
Hardware-in-the-loop Communication In-
terface

Master’s thesis in Embedded Electronic System Design

Yang Zhang
Jiaxing Zhu

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Hardware-in-the-loop Communication Interface

Yang Zhang
Jiaxing Zhu

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Hardware-in-the-loop Communication Interface

YANG ZHANG
JIAXING ZHU

© YANG ZHANG, 2020.
© JIAXING ZHU, 2020.

Supervisor: Roger Johansson, Department of Computer Science and Engineering
Supervisor: Tobias Falkman, Volvo Truck Corporation
Examiner: Per Larsson-Edefors, Department of Computer Science and Engineering
Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Hardware-in-the-loop Communication Interface

YANG ZHANG
JIAXING ZHU
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
A system has been designed to perform real-time transmission, between a master
node and single slave node, of two kinds of protocols, EtherCAT and CAN FD.
Implementing such a system requires the design of a PCB for EtherCAT and CAN
FD communication interface and to achieve protocol conversion in C.

The system is able to perform message transmission successfully and correctly in
most test cases except that unstable results occur when 64 bytes CAN FD message
is transmitted. Other aspects of the system including message frame encapsulation,
bit time and voltage are verified, indicating the system is reliable in principle.

There are several potential further developments for this system, among which im-
proving it into multi-slave message broadcast mode is the most interesting since such
a mode is more flexible and closer to realistic needs.

Keywords: protocol conversion, EtherCAT, CAN FD

v

Acknowledgements
We would like to express our most sincere gratefulness to our examiner Per Larsson-
Edefors and supervisor Roger Johannsson for their patience and instructions during
the thesis work.

We would also like to thank the TRIP team from Volvo Group Technology, es-
pecially Richard Prestedge and Tobias Falkman, for providing us with meticulous
care, useful helps and valuable advice so that the thesis can progress smoothly and
successfully.

Yang Zhang Jiaxing Zhu, Gothenburg, June 2020

vii

Contents

Abbreviations xi

1 Introduction 1
1.1 Problem description . 1
1.2 Related work . 2
1.3 Thesis outline . 2

2 Technical Background 5
2.1 Printed Circuit Board . 5
2.2 SPI . 5
2.3 EtherCAT . 6
2.4 CAN . 6
2.5 CAN FD . 7

2.5.1 CAN FD Frame Format . 7
2.5.2 Bit Time . 8
2.5.3 Message Transmission . 9
2.5.4 Message Filtering . 10
2.5.5 Message Reception . 11

3 System Design 13
3.1 System Architecture . 13

3.1.1 EtherCAT . 14
3.1.2 SPI . 14

3.2 Design Decision . 14
3.3 Hardware . 15

3.3.1 Microcontroller . 15
3.3.2 Automotive Networking Board 16
3.3.3 EtherCAT Interface Board . 16
3.3.4 CAN FD Controller Board . 17

3.4 Test Setup . 17
3.4.1 Bit Time Measurement. 17
3.4.2 Voltage Measurement for CAN FD States 18
3.4.3 Message Frame Encapsulation 19

4 Results 21
4.1 Hardware Design . 21
4.2 Implementation Results . 22

ix

Contents

4.3 Test Results . 26
4.3.1 Bit Time Measurement . 26
4.3.2 Voltage Measurement . 26
4.3.3 Message Frame Encapsulation Measurement 27

5 Discussion and Potential Improvements 29
5.1 Discussion . 29

5.1.1 General Performance . 29
5.1.2 Unstable Transmission . 29

5.2 Potential Improvements . 31

6 Conclusion 33

Bibliography 35

A Appendix I

x

Abbreviations

BRS Bit Rate Switch
CAN Bus Controller Area Network
CAN FD Controller Area Network Flexible Data-Rate
CRC Cyclic Redundancy Check
DBRP Data Bit Rate Prescaler
DBR Data Bit Rate
DBT Data Bit Time
DLC Data length code
DTQ Data Time Quanta
EBS Electronic Braking System
ECU Electronic Control Unit
EDA Electronic Design Automation
EDL Extended Data Length Bit
EMI Electromagnetic Interference
EOF End of Frame
ESC EtherCAT Slave Controller
ESI Error Status Indicator Bit
EtherCAT Ethernet for Control Automation Technology
HIL Hardware-In-the-Loop
I2C Inter-Integrated Circuit
IDE Identifier Extension Bit
LIN Local Interconnect Network
MISO Master-In Slave-Out
MOSI Master-Out Slave-In
NBRP Nominal Bit Rate Prescaler
NBR Nominal Bit Rate
NBT Nominal Bit Time
NTQ Nominal Time Quanta
PCB Printed Circuit Board
PHSEG1 Phase Segment 1
PHSEG2 Phase Segment 2
PIM Plug-In Module
PRSEG Propagation Segment
RTR Remote Transmission Bit
RXMAB Receive Message Assembly Buffer
SID Standard Identifier
SOF Start of Frame

xi

Abbreviations

SPI Serial Peripheral Interface
SSC Slave Stack Code
SYNC Synchronization Segment
TQ Time Quanta
TXQ Transmit Queue

xii

1
Introduction

1.1 Problem description

A communication protocol is a system of rules that allow two or more entities of a
communications system to transmit information via any kind of variation of a phys-
ical quantity. Serial peripheral interface (SPI), the controller area network (CAN),
Ethernet for control automation technology (EtherCAT) and controller area net-
work flexible data-rate (CAN FD) are widely used for communication. CAN bus is
developed by BOSCH [1] as a multi-master, message broadcast system that spec-
ifies a maximum bandwidth of 1 Mbit/s [2]. Due to its advantages such as low
cost, robustness and flexibility, CAN bus is widely used in many applications like
cars, trucks, tractors and industrial robots. Due to the fact that a rise in vehicle
functionality is driving an explosion in data and networks are increasingly limited
by the 1 Mbit/s bandwidth, CAN FD [3] emerges as an alternative. It has two
main advantages over standard CAN without changing the physical layers, a faster
bandwidth up to 8 Mbit/s and a variable data payload of up to 64 bytes. Inevitably
next generation electronic control units (ECUs) are using CAN FD for vehicle net-
work communication. EtherCAT [4] is a real-time industrial Ethernet technology
originally developed by Beckhoff Automation. The EtherCAT protocol is suitable
for hard and soft real-time requirements in automation technology, in testing and
measurement and many other applications. EtherCAT has advantages such as short
cycle times, low jitter for accurate synchronization and low hardware costs.

Today the Hardware-In-the-Loop (HIL) test rigs at Volvo Group Trucks Technology
use a commercially available device for a gateway or fieldbus conversion between
EtherCAT and CAN. The HIL rig simulation models use this device to interface
with the real truck Electronic Braking System (EBS) and Active Safety systems.
However the HIL test rigs will be required to implement simulations via EtherCAT
to CAN FD and at present there is no commercially available solution.

In order to solve this problem, the goals of our thesis are as follows:
1. Redesign a merged PCB, merging PIC32 minimum system board and Ether-

CAT slave board from Microchip, for EtherCAT and CAN FD communication
interface.

2. Implement protocol conversion between EtherCAT and CAN FD with the help
of external CAN FD controller. In this case, it would be CAN FD controller
board.

1

1. Introduction

3. Verify whether the whole redesigned prototype works as the expected require-
ments. That is both the signals transmitted between CAN FD and EtherCAT
should be received correctly via ECU. Testing would be performed with the
designed PCB acting as a protocol conversion tool. A signal database is used
for sending random messages through EtherCAT interface and messages re-
ceived from CAN FD interface would be displayed with Vector CANoe [5].
Several preliminary testing criteria could be CAN FD recessive/dominant bit
time measurement with ambient temperature between 18◦C and 28◦C follow-
ing REQ-CAN-28 v3 [6] and verifying whether message frame encapsulation,
such as the extended data length (EDL) bit, identifier extension bit (IDE) bit
and bit rate switch (BRS) bit, meets REQ-CAN-04 v1 [6].

Some of the research challenges that have to be addressed are:
1. Find the cause of the extra empty data when receiving SPI data on ECU and

then figure out a proper method to solve it.
2. Set up an appropriate testing architecture and testing method for verifying

the function of our prototype.

1.2 Related work
In recent years, a significant amount of papers describe advantages of CAN FD.
In [7], the authors concludes CAN FD has faster object pool transference, lower bus
load usage, shorter worst case response time, and lower jitter. However, CAN FD
has some potential problems such as the same security problems as standard CAN.
In [8], the authors propose a practical security architecture for in-vehicle CAN FD
communication which is tested by using three microcontrollers and CANoe software.
Furthermore, as shown in [9], the authors provide a formula to calculate transmission
time in CAN FD frames. Their effort brings a framework to solve the optimisation
problem in pseudo-polynomial time. Based on these works, from theoretical design
to practical optimization and testing, CAN FD can be the next CAN technology
used in automation industries [10].

However, there are no commercial solutions which are compatible with both Ether-
CAT and CAN FD. The existing products only work between EtherCAT and stan-
dard CAN. The typical products are EtherCAT-CAN Gateway from Esd Electron-
ics [11], and Anybus Communicator CAN-EtherCAT [12]. The maximum CAN
data-rate of these products is limited to 1 Mbit/s.

1.3 Thesis outline
Chapter 2 explains the basic theory of CAN FD, including frame format, message
transmission and reception mechanism.

Chapter 3 presents the thesis step by step. It is divided into three parts: sys-
tem architecture overview, hardware used in thesis and testing methodology.

2

1. Introduction

Chapter 4 lists the current implementation results of the thesis work.

Chapter 5 discusses important results in result section, and gives some potential
improvements for future work.

Chapter 6 lists the final conclusion for the thesis project.

3

1. Introduction

4

2
Technical Background

This chapter lays a technical foundation for the thesis, including printed circuit
board (PCB), SPI, EtherCAT, CAN and CAN FD.

