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Hardware-in-the-loop Communication Interface

YANG ZHANG
JIAXING ZHU
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
A system has been designed to perform real-time transmission, between a master
node and single slave node, of two kinds of protocols, EtherCAT and CAN FD.
Implementing such a system requires the design of a PCB for EtherCAT and CAN
FD communication interface and to achieve protocol conversion in C.

The system is able to perform message transmission successfully and correctly in
most test cases except that unstable results occur when 64 bytes CAN FD message
is transmitted. Other aspects of the system including message frame encapsulation,
bit time and voltage are verified, indicating the system is reliable in principle.

There are several potential further developments for this system, among which im-
proving it into multi-slave message broadcast mode is the most interesting since such
a mode is more flexible and closer to realistic needs.

Keywords: protocol conversion, EtherCAT, CAN FD
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1
Introduction

1.1 Problem description

A communication protocol is a system of rules that allow two or more entities of a
communications system to transmit information via any kind of variation of a phys-
ical quantity. Serial peripheral interface (SPI), the controller area network (CAN),
Ethernet for control automation technology (EtherCAT) and controller area net-
work flexible data-rate (CAN FD) are widely used for communication. CAN bus is
developed by BOSCH [1] as a multi-master, message broadcast system that spec-
ifies a maximum bandwidth of 1 Mbit/s [2]. Due to its advantages such as low
cost, robustness and flexibility, CAN bus is widely used in many applications like
cars, trucks, tractors and industrial robots. Due to the fact that a rise in vehicle
functionality is driving an explosion in data and networks are increasingly limited
by the 1 Mbit/s bandwidth, CAN FD [3] emerges as an alternative. It has two
main advantages over standard CAN without changing the physical layers, a faster
bandwidth up to 8 Mbit/s and a variable data payload of up to 64 bytes. Inevitably
next generation electronic control units (ECUs) are using CAN FD for vehicle net-
work communication. EtherCAT [4] is a real-time industrial Ethernet technology
originally developed by Beckhoff Automation. The EtherCAT protocol is suitable
for hard and soft real-time requirements in automation technology, in testing and
measurement and many other applications. EtherCAT has advantages such as short
cycle times, low jitter for accurate synchronization and low hardware costs.

Today the Hardware-In-the-Loop (HIL) test rigs at Volvo Group Trucks Technology
use a commercially available device for a gateway or fieldbus conversion between
EtherCAT and CAN. The HIL rig simulation models use this device to interface
with the real truck Electronic Braking System (EBS) and Active Safety systems.
However the HIL test rigs will be required to implement simulations via EtherCAT
to CAN FD and at present there is no commercially available solution.

In order to solve this problem, the goals of our thesis are as follows:
1. Redesign a merged PCB, merging PIC32 minimum system board and Ether-

CAT slave board from Microchip, for EtherCAT and CAN FD communication
interface.

2. Implement protocol conversion between EtherCAT and CAN FD with the help
of external CAN FD controller. In this case, it would be CAN FD controller
board.
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1. Introduction

3. Verify whether the whole redesigned prototype works as the expected require-
ments. That is both the signals transmitted between CAN FD and EtherCAT
should be received correctly via ECU. Testing would be performed with the
designed PCB acting as a protocol conversion tool. A signal database is used
for sending random messages through EtherCAT interface and messages re-
ceived from CAN FD interface would be displayed with Vector CANoe [5].
Several preliminary testing criteria could be CAN FD recessive/dominant bit
time measurement with ambient temperature between 18◦C and 28◦C follow-
ing REQ-CAN-28 v3 [6] and verifying whether message frame encapsulation,
such as the extended data length (EDL) bit, identifier extension bit (IDE) bit
and bit rate switch (BRS) bit, meets REQ-CAN-04 v1 [6].

Some of the research challenges that have to be addressed are:
1. Find the cause of the extra empty data when receiving SPI data on ECU and

then figure out a proper method to solve it.
2. Set up an appropriate testing architecture and testing method for verifying

the function of our prototype.

1.2 Related work
In recent years, a significant amount of papers describe advantages of CAN FD.
In [7], the authors concludes CAN FD has faster object pool transference, lower bus
load usage, shorter worst case response time, and lower jitter. However, CAN FD
has some potential problems such as the same security problems as standard CAN.
In [8], the authors propose a practical security architecture for in-vehicle CAN FD
communication which is tested by using three microcontrollers and CANoe software.
Furthermore, as shown in [9], the authors provide a formula to calculate transmission
time in CAN FD frames. Their effort brings a framework to solve the optimisation
problem in pseudo-polynomial time. Based on these works, from theoretical design
to practical optimization and testing, CAN FD can be the next CAN technology
used in automation industries [10].

