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Abstract
The study of nuclear reactions through measuring emitted γ-rays becomes convo-
luted due to complex interactions with the detector crystals, leading to cross-talk
between neighbouring elements. To distinguish γ-rays of higher multiplicity, the
detector data needs to be reconstructed. As a continuation on the works of earlier
students, this thesis investigates the application of neural networks as a recon-
struction method and compares it to the conventional addback algorithm. Three
types of neural networks are proposed; one Fully Connected Network, a Convolu-
tional Neural Network (CNN) and a Graph Neural Network (GNN). Each model
is optimized in terms of structure and hyperparameters, and trained on simu-
lated data containing isotropic γ-rays, before finally being evaluated on realistic
detector data.

Compared to previous projects, all presented networks showed a more consistent
reconstruction across the studied energy range, which is credited to the newly
introduced momentum-based loss function. Among the three networks, the fully
connected performed the best in terms of smallest average absolute difference
between the correct and reconstructed energies, while having the fewest number
of trainable parameters. By the same metric, none of the presented networks
performed better than addback. They did, however, show a higher signal-to-
background ratio in the energy range of 3–6 MeV. Suggestions for further studies
are also given.

Keywords: artificial neural networks, convolutional neural networks, graph neural
networks, gamma ray reconstruction, addback, Crystal Ball, TensorFlow, Keras
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Sammanfattning
Då joner accelereras och kollideras med ett strålmål, kan de studeras bl.a. genom
att mäta den emitterade γ-strålningen. Sådana experiment försvåras dock av γ-
strålningens växelverkan i detektorerna, något som leder till överhörning mellan
närliggande detektorenheter. För att särskilja strålning av högre multiplicitet
krävs därför en rekonstruktionsmetod, vilken konventionellt varit addback-
algoritmen. Denna rapport är en uppföljning på föregående års kandidatarbeten,
och undersöker tillämpningen av artificiella neurala nätverk som ett alternativ till
addback. Tre typer av neurala nätverk presenteras; ett fullt anslutet nätverk, ett
faltande nätverk, samt ett grafnätverk. Vardera modell optimeras både i termer
av hyperparametrar och nätverksstruktur, och tränas på simulerad data i form
av isotropisk γ-strålning. Slutligen utvärderas nätverken på mer realistisk data.

Samtliga nätverk uppvisar en mer konsekvent rekonstruktion över det studerade
energiomfånget jämfört med föregående års nätverk, något som tillskrivs den nya
rörelsemängdsbaserade kostnadsfunktionen. Bland de prövade nätverken prester-
ade det fullt anslutna bäst i minsta genomsnittliga absolut skillnad mellan rekon-
struerad och korrekt energi, samtidigt som det innehöll minst antal träningsbara
parametrar. Addback kvarstod dock som bäst i dessa mått, medan nätverken
uppvisade ett bättre signal-bakgrundsförhållande i intervallet 3–6 MeV. Vidare
presenteras förslag för fortsatta studier.
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Chapter 1

Introduction

The fascination of better understanding one’s place in the universe is driving us
to seek answers to one of the most fundamental questions: What are we made of ?
In nuclear physics, one way to approach this question is by the study of nuclear
reactions with particle accelerators. This thesis aims to investigate the possibility
of using neural networks in the reconstruction of energies and emission angles of
γ-rays in such experiments.

1.1 BACKGROUND
When a beam of ions is accelerated to
relativistic velocities and collides with a
stationary target, there is a possibility of
energy being released in the form of γ-
radiation. This energy can be measured
using an array of detectors surrounding the
target, thus revealing some properties of the
studied nuclei.

One detector designed for this pur-
pose is the Darmstadt-Heidelberg Crystal
Ball. Consisting of 162 scintillating NaI-
crystals arranged in a sphere as illustrated
in Fig. 1.1, it is capable of measuring both
the energies and angles of incident γ-rays.

However, due to cross-talk between
neighbouring detector elements, mainly due
to Compton scattering, it can in some cases
be difficult to correctly assign higher multi-
plicities of photons [1]. Because of this, the
data from the detector needs to be care-
fully reconstructed in order to determine
whether the energy of a single photon was
deposited in several crystals or not.

A method of dealing with this recon-

struction problem is a set of algorithms,
known as the addback-routines. They have
previously been investigated using simula-
tions [2], and were found to correctly iden-
tify around 70% of 1 MeV γ-rays. This
accuracy, however, rapidly decreases for
higher energies.

Figure 1.1: Cross-sectional diagram of
the Crystal ball with its 4 shapes of crystal
detectors. [1]
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1. Introduction

Due to the complexity of the γ-
reconstruction, the question whether a neu-
ral network could outperform addback at
this task is raised. Neural networks have
seen great development in recent years and
are being implemented more and more in
almost every field of science and technol-
ogy. Ranging from deep neural networks,
praised for their good approximation of
complicated relationships, to convolutional
neural networks, which excel at computa-
tionally efficient pattern recognition; they
all seem fit to offer a competetive alterna-
tive to the addback algorithms.

1.2 PREVIOUS WORK
This thesis is based upon two previous
bachelor projects at the Department of
Physics, Chalmers University of Technol-
ogy, Gothenburg. It is a continuation aim-
ing to evaluate the application of machine
learning in γ-ray event reconstruction. In
2018, Olander et al. [3] investigated this
question and obtained results comparable
to the addback algorithm. However, their
results show artefact in the reconstruction
of photon energies and angles, as well as
in their signal-to-background ratio com-
parsion to addback. In 2019, Karlsson
et al. [4] further developed the same con-
cepts, focusing on a different structure of
machine learning: convolutional neural net-
works and reaching similar results to those
of Olander et al. .

1.3 PURPOSE AND AIMS
The goal of this project is to further in-
vestigate the application of machine learn-
ing in the reconstruction of energies and
emission angles of γ-rays for the Crystal
Ball detector. In particular, the is aim to
study and optimize different types of neu-
ral networks including Fully Connected Net-

works (FCN), Convolutional Neural Net-
works (CNN) and Graph Neural Networks
(GNN) in order to assess their performance
at this task, and whether they can achieve a
more accurate reconstruction than the ad-
dback algorithm.

1.4 DELIMITATIONS
Even though newer and more advanced par-
ticle detectors such as CALIFA [5] exist to-
day, we will only be performing tests on the
Crystal Ball detector. This is due to its sim-
pler geometry, in order to provide a proof
of concept. The results should, however,
be generalisable to other similar detectors,
including CALIFA [3].

Since the nuclei in the accelerated
beams travel at 50–70% of the speed of
light, it is necessary to apply relativistic
corrections to the detector data in order to
study the nuclear collisions in their proper
frame of reference. Both Olander et al. [3]
and Karlsson et al. [4] have dealt with such
corrections directly in the loss function (see
section 3.1.2), which was found to improve
the performance of the neural networks.
However, this limits the applicability of the
networks, as they have to be retrained in or-
der to accommodate for different beam ve-
locities. Furthermore, the relativistic cor-
rections consist of rather simple calcula-
tions that can easily be applied to the re-
constructed data. Therefore, this study will
be limited to reconstructions in the labora-
tory frame.

Lastly, this thesis focuses mainly on
the case where there is, at most, two coin-
ciding γ-rays in the initial reaction. This is
to shorten the time required for each neural
network to be trained. The software is how-
ever generalizable, and thus capable of deal-
ing with higher orders of maximum multi-
plicities, as briefly discussed in sec. 4.5.1.
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Chapter 2

Detection of γ-rays

The underlying problems investigated in this thesis encompass a multitude of sub-
jects, including machine learning, data simulation and subatomic physics. This
chapter focuses on the latter, introducing the necessary underlying concepts of
detector physics and the most commonly used set of analysis methods.

2.1 THE CRYSTAL BALL
The Darmstadt-Heidelberg Crystall Ball is
a detector that was built in collaboration
between GSI Darmstadt, the Max-Planck-
Institute for Nuclear Physics and the Uni-
versity of Heidelberg. The detector is made
of 162 scintillating NaI-crystals forming a
sphere with an inner radius of 25 cm enclos-
ing the target, only leaving openings for the
radioactive beam to pass through.

Figure 2.1: Arrangement of the four
shapes of detector elements in the Crystal
ball. This is the projection of one of 20
equilateral spherical triangles, that together
constitute the 162 detectors [1].

The crystals cover an equal solid angle of
0.076 sr each, and in total 98 % of the full
solid angle [1]. They come in 4 different
shapes; regular pentagons called A crys-
tals and three different kinds of irregular
hexagons called B, C, and D crystals. The
arrangement of these crystals, resulting in
a spatial resolution of ±8 degrees, can be
seen in Figs. 1.1 and 2.1.

2.2 INTERACTIONS OF γ-RAYS
WITH SCINTILLATORS

A beam of γ-radiation passing through
matter decreases exponentially in intensity
while any individual γ-ray loses energy in
discrete steps/interactions, unlike the grad-
ual behaviour of charged particles such as
protons and electrons. This mostly occurs
in three possible ways, at least in the energy
range of interest [6]: the photoelectric effect,
Compton scattering and pair production.

The photoelectric effect is the emis-
sion of a charged particle, often e−, due
to the total energy absorption of γ-rays as
schematically shown in Fig. 2.2a. The ki-
netic energy of the emitted particle is the
difference in the energy of the photon and

3



2. Detection of γ-rays

γ

Z

e−

Z+

(a) Photoelectric effect

γ

e−

(b) Compton scattering

γ e+

e−

Z

(c) Pair production

Figure 2.2: Feynman diagrams showcasing the three main processes by which
photons interact with matter. The first (a) shows an electron being released af-
ter absorbing a photon, and Compton scattering is shown in (b). The rightmost
diagram (c) illustrates the production of an e±-pair near a nucleus, marked as Z.

the binding energy of the electron.
The scattering of γ-rays by charged

particles, again usually an e−, is what is
commonly referred to as Compton scatter-
ing. Only a part of the photon energy is
transferred to a recoiling electron leaving a
less energetic γ with a higher wavelength.

Finally, pair production, which is the
creation of a subatomic particle and its
anti-particle from the annihilation of a neu-
tral boson. In this case it is

γ −→ e+ + e−,

i.e. an e±-pair created from a γ as illus-
trated in Fig. 2.2c. Due to conservation of
momentum, this can only occur within the
close proximity of a nucleus.

