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Abstract
Using a Formula student car to race autonomously and find the right path has
been around since the introduction of this class in the Formula student competition
in 2017. This project work attempts this problem using a pure computer vision
approach by utilizing a stereo vision camera only and running a convolutional neural
network to localize the object in a field of view. To make sure the approach works
at a stable high frequency, the detection of the cone-objects which are marking the
path is run on a GPU. As the output of the system, the two dimensional coordinates
in a local frame are calculated from each detection made in each frame, using merged
approaches of triangulation and distance by size in the frame. The result is a solution
with a sufficiently precise detection up to a distance around 12m, running at a
frequency of 25Hz with more than 12 detected objects per frame, the system proved
to be well enough designed to provide data for path planning module.

Keywords: Convolutional neural network, GPU, TinyYOLOv3, Formula student,
autonomous driving, object detection.
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1
Introduction

While computer vision as a field of engineering has been around since the late 60s,
it has mainlz involved deterministic algorithms that revolved around feature detec-
tion. In case of lane detection, since lane markings are a line feature, traditional
methods such as edge detection, template matching, colour transformations, and
other techniques were used.
These methods had problems with generalization due to variations of lane marking
appearances, road lane types and weather conditions. To address this, the data-
driven methods based on machine learning started to arise. Data-driven methods
allows for variety in both lane-markings and conditions. The variety is achieved by a
careful construction of the dataset, that is, the more dispersed the data is, the more
variable the algorithm can become. During the last years, deep learning algorithms
advanced to become the most popular ones because of the appearance of affordable
GPUs, which are required to make algorithms training viable time-wise [2][3][4][5].

1.1 Formula student
Formula student is a student engineering and design competition event that was
growing from its start in 1998 in the UK, with a combustion class in which teams
could compete against each other, over the additional class of electrical vehicles
from 2010 in Germany until the introduction of the driverless vehicle class in 2017
(also first in Germany, with others following). The main goal of this event is to
design and build a race car according to specified rules (formulas). An exclusion
from that is given in the driverless class. Here, a car built in the previous years can
be taken to be transformed into an autonomous, driverless race car. The reason for
taking a car from a previous year is, to give the teams more time and possibilities
while developing an autonomous system for the car, since the hardware is already
existing. Since a lot of teams advanced from that in the last three years of the class’
existence, the driverless class will be included into the two other classes (combustion
and electrical). From the season of 2021, at least the dynamic acceleration event
has to be completed without a driver.
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1. Introduction

Figure 1.1: Point distribution in Formula student Germany, FSEast and FSCzech.

Figure 1.1 shows the point distribution for the three different classes during a 2019
Formula student competition. As it can be seen, a competition is divided into three
static events and five dynamic events. The point distribution for the DV class
however shows a clear division of nearly 50% between the two different classes of
events. Therefore, it is as important that the team can defend its design choices
in the engineering design event and justify the costs of the car, as take part in the
dynamic events and achieve good results. To be authorized to drive in dynamic
events, the car needs to pass a safety inspection, the so called scruteenering. During
these inspections, the car is checked to be rules compliant and safe.

1.2 Aim
The aim of this project was to design and implement a computer vision algorithm for
object detection for a specific scenario of Formula student driverless (FSD). Since
the lanes in the competition are formed by cones, the traditional lane-detection
approaches are not applicable here, since they rely on the distinct lane-shaped
markings. Therefore, it was crucial to design an algorithm that focuses on par-
ticular specifics of the application such as high-speed driving and cone-based lane
markings. Moreover, the weak point of traditional approaches, that is weather and
lightning conditions, persists. Because of that, the aim was to use a deep learning
approach.

Therefore, the following points were needed to be fulfilled by the system:
• Firstly, it needs to implement camera calibrations and pre-processing proce-

dures for object-detection algorithms to be accurate and effective.
• Secondly, it should aim to design the algorithm that focuses on specifics of the

application such as high-speed driving and cone-based lane markings. It should

2



1. Introduction

also consider available hardware resources such as particular high-frequency
camera and on-board GPU. The designed algorithm should aim to be robust
to weather and light conditions changing.

• Thirdly, the designed algorithm needs to be implemented to be run as a mi-
croservice within the existing architecture with a support of parallel compu-
tations. For robust aimpoint calculation based on the algorithm output the
aim was to achieve the processing speed of 50 frames per second with minimal
requirement of 20 frames per second.

As an additional goal, the additional LiDAR system should be removed by utilizing
a purly camera based approach.

1.3 Project description
This section gives an overview of the sensors and modules used as well as the dataflow
and communication between these modules. As the sensor input to the system, a
ZED stereo-vision camera with an adjustable frame rate and resolution is used. The
API provided by the manufacturer is used to get the frame with depth information
for each pixel. This frame is then processed by the CNN, which classifies and local-
izes all the cones in the frame and outputs a set of bounding boxes with confidence
level for each detection. Finally, the so called birdview module processes the data
further into two-dimensional coordinates which are sent out to the path calculation
module. Since the task of processing 50 frames per second is computationally de-
manding, a GPU is utilized as the computing unit. An overview of the system can
be found in Figure 1.2.

Figure 1.2: System overview with all modules.
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1. Introduction

1.3.1 Deep neural network
The neural network architecture that was aimed to be used in this project is a
variation around convolutional neural networks (CNNs). This class of deep neural
networks is suited well for image processing, since it aims to investigate regions of
the images (by applying so called filters) in opposed to every pixel investigation. The
filters are adjusted during the trainings, which reduces the pre-processing required
for the data. Advantage of using the filters is the reduced number of parameters
that are required to train, improving the performance as a result. Focusing on the
performance and independence of prior knowledge makes CNNs the logical choice
for image and video recognition. However, a regular CNN performance is usually not
good enough for live video recognition. To address this problem various attempts to
improve the architecture were made in forms of Fast-CNN, R-CNN, Fast-R-CNN,
and YOLO.