However, there are no commercial solutions which are compatible with both Ether-
CAT and CAN FD. The existing products only work between EtherCAT and stan-
dard CAN. The typical products are EtherCAT-CAN Gateway from Esd Electron-
ics [11], and Anybus Communicator CAN-EtherCAT [12]. The maximum CAN
data-rate of these products is limited to 1 Mbit/s.

1.3 Thesis outline
Chapter 2 explains the basic theory of CAN FD, including frame format, message
transmission and reception mechanism.

Chapter 3 presents the thesis step by step. It is divided into three parts: sys-
tem architecture overview, hardware used in thesis and testing methodology.

2



1. Introduction

Chapter 4 lists the current implementation results of the thesis work.

Chapter 5 discusses important results in result section, and gives some potential
improvements for future work.

Chapter 6 lists the final conclusion for the thesis project.

3
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2
Technical Background

This chapter lays a technical foundation for the thesis, including printed circuit
board (PCB), SPI, EtherCAT, CAN and CAN FD.

2.1 Printed Circuit Board
A PCB provides robust mechanical support and electrical connection by using con-
ductive wires, holes, copper planes and other non-conductive materials. PCBs have
played an important role and have been widely used, especially in embedded elec-
tronics systems [13]. According to amount of layers, PCBs can be classified as single-
side boards, double-side boards and multi-layer boards. Components can only be
placed on the same side of single-side boards. For double-side boards, components
are allowed to be placed on both sides of boards. The multi-layer boards are suitable
for higher density design. It provides extra inner signal layers, which allow routing
and internal planes for power and ground connection.

Generally, the PCB design starts from a schematic design. According to project
requirements, proper circuits and components should be decided. The PCB param-
eters, including size of PCB, layer stack configuration and design rules should be
decided. After placing components and routing, manufacture files including gerber
files and NC drill files can be sent to the manufacturer.

The Altium company provides an electronic design automation (EDA) tool called
Altium Designer. This tool can support schematic design, PCB design and manu-
facture output [14]. In this project, Altium Designer 20 is used.

2.2 SPI
SPI [15] is a synchronous serial communication interface specification used for short-
distance communication, primarily in embedded systems. Due to its multiple ad-
vantages, such as simple hardware, higher throughput than Inter-Integrated Circuit
(I2C) and simple software implementation, SPI is one of the most widely used in-
terfaces between microcontroller and peripheral ICs. SPI devices communicate in
full duplex within a master-slave architecture. The master uses SCLK line to syn-
chronize with slave devices before transmitting messages using Master-Out Slave-In
(MOSI) line and receiving messages using Master-In Slave-Out (MISO) line. Sim-
ilarly, slave devices receive messages on MOSI line and output messages on MISO
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2. Technical Background

line. The SS line can be used to select which slave device to carry out the work if
there are several slaves in a system.

2.3 EtherCAT
EtherCAT enjoys a unique principle called "processing on the fly", which means
as a single message issued by the EtherCAT master walks through each node in
the network, each node reads its input and adds its output to the message. The
EtherCAT message continues going to the next node while the former node processes
the input. This unique principle enables an EtherCAT network to achieve maximum
bandwidth utilization.

2.4 CAN
A CAN bus allows devices to communicate with each other without a host com-
puter. The highest Nominal Bit Rate (NBR) of CAN bus is up to 1 Mbit/s, and
the payload is from 0 byte to 8 byte. CAN message is transmitted only with NBR.

For frame types, a CAN frame includes data frame, remote frame, error frame
and overload frame. Detailed data frame is depicted in Fig. 2.1, composed of 7
different bit fields, namely Start of Frame (SOF), Arbitration Field, Control Field,
Data Field, Cyclic Redundancy Check (CRC) Field, Acknowledge (ACK) Field and
End of Frame (EOF).The CAN bus also supports two frame formats which are base
format and extended format. The only difference between these two types of formats
is the length of the identifier.

SOF ARBITRATION CTRL DATA CRC ACK EOF

Figure 2.1: CAN data frame

Data length code (DLC) in Control Field specifies the number of data bytes to be
transmitted, as illustrated in Table 2.1.
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2. Technical Background

DLC Number of Data Bytes
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Table 2.1: CAN DLC Encoding

2.5 CAN FD
CAN FD is an update of the original CAN bus, to increase capability of transmitting
without changing physical layers. The maximum bit rate is up to 8 Mbit/s, and
CAN FD can transmit 64 byte data at most in a single frame rather than 8 byte
data at most in CAN. Another improvement is that CAN FD supports dynamically
switching to different data-rate and message size.

2.5.1 CAN FD Frame Format
In our thesis work, CAN FD base frame is used. Detailed frame format is depicted
in Fig. 2.2, composed of 7 different bit fields, SOF, Arbitration Field, Control Field,
Data Field, CRC Field, ACK Field EOF.