Of these three processes, at the energy
range of interest (100 keV–20 MeV), Comp-
ton scattering is usually the dominating
way of interaction with the NaI-scintillators
[4].

Scintillators such as those in the Crys-
tal Ball absorb the energy from an incom-
ing particle and then re-emits it in the form
of visible light. The emitted light intensity

from the scintillators is approximately pro-
portional to the deposited energy. To de-
tect any ionizing γ-radiation1, these signals
are detected and amplified with a photo-
multiplier.

2.3 RELATIVISTIC EFFECTS
The beams used to study colliding nuclei
at the Crystal Ball usually travel at high
speeds, β = 0.5− 0.7 in terms of the speed
of light; however the γ-rays are measured
in the laboratory frame of reference. This
means that relativistic effects must be taken
into account. These are the relativistic
Doppler effect and headlight shift, where
the latter refers to the fact that the emitted
γ-rays appear to be scattered conically in
the forward direction [3]. The γ-ray energy
E and polar emission angle θ in the labo-
ratory frame relates to E ′, θ′ in the beam’s
center of mass frame of reference [7, p. 78–

1Works with α and β radiation as well.
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2. Detection of γ-rays

82] as

E ′ = 1− β cos θ√
1− β2 E,

cos θ = 1 + cos θ′
1 + β cos θ′ .

(2.1)

2.4 DATA ANALYSIS USING
ADDBACK ROUTINES

When an energetic γ-ray hits a detector in
the crystal ball, part of its energy might be
deposited in the surrounding crystals due
to scattering and other nuclear interactions
mentioned in section 2.2. The scattered γ-
rays can, in turn, re-scatter resulting in a
chain of detector interactions, hence mak-
ing the reconstruction of a single γ-ray a
demanding task. The classical solution is
to implement an addback algorithm, typ-
ically carried out by taking the sum over
the energies measured by a group of adja-
cent detectors, often referred to as a cluster
[2, 8].

In order to identify a cluster, and to
find the energy deposited from each parti-
cle interaction, it is usually assumed that
the first interaction will deposit the largest
proportion of the total deposited energy,
Emax [8]. Scattered γ-rays are likely to in-
teract with neighbouring crystals and may
re-scatter, depositing energies E ′i and E ′′j re-
spectively.

The most commonly-used addback
routines are Neighbour and Second Neigh-
bour. As the name implies, the Neighbour
algorithm calculates the sum of the initial
hit and its direct neighbours, ignoring en-
ergies deposited from re-scattering, as

Etot = Emax +
∑
i

E ′i.

where i are the neighbours to the central
crystal. Second Neighbor is expanded in or-
der to include second-ring crystals j to ac-
count for chain-scattering events. The total
energy is then calculated as,

Etot = Emax +
∑
i

E ′i +
∑
j

E ′′j .

These two addback routines are illustrated
in fig. 2.3.

(a) First neighbour

(b) Second neighbour

Figure 2.3: Schematic representations
of the two clusters containing the crystal
neighbours (a) and the second-neighbours
(b) with respect to the initial hit [8].
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Chapter 3

Artificial neural networks

Artificial neural networks (ANN) have in recent years become an integral part of
modern society, making its way into our everyday lives in trivial matters such as
individual targeted recommendations of music and movies. As its computational
prowess is used to model a multitude of essential processes: ranging from the
natural sciences to economics and politics. The following chapter aims to give a
brief introduction to the extensive subject of ANNs.

Table 3.1: Notation used when describ-
ing the key mathematical aspects of artifi-
cial neural networks. These are introduced
in this chapter and used throughout this the-
sis.

Notation Description
x Input
y Network output
ŷ Correct output

h(`) Hidden layer of index `
W (`) Weight matrix

b(`) Bias vector
D Depth (# hidden layers)
N` Width (# neurons per layer)
A Activation function
L Loss function

3.1 BASIC CONCEPTS
An ANN are a computing system capable
of modelling various types of different non-
linear problems. Mathematically, they can
be thought of as an approximation f of
some function f̂ : x 7→ ŷ, where x is some
input feature data and ŷ the correct output.
This approximation is iteratively refined in
a processes called training, to be discussed
in sections 3.1.2 and 3.1.3.

Getting its name from the analogy to
the human brain, an ANN is comprised
of fundamental components commonly re-
ferred to as neurons, each containing a
number called its activation. These neurons
are interconnected to form a network, which
is primarily defined by its structure, i.e. how
the neurons are connected, but also from
hyperparameters defining certain quantities
and operation conditions of the networks,
allowing for tuning of the model.

7



3. Artificial neural networks

x1

x2

x3

y1

y2

x h(1) h(2) y

Figure 3.1: Diagram of a simple fully
connected network with two hidden layers
(depth two), showing the relationship be-
tween the neurons. The interconnecting ar-
rows represents the elements in the three
weight matrices W (1), W (2) and W (3).

3.1.1 Forward propagation
A common network structure design is to
group the neurons into subsequent layers
with every neuron connected to each neuron
in the layers before and after. This is known
as a Fully Connected Network (FCN) and
an example of a small1 such network is il-
lustrated in fig. 4.19. These layers can be
represented by vectors containing the acti-
vations for each of its neurons. The first
layer of the network serves as the input x,
which is connected to the output y through
a network of hidden layers h(`). The super-
script ` denotes the layer index such that
h(0) = x and h(D+1) = y. The depth D is
the total number of hidden layers, and sim-
ilarly the amount of neurons in each layers
is called its width and is denoted with N`.
Both of these quantities are referred to as
hyperparameters. Consider a hidden layer
h(`). Its state is determined by the layer
before it from the forward propagation rule

h(`) = A
(
W (`)h(`−1) + b(`)

)
, (3.1)

whereW is the weight matrix and b the bias
vector, which both are trainable parame-

ters, discussed in sec. 3.1.3. This is com-
monly referred to as a Dense connection.
The function A acting elementwise is called
the activation function and is the key com-
ponent in any ANN. If these are elements
of the linear functions, the network f would
completely reduce to some linear functions,
capable only of solving linear tasks.

To successfully apply networks to
non-linear tasks, non-linear activations are
needed. Perhaps the most common activa-
tion is the Rectified Linear Unit, given by

ReLU : x 7−→ max(0, x). (3.2)

This is default activation used throughout
this thesis, unless otherwise mentioned.

Another commonly used activation
function is the Sigmoid function given by

σ : x 7−→ 1
1 + e−x

,

which has the characteristic of producing
values in the interval between 0 and 1. This
makes it suitable for output neurons ex-
pected to represent some probability as ex-
plored in section 4.8.

3.1.2 The loss function
In order for a neural network to function, it
must first be trained. The process of super-
vised training in the context of FCN:s refers
to optimizing the set of weights and biases
{W (`), b(`)} which minimizes the so called
loss function2 over a given set of training
data {x, ŷ}. The loss function, denoted L,
is a metric of how well the output of the
network y corresponds to the correct labels
of the training set ŷ.

There are a multitude of different loss
functions, some more suitable for certain
kind of tasks. In regression problems, where

1In relative terms compared to those examined in this thesis (see section 4.5).
2Other commonly used names are cost function, error function and objective function.
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3. Artificial neural networks

f̂ is a continuous distribution, the standard
choice of L is the Mean squared error de-
fined as:

MSE(y, ŷ) ≡ 1
n

∥∥∥y − ŷ
∥∥∥2

(3.3)

where n = ND+1 is the number of neurons
in the output layer.

Another type of regression problems
are those of a binary classification, i. e. true
or false. The question could for example
be: is this a picture of a cat? The stan-
dard choice in this case would be the Binary
Cross-Entropy H, given by

H(β, β̂) ≡ −β̂ log β − (1− β̂) log(1− β)

where β̂ ∈ {0, 1} is the correct binary value
and 0 < β < 1 is the output of the network.

3.1.3 Backpropagation
According to eq. (3.1) the output layer y =
h(D+1) depends on every preceding layer
and the corresponding weights and biases
of the network. Optimization is thus done
by first calculating the gradient of L with
respect to these parameters and then up-
dating them through gradient descent by

θ 7−→ θ − η∇θL,

where θ is any such trainable parameter and
η is a hyperparameter called the learning
rate. This procedure is not restricted only
to FCN:s and the general principle is the
same also for other types of propagation
rules than those in eq. (3.1).

While these gradients may be calcu-
lated analytically, they can be computa-
tionally expensive to evaluate due to the
non-linear activation functions. Because of
this, it is often preferred to use the back-
propagation algorithm, which instead relies

on the chain rule to produce good approxi-
mations of ∇θL.

The computational complexity can be
reduced further by dividing the training set
into smaller batches and estimating the gra-
dient using the average value of the loss
function over each batch. This method of
minimizing the loss function subject to the
weights and biases of the network, i.e. train-
ing the network, is referred to as Stochastic
Gradient Descent [9] and is the principle
upon which the optimizer used for this the-
sis, called Adaptive Moment Estimation3

[10], is based.
During training, the entire training

data set is presented to the network sev-
eral times, where each pass is called an
epoch. The training data only consists of
a portion of the total data, with the re-
mainder used as a validation set. This
enables a good metric for calculating the
performance of the network called valida-
tion loss, which is the loss function calcu-
lated over the validation set. Should the
validation loss increase over several epochs,
whereas the training loss decreases, the net-
work is being over-trained, i.e. overfitted to
the training data. To prevent this, one can
implement early stopping, which automati-
cally halts the training whenever the valida-
tion loss stops decreasing over a set number
of epochs, called patience.

3.2 CONVOLUTIONAL
NETWORKS

A Convolutional neural network (CNN) is
a neural network implementing one or sev-
eral convolutional layers, usually followed
by a FCN. Convolutional neural networks
excel at local feature recognition, making
them widespread in machine learning ap-
plications such as image recognition.

A convolutional layer applies a math-
ematical operation on an input tensor in or-
der to produce a number of output tensors.

3Often abbreviated as ADAM
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3. Artificial neural networks

Focusing on the one-dimensional case, as
used in this thesis, the input of one oper-
ation consists of a vector and produces a
number of vectors, or feature maps, spec-
ified by a hyperparameter. Associated to
each feature map is a smaller vector con-
sisting of trainable parameters called a ker-
nel (or filter). The elements in each feature
map is produced by convolving the kernel
with the input, i.e. calculating the sum of
each element in the kernel multiplied with
the respective value of the input, as seen
in Fig. 3.2. Here, a uniform bias can also
be added to the output. To produce the
next element of the feature map, the ker-
nel is shifted by a number of indices over
the input matrix given by a hyperparame-
ter called the stride.