2.1 Printed Circuit Board
A PCB provides robust mechanical support and electrical connection by using con-
ductive wires, holes, copper planes and other non-conductive materials. PCBs have
played an important role and have been widely used, especially in embedded elec-
tronics systems [13]. According to amount of layers, PCBs can be classified as single-
side boards, double-side boards and multi-layer boards. Components can only be
placed on the same side of single-side boards. For double-side boards, components
are allowed to be placed on both sides of boards. The multi-layer boards are suitable
for higher density design. It provides extra inner signal layers, which allow routing
and internal planes for power and ground connection.

Generally, the PCB design starts from a schematic design. According to project
requirements, proper circuits and components should be decided. The PCB param-
eters, including size of PCB, layer stack configuration and design rules should be
decided. After placing components and routing, manufacture files including gerber
files and NC drill files can be sent to the manufacturer.

The Altium company provides an electronic design automation (EDA) tool called
Altium Designer. This tool can support schematic design, PCB design and manu-
facture output [14]. In this project, Altium Designer 20 is used.

2.2 SPI
SPI [15] is a synchronous serial communication interface specification used for short-
distance communication, primarily in embedded systems. Due to its multiple ad-
vantages, such as simple hardware, higher throughput than Inter-Integrated Circuit
(I2C) and simple software implementation, SPI is one of the most widely used in-
terfaces between microcontroller and peripheral ICs. SPI devices communicate in
full duplex within a master-slave architecture. The master uses SCLK line to syn-
chronize with slave devices before transmitting messages using Master-Out Slave-In
(MOSI) line and receiving messages using Master-In Slave-Out (MISO) line. Sim-
ilarly, slave devices receive messages on MOSI line and output messages on MISO

5

2. Technical Background

line. The SS line can be used to select which slave device to carry out the work if
there are several slaves in a system.

2.3 EtherCAT
EtherCAT enjoys a unique principle called "processing on the fly", which means
as a single message issued by the EtherCAT master walks through each node in
the network, each node reads its input and adds its output to the message. The
EtherCAT message continues going to the next node while the former node processes
the input. This unique principle enables an EtherCAT network to achieve maximum
bandwidth utilization.

2.4 CAN
A CAN bus allows devices to communicate with each other without a host com-
puter. The highest Nominal Bit Rate (NBR) of CAN bus is up to 1 Mbit/s, and
the payload is from 0 byte to 8 byte. CAN message is transmitted only with NBR.

For frame types, a CAN frame includes data frame, remote frame, error frame
and overload frame. Detailed data frame is depicted in Fig. 2.1, composed of 7
different bit fields, namely Start of Frame (SOF), Arbitration Field, Control Field,
Data Field, Cyclic Redundancy Check (CRC) Field, Acknowledge (ACK) Field and
End of Frame (EOF).The CAN bus also supports two frame formats which are base
format and extended format. The only difference between these two types of formats
is the length of the identifier.

SOF ARBITRATION CTRL DATA CRC ACK EOF

Figure 2.1: CAN data frame

Data length code (DLC) in Control Field specifies the number of data bytes to be
transmitted, as illustrated in Table 2.1.

6

2. Technical Background

DLC Number of Data Bytes
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Table 2.1: CAN DLC Encoding

2.5 CAN FD
CAN FD is an update of the original CAN bus, to increase capability of transmitting
without changing physical layers. The maximum bit rate is up to 8 Mbit/s, and
CAN FD can transmit 64 byte data at most in a single frame rather than 8 byte
data at most in CAN. Another improvement is that CAN FD supports dynamically
switching to different data-rate and message size.

2.5.1 CAN FD Frame Format
In our thesis work, CAN FD base frame is used. Detailed frame format is depicted
in Fig. 2.2, composed of 7 different bit fields, SOF, Arbitration Field, Control Field,
Data Field, CRC Field, ACK Field EOF.

Standard Identifier (SID) in Arbitration Field is used for message priority com-
parison when there are a couple of nodes competing for the bus. It can also be used
to enable filters to filter messages during message reception.

Bit rate switch (BRS) in Control Field decides whether the whole frame will be
transmitted using Nominal Bit Rate (NBR) only or using both NBR and Data Bit
Rate (DBR).

DLC in Control Field specifies the number of data bytes to be transmitted, as
illustrated in Table 2.2.

SOF ARBITRATION CTRL DATA CRC ACK EOF

Figure 2.2: CAN FD base frame

7

2. Technical Background

DLC Number of Data Bytes
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 12
10 16
11 20
12 24
13 32
14 48
15 64

Table 2.2: CAN FD DLC Encoding

2.5.2 Bit Time
As mentioned before CAN frame is only transmitted using NBR. Two bit rates,
NBR and DBR, are used for transmitting bits in a CAN FD frame so that higher
bandwidth is achieved. NBR is the number of bits per second, which is used from
the arbitration field to the sample point of BRS, and from the sample point of the
CRC delimiter to EOF. It is the inverse of the Nominal Bit Time (NBT). Similarly
DBR is the number of bits per second, which is used during the data phase and
CRC field. It is the inverse of Data Bit Time (DBT).

Nominal Bit Rate Prescaler (NBRP) and Data Bit Rate Prescaler (DBRP) are
used for calculating Nominal Time Quanta (NTQ) and Data Time Quanta (DTQ)
respectively (see equation 2.1 and equation 2.2). Time quanta is the basic unit of
bit time and there can be multiple time quanta in a bit time.

NTQ = NBRP

Fsysclk

(2.1)

DTQ = DBRP

Fsysclk

(2.2)

As specified in ISO11898-1:2015 there are four segments in CAN bit time (see Fig.
2.3), namely Synchronization Segment (SYNC), Propagation Segment (PRSEG),
Phase Segment 1 (PHSEG1) and Phase Segment 2 (PHSEG2).In the Bit Time reg-
isters, PRSEG and PHSEG1 are combined to create TSEG1. PHSEG2 is called

8

2. Technical Background

TSEG2. Each segment has multiple Time Quanta (TQ). The sample point lies be-
tween TSEG1 and TSEG2.

SYNC

SYNC

PRSEG PHSEG1 PHSEG2

TSEG1 TSEG2

TBitTime

Sample Point

Figure 2.3: Partition of Bit Time [16]

The number of time quanta in a bit time is calculated using equation 2.3 and equa-
tion 2.4.

NBT

NTQ
= NSY NC +NTSEG1 +NTSEG2 (2.3)

DBT

DTQ
= DSY NC +DTSEG1 +DTSEG2 (2.4)

2.5.3 Message Transmission
Fig. 2.4 demonstrates that CAN and CAN FD messages queued for transmission
follow the following rules:

1. Whenever a message is loaded into a FIFO or Transmit Queue(TXQ) and is
ready for transmission, the TXREQ bit is set.

2. Determine the transmit priority. The respective priority of FIFOs and TXQ
will be compared and the transmit order for messages inside a FIFO or TXQ
is calculated as well.

3. The highest priority message can not start transmission, also known as pending
for transmission, until the bus is idle.

4. A pending message can only be aborted before SOF is transmitted.
5. During the course of message transmission, the CAN FD Protocol Module

checks if there are loss of arbitration or transmit errors.
6. The TXREQ will only be cleared after all messages inside the FIFO are trans-

mitted.

9

2. Technical Background

7. In case of arbitration loss, transmission will be aborted and the device will
switch to message reception.

8. In case of transmission error, an error frame will still be transmitted and the
corresponding error flags of FIFO or TXQ will be set. Retransmission attempts
will be performed.

IDLE

Calculate
TX Priority

TX Pending

Abort All
Clear All TXREQ

Set All TXABT

TX Abort
Set TXABT

TX in
Progress

TX Successful
Set TXIF

Clear TXREQ

Lost Arbitration
Set TXLARB

TX Err
Set TXERRIF
TX Attempts--

TX
Attempts

>0?

Clear TXREQ
Set TXATIF

RX Message

Any
TXREQ

Bus
IDLE

Success

Lost
Arbitration Error

Yes

No

Abort:
Set ABAT

Abort: Clear
TXREQ

Figure 2.4: Transmit state diagram [16]

2.5.4 Message Filtering
Since all messages on a CAN network will be received by all nodes, message filtering
should be implemented so that only messages of interest for a particular node will be
processed. There are 32 filters in CAN FD module and each filter can be configured
to only receive messages with specific SID and message data. A simple filtering
procedure is as follows:

1. After arbitration field and the first three data bytes are received, CAN FD
protocol module commences message filtering, starting with Filter 0.

2. Messages received in Receive Message Assembly Buffer(RXMAB) are com-
pared to the filter and mask. If matched and received with no errors, the
messages will be stored into the corresponding RX FIFO.

3. The module will loop through all filters. If none of the filters match, the
received message will be discarded.

10

2. Technical Background

4. Though the message is matched with filter, it will not be stored into RX FIFO
if FIFO is full and RXOVIF will be set.

2.5.5 Message Reception
Fig. 2.5 illustrates how CAN and CAN FD messages are received, following the
steps below:

1. Once a SOF is detected, the CAN FD Protocol Module will continue receiving
arbitration field and control field.

2. Message filtering starts.
3. If a filter matches and the corresponding RX FIFO is not full, the rest of data

bytes will be received and stored into FIFO. The FIFO status flag will be
updated as well.

4. If a filter matches and the corresponding RX FIFO is full, the RXOVIF bit
will be set. The rest of the messages will still be received but will not be
stored.

5. If none of the filters match, the messages will be received without storing.
6. In case an error is detected during the reception of a message, an error frame

will be transmitted and the appropriate error flags will be set.

11

2. Technical Background

IDLE

Receive
Arbitration and

CTRL field

Receive Data
Bytes 0-3

Filter
Match?

RX
FIFO
Full?