Because CNNs fall in realm of supervised machine learning algorithms, they require
an annotated dataset. That is, a collection of video frames and corresponding hand-
made annotations, which ought to be used as a ground truth during the learning
process. Annotated data collection is one of the biggest challenges for machine
learning, since it is a very labour-intensive process. To address this problem, it was
decided to utilize a transfer learning by training the network on a public available
dataset that would potentially have features similar to the cones [6]. The weights of
the network will then be initialized to the trained values in order to converge faster
on a smaller cone-dataset.

1.3.2 GPU implementation
By nature, deep learning algorithms require simple operations performed over the
matrix of data. This means that bandwidth-optimized computations are superior to
latency-optimized computations. Moreover, the simple operation will be repeatedly
performed on the entire matrix, which means a great potential for parallel computa-
tions. Both advantages are achievable by using GPUs which are optimized exactly
for bandwidth and floating-point matrix multiplication.

Being one of the leading GPU manufacturers, Nvidia provides a great toolkit for
enabling parallel computations on their cards. The CUDA toolkit makes it easy to
control memory transfer between GPU memory and RAM and enables parallel com-
putations by giving access to dedicated threads and cores inside the graphical card.
Most of the machine learning platforms like Tensorflow and Pytorch are supporting
the CUDA toolkit and utilize the GPU capabilities in built-in functionality. Having
a Nvidia video card, the aim was to utilize these capabilities and build a network
based on the existing library like Tensorflow or Pytorch.
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1. Introduction

1.4 Limitations
The project is mainly limited by two factors: available hardware and data. First,
the existing camera has specifications that must be worked with. Also, the installed
GPU is a consumer-level GPU with limited compute-capabilities in terms of deep
learning applications. Ideally, a dedicated set-up to train the network could be used
and the resulting trained weights would be transferred to the target set-up for in-
ference afterwards.
Then, most machine learning algorithms have a demand for huge data sets to be
trained successfully. Deep learning algorithms are no exception, in fact, they are
highly dependent on the amount of data. The task of detecting cones acquire specific
datasets. Datasets are shared by some teams, but the specific way of every anno-
tation strategy makes them unusable to a known extent. Since there is no dataset
available it was inevitable to do that manually, in a very time-consuming process.

1.5 Research questions
The following research questions are investigated in this thesis:

• Is it possible to build a camera-only reliable perception system for the lim-
ited scenario of Formula student driverless? Assuming the reliable perception
system is always able to detect the road-plane and perform at an acceptable
frame rate (20Hz or more).

• What level of hardware is required to implement a working solution? Assuming
the working solution is the system reliably performing at 20 Hz.

• How is the solution performing compared to the first year Formula student
approach of 2018?

• Is a data-driven approach better than traditional methods for a Student For-
mula driverless scenario?

5



2
Background

2.1 Overview
In the autonomous driving industry, the problem of detecting objects is usually
solved by sensor fusion between several sensors, including camera, LiDAR and radar
[7, 8]. Because autonomous driving is targeting the complex and uncontrolled en-
vironment of consumers autonomous driving (amongst others), safety requirements
are very strict and play a main role in the development of perception techniques [9].
While attempts in direction of camera-only object detection approaches are made
by various companies and sensor manufacturers [10, 11, 12], current camera-only
approaches are deemed as futuristic options, because they do not provide necessary
safety and precision for complex road environments as for now [9]. However, consid-
ering autonomous driving for non-complex environments, camera-only approaches
are developed in other fields, for example UAV path corrections [13] and blind per-
sons assistance [14]. Currently, the desire to use a camera-only computer vision
approach arises mainly from various restrictions of costs and power consumption.
One example for that would be applications running on embedded systems, where
power consumption is crucial [15], or systems where installing a LiDAR or radar is
not possible due to weight or size restrictions [16].
When it comes to localization problem, there are several sensor technology options
as well as algorithm choices. The most interesting topic in connection to this work
is vision sensors. Notable technologies in this field are LiDARs, radars and cameras.

2.2 Sensors and instrumentation
This section is about the sensors used in the system and how they were instrumented.

2.2.1 LiDAR
LiDAR (Light detection and ranging) is a laser scanner instrument that emits light
impulses and measures time of arrival (TOA) of mirrored wave to determine distance
to the range and bearing of an object [17]. The device consists of light source, which
emits light beams and receiver, which receives the light reflected from surrounding
objects. As discussed in [17], the exact technique of measuring a reflected light varies
depending on the manufacturer, resulting in different resolution and precision of the
specific sensor, however the basic idea is the same. It usually involves oscillating

6



2. Background

mirror for 2-D measurements and rotating mirror for 3-D measurements. The ways
to determine range varies and well—some methods use the elapsed time between
emission and arrival while others observe the phase shift between the transmitted
and received light. A LiDAR gives the benefit of observing wide field-of-view and
long ranges while being very precise. One drawback, however, is that it is very ex-
pensive compared to other sensors, sensitive to atmospheric conditions, not durable,
and currently rather bulky compared to other sensors [17].

2.2.2 Radar
A radar is a sensor like the LiDAR in the sense that both estimate the time of arrival.
However, as opposed to light waves used in LiDARs, radars utilize radio waves. Ra-
dio waves have much lower frequencies and thus, are less affected by weather condi-
tions and can detect much more distant objects. In addition, radars usually consider
the Doppler effect of the echo thus, observing velocity of the moving object without
further numerical processing [17]. Radars are also superior to LiDARs in terms of
cost, which makes it more practical for consumer applications. The drawback of
radars is the resolution; because radio waves are significantly smaller compared to
light waves in LiDARs, recognition of an object is currently not possible with radars,
and they should be used in conjunction with object recognition methods via other
sensors to implement complete a perception solution.