Figure 3.2: Visualization of how the out-
put of a 1-dimensional convolutional layer
is formed. This layer features a stride and
filter size of 3. The application of bias is
not shown [4].

The stride should be smaller than or equal
to the dimension of the kernel in order for
the convolutions to include each value of
the input at least once. However, there are
several design choices to consider. When
choosing a larger stride relative to the ker-
nel size, one effectively downsamples the
feature map, thus reducing the number of
trainable parameters. In contrast, choosing
a smaller stride can result in better recogni-
tion of details, i.e. larger sensitivity to vari-
ations over fewer indices of the input. An-
other thing to account for is that a stride
strictly smaller than the kernel size always
results in values along the edges of the in-
put matrix contributing less to the resulting

feature map than those in the center. This
can be avoided by utilizing padding, which
is the concept of introducing an interval of
zeroes at the start and end of the input vec-
tor. If the length of this interval is such that
the resulting feature map has the same di-
mension as the input, this is called Same
Padding. On the contrary, Valid Padding
means that no padding is applied.

As mentioned above, a larger stride
downsamples the data and therefore results
in less trainable parameters. In a CNN,
downsampling can also be achieved by ap-
plying pooling. A pooling layer collects the
information of the previous layer by, similar
to the convolutional layer, applying a ker-
nel over the input and calculating the cor-
responding value of the output according to
some rule. Common rules to use for pool-
ing is either max pooling or average pool-
ing, meaning the kernel selects the maxi-
mum or average value from its overlap with
the input vector, respectively. The stride
of the pooling kernel is always equal to its
size, hence the pooling operation produces
an output downsampled by a factor equal
to the kernel size [9].

3.3 GRAPH NETWORKS
In the last decade a whole new subgenre
of ANNs has been developed, called Graph
neural networks (GNN). First introduced
by Scarselli et al. [11], these networks pro-
cess data in graph domains. A graph G is
a data structure comprising a set of nodes
and their relationships to one another. Cur-
rently, most GNNs have a rather universal
design in common, and are distinguished
only by how a layer h(`) is aggregated from
this graph.

An adjacency matrix A is a represen-
tation of any finite G. Its binary elements
indicate whether pairs of nodes are adja-
cent or not. For the purpose of this thesis,
G is an undirected graph and therefore, A
is diagonally symmetrical.

10



3. Artificial neural networks

Each network layer h(`) is aggregated
as h(`) 7→ a(h(`), A). he next layer in the
forward propagation can thus be described
by

h(`+1) = A(W (`+1)a + b(`+1)).

Different GNNs vary in the choice of the
parametrization of a. One such choice is
the spectral rule (3.4) as described by T. N.
Kipf and M. Welling [12]. The aggregation
takes the form

a(h(`), A) = D−
1
2 ÃD−

1
2 h(`), (3.4)

where D is the diagonal degree matrix of G
and Ã = A+I (I being the identity matrix).
The latter is needed in order to include self
loops in the aggregation. This is similar to
the Dense connection eq. (3.1), with the
only difference being in the aggregation of
h(`). This it is referred to as a GraphDense
connection.

Let us consider the aggregation of the
i:th node in the hidden layer h(`). The spec-
tral rule eq. (3.4) gives

ai(h(`), A) =
(
D−

1
2 ÃD−

1
2 h(`)

)
i

=
∑
n

D
− 1

2
in

∑
j

Ãij
∑
m

D
− 1

2
jm h

(`)
j

=
∑
j

Ãij√
DiiDjj

h
(`)
j ,

where the final simplification comes from
D being diagonal. This can roughly be
thought of as the sum of h(`)

i and its neigh-
bouring nodes, which explains the inclusion
of the identity matrix in Ã4.

In conclusion, a network using these
principles has the advantage of having rela-
tionships of every node, i.e. neuron, known
from the start. This could potentially re-

duce the time of training since a non-GNN
would need to learn these relationships.

3.4 BATCH NORMALIZATION
It has been shown that the training rate
of a single neuron is greatly improved if
every element in h(`) is normalized giving
them a mean value of zero and unit vari-
ance [14]. In ANNs each layer h(`) gets it
trainable parameters updated proportional
to the partial derivative of the loss func-
tion of the following layer h(`+1). Hence, if
the outputs from two layers differ greatly in
value, the gradient from the smaller output
may become vanishingly small in compari-
son, which is often referred to as the vanish-
ing gradient problem. This may effectively
prevent certain neurons from changing their
values and, in the worst case, completely
stop the neural network from further train-
ing.

The normalization thus ensures that
the activations for all neurons are of the
same order of magnitude, which gives them
equal opportunity to influence the learning
of their connected neurons. For a layer of
width N , each element h(`)

i , can be normal-
ized as

h
(`)
i 7−→

h
(`)
i − E[h(`)

i ]√
Var[h(`)

i ]
(3.5)

where the expectation, E[h(`)
i ] ≈ µb, and

variance, Var[h(`)
i ] ≈ s2

b , are estimated with
the mean µb and sample standard deviaton
sb over a batch denoted b of training data,
hence the name batch normalization [15].

The process of normalization pre-
sented thus far can however change, or even
limit, what the layer can represent. For in-
stance, normalizing the inputs of the sig-
moid function will limit it to be approx-

4Without it, the aggregation of the i:th node would just be the mean of its neighbours exluding the node
itself! For the interested reader: a more comprehensive explanation behind the normalization using the
degree matrix can be found in [13]
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3. Artificial neural networks

imately linear. The power of representa-
tion is easily regained by ensuring that the
transformation inserted in the neural net-
work can represent the identity transform.
This is achieved by introducing two train-

able parameters for each layer to be nor-
malized: one for scaling, and another for
shifting, allowing it to take on any range of
numbers.

12



Chapter 4

Method development

The core of this thesis lies in exploring various methods using neural networks and
the investigation of how well they perform event reconstruction of γ-rays. This
chapter presents the key aspects of the procedural development of such methods
and the resulting set of networks selected to be compared to the addback routine
in the following chapter. Although a fair amount of effort was put into the analy-
sis of e.g. FCNs and CNNs, perhaps the most noteworthy aspect is the redesigned
loss function described in section 4.3.2.

4.1 BUILDING THE
NEURAL NETWORKS

The objective of these networks is to recon-
struct the energies and directions for each
of the γ-rays in the initial reaction from a
set of detected energies {Ei}. In the case
of the Crystal Ball detector, the input con-
sists of values for each of the N0 = 162 crys-
tal detectors. Every network is trained on
computer-generated data, to be discussed
in sec. 4.2.

All neural networks have been imple-
mented usingKeras [16], a Python API run-
ning on top of Google’s machine learning
framework Tensorflow [17]. This allows us
to work at a high level, using Keras’ prede-
fined enviroments for common features of
ANNs (described in section 3), while utiliz-
ing the hardware-optimized computational
backend of Tensorflow. Keras describes the
structure of a neural network through the
abstract Model-class, which is implemented
to create the different network structures
described in sections 4.5 and 4.6. The re-

sulting product can be found at https:
//github.com/PajterMclovin/DetNet.

The majority of the network training
was carried out using one of two local ma-
chines; one equipped with a Nvidia GTX
1060 GPU and the other with a 1080 Ti,
both machines operating on quad-core 6th
generation Intel Xeon processors and 32 GB
of RAM. For final training and evaluation
of convolutional networks, the HPC sys-
tem Kebnekaise at HPC2N, Umeå Univer-
sity, Sweden, as as part of Swedish National
Infrastructure for Computing (SNIC) [18],
was utilized. These tests ran using nVidia
K80 GPUs on nodes with 14-core 5th gener-
ation Xeon processors and 64 GB of RAM.

4.2 DATA GENERATION
THROUGH SIMULATION

The training of an ANN requires an exten-
sive pre-labeled data set. For the purposes
of this study, such data sets must contain
the original and measured energies in every
detector crystal of the Crystal Ball for each

13
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4. Method development

individual event. This is generated using a
C++ based toolkit called GEANT4, a state
of the art tool to model the interactions of
particles with matter. Modeling these in-
teractions, however, is a difficult task due to
the large number of coupled degrees of free-
dom and the quantum-mechanical, i.e prob-
abilistic, nature of the processes. Hence,
GEANT4 utilizes Monte Carlo simulations
to produce numerical solutions [19].

The final modeling was performed us-
ing ggland, a wrapper program built around
the GEANT4 library, which allowed for the
simulation of high-energy particle events
within the Crystal Ball geometry [20]. The
ggland simulations are constructed using
an arbitrary number of particle sources, re-
ferred to as guns, placed at the center of the
geometry. Each gun simulates the emission
of a single particle, with an energy and an-
gle which is randomized within the bound-
aries of a predetermined distribution, e.g.
to emulate the scattering from target nu-
clei used in experiments.

To handle the large amounts of data
produced within the ggland simulations,
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Figure 4.1: Semi-log plot showing
the energy distribution from the GEANT4
simulations which was used for training
the networks. It is uniform in the interval
0.01− 10 MeV with an additional number
of about 106 empty events.

a C++ framework for data processing called
ROOT was used. The ROOT-framework
was originally developed by CERN in or-
der to easily save, access and handle the
petabytes of data generated in accelerator-
based physics experiments [21].

For a given maximum multiplicity m,
i.e. the maximum number of γ-rays emitted
during an event, there are m + 1 subsets
of the correct label set ŷ. One that repre-
sents the case where there are no γ and ŷ
is all zeros, and the rest containing between
one and m γ-rays. Since the simulated data
does not include the former, these are sub-
sequently added in a given amount, see Fig.
4.1.

4.3 LOSS FUNCTIONS
The loss function is undeniably a critical
part of the training of a neural network,
and needs to be treated accordingly. This
section explains some different approaches
in defining L that were investigated during
the development of this thesis. Ultimately
the so-called photon momentum loss was se-
lected, a rather natural definition using the
momentum vectors of the γ-rays in carte-
sian coordinates.

