
Autonomous vehicle control: Exploring
driver modelling conventions by
implementation of neuroevolutionary and
knowledge-based algorithms
Master’s thesis in Systems, Control & Mechatronics and Complex Adaptive Systems

LINUS ARNÖ
JONAS ERIKSSON

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2018

MASTER’S THESIS IN SYSTEMS, CONTROL & MECHATRONICS AND COMPLEX ADAPTIVE
SYSTEMS

Autonomous vehicle control: Exploring driver modelling conventions by
implementation of neuroevolutionary and knowledge-based algorithms

LINUS ARNÖ
JONAS ERIKSSON

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018

Autonomous vehicle control: Exploring driver modelling conventions by implementation of neuroevolutionary
and knowledge-based algorithms
LINUS ARNÖ
JONAS ERIKSSON

c© LINUS ARNÖ, JONAS ERIKSSON, 2018

Master’s thesis 2018:83
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
A Formula Student race car tasked with generating suitable commands for moving between the cones.

Chalmers Reproservice
Göteborg, Sweden 2018

Autonomous vehicle control: Exploring driver modelling conventions by implementation of neuroevolutionary
and knowledge-based algorithms
Master’s thesis in Systems, Control & Mechatronics and Complex Adaptive Systems
LINUS ARNÖ
JONAS ERIKSSON
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology

Abstract

In this paper an investigation of driver modelling conventions is presented. The goal was to compare traditional
driver modelling with machine learning, to find indications of when one approach could be preferred over the
other. This was done by implementing some representatives of the different approaches and evaluating them in
the same conditions. The traditional approach was represented with one well established model by Sharp et al.,
as well as one self made aim point model. Both of these required a path planner and velocity control, that were
also designed by the authors themselves. The machine learning approach was represented by neuroevolution,
an alternative technique for solving reinforcement learning problems, and specifically the method called NEAT.
The results showed that all implemented methods were able to solve the task, but in the specific scenario and
with the current amount of training the two traditional models were superior to the evolved neural network.
Similarities and potential reasons for differences between the models are discussed, as well as some identified
advantages and disadvantages to both approaches.

Keywords: Autonomous control, driver modelling, motion planning, neural networks, neuroevolution

i

ii

Preface

In 2017, Chalmers University of Technology initiated the project Chalmers Formula Student Driverless (CFSD)
to provide students with hands-on experience from developing autonomous driving systems. The objective of the
project is to participate in Formula Student (FS), Europe’s most established educational engineering competition,
where students compete in designing and manufacturing race cars. CFSD will specifically participate in a
branch of the competition created in 2017, called FS Driverless, where the FS cars are to race autonomously.
The authors are a part of the CFSD team currently consisting of twelve master students that will transform a
former built FS race car to drive autonomously through three different tracks marked by cones. The results of
this thesis will be considered in the CFSD project.

Acknowledgements

We would like to thank our supervisor Ola Benderius for the guidance and help in structuring the entire project,
and of course for taking the time to evaluate and leaving constructive feedback of our work.

We would also like to thank the Revere team for sharing their facilities, helping out when there were technical
difficulties and for being good company.

Last but not least, we would of course like to thank the entire CFSD18 team for the great cooperation and
fellowship. This thesis would not have happened without the CFSD project and the dedication of everyone
involved.

Thesis advisor: Ola Benderius
Thesis examiner: Ola Benderius

iii

iv

Nomenclature

ADS Autonomous Driving System
AI Artificial Intelligence
ANN Artificial Neural Network
CFSD Chalmers Formula Student Driverless
CFS17 Chalmers Formula Student 2017
EA Evolutionary Algorithm
FS Formula Student
FSG Formula Student Germany
GA Genetic Algorithm
NEAT NeuroEvolution of Augmenting Topologies
TWEANN Topology and Weight Evolving Artificial Neural Network

v

vi

Contents

Abstract i

Preface iii

Acknowledgements iii

Nomenclature v

Contents vii

1 Introduction 1
1.1 Purpose . 1
1.2 Limitations . 2

2 Theory 3
2.1 Knowledge-based driver models . 3
2.2 The Sharp driver model . 4
2.3 Neuroevolution . 4
2.4 Neuroevolution of augmenting topologies . 5

3 Method 9
3.1 Path planner . 11
3.2 Aim point steering . 11
3.3 Velocity control . 13
3.4 Evolutionary network generation . 14
3.5 Vehicle model . 15

4 Results 17
4.1 Knowledge-based driver model results . 18
4.2 Neuroevolutionary driver model results . 19

5 Discussion 21
5.1 Advantages of knowledge-based models . 22
5.2 Advantages of black-box models . 23

6 Conclusion 25

References 26

Appendix 28

A NEAT parameters 28

B Vehicle model parameters 28

C Maps 29

vii

viii

1 Introduction

Transportation, as we see it today, is standing in front of a fundamental change. The automotive industry
together with universities and high-tech companies world wide are spending vast resources on developing the
necessary technology to make fully autonomous driving available to the world. The underlying reasons for
the effort are many. Autonomous vehicles are believed to result in fewer accidents, lower emissions, and more
efficient use of infrastructure [1].

A human driver can be seen as a part of a closed-loop system consisting of the surrounding environment, the
driver and the vehicle. Autonomous driving systems (ADS) are commonly designed as artificial human drivers.
Comparable to the human eyes, a perception system is used to collect information about the environment. The
information is sent as input to a decision process, or brain, which determines desired actions. The actions
are then executed by a mechanical system that turns the wheels or locks the brakes. Driver behaviour, i.e.
the output to vehicle actuation given an environmental input, could be argued to determine the skill of a
driver or ADS, provided functioning perceptive and mechanical systems. In an ADS, the decision how to
brake, steer or accelerate is made by a driver model. Driver models have long been utilized in research to
understand driving as a phenomenon, but have been found relevant in several practical applications such as
design of infrastructure, vehicles and active safety systems [2]. They were originally used to simulate human
drivers in computer simulations, but have gained increased usage as integral parts of embedded real-time systems.

In the past decades there have been several approaches to driver modelling. Examples are the well-known
model by Sharp et al. [3] which is based on control theory and focused on following a desired drive path as
closely as possible, and the Salvucci and Gray model [4] that uses assumptions about human driving behaviour
without need of an internally planned path [2]. What these models have in common is that they determine
driver actions based on rules decided by the designer and motivated by solutions from previous research. Such
driver models could be referred to as knowledge-based. Knowing the model, it is possible to predict the output
given a certain input. This as opposed to systems utilizing Artificial Neural Networks (ANN), which has proven
to be a powerful tool in the field of autonomous driving [5].

With breakthroughs in research and increasing access to more processing power, deep learning has drastically
improved computer image recognition and is commonly used in perception systems for autonomous vehicles.
However, to solve the vehicle control task using ANNs is an ongoing research area. In 2016, based on the
findings of Pomerleau [6], Bojarski et al. [7] trained a convolutional neural network (CNN) to map only the raw
pixels from a front-facing camera to the steering command of a vehicle. The system, DAVE, was demonstrated
the same year in NVIDIA’s self-driving car [8]. This was achieved using a technique called behavioural cloning,
where a network was trained from human driving data. Other promising techniques involve different approaches
to reinforcement learning [9]. In these deep learning techniques, the topology of an ANN i.e. the structure
of the neurons and connections, is designed by a human based on some level of experience [10]. The natural
neural network in a human brain is however a result of millions of years of evolution. Interestingly, evolution of
brains in nature is the only known example of a process that has created something truly intelligent. This is
what drives the AI branch of neuroevolution, where the goal is to trigger an evolutionary process that creates
intelligence inside a computer. Neuroevolution combines evolutionary algorithms and ANNs, and have in
recent studies proven to be a competitive alternative when solving reinforcement learning problems [11]. An
interesting topic within neuroevolution is topology and weight evolving artificial neural networks, TWEANNs,
where not only the weights of a network are trained using evolutionary algorithms, but also the full structure
of the network. It is a process much resembling the evolution of intelligence seen in nature.

1.1 Purpose

The traditional approach to autonomous driving is knowledge-based, where each sub-task is solved with
elaborate and well motivated designs by the developers. It is favored for its modular characteristics, where each
sub-component can be substituted and interpreted individually. A different approach that is becoming more
and more popular is to instead make use of artificial neural networks, favored for the potential of overcoming
problems that are too complex for humans. However, its black-box characteristics result in a loss of modularity
that makes it difficult to interpret the system and understand how and why decisions are made and how to cor-

1

rect undesired behaviour. Researchers are divided between these approaches, and comparisons of strengths and
weaknesses would be helpful for deciding how future research efforts should be distributed. The purpose of this
thesis is to provide a basis for finding indications for deciding when one approach is to be preferred over the other.

This project has focused on the driver model, i.e. how to map the information from the perception system
into appropriate driving actions. The goal was to compare the two mentioned driver model conventions
by implementation and simulations. To achieve a larger contrast, a new full-insight model was designed
and together with a well established knowledge-based model compared against a no-insight ANN. The ANN
was developed using a neuroevolutionary TWEANN, automatically generated based on performance rather
than conscious design decisions. Knowledge-based and TWEANN driver models are on opposite sides of the
human-machine intelligence spectrum, where one is a white-box intelligence designed by a human, and the
other a black-box intelligence evolved in a computer with minimal prior knowledge added by humans. The
conventions were evaluated in simulated scenarios resembling an FS competition event. Specifically, the work
has been focused towards answering the following research questions:

RQ1: How well do knowledge based driver models and a black-box artificial neural network perform compared
to each other?
RQ2: Which one of the methods is the most flexible to vehicle specific and environmental changes?