Standard Identifier (SID) in Arbitration Field is used for message priority com-
parison when there are a couple of nodes competing for the bus. It can also be used
to enable filters to filter messages during message reception.

Bit rate switch (BRS) in Control Field decides whether the whole frame will be
transmitted using Nominal Bit Rate (NBR) only or using both NBR and Data Bit
Rate (DBR).

DLC in Control Field specifies the number of data bytes to be transmitted, as
illustrated in Table 2.2.

SOF ARBITRATION CTRL DATA CRC ACK EOF

Figure 2.2: CAN FD base frame

7



2. Technical Background

DLC Number of Data Bytes
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 12
10 16
11 20
12 24
13 32
14 48
15 64

Table 2.2: CAN FD DLC Encoding

2.5.2 Bit Time
As mentioned before CAN frame is only transmitted using NBR. Two bit rates,
NBR and DBR, are used for transmitting bits in a CAN FD frame so that higher
bandwidth is achieved. NBR is the number of bits per second, which is used from
the arbitration field to the sample point of BRS, and from the sample point of the
CRC delimiter to EOF. It is the inverse of the Nominal Bit Time (NBT). Similarly
DBR is the number of bits per second, which is used during the data phase and
CRC field. It is the inverse of Data Bit Time (DBT).

Nominal Bit Rate Prescaler (NBRP) and Data Bit Rate Prescaler (DBRP) are
used for calculating Nominal Time Quanta (NTQ) and Data Time Quanta (DTQ)
respectively (see equation 2.1 and equation 2.2 ). Time quanta is the basic unit of
bit time and there can be multiple time quanta in a bit time.

NTQ = NBRP

Fsysclk

(2.1)

DTQ = DBRP

Fsysclk

(2.2)

As specified in ISO11898-1:2015 there are four segments in CAN bit time (see Fig.
2.3), namely Synchronization Segment (SYNC), Propagation Segment (PRSEG),
Phase Segment 1 (PHSEG1) and Phase Segment 2 (PHSEG2).In the Bit Time reg-
isters, PRSEG and PHSEG1 are combined to create TSEG1. PHSEG2 is called

8



2. Technical Background

TSEG2. Each segment has multiple Time Quanta (TQ). The sample point lies be-
tween TSEG1 and TSEG2.

SYNC

SYNC

PRSEG PHSEG1 PHSEG2

TSEG1 TSEG2

TBitTime

Sample Point

Figure 2.3: Partition of Bit Time [16]

The number of time quanta in a bit time is calculated using equation 2.3 and equa-
tion 2.4.

NBT

NTQ
= NSY NC +NTSEG1 +NTSEG2 (2.3)

DBT

DTQ
= DSY NC +DTSEG1 +DTSEG2 (2.4)

2.5.3 Message Transmission
Fig. 2.4 demonstrates that CAN and CAN FD messages queued for transmission
follow the following rules:

1. Whenever a message is loaded into a FIFO or Transmit Queue(TXQ) and is
ready for transmission, the TXREQ bit is set.

2. Determine the transmit priority. The respective priority of FIFOs and TXQ
will be compared and the transmit order for messages inside a FIFO or TXQ
is calculated as well.

3. The highest priority message can not start transmission, also known as pending
for transmission, until the bus is idle.

4. A pending message can only be aborted before SOF is transmitted.
5. During the course of message transmission, the CAN FD Protocol Module

checks if there are loss of arbitration or transmit errors.
6. The TXREQ will only be cleared after all messages inside the FIFO are trans-

mitted.

9



2. Technical Background

7. In case of arbitration loss, transmission will be aborted and the device will
switch to message reception.

8. In case of transmission error, an error frame will still be transmitted and the
corresponding error flags of FIFO or TXQ will be set. Retransmission attempts
will be performed.

IDLE

Calculate 
TX Priority

TX Pending

Abort All
Clear All TXREQ

Set All TXABT

TX Abort
Set TXABT

TX in
Progress

TX Successful
Set TXIF

Clear TXREQ

Lost Arbitration
Set TXLARB

TX Err
Set TXERRIF
TX Attempts--

TX
Attempts

>0?

Clear TXREQ
Set TXATIF

RX Message

Any
TXREQ

Bus
IDLE

Success

Lost
Arbitration Error

Yes

No

Abort:
Set ABAT

Abort: Clear
TXREQ

Figure 2.4: Transmit state diagram [16]

2.5.4 Message Filtering
Since all messages on a CAN network will be received by all nodes, message filtering
should be implemented so that only messages of interest for a particular node will be
processed. There are 32 filters in CAN FD module and each filter can be configured
to only receive messages with specific SID and message data. A simple filtering
procedure is as follows:

1. After arbitration field and the first three data bytes are received, CAN FD
protocol module commences message filtering, starting with Filter 0.