4.3.1 Investigating different loss
functions

During early development of the neural net-
works in the Keras enviroment, a number
of loss functions were implemented. Pri-
marily the non-relativistic modified MSE-
loss functions of previous studies [3, 4] were
tested. One such MSE variant is shown
in eq. (4.1), where ∆Ei = Ei − Êi and
analogous for the angles. Note variables
marked with a hat represent the correct la-
bel, whereas those without are the output
of the network. The coefficients labeled
λ are used to combine the different terms
and were optimized by Karlsson et al. [4],
and their final choice for the equation above

14



4. Method development

L{Ei, θi, φi} = 1
m

m∑
i=1

[
λE(∆Ei)2 + λθ(∆θi)2 + λφ

(
(∆φi + π) mod 2π − π

)2
]

(4.1)

L{Ei, θi, φi} = 1
m

m∑
i=1

[
λE(∆Ei)2 + λθ(∆θi)2 + λφ

(
1− cos ∆φ

)]
(4.2)

was to set all λ = 1. Whether this holds
for other network structures is a different
question, which was not investigated in this
work. They also showed in their plots that
this cost function in combination with their
data sets produced artefacts, mainly in the
spatial reconstruction. The polar angle θ
tended to be reconstructed too low, whereas
the azimuthal angle φ was reconstructed
too low for φ < π and too high for φ > π.

When implementing the same loss
function in Keras, the artefacts persisted.
This is expected, as the artefacts likely are
a result of many different inconsistencies in
the treatment of the angles and not due
to the computational framework. For in-
stance, consider an event with perfect re-
construction for the polar angle ∆θ = 0
but with ∆φ = π. The spatial part of the
function would in this case yield a cost of
λφπ

2, regardless of θ. This is bad, because
for θ = 0 this would be a perfect recon-
struction, wheras for θ = π/2 it would be
the worst possible. Because the coordinates
are interdependent in terms of distance, a
means of addressing this issue could be to
weigh the azimuthal term with cos θ as sug-
gested by Karlsson et al., making the ex-
pression look more and more like a trans-
formation to cartesian coordinates. This,
among other things, inspires the use of a
momentum loss function which will be dis-
cussed in section 4.3.2.

Another reason for the artefacts in
the azimuthal angles when using the loss
function in eq. (4.1) was suspected to stem
from the use of the modulo function. Be-
ing a non-continuous function, it is not a

preferred choice in contexts of optimization
with gradient descent. Because of this, a
continuous replacement as seen in eq. (4.2)
was tested.

Unlike the modulo function this ex-
pession has a continuous gradient every-
where. Furthermore, the gradient of this
function also points towards the closest
minima, which was thought to be another
advantage of this loss function. However,
through testing it became clear that this
function produced artefacts similar to those
of eq. (4.1), likely due to the separate treat-
ment of the angles.

4.3.2 Photon momentum loss
Since the energy and direction of a photon
can be described by its momentum vector
p, it is a natural choice of quantity for the
network to reconstruct. Continuing along
this path, p is here represented using nat-
ural units (E = ‖p‖, c = 1). Let m be the
maximum multiplicity. The output of the
network thus takes the form of

Y = (p1, . . .pm) ∈ R3m.

In practice, each vector can be identified
with three cartesian coordinates, hence Y ∈
R3m. For the case m = 2, the output would
be

Y = (p1x, p1y, p1z, p2x, p2y, p2z).

Any non-existing photon, in either input or
output, is represented by the zero vector.
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With the output being the reconstructed
momentum vectors of the γ-rays, perhaps
the most logical choice of loss function,
based on the mean squared error introduced
in eq. (3.3), is simply

L{pi} =
m∑
i=1

∥∥∥pi − p̂i
∥∥∥2
, (4.3)

where p̂i is the corresponding correct vec-
tor. Since m is the same for each individ-
ual network, the factor 1/m is omitted in
the python scripts to reduce the number of
unnecessary floating point operations.

This error is still, as usual, averaged
over the entire batch during training. Note
that the use of cartesian coordinates han-
dles the angular relationships automatically
through the change of coordinates, also re-
moving the need for periodicity in the loss
function.

From testing with simpler networks,
it was verified that this loss function does
not cause any angular artefacts such as
those discussed previously in section 4.3.1.
Furthermore, this loss function features an
affine gradient with respect to p and is
therefore more computationally efficient to
optimize.

4.3.3 Permutation loss
For multiplicites m > 1, each pi has to
be paired with its corresponding p̂i. Since
there is no inclination for the network to
produce (p, p′) over (p′, p) for instance,
these would result in two completely differ-
ent values of L. Olander et al. [3] solved this
problem by calculating the loss function for
all the m! possible combinations and then
selecting the one that has the minimal loss,
i.e the least mean squared error. This could
be done by having a script doing this assign-
ment in a series of for-loops, but for back-
propagation it would be necessary to write
an additional gradient calculation.

The alternative is to use the default sym-
bolic operations of Tensorflow. Let

Y = (y1, y2, . . .yn)T ∈ Rn×3m

be a output batch of size n and Ŷ its corre-
sponding labels. To calculate the mean loss
as described above, consider the permuta-
tion tensor P of order 3 which comprises
each of the m! permutation matrices. With
m = 2 for instance, the 2! = 2, such matri-
ces are the identity matrix P12 = I and

P21 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


.

Together with the identity tensor E, a ten-
sor similar to P but only with m! identity
matrices, the error E for all possible com-
binations in the batch can be described in
index notation as

Eijk = Yi`E`jk − Ŷi`P`jk,

where the last index in E , E and P goes
over the m! permutations and identity ma-
trices, respectively. The purpose of E is just
to make copies of Y in order to pair them
with every permutation of Ŷ . The squared
error is then deduced from

Lij = EikjEmknδimδjn,

which is a Rn×m!-matrix containing the loss
for every pairing. Here δ is the Kronecker
delta defined as

δij =

1, if i = j,

0, otherwise.

The returned loss function is thus given
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by minimizing these for each reconstruction
and then taking the batch average, i.e

L = 1
n

n∑
j=1

min
i≤m!

Lij.

This is the loss function used throughout
this thesis.

4.4 METRICS OF
PERFORMANCE

When analyzing the networks, a good way
to represent the photon-reconstruction is
through the “lightsaber” plot. Used by
both previous projects [3, 4], they come
in the form of three histograms, with axes
showing the correct and reconstructed val-
ues of E, θ and φ on abscissa and ordinate,
respectively. For a perfect reconstruction,
the plot should show the identity repre-
sented by the blue diagonal lines. By utiliz-
ing the momentum as mentioned in section
4.3.2, we also introduce a new metric for
evaluating network performance, the Mean
Momentum Error (MME), as

MME = 1
N

N∑
i=1

∥∥∥pi − p̂i
∥∥∥, (4.4)

where N is the number of data points. This
is also simply referred to as the Mean Er-
ror, and serves as a good scalar metric of
how well a network performs. Since this
value treats all data points in R3 equally, it
accounts for miss-identification of the exis-
tence of γ-rays by introducing an error ei-
ther equal to the momentum of the recon-
structed non-existent photon, or the non-
reconstructed existing photon.

However, in order to quantify whether
a network consistently succeeds at recon-
structing existing photons as such, the
events can be ordered into four categories
Qe, Qi, Qm, and Qo

1, based on their cor-

rect and reconstructed energies as shown
in table 4.1. As mentioned in section 4.2,
the standard way of labeling a non-existent
photon is by setting its energy and all its
angles to zero. Since a network without
classification neurons cannot explicitly la-
bel a photon as non-existent, a threshold ε
is defined, with energies reconstructed be-
low this threshold signifying non-existent
photons. The value ε = 0.01 MeV is used,
which is the lower limit for the energies
generated in our data sets. Counting the
number of events in each category gives ad-
ditional information about the behavior of
the network.

Table 4.1: The different categories of γ-
ray reconstructions. The labels Qe and Qo

refers to those correctly registered as exist-
ing or non-existing, respectively, while Qi

and Qm are the those invented or missed by
the network.

Ê = 0 Ê > 0
E > ε Qi Qe

E < ε Qo Qm

Note how the number of events that end up
in either one of these categories is highly
dependent on the threshold. A Qi photon
could just as well be counted as a Qo pho-
ton using a higher threshold. Still, those
numbers provide an idea of how a certain
alteration of a network changes its behav-
ior. However, to more clearly visualize the
workings of the network, the mappings of
these categories are altered slightly com-
pared to the previous reports [3, 4] to form
a new type of plot shown in Fig. 4.2. Here,
the Qi events are displaced horizontally to a
random point within the vertical bar, as to
show the energy at which the γ-rays in this
category are invented all while maintaining
an appropriate z-axis for the plot..

1Those in the category Qo are mapped close to the origin, hence the ”o”.
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Figure 4.2: Reconstruction of energy E, polar angle θ and azimuthal angle φ for
γ-rays of maximum multiplicity m = 2, using a FCN of uniform width N = 80 and
depth D = 4. The network is trained on a total of 1.5 × 106 events, including an
additional 5× 105 of fully empty events. Notice the lack of missing reconstructions
in the Qm area.

4.5 FULLY CONNECTED
NETWORKS

Perhaps the most elementary type of neural
network is the FCN, making them a reason-
able choice to investigate first. As described
in section 3.1.1, a FCN of depth D consists
of D + 1 Dense connections, each with a
width of N` neurons. The FCN:s examined
in this thesis are predominantly of uniform
width N` = N, ∀`. However, different net-
work architectures with alternating widths
are investigated in section 4.5.4.

Figure 4.3 shows a flowchart describ-
ing the general structure of the FCN. The
input are the detected energies {Ei} from
the N0 = 162 crystal detectors and the out-
put are the m momentum vectors {pj} of
the reconstructed γ-rays. After each Dense
connection a ReLU-function, given by eq.
(3.2), is applied with the exception of the
connection to the output. Here a linear ac-
tivation is used for it be able to generate
negative values, since ReLU ≥ 0, by defini-
tion.

Input
{
Ei
}

Dense

Dense

Dense

Output
{
pj
}

...

Figure 4.3: Flowchart of a FCN with ar-
bitrary depth connecting the input detector
energies Ei with the reconstructed photon
momenta pj. The coloured boxes represents
the Dense connections between each of the
layers, described in eq. (3.1).
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4.5.1 Maximum multiplicity
of detected γ-rays

While the number of output neurons is
fixed, it is still required that the ANN:s are
able to train on any given maximum mul-
tiplicity of γ-rays. However this report is
mostly considering the case m = 2.

Fig. 4.4 shows not only that the
FCN:s are capable of this, but how well they
perform with different m as well. A range
of FCN:s of varying depths, all with a uni-
form width of 80, is trained on 1.5 × 106

simulated events with an additional 5× 105

completely empty events. The case where
m = 2 is also presented in Fig. 4.2. Higher
maximum multiplicities give rise to more
uncertain reconstructions as suggested by
the ordering of the mean errors of differ-
ent m in the figure. This is not surprising
considering the calculation of the permuta-
tion loss function scales with m!, making
the training of the network more difficult.