1.2 Limitations

The driver models have only been evaluated in FS competition scenarios. This introduces simplifications
compared to real world traffic conditions. These include single lane following without intersections or obstacles
such as other road users. The lane is also marked with sparse point markings rather than conventional road
lines. An assumption is made that the perception system is ideal and consistently provides a given number of
the points that mark the drivable surface. The comparison has been made between three driver models. It
was not sought to design or implement the best possible performing models of the represented fields, nor to
achieve the highest potential of the implemented models. The objective was merely to explore the approaches
that are about to compete for resources of research within autonomous driving in the upcoming decade. Thus,
the knowledge-based models were tuned heuristically and the network evolution was performed with a default
parameter setting not proven to be optimal for the specific task. Also, the effort spent on discovering the optimal
training set up was limited. Furthermore, the comparison did not aim to reach a high level of resemblance to
real world scenarios. Therefore, a simplistic vehicle model was used to provide the necessary platform for the
comparison.

2

2 Theory

This chapter begins by introducing traditional driver modelling, where a selection of existing driver models
are presented. These served as references and inspiration for the design of the aim point model, introduced
in Section 3.2, as well as candidates for representing the traditional driver models. This is followed by a
brief presentation of the Sharp model, which was chosen as a well established knowledge-based driver model
to implement for comparison. Furthermore, some neuroevolutionary techniques for creating and evolving
TWEANNs are introduced before the theory of the chosen method is presented more thoroughly.

2.1 Knowledge-based driver models

Traditional driver models are in most cases focused either on lateral or longitudinal control. Thus, limiting the
scope and narrowing down the area of research. To enable modularity is also preferable in embedded systems.
Regarding lateral control, the literature dates back to 1947 where the first mathematical model of lateral driver
steering control was published by Tustin [12]. The model approximated driver control by a linear transfer
function with an additional non-linear part that was referred to as the remnant, of which several attempts has
been made to explain in a model. In 1953, Kondo developed the first model of driver steering behaviour using
a preview point [13]. The preview point was then referred to as the sight point related to where the driver
is looking. The distance between the driver and the preview point was furthermore hypothesized to have a
linear relationship with the vehicle speed. The angular error between vehicle heading and preview point can
be used as a minimization measure that later was recognized to minimize both lateral error and heading error [14].

The concept of using preview points can be found in most modern driver models. In the well-known model by
Sharp et. al. (2000) [3] the concept is further developed to compute the steering angle from a weighted sum
of deviations from several points on a preview distance. In 2004, Salvucci & Gray formulated the two-point
visual control model of steering [4], which is rather mathematically similar to the Sharp model but applies
control by minimizing the movement of a near and a far point on a target lateral position, and the angle to
the near point. The model was developed after Land and Horwood’s model [15] that argues that drivers use
information from a far region where the driver is looking, and a near peripherally perceived region. Another
well-known model is by MacAdam (1981) [16], which aims to minimize the squared deviation error from a path
using different optimization criteria. Similar to the models of Sharp and Salvucci & Gray, MacAdam’s model
is based on following a predefined path. A different branch is satisficing driver models, which are applying
steering corrections on compelling need rather than any small error [17]. The model of Gordon & Magnuski
(2006) [18], is an example where the vehicle is controlled to stay inside a region modelled using boundary points.
The current yaw rate is compared to the one needed to avoid the boundary point with the largest mismatch.

When discussing lateral driver models, it may be useful to categorize models according to their structure. In
2012, Benderius defined three different design perspectives: a behaviour perspective, a cognitive perspective and
a control perspective [19]. A behaviour perspective is most suitable when designing models based on observed
or hypothesized driver behaviour. The cognitive perspective uses models of the human mind as framework,
however, since little is known about how the human mind works it is commonly used with specific driver
phenomena seen in traffic. In this thesis, little emphasis is made on how well a model mimics human driving
behaviour, more how to follow a high curvature path at highest possible speed. It is therefore interesting
to look at driver models from a control perspective which typically are focused on following a desired path
as closely as possible. From this perspective, the driver is considered a controller with the vehicle as plant.
Seeing the driver as a controller allows methods from control theory to be applied directly to the model.
As an example, an approach would be using optimal control methods with a cost function that minimizes
deviations from a given path, as was done by MacAdam and Sharp et. al. A common approach used for both
lateral and longitudinal control within autonomous driving is using model predictive control (MPC) techniques
[20][21][22][23]. However, such approaches demand an accurate vehicle model to predict future response of the
system. Since the performance of such a model would rely heavily on the accuracy of a vehicle model, it is not
suited for the comparison to be made in this thesis.

Speed references for longitudinal control in real life traffic situations are often based on speed limits or on-road
obstacles such as other road users. This thesis considers unlimited obstacle free lane following, meaning

3

that speed planning is based on road properties such as road friction and curvature, together with vehicle
dynamic properties. Road friction is difficult to estimate, therefore the curvature of the desired path plays
a large role in speed planning. Paths with continuous upper bounded curvatures are beneficial for smooth
path following since they minimize control-input variability and might require less control effort to track
depending on the controller. Fraichard & Scheuer [24] used a set of optimal curves (straight line segments, arcs
of circles, and clothoids) to implement an algorithm based on Dubins’ curves [25]. Simple turns are modified
into continuous-curvature turns, created with aid of clothoids. However, between circular arcs and straight
line segments generated by clothoids, the path presents discontinuities. Several researchers have therefore
proposed alternative fundamental curves, such as B-splines [26], quintic polynomials [27], polar splines [28],
cardioids [29], G2-splines [30], η3-splines [31], and Bézier curves [32]. These curves all have coordinates with
closed-form expressions, unlike for clothoids where approximations and look-up tables are required. Knowing
the curvature of the path, a speed profile consisting of maximum desired velocities can be determined using
friction limits and vehicle properties. Based on the speed profile, a reference velocity may be decided and
by this the required acceleration is acquired. The outputs to vehicle actuators could then be regulated using
conventional control techniques. There is however not a necessity to use an continuous curvature path, which
introduces uncertainties in the function fitting process and requires more computational power. In Section 3.1,
more is explained about the method used in this work.

2.2 The Sharp driver model

In this section an overview of the steering model by Sharp et al. is presented, and more details can be found
in the original paper [3]. A vehicle is tasked with following a known global ideal path. An optical lever is
extended in front of the vehicle for a distance L, determined by multiplying the current vehicle speed and a set
preview time. Then n points li are placed on the optical lever, starting with l1 in the vehicle’s center of gravity.
The lateral off-sets ei are found by placing reference points ri on the path perpendicular to the li points, and
measuring the distances between them. This means that e1 is the vehicle’s lateral off-set from the intended
path position, and the following ei are preview information errors. An additional feedback value eΨ is used,
representing the angular difference between the vehicle global heading, and the tangent angle of the intended
path position. Finally the control gains Ki are introduced to calculate the desired steering angle δ according
to equation (2.1). Exponentially decreasing control gains have been found to be a good basis, but should be
further tuned until a satisfactory behaviour is achieved. A picture of the model is shown in Figure 2.1.

δ = KΨeΨ +K1e1 +

n∑
i=2

Kiei (2.1)

2.3 Neuroevolution

Evolutionary algorithms (EA) is an umbrella term for stochastic optimization algorithms inspired by natural
evolution [33]. EA uses methods that resembles natural selection, reproduction and mutation. A population of
different solution strategies are evaluated for the problem at hand, and the most successful individuals have a
higher chance of contributing to the strategies that will form the next generation of the population. Iterating
the procedure for many generations will result in individuals carrying combinations of the most successful
strategies from former populations, and should eventually lead to at least one individual with a close to optimal
solution. A common type of EA is the genetic algorithm (GA), where solution strategies are encoded similarly
to human chromosomes. The reproduction usually closely resembles biological methods, with offspring being
generated by crossover between two parent chromosomes and sometimes a few mutations of individual genes.

In neuroevolution, an EA procedure is combined with ANNs to find high performance networks for specified
tasks. Recent findings [11][34][35][36][37] has brought back attention to neuroevolution, as it has been shown
that it can compete in complex problems that have previously favored reinforcement learning techniques. A
network with evolutionary optimization of both structure and connection strength is referred to as a TWEANN,
and there are multiple methods to create one. One of the earliest methods for constructing and training
recurrent neural networks was generalized acquisition of recurrent links (GNARL) published in 1994 [38]. The
original paper introduces the method by presenting its performance in a couple of problems of interest. It also

4

Figure 2.1: Visualization of the Sharp steering model. Picture from [3].

makes an argument for why conventional GAs are not suitable for evolving ANNs. The main reason being that
the standard dual representation of the search space and the dynamics of crossover do not translate well into
making flexible network topologies. Certain problems arise such as incompatible parent topologies and the
competing conventions problem where different chromosomes can give networks with identical but rearranged
components. Such problems endanger the computational ability of offsprings. The problems with normal GAs
warrant the development of gene structures specifically made for ANNs.

In 2002, Stanley & Miikkulainen presented a TWEANN method called neuroevolution of augmenting topologies
(NEAT) [39]. The method offered a new solution to the problem of genetic crossover of networks, and became
popular for experiments in the field. With NEAT, the competing conventions problem was avoided by lining
up the chromosomes according to the historical origin of the genes before doing the crossover, resembling the
biological process of synapsis where crossed genes are ensured to encode similar traits. It also avoids premature
elimination of new topologies by applying speciation. Speciation temporarily divides the population into smaller
groups of structurally similar individuals, allowing new network structures to evolve within their species and
get closer to their full potential before being evaluated against the full population. NEAT uses direct encoding
so that the decoding of genes will not restrict the network to specific topology classes. Some years later NEAT
got an extension called HyperNEAT (2009) [40] that supports indirect encoding which allows for deeper networks.

Another method focusing on network scalability is discover & explore neural network (DXNN) published in
2010 [41], which is solving the curse of dimensionality with a highly modular and hierarchical structure of
connected clusters of smaller networks called sub-cores. It substitutes speciation with a two-phase process.
In the tuning phase every individual is allowed to mutate until it achieves the best fitness that topology can
offer in a reasonable amount of time. Natural selection is carried out in the next phase, which does not start
until the tuning phase is over. The paper also presents tests of how DXNN performs in different problems and
compares it with other TWEANN methods. The conclusion is that highly complex problems can often cause
other methods to become bloated with newly created neurons. DXNN can usually find a relatively compact
solution by requiring an increase in structural complexity to deliver an approximately equivalent increase in
performance as compensation.