2.2.3 Vision sensors
Originally vision sensors were challenging to use for localization, since vision trans-
forms the 3-D world to plane world. While methods for extracting that information
were developed, they were not addressing computational complexity to retrieve that
information. However, the recent advances in computer technology sparked new
attention to vision sensors for perception purposes. Vision sensors provide plentiful
information about immediate surroundings and are used to detect an object, recog-
nise lane marks, traffic lights and traffic signs. One of the most interesting and
promising sensors in the field is a stereo camera with two lenses. The depth infor-
mation could be recovered since the scene is shot from two different perspectives.
The regular approach is to use the triangulation method for this calculation, which
will be discussed later in this paper. Vision sensors are significantly cheaper than
range sensors such as LiDARs and radars and hence are very appealing for usage in
consumer applications for localization purposes.

2.3 Autonomous driving in racing
This section should give a short overview about existing autonomous racing classes.

7



2. Background

2.3.1 Roborace
Connecting the area of autonomous driving to the topic of making a Formula student
race car drive autonomous, it is worth to look in what is happening aside the main
intention of making a streetcar go without a driver. Professional companies have
come up with driverless competitions in the field of racing. One of the most known
classes is the competition Roborace, that evolved as a side class of the well-known
Formula E competition. [18]. In this class, it is the goal to drive on the same
circuits the Formula E cars drive, with a specific for autonomous driving developed
race car. The race cars itself are equipped with several sensors [19]. The first version
of the car from 2017 makes use of different sensors like LiDAR, radar, cameras and
GPS, merged to calculate the path, car position and further things to enable the
autonomous driving. As the computing united it uses a Nvidia Drive PX 2 computer.
It’s computing power of 8 teraflops guarantee enough resources for making those
calculations in the live system.

2.3.2 Formula student
To be able to make a direct comparison, it is further worth looking in what other
teams in the Formula student competition could achieve until now and what tech-
nology they used. More precisely, it is a good idea to look at the approaches the
most successful teams of the last 2018-year competition developed. Last year’s win-
ner of the competition in Germany was the team of ETH Zürich. The approach
they utilized for their technical system for environment perception was based on
sensor fusion of a LiDAR, three cameras (mono and stereo) and an IMU and GNSS
module. In addition to that, the car had a subsystem that fuses motion detection
from different sensors. Localization and mapping were utilizing a SLAM algorithm.
The path planning algorithm the team was using takes the outputs of these systems
to control the car. Furthermore, the team also developed a framework which can
make improvements on the lap time by complimenting the sensed environment with
additional data on every lap.
Especially for this thesis, it is sufficient to take a deeper look only into their per-
ception system. For failure protection reasons, the team developed a system that
merged results from LiDAR and vision together while also providing functionality
on its own in case of the shutdown of one of the systems. To detect cones, the
LiDAR based system makes use of a CNN which uses the intensity pattern for each
cone to determine which colour the detected cone has. In order to detect the cone
itself, the LiDAR (mounted on the front wing, thus at the height of the cones) uses
a ground removal algorithm as well as some noise reduction algorithms to get return
points for each cone.
The camera sensing makes use of a neural network in addition with a key point
regression and pose estimation. The neural network was based on the YOLOv2
architecture and returned a bounding box for each detected cone in an image plus
the confidence for each. Afterwards, the key-point regression adds key points (top
and bottom of cone e.g.) to each cone and by measuring the distance between those
key points on the cone the distance can be estimated. To locate their position in
real world, making a 3D to 2D conversation is done by using triangulation [20].

8



2. Background

Another successful team of the 2018 competition was Team e-gnition from Hamburg.
The sensor system they were using to percept the cones was similar to the AMZ
approach. It also was a sensor fusion between LiDAR and camera.

9



3
Theory and implementation

This chapter gives an overview of the theory behind the modules that were devel-
oped.

3.1 Camera frame capturing
The input sensor to the system is the ZED stereo vision camera by Stereolabs [21].
The camera stores the distance information for each pixel through triangulation and
by making use of its two lenses [22].
In autonomous driving, monocular, RGB-D or stereo cameras are used for most
cases. Since the goal was to reduce the number of sensors on the car, it was decided
to go with a stereo camera. This type of camera can provide a depth for each pixel,
which is needed to calculate the distance of a detected cone from the car. Table
3.1 contains the specifications of three cameras that were considored for this thesis
project.

Stereovision ZED [21] Multisense S7 [23] E-con Sys. Tara [24]
Max. Resolution 4416x1242 2048x1088 1504x480
Max. Frame Rate 120Hz 30Hz 60Hz
Rate @ Resolution 1280x720 @ 60Hz 2048x1088 @ 30Hz 1504x480 @ 60Hz
Depth Range 0.5 to 20m 0.4m to 1.5m 0.5 to 3m
Field of View 90◦ H, 60◦ V, 110◦ D 80◦ H, 45◦ V 60◦ H

Table 3.1: Specifications for different cameras of choice

By looking at the specs for each camera, it gets clear that the Stereovision 3D
camera ZED has the best depth characteristics. The necessity of looking further
ahead was a crucial point in the system, since the aim was to drive the car at speeds
of higher than 15m/s. Further on, the ZED camera was already present in the
set-up of the last year’s team, which favoured its reuse. Therefore, it was decided
to keep the existing hardware. The downsides of having great specifications is the
computational power that is needed to process the large number of high-resolution
images provided by the camera. Therefore, it was necessary to step down with some
of the specifications. A resolution of 1280x720 was chosen, since that ensured to
feed the CNN with the accuracy that was needed to make predictions on cones.
Further, it was not necessary to run the camera at 120Hz but at 60Hz, since the
output generated was aimed to have a frequency between 30Hz and 60Hz.