4.5.2 Utilizing
batch normalization

To determine if batch normalization is ben-
eficial to the networks performance, a se-
ries of FCN:s with or without utilizing
batch normalization is compared to each
other. The normalization is applied before
the ReLU activations. Figure 4.5 shows a
flowchart of these blocks of dense connec-
tions and batch normalizations.

Every network of uniform width 64
was trained on a maximum of 300 epochs
and early stopping with a patience of 20
epochs. Figure 4.6 shows that using batch
normalization in this case did not improve
the performance of the FCN:s for depths
below 20. The time for these to train did
not differ significantly either. Those deeper
than 20 seem to benefit from using the nor-
malization but with an overall higher mean
error than networks with lower depths.
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Figure 4.4: Mean errors in recon-
structed energies for models of depths be-
tween 0 and 30. Every hidden layer is of
width 64. The models were trained on data
sets of different maximum multiplicity, and
are coloured accordingly.

Input
{
Ei
}

Dense

BatchNorm

Dense

BatchNorm

Dense

Output
{
pj
}

...

Figure 4.5: FCN of arbitrary depth
using batch normalization. Every hidden
layer is of uniform width N = 64, save the
last one connected to the output of width
3m. Note that the activation function is ap-
plied at the end of each block.
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Figure 4.6: Mean errors in recon-
structed energies for models of depths be-
tween 0 and 60 with our without batch nor-
malization. Every hidden layer is of width
64.

4.5.3 Optimization of
network dimensions

Every Dense connection is defined by a
weight matrix W (`) and bias vector b(`) as
introduced in section 3.1.1. Between layer
` and `+ 1 there are N`+1(N`+ 1) trainable
parameters and for a network with a fixed
width N throughout, the total number of
parameters in a FCN with D > 0 is thus
equal to

N(N0 + 1)
+N(N + 1)(D − 1)
+3m(N + 1),

where N0 is the number of neurons in the
input layer and 3m in the output respec-
tively.

To deduce the optimal configuration
of D and N in means of best performance
for the least amount of parameters, a se-
ries of different FCN:s was trained sys-
tematically and then evaluated. With the
mean error of the reconstructed momenta
as the measurement of performance, a con-
tour plot was created with Clough-Tocher

interpolation implemented with the Python
library SciPy [22]. This produced a piece-
wise cubic C1-surface shown in figure 4.7.
Each network was trained with a maximum
of 300 epochs and using early stopping with
patience 5. Furthermore, a learning rate of
10−4 is used throughout the testing, as it
was deemed optimal for similar networks in
the same task. [4]

Fig. 4.7 shows that FCNs with depths
larger than about 5 hidden layers do not
improve the performance. In fact a depth
D = 4 and width of about N = 100 neurons
per layer seems to be the most favorable
configuration considering its low number of
parameters being about 5 × 104. This is
marked with a red cross in the figure.
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Figure 4.7: Contour plot showing the in-
terpolated mean errors for FCN:s with dif-
ferent depths and widths where each such
configuration is marked with a dot. The red
cross shows the selected FCN configuration
used in the comparison with addback in the
following chapter.

4.5.4 Comparison of architectures
Until now, only FCNs of uniform width
have been investigated. To see how these
compare to non-uniform networks, three
such FCNs of different architectures are an-
alyzed. These are the Triangle, Bottle and
Inverted bottle designs.
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Input
{
Ei
}

(140)

(118)

(96)

(74)

(52)

(30)
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Output
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pj
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Figure 4.8: The Triangle architec-
ture with a depth 6 and maximum multi-
plicity 2. Each dense connection (coloured)
is marked with the width N` of subsequent
hidden layer.

Firstly figure 4.8 shows the Triangle design
with depth D = 6. The width N` decreases
linearly between the input and the output
layer as

N` = N0 −
N0 − 3m
D + 1 `.

Every dense connection is activated by the
ReLU-function, save the last one which
yields the output through a linear activa-
tion.

The second design is shown in figure
4.9. It has two separate uniform parts, the
first has a width 64 and the other narrower
half has 32, hence the name Bottle. Be-
cause this has two parts of equal depths,
this design must be of an even depth.
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Figure 4.9: The Bottle architecture with
a depth 6 and maximum multiplicity 2. The
Inverted bottle is the same, but with the two
halves interchanged
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Figure 4.10: Mean momentum error for
the four different FCN architectures against
the number of trainable parameters. Since
fewer parameters are often much faster to
train, this shows that there is no real reason
not to use the uniform design.
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4.6 CONVOLUTIONAL
NETWORKS

4.6.1 Rearranging the input
For a CNN to extract local information
from neighboring crystals, the input data
must first be reshaped in a way that accom-
modates for the geometry of the detector.
Based on the work of Karlsson et. al. [4],
this is done by applying a sparse binary
transformation matrix that selects energies
from specific crystals and arranges them
into cluster arrays representing different ar-
eas of neighbouring crystals. The first ele-
ment of each cluster array contains the en-
ergy of the central crystal, which is either
an A or a D crystal, followed by the energies
of its neighbours and second-neighbours.
Note that in this context, a cluster refers to
the collection containing the central crystal
along with all of its neighbours and second
neighbours — not only the subset of those
registering a significant energy, as it is used
in section 2.4. This results in clusters of size
SA = 16 for for each of the NA = 12 A crys-
tals and SD = 19 for each of the ND = 30
D crystals, which combined cover the entire
Crystal Ball with some overlap. An exam-
ple of a D cluster can be seen in Fig. 4.11.

Figure 4.11: Schematic representation
of a D cluster. Note that the shapes and
angular relationships of the crystals differ
slightly from the real detector.

Karlsson et. al. [4] chose to sort each
cluster array by selecting the closest crystal
to the beam exit as the first element among
the neighbours and continue in counter-

clockwise order (as seen from inside the de-
tector). The same sorting was then made
separately for the second-neighbors. This
type of sorting, here abbreviated BE for
Beam Exit-sorting, has problems due to
occasional shifts among the indices of the
second-neighbours and thus does not cor-
rectly take the local neighbourhood of the
geometry into account. Due to this, we in-
troduce a new sorting called CCT-sorting
for Consistent Crystal Type.

For CCT, the cluster array centered
around the crystal c can be written as
(c n m) where n and m are arrays of the
neighours and second-neighbours to c, re-
spectively. The closest neighbours n are
sorted counter-clockwise in the same way as
for BE, with the exception of taking crys-
tal shapes into account whenever applica-
ble (i.e for D-crystals). In this case, the
first neighbour element in the cluster array
is the B-crystal closest to the beam exit. To
sort the second-neighbours, we select the
first element m1 as the second-neighbour
to c which is also neighbour to the first
two entries of n. Mathematically, we do
this by defining two sets N1 and N2 as the
neighbours to the first and second element
of n, respectively. The first element of the
second-neighbours can then be chosen as

m1 = {N1 ∩N2} \ {c}.

After this, m is formed by continuing
counter-clockwise, completing the cluster
array (c n m).

For the pattern recognition of a CNN
to be effective, one would prefer to not
distinguish between the rotational symme-
tries of these clusters. For instance, a spe-
cific pattern produced by a photon when
scattered between three C-crystals of a D-
cluster should ideally be detected by the
same kernel regardless of their position rel-
ative to the central D-crystal. A similar
argument can be made for including mirror
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images of the clusters, enabling a specific
kernel to operate symmetrically on oppos-
ing clusters. To account for these symme-
tries, the cluster vectors are extended to
include each rotated and reflected state of
the cluster.

Figure 4.12: Schematic representation
of how the input vector to a branch of the
CNN contains the rotations and reflections
of a specific neighbourhood of crystals.

Each rotated state features a copy of the
previous, but with indices of the neighbours
increased by one and second-neighbours by
two (with wrapping), resulting in a counter-
clockwise rotation. To handle reflections,
the initial sorting of the neighbours is in-
stead carried out clockwise, resulting in a
reflection over the axis through the cen-
tral crystal to the first neighbour. Incorpo-
rating these concepts in the transformation
matrix generates the complete input to the
CNN as shown in Fig. 4.12.

4.6.2 CNN models
Due to the different geometries of the A
and D clusters, different kernel and stride
lengths need to be applied for each central
crystal type in order to summarize the in-
formation from the cluster. Therefore, the
cluster vectors are fed to a sequence of par-
allel 1D-convolution layers. For each clus-
ter type, the first convolutional layer has a
stride and kernel length equal to the num-
ber of neighbours in the cluster, i.e SA = 16
for the A clusters and SD = 19 for the

D crystals, summarizing the information of
each cluster for a specific orientation. To
handle the rotations and reflections, the last
convolutional layers each have stride and
kernel length equal to rA = 10 for the A-
clusters and rD = 12 for the D-clusters.
Since the kernel- and stride length of the
convolutional layers are chosen with regard
to the structure of the cluster vector, no
padding is applied. By doing so, the output
of these convolutional layers corresponds to
the NA = 12 A clusters and the ND = 30
D clusters. At this point, the A- and D-
branches of the network can be joined to a
series of fully connected hidden layers, and
finally connected to an output layer.

Input
{
Ei
}

Transf. A

Conv A (cluster)

BatchNorm

Conv 1× 1 layers
(CFCF only)

Conv A (orient.)

BatchNorm

Transf. D

Conv D (cluster)

BatchNorm

Conv 1× 1 layers
(CFCF only)

Conv D (orient.)

BatchNorm

Concat.

FCN

Output
{
pj
}

Figure 4.13: Overview of the CCF and
CFCF models with its two branches. This
picture shows a version where Batch Nor-
malization is applied. The Conv 1x1 layers
are bypassed for the CCF model.
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Due to this structure, the model is referred
to as the CCF-model (Convolutional - Con-
volutional - Fully connected) and is shown
in Fig. 4.13. ReLU activations are applied
to all convolutional and FC-layers, except
for the last layer which has a linear activa-
tion.