2. Messages received in Receive Message Assembly Buffer(RXMAB) are com-
pared to the filter and mask. If matched and received with no errors, the
messages will be stored into the corresponding RX FIFO.

3. The module will loop through all filters. If none of the filters match, the
received message will be discarded.

10



2. Technical Background

4. Though the message is matched with filter, it will not be stored into RX FIFO
if FIFO is full and RXOVIF will be set.

2.5.5 Message Reception
Fig. 2.5 illustrates how CAN and CAN FD messages are received, following the
steps below:

1. Once a SOF is detected, the CAN FD Protocol Module will continue receiving
arbitration field and control field.

2. Message filtering starts.
3. If a filter matches and the corresponding RX FIFO is not full, the rest of data

bytes will be received and stored into FIFO. The FIFO status flag will be
updated as well.

4. If a filter matches and the corresponding RX FIFO is full, the RXOVIF bit
will be set. The rest of the messages will still be received but will not be
stored.

5. If none of the filters match, the messages will be received without storing.
6. In case an error is detected during the reception of a message, an error frame

will be transmitted and the appropriate error flags will be set.

11
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IDLE

Receive
Arbitration and

CTRL field

Receive Data
Bytes 0-3

Filter
Match?

RX
FIFO
Full?

Receive
Remaining Data

Bytes 

Receive Rest of
Message Store Message

into RX FIFO

Transmit Error
Frame

Set Error Flags
Receive Rest of

Message 

Set RXOVIF

SOF

Success

Success

Success

Error

Error

Error

Error

Transmit Error
Frame

Set Error Flags

Error

Success

Success

Yes

Yes

No

No

Figure 2.5: Receive state diagram [16].
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3
System Design

3.1 System Architecture

An overview of the current system is shown in Fig. 3.1. The current imple-
mentation consists of the following modules:TWINCAT [17], EtherCAT interface
board [18][19][20], one automotive networking board [21] with PIC32MX795F512L [22],
another automotive networking board with dsPIC33CK256MP508 [23] and CAN FD
controller board [24], Vector VN1630A [25] and CANoe. The function of each mod-
ule is briefly described as follows:

1. TWINCAT is used to define the messages types that should be transmitted
and received, and displayed the content of the messages.

2. EtherCAT interface board facilitates messages transmission between TWIN-
CAT and PIC32.

3. function of PIC32 is a middle message transfer station.
4. dsPIC33 encapsulates messages into CAN FD frame format and unpacks CAN

FD messages. CAN FD controller is a transceiver for CAN FD messages.
5. Vector VN1630A is a bus transceiver. It can be considered as a communication

bridge between CAN FD controller and CANoe.
6. CANoe is a comprehensive tool for ECU network analysis. In our thesis, it is

used to display and define the content CAN FD messages.

SPI2

dsPIC33

C
AN

 FD
C

ontroller

CAN FD

PIC32

Vector
VN1630ACANoe

Automotive
Networking
Board

Automotive
Networking
Board

SPI4

EtherCat
TWINCAT

EtherCat
Interface
Board

PHY0

PHY1

Figure 3.1: System Overview.
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3. System Design

3.1.1 EtherCAT
The EtherCAT messages to be sent are configured using Slave Stack Code (SSC)
tool, with the specific excel file defining the interface nodes of EtherCAT messages,
as shown in Fig. 3.2. After appropriate settings, SSC tool generates device descrip-
tion files and corresponding slave stack code, in which the source codes are modified
accordingly which copies the application data to/from the EtherCAT Slave Con-
troller (ESC) memory to the local application memory.

TWINCAT is then used to fill EtherCAT messages with data and visualize the
content of received data, which facilitates verifying whether the prototype works as
intended or not.

Figure 3.2: Example of EtherCAT Message.

3.1.2 SPI
Necessary configurations have to be set before SPI channel 2 of PIC32 can function
correctly. Once it is set, all of the EtherCAT messages (Fig. 3.2) are stored in a
transmit buffer before they are sent. Similarly a receive buffer is used for keeping
the received data. The SPI of PIC32 allows writing and reading SPI2BUF register
simultaneously, meaning that transmitting data from the transmit buffer and storing
received data into the receive buffer are feasible.

3.2 Design Decision
The number of CAN FD message
As shown in Fig. 3.2, the EtherCAT messages are equivalent to one CAN FD mes-
sage when they are encapsulated into CAN FD frame format. The reason why only
one CAN FD message is defined in TWINCAT is that if multiple equivalent CAN
FD messages are transmitted from TWINCAT, the EtherCAT interface board can
not function properly due to limited memory. In order to simplify the thesis work
and increase our chances of successfully implementing a prototype, it is decided to
define the EtherCAt messages shown in Fig. 3.2.