2.4 Neuroevolution of augmenting topologies

In this section an overview of the inner workings of NEAT is presented. It is intended as a summary rather than
a complete description, more details can be found in the original paper by Stanley & Miikkulainen [39] were

5

the following information also originates from. As the first part of the name suggests it is a neuroevolutionary
technique, which means that an artificial neural network is trained with an evolutionary algorithm. As the
second part of the name suggests, the network is not only trained by altering the connection weights but also
altering the structure by adding new nodes and connections. The motivation behind the development of NEAT
is to solve the three most serious problems with the TWEANN methods that came before it. These problems
are:

The competing conventions problem: Also called the permutation problem, competing conventions is
when a single neural network can be described with more than one genome encoding. This causes problems in
the reproduction process of crossover. If two different encodings for the same network are combined there is
a considerable risk of including some of the functionality in more than one place in the new genome, at the
cost of leaving something else out entirely. This would endanger the functional validity of the offspring of two
healthy parents. Furthermore, TWEANNs are especially vulnerable to competing conventions since networks
representing similar functions might have completely different topologies or differently sized genomes, so that
previous solutions to the competing conventions problem for fixed networks do not apply.

Protecting innovation: Mutations in TWEANNs will occasionally cause a structural change in the network.
Such a change will however very likely result in an initial decrease of the individual’s fitness. If only fitness is
considered, innovative individuals would always be at a disadvantage compared to the rest of the population
that was left unchanged in that generation. A solution is to make use of speciation, also known as niching.
This would divide the population into groups of similar individuals, which allows a newly mutated structure
some generations to optimize and get closer to its full potential before getting compared with the population in
full. It is however not commonly used in TWEANNs because it requires a way to calculate the similarity of
individuals, and as already mentioned TWEANNs with similar functionality might have radically different
topologies and genomes.

Innovation of topology: It is common to start training with an initial population of random networks. In
TWEANNs this would typically mean that the starting topologies would also be random to ensure starting
diversity. Other than the risk of creating networks with disconnected nodes or incomplete connection paths
this would also waste computation time on networks that might be too big to begin with or having nodes
where they are completely unjustified. There is a computational value to finding the minimal solution, and
one natural way to minimize the size of a network is to give a penalty to size in the fitness function while
training. The difficulty in that is however to decide the magnitude of this penalty, since the ideal network size
is probably not known beforehand and might also change with the complexity of the task. NEAT sidesteps all
these insecurities by initiating training with minimal networks with no hidden nodes, and then increasing the
size gradually until an increase in size does not result in progress anymore.

The solution to the two first problems lies in the genetic encoding of NEAT networks, and the inclusion of
an innovation number or historical marking in every gene. The inspiration came from the natural process of
synapsis were chromosomes are lined up according to genes encoding similar traits before crossover begins. The
big realization that lead to development of NEAT was that when starting with minimal networks, mutations in
different networks sharing the same historical origin would encode the same trait, and lining these up with
each other would enable crossover. By following these historical markings, describing the time of creation of
the gene, the competing conventions problem could be avoided.

The network has two different lists of genes. The first one specifies which nodes are available in the network and
if they are of the input, output or hidden type. The other list has one gene for every connection between nodes.
These connection genes describes which two nodes are joint by the connection, the weight, if the connection
is active or disabled, and the innovation number telling when the connection was created. There are four
types of possible mutations in these genomes. The first one is modification of a connection weight, either a
small perturbation or a new random weight value. The others give structural changes in the network. A new
connection can be created between two previously unconnected nodes. A new node can also be created in
the middle of an existing connection, which would deactivate the old connection and replace it with two new
connections joining the new node with the two old ones. Finally a disabled connection can get enabled again.
Examples of the two first structural mutations are shown in Figure 2.2.

In crossover the genomes of two networks are lined up according to innovation numbers. If two genes have

6

Figure 2.2: Two types of structural mutation in NEAT. The picture shows the connection genes and corresponding networks
before and after the mutation. The genes show the innovation number at the top, then the in and out nodes, and finally if the
connection is disabled. In the top part of the picture a new connection is formed between existing nodes 3 and 5. In the second
part a new node is created, disabling the old connection between nodes 3 and 4 and replacing it with two new connections.
Picture from [39].

Figure 2.3: An example of crossover between two genomes in NEAT. These two parent genomes have matching genes up to
innovation number 5. One of the genes from every matching pair is randomly chosen to be included in the offspring. If one
gene in a matching pair is disabled there is a chance that the offspring gene will also be disabled. Excess and disjoint genes are
normally included from the more fit parent, but in this example equal fitness was assumed so that the inclusion of these genes
was randomized. Picture from [39].

7

the same number they are called matching genes, because they have the same historical origin and are thus
guaranteed to represent the same structural change and be interchangeable. The other genes are either called
disjoint or excess, depending on if their innovation numbers are within the same range as the other parent’s
genes or not, and represent structures that are not included in the other network. When the genomes are
crossed, one gene from each matching pair is chosen at random and the rest of the genes are taken from the
parent with the highest fitness. An example of crossover in NEAT is shown in Figure 2.3.

The historical markings also makes the comparisons needed for speciation possible. The compatibility distance
between two networks can be calculated with the help of the number of disjoint and excess genes, and the
matching gene weights. In each species one genome from the previous generation is set as a representative
genome, and when a new network has a compatibility distance below a certain threshold from one of the
representatives it gets assigned to that species. If no compatible species is found, a new one is created with
the new genome as the representative. Every species will then be allowed to produce a number of offspring,
depending on the average fitness of the species. There is also a procedure that can be activated to avoid
stagnation. If the population fitness does not improve for a specified number of generations, only the two most
promising species are allowed to reproduce.

8

3 Method

A literature study was performed of existing driver models and evolutionary machine learning techniques, seen
in chapters 2.1 and 2.3. The purpose of the study was to decide which methods were suitable to implement
and compare as representatives of the two conventions. As stated in the project description, in addition to the
self-made model one was desired to be an established knowledge-based driver model and the other a neural
network generated without prior knowledge. The models were then implemented, evaluated and compared in a
scenario mimicking the FS trackdrive event. In this event the vehicle is following a narrow and winding lane
marked only by cones on both sides. Since it is a racing competition, the objective is to keep a high speed in order
to finish the race in as little time as possible. It is also important to stay on the track, since leaving the track is
seen as a failure and hitting a cone results in a penalty. An example of a trackdrive track can be seen in Figure 3.1.

Figure 3.1: A trackdrive track seen from above. The left side is marked with blue cones and the right side with yellow cones.
The start/finish line is marked with orange cones. Cone sizes are not to scale, the track is approximately 3 m wide and the side
cone separation is approximately 5 m.

The implementations of both models were carried out in the C++ environment OpenDLV, a software platform
for autonomous driving provided by Chalmers’ vehicle laboratory Revere [42]. In OpenDLV, programs for
autonomous vehicles are divided and deployed as a collection of microservices. This highly modular structure
makes the program very flexible to modifications. For example, a fully functioning program for real world
vehicles can easily be simulated by replacing the vehicle with a vehicle model, the localization module with a
position integrator and the detection module with a virtual variant. The logic for deciding driving commands
can thus be completely identical in both real world and simulated test cases. The opposite is also true, that the
motion planning modules can be switched to other variants freely without affecting the rest of the simulation.
This property is what was utilized in order to easily switch between the two knowledge-based models, and thus
testing them in identical circumstances. The black-box model however required to have the cone detection,
network and vehicle model in the same microservice in order to show the same behaviour in testing as in
training. A picture of the simulation loop is shown in Figure 3.2.

An important aspect of making the comparison fair was to provide the driver models with identical inputs. In
the scenarios that were chosen for the comparison in this thesis, the program was consistently aware of the
positions of the five upcoming cones on each side of the track, equivalent to a preview of approximately 20 meters.
Furthermore the program also knew the current vehicle state, more specifically the current longitudinal speed,
lateral speed and rotational speed, i.e. yaw rate. The task of the driver models was to use this information to
generate suitable steering and acceleration commands. Even though the implemented knowledge-based models

9

Cone detector

Motion planning module(s)

Vehicle model

Position integrator Visualization

Velocity and rotation

Cone positions and types

Acceleration and steering requests

Position and heading

Figure 3.2: The architecture of simulation microservices and communication. A global cone map was availiable to both the cone
detector and visualization microservice. A bicycle model was used as the vehicle model. The motion planning space was in the
knowledge-based models filled with one microservice for path planning and another for steering and acceleration. In the black-box
model the motion planning consisted of a trained ANN, and was included together with the cone detector and vehicle model in one
microservice.

can handle a varying amount of detected cones, there are reasons to choose a fixed amount for the comparison.
One is that the neural network in the black-box model needs a fixed amount of inputs to be reliably trained.
Another reason is that this is how cones are planned to be sent to the driver model in the FS competition, as
soon as the full track has been discovered and stored as a global map.

The self-made knowledge-based model, which will commonly be referred to as the white-box model or aim point
model in this paper, is heavily inspired by the established aim point models introduced in 2.1 without being a
direct implementation of any of them. It consists of a lateral control system using a single velocity dependent
preview point, referred to as the aim point. The steering correction is based on the angular error between the
aim point and the vehicle heading. The design is motivated by simplicity and few tunable parameters, and
the use of preview allows it to be further developed into several more advanced models that are based on the
same premise. The speed planning is represented by a speed profile, calculated from the maximum allowed
lateral acceleration and the curvature of a path placed in the center of the lane. The speed profile is followed
by estimating the latest time to brake compared to the time it would take to reach the considered position
at current velocity. More detailed descriptions of the parts in this model are presented in sections 3.1, 3.2, and 3.3.