The CCF model can be extended by
introducing additional layers between the
first and last convolutional layers. Specifi-
cally, a number of convolutional layers with
kernel and stride of 1 are added, something
that introduces more trainable parameters
without reshaping the output. These layers
are set to produce as many filters as their
input layer, and are shown as “Conv 1x1”
layers in Fig. 4.13. The introduction of
these layers can be interpreted as “emulat-
ing” the transformations of fully connected
layers for the feature maps, and therefore
this is referred to as the CFCF model. In
theory, this design should introduce greater
headroom for learning patterns in the first
convolutional layer. Furthermore, batch
normalization can be added to both models
after each convolutional layer.

4.6.3 Optimizing hyperparameters
of the CNN

While the kernel and stride lengths of the
CNN are given by the model as mentioned
above, there are still many design consid-
erations regarding the hyperparameters of
the network. To simplify things, the learn-
ing rate is kept fixed at 10−4 and the num-
ber of feature maps f is kept constant be-
tween the corresponding layers of the dif-
ferent branches.

The initial tests consisted of optimiz-
ing the hidden layers of the CCF model.
The tests were done with and without BN,
training on data with a maximum multi-
plicity of 2 until halted by early stopping.
The final hidden layers used a fixed width
of 80. While this is wide in comparison to

the number of output neurons, it is still not
as wide as the concatenated output of the
two branches given that 32 and 16 filters
are used for the first and last convolutional
layers, respectively. Training such models
using a depth of 3, 5, 7 and 10 and eval-
uating them on a validation set yields the
result shown in Fig. 4.14. From this figure,
it becomes obvious that the CCF model
does not benefit from BN, although it may
be practical for higher multiplicities where
the increased depth may result in a rela-
tively lower MME. The figure also shows
that this particular configuration of the net-
works does not improve with more hidden
layers.
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Figure 4.14: Mean momentum error for
CCF models with and without implementa-
tions of batch normalization.

To investigate the effect of number of filters
in the CCF model, the model is trained as
before but with its FCN depth set to 3 with
BN disabled. By compiling models with
various numbers of filters at the first and
last convolutional layer, and again training
them until halted by early stopping, the
models were tested using validation data.
MME for the tested filter configurations
are shown in Fig. 4.15, where one can see
that filter configurations of more than 16 for
each layer do not impact the performance
of the network significantly. The smaller
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configurations of 8 filters for the last layer,
however, prove to be detrimental in terms of
MME. Note that the models with more fil-
ters in the first layer tend to perform worse
than those with an equal number in both
layers.

[8, 8] [16, 8] [16, 16] [32, 16] [32, 32] [64, 32] [64, 64]
Filter configuration
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E 
[M
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Figure 4.15: Mean momentum error
for different filter configurations of the CCF
model. The numbers [a, b] represent the
number of filters in the first and last layer,
respectively.

From this, one may draw the conclusion
that 16 filters for each layer is the optimal
configuration. However, with hopes of de-
tecting greater multiplicities, the number of
filters would likely have to increase. The
same argument can be made for the depth
of the network. To test this, four different
CCF models were again trained using data
with a maximum multiplicity of 5. These
models consisted of all combinations of [16,
16], [32, 32] filter configurations and depths
of 3 and 5, with other hyperparameters as
before. Here, the most expensive network
to train in terms of number of parame-
ters, i.e [32, 32] filters, D = 5 turned out
to yield an MME 0.041 MeV smaller than
the cheapest, while having around twice as
many trainable parameters.

To compare the CFCF model to the
CCF, a number of models are trained on
data with a maximum multiplicity of 2.

The models use 32 convolutional filters per
layer and 3 hidden layers with a width of
80. Each CFCF features 1-10 intermediate
convolutional layers. The validation MME
is shown in Fig. 4.16. Comparing the result
to the 32 filter configuration of the CCF
from before, one can see a slight improve-
ment in MME when using 2–3 intermediate
layers. However, the absence of a trend in
this plot suggests that the training of these
networks is limited by the learning rate.
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Figure 4.16: Mean momentum error for
the CFCF model when using different num-
bers of intermediate layers.

4.6.4 Dealing with existence
Based on the category system introduced
in Table 4.1, the events reconstructed by
the CNN has in the aforementioned tests
very nearly consisted of 75% Qe photons
and 25% Qi photons for data with maxi-
mum multiplicity of m = 2. For m = 5,
these numbers were very close to 60% Qe

and 40% Qi. These numbers seem fitting,
as for instance in the case of m = 2, the
data contained a 1:1-ratio of single and dou-
ble γ-ray events. The reason for other cate-
gories remaining (almost) empty is that the
network rarely reconstruct low enough ener-
gies to fall below a threshold of ε = 0.01, let
alone without being presented empty events
(no registered energy, all labels set to zero).
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Figure 4.17: Histogram over the reconstructions of the CFCF model trained on
data with m = 2 including empty events. This particular model uses [16, 16] filters,
a depth of D = 3 and 3 intermediate convolutional layers.

By training with empty events, a
more accurate reconstruction was hoped to
be achieved; both in terms of MME and
that few γ-rays are missed or invented by
the network (false positives). This goal can
only somewhat be formalized by finding a
network such that the Qi events are of lower
energy. To observe this, several CNN mod-
els were trained on data with m = 2 and
an additional 5×5 empty events. The best
in terms of MME was a CFCF model with
16 filters in each layer, 2 intermediate lay-
ers and 3 hidden layers. Its reconstruc-
tion, shown in Fig. 4.17, yielded an MME
of 0.296 MeV.

Figure 4.18: Histogram comparsion be-
tween the Qi events of CFCF models trained
with and without empty events.

Comparing this to earlier trained models, it
is clear that the MME is greatly impacted
by training with empty events.

From retraining the same model on
data not containing empty events and com-
paring the distribution of Qi events, as seen
in Fig. 4.18, it is clear that it also improves
the network in this regard.

4.7 GRAPH NETWORKS
The motivation to use the graph G of
the neighbouring detector crystals is un-
derstood through the aggregation (3.4) and
its relation to the addback routines as de-
scribed in section 2.4. Using this in the
beginning of a network integrates the de-
tected mean energy in each neighbourhood
of the input neurons (i.e. the crystal de-
tectors), just as addback does, into a fully
connected network. Without this the net-
work does not know how the neurons are
related to each other and has to learn this
during training. Since G is known, the con-
struction of such a GNN is rather straight-
forward.

First, the adjacency matrix A, which
encodes most of the information regard-
ing G, is constructed. It is a symmetric
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162× 162-matrix where

Aij =

1, if crystals i, j are neighbours,
0, otherwise.

As mentioned in section 3.3, the matrix
should include self loops as well. This is
done by adding the identity matrix, i.e.
Â = A + I. The diagonal node degree ma-
trix D is simply the row-wise sum of Â in
its diagonal.

Figure 4.19: The graph G representing
the relationships of every crystal detector in
the Crystal Ball. Each node is mapped to
the surface center of corresponding crystal.

A GraphDense connection is applied
directly on the input layer and preserves
the width N0 to the following layer. Be-
ing very similar to a Dense connection with
the same kind of trainable parameters W
and b, the number of trainable parameters
is given by N0(N0 + 1) = 26 406 in the case
of the Crystal Ball detector.

Testing different GNN:s can be done
in multiple ways. The selected approach is
to compare 3 such networks with the uni-
form FCN, which was investigated in sec-
tion 4.5. The first network GNN1 is illus-
trated in figure 4.20, consisting of a single
graph convolution and a subsequent FCN.
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}

GraphDense

FCN

Output
{
pj
}

Figure 4.20: The GNN1 model with
a single GraphDense connected to a con-
secutive FCN. GNN2 is similar in design
with one additional GraphDense directly af-
ter the first one.
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GraphDense
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Figure 4.21: The GNN3 design with its
three branches which are concatenated to a
N = 3 × 162 wide hidden layer. This is
followed by a FCN before the output layer.

The second, called GNN2, is the same as
GNN1 with an additional convolution di-
rectly after the first one. While GNN1 is
feeding the neighbourhood mean energy for
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each node, GNN2 deals with the more ex-
tensive area including second neighbours as
well.

The last one is unsurprisingly named
GNN3 and stands out from the other two
with three branches between the input neu-
rons and the following FCN. This covers
both the smaller neighbourhood as GNN1
does and likewise the larger one as the sec-
ond design.

The third branch in GNN3 is sup-
posed to further include the individual en-
ergy deposits as well. As shown in figure
4.21, these three branches are concatenated
feeding the FCN with a 3× 162 wide input
layer.
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Figure 4.22: The mean momentum
error in reconstructions made with a FCN
and the three types of GNN:s with a vary-
ing depth in the subsequent FCN:s shown
in figures 4.20 and 4.21. Each network was
trained on data with m = 2.

Varying the depth of the FCN:s, these four
network designs were trained on data of
maximum multiplicity 2. The mean mo-
mentum error in the event reconstruction
for each network is shown in figure 4.22.

One should note that a GNN of zero
FCN depth still has these GraphDense con-
nections and therefore have more trainable
parameters than the corresponding uniform
FCN. With this in mind, there is not a sig-

nificant difference in MME between the four
networks at higher depths. Nevertheless the
GNN:s with a number of subsequent dense
connections seems to perform slightly bet-
ter than the FCN at any depth.

4.8 BINARY
CLASSIFICATION

The ANNs examined so far are trained to
model a continuous spectrum, in this case
the γ-ray momenta {pi}. Nevertheless, this
method has the limitation of not being able
to explicitly imply whether a photon is re-
ally there or not in the reconstruction.

To introduce a binary classification
neuron for each event is nothing new.
Karlsson et al. [4] tried adding some dif-
ferent contributions to L by training with
an additional neuron {µi}, one for every γ-
ray. Their approach was to modify L in eq.
(4.1) in a variety of different ways to include
these classification neurons. The loss func-
tion would in other words depend on four
variables per hit as L{Ei, θi, φi, µi}. During
training the correct µ̂i ∈ {0, 1} was set to
equal zero for non-existent γ-rays and vice
versa. They concluded that these networks
was in fact able to classify missing photons
to some extent, but performed even worse
in reconstructing the existing in comparison
to the pure regression networks.

Having the completely refurbished
permutation loss function (4.3) this opens
up a myriad of new possible ways to tackle
this problem. One idea is to add an ex-
tra term to L, proportional to the binary
cross-entropy H(βi) as introduced in sec-
tion 3.1.2, where βi represents any floating-
point number between 0 and 1. It is the net-
work’s best guess whether the γ-ray exists
or not. This classification neuron is anal-
ogous to µi but another name is used to
avoid any confusion with that method.
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Figure 4.23: Reconstruction of energy E, polar angle θ and azimuthal angle φ for
γ-rays, using the binary classification model. The FCN is of uniform width N = 80
and depth D = 4 and was trained on data with maximum multiplicity m = 2 on a
total of 1.5× 106 events, including an additional 5× 105 of fully empty events. The
line artefacts in the two angle plots is manifestations of the 162 detector positions.