Choosing suitable baud rate for CAN FD
Since the SPI bus speed is set to 2 MBd/s in Volvo’s previous TWINCAT appli-
cation, the bus speed for CAN FD should not be too fast. Due to the way the
code is designed, the CAN FD module in dsPIC33 can not store all of the CAN FD
messages from CANoe if CAN FD baud rate is much faster than that of SPI. So in

14



3. System Design

our project, the SPI baud rate is set to 2Mbit/s and the NBR and DBR are set to
500kbit/s and 4Mbit/s respectively.

3.3 Hardware

3.3.1 Microcontroller
The PIC32MX795F512L and dsPIC33CK256MP508 microcontrollers are used in the
project. They are all designed by Microchip. The main frequency of PIC32 (see Fig.
3.3) is up to 80 MHZ. PIC32 supports different communication interfaces, including
up to four 4-wire SPI whose clock is up to 25 MHZ, one CAN module, I2C module
and UART module.

The dsPIC33 (see Fig. 3.4) is a 16-bit microcontroller, and its main frequency
is up to 100 MHZ. The microcontroller has three 4-wire SPI interface and one CAN
FD module.

Figure 3.3: Microchip PIC32MX795F512L Plug-in Module.

Figure 3.4: Microchip dsPIC33CK256MP508 Plug-in Module.
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3. System Design

3.3.2 Automotive Networking Board

The Microchip automotive networking board (see Fig. 3.5) is a modular development
system which mainly includes a 100 pin Plug-In Module (PIM) connector and four
mikroBUST M sockets. The PIM connector is compatible with Microchip’s 8-bit,
16-bit and 32-bit microcontrollers, and four mikroBUST M sockets [26] support CAN
communication and Local Interconnect Network (LIN) communication. Therefore,
the development board is very general by swapping different microcontrollers’ PIM
and adding various MikroElectronika ClickT M add-on boards which is compatible
with mikroBUST M sockets.

Figure 3.5: Microchip Automotive Networking Board.

3.3.3 EtherCAT Interface Board

The EtherCAT interface board (see Fig. 3.6) whose part number is EVB-LAN9252-
SPI in Microchip company. The core is LAN9252 EtherCAT slave controller chip
from Microchip [27]. The board includes dual integrated high-performance 100Mbps
Ethernet PHYs.

Figure 3.6: Microchip EtherCAT Slave Controller Board.

16



3. System Design

3.3.4 CAN FD Controller Board

The CAN FD controller board (see Fig. 3.7) is compatible with mikroBUST M socket
on automotive networking board, and it uses MCP2542FD designed by Microchip,
a CAN FD transceiver supporting both CAN and CAN FD.

Figure 3.7: Microchip CAN FD Module.

3.4 Test Setup

The test is based on the ECU CAN interface test specification from Volvo [6]. The
test includes bit time measurement, voltage measurement for CAN FD and message
frame encapsulation test.

3.4.1 Bit Time Measurement.

The bit time measurement configuration is shown in Fig. 3.8. A termination resis-
tor (Rtest) should be connected between CANH and CANL outputs. The distance
between ECU and Rtest should be 1 meter. If there is a termination resistor inside
the ECU, the value of Rtest should be 120 Ω, otherwise a 60 Ω resistor should be used.

The specific requirements of testing are:
1. The measurement should use a very specific sequence. For recessive bit time

measurement, the recessive bit occurs after five consecutive dominant bits.
Similarly, the dominant bit occurs after five consecutive recessive bits for dom-
inant bit time measurement.

2. Both arbitration phase measurement and data phase measurement should be
performed at least twice.

3. According to Volvo requirement, tolerance of arbitration phase bit time and
data phase bit time at TXD output shall not exceed +/- 0.4%, including clock
skew, jitter and asymmetry.
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ECU

TXD

RXD

CANH

CANL

CH1

Oscilloscope

Rtest

Figure 3.8: CAN FD Bit Time Measurement.

3.4.2 Voltage Measurement for CAN FD States

The voltage measurement configuration for CAN FD is shown in Fig. 3.9. A 60 Ω
resistor is used for ECU without a termination resistor inside, otherwise Rtest should
be 120 Ω. The voltage for CAN FD is measured at ambient temperature between
18◦C and 28◦C. The Volvo requirement for CAN FD recessive state and dominant
state is shown in Fig. 3.10 and Fig. 3.11 separately.

Figure 3.9: Voltage Measurement for CAN FD Dominant State and Recessive
State.

