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Shuangshuang Chen
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Road friction coefficient, as the most critical variable that controls vehicle motion,
has significant impact on the optimal motion control and the warning of slippery
road. However, due to the complexity of tire characteristics and vehicle dynam-
ics models, estimating road friction coefficient with acceptable accuracy in various
scenarios is still an unsolved research question in the field of vehicle dynamics.
Currently, most of road friction estimation algorithms are built based on the vehi-
cle dynamics or acoustic effect from tire, so carefully-tuned model works only on
the limited scenarios and is not generalized well for different conditions. Besides,
the current state-of-the-art algorithm still experiences the low confidence of esti-
mation when the tire is not excited to an adequate level. In this thesis, we build
more generalized models using machine learning methods: applying Echo State Net-
works ESNs to build on-board road friction estimation algorithm; proposing Hidden
Markov Model-based clustering framework to model the spatial-temporal pattern of
the road friction over different geometrical locations. We obtain substantial accu-
racy improvement of estimation algorithm compared to the in-house physical-based
estimation algorithm. And we are able to extract the underlying spatial-temporal
patterns of road friction by the proposed method, which enables to model the statis-
tics of reality for simulation as well.

Keywords: Road Friction Estimation, Vehicle Dynamics, Hidden Markov Model,
Clustering, Spatial-temporal pattern recognition, Echo State Network, Feature Se-
lection, Generative Model, Sequential modeling, Machine learning.

v





Acknowledgements
I would like to express my grateness to my supervisor and advisor at Volvo Car
Corporate Mats Jonasson, Sohini Roy Chowdhury and Srikar Muppirisetty to give
me guidance during the project. Thank you for the time on the insightful discus-
sion and assistance. I would also like to thank Tomas McKelvey, my examiner at
Chalmers for the great feedback and thoughtful idea.
I would also like to give my thanks to my manager Mikael Edvardsson at Volvo Car
Corporate to provide me with this precious opportunity for the thesis and share
me with all available tools and contacts. I would also like to thank my colleagues
who gave me kind help, Niklas Ohlsson, Guanqun Cao, and Minming Zhao. Fur-
thermore, thanks my family for your solid support and continuous encouragement
during the difficult period.

Shuangshuang Chen, Gothenburg, June 2018

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Road friction estimation . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Vehicle dynamic based nonlinear tire force and friction esti-
mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Sequence modeling for on-board estimation algorithm . . . . . . . . . 13
2.2.1 Echo state networks . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Optimizing readout layer without feedback path . . . . . . . . 17

2.2.2.1 Optimization metric . . . . . . . . . . . . . . . . . . 18
2.2.2.2 Linear regression and Ridge regression for linear read-

out layer . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2.3 Stochastic gradient descent . . . . . . . . . . . . . . 20

2.2.3 Output feedback path . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . 22

2.2.4 Hyper parameters of ESNs . . . . . . . . . . . . . . . . . . . . 24
2.2.4.1 Reservoir size . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4.2 Sparsity of Reservoir Connectivity . . . . . . . . . . 24
2.2.4.3 Spectral Radius . . . . . . . . . . . . . . . . . . . . . 25
2.2.4.4 Distribution of Nonzero Elements . . . . . . . . . . 25
2.2.4.5 Leaky Rate . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4.6 Memory size . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Temporal pattern recognition for prior knowledge . . . . . . . . . . . 26
2.3.1 Hidden Markov model . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1.1 Solutions for three problems . . . . . . . . . . . . . . 29

3 Methods 33
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 HMM-based spatial temporal pattern map and clustering . . . . . . . 34

ix



Contents

3.2.1 Optimal geometric aggregation resolution . . . . . . . . . . . . 35
3.2.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Dissimilarity metric . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Feature selection technique . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Correlation Measures . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Fast Correlation-Based Filter FCBF . . . . . . . . . . . . . . 41
3.3.3 Selected Features . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Results and analysis 47
4.1 Hidden Markov model based spatial temporal pattern recognition of

road friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 On-board estimation algorithm using Echo State Network . . . . . . . 53

4.2.1 Training, validation and test datasets split . . . . . . . . . . . 53
4.2.2 Hyper parameters optimization . . . . . . . . . . . . . . . . . 54
4.2.3 Evaluation of ESNs . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion and Future work 65
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Appendix 1 I

x



List of Figures

2.1 Friction utilization and friction potential given slip rate sx or sy . . . 6
2.2 Performance area of different road friction estimation algorithm ve-

hicle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Tire characteristics curve of normalized longitudinal/lateral force Fx(Fy)

given slip rate/slip angle sx(sy) by the Brush model . . . . . . . . . . 9
2.4 Eight-degree-of-freedom vehicle model . . . . . . . . . . . . . . . . . . 10
2.5 Graphic representation of Recurrent neural networks . . . . . . . . . 15
2.6 Echo state networks architecture . . . . . . . . . . . . . . . . . . . . . 15
2.7 The difference between gradient based and ESN training of RNN . . . 17
2.8 Iterative feedback training of ESN . . . . . . . . . . . . . . . . . . . . 22
2.9 Graphic model representation of hidden Markov model . . . . . . . . 27
2.10 Hidden Markov model transition and emission . . . . . . . . . . . . . 28

3.1 Geometric location of all available road friction . . . . . . . . . . . . 34
3.2 Hidden Markov Models-based spatial temporal pattern clustering . . 35
3.3 The amount of samples of different geometric locations on aggregated

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 K-fold cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Dissimilarity matrix comparison between two definitions . . . . . . . 38
3.6 Hierarchy relation between different geometric locations based on

KLD in figure 3.5b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 The feature selection procedure of Fast Correlation-Based Filter FCBF 40
3.8 symmetrical uncertainty between features and class by FCBF feature

selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.9 symmetrical uncertainty between features by FCBF feature selection . 45

4.1 Size of aggregated data under different resolution . . . . . . . . . . . 49
4.2 Sample size of aggregated data under different resolutions . . . . . . . 50
4.3 KLD matrix under different resolution . . . . . . . . . . . . . . . . . 51
4.4 Hierarchical clustering over different locations under different resolution 52
4.5 Training, validation and test data split . . . . . . . . . . . . . . . . . 53

xi





List of Tables

2.1 Table of all variable and parameter symbols . . . . . . . . . . . . . . 11

3.1 Selected feature list by FCBF . . . . . . . . . . . . . . . . . . . . . . 45

4.1 The number of grid and non-empty location under different resolution 49
4.2 Hyper parameter proposals for hyper parameter optimization . . . . . 54
4.3 ESN performance under different reservoir size on validation data . . 55
4.4 ESNs performance under different memory sizes on validation data . 56
4.5 ESNs performance under different connectivity on validation data . . 57
4.6 ESNs performance under different spectral radius on validation data . 57
4.7 ESNs performance under different leaky rate on validation data . . . 58
4.8 Optimal hyperparameters for ESN . . . . . . . . . . . . . . . . . . . . 58
4.9 Comparison between ESN and physical model on training and test

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 The performance of ESN on training/test data under different train-

test split percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 Feature list of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . I

xiii





1
Introduction

This chapter first introduces the background of the thesis project and emphasizes
on the current challenges to motivate the project. In addition, it will elaborate the
research problem that we are to solve in this thesis, and its scope. Lastly, the outline
of thesis will be given for readers to follow easily.

1.1 Background

As the most convenient way of transportation nowadays, automotive has become
more and more available and affordable to everyone. The last few decades have
witnessed the rapid development of new technologies on cars, especially in active
safety, autonomous driving and electrification. More and more advanced driver as-
sistance system such as autopilot system frees drivers from tedious driving tasks
and prevents the occurrence of accidents. Along with some critical breakthroughs
in artificial intelligence such as object detection, tracking, path planning and etc.,
automotive industry endeavors to offer more intelligent and failure-free autonomous
driving system. In order to design self-driving system for all scenarios, it not only
relies on the redundant sensors to reconstruct the surrounding environment and ad-
vanced algorithms to make driving decision, but also a robust motion control system
to execute maneuvers safely, accurately and responsively. To achieve this goal, road
friction coefficient, as one of the dominant parameters for maneuvers must be esti-
mated accurately. The assistance system could adapt different maneuvers according
to the surface condition and avoid collision under the critical situations. Meanwhile,
the road friction information could be utilized in other applications. Volvo Cars has
developed road slippery warning system that warns upcoming drivers of slippery
road condition if there is reported as slippery by previous cars. The road authority
could also utilize this information for better traffic plan and maintenance scheduling
[1]. This information could be accessible by the navigation system such as Google
Map, therefore travel plan could be easily adjusted according to current but also
foreseen road conditions, and accidents will be avoided.
However, the road friction estimation is still one of unsolved research questions in
vehicle dynamics although hundreds of methods have been proposed and developed
in the last few decides. Most proposals reply on well studied tire characteristics that
tire behavior is modelled by mathematical equations. Furthermore, most algorithms
limit themselves on some specific scenarios such as pure longitudinal, lateral, self-
alignment dynamics or friction limit. There is no single algorithm could estimate
road friction accurately in all scenarios. Meanwhile, the current state-of-the-art
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1. Introduction

solution also suffers the inaccurate estimation and low confidence due to the com-
plexity of vehicle dynamics model, tire model and noise measurement.
Nowadays, machine learning as a fiercely growing branch of computer science, is a
statistical technique to learn the patterns from the data especially when it comes to
enormous amount of samples. We have observed its success in computer vision, nat-
ural language processing and decision making in gaming. But it still lacks of studies
to introduce this technique in the traditional vehicle dynamics field for modeling
and estimation. The most applied algorithm is the Kalman filter and its extensions.
Currently, more and more sensors are mounted on-board such as camera, LiDAR,
IMU, and etc. And the performance of sensors gets improved substantially in both
measurement frequency and accuracy. However, this enormous data has not been
fully utilized and studied well so far. Machine learning method offers possible way to
deal with high dimensional data and it requires less expert knowledge to give better
prediction once the model is proved to generalize well. At the same time, pow-
erful computation unit like CPU or GPU facilitates more complicated algorithms
to be executed in real-time applications. Therefore, we introduce machine learning
methods to build a better road friction estimation algorithm in this thesis.

1.2 Purpose

The biggest challenge faced by current state-of-the-art road friction estimation algo-
rithm is the low confidence and poor accuracy of estimate when tire is not adequately
excited. For instance, it is difficult to estimate the road friction value when car runs
on the highway straightly since the corresponding longitudinal force is low and uti-
lization of friction is low as well. However, this kind of driving scenario takes large
proportion of daily driving. In addition, there is coupling effect between longitu-
dinal and lateral dynamics, therefore the assumption of either pure longitudinal or
lateral dynamics does not apply for the scenario of slight braking and steering at the
same time. And other estimation algorithm based on the vision or acoustic effect
does not generalize well in the wild even though some have been tested well in the
experimental environment. There lacks of a general algorithm that could estimate
accurately under all the scenarios. Therefore, the main goal of this thesis is to use
data-driven methods to learn the model to estimate road friction with relevant sig-
nals. Except that some of raw measurement signals are pre-processed to have less
noise-to-signal rate. And the intermediate estimates such as tire force of longitudi-
nal, latitude and vertical directions, or slip rate are obtained by filtering algorithm.
The first part of thesis mainly focuses on building on-board estimation algorithm by
Echo State Networks ESNs using selected features. In addition, the second part of
thesis studies on the temporal spatial pattern extraction of road friction over differ-
ent locations which could serve as prior knowledge to enhance on-board estimation
algorithm. Certainly, except from constructing suitable models for this application,
more analysis of results will be discussed in the later chapters.
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1. Introduction

1.3 Scope

In this thesis, we apply machine learning methods to estimate road friction for all
different conditions. It is the first data-driven project from our knowledge for road
friction estimation algorithm. However, there is void of open data resource and
most of research is based on their own simulation model or field test, which makes
bench-marking difficult. The proposed method has been verified with comparison
to the internally developed method by Volvo Cars and the internal expedition data
is used. The result might not be consistently comparable to methods from other
publications especially the input features used in different literature vary. More
thorough comparison to other state-of-art algorithm will be carried in future work
to validate the algorithm further.
Furthermore, even though current data covers different road condition variants such
as dry, wet, snowy, ice, mixed, and road types like asphalt, gravel, lake, and different
tire types. However, the effect of variance of data on the algorithm is impossible
to measure and there is no established method to quantify the robustness of algo-
rithm, since the performance possibly degrades under completely new conditions
during test time. Or the characteristics of some particular tyre deviate substantially
from the typical car tyres. Although we fairly divide data into separate subsets for
training, validation and test, the performance of model on unseen test data might
fail to be a fair measure and it is basically impossible to predict how good model
performs in wild. It is still an unsolved problem in machine learning community,
which we will not discuss in depth in this thesis. In addition, the interpretation of
“black-box” network behavior is still an active research topic, therefore it is difficult
to find components that are responsible for the failure of model and it is beyond the
scope of this thesis as well.
For the spatial-temporal pattern recognition of road friction, we have carried some
experiments to validate the proposed Hidden Markov Model-based clustering method.
We observe that there is bias existed in data which makes pattern extracted sen-
sible. For example, some expedition tests were carried on specific locations only
in summer or some in summer only, which might be easy for algorithm to cluster.
Moreover, unlike the estimation algorithm has access to the ground truth of road
friction coefficient, the true geometric pattern is impossible to obtain to evaluate,
and much more data is needed. We are looking forward to see that more further
investigation in this field.

1.4 Thesis outline

The thesis includes the knowledge from multiple disciplines such as vehicle dynam-
ics, statistics and machine learning. As stated previously, the thesis will mainly
tackle two parts of the problem: one is to build road friction estimation algorithm
using Echo State Network; another is to use Hidden Markov Model to study the
temporal pattern of road friction over different locations. We start with the brief
introduction of fundamentals to better understand the methods and results in the
second chapter: fundamentals of vehicle dynamics and vehicle-dynamics based road
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1. Introduction

friction estimation algorithm; fundamentals of ESNs and proposed modification of
model are explained in details; fundamentals of Hidden Markov Model about model
architecture and learning methods. In the method chapter, there is detailed de-
scription about data sets. It also covers the extended HMM based spatial-temporal
pattern recognition method, and the feature selection technique for the input of
ESNs. In the result chapter, the performance of proposed road friction estimation
algorithm using ESNs is compared to the vehicle-dynamics baseline model. Hyper
parameter optimization is also given with details in the same chapter. Furthermore,
the detailed analysis of spatial-temporal pattern is explained with plots.
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2
Theory

In this chapter, we include all the fundamental theories required to understand the
rest of thesis. It starts with a brief introduction of a conventional road friction
estimation algorithm based on vehicle dynamics. It describes how to estimate road
friction coefficient from signals such as tire longitudinal and lateral forces, slip rates,
slip angles using Kalman filter and analytic tire models. We also review literature
and analyze the bottleneck of the traditional methods. In the second part, we intro-
duce the sequence modeling methods in machine learning context mainly Recurrent
neural networks. Detailed description of Echo State Network, a specific sequential
model, is given regarding its structure, training method, hyper parameters. The last
section mainly introduces the fundamentals of Hidden Markov Model HMM includ-
ing its graphic model representation, parameters and training method for readers
to understand the HMM based clustering method for spatial-temporal pattern in
chapter 3.