10



3. Theory and implementation

3.1.1 Camera API
Stereolabs provides an SDK for the camera, which let us control settings like resolu-
tion and frame rate. Furthermore, it calculates the depth of each pixel by comparing
and processing two simultaneously recorded frames (left and right). This informa-
tion is important for the post-processing of the data. In case a cone gets detected in
a specific pixel area, the depth of the location can be returned by the API to figure
out how far the cone is away from the car. Given that, plus that the software is
officially provided by the manufacturer of the camera made it an obvious choice to
include that into the system.

3.1.2 Camera calibration
In order to get the data like focal length or the principal point offset for the calibra-
tion matrix K (3.3), the manufacturer provides a calibration tool [25]. In addition
to that, each camera comes with its own, camera specific calibration file. Stereolabs
calibrates every camera individually after manufacturing. By that, it is ensured,
that every camera is calibrated in the best possible way by using its calibration file.
By experimenting with the calibration tool and comparing those results to the fac-
tory calibration, it was evident that the factory calibration is good enough and does
not change much from transportation or the environment.

3.2 Object detection
After capturing the frame, the task of detecting a cone position within the frame
is performed by a neural network. Since the scope of the project is a fast-moving
environment of the Formula student competition, inference time should be as small
as possible. Networks that perform on frequencies greater than 30 FPS are referred
to as real-time object detection networks and are deemed suitable for live systems.
Current state-of-the-art detectors are divided into three categories: classical object
detection, two-stage detectors and one-stage detector. Classical detectors, such as
R-FCN, use the sliding-window technique. The essence is to apply a fully convo-
lutional network to the selected region of the image, which is called window. This
window is then moved (hence sliding window) and the process is repeated. Two-
stage detectors, such as R-CNN, have a two-step detection procedure. First stage is
to generate a set of candidate proposals, which are then classified by a second stage
to respective foreground or background classes. As opposed to two-stage detection
models, one-stage detectors are not generating any candidate proposals, but rather
running the classification on the full image simultaneously with class probability
calculations. Examples of such detectors are OverFeat, SSD, and YOLO. Such de-
tectors are tuned for speed and usually have a major trade-off of speed vs accuracy.
Since the speed is crucial for the project usage, while accuracy is not critical, one-
stage detectors are the right fit for the task of detecting cones in real time.
For this project it was decided to focus on a one-stage detector called you only look
once (YOLO). The core idea of YOLO is that the network is trained on a full im-
age and running a bounding box prediction plus class probability calculations in a
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3. Theory and implementation

single go. As opposed to sliding-window or region-proposal techniques, YOLO sees
the entire image during test and training. Because of this, the network has a larger
context and has a better grasp of contextual information.

The first YOLO version (YOLOv1) consisted of 24 convolutional layers followed by
two fully connected layers. The task of the convolutional layers is to extract features
of an object while the fully connected layers are responsible for output probabili-
ties and coordinate prediction. The network was designed for and pre-trained on a
1000-class ImageNet. YOLO has a unique loss function that only penalizes classifi-
cation error if the object is present in the respective grid cell. Moreover, it is only
penalizing bounding box coordinate error if that predictor has the highest intersec-
tion over union of any predictor in that grid cell. In YOLOv1, each grid cell can
only predict two boxes and have one class, therefore it limits greatly the number of
nearby objects the algorithm can predict. Essentially it struggles to predict groups
of small objects, and if several objects are only covered by a few grids, the network
would not have enough class predictions and bounding box positions to cover them
all. Another problem is that the loss function is penalizing errors for small bonding
boxes for the same amount as for the large ones. Small error in a big box is relatively
insignificant, while small error in a small box imposes much greater effect on IOU.

The second version of YOLO (YOLO9000) is aiming to address the problems of
the first one. It focuses on improving localization and recall, while maintaining clas-
sification accuracy. Usually such improvements are achieved by making a network
deeper, however, since all YOLO networks are designed for the live system appli-
cation and this would result in greatly increased inference time, the creators of the
network did not utilize this approach. Instead, improvements of layers were made,
such as adding batch normalization to improve regularization and convergence speed,
using anchor boxes in convolutional layers to improve recall and potential improve-
ment space. A vast improvement was made in training for detection and localization
to address issues of generalization and different input sizes.

The most recent version of the network is YOLOv3. While YOLOv2 was one of the
fastest and most accurate networks at the time, it was still performing poorly with
small clusters of objects because of major down sampling throughout the network
(32 times from the original image size). This was partially addressed by introducing
identity mapping-concatenation of feature maps from the previous layer to capture
low level features. To address these and other problems of previous version, YOLOv3
implements several state-of-the art mechanisms that are now a staple in most mod-
ern algorithms for object detection. Such techniques include up sampling, residual
blocks, and skip-connections. As seen in architecture representation on Figure 3.1,
YOLOv3 is performing a detection on 3 different scales, down sampling original
dimensions by 32 and then up sampling to 16 and 8 respectively, which allows to
detect objects of various sizes. The features extracted before each detection are
fused in convolutional layers following respective detection blocks. The shape of the
detection kernel is 1 × 1 × (B × (5+ C)), where B is number of bounding boxes each
individual cell of feature map can predict, and C is the number of classes, represen-
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3. Theory and implementation

Figure 3.1: YOLOv3 network architecture.

tation of the kernel can be seen in Figure 3.2. In first versions of the network the
loss function was constructed in a way that would penalize errors for small bound-
ing boxes equally to the large ones, which resulted in network overfitting for small
bounding boxes. To address this problem, loss function was modified in YOLOv3.
Namely, squared errors in a loss function were replaced with cross-entropy error
terms.
All the improvements in latest YOLO version came with a cost of inference speed.
To make a detection in three different scales authors had to make network 106 layers
deep. This decreased inference speed 1.5 times. However, with calculation power
improvements and cost reduction of GPU this reduction is acceptable in many cases.
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Figure 3.2: Image grid. The red grid is responsible for detecting a dog.