The chosen established knowledge-based model was the one by Sharp et al, commonly just referred to as
the Sharp model. Since the model only handles steering, it replaced the aim point steering method from the
white-box model while using the same path planner and velocity control method. The classic Sharp model
has already been described in section 2.2. The implementation for comparison in this work was only slightly
modified to compensate the lack of a global path. The used path planner was not guaranteed to give a path point
directly to the side of the vehicle, and if this was the case the modified model chose the lateral offset to the po-
sition of the closest path point as the first lateral error. The effect of the modification is assumed to be negligible.

The neural network of the black-box model was generated with the neuroevolutionary technique NEAT. The
main motivation for using a TWEANN is that it requires less input of prior knowledge from the developers.
A more traditional neural network would require a decision for the network structure and size, and leaving
these decisions to an evolutionary algorithm will increase the contrast between the black-box (no insight) and
knowledge-based (full insight) models and make the comparison between the two approaches more clear. The
reason for choosing NEAT specifically is that the relatively simple method has been shown to be able to perform
well in complex problems. It is also well known and popular, so that online resources and examples can easily
be found. An overview of NEAT was covered in section 2.4, and the process of evolving the network for this
specific project is described in section 3.4.

10

3.1 Path planner

The first part of the white-box model involves placing a path in the lane. There are two purposes to making
this path. One is that the aim point will be placed somewhere on the path, depending on the current speed of
the vehicle. The other is that the curvature of the path will be analyzed in order to plan a suitable speed profile
that will make the vehicle brake in preparation of a curve and speed up in straights. The path placement in
the lane was discussed while developing the first version of the white-box model. One option was to find the
optimal race line in the track, and make a driver model that can follow this path as closely as possible. It was
however ultimately decided that the path should be placed in the center of the lane, for a couple of reasons.
One is that safety and staying on the track is prioritized over speed, and purposefully guiding the vehicle closer
to the edge of the track would introduce unnecessary risks. Another reason is that the implemented steering
models might not necessarily be able to follow a planned path closely enough, and in that case the speed
planner would have more use of the curvature of the center path that more closely represents the lane in general.
Yet another reason is that the lane is very narrow, so that the available margin for lateral maneuvering is mini-
mal and an optimal race line probably would not be able to deviate a significant distance from the center anyway.

The first things that happen in the path planning module are some checks on the detected cones, to make sure
that they are able to represent a valid lane for path generation. These checks are more important in other
test cases, when the vehicle can only detect cones within its field of view rather than always getting the five
upcoming cones on each side, but they still serve as safety precautions in this simpler case as well. First it sees
if the cones were received in the correct order, starting with the closest cones and ending with the farthest.
This is how the cones are sent from the cone detector, but a double check is needed since messages between
microservices cannot be guaranteed to be received in the same order as they are sent. Secondly the program
investigates if the two sides match each other. This is done by first choosing to trust the side that is the longest,
since it carries more information. It then makes sure that all the cones on the trusted side can see any cones
from the other side within a certain distance threshold, and if not the other side needs to be supplemented. For
example if the long side extends much farther than the short side, the program will insert guessed cones at
suitable positions at the end of the short side. An example can be seen in Figure 3.3.

After the cones have been checked and possibly supplemented, it is time to generate a path in the center
between the two sides. First the longest side is divided into smaller parts by placing virtual points at regular
intervals between the cones. The next part is a process to create a partner point on the other side for every
one of these points. Every point finds the closest cone from the other side. The segments from that cone to
the previous and following cone are then searched for a point with a perpendicular line from that point to the
virtual point in question. If such a point is found it is set as the partner point, and if not the partner point
will be set at the position of the cone that was found. This search for perpendicularity is important to ensure
that the path will be kept in the center even when the lane turns. When a partner point has been set for
every virtual point, the center point for each of these pairs is stored. The final path points are then placed
at small regular intervals along this collection of center points. A picture of the procedure is shown in Figure 3.4.

The path could be processed further than this, but was opted to stay in the form of a sequence of linearly
interpolated points. The main reason is to keep the lane representation as simple and general as possible,
and only refine the path when it is absolutely necessary for following driver model functions. Representing
the path as for example a function or spline would on one hand provide a continuous reference which would
be advantageous, but it would also introduce uncertainties in the function fitting process and require more
computational power. Since both knowledge-based models were found to respond well to the point representation
of the path, the advantage of having a continuous path was not deemed valuable enough to compensate for the
disadvantages.

3.2 Aim point steering

The white-box model applies a single point preview steering model, here referred to as the the aim point model
due to its single point characteristics. The method utilizes the basic principles of most traditional driver models
where the approach is to look ahead a preview distance in front of the vehicle and decide an appropriate
steering command based on the vehicle’s deviation to the upcoming path. The aim point model could therefore

11

Figure 3.3: The car (box) has detected five cones (circles) on
both sides of the lane. The left side extends much longer than
the right side, so the program guesses an extra cone on the right
side (triangle).

Figure 3.4: The path planning procedure. The right side is
the longest and is thus divided with regularly placed virtual
points (squares). Each virtual point gets a partner point on the
other side (crosses). The center point (diamonds) of every pair
is found and the path is placed between these center points.

Figure 3.5: The aim point is placed on the path at a preview distance Sp calculated from the centre of the vehicle’s front wheel
axis. Steering corrections are based on the angular error between the vehicle heading and the aim point.

be motivated to be a proper representative for knowledge-based driver models. As input, the model receives
information about the path from the path planner given in local two-dimensional Cartesian coordinates where
the origin is placed at the center of the front wheel axis, the x axis is straight ahead of the vehicle and the y
axis is to the left. A second input is given as the vehicle ground speed. The aim point is placed on the path in
front of the vehicle at a preview distance Sp, as shown in Figure 3.5. When driving at high velocities, which
occurs on straight road sections, it is advantageous to strive for smaller steering corrections to achieve a stable
behaviour. While at lower velocities connected to cornering, it is important not to place the aim point too
far ahead which would induce corner cutting. In order to achieve this type of adaptive behaviour the preview
distance was made linearly dependent of the longitudinal velocity ẋ using Equation (3.1).

Sp = ẋTp (3.1)

The preview distance is calculated using Tp which is a set preview time. A great advantage with the aim point
steering model is that it only contains one single tuning variable, which is the preview time. When the preview
distance is decided, the xy-coordinates for the aim point is calculated by finding the path point of which the
distance from the local origin is just surpassing the preview distance. Linear interpolation is used to cover the
remaining error.

Two additional cases can be identified. If the preview distance is larger than the path length from vehicle,
the aim point is placed on the last path point. If the preview distance is smaller than the distance between
vehicle and the first path point, the aim point is placed on the first path point. The desired heading δdes is
then calculated in Equation (3.2) as the angle between the vehicle x-axis and the aim point.

δdes = arctan 2(yp, xp) (3.2)

12

Here, yp, xp is the placed aim point in local coordinates. The heading request is in turn limited to −δmax ≤
δreq ≤ δmax due to vehicle specific mechanical restraints, as seen in Equation (3.3) where the heading request
is limited by a maximum steering angle of ±25 degrees.

δreq =

{
min(δdes, 25π/180) if δdes ≥ 0

max(δdes,−25π/180) otherwise
(3.3)

3.3 Velocity control

Here, velocity control refers to deciding a desired acceleration at each time point where a vehicle is aiming to
drive as fast as possible around a narrow two-dimensional, high curvature track with all four wheels inside the
road markings. As inputs, the velocity model receives information about:

• the path from the path planner given in local two-dimensional Cartesian coordinates where the origin is
placed at the vehicle’s center of gravity

• estimated road friction coefficient

• current heading error (i.e δreq)

• current ground speed

• allowed maximal acceleration, deceleration and velocity.

The first step is to create a speed profile where a maximum allowed velocity vmax is set at the path point
coordinates. The velocities are determined by Equation (3.4) using the path curve radius R and a maximal
lateral acceleration limit, ay,max. To avoid infinity values on the straight road sections, the velocity is further
limited by an upper bound, denoted by vlimit.

vmax = min(
√
ay,max ·R, vlimit) (3.4)

The maximal lateral acceleration, ay,max, is calculated from the friction condition in Equation (3.5), where g
and µ are the gravitational constant and estimated road friction respectively.√

a2
y + a2

x ≤ gµ (3.5)

The longitudinal acceleration, ax, is assumed to be the maximal allowed for both brake and torque, to be
safe, but could be seen as a tuning variable. The curvature is represented as the radius R of a circle that goes
through three path points separated by a step size that is heuristically determined. The three path points
make up a triangle with side lengths A ≥ B ≥ C, and the triangle area is calculated using Equation (3.6). The
radius of the circle is finally determined by (3.7).

4(A,B,C) =
1

4

√
(A+ (B + C)) ∗ (C − (A−B) ∗ (C + (A−B)) ∗ (A+B − C)) (3.6)

R =
ABC

44 (A,B,C)
(3.7)

This is done for as many path points that is possible with the given step size, and a reference velocity is set for
all points that has a curvature estimate, using Equation (3.4). This method of curvature estimation is rather
unconventional, but has proven to be competent together with the path planner. In relation to other methods,
such as curve fitting which also was considered, it is computationally efficient and unaffected by the length
of the path. When compared to a curve fitting method, the accuracy of the estimations were rather similar,
however the circle estimator showed to be more consistent and forgiving in certain scenarios. It also has the
advantage to be able to perform estimations on paths that changes sign in both x and y direction. Before
moving to acceleration calculations, the speed profile is scaled down based on the quotient between the heading

request and the wheel angle limit, λ =
|δreq|
δmax

according to

vdes = vmax(1− λC)

13

where C is a tuning constant between 0 (no scaling) and 1 (full scaling, vdes = 0 when |δreq| = δmax). A
C = 0.5 has been found sufficient.

To calculate the desired acceleration at time t, the basic concept was to find the latest time when the vehicle
has to apply its brakes. The achievable future velocity when braking for a time tb with constant deceleration
ax,maxdec is denoted by v(t+ tb). Equation (3.8) estimates the brake time to achieve the future desired velocity
vdes while Equation (3.9) estimates the time tv to reach the considered velocity at distance s with current
speed v(t).

tb =
vdes − v(t)

ax,maxdec
(3.8)

tv =
s

v(t)
(3.9)

Since ax,maxdec is a negative value, tb is positive when the current velocity is greater than vdes, which indicates
that the vehicle is in need of deceleration to reach vdes. Three cases can be identified:

• tv − tb = 0, brake now to reach vdes.