The loss function L{pi, βi} is given by

L =
m∑
i=1

[∥∥∥p̂i − pi
∥∥∥2

+ λH(βi)
]

(4.5)

The coefficient λ is used to decide how much
this binary classification may affect L and
is here simply set to one. Further inves-
tigation will be needed to obtain a more
suitable value.

A problem arises when adding these
extra classification neurons relating to the
network design. As before, the reconstruc-
tion of {pi} must still be treated as a re-
gression problem and the last activation
producing these values needs to be linear.
Since {βi} is a probability in the interval
(0, 1) its activation function needs to con-
strain the output accordingly. The sigmoid
function does just this. Therefore, the out-
put activations are separated as illustrated
in Fig. 4.24. Before calculating L, every
classification neuron is paired with a re-
constructed pi. The minimum permutation
loss is then acquired as described in section
4.3.3 but now with 4 variables instead of 3

Input
{
Ei
}

FCN

{pi} Dense: linear {βi} Dense: sigmoid

Concat.

Output {pi, βi}

Figure 4.24: The binary classifica-
tion model with the two types of activations
shown. These are concatenated together be-
fore the output.

for each event being (px, py, pz; β).
This method of using the loss function

(4.5) was not examined thoroughly enough
to be able conclude whether the approach
of implementing an extra term for the bi-
nary classification has any potential or not.
A simple test was made using an FCN with
N = 80 andD = 4, which has shown to per-
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form rather sufficiently with the ordinary
momentum loss (4.3). The resulting recon-
struction is illustrated in Fig. 4.23, where
λ = 1 is used.

The left plot shows the reconstructed
energies against the correct ones, and sug-
gests that while a large amount of empty
events are correctly registered, i.e. in Qo,
the overall reconstruction is substandard.

Compared to the networks examined
in section 4.5.3 with a mean momentum er-
ror usually lower than 1 MeV, this classifica-
tion network has a MME of about 1.7 MeV.
Considering that many of these events are

registered in Qo, meaning they do not con-
tribute to this metric, this network is pro-
foundly worse than most of those explored
in this thesis. Furthermore, a fair amount of
events are registered in Qm and thus falsely
omitted from the event reconstruction.

Perhaps another configuration of the
proportionality coefficient λ would result in
more acceptable reconstructions. Thus fur-
ther investigations is required. The use of
terms other than the binary cross entropy
in (4.5) could improve this method as well.
For further discussion, see section 6.4.
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Chapter 5

Results

To assess how well the ANNs performed in reconstructing detector data, the net-
works were compared to the first-neighbour addback routine described in sec. 2.4.
This was done by having them reconstruct a more realistic evaluation set that
involves a Doppler shifted signal of some fixed energy and background radiation.
This method of analysis and comparison was inherited from [3].

5.1 METHODS OF COMPARISON
The previous chapters outline a comprehen-
sive investigation with the goal of determin-
ing the optimal design for an ANN for mul-
tiplicities equal to or lower than two. Three
such networks selected to be compared with
addback is described below.

The first model is a FCN with 4 hid-
den layers, each with 80 neurons. This con-
figuration of depth and width is motivated
by the work in section 4.5, specifically by
the results presented in Fig. 4.7. This net-
work yielded a low MME considering it only
has 32 966 trainable parameters, the lowest
amount among these three networks.

The second model is a CNN, based on
the CFCF model detailed in section 4.6.4.
This network contains a total of 125 574
trainable parameters.

The last model is the GNN with three
branches and a total of three GraphDense
connections illustrated in Fig. 4.21. Its sub-
sequent FCN includes a single hidden layer
of width 80, resulting in a network with a
total of 118 178 parameters.

Each network was trained on a data

set containing a uniform distribution of en-
ergies in the range 0.01 − 10 MeV with a
maximum multiplicity of m = 2, including
empty events, as shown in Fig. 4.1. Af-
ter this, they were evaluated on a second
more realistic data set. In this set, each
event has a 50 % chance of containing a γ-
ray from background radiation in the range
0.01 − 1 MeV, and a 10 % chance of con-
taining a Doppler shifted signal γ-ray with
a fixed energy Ê in the beam frame of ref-
erence. The speed of the latter is uniformly
distributed between β = 0.6 − 0.7 c. Since
the probabilities for each type of γ-ray to
occur are independent, the validation set
also has a maximum multiplicity of m = 2.
Due to the relativistic effects discussed in
section 2.3, the reconstructed energies are
transformed to beam frame of reference us-
ing eq. (2.1). The outputs of the network
are then compared with addback, as shown
in the following section 5.2.

To each output, whether from ad-
dback or a neural network, the superposi-
tion of a Gaussian and an exponential curve
is fitted. The Gaussian curve, labeled fs,
represents the signal, whereas the exponen-

31



5. Results

tial curve, fb, represents the background ra-
diation. Serving as a metric of how well the
signal can be distinguished from the back-
ground, the signal-to-background ratio R is
calculated as

R ≡

∫
fs(E) dE∫
fb(E) dE

, (5.1)

where the integrals are evaluated on the
interval µ ± σ, with µ and σ being the
mean value and standard deviation of the
Gaussian fit, respectively. The R-values ob-
tained for each network can be seen in Fig.
5.4.

Finally, the absolute difference be-
tween the reconstructed and the correct en-
ergy is calculated for each network. Here,
the reconstructed energy E is is the mean
value µ of the signal fit fs. This is done
for correct signal energies Ê in the range
1.5−8.0 MeV. This is presented in Fig. 5.5.

5.2 COMPARISON WITH
ADDBACK

To verify the effects of a momentum-based
Cartesian loss function, we consider the
problem of reconstructing Doppler shifted
γ-rays with energy 3.5 MeV, as investigated
previously by Karlsson et al. [4]. The pre-
ceding study utilized a modulus-based loss
function which, despite yielding accurate
reconstructions for high energies, gave rise
to artefacts in the reconstruction of lower
energies. The equivalent task using momen-
tum loss can be seen in figure 5.1, where
the blue line represents our reconstruction
using a FCN, and the red line represents
reconstructions made by addback. This
image clearly portraits the eradication of
the previously mentioned artefacts, which
took the shape of an additional peak in the
region of lower energies.

Figure 5.1: Beam frame energy spec-
trum reconstructed by addback shown in
red and the FCN-network in blue. The
Doppler shifted γ-ray signal has an energy
of 3.5 MeV.

Eliminating these artefacts allows for
the reconstruction of low energy events.
The FCN-reconstruction of such an event,
at 1.5 MeV, is represented in Fig. 5.2. Here,
the fitted signal- and background curves
can be seen as the dashed and dotted lines,
respectively. Moreover, the reconstructed
energies for each event are represented in
table 5.1, which further demonstrates the
networks’ ability to reconstruct low-energy
γ-rays. Figure 5.3 represents a zoomed in
version of the 3.5 MeV event, shown in fig-
ure 5.1, as to give a visual comparison to the
equivalent image of the preceding study.

Table 5.1: Reconstructed signal energies
of addback and the three networks. The en-
ergies are in [MeV].

Correct Addback FCN CNN GNN
1.5 1.48 1.50 1.54 1.53
2.0 1.94 2.00 2.02 2.01
2.5 2.49 2.57 2.59 2.58
3.5 3.46 3.57 3.59 3.56
5.0 4.90 5.09 5.22 5.13
6.0 5.88 5.74 5.82 5.79
7.5 7.33 7.34 7.47 6.92
8.0 7.82 7.79 7.86 7.38
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Figure 5.2: The energy spectrum in the beam frame of reference reconstructed
by addback shown in red and the FCN in blue. A Gaussian curve fs, as well as a
exponential fb, is fitted for the the Doppler shifted γ-ray signal of energy of 1.5 MeV
and the background radiation respectively.

Figure 5.3: The energy spectrum in the beam frame of reference reconstructed
by addback shown in red and the FCN in blue. The Doppler shifted γ-ray signal has
energy of 3.5 MeV.
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The signal to background ratio, as
seen in Fig. 5.4, implies similar reconstruc-
tion performance between addback and the
trained neural networks, entailing the net-
works have little difficulty reconstructing
any of the investigated energies. The best
R-value for the ANNs is reached between 3–
6 MeV, surpassing that of addback, before
decreasing at higher energies.

The mean and standard deviation of
the reconstruction errors for the ANNs
and addback are illustrated in Fig. 5.5.
Each error is calculated from evaluations of
1.5 to 8.0 MeV, using the data represented
in table 5.1. The FCN and CNN evalua-
tions resulted in a mean and standard devi-
ation which show similar, yet slightly worse,
performance than addback. The GNN per-
formed significantly worse in this metric.

The best performance among the
ANNs is shown by the CNN network, which
resulted in mean error of 1.01·10−1, as com-
pared to the mean error of addback being
8.75 · 10−2, both with a standard deviation
of ~ 6.2 · 10−2. However, in relative dif-
ference of the energies, it is clear that the
FCN produced the most accurate predic-
tions across the energy range. Though re-
sulting in higher mean errors than previous
studies, each network performed exception-
ally well in terms of consistency over a large
range of energies.

Figure 5.4: Signal to background ratio,
R, for evaluation of energies ranging from
1.0–8.0 MeV in beam frame. The marker
style of each method is illustrated in the leg-
end.

Addback FCN CNN GNN0.0

0.1

0.2

0.3

0.4
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M
M

E 
[M

eV
]

Figure 5.5: Illustration of the abso-
lute difference between the reconstructed en-
ergies E and the correct energies Ê listed in
table 5.1. The hight of each box represents
the mean error, and the lines represent the
standard deviations.
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Chapter 6

Discussion

With the aim of this thesis being to examine methods using ANNs for the task of
event reconstruction of γ-rays, progress in further developing such methods have
been made on the foundation of previous work by [3, 4]. This chapter discusses
these improvements, other less significant results, and suggestions for further in-
vestigations.