2.1 Road friction estimation
Before our in-depth discussion, we first illustrate the definition of friction coefficient
to be estimated in this thesis. Seen from figure 2.1, "friction utilized" indicates the
dynamic friction that the tire experiences and is the ratio between the horizontal
force and nominal force, while friction potential indicates the peak friction which
is the maximum dynamic friction. We also call the friction potential as friction
coefficient, which is the value we are to estimate in this thesis and is correlated to
the property of road surface and tyre pairs.
Therefore, the road friction coefficient is defined as the ratio between the maximum
horizontal force magnitude Fxy and nominal force magnitude Fz. If we assume the
isotropic adhesion properties of tyre in the lateral and longitudinal directions, the
horizontal force Fxy could be decomposed into longitudinal and lateral forces and
road friction coefficient is assumed to be isotropic in both direction as well:

µi ,
Fxy,i
Fz,i

=

√
F 2
x,i + F 2

y,i

Fz,i
(2.1)

where Fx,i is the longitudinal force of tire i, Fy,i is the lateral force of tire i, Fz,i
is nominal force of tire i. Due to the isotropic property, the maximum horizontal
force forms a circle in the longitudinal and lateral force plane, called "friction limit
circle". In practice, tire usually does not have perfectly isotropic properties in lateral
and longitudinal directions, so the "friction limit circle" converts to "friction limit
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2. Theory

Figure 2.1: Friction utilization and friction potential given slip rate sx or sy

ellipse". However, due to the complexity of non-isotropic behavior of tire model and
small deviation brought by non-isotropic behavior, we use the isotropic assumption
in our discussion.
[2] and [3] give comprehensive reviews of different road friction estimation techniques
including effect-based estimation methods that estimate it from tire response like tire
slip, vibration and noise, and cause-based approaches that estimate friction directly
from vision, laser scan or temperate to measure unevenness and lubricant presented
on road surface. Under effect-based approaches, there are two main branches: vehi-
cle dynamics-based methods and acoustics-based methods. Vehicle dynamics-based
methods utilize longitudinal, lateral dynamics or self-aligned moment dynamics to
estimate road friction using some tire models such as Magic formula, Brush model,
LuGre model and etc. Those tire models are mathematical formulas to describe the
tire characteristics with parameters. Except from tire models, different vehicle dy-
namics models describe the motion of vehicle using equations of motion to build up
appropriate observers. The common vehicle dynamics models include single wheel
model, bicycle model, two-track model and more complicated vehicle model with roll
dynamics and etc. Estimation algorithms usually do not use unprocessed measure-
ment of acceleration, yaw rate, force sensors, but utilize intermediate such as slip
rate, slip angle or even tire forces. The state estimation algorithm include recursive
least square, extended Kalman filter, sliding mode observer. Those intermediate
estimate algorithm are beyond our discussion due to limit of space. [4], [5] and [6]
describe details about longitudinal force estimation methods, and [7] introduces ex-
tended and unscented Kalman filter to estimate lateral individual tire forces. With
intermediate estimates, the estimation algorithm of road friction is to calculate the
road friction that maximizes the probability of estimate given forces and slip rate,
slip angle under the specified tire model. However, there are several limitations of
vehicle dynamics-based methods: it requires accurate tire model which is carefully
calibrated and measured by a flat belt tire testing equipment; it requires tire to
have adequate excitation about 60 % of maximum tire potential forces; the coupling
effect between longitudinal and lateral dynamics is assumed negligible to reduce the
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2. Theory

complexity of problem; tires on the customers’ vehicle will be worn out along with
the time of usage and the information of tire mounted is also impossible to acquire
in advance. These shortcomings limit the wide applications of road friction on the
optimal control, and motivates researchers to find more robust and general methods.
Because of the complexity of tire model and vehicle dynamics, some research resorts
other resource to sense road friction based on vision [1] or acoustics [8]. However,
the disadvantages of those methods are evident: the acoustics-based method is sen-
sitive to the background noise which is hard to remove completely; the vision-based
method fails especially on the mixed surface such as sluggish snow on the surface of
ice. Although those studies achieve certain level of accuracy in the experiments, the
accuracy is tremendously reduced in practice and algorithms are extremely sensi-
tive especially when testing conditions are deviated from the experiment conditions,
therefore the robustness of algorithm is hard to guarantee. Besides, sensors such as
camera or acoustic sensors that fulfill the performance requirement are usually too
expensive for production car. Compared to vision- and acoustics-based method, ve-
hicle dynamics-based method is still of great interest due to its cost-effectiveness and
robustness. Therefore, we will focus on the discussion on vehicle dynamics-based
methods mainly in this thesis, and the features used for machine learning methods
are also dynamics related.
As mentioned before, there is bottleneck of vehicle dynamics-based method that
different algorithms has limited applicability on the certain scenarios. Figure 2.2
illustrates the performing areas of different algorithms according to the different
vehicle dynamics utilized. When tire reaches the friction limit or stability control
is activated, it is not difficult to estimate road friction coefficient since longitudinal
or lateral forces are confined in the friction limit ellipse. For the pure lateral dy-
namics approach, the longitudinal dynamics is assumed to have negligible effect i.e.
when vehicle is steady-state cornering, so that friction coefficient is estimated from
pure lateral forces and tire characteristics. Similarly, pure longitudinal dynamics
approaches ignore the lateral effect i.e. when straight braking or accelerating. Both
approaches work well if there is no large lateral motion for pure longitudinal dynam-
ics or it is quasi steady-state (approximately constant longitudinal speed) for pure
lateral dynamics. However, this assumption of pure longitudinal or lateral dynam-
ics does not hold in practice when braking and steering are involved at the same
time. And the coupling effect of dynamics for two directions degrades the estima-
tion accuracy substantially when it deviates too far from pure lateral/longitudinal
regions. Besides, the tire experiences low slip at normally driving scenarios without
any braking and steering. The road friction utilization is so low that estimation al-
gorithm fails as [3] addresses the difficulties of accurate estimation without adequate
tire excitation. Since different estimation algorithms could function with certain ac-
curacy in different regions in figure 2.2, it requires to integrate multiple algorithms
to an integrated friction estimation algorithm like in [9]. However, the integrated
algorithm is complicated but still cannot cover all regions and be generalized.
Therefore, it is significant to construct a more generalized approach to tackle most
of scenarios with acceptable accuracy. Before we move into machine learning meth-
ods, we illustrate one simple estimation algorithm based on the nonlinear tire model
with 8-degree-of-freedom dynamics first which is the baseline model we will compare
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2. Theory

Figure 2.2: Performance area of different road friction estimation algorithm vehicle
dynamics

to.

2.1.1 Vehicle dynamic based nonlinear tire force and fric-
tion estimation

The baseline algorithm of road friction estimation is proposed by Ray in [10]. It uses
an eight-degree-of-freedom vehicle model which combined four-wheel model with ve-
hicle roll dynamics.
Before deriving the estimation algorithm, we take a glance at tire model first. Figure
2.3 shows a series of tire characteristics curves under different road friction coeffi-
cients for longitudinal and lateral dynamics by Brush model. The x-axle is the slip
rate for longitudinal dynamics or slip angle for lateral dynamics, while y-axle is the
normalized longitudinal or lateral force respectively. For longitudinal dynamics, the
curves of normalized longitudinal force Fx/Fz given longitudinal slip rate sx vary
with the road friction coefficients. Similar observation applies on the lateral dy-
namics as well: the curves of normalized lateral force Fy/Fz given lateral slip sy
vary with road friction coefficients, but the slope and the location of maximum are
different to that of longitudinal characteristics. All curves can be simplified to linear
and nonlinear regions. The linear region could be parameterized by the slope which
we usually denote it as longitudinal stiffness for longitudinal dynamics or corner-
ing stiffness for lateral dynamics. Within linear region, the longitudinal stiffness
under different road friction coefficient is found different in experiment. Some re-
search like [11] utilizes the estimated longitudinal stiffness to estimate road friction.
However, this phenomenon varies from different types of tire and the estimate of
stiffness largely relies on the accuracy of forces which requires extremely expensive
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2. Theory

stress-strain force sensors. And analytic tire model in [12] or Brush model [13] do
not integrate this phenomena, so that the stiffness is similar among different road
friction, which makes the estimation in low slip rate region hard. In nonlinear re-
gion, we could clearly observe the discrepancy between curves. The saturation force
is dominantly controlled by road friction value for both longitudinal and lateral dy-
namics. More complicated tire models such as Magic Formula or the analytic model
[12] used in [10] have more complex shape than Brush model in figure 2.3. However,
in general, we could consider tire force curves as the function of varying road friction
coefficients µ. The discussion of tire models is beyond this thesis, but one thing to
be emphasized here is that it does play a significant role on the validity of estimation
algorithm.
In order to infer road friction from the tire model given forces and slip rate or

Figure 2.3: Tire characteristics curve of normalized longitudinal/lateral force
Fx(Fy) given slip rate/slip angle sx(sy) by the Brush model

slip angle, it is necessary to model vehicle planar motion. [10] uses eight-degree-of-
freedom vehicle model with roll dynamics whose diagram is shown in figure 2.4.
The equations of motion are:

9



2. Theory

Figure 2.4: Eight-degree-of-freedom vehicle model

m(v̇x − vyr) = −mshrp+ Fxf + Fxr

m(v̇y + vxr) = mshṗ+ Fyf + Fyr

Izz ṙ = Ixzṗ+ FyfLf − FyrLr + (Fxflcosδfl − Fxfrcosδfr + Fyflsinδfl − Fyfrsinδfr)
tf
2

+ (Fxrlcosδrl − Fxrrcosδrr + Fyrlsinδrl − Fyrrsinδrr)
tr
2 +Mz

Ixxsṗ = msh(v̇y + vxr) + Ixzsṙ +mshgϕ+Mϕf +Mϕr

ϕ̇ = p

ω̇fl = (FxflRw − Tfl)
1
Iw

˙ωfr = (FxfrRw − Tfr)
1
Iw

ω̇rl = (FxrlRw − Trl)
1
Iw

˙ωrr = (FxrrRw − Trr)
1
Iw

(2.2)
10
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where

Fxf = (Fxflcosδfl + Fxfrcosδfr) + (Fyflsinδfl + Fyfrsinδfr)
Fyf = (Fxflsinδfl + Fxfrsinδfr) + (Fyflcosδfl + Fyfrcosδfr)
Fxr = (Fxrlcosδrl + Fxrrcosδrr) + (Fyrlsinδrl + Fyrrsinδrr)
Fyr = (Fxrlcosδrl + Fxrrcosδrr) + (Fyrlsinδrl + Fyrrsinδrr)

(2.3)

Table 2.1 shows the list of all variables and parameters with their notations.
We could transform all of equations to state space model. So that the state vec-

symbols variable name
vx longitudinal velocity at CoG state variable
vy lateral velocity at CoG state variable
ωij front/rear left/right wheel angular velocity state variable
r yaw rate at CoG state variable
p roll rate at CoG state variable
ϕ roll angle at CoG state variable
Fxij front/rear left/right longitudinal force intermediate estimate variable
Fyij front/rear left/right longitudinal force intermediate estimate variable
Mz total self-alignment torque intermediate estimate variable
Mϕ,i roll moment (ignored) input variable
δij front/rear left/right wheel steering angle input variable
Tij front/rear left/right wheel torque input variable
m total mass of vehicle parameter
ms sprung mass parameter
h distance of roll axis to sprung mass at CoG parameter
Lf , Lr distance of front/rear axle to CoG parameter
Rw wheel radius parameter
Izz moment inertia around yaw axis parameter
Ixxs moment inertia around roll axis parameter
Ixzs sprung mass product of inertia about roll, yaw axis parameter
Ixz product of inertia about roll and yaw axes parameter
Iw wheel rotational moment inertia parameter
tf , tr front and rear track width parameter

Table 2.1: Table of all variable and parameter symbols

tor x(t) components are longitudinal, lateral velocity, yaw and roll rate, 4 wheel
angular velocities, and roll angle ϕ as x(t) = [vx, vy, r, p, ωfl, ωfr, ωrl, ωrr, ϕ]. The
input vector are the steering angle and braking torques of each wheel so u(t) =
[δfl, δfr, δrl, δrr, Tfl, Tfr, Trl, Trr]. The force vector includes longitudinal and lateral
tire forces at each wheel, and total tire self-alignment moment so that it can be
denoted as F(t) = [Fxfl, Fxfr, Fxrl, Fxrr, Fyfl, Fyfr, Fyrl, Fyrr,Mz]. Meanwhile, the
longitudinal slip rate and lateral slip angle estimates for each wheel could be derived
from the state estimate. Lateral slip angles α̂ = [α̂fl, α̂fr, α̂rl, α̂rr] and longitudinal
slip rate estimates ŝ = [ŝfl, ŝfr, ŝrl, ŝrr]:

11
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
α̂fl
α̂fr
α̂rl
α̂rr

 =


δfl
δfr
δrl
δrr

− tan−1


v̂y+Lf r̂

v̂x
v̂y+Lf r̂

v̂x
v̂y−Lr r̂
v̂x

v̂y−Lr r̂
v̂x

 (2.4)


ŝfl
ŝfr
ŝrl
ŝrr

 = 1−Rw


ŵfl

v̂f cos α̂fl
ŵfr

v̂f cos α̂fr
ŵrl

v̂r cos α̂rl
ŵrr

v̂r cos α̂rr

 (2.5)

where v̂f and v̂r are the estimated magnitudes of velocity of front and rear axle
respectively:

v̂f =
√

(v̂y + Lf r̂)2 + v̂2
x

v̂r =
√

(v̂y − Lf r̂)2 + v̂2
x

(2.6)

As mentioned before, the analytic tire force model of [12] is the functions of velocity,
µ and normal force Fz = [Fzfl, Fzfr, Fzrl, Fzrr]. Given the tire model T(·), the
normalized longitudinal force and lateral force is the function of slip:

F = [Fxnfl, Fxnfr, Fxnrl, Fxnrr, Fynf , Fynr]
= T(s,α,Fz,v, µ)

(2.7)

where normalized force i.e.

Fxnfl = Fxfl
Fzfl

Fynf = FynflFzfl + FynfrFzfr
Fzfl + Fzfr

(2.8)

One thing needs to emphasized is that the tire model here simply considers the
decoupling effect between lateral and longitudinal dynamics. Therefore, the lateral
forces are independent to the longitudinal forces.
The nonlinear tire forces are firstly estimated by Extended Kalman-Bucy filter
EKBF [14]. The measurement equation is:

z(t) = [r ωfl ωfr ωrl ωrr ax ay p]T

= h[x(t),F(t),u(t)] + n(t)
(2.9)

which is the function of three parts – states, forces and inputs and ax and ay are the
longitudinal and lateral acceleration respectively, and n(t) is Gaussian noise. The
estimation model requires the pre-knowledge of either tire forces or road friction
µ. However, the forces are the variable to be estimated in the force estimator.
Therefore, in order to estimate both forces and road friction, the state vector is
augmented to include the first order differential of forces as well. The augmented
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state and differential equation change to:

x̂A(t) =
[
x̂(t)
F̂(t)

]
=

[
f(x̂, F̂, û)

AF̂

]
= fA(x̂A,u)

ŷ(t) = hA(x̂A,u)
(2.10)

where A is a block-diagonal matrix, xA is augmented state vector concatenated by
original state vector x̂(t) and F̂(t) is six estimated forces [F̂xfl, F̂xfr, F̂xrl, F̂xrr, (F̂yfl+
F̂yfr), (F̂yrl + F̂yrr)] with their first order differentials, and ŷ(t) is reconstructed
output. EKBF is a standard estimation algorithm by integrating equation 2.10.
The details about force estimator could refer to [10] if readers are interested in
implementation. We would assume that we have obtained force estimates to focus
on our discussion about friction estimation algorithm.
Once we have all variables available, we could estimate road friction coefficient.
Therefore the conditional probability of F̂ given µ is [10]:

Pr[F̂|µ] =Pr[F̂|T(s, a,Fz,v, µ)]

= 1
(2π)n/2S1/2 exp{−1

2(F̂−T)TS−1(F̂−T)}
(2.11)

where S is the covariance matrix. Then the estimated road friction coefficient takes
the expectation:

µ̂ = EPr[µ|F̂][µ] (2.12)

However, the expectation is not computationally feasible for real-time estimation
algorithm. Therefore, we pre-define finite number of hypothesis of µ. Given each
hypothesis, the conditional probability of µj given F̂(t) is according to Bayes theo-
rem:

Pr[µj|F̂(t)] = Pr[F̂(t)|µj]Pr[µj|F̂(t− 1)]∑J
j=1 Pr[F̂(t)|µj]Pr[µj|F̂(t− 1)]

(2.13)

The hypothesis µj is selected as 10 i.e. {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and
the initial condition probability Pr[µj|F̂(0)] is 1/J that there is no prior knowledge
of µ. The estimated µ̂t for each time instance becomes :

µ̂(t) =
J∑
j=1

Pr[µj|F̂(t)]µj (2.14)