• tv − tb > 0, braking is not yet necessary.

• tv − tb < 0, braking now will cause v(t+ tb) > vdes.

At each time t, the preview path is evaluated and the most critical preview point is identified, i.e. min(tv − tb).
If the value is less than or equal to zero, maximum braking is requested. To not use exclusively maximal braking
commands, another condition is included where if braking is needed within ts, an appropriate deceleration is
requested to reach vdes = v(t+ tb + ts), as well as a condition saying that if the deceleration can be achieved
using only roll resistance then the requested acceleration is equal to zero. For min(tv − tb) > ts, maximal
acceleration is requested. Before sending the acceleration request, the condition in (3.5) is checked again with

ay =
v2
current

L/tan(|δreq|)

ax = ax,req

where L is the vehicle wheel base and ax,req the requested acceleration. If it is not fulfilled, |ax,req| is reduced
using (3.5) such that the condition is met.

3.4 Evolutionary network generation

The networks were generated and optimized using the published code for the original version of NEAT [43].
The program requires a user defined experiment, defining the objective and dynamics of the task, and specified
parameter values. The experiment is run for every organism in every generation to evaluate a fitness, and
actions such as mutation, reproduction and speciation are all handled by the provided code. The experiment
for this project was set as running the complete simulation loop. Provided a global position, the 10 nearest
cones where sent as input to a network connected to a specific NEAT organism, together with the lateral,
longitudinal and angular velocities. The network outputs, represented between -1 and 1, were mapped into
steering and acceleration requests as δreq = out1 · δmax, ax,req = out2 · ax,max. These where then used by the
vehicle model described in Section 3.5, which returned a kinematic state allowing the car to drive along a track
by integrating new positions and create new inputs. The fitness of an organism was set as the average of the
fitnesses of all the runs in the training tracks. There were in total 66 tracks available to the network. The
training set consisted of 56 of these tracks, and the remaining 10 were used for testing. All the tracks were
custom-made to ensure that the properties in terms of cone placement would be the same as the real event
track, although with different track shapes. The number of unique track shapes was 20, but to enlarge the
set tracks were reused by changing driving direction and/or scaling in size. The track shapes are shown in
Appendix C.

14

The fitness was based on the competition event objective, which is to drive as fast as possible while staying in
the lane. In the competition, leaving the track is seen as a did-not-finish (DNF), and hitting a cone will result
in a penalty. The fitness function thus needed to be carefully designed in order to evolve a desired behaviour.
Since the main priority was to find a safe behaviour that stayed on the track, both leaving the track and hitting
a cone were set as failure conditions. The fitness was defined as the distance travelled along the track within
a set time. This implicitly trained both speed and survivability at the same time, encouraging the car to go
as far as possible before the allotted time limit was reached. Entering a failure state would end the attempt
before the time was up, but the fitness would be set as the distance covered before failing so that even small
improvements would be noticed and rewarded.

When experimenting with NEAT, there are a large number of parameter that can be altered to tweak the
evolution, examples would be population size, mutation and mating probabilities, age significance, stolen
babies etc. To optimize these is a difficult task which demands either genuine knowledge about the NEAT
technique and its software, or extensive experimentation. This is considered to be outside the scope of this
work. Therefore, the parameters recommended by NEAT’s creator for the double pole balancing experiment
are used as default setting for the evolution of the network. The parameters can be found in the original C++
version of NEAT and in Appendix A.

3.5 Vehicle model

A vehicle model was used to transform the heading and acceleration requests into vehicle motion. The choice of
model resulted in a conventional single-track vehicle model, seen in Figure 3.6, with simplicity as the strongest
motivation. The model, also called the bicycle model, makes the simplification of modeling a four wheeled
ground vehicle as two wheeled. Here, the vehicle is front steered, and modelled in two dimensions assuming no
roll or pitch motions. The vehicle’s motion used to integrate its global position was modeled as a kinematic
state consisting of velocities in x and y directions, as well as the yaw rate.

Figure 3.6: Single-track vehicle model [44]

α2 = − arctan(
vy − l2ψ̇
|vx|

) (3.10)

15

α1 = δ − arctan(
vy + l1ψ̇

|vx|
) (3.11)

The physical vehicle parameters were estimations of the CFS17 race car and can be seen in Appendix B. The
received heading request was realized by allowing a steering rate of at most 80◦/s. In the model, slip angles
are estimated by equation (3.10) and (3.11), the rear and front ground forces are given as a function of the
vehicle’s mg and the distances l2 and l1 from Figure 3.6. The lateral forces on the tires F1,y, F2,y are modeled

using Pacejka’s magic formula [45]. Finally, the vx, vy and yaw rate ψ̇ of the current state are calculated by

numerically integrating v̇x (3.12), v̇y (3.13) and ψ̈ (3.14) and adding them to the previous state. Additional
modifications to the model were made by adding a constant roll resistance force Fr as well as limiting the
longitudinal velocity according to 0 ≤ vx ≤ 30 m/s.

v̇x = ax,req −
F1,y

m
sin(δ) + ψ̇vy + Fr (3.12)

v̇y =
F1,y cos(δ) + F2,y

m
− ψ̇vx (3.13)

ψ̈ =
l1F1,y cos(δ)− l2F2,y

Iz
(3.14)

16

4 Results

To evaluate the three driver models, they were tested at ten different test tracks. Every driver model was
allowed one try to finish one lap at each track and receive a score consisting of the time with added penalties.
Naturally, a good model strives towards lowering its score as much as possible. According to Formula Student
rules, hitting a cone results in a 2 second penalty added to the total time. An off-course occurs if, at some
point, all four wheels are placed outside of the track and results in a DNF. The black-box model was trained
on the tracks in the training set, which did not include the test tracks. The two knowledge-based driver models
were first tuned on a couple of the training set maps, prioritizing safety, before being tested. The results are
displayed in Table 4.1. The one called TrackFSG is a bit special, because it is a reconstruction of the 2017’s
edition of Formula Student Germany’s endurance track for non-driverless vehicles. The track was generated
using GPS data from the CFS17 vehicle. Comparing the models on this specific track is good for evaluting
their performance on a track with the same properties as they would encounter in a real competition. Because
of an off-course from the black-box we will however instead use TrackFSGR for this comparison, which is the
same track with all the same properties but in the reverse direction. A closer look on the results from this
track is shown in Table 4.2. Examples of the positioning of the three models from this track can also be seen in
Figure 4.1 and 4.2.

Table 4.1: The results from the ten test tracks. The ’b’ and ’s’ in some track names denotes that it is a bigger or smaller version
of the normal track, and R means reverse. The result of a run is shown as lap time and cone hits. At the bottom the sum of the
FS trackdrive scores from these runs is shown as a measurement of the driver model’s performance. A low score is better than a
high score.

Aim point Sharp Black-box
Track19 62.35 | 0 64.80 | 0 DNF
Track19R 64.45 | 0 65.20 | 0 DNF
Track20 43.85 | 0 45.05 | 0 90.10 | 5
Track20R 43.55 | 0 44.65 | 0 DNF
Track20b 57.70 | 0 59.35 | 0 138.2 | 1
Track20bR 57.05 | 0 58.85 | 0 146.3 | 4
TrackFSGs 81.00 | 0 83.75 | 5 DNF
TrackFSGsR 83.35 | 7 83.45 | 8 DNF
TrackFSG 102.7 | 0 105.0 | 0 DNF
TrackFSGR 102.5 | 0 105.6 | 1 245.3 | 6
Total score 712.5 743.7 -

Table 4.2: The results from one lap in the reverse FSG 2017 track, with models tuned and trained only on the training set.

Model Lap time (s) Avg speed (km/h) Left cones hit Right cones hit Event score (s)
White-box 102.5 37.61 0 0 102.5
Sharp 105.6 36.50 0 1 107.6
Black-box 245.3 15.74 6 0 257.3

To not only see how general and flexible the models were, but also to see more of how good they could potentially
get, an additional test was made in the non-reversed FSG track. The models were now tuned and trained
directly on the FSG track. The results were not aimed to become completely optimized, but at least get closer
to their full potential to be able to see if any conclusions could be made regarding possible skill ceilings of the
models. The results from these attempts are shown in Table 4.3.

Table 4.3: FSG lap results, with models tuned and trained specifically for the track.

Model Lap time (s) Avg speed (km/h) Left cones hit Right cones hit Event score (s)
White-box 99.85 38.62 0 0 99.85
Sharp 101.9 37.85 0 0 101.9
Black-box 138.9 27.80 10 1 160.9

17

Figure 4.1: Example of positioning in a straight. Aim point
and Sharp are nearly identical and centered. Black-box moves
forward in a wavy pattern.

Figure 4.2: Example of positioning in a turn. Aim point and
Sharp are nearly identical and slightly corner cutting. Black-box
has chosen a very different trajectory.

To evaluate the second research question, and compare how the models respond to changes in the vehicle
platform, the vehicle model parameters where changed such that the vehicle would resemble a large and heavy
Volvo XC90 instead of the lightweight Formula Student race car. Weight, length and inertia were altered while
maximum and minimum values for steering and acceleration where left unchanged. Since this created a vehicle
that could impossibly managed to complete the FSG track due to its large steering radius, the models where
tested on the easier Track20b. All of the models drove off track on the first try, as seen in Table 4.4. However,
the aim point model only needed a change in the velocity control scheme to finish the lap, while the Sharp
module got the same change and an additional tuning in steering to achieve a decent result. Both models hit
the same three cones when exiting the sharpest corner of the track. The black-box also drove off the track, and
could not be tuned without also retraining.

Table 4.4: The results on Track20b with changed vehicle parameters. Both with the tuning used for the old parameters, and
retuned to fit the new parameters.

