kind of optimizations.  Once a block has been 

disassembled it is immediately sent to the code generating for emulation. 

3.2.3 Generating Code 

 The code generator takes as input a set of emulated functions, a pointer to the virtualized 

CPU state and a block of disassembled X86 instructions.  The code generator outputs an LLVM 

IR function.  The function can then be called to execute the behavior of the block given the state 

of the virtualized machine.  This flow is outlined in figure 3.5.  This is the most important piece 

of the code rewriter as it requires the majority of analysis in order to determine the most effective 

optimizations. 
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 The code generator first begins by creating an LLVM IR function that will eventually be 

generated to X86 code and called just like any other C function.  One of the major focuses of this 

function is to define as much of the data used by it as constant data.  This way the JIT compiler 

can optimize as much as possible in order to strip away unreachable blocks and use constant 

folding to eliminate unnecessary runtime computation.  However, not all the input data can be 

eliminated.  For example, the state of the virtualized machine cannot be known at the point in 

time when the code is generated.  Therefore, any operations that use a register value or data from 

an address in memory must be evaluated at runtime.  There are likely exceptions to this, such as 

writing to a register that is never read before it is overwritten again, but we hope those have 

already been found by the original optimizer of the binary. 

 The block of X86 instructions generated by the disassembler must be transformed so that the 

LLVM optimizers can eliminate as much of the emulation overhead as possible.  The block is 

first separated into its individual instructions so that each is emulated by their associated and 

already compiled C function (see section 3.2.4 Emulation for a complete description of this 

component).  Before the emulated instruction function is called, the possible operands are 

defined as constant values in the LLVM IR function.  For example, a register operand is a 

constant integer that points to a register in the machine; a memory operand is composed of a set 

of registers and immediate values for calculating its targeted address; an immediate is simply a 

constant integer.  The call into the emulated function is finally made and the process is repeated 

until all instructions in the block are generated.  One final note is that the IP register must be 

incremented appropriately, either after each instruction or after each block, in order for relative 

jump instructions to resolve the correct destination.  Alternatively, the appropriate compensation 

could be calculated directly to all relative branch instructions in the block. 

 Up to this point the JIT compiler is responsible for deciding if any of the emulated 

instruction function calls should be inlined or not.  Due to reuse, the compiler may not choose to 

inline all of them to reduce the memory footprint.  Therefore, each call is added to LLVM's list 

of functions that must be inlined. 
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Figure 3.5 - How a block of instructions is generated into LLVM IR code that can then be 

optimized by a JIT compiler. 

3.2.4 Emulating X86 Instructions 

 Each X86 instruction must be fully supported in order to run an arbitrary program.  

However, due to time constraints this project has limited the instructions to a subset of 

instructions necessary to run specific benchmarks and other applications.  Each emulated 

instruction is a single function that performs the expected behavior.  For example, an add 

instruction may add the contents of register RAX to the immediate value 2, write the result back 

to RAX and finally set the appropriate flags if necessary.  However, there are a variety of issues 

ranging from simple ones like implementation choices discussed below, to complex ones such as 

how to handle self modifying code.  Since this project remains too simple to process arbitrary 

programs, the resolution to the most complex issues will be left for future enhancements. 
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 The decision to produce all the varieties of a single instruction verses producing one or two 

variants must be made.  This is a typical trade-off between code reuse plus slightly increased 

complexity and code expansion with significantly less complexity per function.  Due to the 

nature of X86 code containing 3 types per operand with up to 4 memory sizes and each basic 

instruction type containing multiple variants, the number of possible emulation functions for a 

single type of instruction quickly expands.  Therefore, we typically used a single emulation 

function for each type of instruction in order to keep all of the instruction's logic in a single 

place.  This places most of the work on the optimizers in order to eliminate the increased 

complexity in the dead code.  However, we did evaluate if using specialized emulation functions 

based on the operation size has any advantage over using a single generalize emulation function 

for that operation. 

 It is important to keep the implementation of these functions as straight forward as possible 

in order to allow them to easily be optimized.  This means any code that distinguishes between 

different types of operands must be separated so that the optimizer can eliminate dead code 

branches.  For example, if the implementation checks if the value of an operand is a register, 

memory or immediate value then all but one of those branches can be eliminated.  Then the 

optimizer can effectively generate code that is a single assignment just as if we had written a 

specialized version of the instruction.  Figure 3.6 illustrates this principle.  This is all possible 

due to the use of constants and inlining during the code generation stage.   

 Each call to an emulated instruction requires a pointer to the memory location of a data 

structure containing registers, flags, memory mappings and any other appropriate information.  

Since this is a common data structure used by all the generated code it cannot optimize any of the 

values away.  However, employing the right optimizer may be able to eliminate reading and 

writing from one of these virtualized registers or flags.  At this time only eliminating 

unnecessary writes to flags is supported.  Otherwise this task is left solely to the JIT compiler 

and its optimizers.   

 Memory access is unfortunately insufficiently supported in the current implementation.  For 

each memory address calculated by the original code, the real address where the data is stored 

must be obtained through translation.  However, once the system is appropriately integrated with 

Xen this extra level of indirection will hopefully be eliminated. 
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cpu_t *cpu = ...; 

 

const operant_t val = 

{ .type = immediate, .imm = 2 }; 

const operant_t dst =  

{ .type = register, .reg = RAX }; 

ADD(cpu, &dst, &val); 

 

--------------------- 

 

void ADD(cpu_t *cpu, const operand_t *dst, 

const operand_t *src) { 

uint64_t op0, op1, result; 

 

if (dst->type == register) { 

    op0 = cpu->reg[dst->reg]; 

} 

else if ... (other op0 assignments) 

 

if (src->type == immediate) { 

    op1 = src->imm; 

} 

else if ... (other op1 assignments) 

 

if (dst->type == register) { 

    cpu->reg[dst->reg] =  

op0 + op1; 

} 

else if ... (other state changes) 

} 

cpu_t *cpu = ...; 

 

cpu->reg[RAX] += 2; 

 

Figure 3.6 - The optimizer will be able to eliminate the ADD call and its multiple assignments 

and branches (left side) and turn it into the equivalent of a one line addition (right side in bold).  