2.2 Sequence modeling for on-board estimation
algorithm

Most data in practice comes in a sequential manner, so is the data we used in this
thesis. It can be formulated in non-sequential model, however, the data will violate
the independent identically distributed assumption and sensor reading has temporal
pattern underlying in the measurement which non-sequential model can not capture
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it. Besides, most sensor readings are not noise-free, so non-sequential model might
suffer from large signal-to-noise ratio and make learning system extremely unstable
and overfitting.
There are multiple alternative approaches to model sequential data such as Dy-
namic Bayesian network and Recurrent neural networks. The Dynamic Bayesian
Network is a Bayesian network that relates variables to each other over the adja-
cent time steps. Two widely used Dynamic Bayesian Network are hidden Markov
model [15] and Kalman filter [16]. Hidden Markov model [15] models the tempo-
ral pattern through the latent variables which are discrete states and state transits
to each other according to transition probability, and emission probability deter-
mines the probability of observation given latent states. However, in this thesis,
Hidden Markov model will be used for temporal pattern recognition and discussed
in detail in next section. Kalman filter [16] is a linear Gaussian state space model.
With specified linear dynamics of system (state-transition model and observation
model) and assumed Gaussian noise, the state could be inferred from the observa-
tion. On the other hand, Recurrent neural network regains huge popularity recently
in the sequence learning especially with deep neural networks due to its capability
to learn the complex nonlinear mapping and improved computation power of em-
bedded computation unit. Recurrent neural networks RNN have applied in many
different domains such as natural language processing, sentiment analysis, neural
machine translation, speech recognition, rhythm learning, hand-writing recognition,
human action recognition and etc. Compared to the normal multi-layer perceptron
method, RNNs could model variable-length data so that we do not have to fix the
input length, because parameter of model is shared for all time instance. The basic
idea of RNN is to learn the mapping between the hidden state, input and output
for each time instance in sequence:

h(t) = f(h(t−1),x(t);θ)
y(t) = g(h(t))

(2.15)

where h(t) is hidden states at time t that stores all necessary historical information
until t, x(t) is input vector, θ is parameters of networks, f(...) is internal activation
function and g(...) is output activation function, mapping from hidden space to out-
put space, and y(t) is output vector. The figure 2.5 shows the graphic representation
of Recurrent neural networks. There are various architectures in RNN based on the
different dependencies: fully recurrent network [17] (also called vanilla RNN), Elman
networks [18], Jordan networks [19], and Long Short Term Memory networks LSTM
[20], Echo state networks ESNs [21], Recursive networks [22]. Most of them have
been proved successful in sequential modeling in different applications. However,
for some networks such as LSTM [20], fully recurrent network [17], Elman network
[18] and Jordan networks [19] suffer from the difficulties of training especially for
large input dimension. The computational burden is a serious problem when using
back-propagation through time which will be explained in detail later. Therefore, in
this thesis, we focuses on Echo state network ESN which has a sparsely connected
reservoir network and only the weight of output neurons needs to be learned.
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Figure 2.5: Graphic representation of Recurrent neural networks

2.2.1 Echo state networks
Echo state network provides an architecture for recurrent neural network which
models the temporal mapping from input to output learned by supervised learning.
ESNs follows the principle of RNN as stated in equation 2.15. The concept of Echo
state networks is first introduced by Jaeger in [21] and [23], and later successfully
applied on the adaptive nonlinear system identification in [24]. Figure 2.6 shows the
architecture of ESNs. The reservoir network in the middle of figure 2.6 is a randomly
initialized but fixed sparsely connected neural network. The connections between
reservoirs are specified by the sparse matrix W. The input unit is transformed into
hidden space via weights Win. And Wout is learnable weights to map the hidden
state to output [21]. There is an option path from previous outputs which is the
autoregressive mechanism similar to Autoregressive model [25] by the weights Wfb.

Figure 2.6: Echo state networks architecture

Therefore, the echo state h(t) is updated by previous state h(t−1), current input x(t)

and/or feedback from previous output y(t−1):

h(t) = f(Win[1; x(t)] + Wh(t−1) + Wfby(t−1)), t = 1, ..., T (2.16)
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where x(t) ∈ RNx is input signals, h(t) ∈ RNh is the vector of reservoir neurons, y(t−1)

∈ RNy is the optional previous output which could be targets or estimates and we
will discuss it more in detail later. the input dimension is Nx, reservoir size is N
and output size is Ny. f(. . . ) is an activation function, which can be chosen from
linear, Tanh, sigmoid and etc. In this thesis, Tanh is used as default if not specified.
Win ∈ R(Nh+1)·Nx is the input weight matrix. Bias term is also added in Win to give
the constant shift. W ∈ RNh·Nh is the internal reservoir connection weight matrix.
And Wfb ∈ RNy ·Nh is optional feedback weight matrix. t = 1, 2, ....T is the discrete
time instances and T is variable length of sequences. The state is usually initiated
by a zero vector x(0) = [0, 0, 0, . . . , 0]T . The notation used in this thesis follows the
conventions in machine learning community which is slightly different to the original
paper of ESNs [21].
If a linear readout layer is connected to hidden states, the output of network ŷ(t) is
harvested by the extended state vector including x(t) and h(t) :

ŷ(t) = g(Wout[1; x(t); h(t)]) (2.17)

where Wout ∈ RNy×[1+Nx+Nh] is linear readout weight matrix, g(. . . ) is the readout
activation function. Similarly, it can be chosen from identity, tanh, sigmoid or other
activation function. Here, the identity function is used as default if not specified.
ESNs has very similar mathematical formulation as Elman network and Jordan
network. But, the weight of reservoir connections W and input to reservoir Win are
initialized randomly. So only the weight matrix of output Wout is trainable. If the
option path is not activated, there is no cyclic dependencies between the readout
connection which gives the biggest advantage over other recurrent neural network
because it eases the difficulty of training by the backpropagation through time [26].
However, in this thesis, we find that introducing the option feedback path could
help reservoir to stabilize and handle the noise embedding in the input vectors if
we train it appropriately although the option feedback path brings more difficulties
for training. Compared to original ESNs, one-time feed-forward pass no longer has
the closed form solution by linear regression or ridge regression for linear readout
weight matrix Wout. We will illustrate it in detail in the following sections.
Jaeger in [27] also introduces leaky rate which is similar to the concept of forget gate
or time gate in other RNN methods [28]. But different to the time gate, leaky rate
is a global hyper parameter. It is possible to extend it as a learnable parameter but
it is out of scope of this thesis, which could be extended in the future work. The
states update equation is modified from equation 2.16 to add leaky rate by:

h̃(t) = f(Win[1; x(t)] + Wh(t−1) + Wfby(t−1))
h(t) = (1− ζ)h(t−1) + ζh̃(t) (2.18)

Except from the same notation of variables as in 2.16, h̃(t) ∈ RNh is the update and
ζ ∈ (0, 1] is the leaky rate. When leaky rate is equal to 1, then the first equation
above is equivalent to equation 2.16 so h(t) ≡ h̃(t). Therefore, we could consider
the formation without leaky rate is a special case of leaky rate as 1. If leaky rate
approximates to 0, then h(t) ≡ h(t−1) ≡ . . . ≡ h(0) so that all hidden states take
the memory from previous state and ignore the current input completely. By these
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two extreme examples, we could understand how leaky rate controls the trade-off
between preserving previous information and taking new information from inputs
and feedback outputs.
Figure 2.7 illustrates the difference of training process between ESNs (without feed-
back path) and other gradient-based RNN [29]. The bold line in figure 2.7 are the
weights that need to be updated iteratively. For the gradient-based training method,
the total number of gradients needs be calculated is Nx · Nh + N2

h + Nh · Ny. As
for ESN, only the readout weight matrix Wout is trainable so that only Nh · Ny

weights have to be updated. And as discussed before, without feedback optional
path, ESNs could harvest all the reservoir state by one forward pass and use the
linear regression to update the read out layer, which makes convergence much faster
than that of other RNN architectures.

Figure 2.7: The difference between gradient based and ESN training of RNN

In summary, the general training procedure of ESNs (without feedback path) is:

• Specify hyper parameters for ESNs including reservoir size, spectrum radius,
sparsity of reservoir connectivity, spectrum radius, distribution of nonzero el-
ements, leaky rate.

• Generate a randomized weight matrices Win, W according to the specified
hyper parameters.

• Using inputs to x(t) collect states h(t) for all time instances using equation 2.18
(without feedback y) by running forward pass of networks.

• Optimize readout weights Wout.
During test time, states are calculated by equation 2.18 and estimation ŷ(t) are cal-
culated with the trained Wout using equation 2.17. In the subsequent sections, more
deeper insight regarding training of ESNs with/without feedback path and model
hyper-parameters will be discussed in details.

2.2.2 Optimizing readout layer without feedback path

As mentioned in previous session, the inputs x(t) and states h(t) could be collected
through the forward pass of networks for all time instances. In order to make it
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more convenient to optimize weight over all samples, we rearrange all the vectors
for each instance into matrix form:

X =

 1 1 . . . 1
x(1) x(2) . . . x(T )

h(1) h(2) . . . h(T )

 (2.19)

where X ∈ R(1+Nx+Nh)·T , T is the variable length of sequence. To be noted, the
matrix X here is not only for reservoir states but also the constant and input vector
x(t).
We also collect all corresponding target and arrange them to matrix form:

Ytarget = [y(1)
target, . . . ,y

(T )
target] (2.20)

where Ytarget ∈ RNy ·T , and each element is column vector with length of Ny.
Following the previous definition of all matrices, the equation 2.17 could be refor-
mulated as matrix term with X:

Ŷ = [ŷ(1), ŷ(2), . . . , ŷ(T )] = g(WoutX) (2.21)

where Ŷ ∈ RNy ·T and each element is a column vector with length of Ny.

2.2.2.1 Optimization metric

In order to find optimal weight matrix Wout in equation 2.21, we need to specify
the objective function. For regression problem, there are several common metrics:
mean squares error, mean absolute error, mean squares log error, median absolute
error, coefficient of determination.
All metrics mentioned could be used to solve regression problem to find the optimal
readout weight Wout to make estimation as close to target. However, due to the
fact that sum-of-squares error is differentiable everywhere and convex, and easy to
calculate the gradient (if we use the gradient based optimization method), sum-of-
squares error function is nature to use to minimize the square error between Ŷ and
Ytarget:

Err(Ŷ,Ytarget) =
T∑
t=1

(Err(ŷ(t),y(t)
target))

=
T∑
n=1

Ny∑
i=1

(ŷ(t)
i − y

(t)
i,target)2

(2.22)

The standard batch supervised training of ESN is to drive all the inputs and collect
the reservoir states over the all sequences and optimize the linear output weights
Wout by the target output Ytarget. So it is a regression problem to match y(t)

target

to ŷ(t) as well as possible. There are several stable solutions for sum-of-square er-
ror: linear regression, general linear models, heteroscedastic models and so on. Here,
we only discuss the linear regression model using least-squares estimation technique.
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2.2.2.2 Linear regression and Ridge regression for linear readout layer

In the previous section, we mentioned that the readout layer can be chosen from
linear function, multi-layer perceptron neutron network or other network architec-
tures. If the settings of hyper parameters is appropriately chosen, the augmented
state after reservoir computation should be linear to the target in the most cases
[30]. Only if there is no optimal hyper parameters found for linear readout layer,
other network architecture will be considered. In this thesis, we find linear readout
layer is adequate. The nonlinear mapping using neural network and other architec-
ture is out of the scope of this thesis, but reader could refer to [31], [32] and [33] for
more complicate architecture.
If we could collect all reservoir states and inputs, and use equation 2.21, the op-
timization is formulated as linear regression problem with identity function as the
activation function g:

Ŷ = WoutX (2.23)
The closed form solution is:

Wout = YtargetXT (XXT )−1

= YtargetX†
(2.24)

where X† ≡ XT (XXT )−1 is Moore-Penrose pseudo-inverse of matrix X. Sometimes,
the term XXT might not be invertable which makes the solution extremely unstable.
Moore-Penrose pseudo-inverse could help to give stable numerical solution. However,
the weights tend be extremely large to make mapping less smooth and prediction
more variant. Therefore, it is common to add a regularization term in error function:

Err(Ŷ,Ytarget) + λEw (2.25)
If we use L2 regularization term which is the sum-of-squares of weight vector, the
optimization becomes to ridge regression:

Err(Ŷ,Ytarget) + λ‖W‖2
2 (2.26)

where λ is the regularization trade-off. And the closed form solution becomes:

Wout = YtargetXT (XXT + λI)−1 (2.27)
This solution could mitigate the instability problem mentioned before since XXT+λI
is always invertable.
If the regularization term is L1, the optimization problem becomes Lasso. However,
there is no closed form solution for Lasso and also difficult to be applied for gradient
based optimization method. Besides, Lasso tends to shrink weights to exactly zero
compared to ridge regression, which leads to sparse weight matrix.
Seen from equation (2.27), although the size of the product of matrix YtargetXT

and XXT are independent to the size of training data, it requires huge memory to
store all the collected vector in matrix Ytarget and XT . Mantas in [27] mentioned
one extension of ESN approach to train several small ESNs in parallel and average
the output from each individual for the big data problem. However, it still does not
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solve the memory issue from root and also have scaling issue. Therefore, we have
to resort to mini batch technique that we randomly pick up a small batch of data
and perform optimization, and move to next batch and learn weights incrementally.
Therefore, we have to use gradient-based method to optimize the weight matrix on
mini-batches.

2.2.2.3 Stochastic gradient descent

As we mentioned in the last section, we have to resort to incremental learning method
to deal with large scale of data. Stochastic gradient descent is an iterative method to
optimize a differentiable objective function. It uses the stochastic approximation of
gradient descent optimization, and samples in each iteration are randomly selected
which stabilizes the training process.
If we use L2 regularization, we extend the terms of error function (the factor 1

2 is
for the convenience of deriving gradient):

Etot =1
2E(Ŷ,Ytarget) + 1

2λ‖W‖
2
2

=1
2(Ytarget −WoutX)T (Ytarget −WoutX) + 1

2λWoutTWout
(2.28)

The gradient of error on weight Wout is easy to calculated:

∂E
∂Wout

= −(Ytarget −WoutX)XT + λWoutT (2.29)

Each iteration, the gradient is calculated and weight matrix is updated by:

Wout := Wout − η ∂E
∂Wout

(2.30)

where η is learning rate. Decaying learning rate is used here for faster but stable
convergence.
In [27], Jarger compares the stochastic gradient descent and Pseudo-batch output
weight update mentioned in previous section. It is found that the first method
is slower in convergence but more stable while Pseudo-batch method gives faster
convergence but with an increasing risk of instability. Besides, once the feedback
path is introduced, the optimization does not have closed-form solution anymore.
Therefore, we select stochastic gradient descent to optimize weight matrix Wout.