Receive
Remaining Data

Bytes

Receive Rest of
Message Store Message

into RX FIFO

Transmit Error
Frame

Set Error Flags
Receive Rest of

Message

Set RXOVIF

SOF

Success

Success

Success

Error

Error

Error

Error

Transmit Error
Frame

Set Error Flags

Error

Success

Success

Yes

Yes

No

No

Figure 2.5: Receive state diagram [16].

12

3
System Design

3.1 System Architecture

An overview of the current system is shown in Fig. 3.1. The current imple-
mentation consists of the following modules:TWINCAT [17], EtherCAT interface
board [18][19][20], one automotive networking board [21] with PIC32MX795F512L [22],
another automotive networking board with dsPIC33CK256MP508 [23] and CAN FD
controller board [24], Vector VN1630A [25] and CANoe. The function of each mod-
ule is briefly described as follows:

1. TWINCAT is used to define the messages types that should be transmitted
and received, and displayed the content of the messages.

2. EtherCAT interface board facilitates messages transmission between TWIN-
CAT and PIC32.

3. function of PIC32 is a middle message transfer station.
4. dsPIC33 encapsulates messages into CAN FD frame format and unpacks CAN

FD messages. CAN FD controller is a transceiver for CAN FD messages.
5. Vector VN1630A is a bus transceiver. It can be considered as a communication

bridge between CAN FD controller and CANoe.
6. CANoe is a comprehensive tool for ECU network analysis. In our thesis, it is

used to display and define the content CAN FD messages.

SPI2

dsPIC33

C
AN

 FD
C

ontroller

CAN FD

PIC32

Vector
VN1630ACANoe

Automotive
Networking
Board

Automotive
Networking
Board

SPI4

EtherCat
TWINCAT

EtherCat
Interface
Board

PHY0

PHY1

Figure 3.1: System Overview.

13

3. System Design

3.1.1 EtherCAT
The EtherCAT messages to be sent are configured using Slave Stack Code (SSC)
tool, with the specific excel file defining the interface nodes of EtherCAT messages,
as shown in Fig. 3.2. After appropriate settings, SSC tool generates device descrip-
tion files and corresponding slave stack code, in which the source codes are modified
accordingly which copies the application data to/from the EtherCAT Slave Con-
troller (ESC) memory to the local application memory.

TWINCAT is then used to fill EtherCAT messages with data and visualize the
content of received data, which facilitates verifying whether the prototype works as
intended or not.

Figure 3.2: Example of EtherCAT Message.

3.1.2 SPI
Necessary configurations have to be set before SPI channel 2 of PIC32 can function
correctly. Once it is set, all of the EtherCAT messages (Fig. 3.2) are stored in a
transmit buffer before they are sent. Similarly a receive buffer is used for keeping
the received data. The SPI of PIC32 allows writing and reading SPI2BUF register
simultaneously, meaning that transmitting data from the transmit buffer and storing
received data into the receive buffer are feasible.

3.2 Design Decision
The number of CAN FD message
As shown in Fig. 3.2, the EtherCAT messages are equivalent to one CAN FD mes-
sage when they are encapsulated into CAN FD frame format. The reason why only
one CAN FD message is defined in TWINCAT is that if multiple equivalent CAN
FD messages are transmitted from TWINCAT, the EtherCAT interface board can
not function properly due to limited memory. In order to simplify the thesis work
and increase our chances of successfully implementing a prototype, it is decided to
define the EtherCAt messages shown in Fig. 3.2.

Choosing suitable baud rate for CAN FD
Since the SPI bus speed is set to 2 MBd/s in Volvo’s previous TWINCAT appli-
cation, the bus speed for CAN FD should not be too fast. Due to the way the
code is designed, the CAN FD module in dsPIC33 can not store all of the CAN FD
messages from CANoe if CAN FD baud rate is much faster than that of SPI. So in

14

3. System Design

our project, the SPI baud rate is set to 2Mbit/s and the NBR and DBR are set to
500kbit/s and 4Mbit/s respectively.

3.3 Hardware

3.3.1 Microcontroller
The PIC32MX795F512L and dsPIC33CK256MP508 microcontrollers are used in the
project. They are all designed by Microchip. The main frequency of PIC32 (see Fig.
3.3) is up to 80 MHZ. PIC32 supports different communication interfaces, including
up to four 4-wire SPI whose clock is up to 25 MHZ, one CAN module, I2C module
and UART module.

The dsPIC33 (see Fig. 3.4) is a 16-bit microcontroller, and its main frequency
is up to 100 MHZ. The microcontroller has three 4-wire SPI interface and one CAN
FD module.

Figure 3.3: Microchip PIC32MX795F512L Plug-in Module.

Figure 3.4: Microchip dsPIC33CK256MP508 Plug-in Module.

15

3. System Design

3.3.2 Automotive Networking Board

The Microchip automotive networking board (see Fig. 3.5) is a modular development
system which mainly includes a 100 pin Plug-In Module (PIM) connector and four
mikroBUST M sockets. The PIM connector is compatible with Microchip’s 8-bit,
16-bit and 32-bit microcontrollers, and four mikroBUST M sockets [26] support CAN
communication and Local Interconnect Network (LIN) communication. Therefore,
the development board is very general by swapping different microcontrollers’ PIM
and adding various MikroElectronika ClickT M add-on boards which is compatible
with mikroBUST M sockets.

Figure 3.5: Microchip Automotive Networking Board.

3.3.3 EtherCAT Interface Board

The EtherCAT interface board (see Fig. 3.6) whose part number is EVB-LAN9252-
SPI in Microchip company. The core is LAN9252 EtherCAT slave controller chip
from Microchip [27]. The board includes dual integrated high-performance 100Mbps
Ethernet PHYs.

Figure 3.6: Microchip EtherCAT Slave Controller Board.

16

3. System Design

3.3.4 CAN FD Controller Board

The CAN FD controller board (see Fig. 3.7) is compatible with mikroBUST M socket
on automotive networking board, and it uses MCP2542FD designed by Microchip,
a CAN FD transceiver supporting both CAN and CAN FD.

Figure 3.7: Microchip CAN FD Module.

3.4 Test Setup

The test is based on the ECU CAN interface test specification from Volvo [6]. The
test includes bit time measurement, voltage measurement for CAN FD and message
frame encapsulation test.

3.4.1 Bit Time Measurement.

The bit time measurement configuration is shown in Fig. 3.8. A termination resis-
tor (Rtest) should be connected between CANH and CANL outputs. The distance
between ECU and Rtest should be 1 meter. If there is a termination resistor inside
the ECU, the value of Rtest should be 120 Ω, otherwise a 60 Ω resistor should be used.

The specific requirements of testing are:
1. The measurement should use a very specific sequence. For recessive bit time

measurement, the recessive bit occurs after five consecutive dominant bits.
Similarly, the dominant bit occurs after five consecutive recessive bits for dom-
inant bit time measurement.

2. Both arbitration phase measurement and data phase measurement should be
performed at least twice.

3. According to Volvo requirement, tolerance of arbitration phase bit time and
data phase bit time at TXD output shall not exceed +/- 0.4%, including clock
skew, jitter and asymmetry.

17

3. System Design

ECU

TXD

RXD

CANH

CANL

CH1

Oscilloscope

Rtest

Figure 3.8: CAN FD Bit Time Measurement.

3.4.2 Voltage Measurement for CAN FD States

The voltage measurement configuration for CAN FD is shown in Fig. 3.9. A 60 Ω
resistor is used for ECU without a termination resistor inside, otherwise Rtest should
be 120 Ω. The voltage for CAN FD is measured at ambient temperature between
18◦C and 28◦C. The Volvo requirement for CAN FD recessive state and dominant
state is shown in Fig. 3.10 and Fig. 3.11 separately.

Figure 3.9: Voltage Measurement for CAN FD Dominant State and Recessive
State.

Figure 3.10: Voltage Requirement for CAN FD Recessive State.

18

3. System Design

Figure 3.11: Voltage Requirement for CAN FD Dominant State.

3.4.3 Message Frame Encapsulation
It is necessary to check CAN FD frame bit by bit to make sure that the transmission
is successful. According to the Volvo test specification, a CAN FD logging tool and
an oscilloscope with CAN FD decoder are used.

The arbitration field should be checked as follows:
1. In arbitration field in CAN FD, the remote transmission bit (RTR) which is

used in CAN is removed.
2. The identifier extension bit (IDE) should be set to dominant in standard mode.
3. The r0 and r1 bit should be set to dominant.
4. The EDL bit , which is also called FD format (FDF) bit, should be set to

recessive for CAN FD.
5. The BRS and error status indicator bit (ESI).

19

3. System Design

20

4
Results

4.1 Hardware Design
The new EtherCAT slave controller board includes LAN9252 and PIC32 to transfer
data via Ethernet and SPI protocol. Top schematic (see Fig. A.1) includes four
sub-sheets that is EtherCAT_IO, EtherCAT_controller, PIC32_MCU and power.
In EtherCAT_IO sub-sheet (see Fig. A.2), two RJ45 connectors are configured, and
they are connected with LAN9252 via eight data transfer pins. The SCL pin and
SDA pin are used as I2C protocol to interface with 24FC512-I/SM that is a EEP-
ROM chip to store data. In EtherCAT_controller sheet (see Fig. A.3), LAN9252
is configured [19]. The SPI4 of the chip is used to interface with PIC32 microcon-
troller. Similarly, PIC32_MCU sheet (see Fig. A.4) includes configuration circuits
of microcontroller. The power sub-sheet (see Fig. A.5) includes circuits to filter 3V
and 5v from external power supplier.

Figure 4.1: PCB design of EtherCAT slave Controller Board.

21

4. Results

For PCB design as shown in Fig. 4.1, the EtherCAT slave Controller Board is a
4-layer board including 2 signal layers, one power plane and one ground plane. The
ground plane is split as earth area that is connected with the shell of RJ45 and
GND area which is connected with other ground pins. The power plane is divided
into 3.3V area, 5V area and VDD area. The VDD can be connected with either
3.3V or 5V by toggling a switch.