This is possible by the use of constants during code generation as well as constant folding, 

inlining and dead code elimination during the optimization stage.  (This example ignores the 

complexity of modifying the flags register.) 

3.2.5 JIT Compiling Generated Code 

 The JIT compiler component has very little notable implementation features as it is 

dependent on LLVM.  The main features are that it operates on single LLVM module where all 

the generated code is located and specific optimizations are defined or will be defined here.  

Essentially this component configures LLVM's JIT in order to be as effective as possible for 

optimizing individual functions and the functions they call.  Therefore, this is a location for 

possible improvement depending on what optimizations may be introduced to improve the 

generated code. 
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3.2.6 Caching Compiled Code 

 The code cache component, just like the JIT Compiler, can be mostly dependent on LLVM.  

Since LLVM is able to manage all of the generated code in an LLVM Module, then we simply 

need to be able to track the starting address of a code block, which is the value in the IP register, 

and use this to look up the corresponding code.  Unfortunately LLVM uses a string as the 

identifier for the lookup which will be slower than using the address of the block as a key.  

Therefore, the code cache uses its own data structure to perform look ups of addresses that return 

LLVM Function objects. 
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Chapter 4 – Evaluation Methods 

 The evaluation of the code rewriter system is based on executing a program and then 

measuring how long it takes the program to complete its task.  Programs that evaluate this 

system are expected to be benchmarks used by the industry, but will be limited just the 

Dhrystone benchmark due to the reduced X86 instruction set supported by the code rewriter.  

Each experiment will focus on one type of modification to the code rewriter so that a number of 

configurations of the implementation may be suggested. 

 Each experiment describes a configuration decision of the code rewriter.  The majority of 

these configurations focus on pieces of the code generator and emulated instruction components 

since those directly influence the effectiveness of the optimizers in generating efficient X86 

code. 

4.1 Experiment 1 – JIT Optimization of Operands 

This experiment focuses on evaluating the machine code generation of the JIT compiler, 

specifically when passing operands to an emulated instruction function.  In order to simplify 

LLVM code generation, every emulated instruction function has an identical set of parameters.  

This means that whether an instruction uses 0 or more operands, the call to its emulated function 

will always pass the maximum number of arguments even if the arguments are unused.  The 

style in which these arguments are passed through to the emulated function is important because 

the compiler must be able to apply optimizations on their constant values.  While these changes 

are focused on the code generator, the actual component being evaluated is LLVM's JIT 

compiler.  This means a change in the implementation or configuration of the JIT may alter the 

results. 

 Figure 4.1 is the input used to evaluate the results of this experiment and figure 4.2 is the 

basic implementation of the emulated call instruction function.  The input is a relative call 

instruction where the offset is an immediate value.  Each operand passed to this function will be 

known at compile time and therefore a constant folder and dead branch eliminator optimizer 

should be able to cull a large amount of code.  The instruction will be evaluated in isolation as 

the only instruction in a block.  Since each block requires a small amount of initialization there 
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will be additional instructions generated that are not directly related to the call instruction.  The 

generated machine code is retrieved through GDB’s disassemble command. 

 

callq <offset to main> 

Figure 4.1 - The input sample to use to test the effectiveness of the JIT in optimizing the 

operand passing configurations.  This specific instruction represents a call to the program’s 

main function. 

 

void CALL(cpu_t *cpu, <parameters>) 

{ 

 reg_t source; 

  

 // push return address (cpu->reg[RIP]) 

 ... 

 

 switch (type) { 

  case MEM: 

   source= ... 

  case REG: 

   source= ... 

  case IMM: 

   source= ... 

 } 

 

 if (type == IMM) { 

  cpu->reg[RIP] += source; 

 } 

 else { 

  cpu->reg[RIP] = source; 

 } 

} 

 

Figure 4.2 - The emulated call instruction function implementation.  The parameters vary 

depending on the configuration.  Additionally, some lines were replaced with `...’ for 

brevity. 

 

Experiment 1.1 – Structured Configuration 

 Every operand is passed to the function as a well defined structure of the possible type of 

operand and its data.  Figure 4.3 displays the pseudo code for one possible layout.  The argument 

is defined as a constant structure value by the code generator in the basic block's function.  

Whether a pointer to the operand is given to the emulated function or it is passed by value is 

likely irrelevant because the optimizer should inline the emulated instruction function call into 

the basic block's function. 
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struct { 

  operand_type_t type; // {MEM, REG, IMM} 

  reg_t bits; 

  union operand_data_t { 

   struct { 

    reg_t base_reg_idx; 

    reg_t multiplier_size; 

    reg_t multiplier_offset_reg_idx; 

    reg_t offset; 

   } mem; 

   reg_t reg_idx; 

   reg_t immediate; 

  } u; 

 } operand_t; 

Figure 4.3 - A structured view of an instruction operand.  The operand has: (1) a type, such 

as register, (2) a size in bits and (3) the operand's data, such as an index into a table of 

virtualized CPU registers. 