2.2.3 Output feedback path
It is nature to include the feedback connection in ESN since most of dynamics system
has autoregressive mechanism in the signals. Therefore, it is necessary to include
feedback from output to reservoirs by Wfb in equation 2.18. The same principle
applies to initialize Wfb as to Win.
The feedback of output enhances the performance of reservoir computation since
ESNs no longer only rely on input-driven dynamics but also the previous output,
which brings some issues. Although Wfb is randomly initialized and not trainable,
it affects the value of hidden state which indirectly affect optimal weight matrix
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Wout, as we see in equation 2.18. Therefore, we cannot collect all the hidden state
unless we have access to the target as the feedback path. Mantas in [30] discusses
two ways of training with feedback path: teacher forcing and adding state noise term
v(n). The first strategy is to disengage the recurrent relation between reservoir and
previous readout output by using target value y(t−1)

target through the feedback connec-
tion. The target value y(t)

target will boost learning if the model is prone to generate
closely precise estimate that ŷ(t) ≈ y(t)

target. And the training could be done by linear
or ridge regression as discussed before. During test time, the real estimate ŷ(t−1)

has to be used for feedback path instead. However, we observe in the preliminary
experiments that the distorted estimate error during test will propaganda through
the feedback path if the estimate deviates from the target value and reservoir is not
self-stable anymore. ESNs are trained with previous targets and incapable to tackle
the estimation error itself so that the estimation error propagate through time and
eventually estimate largely deviates to the target value after short period of time
even though estimate is quite close to target value at beginning.
The second strategy in [30] is to add a noise term on the target value so that ESNs
never get the exact target value but enforce network to account itself that there is
always uncertainty on the previous estimate. In some extend, the uncertain previous
estimate enhances the generality of model. However, the benefit of feedback then is
substantially mitigated if the noise-to-signal ratio is too large and it makes difficult
to evaluate estimates if the discrepancy of estimate to target is from the added noise
or actual estimate error.
Although there are several proposed methods like BackPropagation-DeCorrelation
BPDC in [34] and FORCE in [35] try to solve feedback reservoir computation for
the iterative training problem, the current solutions still lack of capacity to deal
with the arbitrary signal. Therefore, we would like to use the estimates during both
training and test time so that the accuracy of estimate will not degrade.
It comes with the cost that the training of ESN no longer can be performed by lin-
ear or ridge regression if the estimates are used in feedback path. In order to train
ESN with feedback path of the estimates, we propose the iterative training method
shown in figure 2.8. For each mini-batch, there are few iterations of feedforward
pass and backpropagation update. In each iteration, the process runs feedforward
pass to collect all the hidden states h(t) by the current network parameters θ and
rearrange them to the matrix form as equation 2.19. If it is the first iteration for the
mini-batch, ESNs use the target value Ytarget in feedback path as teacher forcing.
Otherwise they use the estimates Ŷ. With the rearranged matrix X and target
Ytarget, the readout weights Wout are updated by stochastic gradient descent. For
next iteration, ESNs run the feedforward pass using the new optimized Wout and
estimates Ŷ to harvest all hidden states h(1:T ), and new optimization runs on the
newly collected states and so on. After some iterations, the optimization converges
and stabilizes and training moves to next mini-batch. The convergence criteria can
be selected by specifying the number of iterations or evaluating the estimation error
and stopping training when it decreases to a certain level. Here, we use the terminal
criteria that when the root mean square error between target and estimate is lower
than 0.05. By this way, the model learns to stabilize itself in practice and small
deviation from target will not bring the catastrophic error propagation as teaching

21



2. Theory

force method.

Figure 2.8: Iterative feedback training of ESN

Different to the classic ESNs, the optional feedback path could not only feedback
one previous estimate, but also several previous steps. Therefore, we introduce a
hyper parameter called memory size to specify the number of previous estimates
that is used in the feedback path.
In summary, the general training procedure of ESNs with feedback path is:

• Specify hyper parameters for ESNs including reservoir size, spectrum radius,
sparsity of reservoir connectivity, spectrum radius, distribution of nonzero el-
ements, leaky rate, and memory size.

• Generate a randomized weight matrices Win, W, and Wfb according to the
specified hyper parameters.

• Select a mini-batch of data randomly
• Using inputs x(t), and estimate ŷ(t−1) collect states h(t) for all time instances

using equation 2.18 by forward pass of networks with current weights.
• Optimize readout weights Wout by the mini-batch. If the stop criteria is not

fulfilled, return to step 4; otherwise, return to step 3 to start with a new
mini-batch.

2.2.3.1 Evaluation metrics

As mentioned in optimization metrics section, there are multiple evaluation metrics.
We use the mean squares error for optimization since it is differentiable and easy
to calculate gradient. However, for the evaluation metrics, we do not have such
constraints, but it should reflect the performance required for the application. Other
metrics like mean absolute error helps us understand the performance of the model
that how much is the estimate deviates to the target. Besides, small deviation to the
target is allowed since it might not make huge difference for later decision making
algorithm. For most scenarios, it is acceptable that estimate has error within the
range of ±0.1. Therefore, we also define the error rate under different absolute
range: 0.05, 0.1, 0.15, 0.2. The result of evaluation under different metrics will be
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presented in later chapter. Here we give the definition for all metrics (now we assume
the estimate is single dimension for each time instance to simplify expression, but
it can easily be extended to multiple output dimensions):

• Mean squares error:

RMSE =
√∑T

t=1 e
2
i

T
=

√√√√∑T
t=1(ŷ(t) − y(t)

target)2

T
(2.31)

• Mean absolute error:

MAE =
∑T
t=1|ei|
T

=
∑T
t=1|ŷ(t) − y(t)

target|
T

(2.32)

• Error rate within 0.05:

ErrorRate0.05 = Nerror

T
=

∑T
t=1 ξ

(t)

T

ξt =

1 |ŷ(t) − y(t)
target|> 0.05

0 otherwise

(2.33)

• Error rate within 0.1:

ErrorRate0.1 = Nerror

T
=

∑T
t=1 ξ

(t)

T

ξt =

1 |ŷ(t) − y(t)
target|> 0.1

0 otherwise

(2.34)

• Error rate within 0.15:

ErrorRate0.15 = Nerror

T
=

∑T
t=1 ξ

(t)

T

ξt =

1 |ŷ(t) − y(t)
target|> 0.15

0 otherwise

(2.35)

• Error rate within 0.2:

ErrorRate0.2 = Nerror

T
=

∑T
t=1 ξ

(t)

T

ξt =

1 |ŷ(t) − y(t)
target|> 0.2

0 otherwise

(2.36)

These metrics give us an intuitive way to interpret the performance of model, but
we also find that critical range is different at different level of friction. For instance,
if the target road friction is 0.8, it will not be extremely critical if the estimate is 0.7,
0.9, or 1.0. However, for the low road friction i.e. as 0.2, it is very critical that if the
estimate is 0.1 or 0.3. We have not found much literature to construct evaluation
metric in such complication manner, not mention for optimization. But it is possible
to define a weighted loss function on the different range. The construction of more
complicated optimization and evaluation metric will be left to future work.
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2.2.4 Hyper parameters of ESNs
As discussed in previous section, there are multiple hyper parameters of ESNs con-
trolling its performance. We will discuss them in detail in the following sections.

2.2.4.1 Reservoir size

One critical hyper parameter of ESNs is the size of reservoir N . According to
equation 2.18, it is evident that the larger the reservoir size is, the better performance
of ESNs is. Because larger reservoir size empowers it with more expressiveness of
reservoir networks in ESNs, so that the transformation could be learned better. But
the improvement of performance does not increase linearly to to the size of reservoirs
either. Theoretically, the reservoir size can not be over the number of data samples
M since ridge regression will no longer have unique solution of weight matrix and
it is over-parameterized. In [36], Fabian assesses the impact of reservoir size on the
performance of reservoir computation. There is a limitation of reservoir size when
the storage and inversion of matrix XXT in equation 2.18 becomes problematic
when applying ridge regression or linear regression. Herbert in [23] shows that
the memory capacity in reservoirs cannot exceed Nh in theory. For input x(t), the
estimate of lower bound of reservoir size is Nh times how many time steps the inputs
should be memorized. The conclusion drawn from theory, however, does not apply to
practice since there are always inter- and temporal-correlations in the variables x(t)

[23]. Besides, the forgetting curve of reservoirs makes the analysis more complicated
because the forgetting is not instantaneous but gradual. Therefore, the lower bound
of reservoir size can be much smaller than the Nh in practice.
However, from the implementation perspective, the size of reservoir limited by the
computational power and memory storage. The computation expense of training
and test of ESNs increases quadratically with the reservoir size. Therefore, the
trade-off between computational cost and performance is important to take into
consideration. For the practical application, the real-time performance limits the
reservoir size. Under that constraint, tuning for optimal hyper parameters can be
obtained by the cross-validation. We select several proposals of reservoir size as 100,
200, 300, 400, 500, 600, 700, 800.

2.2.4.2 Sparsity of Reservoir Connectivity

The original ESNs in [21] recommend to have sparse connectivity between reservoirs
to achieve better performance which is proved both in theory and practical experi-
ments. However, in [30] Mantas mentions the sparsity of reservoirs does not affect
the performance so much. So the parameter is less important to be optimized in
practice.
With fixed reservoir size, the computational cost of reservoir updates only linearly
relates to the number of reservoirs that are inter-connected if the programming
environment supports efficient sparse matrices operation. However, the low level
computational optimization is beyond the scope of this thesis. So the sparsity of
reservoir connection will not affect so much and it will be optimized by the cross-
validation.
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2.2.4.3 Spectral Radius

Spectral radius is one of the most important hyper parameters of ESNs to control the
reservoir connection matrix W. The spectral radius ρ(W) is defined as the maximal
absolute eigenvalue of W. It scales the nonzero elements distribution width in matrix
W. W is randomly initialized for each element within certain range first. Then the
eigenvalue of initialized matrix is calculated. In order to make the spectral radius
of W as we defined, we need to shift the matrix from the maximum eigenvalue of
initialized matrix to the spectral radius by dividing W by its maximum eigenvalue
then scaling to ρ(W).
Theoretically, large spectral radius leads to the violation of echo state property [30].
However, in practice, spectral radius larger than 1 is not a necessary condition due
to inter- and temporal-correlation in x(t) as mentioned before. ρ(W) can be selected
to maximize performance by cross validation and 1 serves as the starting point.

2.2.4.4 Distribution of Nonzero Elements

The matrix W is initialized with nonzero elements from uniform distribution, or
Gaussian distribution or discrete bi-valued distribution. Gaussian distribution is
the most nature choice. The analysis shows the choice of different distribution does
not matter to performance much [30]. Therefore, we choose unit Gaussian distribu-
tion N (0, 1).
The input matrix Win and feedback matrix Wfb are generated from the same dis-
tribution as matrix W but without sparsity.

2.2.4.5 Leaky Rate

Leaky rate serves as the speed of reservoir update dynamics as seen in equation 2.18.
The reservoir update dynamics can be expressed [30]:

ḣ(t) = −h(t) + tanh(Win[1; x(t)] + Wh(t−1)) (2.37)

If discretizing the equation above:

∆h
∆t = h(t+1) − h(t)

∆t = ḣ(t) (2.38)

If we combine equations 2.37 and 2.38, we could find that ∆t in the equation of
dynamics equals to leaky rate. Therefore, leaky rate can be regarded as the time
interval of two consecutive steps in the discrete representation. The optimal leaky
rate ζ should match to the speed of dynamics of h(t) and y(t)

target. In addition, the
leaky rate integration is also considered as applying simple low-pass filter. In some
special setting, a small leaky rate ζ enforces slow dynamics of h(t) and contributes
to longer duration of short-term memory. Since dynamics of hidden states is really
difficult to analyze, the trail-and-error method is used to select the optimal leaky
rate.
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2.2.4.6 Memory size

In the most literature, the feedback path only bring back one previous estimate
ŷ(t−1) or ground truth y(t−1)

target. But if we feed back reservoirs with more previous es-
timation ŷ(t−2), ŷ(t−3), ŷ(t−4), . . .,ŷ(t−Nt), ESNs could converge quicker than single
estimate. We define Nt here as memory size.
However, the memory size cannot grow into infinite and it is limited by the length
of sequences. As for optimal memory size, the feedback path is supposed to con-
verge quicker but not propagate the estimation error into later estimation. In the
result chapter, we will compare the result under different memory sizes to select the
optimal value for the data.

2.3 Temporal pattern recognition for prior knowl-
edge

Except from the on-board estimation algorithm based on ESN, we also study on the
temporal pattern of road friction on different locations. If the underlying temporal
pattern could be extracted, it could serve as a prior knowledge to help on-board
estimation algorithm to estimate friction more accurately. If we are able to find such
underlying pattern for each geometric location, then we could build up a pattern
map to understand the spatial-temporal pattern. In this thesis we propose a hidden
Markov model based method to build a pattern map and later using clustering to
analyze the result of pattern map. The detailed description of the algorithm will be
presented in the section 3.2. Here, we focus on the fundamentals of Hidden Markov
Model.

2.3.1 Hidden Markov model

Hidden Markov Models HMM has been one of the most popular generative model
of sequence. Rabiner proposes hidden Markov Model first systematically in [15]. It
is a statistical first-order Markov model that is assumed that hidden states follows
a Markov process. It can also be considered as a mixture model that hidden states
control the mixture components for each observation and follow a Markov process.
In hidden Markov model, the states are not directly visible, but the observations,
dependent on the states, are visible. Let {ot}Tt=1 be observation sequence from some
underlying hidden state sequence {it}Tt=1 and the observation ot is only dependent
on the state it. Figure 2.9 shows the graphic representation of hidden Markov model
of hidden states and observations where it stands for hidden state variables at time
t and ot is corresponding observation variables.
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Figure 2.9: Graphic model representation of hidden Markov model

In summary, there are two main assumptions used in HMM:

Assumption 1 The Markov property: the conditional probability distribution of
each hidden state it+1 given all previous states is equal to its conditional probability
distribution given only previous state it:

p(it+1|i1, i2, i3, . . . , it) = p(it+1|it) (2.39)

Assumption 2 The observation ot+1 is independent to other previous observations
and states, but only dependent on corresponding hidden state it+1:

p(ot+1|ot, ot−1, . . . , o1, it+1, it, . . . , i1) = p(ot+1|it+1) (2.40)

If we assume the discrete symbols for the observations, figure 2.10 shows the hid-
den Markov model transition and emission with 3 states and 4 observation sym-
bols, where qn stands for different state symbols and vk represents for the dis-
crete observation symbols. The hidden states sample from Nq fixed states set
Q ∈ {q1, q2, . . . , qNq}. Similarly, observation symbols sample from Nv symbols set
V ∈ {v1, v2, . . . , vNv}. In this specific example, there are 3 states Q = {q1, q2, q3}
and 4 observation symbols V = {v1, v2, v3, v4}. The edge between states gives the
transition probability from one state to another which is denoted by aij, while the
edge between state and observation gives the emission probability that state qi gen-
erate the observation vk which is denoted by Bi(vk).
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Figure 2.10: Hidden Markov model transition and emission

Transition matrix A ∈ RN×N collects all the transition probability from state i to
state j, A[i, j] = aij = p(it = qj|it−1 = qi), i = [1, 2, ..., Nq], j = [1, 2, ..., Nq]. Emis-
sion matrix B gives the observation symbol distribution given state n, B[n, k] =
bn(k) = p(ot = vk|it = qn) n = [1, 2, ..., Nq], k = [1, 2, ..., Nv]. Except from tran-
sition probability and emission probability, Π gives the initial probability vector
for the state initialization. Π = [π1, . . . , πNq ] where Π[n] = πn = p(i1 = qn),
n = [1, 2, ..., Nq]. Therefore, total parameters for HMM are θ = (A,B,Π). Given
model θ, state sequence {it}Tt=1 = [i1, i2, . . . , iT ] and observation sequence {ot}Tt=1 =
[o1, o2, ..., ot] are generated by:

1. Choose initial state i1 according to initial state distribution Π;
2. Set t = 1;
3. Choose ot according to the observation probability distribution bot(it), given it;
4. Choose it+1 according to the transition probability ait,it+1 , it+1 ∈ Q;
5. Set t = t+1; return to step 3 until t = T to terminate the process

In order to learn the transition and emission of HMM model, it requires to specify
the number of states Nq and discrete symbols set V . Here, we specify the model
with 3 hidden state and 10 observation symbols which are
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Before training of the model, we need to
round the ground truth road friction to those symbols we defined. And for our ap-
plication, the initial state probability distribution is not important since sequences
are long enough that initial probability does not affect sequence too much.
To train HMM, there are three main problems to be solved:
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Problem 1 To calculate the probability of observation sequence Pr(O|θ) given the
model θ(A,B,Π)

Problem 2 To predict optimal state sequence I given the observation sequence O
Problem 3 To adjust model parameter θ to maximize probability Pr(O|θ)

2.3.1.1 Solutions for three problems

For each problem, there are some established algorithms. Forward-backward al-
gorithm is efficient to calculate the conditional probability Pr(O|θ) of observation
sequences without emulating all the possible state sequences. As for the second prob-
lem, there are two commonly used methods that are maximum probability algorithm
and Viterbi algorithm. Maximum probability algorithm does not take global trellis
structure into consideration but maximizes the state probability for time instance
separately. Viterbi algorithm finds the single best state sequence with highest prob-
ability but it has more computational expense. Problem 3 is the most significant
problem to find model parameters. The iterative procedure as Baum-Welch method
or gradient techniques for optimization could be implemented to have decent trade-
off between performance and computation speed. Our goal is to to understand the
probability distribution of transition and emission given the observation sequence
which involves all three problems.