The board size is 90 mm × 70 mm, and the basic rule to decide board size is
to find a balance between smaller size and less layers. The board uses three 30-pin
standard 2.54 mm connectors to interface with a motherboard designed by Volvo
Truck Corporation. Almost all pins of LAN9252 and PIC32 microcontroller, except
for power pins and ground pins, are kept in these three connectors. Therefore, the
new slave controller board has better compatibility, and it can be used for further
development.

In order to get better Electromagnetic Interference (EMI) performance, decoupling
capacitors are used for the power pins of LAN9252 and PIC32 microcontroller[19][28].
The data transfer wires between RJ45 and LAN9252 are set as differential pairs to
equalize their length. Regarding different pins, three special net classes are set.
Main_power class includes 3.3V and 5V from external supplier, and VDD pins.
Sub_power class contains power pins of chips. The earth and GND are included
in Ground class. Other pins are set as normal pins. Then, in order to have better
electrical performance, different trace width is matched for different classes. The
trace width for main_power and Ground class is 20 mil. Sub_power class uses trace
with 15 mil, and other traces are 6 mil.

4.2 Implementation Results
The final prototype is presented in Fig. 4.2 and it is the physical realization of system
architecture displayed in Fig. 3.1. According to the plan, the C part in Fig. 4.2
which includes PIC32 module, automotive networking board and EtherCAT slave
controller board should be replaced by the new designed EtherCAT slave controller
board (see Fig. 4.1), and the B part in Fig. 4.2 should be replaced by a motherboard
designed by Volvo. However, due to the corona virus and the layoff of Volvo, the new
designed board could not be manufactured on time and Volvo could not finish the
motherboard design on time either. Therefore, old boards are used in the prototype
test.

22

4. Results

Figure 4.2: Prototype under test. A is the Vector VN1630A tool which is used
with CANoe software. B is Microchip automotive networking board with CAN
FD controller and dsPIC33. C is the microchip automotive networking board with
PIC32 and EtherCAT slave controller.

In order to test function of the prototype, manual testing is chosen which means
that testing cases are changed manually. Automatic testing based on database
should be a better choice. However, in database provided from Volvo, the most of
testing cases are 0. It is not obvious to verify whether the transmission works or not.

In general the prototype is able to perform message transmission from TWINCAT
to CANoe correctly. As shown in Fig. 4.3, the transmission between TWINCAT
and CANoe works without any error. The DLC is set to 15 which means that the
data payload is 64. In Fig. 4.3 (a), a message is configured in TWINCAT. The
MAIN.iINx and MAIN.iOUTx is corresponding to the position of data byte in CAN
FD data frame, where x is a number from 1 to 64. For instance, MAIN.iIN6 and
MAIN.iOUT6 is connected with the sixth data byte in CAN FD data frame. There-
fore, the first data byte in CAN FD data field is set to 0x01. The other positions
are similar. CANoe receives this message (see Fig. 4.3 (b)). The first data byte is
0x01, and other data match with the configuration in TWINCAT. In an opposite
direction, a message is configured in CANoe (see Fig. 4.3 (c)), the first data byte
in data field is set to 0x1c, and other positions are shown in the figure. Fig. 4.3 (d)
shows the received message in TWINCAT, the MAIN.iIN1 is 0x1c which matches
with the first data byte in CANoe configuration. Other positions match with con-
figuration as well. Similarly, when the DLC is configured to 10 which means that
the payload is 16, the transmission works properly as well (see Fig. 4.4). The mas-
sage that CANoe receives (see Fig. 4.4 (b)) matches with the message configured
in TWINCAT (see Fig. 4.4 (a)). In an opposite direction, TWINCAT receives the
exactly same message (see Fig. 4.4 (d)) that configured in CANoe (see Fig. 4.4 (c)).
It shows that the prototype can transmit messages correctly under different DLC
setting.

Minor problems, for example some messages received in TWINCAT cannot be sta-
ble, will be discussed in next Chapter.

23

4. Results

(a)

(b)

(c)

(d)

Figure 4.3: Transmission results when the data payload is 64. (a) shows messages
sent from TWINCAT, and (b) shows that CANoe receives exactly the same data
from TWINCAT. (c) shows CAN FD frame sent from CANoe, and (d) illustrates
TWINCAT receives exactly the same data from CANoe.

24

4. Results

(a)

(b)

(c)

(d)

Figure 4.4: Transmission results when the data payload is 16.
25

4. Results

4.3 Test Results

Following the test setup mentioned in section 3.3, several tests are accomplished .

The bit time configuration is shown in Table 4.1 and this bit time configuration
is based on the CANoe configuration file from Volvo which requires that the sam-
pling point should be 70%. The TSEG1 and TSEG2 are calculated based on it.
Other parameters are set automatically by MPLAB tool [29] from Microchip.

CAN FD Controller Configuration Arbitration Phase Data Phase
Clock Frequency 80 MHz 80 MHz
BR Prescaler 1 1

Number of Time Quanta 80 10
TSEG1 54 5
TSEG2 23 2
SJW 23 2

Table 4.1: Bit time configuration of CAN FD controller.

4.3.1 Bit Time Measurement

Bit time measurement results are shown in Table 4.2 and Table 4.3, where the
arbitration phase bit rate is set to 500 kbit/s and data phase bit rate is set to 4
Mbit/s.

Recessive State Dominant State Requirements
Average Test Result 2.006 µs 2.008 µs 1.992-2.008 µs

Table 4.2: CAN FD Bit time measurement for arbitration phase.

Recessive State Dominant State Requirements
Average Test Result 250.5 ns 250.6 ns 249-251 ns

Table 4.3: CAN FD Bit time measurement for data phase.

4.3.2 Voltage Measurement

Voltage measurement results are shown in in Fig. 4.5 and Fig. 4.6, suggesting that
the CAN FD controller operates in a normal state.

26

4. Results

Figure 4.5: Test result of Dominant state voltage.

Figure 4.6: Test result of recessive state voltage.

4.3.3 Message Frame Encapsulation Measurement
Detail CAN FD frame is verified and part of the arbitration phase is presented in
Fig. 4.7, where IDE, r0 and ESI are set to dominant while FDF and BRS are set to
recessive. It should be pointed out that r1 is named RTR by the oscilloscope and
r1 (RTR) is set to dominant. In all the logic sequence of Fig. 4.7 is consistent with
its requirement.

Figure 4.7: CAN FD arbitration field.

27

4. Results

28

5
Discussion and Potential

Improvements

5.1 Discussion

5.1.1 General Performance
As shown in Chapter 4, the prototype implements an interface between TWINCAT
and CANoe successfully, and it meets the requirements of Volvo regarding to bit
time, voltage measurement and CAN FD frame encapsulation. However, unstable
transmission from CANoe to TWINCAT happens infrequently. TWINCAT loses
one or more logic-high bits for some data transmission.

5.1.2 Unstable Transmission
Currently, the communication between TWINCAT and CANoe works for most of
the test cases, as shown in section 4.2. However, there is a problem which is the
unstable transmission for some certain test cases. In Fig. 5.1, the 64th data byte
is configured to 0x70 in CANoe, and TWINCAT should receive the same result if
the system works properly. However, the result jumps between 0x70 and 0x60. If
the other position in data frame is configured to 0x70, the result in TWINCAT is
stable and correct. Similarly, the same phenomenon happens on the 14th data byte
if it is set to 0x1c.

Based on our code (see Fig. 5.2), the CAN FD data frame is operated as a buffer.
CAN FD transmitting and receiving are executed in mSPI1_Exchange16bitBuffer
funtion controlled by an iteration. Theoretically, either 14th data byte or 64th data
byte should not have logic difference compared with other positions, and the func-
tion should not be sensitive to some certain values either. Furthermore, when we
check the data sent from SPI back to EtherCAT slave controller board, as shown
in Fig. 5.3, the 64th data byte (0x70) is correct. However, the oscilloscope some-
times gets the wrong data due to some noise within transmission back to TWINCAT.

One of the potential reasons for this problem is that we only use one SPI isola-
tor click board [30] [31] between two automotive networking boards. When we
check the data sent from TWINCAT to CANoe, it is always correct and stable. In
the opposite direction, as mentioned before, oscilloscope sometimes gets the wrong
value because of noise and disturbance. The reason why we cannot use pair of iso-

29

5. Discussion and Potential Improvements

lator boards is that the clock port of the board is uni-directional. The noise and
disturbance might be reduced if suitable isolators can be used in pairs.

(a) (b)

(c) (d)

Figure 5.1: Unstable transmission of the 14th and the 64th data byte. (a) and (b)
show that TWINCAT receives either 0x60 (96 in decimal) or 0x70 (112 in decimal)
of the 64th byte, where 0x70 should be the correct result. (c) and (d) show that
TWINCAT receives either 0x10 (16 in decimal) or 0x1c (28 in decimal) of the 14th
byte, where 0x1c should be the correct result.

Figure 5.2: CAN FD transceiving code.

30

5. Discussion and Potential Improvements

Figure 5.3: The last two bytes sent from SPI back to EtherCAT slave controller
board.

5.2 Potential Improvements

There are several improvements that could be performed to get better performance
for the whole system. This section contains a list of potential aspects.

Using the new EtherCAT slave controller board
Due to the corona virus and the layoff in Volvo truck, the new-designed EtherCAT
slave controller board (see section 4.1) can not be manufactured on time, and Volvo
can not finish the new motherboard design on time either. In the prototype, two
Microchip automotive networking boards are connected with enameled wires. These
wires might bring unnecessary noise to make the system become unstable and un-
robust. Therefore, it is better to use robust standard connectors to connect slave
controller and motherboard, instead of using enameled wires.