 

Experiment 1.2 - Flat Configuration 

 The flat structure is simply a flattening of the operand_t structure seen in Figure 4.3 so that 

each field is passed as a unique argument to the emulated function.  This means 8 arguments per 

operand are passed which drastically increases the prototype length of the emulated function.  

Just as with the structured argument, any inefficiencies produced by passing many arguments 

should be made irrelevant by inlining the call.  Figure 4.4 illustrates a sample prototype for the 

emulated call instruction. 

 void CALL(... 

           const operand_type_t src_type, 

           const reg_t src_bits, 

           const reg_t src_mem_base, 

           const reg_t src_mem_multiplier_size, 

           const reg_t src_mem_multiplier_offset, 

           const reg_t src_mem_offset, 

           const reg_t src_reg, 

           const reg_t src_imm, 

           ... 

           ); 
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Figure 4.4 - The flat view of a source operands (in bold) as an argument to the emulated 

CALL instruction function. 

4.2 Experiment 2 – Instruction Operation Size 

 This experiment focuses on evaluating the machine code generation of the JIT compiler, 

specifically the effects of specializing an instruction based on operation size.  Most X86 

instructions have multiple operation sizes where the result of the operation will be stored in an 8, 

16, 32 or 64-bit register or memory.  This means that for each instruction that has multiple 

operation sizes there are 4 different implementations.  However, 4 implementations of nearly the 

same behavior will increase the memory foot print of this project and create maintenance issues.  

Therefore, an evaluation of the machine code generation using generalization versus 

specialization is helpful to evaluate the cost of generated code size versus maintainability. 

 

 add $0x10, %ax 

 add $0x1, %rcx 

Figure 4.5 - The input sample used to evaluate the machine code generation of generalizing 

versus specializing the implementation of an instruction operation based on its size. 
 

Experiment 2.1 - Generalization Configuration 

To better understand why generalization may not generate smaller code, consider the add 

instruction.  A 64-bit add to a register requires no special handling for an overflow.  This is 

possible because we calculate the result using 64-bit variables in the implementation.  However, 

an 8-bit add to a register must be careful not to alter to the values of the other 56 bits when the 

result is written to its register.  For example, consider the effects of an overflow in add $0x1, 

%al where the value of RAX is 0x1FF.  The expected output on RAX for this instruction is 

0x100 and not 0x200.  Therefore, the result of the add instruction must be masked and the write 

to the RAX register must only alter the intended bits of the register.  However, this rule only 

applies to 8 and 16-bit X86 operations as 32-bit operations simply clear the upper 32 bits of the 

register. 
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void ADD(cpu_t *cpu, const reg_t op_bits, 

         ... 

         const reg_t src_imm, 

         ... 

         const reg_t dst_reg_idx, 

         ...) { 

 const reg_t mask = (((reg_t) (1 << op_bits)) - 1); 

 const reg_t result = cpu->reg[dst_reg_idx] + src_imm) & mask; 

 if (op_bits >= 32) 

  cpu->reg[dst_reg_idx] = result; 

 else 

  cpu->reg[dst_reg_idx] = cpu->reg[dst_reg_idx] & ~mask) | result; 

} 

Figure 4.6 - A generalized implementation of an add of an immediate to a register.  (This 

example ignores the complexity of modifying the flags register and does not support any 

other form, such as immediate to memory, of the add instruction.) 
 

Experiment 2.2 - Specialization Configuration 

 Each version of the ADD function is specific to its operation size and therefore its 

implementation is less complex in C.  Figure 4.7 contains the implementations being evaluated 

for a 16-bit add and a 64-bit add. 
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void ADD16(cpu_t *cpu, const reg_t op_bits, 

           ... 

           const reg_t src_imm, 

           ... 

           const reg_t dst_reg_idx, 

           ...) { 

 uint16_t *dst = (uint16_t*) &cpu->reg[dst_reg_idx]; 

 *dst += src_imm; 

} 

void ADD64(cpu_t *cpu, const reg_t op_bits, 

           ... 

           const reg_t src_imm, 

           ... 

           const reg_t dst_reg_idx, 

           ...) { 

 cpu->reg[dst_reg_idx] += src_imm; 

} 

Figure 4.7 - A specialized implementation of a 16 and 64-bit add instruction of an 

immediate to a register.  (This example ignores the complexity of modifying the flags 

register and does not support any other form of the add instruction.) 
 

4.3 Experiment 3 – Flag Liveness Analysis 

 This experiment focuses on evaluating the machine code generation of the JIT compiler with 

regards to flag liveness in the virtual machine.  Many X86 instructions read and/or modify the 

flags register.  A single flag result set by one instruction could be optimized away if the same 

flag is written to before it is read.  This experiment aims at comparing the code generated for an 

identical block of machine code when no flags are set (flags are ignored), 1 flag is set, and when 

explicit liveness analysis is used. 

add $0x40,%rcx 

add $0x40,%rcx 

jmp 400192 

 

Figure 4.8 - The sample code block that evaluates the machine code generation of the JIT 

compiler with regards to flag liveness. 

 

Experiment 3.1 - No Flags Set 
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 This experiment shows what the JIT compiler could be output if this machine code block 

ignored setting any flags.  In a proper implementation the add instruction would set the overflow, 

sign, zero, carry, parity, and adjust bits.  This exists simply as a base case for the other 

experiments. 

 

Experiment 3.2 - 1 Flag Set 

 This experiment shows what the JIT compiler outputs when only a single flag is set.  In this 

experiment only the zero flag is used to make the generated machine code easier to read. 