Problem 1 First problem is to evaluate probability of observation sequence given
the model parameters. The solution determines how good the model matches the
observation later for problem 3. In order to calculate the conditional probability,
we need to know states sequence I since the emission probability is conditioned on
the states. The conditional probability of observation becomes if the state sequence
assumes I:

Pr(O|θ, I) = bo1(i1) · bo2(i2) . . . boT
(iT ) (2.41)

The probability of the state sequence I:

Pr(I|θ) = πi1 · ai1,i2 · ai2,i3 . . . aiT −1,iT (2.42)

The joint probability Pr(O, I|θ) is the product of Pr(O|θ, I) and Pr(I|θ). The
marginal probability of sequence Pr(O|θ) marginalizes joint probability summing
over all possible state sequences:

Pr(O|θ) =
∑

allpossibleI
Pr(O, I|θ) =

∑
allpossibleI

Pr(O|θ, I) · Pr(I|θ) (2.43)

However, it is computationally unfeasible to emulate and sum over all possible
state sequence instances since the space defined by all combination of possible
state choice is too large. The complexity of computation is O(TNT

q ). Therefore,
we have to resort other optimal way. In [15], the forward-backward algorithm is
to simplify the formulation. The forward variable γt(n) is defined as the joint
probability of observation sequence until t and state it at t given model θ:
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γt(n) , Pr(o1, o2, . . . , ot, it = qn|θ) (2.44)

Therefore, we could solve forward variable inductively:

α1(n) = πnbn(o1), 1 ≤ n ≤ Nq

αt+1(m) = [
Nq∑
n=1

αt(n)an,m]bm(ot+1) for t = 1, 2, . . . , T − 1 1 ≤ m ≤ Nq

(2.45)

Therefore, the marginal distribution becomes Pr(O|θ) = ∑Nq

n=1 αT (n). The com-
putation complexity decrease from O(TNT

q ) to O(N2
q T ). The complexity drop

substantially especially when the sequence is long.
In the same manner, the backward variable βt(n) is defined as conditional distri-
bution of future observation given state it:

βt(n) = Pr(ot+1, ot+2, . . . , oT |it = qn,θ) (2.46)

So that

βT (n) = 1, 1 ≤ n ≤ Nq

βt(n) =
Nq∑
m=1

an,mbm(ot+1) for t = T-1, T-2, . . . , 1 1 ≤ n ≤ Nq

(2.47)

Similarly, the computation of backward variable has complexity of O(TNT
2 ).

Problem 2 There are several possible way to solve problem 2. One of the best algo-
rithm is called Viterbi algorithm [37]. There are 4 formal steps in Viterbi algorithm:

• Step 1 - Initialization

δ1(n) = πnbn(o1), 1 ≤ n ≤ Nq

Ψ1(n) = 0
(2.48)

• Step 2 - Recursion For 2 ≤ t ≤ T , 1 ≤ m ≤ Nq

δt(m) = max
1≤n≤Nq

[δt−1(n)an,m]bm(ot)

Ψt(m) = argmax
1≤n≤Nq

[δt−1(n)an,m] (2.49)

• Step 3 - Termination
P ∗ = max

1≤n≤Nq

[δT (n)]

i∗T = argmax
1≤n≤Nq

[δT (n)] (2.50)

• Step 4 - Sequence backtracking

i∗t = Ψt+1(i∗t+1) Fort = T − 1, T − 2, . . . , 1 (2.51)
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The Viterbi algorithm is similar to forward-backward calculation in implementa-
tion. But the maximization in recursion process is to maximize on the previous
state. The complexity of algorithm is O(N2

q T ).

Problem 3 The third problem is to adjust the model parameters θ to maximize the
probability of observation sequence according to the evaluation method defined in
problem 1. This is the most difficult problem among three and there is no known
analytic way to solve the maximum likelihood model directly [15]. However, we
could resort to some iterative procedure to approximately find the optimal model
by such as Baum-Welch method or gradient techniques for optimization [15]. Here
we only discuss the iterative procedure - Baum-Welch since it is easy to implement
and understand.
So Baum-Welch re-estimation iterative process is quite simple: in each iteration,
the most possible state sequence is estimated by problem 2, then the parameters is
adjusted according to the optimal state sequence and observation sequence, the new
model θ̄ is evaluated by problem 1 to compare to previous model θ. If the marginal
probability of observation sequence gets improved, then the parameters are updated
by θ̄. If we iteratively use the θ̄ to replace θ and repeat the reestimation procedure,
we could improve the model until the optimization has reach the optimality. The
reestimation formulas for (A, B, Π) are:

π̄n = γ1(n), 1 ≤ i ≤ Nq

āij =
∑T−1
t=1 νt(i, j)∑T−1
t=1 γt(j)

b̄j(k) =
∑T
t=1 I(ot = vk)γt(j)∑T

t=1 γt(j)

(2.52)

where ν and γ is defined by:

νt(i, j) = αt(i)aijbj(ot+1)βt+1(j)
Pr(O|θ)

γt(i) = αt(i)βt(i)∑
j αt(j)βt(j)

(2.53)

So the reestimation formulas for πi is the probability of state qi at t = 1. The
reestimation for aij is the ratio of expected number of transition from state qi to qj
divided by the total number of transition from state qi. The estimation for bj(k)
is the ratios of expected number of observing vk given the state qj.
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Methods

In this chapter, we will first introduce the data used in this thesis. The road friction
has underlying temporal pattern and it could give some prior information. We pro-
pose the HMM-based clustering method to analyze the underlying spatial-temporal
pattern. The techniques involved in the pipeline will be illustrated in details: data
aggregation, cross-validation, Kullback-Leibler divergence, Hierarchical clustering.
Meanwhile, in order to improve real-time performance of on-board estimation al-
gorithm, the feature selection technique is used to decrease dimensionality of data
without compromising performance substantially.

3.1 Data

The data used in this thesis is 5808 expedition sequences from Sweden, Germany
and other European countries between 2014 to 2016. There are over 7.5 million data
samples. Figure 3.1 shows the geometric trajectory of all data. Except from filtered
sensor measurements on the car like vehicle states from IMU, the data also includes
the intermediate estimates such as tire forces, slip and rack force and so on. Since
the amount of raw data is enormous, the processed data is shrink to 83 features that
are relevant and also includes meta-data like tire type, surface inference and road
type as additional features. Table A.1 in the Appendix lists all features in the pro-
cessed data. The meta data annotated includes road type, surface type, tire type.
The road type is encoded as "Asphalt", "Gravel", "Lake" and surface is encoded as
"Dry", "Ice", "Mixed", "Snow" and "Wet", and tire type is encoded into 20 different
categories as well.
The reference of road friction value is obtained by the test engineer’s annotation

and measured by a special equipment. The value ranges from 0 to 1. 1 means high
road friction, while 0 means extremely low road friction.
For the study of spatial-temporal pattern of road friction, only the reference of road
friction, longitude, latitude and timestamp are used. The sequences are split to
small sub-sequences according to geometric locations. For the study of on-board
estimation algorithm, however, it is too expensive to use all listed features in A.1.
Therefore, feature space needs to be deduced to guarantee the real-time performance
without compromising performance of learning algorithm. Feature selection is ap-
plied which will be discussed later. In addition, all sequences with selected features
are further split to shorter sequences that each has 10000 samples corresponding to
100 seconds in order to make training and analysis more convenient.
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Figure 3.1: Geometric location of all available road friction

3.2 HMM-based spatial temporal pattern map and
clustering

The underlying temporal pattern of road friction coefficient in a specific location
could be used as a prior information for the on-board estimation algorithm. For
instance, the road friction keeps constantly high during summer in California while
it varies more during winter. Therefore, the spatial temporal pattern could give a
rough guess of road friction coefficient given its location. Besides, it makes possible
to generate the simulated scenarios under the statistics of reality. Previous study
[38] shows that weather information could help to prediction road friction, which
serves the prior information to the road friction.
There are various methods to learn temporal patterns such as Hebbian Learning,
Associative Memory or Time Delay Multi-layer Perceptrons [39]. Since we would
like to use the model later to sample road friction value based on the realistic statis-
tics for simulation purpose, the generative model is the best option. And the model
should be preferably simple to build hundreds of thousands of them over all differ-
ent locations. Hidden Markov model is a simple dynamic Bayesian model which is
able to capture the temporal pattern but is simply modeled with initial probability
matrix, transition probability matrix and observation probability matrix, compared
to other delicate but complex models.
In this thesis, we collect all the ground truth road friction coefficient and their geo-
metric location. And we treat the ground truth as the observations in hidden Markov
Model. For each location, one HMM is built to represent the temporal pattern. In
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order to build up the relation between different locations, we use the upper bound of
Kullback-Leibler Divergence between two HMMs as a distance metric. And finally
Hierarchical clustering is used to find the similar geometric locations based on the
distance metric. Therefore, not only the temporal pattern in one specific location,
but the spatial-temporal pattern is learned over multiple locations.
There are several spatial-temporal models applied for prediction and analysis for
infectious disease spread and biological system modeling. In [40], Menenberg pro-
poses the network-based approach for topic modeling. Lv in [41] uses HMM to build
up a pattern map to extract user mobility pattern. However, there is no research
literature so far to study the spatial-temporal model for road friction. In this the-
sis, the Hidden Markov Model-based clustering framework is proposed to learn the
spatial temporal pattern of road friction, which is inspired by the papers mentioned
previously. The pipeline for the framework is shown in figure 3.2. First, the original
sequential data is aggregated to sub-sequences based on their longitude and lati-
tude according to the grid of selected resolution. K-fold cross-validation is used to
train HMM model to prevent overfitting. Once we train all HMMs, upper bound of
Kullback-Leibler Divergence between HMMs is used as similarity metric to build up
dissimilarity matrix for all geometric grid. Hierarchical clustering then clusters the
similar temporal patterns and differentiate the dissimilar ones.

Figure 3.2: Hidden Markov Models-based spatial temporal pattern clustering

The fundamentals of hidden Markov Model have already been covered in theory
section which will not be repeated again. In the following sections, more detailed
description about the pipeline and the related techniques will be illustrated.

3.2.1 Optimal geometric aggregation resolution
Before training the model, data needs to be aggregated to sub-sequences according
to their geometrical locations on the grid. One parameter needs to be specified here
is the resolution of aggregation. Larger the grid resolution is, more data will be in
one grid, however, less representative the location is. Therefore, it is significant to
trade off between the representativeness and the number of individual HMMs.
Figure 3.3 shows the amount of samples over different locations when the resolution
of longitude and latitude is chosen as 1.5[degree]. From figure 3.3, there are only 44
areas occupied with data, and most of them are quite small. It is tricky to select
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optimal resolution to ease the interpretation of result. More comparison on different
resolutions will be presented in the result session.

Figure 3.3: The amount of samples of different geometric locations on aggregated
data

3.2.2 Cross-validation

The goal of learning HMMs is to extract the underlying patterns that how road
friction changes so that we could generate road friction sequence in the simulation
from realistic statistics. In order to prevent overfitting of training, K-fold cross-
validation is used here. The cross-validation gives the rough evaluation of trained
model on validation data. The model that has higher accuracy on validation data
indicates it is more general. There are two main types of cross-validation: exhaustive
and non-exhaustive. Exhaustive cross-validation trains and validates on all possible
ways to divide original samples into training and validation set. However, it is
computationally unfeasible especially when data size is large. Non-exhaustive cross-
validation does not compute all different combinations of splitting. For example, K-
fold cross-validation randomly partitions original samples into k equal sized subsets,
and use one of subsets as validation data, and rest of them as training data. Figure
3.4 shows how 10-fold splits the data into training and validation sets. The metric
of validation is the logarithmic probability of validation sequences given the trained
model.
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Figure 3.4: K-fold cross-validation

3.2.3 Dissimilarity metric
All HMMs trained need to be compared to measure how similar two patterns are.
There are several ways to measure the similarity i.e. through distributions [42]. Here
we use the upper bound Kullback-Leibler divergence as a discriminative measure for
hidden Markov model.
The Kullback-Leibler Divergence provides an objective statistical indication to mea-
sure two distributions [43]. The original formation of KL Divergence between two
probability distributions pair Ti and Tj is defined by:

KL(Ti||Tj) =
∫
Ti(x) log(Ti(x)

Tj(x))dx (3.1)

KL Divergence also can be used to compare probabilistic models from a discrimina-
tion point of view [43]. Singer in [44] derives the upper bound for KL Divergence
for discrete observation HMMs. We use this upper bound as an approximation to
compare between models. As theory section, the parameters of a hidden Markov
model HMM is denoted by (A, B, Π). The upper bound of UBKL(θ1,θ2) is used
as discriminative measure to compare two HMMs:

KL(θ1,θ2) ≥ UBKL(θ1,θ2) = KL(Π1||Π2)+
Nq∑
i

Π1,i(KL(A1,i||A2,i)+KL(B1,i||B2,i))

(3.2)
where KL(Π1||Π2), KL(A1,i||A2,i) and KL(B1,i||B2,i) can be easily calculated by
the discrete definition of KL Divergence. One important thing to be noted is that
the upper bound of Kullback-Leibler divergence is not a symmetric metric that
UBKL(θ1,θ2) is not equal to UBKL(θ2,θ1). Therefore, the symmetric extension
is used as the distance measure instead:

UBKLsum(θ1,θ2) = 1
2UBKL(θ1,θ2) + 1

2UBKL(θ2,θ1) (3.3)

Besides, the upper bound has its deficiencies of infinite value when any element in
matrix A2, B2, π2 is zero. Therefore, we use a real small number replacing zero to
avoid the problem.
Figure 3.5a shows one example of dissimilarity matrix calculated based on the upper
bound of KL Divergence and figure 3.5b on the extended symmetric upper bound
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of KL Divergence. In both figure, x-axis and y-axis indicate 44 different location
indexes. The color of each grid stands for the value of the metric. It is clear that
closer the value is to 0, more similar two locations is. The symmetric extension of KL
Divergence upper bound which gives more easily interpretable result. The distinctive
locations could be easily observed from the matrix. However, the geometric location
information cannot be presented in this matrix which makes it difficult to directly
see the geometric pattern. Besides, although the matrix helps us to distinguish the
most distinctive locations, it is difficult to interpret the relations between multiple
locations, therefore the dissimilarity matrix will be further used to cluster models
to easily understand spatial-temporal patterns.

(a) Dissimilarity matrix by the upper
bound of KL divergence

(b) Dissimilarity matrix by the extended
symmetric upper bound of KL divergence

Figure 3.5: Dissimilarity matrix comparison between two definitions

3.2.4 Hierarchical clustering
In statistics, hierarchical clustering is one of clustering method to create a cluster
tree. Not like other clustering method, tree is not a single set of clusters but has
multiple hierarchies. There are two different categories of hierarchical clustering:
agglomerative and divisive. Agglomerative is a bottom-up approach that each ele-
ment starts with its own cluster and then pairs of clusters are merged as one moves
up in the hierarchy. On the other hand, divisive is a top-down approach that all
elements start with a single hierarchy and then split as one move down the hierarchy.
Once the dissimilarity matrix is built, hierarchical clustering could determine how
different regions are grouped together. In this master thesis, the implementation
uses the function linkage in MATLAB to find out the linkage of two elements in
dissimilarity matrix [45].
Before creating clusters, there is one more parameter required to specify which is
the number of clusters or the inconsistency coefficient threshold. Here, we specify
the number of clusters as 5 for convenience. One thing needs to be noted that hier-
archical clustering is not the only way. Other alternatives like k-means clustering,
Gaussian Mixture Model clustering can be applied. The reason to choose hierarchi-
cal clustering is due to its advantage of hierarchical interpretation. Figure 3.6 shows
the hierarchy relation between different geometric locations based on the similarity
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matrix shown in figure 3.5b. The x-axis indicates the location indexes, and y-axis
gives the measure of linkage distance. We could clearly observe the linkage distance
of each cluster to others and the hierarchical structures.