3.3 Network
This section discusses preparation and usage of the data, tuning, modification, and
training approaches for the selected YOLO version.

3.3.1 Data annotation
Since object detection is a supervised learning model, data had to be gathered and
annotated to be able to train the network. In a first approach this was done by
accessing the data from CFSD2018, but since they were using different object de-
tection approach, the annotations were not applicable. To annotate the data, the
open-source annotation tool Yolo-mark[26] was used for relatively fast and conve-
nient data annotation. The result of single image annotation is a label-file that
represents ground truth for one cone detection per line: class ID and bounding box
coordinates relative to image size. An example of a label-file for image shown in
Figure 3.3 is presented in Table 3.2. The data set consisted of images in different
weather and light conditions. Trying to cover as big variety as possible, snow, rain,
good sunlight and evening conditions were included. The annotations were made
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3. Theory and implementation

Figure 3.3: Image annotated by labels from Table 3.2.

with the assumption that the smallest detectable cone is no smaller than 10 × 10
pixels on the original image. The resulting data set consisted of around 800 image
and label-file pairs.

class ID xcenter ycenter height width
2 0.387500 0.645139 0.032812 0.093056
1 0.402344 0.602778 0.017188 0.041667
2 0.333203 0.705556 0.053906 0.144444
2 0.666797 0.638194 0.035156 0.098611
2 0.779297 0.718056 0.058594 0.155556
0 0.587891 0.603472 0.017969 0.045833
0 0.477344 0.572222 0.014062 0.033333

Table 3.2: Labels for the image at Figure 3.3

3.3.2 Network architecture and hyperparameters
The data of interest from the image is the position of the cones. The task of this
module is to perform object detection relative to the camera position and pass this
information to post-processing. The detection is performed by neural network based
on YOLOv3 architecture discussed in theoretical section. The full YOLOv3 network
is designed for a huge number of various objects, which have different shapes, sizes
and colours. Essentially it is designed to learn big feature variety. As discussed in
theoretical section, to have a better detection of various object sizes, the architecture
implements detection on 3 separate scales.

Since our goal is to detect cones of three colours and two possible sizes, there is
not much feature variety or size difference for the objects. Therefore, a complicated
architecture was not needed, which sacrifices inference speed to accuracy. However,
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there is a minimal version of YOLOv3 called TinyYOLOv3, which is designed for
systems with low computational power. It still retains detection on three different
scales, but has decreased number of convolutional layer for feature detection. It was
decided to base the architecture on this minimal version.
Firstly it was decided to remove the YOLO detection layer, responsible for detecting
larger objects. Network architecture for this change is represented in Figure 3.4a.
The network consists of 27 layers in opposed to 106 layers for YOLOv3. The rea-
soning behind these changes to the original architecture is discussed below.
As discussed in theoretical section, the first detection layer is responsible for de-
tecting the large objects, the second one is detecting medium objects, and the last
one detecting the small objects. Since it is not expected to have cones that, rel-
atively to picture frame, can be considered big, it was decided to remove the first
detection layer from the architecture. Together with the first detection an attempt
to do something about respective convolutional layers was made. Removing down
sampling at layer ten and up sampling at layer 17 resulted in a much slower infer-
ence time, while detection precision remained the same. Removing all convolutional
layers responsible for first detection resulted in a great precision lost, since too much
feature information was lost. In the end one convolutional layer was left, followed
by a softmax layer and five fully convolutional layers. This composition gave same
precision on our data as the model with the detections, while lowering inference time
(three fully convolutional layers were removed and one YOLO detection layer).
Since the only objects of interest are the ones that are roughly having the same
aspect-ratio, a number of anchor boxes was reduced from nine (default) down to
five and aspect ratios of these anchors were adjusted to be more representative of
cone sizes. Individual cone could cover as much as approximately 1/20 of the pic-
ture, and the smallest cone is about 10×10 pixels big (assumption taken during the
annotation). With that in mind, the anchor box sizes were set according to Table
3.3 to cover variety of cone sizes. The number of anchor boxes was reduced from
nine down to five, with boxes IV, V for the last detection layer and I, II, III for the
first detection layer.

After experimenting with two detection layers-based network it was realized that
the network is not detecting the smallest objects far away and it was decided to
get back the additional detection layer and back to the original nine anchor boxes
set-up. However, instead of using the default anchor boxes values as before, it was
decided to calculate the anchor values specific for given data. K-means with nine
clusters were used to get a nine anchor box values out of available training and test
data. Values of the new anchor boxes are presented in Table 3.4. Detection layers
were responsible for sets of three anchors each, going from bigger anchors to smalls
ones with each up sampling respectively.
To address the problem of detecting small cones, along with anchor box improve-
ment, it was decided to increase upsampling value for the last detection from two to
four. That also meant that the skip connection had to be moved to the convolutional
layer of respective size. The final network is presented in Figure 3.4b.
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Figure 3.4: TinyYOLOv3 architecture adaptation.

To train the network the data was split into training and testing datasets with
proportions of 80% and 20%. The training was done with a batch-size of 64 and
a learning rate of 0.001. It was recommended by the YOLO creators to train the
network for 2000 steps for each class, so the training cycle was limited to 10000
steps, using learning rate decay of 0.0005 after 8000 steps. With the training taking
8000 steps the learning rate was adjusted after 7100 steps and 7500 steps.
For the better accuracy a training resolution was set to 608 × 608, which was later
changed to 1280 × 704 for the inference.
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3. Theory and implementation

anchor I II III IV V
width 4 7 13 25 41
height 7 15 25 42 67

Table 3.3: Anchor box sizes for the first version of the network

anchor I II III IV V VI VII IIX IX
width 5 6 8 9 12 15 18 24 33
height 13 16 19 23 28 34 42 54 75

Table 3.4: Anchor box sizes for the second version of the network

(a) First version (b) Second version

Figure 3.5: Different network version training results.