Figure 3.10: Voltage Requirement for CAN FD Recessive State.
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Figure 3.11: Voltage Requirement for CAN FD Dominant State.

3.4.3 Message Frame Encapsulation
It is necessary to check CAN FD frame bit by bit to make sure that the transmission
is successful. According to the Volvo test specification, a CAN FD logging tool and
an oscilloscope with CAN FD decoder are used.

The arbitration field should be checked as follows:
1. In arbitration field in CAN FD, the remote transmission bit (RTR) which is

used in CAN is removed.
2. The identifier extension bit (IDE) should be set to dominant in standard mode.
3. The r0 and r1 bit should be set to dominant.
4. The EDL bit , which is also called FD format (FDF) bit, should be set to

recessive for CAN FD.
5. The BRS and error status indicator bit (ESI).
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4
Results

4.1 Hardware Design
The new EtherCAT slave controller board includes LAN9252 and PIC32 to transfer
data via Ethernet and SPI protocol. Top schematic (see Fig. A.1) includes four
sub-sheets that is EtherCAT_IO, EtherCAT_controller, PIC32_MCU and power.
In EtherCAT_IO sub-sheet (see Fig. A.2), two RJ45 connectors are configured, and
they are connected with LAN9252 via eight data transfer pins. The SCL pin and
SDA pin are used as I2C protocol to interface with 24FC512-I/SM that is a EEP-
ROM chip to store data. In EtherCAT_controller sheet (see Fig. A.3), LAN9252
is configured [19]. The SPI4 of the chip is used to interface with PIC32 microcon-
troller. Similarly, PIC32_MCU sheet (see Fig. A.4) includes configuration circuits
of microcontroller. The power sub-sheet (see Fig. A.5) includes circuits to filter 3V
and 5v from external power supplier.

Figure 4.1: PCB design of EtherCAT slave Controller Board.
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For PCB design as shown in Fig. 4.1, the EtherCAT slave Controller Board is a
4-layer board including 2 signal layers, one power plane and one ground plane. The
ground plane is split as earth area that is connected with the shell of RJ45 and
GND area which is connected with other ground pins. The power plane is divided
into 3.3V area, 5V area and VDD area. The VDD can be connected with either
3.3V or 5V by toggling a switch.

The board size is 90 mm × 70 mm, and the basic rule to decide board size is
to find a balance between smaller size and less layers. The board uses three 30-pin
standard 2.54 mm connectors to interface with a motherboard designed by Volvo
Truck Corporation. Almost all pins of LAN9252 and PIC32 microcontroller, except
for power pins and ground pins, are kept in these three connectors. Therefore, the
new slave controller board has better compatibility, and it can be used for further
development.

In order to get better Electromagnetic Interference (EMI) performance, decoupling
capacitors are used for the power pins of LAN9252 and PIC32 microcontroller[19][28].
The data transfer wires between RJ45 and LAN9252 are set as differential pairs to
equalize their length. Regarding different pins, three special net classes are set.
Main_power class includes 3.3V and 5V from external supplier, and VDD pins.
Sub_power class contains power pins of chips. The earth and GND are included
in Ground class. Other pins are set as normal pins. Then, in order to have better
electrical performance, different trace width is matched for different classes. The
trace width for main_power and Ground class is 20 mil. Sub_power class uses trace
with 15 mil, and other traces are 6 mil.

4.2 Implementation Results
The final prototype is presented in Fig. 4.2 and it is the physical realization of system
architecture displayed in Fig. 3.1. According to the plan, the C part in Fig. 4.2
which includes PIC32 module, automotive networking board and EtherCAT slave
controller board should be replaced by the new designed EtherCAT slave controller
board (see Fig. 4.1), and the B part in Fig. 4.2 should be replaced by a motherboard
designed by Volvo. However, due to the corona virus and the layoff of Volvo, the new
designed board could not be manufactured on time and Volvo could not finish the
motherboard design on time either. Therefore, old boards are used in the prototype
test.
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Figure 4.2: Prototype under test. A is the Vector VN1630A tool which is used
with CANoe software. B is Microchip automotive networking board with CAN
FD controller and dsPIC33. C is the microchip automotive networking board with
PIC32 and EtherCAT slave controller.

In order to test function of the prototype, manual testing is chosen which means
that testing cases are changed manually. Automatic testing based on database
should be a better choice. However, in database provided from Volvo, the most of
testing cases are 0. It is not obvious to verify whether the transmission works or not.