Model Lap time (s) Avg speed (km/h) Left cones hit Right cones hit Event score (s)
White-box - - - - DNF
White-box retuned 98.6 22.37 0 3 104.6
Sharp - - - - DNF
Sharp retuned 93.45 23.61 0 3 99.45
Black-box - - - - DNF

The black-box model used for this experiment was the model trained specifically on the FSG track. Interestingly,
with 1 cone hit and average speed on 20.73 km/h it managed to finish a lap on Track20b in 106.7s. This is
31.5s faster than the model that was trained on several maps to achieve a robust behaviour in most situations,
despite only training on one single track that was not even the testing track. Similar results were found when
testing the FSG-trained model on other tracks, it consistently performed better than the other model.

4.1 Knowledge-based driver model results

Both knowledge-based models performed well on the ten test tracks. The aim point model managed to drive
through almost all the tracks without hitting any cones, while the Sharp model hit a few more. The two
models are however very close to each other regarding performance, both in speed and score. The white-box
model’s lap in the reverse FSG track was made in 102.5 seconds and Sharp finished in 105.6 seconds, which
can be compared to the fastest lap times made by drivers in FSG2017 which were set close to 70 seconds on a

18

Figure 4.3: Visualization of the speed of the white-box model
during one lap in the track. The speed is represented in a gray
scale where the darkest black corresponds to the top speed of
15.19 m/s, and pure white corresponds to 0 m/s. Since the
Sharp model uses the same velocity control scheme, the figure is
representative for both knowledge-based models.

Figure 4.4: Visualization of the speed of the black-box model
during one lap in the track. The darkest black corresponds to
the top speed of 10.34 m/s, and pure white corresponds to 0
m/s.

wider track with the same layout1. The aim point model did not steer into any cones during its lap, while the
Sharp model hit one cone. The vehicle longitudinal velocity throughout the lap was nearly identical for both
knowledge-based models, since they were using the same velocity control method, and is illustrated in Figure
4.3. The start position can be spotted to the lower right where a dark higher velocity abruptly overwrites
the white of the start position. Throughout the lap, the driver model manages to lower the speed into the
tight corners and holds the positive acceleration until the wheels have been straightened. One can see a clear
connection: the higher curvature the road has, the lower is the velocity, and vice versa.

4.2 Neuroevolutionary driver model results

The winning artificial neural network trained on several maps resulted after 4286 generations. The network
consists of 23 input neurons, 1 bias, 554 hidden neurons and 2 output neurons. The neurons are in turn
connected by 1871 weighted connections. When evaluated on 56 different maps during a maximum drive time
limit of 180s, the network managed to achieve an average distance driven of 192.53 meters. The evolution
is illustrated in Figure 4.5. The neural network trained specifically for the FSG track received its maximum
fitness of 263.21 meters after 11801 generations, resulting in a larger network with 1427 hidden neurons and
4839 weighted connections. The more lightweight training allowed for faster evaluations of each generation.

During the testing the first network finished four of the ten tracks with a couple of penalties due to cone hits,
and an DNF on the rest of the tracks due to Off-courses. The reverse FSG lap was finished in 245.3 seconds
with 6 cone hits. In Figure 4.4, the vehicle longitudinal velocity throughout the reverse FSG lap is illustrated in
a black and white scale. The car was driving slowly and carefully in the lane. There were no long accelerations
or brake actions, instead the car accelerated and braked with quick bursts throughout the whole lap. It is
however clearly shown that the speed was generally higher just before entering a curve. The second network,
trained only on one map, showed an increase in performance regarding velocity control. This can be seen in
Figure 4.6, which is somewhat beginning to look more similar to Figure 4.3. As a final remark, both of the
networks developed a steering technique that involved consistently altering between maximum an minimum
steering angles, even on straight road segments where the frequency of the altering simply increased.

1https://www.formulastudent.de/fsg/results/2017/

19

https://www.formulastudent.de/fsg/results/2017/

Figure 4.5: Population highest fitness for each generation during NEAT evolution when using a training set of 56 maps.

Figure 4.6: Visualization of the speed of the black-box model trained on the FSG track. The darkest black corresponds to the
top speed of 15.30 m/s, and pure white corresponds to 0 m/s.

20

5 Discussion

The results were somewhat expected, in the sense that the two knowledge-based models would perform better
than the black-box. We did not expect the black-box model to receive a DNF in so many of the test tracks, but
the performance looks much worse than it actually is. When only looking at the scores the black-box might
look worthless, but it actually was very skilled at avoiding the cones in general. The evidence can clearly be
seen in the results of the tracks it managed to finish. In Track FSGR for example, 6 cone hits might look bad
compared to the 0 and 1 by the other models. But then it is important to remember that the track consists of
a total of 433 cones, and the black-box thus avoided 98.61 % of all the cones it encountered on the way and
stayed on track the entire time. The locations where it unfortunately drove off track were also to a large extent
where the other models struggled a bit, either with cone hits or close calls.

While the black-box steering model succeeded quite well in its most important task of staying on track and
avoiding cones, it can however not be considered a valid steering model for racing. The steering request was
almost always to the maximum angle to either the left or right. The network had during training discovered
a steering technique that quickly alternated the aim between left and right. When going straight the aim
alternated equally to both sides in an even frequency. When the car was turning the aim continued to alternate
but stayed slightly longer to the correct side every time, except in the very sharp turns where the aim was held
to the correct side. This steering method technically works in the sense that the resulting car movements are in
the correct directions, but it also has a negative effect on the lap time because of the slight zig-zag pattern it
always performs throughout the lap. And while it might be technically functional in a simulation, there would
be a high risk of damaging the mechanical parts in a car if it would be implemented in a real world system. A
contributing reason to why the model developed such a behaviour was possibly the less advanced vehicle model.
Other than damaging components, in a real world scenario the vehicle system would itself have higher inertia,
that is, being less reactive and follow the requests of the network more slowly. The constantly interchanging
steering commands could as well make the system largely unstable, especially at higher speeds.

Regarding the black-box velocity control, the evolved solution was also surprising. The car drove with quick
bursts of acceleration and braking in a seemingly nearly constant frequency. It is unclear why this behaviour
evolved. Especially in parts of the tracks where it looked obvious that a longer acceleration or at least a
constant speed would be better. A possible theory is that the model had a desire to accelerate, however, the
large steering angles often created a situation where the vehicle then would accelerate toward a cone, forcing
immediate braking. Another is, since the speed and steering were decided at the same time in the same network,
they are likely coupled with each other. It is possible that the stuttering velocity control was caused by the
quick jumps in steering, or the other way around. It might be that the model recognized that, just as for the
knowledge-based models, a large steering correction should be connected with a low velocity. It is also possible
that they were not at all dependent on each other and that this specific combination of steering and speed con-
trol reached some kind of local optimum. It is of course impossible to tell because of the black-box characteristics.

The fact that the aim point model would do well and be able to finish most laps without cone hits was not
surprising, after all the times it has been tried and refined during the development process. It has been
developed with the specific goal of succeeding in the competition, and it is easy to tune, so it was pretty
certain that a car with slightly careful tuning values would be able to perform well even in unknown tracks. It
was more surprising that Sharp got so similar results to the aim point model, even down to the positioning
in the lane. Since they are using the same path planner, and Sharp is known for its path following ability,
that indicates that also the self made aim point model is good at following the given path and on par with
established steering models. The velocity control also worked as intended, quickly speeding up in straights and
choosing suitable speeds for all turns, allowing the steering to work at its best when the risk of spinning out is
the highest. And the fact that it worked equally well for two different steering models is a good sign of its
flexibility. Worth mentioning is that the tuning of maximum velocity for the speed profile proved to be highly
dependent on the amount of input cones to the system, i.e. how far ahead the driver model can see. When
allowing the model to receive twice the distance ahead, the velocity on straights could easily be increased by
more than 5 m/s. The Sharp model is recognized as an expert path follower, when tuned correctly. Due to the
many parameters however, it is a time demanding task and it is possible that it did not show its full potential
in this implementation. Moreover, the slight modifications made to the model are not expected to, but might
have affected its performance, something that was not investigated thoroughly. The model showed less smooth

21

steering corrections between sample times than the aim point model. This could be due to above mentioned
reasons, or to the fact that the path planner was not designed to provide a path with upper bounded curvature.

Having a smoother path representation than linearly interpolated points could perhaps improve the results. The
change in the aim point steering is assumed to be minimal, because with a discrete time step the path would be
percieved as discrete points anyways, but it could make a difference in the Sharp model that is dependent on
the accuracy of relative positions of several path points in any given time frame. If such a change would have a
noticeable effect on the performance is however unclear. The largest difference might have happened in velocity
control, which could potentially be designed to make use of a more accurate curvature estimation. While on
the topic of paths, it would have been interesting to see if the black-box model would become better if the
input of cone positions was replaced with a path input, either the current point representation or a smoother
one. It feels like it might be easier to learn how to follow a path rather than how to go fast while avoiding
suddenly appearing cones. There are however several issues with trying this. For one it might be hard to make
local paths consistent enough to be able to act as reliable training data, and in this case it would for example
be hard to guarantee a certain path length. Secondly the model would be biased on where the designers think
that a good path should be placed, which might restrict the performance from becoming as good as it can get.
Lastly, this would give some insight in how the model decides its outputs, and while it might get better results
it would not be a no insight model and therefore not in line with the purpose of exploring a black-box model in
this thesis.

5.1 Advantages of knowledge-based models

We can see some advantages to controlling the car with a knowledge-based model. The first, and perhaps most
important, is that we have full control over the safety precautions in the system. We can decide what situations
should be regarded as critical, and what the appropriate action should be. If the situation is temporary the
solution might be to ignore it to see if the danger is false or to slow down while waiting for a clearance signal.
If the situation is serious an immediate emergency brake or quick turn might be warranted. Of course it might
be difficult for a system designer to predict all the special cases, but it is possible when the task is not too
complex. With a black-box model one would have to rely on having all the cases present in the training data
and also that the program has learned appropriate actions to these cases by itself. One alternative could be to
override the network output in special cases, but that would not only defeat the purpose of having a black-box
model. It could also introduce problems and unexpected behaviour if the overriding was not present in training,
or if the model is dependent on recurrent data.