Figure 3.6: Hierarchy relation between different geometric locations based on KLD
in figure 3.5b

3.3 Feature selection technique

Payam in [46], and Lei and Huan in [47] evaluate more than 20 common feature
selection methods. There are two main broad categories: filter method and wrap-
per method [47]. The filter method selects features without involving any learning
algorithm. On the contrast, wrapper method requires the predetermined learning
algorithm during the feature selection. Wrapper model needs to learn a hypothesis
for each new subset of features, which makes selection procedure computationally
expensive and it is difficult to decide single learning algorithm to select features
beforehand. Therefore, we resort simpler filter methods. Filter method is more
suitable especially to large number of features and large number of data. Among
multiple filter methods, we select the Fast Correlation-Based Filter FCBF [48] for
dimension reduction due to its efficiency for large size of data. Meanwhile, the do-
main knowledge from expert in the field of vehicle dynamics gives a guidance to
pinpoint useful features as well.
Figure 3.7 shows the feature selection procedure of Fast Correlation-Based Filter.
During relevance analysis, the relevance of original feature set is evaluated to the
class, and irrelevant features is discarded first. Redundancy analysis scrutinizes all
the relevant features whether they are redundant to each other or complimentary.
Only the complimentary features are kept, and all redundant features are discarded
since other features have already carry similar information.
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Figure 3.7: The feature selection procedure of Fast Correlation-Based Filter FCBF

The correlation-based measure used here is the symmetrical uncertainty. In section
3.3.2, the algorithm and pseudo code will be illustrated with details, and features
selected on the data used in this thesis will be presented as well.

3.3.1 Correlation Measures
There exist two types of correlation measures between two variables: linear cor-
relation and non-linear correlation. For linear correlation, Pearson’s correlation
coefficient measures the linear correlation between two variables. It ranges from -1
to 1 inclusive. If the value equals to -1 or 1, two variables are completely linear
correlated; if the value is 0, there is no linear correlation between them; if the value
is between -1 to 0 or 0 to 1, they are partially linearly correlated. However, it is
not safe to assume the linear correlation among features or between feature to class
in practice. Linear correlation measure cannot capture the nonlinear correlations
which is common in practice. In addition, the Pearson’s correlation coefficient does
not fit to analyze features that are categorical.
To overcome these disadvantages, the correlation measure is used to capture nonlin-
ear relations. In [48], they adopt the correlation measures based on the information
theoretical concept of entropy, a measure of the uncertainty of a random variable.
The entropy of variable X is defined as:

H(X) , −
∫
P (X) logP (X)dX (3.4)

and the entropy of X conditioned after observing Y is defined as:

H(X|Y ) , −
∫
P (Y )

∫
P (X|Y ) logP (X|Y )dXdY (3.5)

where P (X) is the probability of X, and P (X|Y ) is conditional probability of X
given Y. The amount that additional information gained from observing Y is called
information gain [49]. The information gain reflects the benefit of knowing Y to
predict X:

IG(X|Y ) , H(X)−H(X|Y ) (3.6)

According to the definition of information gain, feature Y is more correlated to fea-
ture X than to feature Z if IG(X|Y ) > IG(Z|Y ) [48]. Besides, information gain
is a symmetrical measure. The detailed derivation could be found in [48]. How-
ever, information gain is biased to favor features with larger values. Therefore, the
measure should be normalized to ensure it is comparable between different variable
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scaling. Therefore, symmetrical uncertainty is uesed instead [50]:

SU(X, Y ) , 2[ IG(X|Y )
H(X) +H(Y ) ] (3.7)

Symmetrical uncertainty resolves the bias of information gain and constraints value
in the range of [0,1]. Value as 1 stands for the complete knowledge to correctly
predict X given Y and 0 indicates the independence between X and Y. And it is
easy to prove that the symmetrical uncertainty is also symmetric measure since in-
formation gain IG(X|Y ) is symmetric measure. Symmetrical uncertainty applies
on both categorical features and continuous ones.

3.3.2 Fast Correlation-Based Filter FCBF
FCBF uses symmetrical uncertainty SU as the metric for both relevance and redun-
dancy analysis:

• Relevance analysis:
To decide which features are relevant to the class. First, the relevance thresh-
old δrel is pre-defined. The symmetrical uncertainty of each feature to class
is calculated and store in matrix SUi,c which denotes the correlation between
feature Fi and target value C. All the features that have SUi,c larger than δrel
will be kept in relevant feature list S ′list, otherwise will be discarded.

• Redundancy analysis:
To approximately determine if two predominant features Fi and Fj are redun-
dant to each other. After relevance analysis, features are ranked according to
their relevance to target value indicated by SUi,c. Staring from the highest
ranked features, two predominant features Fj (with higher rank) and Fi (with
lower rank) will be determined whether they are redundant to each other: the
feature Fi will be removed from list if the symmetric uncertainty SUi,j between
two features is smaller than the symmetric uncertainty SUi,c between feature
Fi to target C. Therefore, the redundancy analysis uses more predominant
features to remove less predominant ones. By iterating over the whole relevant
feature list, the features left are the ones selected through the process.

The pesudo code of original FCBF is presented in algorithm 1. First part (line
1-6) is the relevance analysis. δrel is pre-defined symmetrical uncertainty relevance
threshold to filter out irrelevant features and only relevant features are stored in
feature list Slist′. The feature list is sorted as descending order according to their
relevance to target. The second part (line 10-20) further processes the ordered list
and only keeps the predominant features among all relevant features. The algorithm
stops until there is no more feature can be removed from Slist′, and then selected
feature list will be kept in the Sbest. In FCBF, the relevance analysis has a linear time
complexity in terms of the number of features O(N ). The complexity of redundant
analysis depends on the number of features removed. The best case is that all
remaining features are removed in one iteration, and the worst case is no feature
removed at all. On average, if we assume half of remaining features are removed in
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Algorithm 1
Original FCBF
[!h]
0: input: symmetrical uncertainty SUi,c; relevance threshold δrel

output: Sbest
1: for i = 1 to N do
2: calculate SUi,c for Fi
3: if SUi,c > δrel then
4: append Fi to Slist′
5: end if
6: end for
7:
8: order S

′
list in descending SUi,c value

9: Fj = getFirstElement(Slist′)
10: repeat
11: Fi=getNextElement(S

′
list,Fj)

12: repeat
13: if SUi,j ≤ SUi,c then
14: remove Fi from Slist′

15: Fi=getNextElement(Slist′,Fi)
16: end if
17: until Fi==NULL
18: Fj = getNextElement(Slist′,Fj)
19: until Fj==NULL
20: Sbest = Slist′ =0
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each iteration, the time complexity for redundancy analysis is O(N logN )[48]. Since
the calculation of SUi,j or SUi,c is linear to the number of instances M in dataset,
the overall complexity of FCBF is O(MN logN ). Therefore, the biggest advantage
of FCBF compared to other filtering methods is to save time to not compute all
symmetrical uncertainty SUi,j between all different combinations of features Fi and
Fj when they have already been removed by the pre-domainant features. Since the
number of features and the number of samples are so large, FCBF assists to select
features in a faster manner. However, when analyzing our data, we find that the
symmetrical uncertainty between features is usually higher than that between feature
and class (there are intra-feature correlations). If we use the classic FCBF proposed
in [48], a lot of informative features will be left out thanks to the restrict criteria in
redundancy analysis. Therefore, additional redundancy threshold is introduced to
slack the restrict constraint. Instead of judging based on SUi,j < SUi,c in line 13 in
1, lose condition SUi,j − SUi,c ≤ δred is used. Here, the redundancy threshold is set
to 0.3. The pesudo code after modification is list in Algorithm 2:

Algorithm 2
Improved FCBF algorithm
0: input: symmetrical uncertainty SUi,c

relevance threshold δrel
redundancy threshold δred

1: for i = 1 to N do
2: calculate SUi,c for Fi
3: if SUi,c > δrel then
4: append Fi to S_list′
5: end if
6: end for
7:
8: order Slist′ in descending SUi,c value
9: Fj = getFirstElement(Slist′)
10: repeat
11: Fi=getNextElement(Slist′,Fj)
12: repeat
13: if SUi,j - SUi,c ≤ δred then
14: remove Fi from Slist′

15: Fi=getNextElement(Slist′,Fi)
16: end if
17: until Fi==NULL
18: Fj = getNextElement(Slist′,Fj)
19: until Fj==NULL
20: Sbest = Slist′ =0

3.3.3 Selected Features
As discussed in previous section, the complexity of FCBF is linear to the number of
samples. Using whole dataset of few million samples is not computationally feasible
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to select features. Therefore, data for feature selection is downsampled by 10, which
will not change data distribution substantially.
The figure 3.8 shows the SUi,c calculated for each feature to the target, and y
axis indicates the corresponding relevance. The green points are the GPS related
features which are not considered when applying FCBF, since we have observed
bias introduced by those signals from preliminary experiment. Red features are
recommended features by the expert who has domain knowledge. On the contrary,
blue features are not recommended by expert. The yellow star features in 3.8 are the
features selected by FCBF. We could see from the figure 3.8, most of selected features
have high symmetrical uncertainty SUi,c and are recommended by expert. Except
from some meta features such as road type and tyre type, ambient temperature, the
lateral forces, longitudinal slip rate, steering wheel angle and etc. are usually used
for physical based estimation algorithm.

Figure 3.8: symmetrical uncertainty between features and class by FCBF feature
selection

In order to show the validity of FCBF on our datasets, complete symmetrical uncer-
tainty among all features are calculated as well. Figure 3.9 shows the symmetrical
uncertainty SUi,j among 83 features, which could help us closely understand more
about how different features correlate from information perspective. One thing needs
to be emphasized that it is not necessary to calculate it since FCBF is used to de-
crease computation expense. In figure 3.9, the lighter the color is, the higher the
symmetrical uncertainty SUi,j between feature Fi and Fj is. For instance, the first
four features have high values as almost 1 since they are FLAG signal indicating
ABS trigger for each wheel. The similar observation is found for feature 11 to 14
which are breaking torque for each wheel respectively.
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Figure 3.9: symmetrical uncertainty between features by FCBF feature selection

Table 3.1 lists all 29 features selected by FCBF in the descending order. 24 of 29
features have physical bounding to the road friction. All selected features will be
used for training and test for on-board estimation algorithm by ESNs which will be
presented later.

Table 3.1: Selected feature list by FCBF

Index Name Description
83 RoadType Road type
81 Tire Tire type
6 AmbTemp_deg Ambinent temperature in Celsius
76 Slip.1 Slip rate of front left wheel
78 Slip.3 Slip rate of rear left wheel
68 Fy_N.1 Lateral force of front left wheel
82 Surface Surface type
50 WhlAng_r Steering wheel angle
48 TorsBarTq_Nm Steering wheel torque
23 Gear Current active gear
5 AccPedlRat_P Acceleration pedal ratio
18 DtSts_M Rear axle is engaged in drive train
28 GpsDir_r GPS heading [rad]
39 PtTqWhl_Nm Powertrain torque for rear axle
37 LongCltTq_Nm Longitudinal clutch status
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19 EngN_rpm Engine rotational speed [rpm]
61 Wx_rps Roll rate
53 WhlCogCnt Wheel cog counters for rear left wheel
54 WhlCogCnt Wheel cog counters for rear right wheel
52 WhlCogCnt Wheel cog counters for front right wheel
51 WhlCogCnt Wheel cog counters for front left wheel
10 BrkPedlRat_P Break pedal ratio
11 BrkTqWhl_Nm Break torque for front left wheel
7 Ax_mps2 Longitudinal acceleration [m/s2]
14 BrkTqWhl_Nm Break torque for rear right wheel
44 StabPtMaxMode_B Engine traction control for front left wheel is at max-

imum
8 Ay_mps2 Lateral acceleration [m/s2]
62 Wz_rps Yaw rate
45 StabPtMaxMode_B Engine traction control for front right wheel is at

maximum

Feature selection is significant to affect the performance of learning algorithm. As
mentioned previously, we utilize some expert knowledge from vehicle dynamics do-
main. However, there still lacks of method to merge this useful knowledge in the
feature selection process, which will be left for the future work.
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Results and analysis

In this chapter, we will present the results in two parts: spatial-temporal pattern of
road friction using HMM and clustering methods and on-board road friction estima-
tion algorithm using ESNs. The temporal pattern will be presented over different
geometric locations and clustering result will further motivate the validity of method.
On the other hand, the road friction estimation algorithm with selected feature from
previous chapter, will be compared to the in-house physical model based method to
evaluate its performance.

4.1 Hidden Markov model based spatial temporal
pattern recognition of road friction

In section 3.2, we have proposed a method for temporal modeling of road friction
over different locations to understand the spatial temporal pattern, therefore it could
serve as a potential prior information source for the on-board estimation algorithm
in the future.
Once we specify the resolution of longitude and latitude for data aggregation, mul-
tiple HMMs could be learned for each location. We take an example that resolution
of longitude and latitude are chosen as 1.5 degree, and the number of cluster as 5
to illustrate how the proposed method performs.
With the given resolution, we aggregate data sequences to sub-sequences accord-
ing to their locations. Figure 4.2c shows the sample size for each region and there
are only 44 locations that have adequate data to be analyzed. The x-axis and y-
axis stand for the longitude and latitude respectively, while the color indicates the
data size specified by the color map on the right. Once aggregation is completed,
the data sequences in each location will be used to train HMMs using k-fold cross-
validation. Therefore, we will get 44 HMM models in this case which is denoted by
Γ = {θ1,θ2, . . . ,θ44}. Then the extended symmetric upper bound of KL divergence
between HMM is used as dissimilarity metric to calculate the distance between all
HMM pairs. So we will get a matrix with size of 44×44 and we show it in figure 4.3c.
The x-axis and y-axis are the index of location from 1 to 44, and the color stands for
dissimilarity metric between location i and location j. The lighter the color is, the
higher the correlations are between two locations. We could distinguish 4 distinctive
locations immediately from 4.3c: location 5, 21, 41 and 42 since they have quite low
correlation to most of other locations. And location from 1 to 4 are close to each
other, same applies to location from 23 to 27. Although location 5 is distinctive to
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other locations, it has quite high correlation to 42. We could continue to observe
more connections from the plot, but it is quite time-consuming and exhaustive to
understand the relations between any pair of the locations. Besides, the geometric
information is missing in the figure that neighbor index does not necessarily mean
that they are geometrically close, so it makes difficult to understand the spatial pat-
tern. As introduced in method chapter, hierarchical clustering is a powerful tool to
build hierarchical represent of relations between locations based on the dissimilar-
ity matrix, and we could tell how strong is the relations from the linkage distance.
We show the hierarchical relations of all locations in figure 4.1c. The x-axis is the
geometric location index, and y-axis is the linkage measure which tells how strong
is the relation. From the plot, it is easy to interpret how each location is relates to
others and how firm is the bound. In addition, we could set up a threshold to get
different clusters based on the linkage measure. For instance, if we set the threshold
of 1000, there are 5 distinguished clusters. If we change the threshold to 1500, there
are only 4 clusters instead.
Although hierarchy structure shows the relations that can be directly interpreted,
location information is still missing i.e we do not know their geometric relations
although we know i.e. location 12 is closely related to 25. Therefore we resort to
Google Map API to plot clustering result on the map. Figure 4.1d shows the hier-
archy clustering result on the corresponding locations. The color of circle indicates
the cluster index and index in circle is the same location index as in hierarchical
clustering plot 4.1c or dissimilarity matrix in figure 4.3a. The location of the circle
is the center of the region. In figure 4.1d, we could clearly spot spatial-temporal
pattern i.e. location 5 is close to 42 and they are also geometrically close. In the
northern of Norway and Sweden, the patterns are clustered to the same group except
from the Northeast Norway. If we manually check that data, we find that the road
friction keeps constantly low in northeast Norway while the road friction varies from
low to high from time to time in other northern regions. In Denmark and Germany,
the data is collected during summer so that the road friction keeps constantly high
so it is not strange to see those regions are clustered into the same group.
Moreover, as we discussed in the section 3.2, the geometric segment resolution is
a global parameter that requires to be specified in order to aggregate data. The
finer the resolution is, the more regions are. However, the amount of data in each
area will be less and make more difficult to train and validate the model since the
observation might keep constant always. Besides, if the resolution is fine enough, we
have to build large amount of HMMs . On the other hand, the finer the resolution is,
the more representative the model is for each location. So that the different pattern
will be easily captured by the model and differentiated from others.
Here, we experiment four different resolutions for longitude and latitude: 0.5, 1,
1.5 and 2 degree. Figure 4.2 shows the comparison of sample sizes under different
resolutions. And table 4.1 lists the total number of grid and non-occupied locations
and the rate of occupancy under different resolutions. We could easily conclude
that the sample size for each location decreases with increasing resolution. Samples
are more sparsely distributed over all the locations with smaller resolution since the
occupancy ratio is lower. Besides, it is observed that model is slower to converge
during training if the value keeps constant. So it takes longer time to build up all
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(a) Size of aggregated data under 1.5
degree resolution