Implementing multiple slave nodes mode
In the prototype, the transmission between TWINCAT and single slave node is
achieved. Although it has met the requirement of Volvo truck, it is meaningful to
investigate the possibility to let the system be suitable for multiple slave nodes.
Furthermore, the new designed EtherCAT slave controller slave board provides this
possibility, as far as hardware is concerned. The most of the spare pins of the chips
are wired to standard connectors which are connected with the motherboard. These
pins contain spare communication channels which can be used for multiple slave
nodes. Therefore, implementing multiple slave nodes mode can make the system
more flexible and generic.

Testing transmission performance using dynamic inputs
In the testing, test cases use either static inputs or can be changed manually. How-
ever, both TWINCAT and CANoe configurations can change frequently. For ex-
ample, CANoe can be configured by a database which includes large test cases.
Therefore, it is valuable to do transmission testing by using dynamic inputs. The

31

5. Discussion and Potential Improvements

transmission delay and potential bugs can be found, which can improve robustness
of the whole system.

Using ring buffer
To reduce transmission delay when using dynamic inputs, an more effective data
storage structure, like using ring buffer, should be investigated.

32

6
Conclusion

The goal of this thesis is to implement a communication interface for EtherCAT
and CAN FD messages. It involves designing a PCB for EtherCAT and CAN FD
communication interface and writing software to test and verify the prototype design.

The PCB has been approved by Volvo and the system has been tested in real-time as
well. The results shown in Section 4.2 and Section 4.3 demonstrate that the system
is capable of transmitting EtherCAT and CAN FD messages correctly in terms of
bit time, voltage measurement, message frame encapsulation and message reception.

Unstable transmission however occurs infrequently and we can not conclude what
kind of message would suffer from such a phenomenon and when it could happen.
One possible reason for the unstable transmission is that environment noise affects
the logic state of some bits due to the lack of an SPI isolator, which is discussed in
Section 5.1.2.

There are several possible improvements to make the system more generic, flexible
and robust, including using a new EtherCAT slave controller board, implementing
multiple slave nodes mode, testing transmission performance using dynamic inputs
and using ring buffer.

33

6. Conclusion

34

Bibliography

[1] Bosch White Paper. CAN with flexible data rate, 2011, [online] Available:
http://www.bosch-semiconductors.de.

[2] Introduction to the Controller Area Network (CAN), TEXAS INSTRUMENTS,
MAY. 2016, [online] Avaiable:http://www.ti.com/lit/an/sloa101b/sloa101b.pdf

[3] R. B. Gmbh, CAN with flexible data-rate, 2012.
[4] EtherCAT Introduction, [Online]. Available:https://www.ethercat.org/en/

technology.html
[5] CANoe Introduction, [Online]. Available:https://www.vector.com/int/en/

products/products-a-z/software/canoe/
[6] ECU CAN Interface Test Specification, VOLVO, July. 2018.
[7] G. M. Zago and E. P. de Freitas, “A quantitative performance study on can

and can FD vehicular networks,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp.
4413–4422, May 2018.

[8] S. Woo, H. J. Jo, I. S. Kim and D. H. Lee, "A Practical Security Architecture
for In-Vehicle CAN-FD," in IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 8, pp. 2248-2261, August. 2016.

[9] U. D. Bordoloi and S. Samii, "The Frame Packing Problem for CAN-FD," 2014
IEEE Real-Time Systems Symposium, Rome, 2014.

[10] H. Eisele and K.P. Orlando, "What CAN-FD offers for automotive network-
ing?", In Stuttgart International Symposium on Automotive and Engine Tech-
nology, 2014.

[11] EtherCAT-CAN Gateway Data Sheet, ESD Electronics, 2013.
[12] Anybus Communicator CAN-EtherCAT User Manual, Anybus, November.

2013.
[13] Joseph LaDou, Printed circuit board industry, International Journal of Hygiene

and Environmental Health, Volume 209, Issue 3, 2006, Pages 211-219.
[14] Altium Designer 20 Feature, [Online]. Available:https://www.altium.com/altium-

designer/feature-playlists
[15] SPI Block Guide, MOTOROLA, February. 2003.
[16] dsPIC33/PIC24 FRM, CAN Flexible Data-Rate (FD) Protocol Mod-

ule,MICROCHIP,January. 2019
[17] TWINCAT Introduction, [Online]. Available:https://www.beckhoff.com/twincat/
[18] EVB-LAN9252-SPI Quick Start Guide, MICROCHIP, May. 2017.
[19] EVB-LAN9252-SPI-Schematics-Rev-A0, MICROCHIP, March. 2019.
[20] EVB-LAN9252-SPI-Board Design Files-Altium-Rev-A0, MICROCHIP, March.

2019

35

Bibliography

[21] Automotive Networking Development Board User’s Guide, MICROCHIP, Oc-
tober. 2016.

[22] PIC32MX5XX/6XX/7XX Family Data Sheet, MICROCHIP, September. 2019.
[23] dsPIC33CK256MP508 Family Data Sheet, MICROCHIP, October. 2019.
[24] MCP2517FD External CAN FD Controller with SPI Interface, MICROCHIP,

October. 2017
[25] VN1600 Interface Family Manual, VECTOR, January. 2020.
[26] mikroBUST M standard, MikroElektronika, May. 2015.
[27] LAN9252 - 2/3-Port EtherCAT Slave Controller with Integrated Ethernet

PHYs, MICROCHIP, January. 2015.
[28] PIC32MX795F512L 100-pin to 100-pin TQFP CAN-USB Plug-in Module

(PIM) Info Sheet, MICROCHIP, January. 2014.
[29] MPLAB IDE Introduction, [Online]. Available:https://www.microchip.com/

mplab/mplab-x-ide
[30] SPI Isolator Click Introduction, [Online]. Available:https://www.mikroe.com/

spi-isolator-click
[31] Digital Isolator for SPI Data Sheet, ANALOG DEVICES, July. 2017.

36

A
Appendix

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2020/6/10 Sheet of
File: C:\Users\..\Top.SchDoc Drawn By:

TXA_N
TXA_P
RXA_N
RXA_P
TXB_N
TXB_P
RXB_P
RXB_N
GPIO2
GPIO1
GPIO0

SPI SI
SPI SO

SPI SCS#

SPI SCK

SDA
SCL

IRQ

SYNC0
SYNC1

U_EtherCAT_Controller
EtherCAT_Controller.SchDoc

TXA_P
TXA_N

RXA_P
RXA_N

TXB_P
TXB_N

RXB_P
RXB_N

GPIO0
GPIO1
GPIO2

SCL
SDA

U_EtherCAT_IO
EtherCAT_IO.SchDoc

SPI SCK
SPI SO
SPI SI
SPI SCS#
SYNC0
SYNC1
IRQ

U_PIC32_MCU
PIC32_MCU.SchDoc

U_Power
Power.SchDoc

Top Design

Figure A.1: Top schematic

I

A. Appendix

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize
A3

Date: 2020/6/10 Sheet of
File: C:\Users\..\EtherCAT_IO.SchDoc Drawn By:

TD+1

TD-2

RD+3

TXCT4

RXCT5

RD-6

NC7

CHS GND8

A
9

C
10

C
11

A
12

G
N

D
13

G
N

D
1

14

RJ45

J1

0603
49.9
R3

0603
49.9
R4

0603
49.9
R5

0603
49.9
R6

0603
10pF
50V

DNP
C1

0603
10pF
50V

DNP
C2

0603
10pF
50V

DNP
C3

0603
10pF
50V

DNP
C4

0603
0.022uF
50V

C5

0603
1K

R2
VDD33TXRX1

GND GND

GND

GND
Earth

Earth

1210
0R

R10

TD+1

TD-2

RD+3

TXCT4

RXCT5

RD-6

NC7

CHS GND8

A
9

C
10

C
11

A
12

G
N

D
13

G
N

D
1

14

RJ45

J2

0603
49.9
R12

0603
49.9
R13

0603
49.9
R14

0603
49.9
R15

0603
10pF
50V

DNP
C7

0603
10pF
50V

DNP
C8

0603
10pF
50V

DNP
C9

0603
10pF
50V

DNP
C10

0603
0.022uF
50V

C11

0603
1K

R11
VDD33TXRX2

GND GND

GND

GND

Earth

Earth

1210
0R

R19

TXA_P

TXA_N

RXA_P

RXA_N

TXB_P

TXB_N

RXB_P

RXB_N

GPIO0

GPIO1

0603
10K

R8

0603
10K

R9

GND

GND

0603
330

R1

0603
10K

R7

0603

D1

Green

3V3

GPIO0

GPIO1

GPIO0

GPIO1

GPIO2

VSS 4

VCC 8

SDA5
WP7 SCL6 A23 A12 A01

U1

24FC512-I/SM

GPIO0 = LINKACTLED0/TDO/CHIP_MODE0
GPIO1 = LINKACTLED1/TDI/CHIP_MODE1
GPIO2 = RUNLED/E2PSIZE

0603
4.7K

R18

0603
2K

R16
0603
2K

R17

0603
0.1uF
25V

C6

GND

GND

GND

VDD

SCL

SDA

VDD

EEPROM

Note:
Capacitors C1 through C4 are optional for EMI
purposes and are not populated in this board.
These capacitors are required for operation in
an EMI constrained environment.

Note:
Capacitors C7 through C10 are
optional for EMI purposes and are not
populated in this board. These
capacitors are required for operation
in an EMI constrained environment.