3.4 GPU
Since the approach discussed in this work involves a deep neural network that has
to make object detection in a real time, it was crucial to utilize a GPU power for
computing. The darknet library is providing a CUDA implementation of all layers.
Using GPU greatly improved speed of the application, making it possible to train
the 604 × 604 network in 3 hours on the NVIDIA RTX 2080.

3.5 Post processing
After detecting a cone from a frame, pixel coordinates are used to calculate 3D co-
ordinates from it. In addition to the captured pixel coordinates, some additional,
camera specific factors had to be included in the calculation to get the 3D coordi-
nates.
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3.5.1 Cone distance
Figure 3.6 illustrates the mathematical connection between the two points—p on
the image plane in a 2D coordinate system and P, the real world 3D coordinate
of point p. The centers of both coordinate systems are in C, were the camera is
located. Point O is a principle point, which is the projection of the center of the
camera in the image. The focal length f is the distance between points C and O [1].

Figure 3.6: [1] 3D-point P and its projection p on the image plane. Their mathe-
matically link can be described by the calibration matrix K.

From the two triangles C-O-p and C-O’-P the following mathematical link can be
derived: f to Z (Z is a perpendicular distance of P from camera) is equal to x to X
(Figure 3.1). The same is valid for the connection between y and Y figure 3.6).

x

X
= fx

Z
(3.1)

y

Y
= fy

Z
(3.2)

In addition to that, the principal point offset has to be included in the calculation.
This offset is the distance between the origin of the film (or frame plane) and the
principal point. As shown by Figure 3.7 [27], the principal point is located where
the line from the pinhole model camera and the frame plane intersect.
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Figure 3.7: The principal point offset.

Connecting all the equations and their relations together leads to equation (3.4)
and to the intrinsic, or calibration matrix K (3.3) as parameterized by Hartley and
Zisserman [28].

K =

fx 0 x0
0 fy y0
0 0 1

 (3.3)

Z

x
y
1

 =

fx 0 x0
0 fy y0
0 0 1


X

Y
1

 (3.4)

For the 3D points X and Y from equation (3.4), (3.1) and (3.2) can be concluded:

X = Z(x − x0)
fx

(3.5)

Y = Z(y − y0)
fy

(3.6)
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3.5.2 Cone distance by size
Another way to calculate the distance to a cone is by the size of the respective
bounding box. The distance to an object d in m can be calculated with a knowledge
of the real object height ho in m multiplied by the focal length f in mm, divided by
the object height in the frame hfmm in mm:

d = ho ∗ f

hfmm

(3.7)

To get the object height on the sensor (in the frame) hfmm in mm, the sensor height
hsmm in mm is multiplied by the object height hop in pixel and divided by the sensor
height hsp in pixel:

hfmm = hsmm ∗ hop

hsp

(3.8)

To get the coordinates for a two-dimensional view after calculating the perpendicular
distance to a cone, the 3D X coordinate can be calculated according to equation 3.5.

3.5.3 Implementation
To process the data in order to get the 2D coordinates X and Y for each cone
according to 3.5 and 3.6 a software module is created that processes the data. For
that, the calibration matrix 3.3 filled with the data from the calibration file men-
tioned before is used. The camera is calculating the pixel from the left camera lens,
therefore, the calibration data for the left camera lens is taken to process the data.
In the first approach, the coordinates are taken from the camera API, which au-
tomatically calculates and outputs them for the requested pixels where a cone was
detected. Because the camera can guarantee depth sensing only with a mistake of
about 20% in accuracy for objects that are around twenty meters away, it was de-
cided to implement a second approach the cone distance is calculated from its pixel
size in the frame it was detected. Having the height of a cone in pixels allows to
calculate the cone distance given the actual height of a cone. The cone size is known
from the competition rules.
To get a better evaluation of the cone distance X, both approaches were merged and
the perpendicular distance is taken from the method that gives a higher confidence
for the given cone.
By using the merged approach results improved. However, in a range to the camera
of around four meters the depth estimation was way more precise than the distance
by cone size estimation. To improve the post processing, a threshold of four meters
was implemented which made the system more accurate.
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3.6 Tools
This section gives an overview of the main tools that were used in the perception
software module.

3.6.1 OpenDLV
OpenDLV is "A modern microservice-based software ecosystem for self-driving vehi-
cles" [29]. Using this ecosystem allowed all the software modules to be integrated
into one microservice with a defined input and an output.
Looking at the system overview 1.2, the input to the microservice is an environment
captured by the camera. Inside the microservice (the blue box) Zed camera API,
the neural network, and the Birdview processing module resides. As an output for
the microservice, the 2D coordinates are sent out to be taken as an input by a path
planning microservice which is not in context of this thesis. OpenDLV provides
the architecture to set up a microservice with the modules and the communication
between other microservices. A common communication protocol is used across the
entire OpenDLV system. In case of microservice implemented in this work, a start
and stop message is sent out for every frame that was captured and processed. In-
between those messages, all the calculated 2D coordinates are sent out together with
the cone IDs and their confidence for every cone individually.

3.6.2 Docker
Because every system has different set-up, different libraries, tools, and versions, it
is problematic to run a library and tools-dependant software on a different systems.
To solve this problem, the system makes use of Docker. The microservice and all
necessary libraries, drivers, and calibration files are packed into a Docker image and
can be run inside a Docker container on any platform.
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Results

This chapter unifies the results obtained during this work.

4.1 Bounding box detection and classification
To measure precision of the network, the test data set was built and annotated,
consisting of 100 images with approximately 25% representation for each of the four
classes. Intersection over union (IoU) was then used to measure the localization of
the cones for each given detection.

IoU = area of overlap
area of union

The results for all of the four classes are presented in Table 4.1.