 

Experiment 3.3 - 1 Flag Set with Explicit Liveness Analysis 

 This experiment shows what the JIT compiler outputs when only a single flag is set and 

liveness analysis is not dependent on the JIT compiler.  In this case, a piece of logic external to 

the JIT optimizers is used to evaluate when a flag must be set and when it can be ignored.  

Effectively this culls the calculations that can be ignored.  In this experiment only the zero flag is 

used to make the generated machine code easier to read. 

4.4 Experiment 4 – Optimizations 

 This experiment checks if the available optimizations provided by LLVM affect the time 

performance of the Dhrystone benchmark [16].  There are two possible places for optimization to 

occur.  The first is applied to the LLVM IR code where optimization passes transform the 

generated IR prior to it being generated to native machine code.  The second optimization is 

applied by the JIT compiler when it generates native code.  Each optimization applies to a block 

of machine instructions and no more.  An evaluation of the effects of the optimization passes to 

the IR and JIT compiler optimization level may be beneficial in determining which optimizations 

are useful and which are too costly.  Table 4.1 contains a listing of the optimization experiments. 
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Experiment Name LLVM IR Optimization JIT Optimization 

No Optimization ● None None 

LLVM IR 

Optimization 

● Alias Analysis 

● Instruction Combining 

● Re-association 

● Global Value Numbering (eliminate redundant 

expressions and dead loads) 

● Control Flow Graph Simplification 

None 

JIT Default 

Optimization 

● None Default 

JIT Aggressive 

Optimization 

● None Aggressive 

LLVM IR plus JIT 

Aggressive 

Optimization 

● Alias Analysis 

● Instruction Combining 

● Re-association 

● Global Value Numbering (eliminate redundant 

expressions and dead loads) 

● Control Flow Graph Simplification 

Aggressive 

Table 4.1 - Listing of the optimizations to evaluate.  LLVM is evaluated solely based on the 

time performance of the generated machine code.  However, since optimizations can be 

done on the LLVM IR or by the JIT compiler, both areas are evaluated to see if any gains a 

particular advantage. 

4.5 Experiment 5 – Instruction Level Instrumentation 

 The final experiment looks at one way to add instrumentations and modifications to the 

machine code (see figure 4.8).  The input program is the same Dhrystone benchmark used to 

evaluate the system’s performance.  Instead of simply letting the program execute normally, the 

VM uses a special instruction emulation for all executions of the call instruction.  The 

modification replaces all calls to a rudimentary printf function with a call to stdlib’s 

implementation of printf as seen in figure 4.9.  Essentially this requires knowing the address of 

the original printf function in the running program’s memory so that any call to printf will be 

replaced with the alternative printf’s code.  Additionally, a basic instrumentation will be used 
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that prints the addresses of all call instructions executed at runtime.  One example use case of 

this instrumentation is to determine which function calls are most frequently executed at runtime.  

The Dhrystone benchmark is then executed with and without the modification to evaluate 

possible performance impacts.  

 

Figure 4.8 - The structure of the code rewriter with the addition of an instrumentation and 

modification block.  The red blocks represent a simple instrumentation engine for 

introducing code modifications at an instruction level.  Unaltered blocks are blue. 
 

 

Figure 4.9 - This shows the basic execution flow of a code modification that replaces a 

dump printf function call in the original machine code with a call to the standard library’s 

implementation.  (The dump printf does not handle any conversion specifiers.)  This is done 

by checking each call instruction if its destination address targets the original application’s 

printf.  If it is then the modification code performs the following steps: (1) set the PC 

register to the instruction following the call instruction (since the real call is skipped), (2) 

extracts the arguments so they can be passed on to the next step, and (3) call’s stdlib’s 

implementation of printf which is feature complete. 
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Chapter 5 – Results 

5.1 Experiment 1 - JIT Optimization of Operands 

Experiment 1 focuses on evaluating the machine code generation of the JIT compiler by 

comparing two ways to pass the operation’s operands to the emulation function.  The block 

consists of a callq instruction that uses a single operand representing an offset from this 

instruction’s address.  LLVM’s JIT compiler was used to generate the X86 code which is then 

disassembled into human readable assembler using GDB.  Each instruction is placed on its own 

numbered line.  Figure 5.1 is the disassembled machine code when using structured operand 

arguments.  Figure 5.2 is the disassembled machine code when using flattened operand 

arguments.  

 

1   movabs $0x7ffff7e3d010,%rax 

2   mov (%rax),%rax 

3   movq   $0x400255,0x40(%rax) 

4   movl   $0x2,-0x60(%rsp) 

5   movabs $0x617461642e,%rcx 

6   mov %rcx,-0x58(%rsp) 

7   movq   $0xffffffffffffffcf,-0x50(%rsp) 

8   mov -0x48(%rsp),%rcx 

9   mov -0x40(%rsp),%rdx 

10  mov -0x38(%rsp),%rsi 

11  mov %rsi,-0x8(%rsp) 

12  mov %rdx,-0x10(%rsp) 

13  mov %rcx,-0x18(%rsp) 

14  mov -0x60(%rsp),%rcx 

15  mov -0x58(%rsp),%rdx 

16  mov %rdx,-0x28(%rsp) 

17  mov %rcx,-0x30(%rsp) 

18  movq   $0xffffffffffffffcf,-0x20(%rsp) 