In general the prototype is able to perform message transmission from TWINCAT
to CANoe correctly. As shown in Fig. 4.3, the transmission between TWINCAT
and CANoe works without any error. The DLC is set to 15 which means that the
data payload is 64. In Fig. 4.3 (a), a message is configured in TWINCAT. The
MAIN.iINx and MAIN.iOUTx is corresponding to the position of data byte in CAN
FD data frame, where x is a number from 1 to 64. For instance, MAIN.iIN6 and
MAIN.iOUT6 is connected with the sixth data byte in CAN FD data frame. There-
fore, the first data byte in CAN FD data field is set to 0x01. The other positions
are similar. CANoe receives this message (see Fig. 4.3 (b)). The first data byte is
0x01, and other data match with the configuration in TWINCAT. In an opposite
direction, a message is configured in CANoe (see Fig. 4.3 (c)), the first data byte
in data field is set to 0x1c, and other positions are shown in the figure. Fig. 4.3 (d)
shows the received message in TWINCAT, the MAIN.iIN1 is 0x1c which matches
with the first data byte in CANoe configuration. Other positions match with con-
figuration as well. Similarly, when the DLC is configured to 10 which means that
the payload is 16, the transmission works properly as well (see Fig. 4.4). The mas-
sage that CANoe receives (see Fig. 4.4 (b)) matches with the message configured
in TWINCAT (see Fig. 4.4 (a)). In an opposite direction, TWINCAT receives the
exactly same message (see Fig. 4.4 (d)) that configured in CANoe (see Fig. 4.4 (c)).
It shows that the prototype can transmit messages correctly under different DLC
setting.

Minor problems, for example some messages received in TWINCAT cannot be sta-
ble, will be discussed in next Chapter.
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(a)

(b)

(c)

(d)

Figure 4.3: Transmission results when the data payload is 64. (a) shows messages
sent from TWINCAT, and (b) shows that CANoe receives exactly the same data
from TWINCAT. (c) shows CAN FD frame sent from CANoe, and (d) illustrates
TWINCAT receives exactly the same data from CANoe.
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(a)

(b)

(c)

(d)

Figure 4.4: Transmission results when the data payload is 16.
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4.3 Test Results

Following the test setup mentioned in section 3.3, several tests are accomplished .

The bit time configuration is shown in Table 4.1 and this bit time configuration
is based on the CANoe configuration file from Volvo which requires that the sam-
pling point should be 70%. The TSEG1 and TSEG2 are calculated based on it.
Other parameters are set automatically by MPLAB tool [29] from Microchip.

CAN FD Controller Configuration Arbitration Phase Data Phase
Clock Frequency 80 MHz 80 MHz
BR Prescaler 1 1

Number of Time Quanta 80 10
TSEG1 54 5
TSEG2 23 2
SJW 23 2

Table 4.1: Bit time configuration of CAN FD controller.

4.3.1 Bit Time Measurement

Bit time measurement results are shown in Table 4.2 and Table 4.3, where the
arbitration phase bit rate is set to 500 kbit/s and data phase bit rate is set to 4
Mbit/s.

Recessive State Dominant State Requirements
Average Test Result 2.006 µs 2.008 µs 1.992-2.008 µs

Table 4.2: CAN FD Bit time measurement for arbitration phase.

Recessive State Dominant State Requirements
Average Test Result 250.5 ns 250.6 ns 249-251 ns

Table 4.3: CAN FD Bit time measurement for data phase.

4.3.2 Voltage Measurement

Voltage measurement results are shown in in Fig. 4.5 and Fig. 4.6, suggesting that
the CAN FD controller operates in a normal state.

26



4. Results

Figure 4.5: Test result of Dominant state voltage.

Figure 4.6: Test result of recessive state voltage.

4.3.3 Message Frame Encapsulation Measurement
Detail CAN FD frame is verified and part of the arbitration phase is presented in
Fig. 4.7, where IDE, r0 and ESI are set to dominant while FDF and BRS are set to
recessive. It should be pointed out that r1 is named RTR by the oscilloscope and
r1 (RTR) is set to dominant. In all the logic sequence of Fig. 4.7 is consistent with
its requirement.

Figure 4.7: CAN FD arbitration field.
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5
Discussion and Potential

Improvements

5.1 Discussion

5.1.1 General Performance
As shown in Chapter 4, the prototype implements an interface between TWINCAT
and CANoe successfully, and it meets the requirements of Volvo regarding to bit
time, voltage measurement and CAN FD frame encapsulation. However, unstable
transmission from CANoe to TWINCAT happens infrequently. TWINCAT loses
one or more logic-high bits for some data transmission.

5.1.2 Unstable Transmission
Currently, the communication between TWINCAT and CANoe works for most of
the test cases, as shown in section 4.2. However, there is a problem which is the
unstable transmission for some certain test cases. In Fig. 5.1, the 64th data byte
is configured to 0x70 in CANoe, and TWINCAT should receive the same result if
the system works properly. However, the result jumps between 0x70 and 0x60. If
the other position in data frame is configured to 0x70, the result in TWINCAT is
stable and correct. Similarly, the same phenomenon happens on the 14th data byte
if it is set to 0x1c.