TXA_N

TXA_P

RXA_N

RXA_P

TXB_N

TXB_P

RXB_N

RXB_P

EtherCAT IO

PIC101

PIC102
COC1

PIC201

PIC202
COC2

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601 PIC602

COC6

PIC701

PIC702
COC7

PIC801

PIC802
COC8

PIC901

PIC902
COC9

PIC1001

PIC1002
COC10

PIC1101

PIC1102
COC11

PID101 PID102

COD1

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ106

PIJ107

PIJ108

PIJ109 PIJ1010

PIJ1011 PIJ1012 PIJ1013 PIJ1014

COJ1

PIJ201

PIJ202

PIJ203

PIJ204

PIJ205

PIJ206

PIJ207

PIJ208

PIJ209 PIJ2010

PIJ2011 PIJ2012 PIJ2013 PIJ2014

COJ2

PIR101 PIR102
COR1

PIR201 PIR202
COR2

PIR301

PIR302 COR3

PIR401

PIR402 COR4

PIR501

PIR502 COR5

PIR601

PIR602 COR6

PIR701 PIR702
COR7

PIR801 PIR802
COR8

PIR901 PIR902
COR9

PIR1001 PIR1002
COR10

PIR1101 PIR1102
COR11

PIR1201

PIR1202 COR12

PIR1301

PIR1302 COR13

PIR1401

PIR1402 COR14

PIR1501

PIR1502 COR15

PIR1601

PIR1602

COR16
PIR1701

PIR1702

COR17

PIR1801 PIR1802
COR18

PIR1901 PIR1902
COR19

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108

COU1

PID101

PIR702

PIJ108

PIJ1013 PIJ1014

PIJ208

PIJ2013 PIJ2014

PIR1001

PIR1901

PIC101 PIC201 PIC301 PIC401 PIC501

PIC601

PIC701 PIC801 PIC901 PIC1001 PIC1101

PIJ1010

PIJ2010

PIR801

PIR901

PIR1002

PIR1802

PIR1902

PIU104

PIR201

PIR802
NLGPIO0

POGPIO0

PIR902

PIR1101

NLGPIO1

POGPIO1

PID102 PIR102

PIJ107

PIJ109
PIR202

PIJ1011 PIJ1012

PIJ207

PIJ209
PIR1102

PIJ2011 PIJ2012

PIR101

PIR701 POGPIO2

PIR1602

PIU105 POSDA

PIR1702

PIU106 POSCL

PIR1801 PIU101

PIU102

PIU103

PIU107

PIC402

PIJ106

PIR601

NLRXA0N PORXA0N

PIC302

PIJ103

PIR501

NLRXA0P PORXA0P

PIC1002

PIJ206

PIR1501

NLRXB0N PORXB0N

PIC902

PIJ203

PIR1401

NLRXB0P PORXB0P

PIC202

PIJ102

PIR401

NLTXA0N
POTXA0N

PIC102

PIJ101

PIR301
NLTXA0P

POTXA0P

PIC802

PIJ202

PIR1301

NLTXB0N
POTXB0N

PIC702

PIJ201

PIR1201
NLTXB0P

POTXB0P

PIC602

PIR1601 PIR1701

PIU108

PIC502

PIJ104

PIJ105

PIR302 PIR402 PIR502 PIR602

PIC1102

PIJ204

PIJ205

PIR1202 PIR1302 PIR1402 PIR1502

POGPIO0

POGPIO1

POGPIO2

PORXA0N

PORXA0P

PORXB0N

PORXB0P
POSCL

POSDA

POTXA0N

POTXA0P

POTXB0N

POTXB0P

Figure A.2: EtherCAT_IO configuration schematic

II

A. Appendix

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize
A3

Date: 2020/6/10 Sheet of
File: C:\Users\..\EtherCAT_Controller.SchDoc Drawn By:

VSS 65OSCVSS 4

LINKACTLED0/TDO/!CHIP_MODE0 48LINKACTLED1/TDI/!CHIP_MODE1 46RUNLED/!E2PSIZE 45
EESCL/TCK 43EESDA/TMS 42

IRQ 44
TXNB 63TXPB 62RXNB 61RXPB 60
RXPA 55RXNA 54TXPA 53TXNA 52

VDD33BIAS 58VDD12TX2 59VDD33TXRX1 51VDD33TXRX2 64VDD12TX1 56VDDIO 47VDDIO 37VDDIO 32VDDIO 20VDDIO 14VDDCR 38VDDCR 24VDDCR 6VDD33 5OSCVDD12 3

RBIAS57

SYNC1/LATCH118 SYNC0/LATCH034
FXSDB/FXLOSB/!FXSDENB10 FXSDA/FXLOSA/!FXSDENA9
RD/RD_WR/DIGIO15/GPI15/GPO15/MII_RXD331 WR/ENB/DIGIO14/GPI14/GPO14/MII_RXD230 CS/DIGIO13/GPI13/GPO13/MII_RXD128
D14/AD14/DIGIO8/GPI8/GPO8/MII_TXD3/!TX_SHIFT115 D13/AD13/DIGIO7/GPI7/GPO7/MII_TXD2/!TX_SHIFT016 D12/AD12/DIGIO6/GPI6/GPO6/MII_TXD121 D11/AD11/DIGIO5/GPI5/GPO5/MII_TXD022 D10/AD10/DIGIO4/GPI4/GPO4/MII_TXEN23 D9/AD9/LATCH_IN/SCK19 D8/AD8/DIGIO2/GPI2/GPO2/MII_MDIO40 D7/AD7/DIGIO1/GPI1/GPO1/MII_MDC39 D6/AD6/DIGIO0/GPI0/GPO0/MII_RXCLK36 D5/AD5/OUTVALID/SCS#50 D4/AD4/DIGIO3/GPI3/GPO3/MII_LINK49 D3/AD3/WD_TRIG/SIO335 D2/AD2/SOF/SIO212 D1/AD1/EOF/SO/SIO113 D0/AD0/WD_STATE/SI/SIO017
A4/DIGIO12/GPI12/GPO12/MII_RXD027 A3/DIGIO11/GPI11/GPO11/MII_RXDV26 A2/ALEHI/DIGIO10/GPI10/GPO10/LINKACTLED2/!MII_LINKPOL29 A1/ALELO/OE_EXT/MII_CLK2525 A0/D15/AD15/DIGIO9/GPI9/GPO9/MII_RXER33
TESTMODE41
FXLOSEN8
REG_EN7
RST11
OSCO2 OSCI1

U2

LAN9252/PT

3V3

3V3

VDDCR

VDD33TXRX1
VDD33TXRX2
VDD12

VDD12
VDD33BIAS

TXA_N
TXA_P
RXA_N
RXA_P

TXB_N
TXB_P

RXB_P
RXB_N

GPIO2
GPIO1
GPIO0

GND

3V3

GND

0603
12.1K

R23

GND

SPI SI
SPI SO

SPI SCS#

SPI SCK

Data0
Data1
Data2

Data3
Data4
Data5

Data6
Data7
Data8
Data9
Data10

Data11

SDA
SCL

GND

4 422 3 311
S1

GND

GND

0603
0.1uF
25V

C25

0603
10K

R22

VDD

RST

RST

RST

A1
A2
A3
A4

CS
WR
RD

2728
224
56
78
910
1112
1314
1516
1718
1920
213
2324
2526
21
2930

P1

Header 15X2

Data0 Data1
Data2 Data3
Data4 Data5
RD WR
CS
A1 A2
A3 A4
Data6 Data7
Data8 Data9
Data10 Data11