Figure 4.1: Detection result running real-time on a car.

yellow red blue big red
Avg 95% 96% 87% 98%

Table 4.1: Average intersection over union for the best network on 100 image test
set
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With respective IoU values mAP (mean Average Precision) for these classes was
56.4, which is much better than mAP for YOLOv3 on the benchmark COCO data
set. The reason behind such an improvement over benchmark is having only four
similar classes with similar features.

4.2 Accuracy
To measure the accuracy of the system, a test field was set up. The cones were
set-up at certain distances and these distances were compared to the output of the
system. For this first test, the distance was only calculated by the API and the
system was not making use of the distance calculation by the cone size in the frame.
The test was done as follows: all three cone colours, orange, blue, and yellow were
placed in two, four and eight meters in perpendicular distance, with an offset of one
meter to the left and one meter to the right relatively to the camera.

2m 2d coordinates[m]
x y

l m r l m r
red -1,02 - 1,07 2,15 - 2,65
blue -1 - 0,86 2,07 - 2,15
yellow -1,01 - 0,84 2,09 - 2,12

4m x y
l m r l m r

red -0,9 -0,04 0,89 3,76 3,93 4,06
blue -0,9 -0,02 0,85 3,79 3,75 3,92
yellow -0,89 -0,03 0,88 3,77 3,81 4,03

8m x y
l m r l m r

red -0,92 - 0,8 7,27 - 7,4
blue -0,92 -0,07 0,81 7,31 7,6 7,37
yellow -0,93 -0,05 0,8 7,27 7,53 7,25

Table 4.2: Accuracy test results by distance and position left(l), middle(m), right(r)

Table 4.2 shows the results of this test. The numbers show the measured positions
from the optical system. A visualization of this can be found in Figure 4.2 on the
right. The figure shows the bird perspective 2D view for the measured numbers.
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Figure 4.2: Accuracy test organization (left) and result (right).

The camera centre is in position 0,0 of the coordinate system. The white auxiliary
lines indicate the positions where the cones where placed in the test field (at their
crossings). The different coloured circles indicate the measured positions for each
cone colour by the system and therefore the deviation between the real and measured
positions.

Figure 4.3: Percentage (left) and distance (right) error by color of cone.

The two figures in 4.3 show the error between measured values and real positions.
The test showed that in a distance greater than eight meters, the system was not
able to detect any cones regardless of the colour. This is due to the fact that the
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network was trained with the data from an outside environment. The test was done
inside the Revere lab with a different light conditions and a very different background
compared to the training data.

4.2.1 Cone distance by size
As described in 3.5.3, a second approach to calculate the distance to a cone was
implemented by using the size of the cone in an image frame. The result is displayed
in 4.4.

Figure 4.4: Accuracy test result for distance calculation by size.

The test shows similar results in accuracy for both methods.

4.2.2 Merged approach with threshold
Figures 4.5 and 4.6 show the absolute and percentile error in an accuracy for the
same test as before. This time the test was done outside to have a more realistic en-
vironment in terms of both the light conditions and the intended field of operation.
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Both graphs show all the methods evaluated separately, blue for distance by cone size
and grey for distance by camera depth. The red, merged solution shows the approach
of combining both methods together by using the higher confidence. It is apparent
that, using this combined approach, the overall error gets smaller. However, observ-
ing the test results and the graph shows, that the approach distance by depth only
was more accurate in the closer area to the camera up to four meters. The merged
approach with threshold, represented by the yellow line, where the threshold of four
meters was implemented to take the value of the depth only approach reading for
every cone under that threshold, if available. Using this method, the overall error
was reduced to under 5% up to a distance of ten meters. Even in a longer distance,
the error is never greater than in one of the single-method approaches.
During the tests it was discovered that detecting distance to the cone specifically by
the camera triangulation was very problematic in a bright sun. Examination of the
confidence map showed that specifically the blind spot-confidences of most pixels of
a cone were below 50%. To address this problem, it was decided to get the depth
value of the pixel with a highest depth confidence across the entire lower half of
the cone. This approach greatly improved depth detection, since the module had to
content to using cone-by-size calculation more rarely.

Figure 4.5: Accuracy test result for distance calculation merged approach absolute.
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Figure 4.6: Accuracy test result for distance calculation merged approach percent-
age.
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5
Discussion

The following chapter compares the goals that were set up initially and in how far
they were fulfilled. Further the evaluation criteria were recalled to make a state-
ment about the success of the project. During the project there were several network
design and implementation decisions made, which are worth discussing. By look-
ing into the initial research questions, the presented results can be discussed and
compared.

5.1 From a research perspective
The first question stated the word reliable and was asking, if the system was perform-
ing in a reliable way. It was also asking, if a system with a camera only approach
can work reliable. Comparing this question to the results, the last results of the
merged approach show an error of under 5% up to a distance of 10 to 13 meters
for the calculated output of the system. Concerning the input of the system, the
cones detected in each frame had an accumulated rate of 94% with blue colored
cones sticking out negatively, with a rate of 87%. Thinking of the fact, that the
system evaluates between 18 and 25 frames every second and the actual speed the
car should be moving at, which would not be faster than around 75km/h on a long
straight, the system can be called reliable in case of detecting and calculating the
cone positions and classes right and sending the data to the next module. This
strategy can be supported by the fact that the main approach in Formula student
aims to start slowly to be able to perceive the track and make a more precise path
planning. When the circuit is perceived, the track gets only updated every round
to verify it continuously. Therefore, a higher speed is only applied in a later stage
of the process, what means, that the probability of a missed object until that point
is going towards zero.