Based on our code (see Fig. 5.2), the CAN FD data frame is operated as a buffer.
CAN FD transmitting and receiving are executed in mSPI1_Exchange16bitBuffer
funtion controlled by an iteration. Theoretically, either 14th data byte or 64th data
byte should not have logic difference compared with other positions, and the func-
tion should not be sensitive to some certain values either. Furthermore, when we
check the data sent from SPI back to EtherCAT slave controller board, as shown
in Fig. 5.3, the 64th data byte (0x70) is correct. However, the oscilloscope some-
times gets the wrong data due to some noise within transmission back to TWINCAT.

One of the potential reasons for this problem is that we only use one SPI isola-
tor click board [30] [31] between two automotive networking boards. When we
check the data sent from TWINCAT to CANoe, it is always correct and stable. In
the opposite direction, as mentioned before, oscilloscope sometimes gets the wrong
value because of noise and disturbance. The reason why we cannot use pair of iso-
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lator boards is that the clock port of the board is uni-directional. The noise and
disturbance might be reduced if suitable isolators can be used in pairs.

(a) (b)

(c) (d)

Figure 5.1: Unstable transmission of the 14th and the 64th data byte. (a) and (b)
show that TWINCAT receives either 0x60 (96 in decimal) or 0x70 (112 in decimal)
of the 64th byte, where 0x70 should be the correct result. (c) and (d) show that
TWINCAT receives either 0x10 (16 in decimal) or 0x1c (28 in decimal) of the 14th
byte, where 0x1c should be the correct result.

Figure 5.2: CAN FD transceiving code.
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Figure 5.3: The last two bytes sent from SPI back to EtherCAT slave controller
board.

5.2 Potential Improvements

There are several improvements that could be performed to get better performance
for the whole system. This section contains a list of potential aspects.

Using the new EtherCAT slave controller board
Due to the corona virus and the layoff in Volvo truck, the new-designed EtherCAT
slave controller board (see section 4.1) can not be manufactured on time, and Volvo
can not finish the new motherboard design on time either. In the prototype, two
Microchip automotive networking boards are connected with enameled wires. These
wires might bring unnecessary noise to make the system become unstable and un-
robust. Therefore, it is better to use robust standard connectors to connect slave
controller and motherboard, instead of using enameled wires.

Implementing multiple slave nodes mode
In the prototype, the transmission between TWINCAT and single slave node is
achieved. Although it has met the requirement of Volvo truck, it is meaningful to
investigate the possibility to let the system be suitable for multiple slave nodes.
Furthermore, the new designed EtherCAT slave controller slave board provides this
possibility, as far as hardware is concerned. The most of the spare pins of the chips
are wired to standard connectors which are connected with the motherboard. These
pins contain spare communication channels which can be used for multiple slave
nodes. Therefore, implementing multiple slave nodes mode can make the system
more flexible and generic.

Testing transmission performance using dynamic inputs
In the testing, test cases use either static inputs or can be changed manually. How-
ever, both TWINCAT and CANoe configurations can change frequently. For ex-
ample, CANoe can be configured by a database which includes large test cases.
Therefore, it is valuable to do transmission testing by using dynamic inputs. The
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transmission delay and potential bugs can be found, which can improve robustness
of the whole system.

Using ring buffer
To reduce transmission delay when using dynamic inputs, an more effective data
storage structure, like using ring buffer, should be investigated.
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6
Conclusion

The goal of this thesis is to implement a communication interface for EtherCAT
and CAN FD messages. It involves designing a PCB for EtherCAT and CAN FD
communication interface and writing software to test and verify the prototype design.

The PCB has been approved by Volvo and the system has been tested in real-time as
well. The results shown in Section 4.2 and Section 4.3 demonstrate that the system
is capable of transmitting EtherCAT and CAN FD messages correctly in terms of
bit time, voltage measurement, message frame encapsulation and message reception.

Unstable transmission however occurs infrequently and we can not conclude what
kind of message would suffer from such a phenomenon and when it could happen.
One possible reason for the unstable transmission is that environment noise affects
the logic state of some bits due to the lack of an SPI isolator, which is discussed in
Section 5.1.2.

There are several possible improvements to make the system more generic, flexible
and robust, including using a new EtherCAT slave controller board, implementing
multiple slave nodes mode, testing transmission performance using dynamic inputs
and using ring buffer.
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Figure A.2: EtherCAT_IO configuration schematic
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Figure A.3: LAN9252 configuration schematic
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Figure A.4: PIC32 configuration schematic
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Figure A.5: Power schematic
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