IRQ

SYNC0
SYNC1

GND

1
2

Y1

X
TA

L
25

M
H

Z0603
18pF
50V

C19

0603
18pF
50V

C24

GND

GND

0.1uF
25V
0603

C17
0.1uF
25V
0603

C18

GND

VDD12

1uF
16V
0603

C20
0.01uF
25V
0603

C21
0.01uF
25V
0603

C22
0.01uF
25V
0603

C23

GND

VDDCR

Power Filter

GND GND

GND

GND

GND

GND

EtherCAT Controller

0.1uF
25V
0603

C37
0.1uF
25V
0603

C38
0.1uF
16V
0603

C39
0.1uF
25V
0603

C40
0.1uF
16V
0603

C41
0.1uF
25V
0603

C42

GND

3V3

Pin 5 Pin 7 Pin 14 Pin 32 Pin 37 Pin 47

PIC1701
PIC1702

COC17

PIC1801
PIC1802

COC18

PIC1901 PIC1902

COC19

PIC2001
PIC2002 COC20

PIC2101
PIC2102 COC21

PIC2201
PIC2202 COC22

PIC2301
PIC2302 COC23

PIC2401 PIC2402

COC24

PIC2501
PIC2502

COC25

PIC3701

PIC3702
COC37

PIC3801

PIC3802
COC38

PIC3901

PIC3902
COC39

PIC4001

PIC4002
COC40

PIC4101

PIC4102
COC41

PIC4201

PIC4202
COC42

PIP101 PIP102

PIP103

PIP104

PIP105 PIP106

PIP107 PIP108

PIP109 PIP1010

PIP1011 PIP1012

PIP1013 PIP1014

PIP1015 PIP1016

PIP1017 PIP1018

PIP1019 PIP1020

PIP1021

PIP1022

PIP1023 PIP1024

PIP1025 PIP1026

PIP1027 PIP1028

PIP1029 PIP1030

COP1

PIR2201

PIR2202
COR22

PIR2301 PIR2302
COR23

PIS101

PIS102

PIS103

PIS104

COS1

PIU201

PIU202

PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209

PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015

PIU2016

PIU2017

PIU2018

PIU2019

PIU2020

PIU2021

PIU2022

PIU2023

PIU2024

PIU2025

PIU2026

PIU2027

PIU2028

PIU2029

PIU2030

PIU2031

PIU2032

PIU2033

PIU2034

PIU2035

PIU2036

PIU2037

PIU2038

PIU2039

PIU2040

PIU2041

PIU2042

PIU2043

PIU2044

PIU2045

PIU2046

PIU2047

PIU2048

PIU2049

PIU2050

PIU2051

PIU2052

PIU2053

PIU2054

PIU2055

PIU2056

PIU2057

PIU2058

PIU2059

PIU2060

PIU2061

PIU2062

PIU2063

PIU2064

PIU2065

COU2

PIY101
PIY102

COY1

PIC3702 PIC3802 PIC3902 PIC4002 PIC4102 PIC4202

PIU205

PIU207

PIU2014

PIU2020

PIU2032

PIU2037

PIU2047

PIP1013

PIU2025

NLA1
PIP1014

PIU2029

NLA2

PIP1015

PIU2026

NLA3
PIP1016

PIU2027

NLA4

PIP1011

PIU2028

NLCS

PIP1022

PIU2012

NLData0
PIP104

PIU2035

NLData1

PIP105

PIU2049

NLData2
PIP106

PIU2036

NLData3

PIP107

PIU2039

NLData4
PIP108

PIU2040

NLData5

PIP1017

PIU2023

NLData6
PIP1018

PIU2022

NLData7
PIP1019

PIU2021

NLData8
PIP1020

PIU2016

NLData9

PIP1021

PIU2015

NLData10
PIP103

PIU2033

NLData11

PIC1701 PIC1801

PIC1901

PIC2001 PIC2101 PIC2201 PIC2301
PIC2401

PIC2502

PIC3701 PIC3801 PIC3901 PIC4001 PIC4101 PIC4201

PIP101 PIP102

PIP1012

PIP1023 PIP1024

PIP1025 PIP1026

PIP1027 PIP1028

PIP1029 PIP1030

PIR2302

PIS101

PIS102

PIU204

PIU208

PIU209

PIU2010

PIU2041

PIU2065

PIC1902

PIU201
PIY102

PIC2402

PIU202

PIY101

PIR2301 PIU2057

PIU203

PIU2013 POSPI SO
PIU2017 POSPI SI

PIU2018 POSYNC1

PIU2019 POSPI SCK

PIU2034 POSYNC0

PIU2042 POSDA
PIU2043 POSCL

PIU2044 POIRQ

PIU2045 POGPIO2
PIU2046 POGPIO1
PIU2048 POGPIO0

PIU2050 POSPI SCS#

PIU2052 POTXA0N
PIU2053 POTXA0P
PIU2054 PORXA0N
PIU2055 PORXA0P

PIU2060 PORXB0P
PIU2061 PORXB0N
PIU2062 POTXB0P
PIU2063 POTXB0N

PIP109

PIU2031

NLRD

PIC2501

PIR2201 PIS103

PIS104

PIU2011
NLRST

PIR2202

PIC1702 PIC1802

PIU2056

PIU2059

PIU2058

PIU2051

PIU2064 PIC2002 PIC2102 PIC2202 PIC2302

PIU206

PIU2024

PIU2038

PIP1010

PIU2030

NLWR

POGPIO0
POGPIO1
POGPIO2

POIRQ

PORXA0N
PORXA0P

PORXB0N
PORXB0P

POSCL
POSDA

POSPI SCK

POSPI SCS#

POSPI SI
POSPI SO

POSYNC0
POSYNC1

POTXA0N
POTXA0P

POTXB0N
POTXB0P

Figure A.3: LAN9252 configuration schematic

III

A. Appendix

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize
A2

Date: 2020/6/10 Sheet of
File: C:\Users\..\PIC32_MCU.SchDoc Drawn By:

AVSS 31VSS 45VSS 15VSS 75VSS 65VSS 36

TRD3/RA7 92TRD2/RG14 95

T5CK/SDI1/RC4 9T4CK/AC2RX/RC3 8

PMD7/RE7 5PMD6/RE6 4PMD5/RE5 3PMD4/RE4 100

OC5/PMWR/CN13/RD4 81OC4/RD3 78

C2TX/ETXERR/PMD9/RG1 89C2RX/PMD8/RG0 90

AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 44AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 43AN13/ERXD1/AECOL/PMA10/RB13 42AN12/ERXD0/AECRS/PMA11/RB12 41

VUSB 55VCAP/VDDCORE 85VDD 62VDD 37VDD 86VDD 46VDD 16VDD 2AVDD 30

VREF-/CVREF-/AERXD2/PMA7/RA928
VREF+/CVREF+/AERXD3/PMA6/RA1029
USBID/RF351
TRD1/RG1296 TRD0/RG1397
TMS/RA017
TDO/RA561
TDI/RA460
TCK/RA138
T3CK/RC2/AC2TX7 T2CK/RC16
SOSCO/T1CK/CN0/RC1474
SOSCI/CN1/RC1373
SDA3A/SDI3A/U3ARX/PMA9/CN17/RF449 SDA2/RA359 SDA1A/SDI1A/U1ARX/RF252
SCK1/IC3/PMCS2/PMA15/RD1070
RTCC/EMDIO/IC1/RD868

PMRD/CN14/RD582

PMD3/RE399 PMD2/RE298 PMD1/RE194 PMD0/RE093

PGED2/AN7/RB727 PGED1/AN0/CN2/RB025

PGEC2/AN6/OCFA/RB626 PGEC1/AN1/CN3/RB124

OSC2/CLKO/RC1564 OSC1/CLKI/RC1263

OC3/RD277 OC2/RD176

ETXEN/PMD14/CN15/RD683

ETXD3/PMD13/CN19/RD1380 ETXD2/IC5/PMD12/RD1279

ERXDV/SCL2A/SDO2A/U2ATX/PMA3/CN10/RG812

EMDC/IC4/PMCS1/PMA14/RD1171

ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG711

ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG610

D-/RG356

D+/RG257

C1TX/ETXD0/PMD10/RF188 C1RX/ETXD1/PMD11/RF087

AN11/ERXERR/AETXERR/PMA12/RB1135 AN10/CVREFOUT/PMA13/RB1034 AN9/C2OUT/RB933 AN8/C1OUT/RB832

AETXD1/SCK1A/U1BTX/U1ARTS/CN21/RD1548 AETXD0/SS1A/U1BRX/U1ACTS/CN20/RD1447

AERXERR/RG151

AC1TX/SCK3A/U3BTX/U3ARTS/RF1339 AC1RX/SS3A/U3BRX/U3ACTS/RF1240

SS1/IC2/RD969
VBUS54 TRCLK/RA691 SDO1/OC1/INT0/RD072 SCL3A/SDO3A/U3ATX/PMA8/CN18/RF550 SCL2/RA258 SCL1A/SDO1A/U1ATX/RF853 ETXCLK/PMD15/CN16/RD784 ERXCLK/SS2A/U2BRX/U2ACTS/PMA2/CN11/RG914 AN5/C1IN+/VBUSON/CN7/RB520 AN4/C1IN-/CN6/RB421 AN3/C2IN+/CN5/RB322 AN2/C2IN-/CN4/RB223 AETXEN/SDA1/INT4/RA1567 AETXCLK/SCL1/INT3/RA1466 AERXD1/INT2/RE919 AERXD0/INT1/RE818 MCLR13