It is also much easier to modify existing behaviour, not only in critical situations but also when the driving is
proceeding as expected. If the car is driving much slower than what is desired, overall driving aggressiveness
can be increased. If the car has a not quite optimal curvature to speed conversion or needs to brake or turn
harder or earlier, there are tuning parameters for all of those. If the tuning parameters are not too many, it is
not too hard for a human to slightly modify them until a good combination has been found. With a black-box
model the only alternatives would be to either retrain with the same settings, retrain with new settings, or
even altering the fitness function either greatly or slightly. All of these alternatives are likely to take a long
time, and none are guaranteed to improve the results. In fact, even evolving two networks simultaneously
on the exact same premise, the final results may differ largely. A well known problem in using black-box
models as aid for autonomous driving is validation. It is very difficult to determine if a system is safe, well
performing or robust enough in all situations. Since one cannot foresee its actions, testing is the only way to dis-
cover the limits of the system, but the conclusions are only as good as the amount of scenarios that are evaluated.

In the development process the advantage is similar to the one just discussed. In the search for a design
that is able to in principle solve the basic task, at least on a somewhat satisfactory level, the full insight of
knowledge-based models often made it possible to find and resolve different causes to problems separately, and
gradually working towards a robust design. No major tuning is required until the design phase is over and the
most basic level of the problem has been solved. In this case that could be considered to just staying in the
lane by keeping the speed within reasonable limits and steering with the right principal direction in curves. To
reach this point with a black-box model some uncertainties are introduced before training can even begin such
as setting training parameters, setting a fully covering evaluation function for solving the task, and relying on

22

that the training data has both the necessary information to learn the task at all and the necessary diversity to
find a general solution. There are also no intermediate steps, either a good enough solution has been found or
more training is needed.

This brings the discussion to real life development and implementation. A knowledge-based model has the
advantage that it can be created and tested in simulation as proof of concept. Then when the software is
deployed to the real vehicle, proper tuning is performed to achieve desired behaviour. The case is different for
black-box driver models. When simulating the black-box model, it had to be set up as similar to the training
scenario as the OpenDLV simulation environment allowed. This means that the network activation, vehicle
model and cone detector all needed to exist as functions within the same data triggered micro service. The
only difference lied in the position integrator, which was a time triggered stand-alone module that controlled
the frequency of the system in 20 Hz. Having most of the functions in the same micro service resulted in
a loss of the modularity that the knowledge-based models had, but was required to actually get the same
behaviour in testing as the one evolved through training. Though, an attempt was made to separate the
module containing the network into a set up similar to the one used by the knowledge-based models, where
driver model, vehicle model, cone detector and position integrator all exists in their own micro services. With
the short delays, in the order of milliseconds at worst, induced by sending messages, the performance of the
black-box model dropped significantly. The conclusion is that when training a black-box driver model, it
is important that training is performed in a highly similar setting to where it is meant to be used. This
makes training in simulation a nearly impossible task when the software is to be deployed in a real vehicle.
On the other hand, to perform the training in the setting where it is to be used, i.e. in the real vehicle,
might be close to as challenging, especially if approaching the task as a reinforcement learning problem,
as was done with NEAT. There is a high probability that the hardware would be damaged in the process,
and even so, if training is performed outside simulation it would take a tremendous amount of time. As
is the case with all machine learning techniques, the performance of the system is highly correlated to the
amount of data that is used for training. Here, the behaviour cloning technique used in [7] is a promising
approach as it has the ability to collect data and train the driving behaviour on any road without risking
neither the environment nor the vehicle platform. It also avoids the restart-retry aspect of reinforcement learning.

As an additional remark, the knowledge-based models we have used are designed to be largely independent
of the specific vehicle model used. The decision making for steering and acceleration would not need to
change with a different vehicle, although some new tuning would probably be required in most cases. That
is radically different from our black-box model, which is trained based on performance. This means that the
training algorithm continuously needs to compare vehicle responses from different network outputs. A vehicle
change would therefore, again, require a complete retraining of the network with new settings. It is however
worth to mention that while this is the case for the models we have tested, it might not be the same for all
knowledge-based or black-box driver models.

5.2 Advantages of black-box models

Using a black-box model also has its advantages. First of all it can be very quick to get started. While
knowledge-based driver models are transparent, the underlying mathematics are often complex and could be
demanding extensive knowledge in system control in order to achieve a stable and well behaving system. It
might also be that existing models are not completely suited out of the box for the specific task in mind, and
could either not be usable at all or require significant modifications in the function logic. For example, to
try the Sharp model in this experiment we first needed a path to follow. Since the very specific properties of
representing a lane with sparse cones is not very common there is no definitive and ready made way to represent
the lane with a path, so we had to design and implement that by ourselves. Then the path representation we had
available was not always completely suited for the traditional Sharp model, so that the logic also needed some
small changes. Instead of modifying logic or making things from scratch, it is very convenient to pick a machine
learning technique. Most algorithms are designed to be able to solve any problem, at least to some extent, as
long as enough training data is available and the evaluation of performance can be clearly defined. In this project
NEAT was used, which has a lot of downloadable resources available, but there are also numerous other machine
learning techniques that should be able to find a solution. We believe that letting a finished algorithm start
optimizing on enough data would in most cases be much quicker than creating a driver model from nothing. At

23

least to start getting somewhat functioning results, even though tuning it to perfection might be more challenging.

Another possible advantage could be computation. A well structured network has the potential to represent a
solution in a very compact way. While training a network requires a lot of computation power, the finished
product requires a lot less to just run through. Especially for tasks that do no need particularly deep networks,
and also with techniques such as NEAT that searches for minimal solutions. Running inputs through the
finished network might be less demanding than using a knowledge-based model that always needs to do a lot of
processing just to interpret the data in every time step, into a representation that must be comprehensible by
a human. The difference in required computational power is something we would have liked to test in this
project, but were unable to because of time constraints.

Maybe most importantly, the advantages of knowledge-based models quickly fade when the complexity of the
task increases. While the knowledge-based models were ultimately preferred for the task in this project, it
was heavily simplified compared to real traffic situations where driver models will most commonly be used.
The scope of the FSG trackdrive task could easily be grasped by a human, and all the necessary steps to
solve it could therefore be outlined in a self made model within a reasonable time. Neural networks, and
black-box models in general, really show their true worth when a problem is too complex for a human. With
more difficult and varying roads and environments there is no doubt that solving the entire task with a self
made model would be too much of a chore for a human. While a human can drive a car and react with
common sense in unexpected situations, transferring that knowledge and instinct to all the special cases in a
knowledge-based model would require complete knowledge of the human brain. But when training a network it
will optimize when and how to react to different input combinations, and in an unexpected situation it can
react similarly to as it would in the most similar situation it knows about. It might not be a perfect reaction,
but it has evolved something that could be referred to as instinct. It also might not be a perfect substitu-
tion to defining all special cases, but it is necessary when the amount of possible special cases is too large to grasp.

24

6 Conclusion

In this paper, an exploration of driver model conventions has been presented. On one side stands the more
traditional knowledge-based algorithms, allowing for transparency and flexibility, and on the other side the
neural networks with black-box characteristics and potential to achieve a behavioural complexity that could not
be designed by a human. To evaluate both conventions, three different driver models were implemented. The
first was a single preview point steering model, referred to as the aim point model, designed by the authors, the
second was based on the well known model by Sharp, Casanova and Symonds, and the third was an artificial
neural network created using the neuroevolutionary technique NEAT. The first two have been referred to as
knowledge-based models and are also using a discrete path generated by a self designed path planner together
with a speed profile to solve the task of requesting appropriate heading and acceleration commands based on a
fixed number of cones marking out a drivable road surface.

Comparing the two conventions, the knowledge-based models proved to be more competent on the simulated
test tracks. They both were clear winners in terms of speed and lane following abilities compared to the
black-box model. The overall results were correlated to the ease of tuning, where the aim point model with
preview time as the only tuning variable was the overall winner. The Sharp model performed nearly as well
but was more difficult to tune well. With one setting it cut sharp corners too much and with another it took a
larger turn than necessary. This was also dependent on the path planner and the velocity control, an interplay
which was easier to create together with the aim point model. The aim point model proved to be very smooth
and consistent with regard to steering corrections, while the Sharp model could make larger correction changes
between time steps. The velocity control used on both knowledge-based models was very efficient, and is leaving
room for shorter lap times if the possible viewing distance is increased.

The black-box, which was untunable, was lacking in terms of both steering and velocity. The model had
developed logic for steering that consistently altered from maximum to minimum, even on straight road
segments. It is difficult to draw conclusions about the velocity control, since it is possible that it was highly
affected by the bad steering decisions. The knowledge-based models were overall considered more flexible to
environmental changes, as they performed better in unknown tracks, and vehicular changes, as only some
retuning was required when changing the vehicle parameters.

Overall, the presented task was easily comprehensible for humans. Both the transparent knowledge-based
models could therefore fulfill the requirements and be tuned to improve the results. The black-box model
did not perform remotely as well as the other models, but there are many reasons that could have affected
the network which are not easily discovered and rectified due to the black-box characteristics. One would be
that the simplistic vehicle model might have been too unrealistic. For humans it is easy to presume basic
knowledge about vehicles and their physics that are unconsciously built in to a knowledge-based driver model,
in the network evolution however there is no such knowledge in the system, which allows solutions that for us
are obviously not desirable but can result in an evolution that takes an unwanted direction. The evolution
of the networks in this thesis was performed over night, and tested the day after. It is possible that better
results could have been achieved if training was allowed for a longer time. However, with time, the sizes of
the networks increase rapidly, demanding more and more processing power to evaluate and continuously write
results to file. Also, it is not certain that the training was set up in an optimal way. Several versions were
tested, and it was discovered that training on only one map gave better results than to use a larger training set.
It would be interesting to dig deeper into the evolution phase, and to aim for reaching the full potential of this
NEAT experiment. This could be done by altering parameter settings for the training, try different fitness
functions, training sets and validation methods. However, since it did not fit within the scope of this work, to
properly investigate the best evolution set up is left for further development.