19  mov -0x30(%rsp),%ecx 

20  cmp $0x2,%ecx 

21  je  0x7ffff7e4d1c8 <block_400250+328> 

22  cmp $0x1,%ecx 

23  je  0x7ffff7e4d1ba <block_400250+314> 

24  test   %ecx,%ecx 

25  jne 0x7ffff7e4d1ac <block_400250+300> 

26  xor %edx,%edx 

27  mov -0x20(%rsp),%rsi 

28  cmp $0xffffffffffffffff,%rsi 

29  mov %rdx,%rdi 
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30  je  0x7ffff7e4d126 <block_400250+166> 

31  mov (%rax,%rsi,8),%rdi 

32  mov -0x10(%rsp),%rsi 

33  cmp $0xffffffffffffffff,%rsi 

34  je  0x7ffff7e4d139 <block_400250+185> 

35  mov (%rax,%rsi,8),%rdx 

36  imul   -0x18(%rsp),%rdx 

37  add %rdi,%rdx 

38  add -0x8(%rsp),%rdx 

39  mov 0x118(%rax),%rsi 

40  mov (%rsi),%rsi 

41  mov $0x10,%edi 

42  mov $0xffffffffffffffff,%r8 

43  mov %rdi,%r9 

44  inc %r8 

45  cmp %rsi,%r8 

46  jae 0x7ffff7e4d19c <block_400250+284> 

47  lea 0x18(%r9),%rdi 

48  mov 0x110(%rax),%r10 

49  mov -0x8(%r10,%r9,1),%r11 

50  cmp %rdx,%r11 

51  ja  0x7ffff7e4d15d <block_400250+221> 

52  cmp %rdx,(%r10,%r9,1) 

53  jb  0x7ffff7e4d15d <block_400250+221> 

54  sub %r11,%rdx 

55  add -0x10(%r10,%r9,1),%rdx 

56  jmpq   0x7ffff7e4d1a9 <block_400250+297> 

57  movl   $0xdead002b,0x0 

58  xor %edx,%edx 

59  mov (%rdx),%rdx 

60  cmp $0x2,%ecx 

61  je  0x7ffff7e4d1cd <block_400250+333> 

62  jmpq   0x7ffff7e4d1d4 <block_400250+340> 

63  mov -0x20(%rsp),%rdx 

64  mov (%rax,%rdx,8),%rdx 

65  mov %rdx,0x40(%rax) 

66  retq    

67  mov -0x20(%rsp),%rdx 

68  add $0x400255,%rdx 

69  mov %rdx,0x40(%rax) 

70  retq 

Figure 5.1 - Experiment 1.1 - Structured Configuration 

 

 

 

 



56 

 

1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x400255,0x40(%rax) 

4  mov    0x38(%rax),%rcx 

5  mov    0x40(%rax),%rdx 

6  mov    %rdx,(%rcx) 

7  addq   $0xffffffffffffffcf,0x40(%rax) 

8  retq  

Figure 5.2 - Experiment 1.2 - Flat Configuration 
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5.2 Experiment 2 - Instruction Operation Size 

Experiment 2 compares the JIT’s code generation by determining if specialization is a 

beneficial characteristic of instruction emulation.  Specifically, this evaluates if separating add 

operations into their 8, 16, 32 and 64-bit sizes produces smaller code.  Figures 5.3 and 5.4 

represent 16 and 64-bit add operations that are generated from a single function that generalizes 

the emulation of the add instruction.  Figures 5.5 and 5.6 represent 16 and 64-bit add operations 

that are generated from two separate implementations of an emulated add function. 

  

1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x400193,0x40(%rax) 

4  mov    (%rax),%ecx 

5  add    $0x10,%ecx 

6  mov    %cx,(%rax) 

7  retq  

Figure 5.3 - Experiment 2.1 - Generalization Configuration (16-bit add) 

 

1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x40019e,0x40(%rax) 

4  addq   $0x40,0x10(%rax) 

5  retq   

Figure 5.4 - Experiment 2.1 - Generalization Configuration (64-bit add) 

 

1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x400193,0x40(%rax) 

4  movzwl (%rax),%ecx 

5  add    $0x10,%ecx 

6  mov    %cx,(%rax) 

7  retq   

Figure 5.5 - Experiment 2.2 - Specialization Configuration (16-bit add) 

 

1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x40019e,0x40(%rax) 

4  addq   $0x40,0x10(%rax) 

5  retq 

Figure 5.6 - Experiment 2.2 - Specialization Configuration (64-bit add) 
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5.3 Experiment 3 - Flag Liveness Analysis 

Experiment 3 lists the results of code generated when the block of code contains instructions 

that alter the flags register.  These experiments indicate how much additional code is generated 

due to side effects related to setting and reading from the flags register.  Figure 5.7 shows the 

result of the code block when flag side effects are not implemented in the emulated add 

instructions.  Figure 5.8 shows the result of the code block when flag side effects are left to the 

JIT’s optimizers to eliminate.  Figure 5.9 shows the result of the code block when flag side 

effects are manually optimized when generating LLVM IR. 