U3

PIC32MX795F512L-80I/PF
GND

VDD

1206
10uF
25V

C26

GND

4 422 3 311

S2

GND

0603
0.1uF

50V

C27

VDD

0603
10K

R24

0603
1K

R25

GND

MCLR

MCLR

MCLR

P26 PGC

P27 PGD

P63 OSC1
P64 OSC2

EN1

NC2

GND3 OUT 4

NC 5

VDD 6

X1

DSC1121BM1-008.0000

3V3

GND

P63 OSC1

0603
18pF
50V

C29

GND

0603
0.1uF
50V

C28

GND

P64 OSC2

SPI SCK

SPI SO

SPI SI

SPI SCS#

D0
D1
D2
D3

D4
D5
D6
D7

D8
D9

D10
D11

D12
D13

D14

D15

SCK3

SDI3

SDO3

SCS3

SCK2

SDI2

SDO2

SCS2

I2C1 SCL
I2C1 SDA

I2C2 SDA

I2C2 SCL

AN2
AN3
AN4
AN5

AN8
AN9
AN10
AN11

AN12
AN13
AN14
AN15

SYNC0
SYNC1

IRQ

RD1
RD2

RD11

RD5

RD8

RD10

RD3
RD4

CMOS Oscillator

0603
0.1uF
50V

C30
0603
0.1uF
50V

C31
0603
0.1uF
50V

C32
0603
0.1uF
50V

C33
0603
0.1uF
50V

C34
0603
0.1uF
50V

C35

GND GND GND GND GND GND

VDD

Pin 2 Pin 16 Pin 30Pin 37 Pin 46 Pin 62

0805

L5

Ferrite Bead 0603
0.01uF
50V

C36

GND

VDD

Power Filtering & EMC Suppression

1
2
3
4
5
6

P4

Header 6H

MCLRVDD

GND

P27 PGD
P26 PGC

PICKit

12
34
56
78
910
1112
1314
1516
1718
1920
2122
2324
2526
2728
2930

P2

Header 15X2H

12
34
56
78
910
1112
1314
1516
1718
1920
2122
2324
2526
2728
2930

P3

Header 15X2H

5V 3V3

GND Earth

D14 D15

D8D9
D10D11

D0 D1
D2 D3
D4 D5
D6 D7
SCK2 SDI2
SDO2 SCS2

AN2AN3
AN4AN5

P26 PGC P27 PGD
AN8 AN9

RD4RD5
D12D13

RD1
RD2RD3

RD8RD10
RD11

I2C1 SDA I2C1 SCL
I2C2 SDA I2C2 SCL
SDO3 SDI3
SCK3 SCS3

AN10AN11
AN12AN13
AN14AN15

GND GND

GND
GND

PIC32MCU

GND

GND 3

VOUT 2
V+ 1

U4

ADR280ARTZ-REEL7

GND

0603
0.1uF
50V

C44

0603
0.1uF
50V

C43

VDD

GND

1.2V Reference

PIC2601 PIC2602

COC26

PIC2701
PIC2702

COC27

PIC2801 PIC2802

COC28

PIC2901 PIC2902

COC29

PIC3001

PIC3002
COC30

PIC3101

PIC3102
COC31

PIC3201

PIC3202
COC32

PIC3301

PIC3302
COC33

PIC3401

PIC3402
COC34

PIC3501

PIC3502
COC35

PIC3601 PIC3602

COC36

PIC4301 PIC4302

COC43

PIC4401

PIC4402
COC44

PIL501 PIL502

COL5

PIP201 PIP202

PIP203 PIP204

PIP205 PIP206

PIP207 PIP208

PIP209 PIP2010

PIP2011 PIP2012
PIP2013 PIP2014

PIP2015 PIP2016

PIP2017 PIP2018

PIP2019 PIP2020

PIP2021 PIP2022

PIP2023 PIP2024

PIP2025 PIP2026
PIP2027 PIP2028

PIP2029 PIP2030

COP2

PIP301 PIP302

PIP303 PIP304

PIP305 PIP306

PIP307 PIP308

PIP309 PIP3010

PIP3011 PIP3012
PIP3013 PIP3014

PIP3015 PIP3016

PIP3017 PIP3018

PIP3019 PIP3020

PIP3021 PIP3022

PIP3023 PIP3024

PIP3025 PIP3026
PIP3027 PIP3028

PIP3029 PIP3030

COP3

PIP401
PIP402

PIP403

PIP404

PIP405
PIP406

COP4

PIR2401

PIR2402

COR24

PIR2501 PIR2502
COR25

PIS201

PIS202
PIS203

PIS204

COS2

PIU301

PIU302

PIU303

PIU304

PIU305

PIU306

PIU307

PIU308

PIU309

PIU3010

PIU3011

PIU3012

PIU3013

PIU3014

PIU3015

PIU3016

PIU3017

PIU3018

PIU3019

PIU3020

PIU3021

PIU3022
PIU3023

PIU3024

PIU3025

PIU3026

PIU3027

PIU3028

PIU3029

PIU3030

PIU3031

PIU3032

PIU3033

PIU3034

PIU3035

PIU3036

PIU3037

PIU3038

PIU3039

PIU3040

PIU3041

PIU3042

PIU3043

PIU3044

PIU3045

PIU3046

PIU3047

PIU3048

PIU3049

PIU3050

PIU3051

PIU3052

PIU3053

PIU3054

PIU3055

PIU3056

PIU3057

PIU3058

PIU3059

PIU3060

PIU3061

PIU3062

PIU3063

PIU3064

PIU3065

PIU3066

PIU3067

PIU3068

PIU3069

PIU3070

PIU3071

PIU3072

PIU3073

PIU3074

PIU3075

PIU3076

PIU3077

PIU3078

PIU3079
PIU3080

PIU3081

PIU3082

PIU3083

PIU3084

PIU3085

PIU3086

PIU3087

PIU3088

PIU3089

PIU3090

PIU3091

PIU3092

PIU3093

PIU3094

PIU3095

PIU3096

PIU3097

PIU3098

PIU3099

PIU30100

COU3

PIU401

PIU402

PIU403

COU4

PIX101

PIX102

PIX103 PIX104

PIX105

PIX106

COX1

PIC2801

PIP202

PIX106

NL3V3
PIP201

NL5V

PIP2024

PIU3023

NLAN2
PIP2023

PIU3022

NLAN3
PIP2022

PIU3021

NLAN4
PIP2021

PIU3020

NLAN5

PIP2027

PIU3032

NLAN8
PIP2028

PIU3033

NLAN9
PIP3028

PIU3034

NLAN10
PIP3027

PIU3035

NLAN11
PIP3026

PIU3041

NLAN12 PIP3025

PIU3042

NLAN13
PIP3024

PIU3043

NLAN14
PIP3023

PIU3044

NLAN15

PIP209 PIU3093
NLD0

PIP2010

PIU3094

NLD1

PIP2011
PIU3098

NLD2
PIP2012

PIU3099

NLD3

PIP2013

PIU30100

NLD4
PIP2014

PIU303

NLD5

PIP2015

PIU304

NLD6
PIP2016

PIU305

NLD7

PIP208

PIU3090

NLD8
PIP207

PIU3089

NLD9
PIP206

PIU3088

NLD10
PIP205

PIU3087

NLD11
PIP304

PIU3079

NLD12
PIP303

PIU3080

NLD13
PIP203

PIU3083

NLD14
PIP204

PIU3084

NLD15

PIP2030

PIC2602

PIC2701

PIC2802

PIC2902

PIC3002 PIC3102 PIC3202 PIC3302 PIC3402 PIC3502

PIC3602

PIC4302

PIC4402

PIP2029

PIP3019 PIP3020

PIP3021 PIP3022

PIP3029 PIP3030

PIP403

PIS201

PIS202

PIU3015

PIU3028

PIU3031

PIU3036

PIU3045

PIU3065

PIU3075

PIX101

PIX103

PIP3012

PIU3066

NLI2C1 SCL
PIP3011

PIU3067

NLI2C1 SDA

PIP3014

PIU3058

NLI2C2 SCL
PIP3013

PIU3059

NLI2C2 SDA

PIP401

PIR2502

PIU3013
NLMCLR

PIC2601 PIU3085

PIC2702

PIR2402
PIR2501 PIS203

PIS204

PIC3601 PIL502

PIC4401

PIU403

PIP406

PIU301

PIU306

PIU307

PIU308

PIU309

PIU3017

PIU3018 POSYNC0
PIU3019 POSYNC1

PIU3024

PIU3025

PIU3029 PIU402

PIU3038

PIU3039 POSPI SCK
PIU3040 POSPI SCS#

PIU3049 POSPI SO

PIU3050 POSPI SI

PIU3051

PIU3054

PIU3056

PIU3057

PIU3060

PIU3061

PIU3069

PIU3072 POIRQ

PIU3073

PIU3074

PIU3091

PIU3092
PIU3095

PIU3096

PIU3097

PIX102 PIX105

PIP2025

PIP405

PIU3026

NLP26 PGC PIP2026

PIP404

PIU3027

NLP27 PGD

PIU3063 PIX104
NLP63 OSC1

PIC2901

PIU3064
NLP64 OSC2

PIP307

PIU3076

NLRD1
PIP306

PIU3077

NLRD2
PIP305

PIU3078

NLRD3

PIP302

PIU3081

NLRD4
PIP301

PIU3082

NLRD5

PIP3010

PIU3068

NLRD8
PIP309

PIU3070

NLRD10
PIP308

PIU3071

NLRD11

PIP2017

PIU3010

NLSCK2
PIP3017

PIU3048

NLSCK3
PIP2020

PIU3014

NLSCS2
PIP3018

PIU3047

NLSCS3
PIP2018

PIU3011

NLSDI2
PIP3016

PIU3052

NLSDI3

PIP2019

PIU3012

NLSDO2

PIP3015

PIU3053

NLSDO3

PIC3001 PIC3101 PIC3201 PIC3301 PIC3401 PIC3501

PIC4301

PIL501

PIP402

PIR2401

PIU302

PIU3016

PIU3030

PIU3037

PIU3046

PIU3055

PIU3062

PIU3086

PIU401

POIRQ

POSPI SCK
POSPI SCS#

POSPI SI

POSPI SO

POSYNC0
POSYNC1

Figure A.4: PIC32 configuration schematic

IV

A. Appendix

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2020/6/10 Sheet of
File: C:\Users\..\Power.SchDoc Drawn By:

0.1uF
25V
0603

C13

0.1uF
25V
0603

C15

3V3

3V3

VDD33TXRX1

VDD33TXRX2

1uF
16V
0603

C12

1uF
16V
0603

C14

L1

BLM18EG221SN1D

L2

BLM18EG221SN1D

0603
330R

R20

0603

D3
Red

0603
330R

R21

0603

D2
Green

1
2

3 4
5

6

JS202011SCQN

SW1

3V3

GND
VDD

3V3

VDDCR
L3

BLM18EG221SN1D
VDD12

3V3
L4

BLM18EG221SN1D

0603
0.1uF
25V

C16

GND

VDD33BIAS

GND

GND

5V

5V

Power

PIC1201
PIC1202 COC12

PIC1301
PIC1302 COC13

PIC1401
PIC1402 COC14

PIC1501
PIC1502 COC15

PIC1601

PIC1602
COC16

PID201
PID202

COD2
PID301
PID302

COD3

PIL101 PIL102

COL1

PIL201 PIL202

COL2

PIL301 PIL302

COL3

PIL401 PIL402

COL4

PIR2001

PIR2002

COR20
PIR2101

PIR2102

COR21

PISW101

PISW102

PISW103 PISW104

PISW105

PISW106
COSW1

PIL101

PIL201

PIL401

PIR2001

PISW101

PIR2101

PISW103

PIC1201 PIC1301

PIC1401 PIC1501

PIC1601

PISW105

PID201
PIR2002

PID202

PISW104

PID301
PIR2102

PID302

PISW106

PISW102
PIL302

PIC1602 PIL402

PIC1202 PIC1302

PIL102

PIC1402 PIC1502

PIL202

PIL301

Figure A.5: Power schematic

V

	Abbreviations
	Introduction
	Problem description
	Related work
	Thesis outline

	Technical Background
	Printed Circuit Board
	SPI
	EtherCAT
	CAN
	CAN FD
	CAN FD Frame Format
	Bit Time
	Message Transmission
	Message Filtering
	Message Reception

	System Design
	System Architecture
	EtherCAT
	SPI

	Design Decision
	Hardware
	Microcontroller
	Automotive Networking Board
	EtherCAT Interface Board
	CAN FD Controller Board

	Test Setup
	Bit Time Measurement.
	Voltage Measurement for CAN FD States
	Message Frame Encapsulation

	Results
	Hardware Design
	Implementation Results
	Test Results
	Bit Time Measurement
	Voltage Measurement
	Message Frame Encapsulation Measurement

	Discussion and Potential Improvements
	Discussion
	General Performance
	Unstable Transmission

	Potential Improvements

	Conclusion
	Bibliography
	Appendix