6.1 CONCLUSION
In contrast to the results of [4], the recon-
structions of the energy spectrum presented
in section 5.2 does not introduce any arte-
facts such as peaks in the background radi-
ation region. In fact, these are sometimes
even hard to distinguish from those of ad-
dback as is the case in figure 5.1. However,
the closer the energy of the signal γ-rays
are to that of the upper or lower limits of
the distribution, the less accurate the re-
construction is. This is not surprising or
even necessarily bad. If one wishes to per-
form measurements at other energy ranges,
the simple solution would be to train on en-
ergies accordingly.

As shown in Fig. 5.5, the FCN seems
to produce an overall more accurate re-
construction than the other two networks.
Considering this has about 27 % fewer
trainable parameters, the FCN using the
permutation loss function is the most ap-
pealing method. The CNN and GNN do
not improve upon this simpler design, even
though they were more planned out and
maybe even overengineered.

From optimizing the hyperparameters
of the networks trained in this thesis, a re-
curring pattern has been that the deeper
networks performed worse than those with
fewer hidden layers. With our approach
of testing, it may mean that the final de-
signs end up being approximations of ad-
dback, simply weighing in the energies of
different crystals together. This could be
bad, since the main incentive to using neu-
ral networks is the chance of it finding
more complex relationships within the data,
not otherwise easily modeled by the means
of conventional algorithms. To do this,
while still facilitating the option for learn-
ing simpler patters, one could implement
a model based on the ResNet or ResNext
architechtures [23, 24]. Such models fea-
ture a data flow which can bypass sev-
eral layers, which would in theory enable
deeper network structures while simultane-
ously having shorter forward-propagation
connections for learning simpler relation-
ships. For the same reasons, alternative
methods utilizing parallel layers with, or
combined through, max pooling could also
see success.
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Perhaps the most decisive feat of this
thesis is the momentum loss function (4.3)
being the squared error in the γ-ray mo-
mentum vector. Not only is it based on
the standard choice of loss for this type of
regression problem, as mentioned i section
3.1.2, it also eliminates the need of relative
weighting factor such as those in eq. (4.1)
and (4.2).

Using batch normalization does not
seem to do much for the networks, if not
making them perform worse. This is not
so problematic in this case, considering
that the networks investigated are not so
deep, making the vanishing gradient prob-
lem, as discussed in sec. 3.4, barely notice-
able. However, it may still see use in the
context of deeper networks or when using a
classification node.

6.2 CONVOLUTIONAL
NETWORKS

As briefly mentioned in sec. 4.6.3, some re-
sults indicate that the networks may have
underperformed due to their training. Even
though the networks were trained on ex-
tensive data sets, using early stopping to
ensure a balance of validation and training
data loss, the use of a fixed learning rate
can lead to some parameters “overshooting”
their local optima. One way to address this
is to, once halted by early stopping, reini-
tialize the training again with a lower learn-
ing rate. This would likely also increase the
performance of the FCN and GNN.

Furthermore, the optimization of the
hyperparameters of the CNN (see sec.
4.6.3) were mostly done using simulated
data only containing one or two γ-rays, i.e.
no empty events. While the process itself
most certainly led to a more refined model,
it is possible some choices of hyperparame-
ters would be different if the networks were
trained on data more similar to that of the
final evaluation.

6.3 GRAPH NETWORKS
While the GNN did not improve upon the
reconstruction of the FCN, there might be
potential with this method when scaling up
the number of inputs. It would be inter-
esting to see if encoding the graph into the
network a priori could reduce the number of
trainable parameters needed when dealing
with much larger detectors, where also more
prevalent Compton scattering lead to more
crystal detectors registering a single initial
γ-ray. Perhaps the Crystal Ball has a too
low solid angle resolution for GNNs to be an
appropriate method for this task. Further
investigations of other aggregation rules as
discussed in 3.3 would then be more inter-
esting to make. In [11] a variety of alterna-
tives to the spectral rule (3.4) is mentioned,
where some even make use of convolutions.

6.4 CLASSIFICATION
NETWORKS

The use of additional classification neurons
has been speculated in [3, 4] to give the
network the ability to better determine the
existence of an event. While more events
are correctly registered as empty events, the
accuracy in the reconstruction of existing
γ-rays have so far only been shown to de-
crease. This result was documented in [4]
and yet again observed in Fig. 4.23.

Further investigation should be fo-
cused on the design of the loss function,
since this seems to have the largest impact
in the performance of a neural network. A
few suggestions is firstly to optimize the
proportionality coefficient λ in eq. (4.5).
Using another logistic loss function instead
of binary cross entropy could perhaps be a
good idea as well. An example is the Hinge
loss defined as

L = max
(
0, 1− ββ̂

)
,

where β̂ ∈ {−1, 1} is the correct binary la-

36



6. Discussion

bel and β the predicted value in an appro-
priate domain. For instance when ββ̂ < 1,
the classification is either wrong (ββ̂ < 0)
or correct but with a small confidence (0 ≤
ββ̂ < 1), meaning that Hinge loss also pe-
nalizes inconfident predictions.

Furthermore, one could get rid of the
classification term in the loss function and
try to approach the problem in another way.
On suggestion is the slightly modified

L =
m∑
i

[
βi
∥∥∥pi − p̂i

∥∥∥2
+ (1− βi)

∥∥∥p̂i∥∥∥2
]
,

with βi being sigmoid activated. In this
way, no ambigous factor λ is needed.

6.5 METHODS OF COMPARISON
An important aspect of all scientific stud-
ies is to find accurate methods for evalu-
ating the final result. The primary meth-
ods used in this study where the signal
to background ratio, R, and the absolute
difference between the correct and the re-
constructed energies. Both methods where
adapted from previous theses, with little
to no change, in order to give a fair com-
parison to previous studies. However, after
some investigation, we found that the eval-
uation of the R-value is greatly affected by
the choice of the parameters used to cal-
culate a start approximation to the curves.
Simply changing the initial angle of the ex-
ponential fit by a factor 0.5 changed the
final R-value by a factor 104, implying the
approximation is highly unstable.

37



6. Discussion

38



Bibliography

[1] R. S. Simon, “The darmstadt-heidelberg crystal ball,” Journal de Physique Colloques,
vol. 41, 1980.

[2] S. Lindberg, “Optimised use of detector systems for relativistic radioactive beams,”
Master’s thesis, Inst. för fysik, CTH, Göteborg, 2013.

[3] J. Olander, M. Skarin, P. Svensson, and J. Wadman, “Rekonstruktion från
detektordata med hjälp av neurala nätverk: En studie i tvärsnittet mellan kärnfysik
och maskininlärning,” Tech. Rep., 2018.

[4] R. Karlsson, J. Jönsson, M. Lidén, and R. Martin, “Event reconstruction of γ-rays
using neural networks: Going deeper with machine learning into the analysis of
detector data,” Tech. Rep., 2019.

[5] A. Knyazeva, J. Parka, P. Golubeva, and J. Cederkäll, “Properties of the csi(tl)
detector elements of the califa detector,” Nuclear Instruments Methods in Physics
Research, vol. 940, pp. 393–404, October 2019.

[6] W. R. Leo, Techniques for nuclear and particle physics experiments: a how to
approach. Springer, 1987.

[7] W. Rindler, Relativity: Special, General and Cosmological, 2nd ed. Oxford Press,
2006.

[8] V. Panin, “Fully exclusive measurements of quasi-free single-nucleon knockout
reactions in inverse kinematics,” Ph.D. dissertation, Technische Universität,
Darmstadt, 2012. [Online]. Available:
https://tuprints.ulb.tu-darmstadt.de/id/eprint/3170

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org

[10] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” ICLR
conference paper, 2015.

[11] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE TNN, vol. 20, 2009.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” Presented at the ICLR, Tech. Rep., 2017.

[13] T. S. Jepsen. (2019) How to do deep learning on graphs with graph convolutional

39

https://tuprints.ulb.tu-darmstadt.de/id/eprint/3170
http://www.deeplearningbook.org


Bibliography

networks. [Online]. Available: https://towardsdatascience.com/
how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-62acf5b143d0

[14] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient BackProp. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48. [Online]. Available:
https://doi.org/10.1007/978-3-642-35289-8_3

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” Presented at the International Conference on
Machine Learning, Tech. Rep., 2015.

[16] ONEIROS. (2020) Keras: The python deep learning library. [Online]. Available:
https://keras.io/

[17] G. B. Team. (2020) Tensorflow: Essential documentation. [Online]. Available:
https://www.tensorflow.org/guide/

[18] HPC2N. (2016) Kebnekaise. [Online]. Available:
https://www.hpc2n.umu.se/resources/hardware/kebnekaise

[19] Geant4 Collaboration CERN. (2020) Geant4. [Online]. Available:
http://www.geant4.org/geant4/

[20] H. T. Johansson, “Ggland – command line simulations,” GSI, vol. 2017-1, 2013.

[21] ROOT Data Analysis Framework – Users Guide, May 2018. [Online]. Available:
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideA4.pdf

[22] T. S. Community. (2019) Clough-tocher interpolation. [Online]. Available:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
CloughTocher2DInterpolator.html#scipy.interpolate.CloughTocher2DInterpolator

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[24] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

40

https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-62acf5b143d0
https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-62acf5b143d0
https://doi.org/10.1007/978-3-642-35289-8_3
https://keras.io/
https://www.tensorflow.org/guide/
https://www.hpc2n.umu.se/resources/hardware/kebnekaise
http://www.geant4.org/geant4/
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuideA4.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html#scipy.interpolate.CloughTocher2DInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html#scipy.interpolate.CloughTocher2DInterpolator

	Introduction
	Background
	Previous work
	Purpose and aims
	Delimitations

	Detection of -rays
	The Crystal Ball
	Interactions of -rays with scintillators
	Relativistic effects
	Data analysis using Addback routines

	Artificial neural networks
	Basic concepts
	Forward propagation
	The loss function
	Backpropagation

	Convolutional networks
	Graph networks
	Batch normalization

	Method development
	Building the networks
	Data generation through simulation
	Loss functions
	Investigating different loss functions
	Photon momentum loss
	Permutation loss

	Metrics of performance
	Fully connected networks
	Maximum multiplicity of detected -rays
	Using batch normalization
	Optimization of network dimensions
	Comparison of architectures

	Convolutional Networks
	Rearranging the input
	CNN models
	Optimizing hyperparameters of the CNN
	Dealing with existence

	Graph networks
	Binary classification

	Results
	Methods of comparison
	Comparison with addback

	Discussion
	Conclusion
	Convolutional networks
	Graph networks
	Classification networks
	Methods of comparison