(b) Dissimilarity matrix under 1.5 de-
gree resolution

(c) Hierarchy relation between different
geometric location (d) Hierarchical clustering of HMMs

Figure 4.1: Analysis result of spatial-temporal pattern of road friction using hidden
Markov model based method

HMMs for all locations. And from 4.2, the data collected from the expedition is
quite sparse, which we will leave it to future work to analyze more data stream
possibly.
Figure 4.3 shows the comparison of dissimilarity matrix under different aggregation

Table 4.1: The number of grid and non-empty location under different resolution

Resolution Number of grid Number of occupied grid Ratio of occupancy
0.5 1296 157 12.1%
1 324 68 21.0%
1.5 144 44 30.6%
2 81 30 37.1%

resolutions. The x-axis and y-axis stands for the index of locations, and the color
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(a) Sample size of aggregated data un-
der 0.5 degree resolution

(b) Sample size of aggregated data un-
der 1 degree resolution

(c) Sample size of aggregated data un-
der 1.5 degree resolution

(d) Sample size of aggregated data un-
der 2 degree resolution

Figure 4.2: Sample size of aggregated data under different resolutions

is the extended KL Divergence upper bound approximation between location i and
location j. One thing to be declared is that the indexes of locations among these 4
conditions in Figure 4.3 are different for the same location since the index is actu-
ally sorted according to the sample size. Therefore, the location of the distinguished
"blue" columns in the matrix varies from one to other. However, regardless of loca-
tion index, we could still observe the distinguished "blue" columns in plots, and finer
the aggregation resolution is, more the "blue" columns appear. One explanation is
that the distinctive large regions are split into small regions but those small areas
are still distinguished to others. Except from this reason, we also find that there
are some areas becomes more distinctive in finer resolution which is not distinctive
using larger resolution. Therefore, finer the resolution is, the more distinguished
and representative location is.
Figure 4.4 shows the comparison of hierarchical clustering of temporal pattern

under different resolutions. As denoted previously, the color of circles gives the indi-
cation the cluster index and the number in circles corresponds to the geometric index
used in dissimilarity matrix plots. The location of circle is the center of the grid
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(a) KLD matrix under 0.5 degree reso-
lution

(b) KLD matrix under 1 degree resolu-
tion

(c) KLD matrix under 1.5 degree reso-
lution

(d) KLD matrix under 2 degree resolu-
tion

Figure 4.3: KLD matrix under different resolution

area. However, the color among different figures do not indicate the same cluster,
so the assigned color for one specific location on different plot is unnecessarily the
same. As mentioned in previous discussion, the finer resolution is, more representa-
tive the model is to each location, and the number of distinctive area increases not
only because the big regions split into small regions but also some small areas are
distinguished from their neighbors. If we take a close look at figure 4.4a and figure
4.4b, the cluster boundaries are more complicated in figure 4.4a and more cluster
mixing is observed such as in Norway and Sweden. For instance, the deep blue area
in middle of Sweden is distinguished among its neighbors in figure 4.4a. However,
in figure 4.4b it is clustered in the same group. Therefore, with finer resolution,
those locations, having more representative pattern are no longer mixed with their
neighbors. However, the general geometric pattern is still similar no matter what
resolution is selected: northern Sweden and Norway share quite similar pattern; the
northeast part of Norway and Sweden is in the same group; southern Sweden has
distinguished pattern; all areas in European continent share the same pattern.
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(a) Hierarchical clustering over different
locations under 0.5 degree resolution

(b) Hierarchical clustering over different
locations under 1 degree resolution

(c) Hierarchical clustering over different
locations under 1.5 degree resolution

(d) Hierarchical clustering over different
locations under 2 degree resolution

Figure 4.4: Hierarchical clustering over different locations under different resolution

In summary, the resolution of aggregation affects extracted pattern of road friction
over different locations. And with finer resolution, the extracted pattern is more
representative and easier to be distinguished from neighbor areas. The attendant
disadvantages is that there is less data in each location and it takes more time to
train due to slower convergence.
As mentioned before, since the data is distributed sparsely over space and pattern
learned is difficult to be validated so far due to the lack of similar expedition multiple
times. Therefore, it is hard and unsafe to draw firm conclusion without validation.
We will leave the further investigation and merge with estimation algorithm in the
future work.
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4.2 On-board estimation algorithm using Echo State
Network

4.2.1 Training, validation and test datasets split

Before presenting result, we need to define the way to split training, validation and
test data. Training data are only used during training, while validation data is to
evaluate the model performance to optimize hyper parameters. The test data is only
used to test model performance after training and validation is completed and best
model is selected to make an unbiased evaluation of model performance on unseen
data.
As mentioned in data section, the long sequences are partitioned into small se-
quences with length of 10000 that correspond to 100 seconds for each. We could
estimate road friction quite accurately by physical based model when tire is ex-
cited to certain level. Therefore, we assume that we could obtain some approximate
"ground truth" road friction from it, which could be used to estimate road friction
in the future. Therefore, we would like to train the ESN model to estimate the
subsequent data stream when physical model does not work so well so that we have
redundant alternative to compliment each other. Different from the usual definition
of train/validation/test data split for the i.i.d data, we take the first part of short
sequences as training data, and the second part as validation or test data. Figure
4.5 shows how long sequence is split into different dataset. The red part indicates
the training data, while the green indicates the validation or test data. The ratio
between the length of training and whole short sequences is called train-test split
to partition sequences, which ranges from 0 to 1 and 1 indicates whole sequence is
training data while 0 means that whole sequence is validation/test data. Besides,
the ratio between validation and test data is set as 1 to 1. The purpose of setting up
different train-test split is to evaluate the model’s limit that how long the following
sequence can be accurately estimated, since it is nature that model gives worse and
worse prediction when less relevant and accurate information is given at beginning.
The train-test split is selected first as 0.3 for the following discussion. The different
split ratio will be compared in the end of this chapter. The ESNs used in the follow-
ing discussion is the one with feedback path using the iterative training proposed in
section 2.2.2.4, and estimated ŷ is used for feedback path.

Figure 4.5: Training, validation and test data split
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4.2.2 Hyper parameters optimization
As discussed in the theory section that there are several hyper parameters of ESNs,
including reservoir size, leaky rate, sparsity of connectivity of reservoir, memory
size and spectral radius. The hyper parameters need to be tuned for model to per-
form better. There are several ways for hyper parameter optimization methods such
as grid search, random search, Bayesian optimization, Gradient-based optimization
and evolutionary optimization and etc. Since hyper parameter optimization is not
the main focus of thesis, we will not compare different methods but select grid search
here due to its simplicity.
Grid search is a simply exhaustive search on the manually specified subset of hyper
parameter space. Table 3.1 lists all hyper parameter proposals for reservoir size,
spectral radius, leaky rate, sparsity of connectivity, memory size.

Table 4.2: Hyper parameter proposals for hyper parameter optimization

Hyper parameters Range Interval
Reservoir size 100:800 100
Spectral radius {0.5,1,2}
Leaky rate 0:1 0.2
Sparsity of connectivity 0.1:0.3 0.05
Memory size {0,1,2,3,4,5,7,10,15,20,30}

Except from the specified parameter candidates, the grid search algorithm also needs
the evaluation metric. We have discussed different evaluation metrics in section
2.2.3.1 that we choose MAE, RMSE, average error rate within different ranges to
evaluate performance. In most cases, all evaluation metrics follows the similar trend,
but not necessarily always the same. For example, if model gives estimation that
always deviates to reference within certain range, the error rate within that range
could be low, but MAE and RMSE might be high. Therefore, we need to utilize all
the evaluation metrics to draw safer conclusions.
However, grid search suffers from large dimensionality of hyper parameter space and
is extremely demanding to run training over all different hyper parameter combina-
tions. There is more than 3200 different settings in total to be trained and validated
which is infeasible for this thesis due to limited time. Therefore, author uses the
greedy grid search to decrease the number of combinations. The greedy grid search
is to test all candidate of one hyper parameter while fixes all other hyper parameters,
therefore it selects optimal hyper parameter one by one. By doing so, the search
space is shrunk to around 30 which is only 1 % of full grid search. Certainly, we
compromise the time cost with the optimality of hyper parameter selection. In order
to better apply greedy grid search to mitigate the performance degrading, we decide
to optimize more importance hyper parameters first which have larger effect on the
performance than others, then optimize other less important parameters later. As
analyzed in the theory of ESNs, the significant parameters include reservoir size and
memory size.
Therefore, experiments are carried first on the different reservoir sizes with fixed
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other hyper parameters: spectral radius as 1, leaky rate as 0.5, connectivity as 0.1,
memory size as 1. The reservoir size varies from 100 to 800 with interval of 100.
Table 4.3 shows the result of MAE, RMSE, error rate within 0.1 on the validation
data under different reservoir sizes. All the training and validation are run on 8
cores i7-6700HQ CPU @ 2.6GHz.

Table 4.3: ESN performance under different reservoir size on validation data

Reservoir size MAE RMSE Average Error
Rate within
0.1

Average test
time per
sample [ms]

100 0.0902 0.1053 31.567 % 0.1322
200 0.0809 0.0967 27.987 % 0.1394
300 0.0627 0.0764 16.987 % 0.1419
400 0.0649 0.0793 18.593 % 0.1512
500 0.0606 0.0754 17.505 % 0.1553
600 0.0500 0.0640 13.234 % 0.1685
700 0.0503 0.0637 12.697 % 0.1777
800 0.0531 0.0666 14.195 % 0.1794

As we discussed before, there is trade-off between performance and computation
cost on large reservoir size. The results in Table 4.3 shows that larger the reservoir
size is, the smaller the MAE and RMSE are as we expected. The MAE has best
performance at reservoir size as 600, while RMSE and average error rate within 0.1
have best performance on reservoir size as 700. Larger reservoir size introduces more
non-linearity in the mapping so that the activation output after ESNs is easier to
learn weights of readout layer. There is limitation of performance that it does not
grow with reservoir size so that the performance saturated at reservoir size of 700.
We observe the performance drop at 800 which is explained by overfitting. As reser-
voir size increases, the complexity of model increases and model fit training data
to more detail noise but less generalized to the unseen validation data. Therefore
larger reservoir size leads to the overfitting. Certainly, we could use some technique
like regularization as we applied, or early stopping to prevent overfitting. We realize
larger reservoir size is not necessary to boost performance.
Besides, the computation cost increases with the size of reservoirs both for training
and test. Theoretically the cost goes linearly with reservoirs size if sparse matrix
computation could be implemented for reservoirs. However, in practice, we do not
optimize in low level programming but use the normal matrix computation. And
test time does not grow linearly with reservoir size in Table 4.3 since additional cost
i.e. form vector for input variables is static. The average inference time is around
0.2 ms even when reservoir size is large which still fulfills the real time performance
requirement, therefore, the computation cost is not the bottleneck. Certainly, more
tests need to be done to deploy the algorithm on the ECU or other computation
resource on-board in order to evaluate the real time performance when other func-
tions are activated at the same time. Besides, if sparse matrix computation could be
implemented in low level programming, the run time performance will be improved
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further.
Based on the analysis before, we choose reservoir size 700 as the optimal parameter
to carry on the subsequent experiments on memory size. The feedback path helps
faster convergence especially when more previous estimation values are feedback
into reservoirs if estimates do not deviate to target too much, otherwise it brings
the risk that the error in the estimate will be propagated to later estimate if the
model cannot handle the noise in estimate. Meanwhile, it is more likely that larger
memory size slows down the ESNs dynamics so that it is harder to follow the quick
dynamics and give accurate prediction if the ground truth changes rapidly all the
time. Therefore, it is significant to select a proper memory size. Table 4.4 shows
MAE, RMSE and average error rate within 0.1 under different memory sizes. Before
memory size increases to 10, larger memory size gains the benefit to give more accu-
rate estimation. However, after 20, the benefit is mitigated and error increases along
with the memory size increasing. For certain, the model is expected to perform even
worse if we continue to increase the memory size to i.e. 100, 200, ..., 1000. All of the
evaluation metrics have the best performance when memory size is 15. Therefore,
we select 15 as the optimal memory size.

Table 4.4: ESNs performance under different memory sizes on validation data

Memory size MAE RMSE Average Error Rate within 0.1
0 0.052983 0.064527 12.787 %
1 0.050464 0.063936 12.627 %
2 0.049412 0.062554 12.313 %
3 0.048915 0.061879 11.892 %
4 0.048323 0.061135 11.628 %
5 0.048075 0.060781 11.555 %
7 0.047557 0.060116 11.294 %
10 0.046953 0.059343 11.021 %
15 0.046566 0.058812 10.823 %
20 0.046707 0.058948 10.838 %
30 0.046809 0.059154 10.97 %
40 0.046294 0.058569 10.795 %
50 0.046744 0.05913 11.109 %

Among the rest of hyper parameters, the sparsity of connectivity has more domi-
nant effects because it affect the number of active reservoirs and nonlinear mapping.
Theoretically, the larger the connectivity is, the more reservoirs are linked to others
and the recurrency of model is kept more. But as discussed in the theory section,
most studies recommend to keep the sparsity of reservoirs to maintain the echo prop-
erty of model both from theoretic analysis and practical experiments. Although the
computational cost of reservoir is linearly to sparsity, the time consumption is not
the bottleneck as we tested before. Table 4.5 shows MAE, RMSE and average error
rate within 0.1 under different sparsity of connectivity value. Seen from Table 4.5,
the ESNs give the lowest MAE and RMSE when the connectivity is 0.25. Below
0.25, the error decreases with the increase of connectivity which can be explained by
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increasing reccurency of model. After 0.25, the error increases again with increasing
connectivity, which can be explained by deviation of echo state property. Therefore,
0.25 is selected as the optimal connectivity. And as discussed before, connectivity
does not affect the performance of ESNs as much as previous two predominant hy-
per parameters, which is shown by the insensitivity of performance between different
connectivity.

Table 4.5: ESNs performance under different connectivity on validation data

Connectivity Average MAE Average RMSE Average Error Rate within 0.1
0.1 0.046566 0.058812 10.823 %
0.15 0.04754 0.058958 11.991 %
0.2 0.049114 0.061085 12.027 %
0.25 0.044709 0.057082 10.67 %
0.3 0.04637 0.057834 10.986 %

After optimizing the sparsity of connectivity, we continue to run experiments over
the different spectral radius ρ(W) with frozen optimal reservoir size, memory size
and connectivity rate. Table 4.6 shows MAE, RMS and average error rate within
0.1 under different spectral radius as 0.5, 1 and 2. The smaller spectral radius is,
the echo state property could be guaranteed more. However, less randomization
of W matrix is reserved which might jeopardize the performance of ESNs. In sev-
eral literature, it is recommended to set spectral radius as 1. But in practice, the
spectral radius less than 1 will not bring catastrophic effect to model because of
the intra-correlations between input variables. Table 4.6 shows MAE, RMSE and
average error rate within 0.1 under different spectral radius. Seen from the Table
4.6, the spectral radius as 2 gives the best average MAE and RMSE, while spectral
radius as 1 gives the least error rate within 0.1. But the difference of performance
between different spectral radius is slight. The reason could be that the effect of
spectral radius on W is mitigated during training and the intra-correlation between
variables makes large spectral radius not applied anymore. Therefore, we choose 1
as the optimal spectral radius.