 

1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x4001a6,0x40(%rax) 

4  addq   $0x40,0x10(%rax) 

5  addq   $0x40,0x10(%rax) 

6  addq   $0xffffffffffffffec,0x40(%rax) 

7  retq 

Figure 5.7 - Experiment 3.1 - No Flags Set 

 

1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x4001a6,0x40(%rax) 

 

4  mov    0x10(%rax),%rcx 

5  add    $0x40,%rcx 

6  mov    %rcx,0x10(%rax) 

7  test   %rcx,%rcx 

8  sete   %cl 

9  movzbl %cl,%ecx 

10  mov    %rcx,0x88(%rax) 

 

11  mov    0x10(%rax),%rcx 

12  add    $0x40,%rcx 

13  mov    %rcx,0x10(%rax) 

14  test   %rcx,%rcx 

15  sete   %cl 

16  movzbl %cl,%ecx 

17  mov    %rcx,0x88(%rax) 

 

18  addq   $0xffffffffffffffec,0x40(%rax) 

19  retq   

Figure 5.8 - Experiment 4.2 - 1 Flag Set 
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1  movabs $0x7ffff7e3d010,%rax 

2  mov    (%rax),%rax 

3  movq   $0x4001a6,0x40(%rax) 

 

4  mov    0x10(%rax),%rcx 

5  add    $0x40,%rcx 

6  mov    %rcx,0x10(%rax) 

 

7  mov    0x10(%rax),%rcx 

8  add    $0x40,%rcx 

9  mov    %rcx,0x10(%rax) 

10  test   %rcx,%rcx 

11  sete   %cl 

12  movzbl %cl,%ecx 

13  mov    %rcx,0x88(%rax) 

 

14  addq   $0xffffffffffffffec,0x40(%rax) 

15  retq  

Figure 5.9 - Experiment 4.3 - 1 Flag Set with Explicit Liveness Analysis 
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5.4 Experiment 4 – Optimizations 

Experiment 4 graphs the results of a variety of optimizations performed on a benchmark tool 

in order to improve the runtime performance.  There are 3 areas where optimizations are 

analyzed.  The first area is focused on applying LLVM IR optimizations, the second on JIT 

optimization settings and the third on manual optimizations performed when generating the 

LLVM IR.  Additionally, the overhead of the entire system outside of the code cache and 

dispatch loop is eliminated to determine the theoretical speed of the benchmark in this system. 

 

Figure 5.10 - Experiment 4 - Optimization results graph.  This displays the results of 

running the Dhrystone benchmark on a variety of LLVM optimizations, JIT compiler 

optimization levels, manual optimizations, etc.. 
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Name Dhrystone Time in Seconds 

No Optimization 41.207 

LLVM IR Optimization 39.349 

JIT Default Optimization 30.252 

JIT Aggressive Optimization 30.994 

LLVM IR plus JIT Aggressive Optimization 32.292 

Flag Liveness Optimization + JIT Default 26.600 

Precached 1.270 

Native Execution 0.110 

 

Figure 5.11 - Experiment 4 - Raw optimization results. 
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5.5 Experiment 5 - Instruction Level Instrumentation 

Experiment 5 displays the runtime performance impact on the Dhrystone benchmark when 

applying arbitrary code modifications and instrumentation.  The code modification replaces a 

custom printf function call with stdlib’s version.  The code instrumentation logs all call 

instructions to a file on the host’s file system. 

 

Figure 5.12 - Experiment 5 - Virtual machine performance comparison when using the 

example code modification and instrumentation from experiment 5. 
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Name Dhrystone Benchmark in Seconds 

Base 26.600 

Modification 27.933 

Instrumentation 27.611 

Modification + Instrumentation 29.195 

 

Figure 5.13 - Experiment 5 - Raw instrumentation and modification results. 
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Chapter 6 – Discussion 

 The main question of this paper is whether a virtual machine using a ready made JIT 

compiler is sufficiently powerful to optimize emulated machine code instructions.  In order to 

evaluate this question we used a series of tests to evaluate how a general purpose JIT compiler, 

such as LLVM’s JIT, generates code.  This chapter will discuss the results and determine what 

changes are necessary to improve the generated machine code. 

 Before the results are analyzed a special note is required to explain certain aspects of the 

generated machine code.  Every code block contains a few header and footer instructions.  A 

block’s header has two parts: (1) a global pointer to the virtual CPU machine state, instruction 

numbers 1 and 2, and (2) presetting the PC register to the next block’s starting address 

(0x400255 in the figure 6.1), instruction number 3.  A block’s footer only has one instruction 

which is just a return from the emulated block’s function in the block’s final instruction.  Figure 

6.1 shows the appropriate instructions for the header and footer. 

1  movabs <global address>,%rax  <-- Virtual CPU machine state setup 

2  mov    (%rax),%rax            <-- Virtual CPU machine state setup 

3  movq   $0x400255,0x40(%rax)   <-- Set PC to the next block’s address 

... 

n  retq 

 

Figure 6.1 - Sample header (instructions 1-3) and footer (instruction n) that every emulated 

machine code block uses. 

  

 The first experiment is built upon the assumption that an emulated instruction function’s 

parameters will be challenging for the JIT compiler to optimize.  Experiment 1.1 uses a 

structured parameter for each possible operand used by the instruction.  From a development 

perspective this is simple to maintain since any additions or deletions from the operand structure 

takes place in a single location.  Figure 5.1 contains the JIT’s generated machine code which is 

clearly far too complex for a simple call instruction.  Despite initializing the structure with 

constant values and passing the argument as a constant, it is easy to see that little constant 

folding and no dead branch optimizations are used.  Experiment 1.2 uses a series of single 

parameters to essentially flatten the structured configuration of experiment 1.1.  While it 

provides an equivalent amount of data, using 8 arguments per operand makes an emulated 
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instruction function’s header extremely long and hard to read.  However, the JIT compiler found 

this configuration much easier to optimize as it shrunk the entire block from 70 to only 8 

instructions.  Figure 5.2 lists the generated code.  Only four instructions are directly related to the 

emulation of the call instruction:  4-6 are used to push the return address while 7 uses a relative 

offset to increment the PC register to the new function. 