By comparing the result of the project with the perception solution of last year, it
is good to discuss two approaches: A pure-vision approach versus a sensor-fusion
approach. The scope of this project and the backbone of this year’s project was to
focus on one sensor, namely, the camera. The supposition was, that with a restricted
time-schedule, which is the nature of Student Formula project, it would be beneficial
to focus and work towards perfection on one particular sensor, rather than scatter
the effort across multiple sensors and perception techniques. Last year’s team was
using both, LiDAR and camera, doing sensor fusion and detecting cone position
only using the LiDAR, while using camera only for classification (color detection).
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With such a vast difference in techniques it is hard to compare those numerically.
However, while getting similar results for perception overall, the fact that the cur-
rent solution achieves this with only one sensor and one algorithm is considered to
be an overall improvement in the quality-complexity scale.

Another question was aiming for the hardware that is required for the solution to
run with a good performance. Since the project was building up of the first years ap-
proach of the team last year, the existing hardware was considered sufficient to build
the new system. The most expensive part computational wise, is the CNN, which
is running constantly to detect cones. The use of NVIDIA’s CUDA architecture to
parallelize the process helped to improve the performance on the used GPU. In order
to make the system run on a lower hardware setup, taking a simpler architecture
to implement the neural network would probably bring the biggest improvement to
still be able running the detection on a sufficient frequency. The downside of that
would be a drop in the actual detection rate and confidence. The positive effect this
would cause is less computational demand what could save energy what is a crucial
point in a Formula student car, since the low voltage system gets powered by 24V
batteries.

While a decision was made in using the tinyYOLO architecture as a basis for this
work, the regular, more complex YOLOv3 architecture was also considered and
tested to value the benefits it would bring versus execution time penalties. The full
network was trained with the same anchors and same data as the one discussed in
this work. While the execution time nearly doubled for the full network, it was
apparent that the complete model shares most of the flaws of the tiny model: poor
detection of clustered objects and vulnerability to changes in learned object orien-
tation. However, the accuracy of localization was slightly better which would have
improved the depth-by-cone-size approach used in this work. With performance
still being the main pinnacle of the system, it was decided not to stick with a full
network.

To map the way or road in another module, the location of the percepted cones
needed to be calculated into the 2d image plain turned around by 90° into a topdown
view or birdview. The necessary calculations for that were done using triangulation.
While reviewing the module and its results, it was found that the accuracy was not
good enough for the needs of the system. It was therefore decided to implement a
second approach for distance calculation, which was running in parallel to the origi-
nal approach based on triangulation by the camera. The second approach, based on
the size of the detected cones in the frame, was therefore an additional method to
improve the confidence of the distance for each cone. Hence, the merged approaches
gave a better result on the output side, meaning more precise cone coordinates.

5.2 Other findings
Last year’s solution for the camera mounting included a shielding for sun, which
was supposed to reduce sun interference. However, after multiple experiments it
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was apparent that the camera handles the task itself and adopts sensitivity very
quickly. It was therefore decided to remove the shielding from the set-up.
Since Formula student is a rather specific scenario with it track limiting cones,
finding and creating data to train the network is a big and time consuming part
while developing a neural network. Data annotation was done manually with frames
taken from the camera installed in the car in order to train the network in a time
expensive but best possible way. The good results of the created network justify
this work.

5.3 Competitors comparison
The technical systems of the teams from e-gnition Hamburg and in more detail,
AMZ from Zürich were introduced in the Background chapter. To make a valuable
comparison between the approach of AMZ and CFSD19, it makes sense to discuss the
results of the perception system made by only the camera on the AMZ side. Their
results show an error of less than 10% in a distance up to ten meter, which makes
this part of their system not as accurate as the CFSD19 approach with an error
of under 5% inside the same distance. However, looking at the combined accuracy
of different sensors, their system is more advanced, since the combined output of
LiDAR and camera accomplish a more accurate result. Unfortunately, their papers
never mention any frequency their perception and algorithms are running at, which
makes this important part of the system incomparable.
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6
Conclusion

The initial purpose of this thesis was to investigate and develop a perception module
for a Formula student race car. The perception module should have perceived the
environment around the car and process it. The output of this module should have
been constructed in a way that the next-in-chain module could process it and imple-
ment a path planning algorithm with it. Looking into the requirements based on the
rules made by Formula student, how the event shapes them and the created output
from that, a successful outcome could be implemented that suits the demands. As
the first module in a chain of different software parts for the autonomous system of
the car, an accurate and reliable system could be programmed to achieve a precise
perception. Especially the reduction of the sensors by removing the LiDAR from
the system, but remaining the accuracy at a speed three to four times higher than
the last years implementation, underline this. By that, two expensive parts of the
project, the hardware itself, as also the software implementation for the module
plus the software implementation for the fusion of both sensors could be saved. The
solution can therefore be seen as a simpler solution that achieves a better result and
therefore an improvement compared to the earlier solution.

6.1 Future work
While this project is considered to be successful, there are various improvements
that could be made in order to achieve better results.
First of all, one might revisit the full YOLO3 architecture in order to achieve better
results with cone localization and, potentially, reduce the amount of false negatives.
While it was deemed not worth sacrificing the detection frequency for the small
detection improvement, there were no architecture adjustments made or hyper-
parameter fine-tuning done. Perhaps with these adjustments, one might achieve
significant improvements in detection accuracy and with better GPU it would be-
come reasonable to use the full model.
Secondly, while this work is purely focused on localization of cones in one picture
frame, there is a great potential and field of improvement in building up a system
that would have a memory of a few previous frames. The current implementation of
YOLO by darknet achieves that by trying to distinguish between several instances
of the same class and assign an ID to each one of them.
Thirdly, as suggested by the experience of other CFSD teams that have experience
with a camera-only set-up, while the ZED camera is a good "working out of the box"
stereo vision camera - it is not the best solution for stereo vision in general. Two
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separate cameras mounted so that the base would be long enough would increase
both, depth-sensing distance and precision greatly. Moreover, the ZED camera is
using rolling-shutter which is inferior to global-shutter cameras in shaky and fast
environments such as formula student.
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