Table 4.6: ESNs performance under different spectral radius on validation data

Spectral radius MAE RMSE Average Error Rate within 0.1
0.5 0.044719 0.057116 10.664 %
1 0.044764 0.057156 10.617 %
2 0.044487 0.056833 10.629 %

From previous discussion, leaky rate serves as the speed of reservoir update dynam-
ics. Therefore, the larger the leaky rate is, more prone model is to follow the fast
dynamics. However, the estimate could be more unstable as well. If the leaky rate
is set to zero, the dynamic effect is completely ignored and estimate is prone to stay
constant as previous estimate. Table 4.7 shows MAE, RMSE and error rate within

57



4. Results and analysis

0.1 under different leaky rate as 0, 0.2, 0.4, 0.6, 0.8, 1. It is clear that the validation
error is large when leaky rate is 0 since dynamics is completely deactivated. With
increasing leaky rate, the error also increases since the estimate tends to be less
stable and sensitive to current estimation. Small leaky rate as 0.2 gives the best
performance on all evaluation metrics. Therefore, we choose 0.2 as the optimal leaky
rate.

Table 4.7: ESNs performance under different leaky rate on validation data

Leaky Rate MAE RMSE Average Error Rate within 0.1
0 0.10927 0.10174 39.256 %
0.2 0.041787 0.053441 9.089 %
0.4 0.043824 0.056065 10.265 %
0.6 0.045638 0.05815 11.091 %
0.8 0.048217 0.061007 11.641 %
1 0.049711 0.062642 12.066 %

In conclusion, Table 4.8 lists all the optimal hyper parameters from the experiments
above. And we use the best model to evaluate model performance on the test data
later.

Table 4.8: Optimal hyperparameters for ESN

Hyper parameters Optimal value
Reservoir size 700
Memory size 15
Connectivity 0.25
Spectral radius 1
Leaky Rate 0.2

4.2.3 Evaluation of ESNs
After hyper parameter optimization, the optimal model is used to test the perfor-
mance on the test data sets. Table 4.9 lists the comparison between ESNs with
the optimal hyper parameters and the physical-based model on both training and
test data sets. Seen from Table 4.9, ESNs outperform under all the evaluation met-
rics tremendously compared to that of physical-based model. For instance, MAE
is decreased from 0.4723 to 0.0437 by almost 1/10. The average error rate within
0.1 is improved to 9.310% from 97.143%. As we mentioned in our motivation, the
physical-based model has extremely bad performance when tire is not excited ade-
quately. However, ESNs are able to give accurate estimate on those circumstances.
Besides, ESNs have quite good generality that the performance degrades from train-
ing and validation data to test data is small. The average error rate within 0.1 is
small enough to apply for the decision making algorithm without huge mistake.
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Table 4.9: Comparison between ESN and physical model on training and test data

Model MAE RMSE
Average error rate within

0.2 0.15 0.1 0.05

Train ESN 0.0423 0.0525 1.278% 3.101% 8.995% 28.372%
Physical 0.301 0.332 71.333% 81% 89.333% 97.667%

Test ESN 0.0437 0.0564 2.478% 4.528% 9.310% 25.794%
Physical 0.472 0.492 94.714% 96.000% 97.143% 98.571%

In order to evaluate the performance of model thoroughly, we also plot the error
distribution of MAE, RMSE, and average error rate within four different range on
training and test sequences. Figure 4.6 shows the MAE error distribution on train-
ing and test data where the y-axis shows the number of sequences within range and
x-axis is the MAE error. The median and average error of training is a bit smaller
than that of test but performance drop is slight. And from 4.6, most of test se-
quences have MAE error lower than 0.05, and only very few sequences is larger than
0.1. The similar trend we could observe from figure 4.7 as well: most of sequences
has small RMSE less than 0.1, while only very few has larger error than 0.15.
Figure 4.8 to figure 4.9, 4.10 and 4.11 show the error rate within different ranges on

(a) MAE distribution on training data (b) MAE distribution on test data

Figure 4.6: MAE distribution comparison of ESN between training and test data

train and test data sets. The x-axis indicates the error rate from 0% to 100 % while
y-axis indicates the number of sequences at the particular error rate range specified
by the bins. At most strict range of error, most of sequences still have error rate less
than 20 % only few sequences have high error rate from 4.8. If the range of error
is less strict, more proportion of sequences haves lower error rate from figure 4.8 to
figure 4.9, 4.10 and 4.11. Only less than 10% of sequences has error rate larger than
10 % which indicates that the algorithm is generalized well to different scenarios.

In addition, we shows some typical examples that how model performs. Figure
4.12 and 4.13 show examples of sequence that have small and large deviation of
estimate respectively. In all examples, the ground truth road friction varies with
time, which is indicated by the blue line for reference. The red line indicates the
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(a) RMSE distribution on training data (b) RMSE distribution on test data

Figure 4.7: RMSE distribution comparison of ESN between training and test data

(a) The error rate within 0.05 distribu-
tion on training data

(b) The error rate within 0.05 distribu-
tion on test data

Figure 4.8: The error rate within 0.05 distribution on training and test data

(a) The error rate within 0.1 distribu-
tion on training data

(b) The error rate within 0.1 distribu-
tion on test data

Figure 4.9: The error rate within 0.1 distribution of ESN on training and test data
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(a) The error rate within 0.15 distribu-
tion on training data

(b) The error rate within 0.15 distribu-
tion on test data

Figure 4.10: The error rate within 0.15 distribution of ESN on training and test data

(a) The error rate within 0.2 distribu-
tion on training data

(b) The error rate within 0.2 distribu-
tion on test data

Figure 4.11: The error rate within 0.2 distribution of ESN on training and test data

estimate for training data, while green one plots the estimate for test data. In figure
4.12, the estimation algorithm could estimate road friction with acceptable accuracy
on both high and low level. When the ground truth changes rapidly, the estimator
is still able to converge the trend quickly and stabilize, even though the first part
of sequence is almost constant. Certainly, the estimate is not as smooth as the ref-
erence which could be filtered by some low pass filters. In general, estimate is only
deviated within acceptable range to the reference at most of time.
Figure 4.13 shows some extreme but rare examples on the test data that the es-

timates have large deviation to the reference. The first example in 4.13 shows the
estimation has constant deviation to the ground truth while the second example
shows that estimator has difficulty to follow the extremely rapid changes of road
friction. One potential explanation for the first phenomenon is that the reservoir
states in estimator fails to capture the change of features under different road friction
and makes it diverges from the reference. As for the second example, the reference
bounces between 0.8 to 0.3 rapidly while the estimate only bounces between 0.8
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Figure 4.12: Example of estimate having small deviation from ground truth

Figure 4.13: Example of estimate having large deviation from ground truth
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to 0.6. The estimator tends to give more discreet estimate without rapid change.
Although the estimator does not manage to give the completely accurate value, it
is able to monitor the exact time when the underlying dynamics changes.
In addition, in order to evaluate the consistency of model performance when less
data stream is fed, we experiment on even smaller train/test split ratio to esti-
mate the maximum reasonable estimate length. Table 4.10 reports the comparisons
of evaluation metrics between different train-test split ratio with the same hyper
parameter settings. It is reasonable that with larger ratio, the model is easier to
estimate accurately. The average MAE for test data increases from 0.0437 to 0.0598
if the train-test split decreases from 0.3 to 0.1. And the average error rate within
0.1 for test data increase from 9.310% to 16.471%. The performance degrades with
decrease of train-test split since there is less information from sequence could be
utilized to estimate for future and the total number of training sample is decreased
substantially as well. However, even though the train-test split comes to 0.1, ESNs
still give much better performance than physical-based model and approximately
16% error rate within 0.1 is acceptable for current application. So the model still
functions well even if small amount of instances is available for accurate estimation
from other source.

Table 4.10: The performance of ESN on training/test data under different train-
test split percentage

Train-test split MAE RMSE Average error rate within

0.2 0.15 0.1 0.05

0.3 Train 0.0423 0.0525 1.278% 3.1007% 8.995% 28.372%
Test 0.0437 0.0564 2.478% 4.528% 9.310% 25.794%

0.1 Train 0.0406 0.0487 1.161% 2.840% 8.510% 27.162%
Test 0.0598 0.0752 4.690% 8.395% 16.471% 39.640%
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5
Conclusion and Future work

In this chapter, we summarize the conclusion drawn from the result and discussion
chapter and future development is suggested in the end.

5.1 Conclusion

To conclude, both proposed method for on-board estimation algorithm using ESNs
and framework to analyze spatial-temporal pattern using HMM based clustering
achieve promising performance. As for on-board estimation algorithm, the pro-
posed Echo State Network with feedback path has promising performance over the
physical-based model for road friction estimation. The average mean absolute error
between estimation to ground truth is improved from approximately 0.472 for phys-
ical model to 0.0437 for ESNs, as shown in Table 4.10. The avergae error rate within
0.1 is improved from 97.143 % to 9.310 %. The estimation algorithm works well both
under high and low road friction and rapid change scenarios. From experiment, the
performance of ESNs is no longer sensitive to the tire excitation as physical-based
model to give accurate estimation. Besides, the proposed method could be updated
with new coming data which gives advantage for continuous learning to improve
performance further. The average test time for one sample is under 0.2 ms on the
personal computer which fulfills real time performance requirement even though de-
tailed low level programming optimization could improve it further.
As for the study of spatial-temporal pattern of road friction, the results shown in
previous chapter indicates that the spatial-temporal pattern could be extracted by
the proposed HMM based clustering framework. And clustering result could be
affected by the choice of aggregation resolution. The finer the resolution is, the
better the representative of the pattern at each location is, but more difficult to
train HMMs due to smaller data available in small regions. But the general pattern
is quite similar regardless of resolution choice.

5.2 Future work

For future work, the proposed on-board road friction estimation needs to be trans-
ferred to the embedded programming language and tested on ECU or computation
unit on car to evaluate its real time performance as we discussed in previous chapter.
Although we have achieved 0.2 ms test time on the dedicated CPU, the performance
drop could be expected when deploying algorithm on the ECU on car since it runs
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hundreds of applications at the same time. And the data has been synchronized of-
fline already which might be another influential effect on the run time performance.
Besides, the sensor measurements, collected by different frequencies need to be syn-
chronized, which cost more time and could impair the performance. Furthermore,
although we motivate the reason to choose ESNs over other recurrent neural net-
work method due to its simplicity of training, benchmark those methods on the data
will be of great interest to further analyze the strengths and weakness of ESN with
respect to other methods.
As for feature selection, more different techniques could be explored and compared,
and ablation test on each selected feature could also help us to understand how each
feature affects performance so that the network’s behaviors are more interpretable
and more improvement could be done to make model insensitive to data, and we
could avoid disorder of algorithm in case of some abnormal readings in system.
As for the spatial-temporal pattern of road friction, there is no undergoing study
yet in this field to formulate the problem in such way, therefore it is difficult to com-
pare to state-of-the-art algorithm and evaluate the performance of proposed method.
And the temporal pattern we discussed here is the short term pattern instead of long
term in the scale of different months, or even years due to lack of data. Based on
the analysis before, we have already known that season plays a significant role on
road friction distribution. Therefore, we need not only aggregate data based on the
geometric locations, but also according to date in year as well. Due to the scarcity
of current data, it impossible to extract long-term pattern yet. Furthermore, from
figure 3.3, a large amount of data are concentrated close to Göteborg and northern
Sweden. Except from these two locations, the data is quite sparse which makes
analysis more difficult. Besides, most of data are collected on highway or country
road that do not cover all the variance of road. Therefore, the pattern we discovered
is bias to those road.
Last but not the least, because of lack of data to validate the spatial-pattern al-
gorithm, it is not possible yet to combine both algorithms although we do find
spatial-temporal pattern could be a good prior information resource for on-board
algorithm. Therefore, it could be very valuable to use spatial-temporal pattern to
give rough estimate prior to merge with on-board estimation algorithm to further
correct it with sensors even when there is no other information resource available.
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Table A.1: Feature list of datasets

Index Name Description
1 AbsMode_B Anti-Brake system control is active or not for front

left wheel
2 AbsMode_B Anti-Brake system control is active or not for front

right wheel
3 AbsMode_B Anti-Brake system control is active or not for rear

left wheel
4 AbsMode_B Anti-Brake system control is active or not for rear

right wheel
5 AccPedlRat_P Acceleration pedal ratio
6 AmbTemp_deg Ambinent temperature in Celsius
7 Ax_mps2 Longitudinal acceleration [m/s2]
8 Ay_mps2 Lateral acceleration [m/s2]
9 Az_mps2 Vertical acceleration [m/s2]
10 BrkPedlRat_P Break pedal ratio
11 BrkTqWhl_Nm Break torque for front left wheel
12 BrkTqWhl_Nm Break torque for front right wheel
13 BrkTqWhl_Nm Break torque for rear left wheel
14 BrkTqWhl_Nm Break torque for rear right wheel
15 CltchPedlRat_P Clutch pedal ratio
16 DoorIsOpen_B Door or trunk is open
17 DtSts_M Front axle is engaged in drive train
18 DtSts_M Rear axle is engaged in drive train
19 EngN_rpm Engine rotational speed [rpm]
20 EpbSts_M Electric Parking barke status
21 FrackFr_N Rack force in steering column
22 FuLvl_L Fuel level [liters]
23 Gear Current active gear
24 GpsDOP GPS horizontal dilution of precision
25 GpsDOP GPS vertical dilution of precision
26 GpsDOP GPS position dilution of precision
27 GpsDOP GPS time dilution of precision
28 GpsDir_r GPS heading [rad]
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29 GpsNofS Number of GPS satellites
30 GpsPos Longitude position
31 GpsPos Latitude position
32 GpsPos Altitude position
33 GpsSpd_mps GPS longitude change rate
34 GpsSpd_mps GPS longitude change rate
35 GpsSpd_mps GPS longitude change rate
36 LongCltSt_M Longitudinal clutch status
37 LongCltTq_Nm Longitudinal clutch status
38 PtTqWhl_Nm Powertrain torque for front axle
39 PtTqWhl_Nm Powertrain torque for rear axle
40 StabBrkMode_B ABS/ESC/RSCintervention for front left wheel
41 StabBrkMode_B ABS/ESC/RSCintervention for front right wheel
42 StabBrkMode_B ABS/ESC/RSCintervention for rear left wheel
43 StabBrkMode_B ABS/ESC/RSCintervention for rear right wheel
44 StabPtMaxMode_B Engine traction control for front left wheel is at max-

imum
45 StabPtMaxMode_B Engine traction control for front right wheel is at

maximum
46 StabPtMinMode_B Engine traction control for rear left wheel is at max-

imum
47 StabPtMinMode_B Engine traction control for rear right wheel is at

maximum
48 TorsBarTq_Nm Steering wheel torque
49 TrsmParkLockd_B Transmission park is active
50 WhlAng_r Steering wheel angle
51 WhlCogCnt Wheel cog counters for front left wheel
52 WhlCogCnt Wheel cog counters for front right wheel
53 WhlCogCnt Wheel cog counters for rear left wheel
54 WhlCogCnt Wheel cog counters for rear right wheel
55 WhlSpdDir_M Wheel speed direction of rear left wheel
56 WhlSpdDir_M Wheel speed direction of rear right wheel
57 WhlSpd_mps Wheel speed for front left wheel
58 WhlSpd_mps Wheel speed for front right wheel
59 WhlSpd_mps Wheel speed for rear left wheel
60 WhlSpd_mps Wheel speed for rear right wheel
61 Wx_rps Roll rate
62 Wz_rps Yaw rate
63 Vx_mps Longitudinal velocity at center of gravity
64 Fx_N.1 Longitudinal force of front left wheel
65 Fx_N.2 Longitudinal force of front right wheel
66 Fx_N.3 Longitudinal force of rear left wheel
67 Fx_N.4 Longitudinal force of rear right wheel
68 Fy_N.1 Lateral force of front left wheel
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69 Fy_N.2 Lateral force of front right wheel
70 Fy_N.3 Lateral force of rear left wheel
71 Fy_N Lateral force of rear right wheel
72 Fz_N.1 Vertical force of front left wheel
73 Fz_N.2 Vertical force of front right wheel
74 Fz_N.3 Vertical force of rear left wheel
75 Fz_N.4 Vertical force of rear right wheel
76 Slip.1 Slip rate of front left wheel
77 Slip.2 Slip rate of front right wheel
78 Slip.3 Slip rate of rear left wheel
79 Slip.4 Slip rate of rear right wheel
80 WhlBpNrj Bandpass-filtered energy in suspension mode
81 Tire Tire type
82 Surface Surface type
83 RoadType Road type
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