 Experiment 2 seeks code generation improvements by creating an 8, 16, 32, and 64-bit 

version of an emulated instruction versus a single generic implementation.  For simplicity this 

experiment only uses a 16 and a 64-bit bit add instruction and the flags register is left unmodified 

in order to simplify the generated code.  (The modified flags are not influenced by the size of the 

operation.)  Figures 5.3-5.6 list identical generated code when comparing the specialized versus 

generalized implementation for a given operation size.  This means that any advantage that a size 

specialized implementation gains is made irrelevant by the effects of the optimizer.  Clearly it is 

better to implement a single generic emulation of an instruction rather than multiple operation 

size based implementations. 

 Experiment 3 focuses on evaluating the machine code generation of the JIT compiler with 

regards to flag liveness in the virtual machine.  Obviously the results from figure 5.7 are useless 

because they miss a key part of the instruction’s behavior, that is the task of modifying the 

CPU’s flags register.  However, this serves as a base case to analyze how much additional code 

is generated to deal with just one of the many flags an instruction may modify.  The base case 

uses just three instructions, plus the block’s header and footer, for the original three instructions 

in the block.  However, when just one flag, the zero flag, is introduced the generated code grows 

from 3 instructions to 15 instructions as seen in figure 5.8.  This is obviously a dramatic increase 

in the instruction count and will undoubtedly have a dramatic impact on performance.  

Fortunately, if we perform a limited amount of preoptimization prior to generating the code, the 

number of wasted instructions dedicated to setting flags can be mitigated.  Figure 5.9 shows that 

four instructions related to setting the zero flag have been removed from the first add instruction.  

Unfortunately, the basic add instruction has expanded from just one instruction in figure 5.7 to 

three instructions despite eliminating the zero flag calculation.  The final add instruction still 

requires the instructions related to setting the zero flag.  In total we have saved 4 instructions and 

dropped the total number of instructions to 11.  It should be noted that a longer block may see 

even more significant savings by eliminating more writes that are never read from. 
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 Experiment 4 focuses on analyzing how the system performs under Dhrystone, a synthetic 

benchmark.  Experiment 4.1 uses no JIT optimization and no LLVM IR optimization other than 

inlining which is common to all.  Unsurprisingly it is the worst performer of the group but 

establishes a base case from which to judge other results.  Experiment 4.2 uses a series of 

function pass optimizers, listed in order in table 4.1, to optimize the generated LLVM IR code.  

While the performance is marginally better by 4.5%, they either add too much overhead in this 

example or they do very little to improve the final generated code.  Experiment 4.3 shows a 

significant improvement over 4.1 and 4.2 by simply leaving all of the optimization to the JIT 

compiler.  The result is 26.5% faster than the base case.  Experiment 4.4 evaluates a more 

aggressive JIT.  In this use case it is marginally slower than the default optimization.  However, 

under other conditions, such as a real world application, the optimization could be more 

effective.  Experiment 4.5 essentially evaluates how much of a positive effect is achieved by 

using the LLVM IR optimizations from 4.2.  Unfortunately, it appears this actually hurts overall 

performance by increasing the runtime of 4.3 by 6.7% and 4.4 by 4.1%.  Therefore, generically 

preoptimizing the generated code before it is run through the JIT compiler’s optimizations is not 

ideal.  However, specific optimizations, such as a function inline optimization pass, should not 

be ruled out simply because a broad and generic approach did not work.  Finally, experiment 4.6 

attempts to evaluate the benefits of preoptimizing instructions that modify specific flags in the 

flags register but whose modifications are never used by later instructions.  As experiment 3 

showed, relying on the JIT compiler to optimize away unused flag calculations is insufficient, 

but explicitly determining the liveness of the flag modifications can remove a significant portion 

of a code block’s instruction count.  The result shows a 12% reduction over the previously fastest 

time and is clearly a worthy source for improvement.  It is unclear whether LLVM’s 

optimization passes are capable of doing something like this on their own, but for now explicitly 

calculating a flag’s liveness within a code block is an effective performance optimization.  To 

evaluate the impact of the building up the code cache, the same benchmark was executed with 

the cache already filled.  This was done by simply instructing the VM to restart the program 

without clearing the cache.  This has a massive impact on the speed which clearly shows the 

bottleneck is generating the optimized blocks. The final value in figure 5.11 represents the same 

benchmark running natively on an X86 processor.  Unfortunately, this value shows that this VM 
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is currently several orders of magnitude slower than native performance and one order of 

magnitude slower than the precached version. 

 Ultimately these experiments show the capabilities of LLVM’s JIT compiler when 

optimization series of instruction emulation functions.  While the optimizations are clearly 

improving performance, looking at some of the generated code indicates there are further 

possibilities for improvement.  For example, looking at the results for experiment 3 show that the 

default optimizer is insufficient for determining when a calculation can be ignored.  Instead, 

optimizations must be applied explicitly to reduce the amount of unnecessary machine code.  

Additionally, experiment 3 contains 2 identical add instructions but the optimizers were not able 

to recognize that the first result could be cached and is not required to be written back to the 

VM’s CPU register state.  Undoubtedly many of optimizations are possible to improve this to a 

point where it is useable, but overcoming several orders of magnitude will require extensive 

work. 

 The secondary question of this paper is how to build a VM that is capable of introducing 

arbitrary instrumentation into any code executing on the system.  In order to evaluate this 

question we provide two examples using the call instruction.  The first example completely 

replaces all function calls to rudimentary printf with the standard library’s version.  The second 

example shows a simple instrumentation that prints the destination address of all call 

instructions.   

 Modifying the executing software using a JIT compiler in the virtual machine turns out to be 

a trivial process if one has sufficient knowledge of the system.  Consider the example printf 

modification.  Since we know the address in the program where printf is called and we know the 

calling convention and number of arguments, it is easy to extract the arguments intended for the 

original call and supply them to another.  The JIT takes care of the difficult work of gluing the 

new call into the old code and the code cache allows subsequent executions to keep the same 

behavior. 

 Instrumentation is just as easy as modification because they are effectively the same thing.  

However, instead of modifying the code with the intention of altering the expected behavior of 

the executing software, instrumentation simply analyzes and saves information regarding the 

runtime behavior.  This information could then be used for later analysis by the administrator or 



68 

 

it could be used to determine when a code modification should be activated.  In this paper’s 

instrumentation example it is used for the former case. 

 The overall impact of using both code modification and instrumentation on the Dhrystone 

benchmark is listed in figure 5.12.  It is expected to find performance degradation, but it is 

surprising to see how much these minor changes influence the overall performance by nearly 

10%.  The printf modification may increase the overall execution time because it takes a 

rudimentary implementation that does not support expanding “%s” or any other conversion 

specifiers and replaces it with a full featured one that will naturally be slightly slower.  The 

instrumentation experiment results show that 850088 call instructions are executed and it is 

expected that generating a log recording all the calls will impede the execution significantly.  

Despite a significant slowdown in runtime performance, the code modification and 

instrumentation performance is likely related to increasing the complexity of the code rather than 

any bottlenecks within the VM. 
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Chapter 7 – Conclusion 

 This paper has presented a solution to the lack of instrumentation in system level virtual 

machines.  The core of the solution is one that involves taking a ready made disassembler and 

JIT compiler solution, LLVM, that is capable of optimizing the emulated instructions as well as 

inserting arbitrary code into the preexisting instruction stream.  The solution was evaluated to 

determine if the optimization of the JIT compiler are able to decrease the execution time and cost 

of machine abstraction as well as to evaluate inserting instrumentation and modifications into the 

normal instruction stream. 

 Unfortunately the results obtained are far from overcoming the penalties of machine 

abstraction.  If one assumes that the entire program is already compiled and placed into the code 

cache, then the cost of this VM is currently a 10x performance penalty.  If the program must be 

compiled block by block, then the cost is a 100x performance penalty.  Obviously neither of 

these results are desirable, but perhaps additional optimizations can eliminate a significant 

portion of the overhead.  However, at this point it is clear that a general purpose JIT compiler 

like LLVM is either too slow to handle this specialized use case or it needs special optimizations 

for machine code emulation optimization that the general purpose optimization settings do not 

offer. 

 Machine code instrumentation is a promising outcome of these results.  Assuming enough 

information is known about the system and the program currently executing, a developer of the 

instrumentation or modification can do anything to the running code.  We showed this by 

completely replacing one printf function with another printf function.  Likewise, low level 

instrumentation can be applied to the running code simply by adding hooks into the emulation 

code.  If enough work is put into building up a framework for the instrumentation to go from the 

instruction level to higher source level access, then this could become a very powerful 

instrumentation utility. 

 While the overall performance results are disappointing, the hope of future optimization 

specific to this type of system could make the difference between an unusable system level VM 

and a competitively performing VM.  Most of the related work researched for this paper relied 

on internal compilers to optimize the code rather than off the shelf tools like LLVM.  The poor 

results found may indicate why readily available JIT compilers are insufficient for optimizing 
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this type of code.  However, the potential benefits of arbitrary instrumentation and code 

modification is attractive and potentially very useful. 

7.1 Future Work 

 This type of system is likely to see its largest improvement through further research into JIT 

optimizations that target instruction emulation that is built into code blocks.  When a code block 

is constructed it is made up of many individual instructions that are eventually replaced by 

emulations of those instructions.  However, as the flags liveness experiment showed, a 

significant amount of inefficiency is introduced because calculations are made when there is no 

requirement for them.  In other situations, a result does not need to be committed to a register in 

the virtualized CPU because it is used and modified by a subsequent instruction in the block.  By 

preventing these unnecessary calculations or writes to memory, the emulated code generated for 

a blocks will approach the same complexity as the original block. 

 Many of the projects in the related works section offer other methods for improvement.  One 

major cost reduction in Dynamo's optimized code generator is that traces eliminate the overhead 

of call instructions and other types of branches.  This allows the optimizer to effectively inline 

subroutines which reduces the overhead costs of Dynamo's system.  Dynamo provides a good 

example of a potential cost reduction by introducing traces in addition to simple code blocks as 

used in this project.   

 Many of the related projects start off like this one where each exit from a code block is 

returned to the dispatcher to either execute the next block from the cache or to compile the 

targeted code.  If one connects code blocks that are already compiled and in the code cache then 

we could avoid going to the dispatcher.  This is a potentially valuable opportunity for reducing 

the runtime cost when most of the code is in the code cache.   

 Interrupts and exceptions are problems common to any system that attempts to virtualize 

away the machine.  Unfortunately, this problem was issue was never approached in this project 

and will need to be explored later.  PinOS has an interesting solution to this problem and the 

lessons found there could also be applied to future iterations of this project.  PinOS solves 

interrupts with a simple check at the beginning of each trace to query the virtualized interrupt 

controller to check if any have occurred and then handle them.  All interrupts that do occur are 
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queued in order to allow the currently executing code to be safely free from any instrumentation 

code.  

 Finally, a framework for building up instrumentation beyond the instruction level is needed.  

It is unlikely building up instrumentation from the instruction level will see popular usage.  

Therefore, a more advanced framework that perhaps resembles a typical source level debugger 

will be beneficial. 
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