Nevertheless, the black-box model managed to finish several tracks, which is still impressive considering that it
was evolved from only 24 input neurons and two output neurons, with loose instructions telling it to go far and
stay on track without hitting cones. It is still difficult to compete with the inherited knowledge of the human
brain when designing driver models. Though, the potential of ANN is higher when it comes to more complex
and unexpected scenarios that becomes too difficult to model mathematically. Neuroevolution as such could
allow for a low threshold to develop advanced neural networks with only basic knowledge about the task that is
to be performed, and could therefore grow to become a powerful tool in numerous fields in the future.

25

References

[1] L. Caltagirone et al., “LIDAR-based driving path generation using fully convolutional neural networks”,
arXiv preprint arXiv:1703.08987 v2 2017, 2017.

[2] O. Benderius, Modelling driver steering and neuromuscular behaviour. Chalmers University of Technology,
2014.

[3] R. Sharp, D. Casanova, and P. Symonds, “A mathematical model for driver steering control, with design,
tuning and performance results”, Vehicle System Dynamics 33, no. 5 2000, 289–326, 2000.

[4] D. D. Salvucci and R. Gray, “A two-point visual control model of steering”, Perception 33, no. 10 2004,
1233–1248, 2004.

[5] E. D. Dickmanns et al., “The seeing passenger car’VaMoRs-P’”, Intelligent Vehicles’ 94 Symposium,
Proceedings of the, IEEE, 1994, pp. 68–73.

[6] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network”, Advances in neural
information processing systems, 1989, pp. 305–313.

[7] M. Bojarski et al., “End to end learning for self-driving cars”, arXiv preprint arXiv:1604.07316 2016,
2016.

[8] M. Bojarski et al. (Aug. 2016). End-to-end deep learning for self-driving cars, [Online]. Available:
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/ (visited on
12/15/2017).

[9] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocular vision and
reinforcement learning”, Proceedings of the 22nd international conference on Machine learning, ACM,
2005, pp. 593–600.

[10] K. O. Stanley. (Jul. 2017). Neuroevolution: A different kind of deep learning, [Online]. Available:
https://www.oreilly.com/ideas/neuroevolution-a-different-kind-of-deep-learning (visited
on 02/10/2018).

[11] F. P. Such et al., “Deep Neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning”, arXiv preprint arXiv:1712.06567 2017, 2017.

[12] A. Tustin, “The nature of the operator’s response in manual control, and its implications for controller
design”, Journal of the Institution of Electrical Engineers-Part IIA: Automatic Regulators and Servo
Mechanisms 94, no. 2 1947, 190–206, 1947.

[13] M. Kondo and A. Ajimine, “Driver’s sight point and dynamics of the driver-vehicle-system related to it”,
SAE Technical Paper, Tech. Rep., 1968.

[14] J. Baxter and J. Y. Harrison, “A nonlinear model describing driver behavior on straight roads”, Human
Factors 21, no. 1 1979, 87–97, 1979.

[15] M. Land and J. Horwood, “Which parts of the road guide steering?”, Nature 377, no. 6547 1995, 339–340,
1995.

[16] C. C. MacAdam, “Application of an optimal preview control for simulation of closed-loop automobile
driving”, IEEE Transactions on systems, man, and cybernetics 11, no. 6 1981, 393–399, 1981.

[17] O. Benderius, Modelling driver steering and neuromuscular behaviour. Chalmers University of Technology,
2014.

[18] T. Gordon and N. Magnuski, “Modeling normal driving as a collision avoidance process”, Proceedings of
8th International Symposium on Advanced Vehicle Control 2006, 2006.

[19] O. Benderius, “Driver modeling: Data collection, model analysis, and optimization” 2012, 2012.
[20] P. LIMA, “Predictive control for autonomous driving”, PhD thesis, PhD thesis, KTH, 2016. Unpublished

thesis, 2016.
[21] P. Falcone, “Nonlinear model predictive control for autonomous vehicles”, PhD thesis, Università del

Sannio, 2007.
[22] M. A. Abbas, “Non-linear model predictive control for autonomous vehicles”, PhD thesis, UOIT, 2011.
[23] R. Lenain et al., “Model predictive control for vehicle guidance in presence of sliding: Application to

farm vehicles path tracking”, Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, IEEE, 2005, pp. 885–890.

[24] T. Fraichard and A. Scheuer, “From Reeds and Shepp’s to continuous-curvature paths”, IEEE Transactions
on Robotics 20, no. 6 2004, 1025–1035, 2004.

26

https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/
https://www.oreilly.com/ideas/neuroevolution-a-different-kind-of-deep-learning

[25] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents”, American Journal of mathematics 79, no. 3 1957, 497–516,
1957.

[26] K. Komoriya and K. Tanie, “Trajectory design and control of a wheel-type mobile robot using B-spline
curve”, Intelligent Robots and Systems’ 89. The Autonomous Mobile Robots and Its Applications. IROS’89.
Proceedings., IEEE/RSJ International Workshop on, IEEE, 1989, pp. 398–405.

[27] A. Takahashi et al., “Local path planning and motion control for AGV in positioning”, Intelligent Robots
and Systems’ 89. The Autonomous Mobile Robots and Its Applications. IROS’89. Proceedings., IEEE/RSJ
International Workshop on, IEEE, 1989, pp. 392–397.

[28] W. Nelson, “Continuous-curvature paths for autonomous vehicles”, Robotics and Automation, 1989.
Proceedings., 1989 IEEE International Conference on, IEEE, 1989, pp. 1260–1264.

[29] M. Vendittelli, J.-P. Laumond, and C. Nissoux, “Obstacle distance for car-like robots”, IEEE Transactions
on Robotics and Automation 15, no. 4 1999, 678–691, 1999.

[30] A. Piazzi et al., “Quintic G/sup 2/-splines for the iterative steering of vision-based autonomous vehicles”,
IEEE Transactions on Intelligent Transportation Systems 3, no. 1 2002, 27–36, 2002.

[31] C. G. L. Bianco and O. Gerelli, “Generation of paths with minimum curvature derivative with η3-splines”,
IEEE Transactions on automation science and engineering 7, no. 2 2010, 249–256, 2010.

[32] K. Yang and S. Sukkarieh, “An analytical continuous-curvature path-smoothing algorithm”, IEEE
Transactions on Robotics 26, no. 3 2010, 561–568, 2010.

[33] M. Wahde, Biologically inspired optimization methods: an introduction. WIT press, 2008.
[34] J. Lehman et al., “Safe mutations for deep and recurrent neural networks through output gradients”,

arXiv preprint arXiv:1712.06563 2017, 2017.
[35] X. Zhang, J. Clune, and K. O. Stanley, “On the relationship between the OpenAI evolution strategy and

stochastic gradient descent”, arXiv preprint arXiv:1712.06564 2017, 2017.
[36] E. Conti et al., “Improving exploration in evolution strategies for deep reinforcement learning via a

population of novelty-seeking agents”, arXiv preprint arXiv:1712.06560 2017, 2017.
[37] J. Lehman et al., “ES is more than just a traditional finite-difference approximator”, arXiv preprint

arXiv:1712.06568 2017, 2017.
[38] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that constructs recurrent

neural networks”, IEEE transactions on Neural Networks 5, no. 1 1994, 54–65, 1994.
[39] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topologies”, Evolu-

tionary computation 10, no. 2 2002, 99–127, 2002.
[40] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based encoding for evolving large-scale

neural networks”, Artificial life 15, no. 2 2009, 185–212, 2009.
[41] G. I. Sher, “Discover & eXplore Neural Network (DXNN) platform, a modular TWEANN”, arXiv preprint

arXiv:1008.2412 2010, 2010.
[42] Revere. (2018). OpenDLV - A modern microservice-based software ecosystem for self-driving vehicles,

[Online]. Available: https://github.com/chalmers-revere/opendlv (visited on 2018).
[43] E. Bahceci et al. (2011). NEAT C++, [Online]. Available: http://nn.cs.utexas.edu/?neat-c (visited

on 2018).
[44] A. Mihály, B. Nemeth, and P. Gáspár, “Integrated vehicle control of in-wheel electric vehicle”, 42 Jan.

2014, 19–25, Jan. 2014.
[45] H. B. Pacejka and E. Bakker, “The magic formula tyre model”, Vehicle System Dynamics 21, no. sup001

1992, 1–18, 1992. doi: 10.1080/00423119208969994. eprint: https://doi.org/10.1080/00423119208969994.
[Online]. Available: https://doi.org/10.1080/00423119208969994.

[46] S. Baluja, “Evolution of an artificial neural network based autonomous land vehicle controller”, IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26, no. 3 1996, 450–463, 1996.

[47] G. Markkula, O. Benderius, and M. Wahde, “Comparing and validating models of driver steering behaviour
in collision avoidance and vehicle stabilisation”, Vehicle system dynamics 52, no. 12 2014, 1658–1680,
2014.

[48] T. Salimans et al., “Evolution strategies as a scalable alternative to reinforcement learning”, arXiv
preprint arXiv:1703.03864 2017, 2017.

27

https://github.com/chalmers-revere/opendlv
http://nn.cs.utexas.edu/?neat-c
https://doi.org/10.1080/00423119208969994
https://doi.org/10.1080/00423119208969994
https://doi.org/10.1080/00423119208969994

Appendix

A NEAT parameters

The NEAT parameters used as default settings for the evolution of the network in the black-box model.

trait param mut prob 0.5
trait mutation power 1.0
linktrait mut sig 1.0
nodetrait mut sig 0.5
weigh mut power 2.5
recur prob 0.00
disjoint coeff 1.0
excess coeff 1.0
mutdiff coeff 0.4
compat thresh 3.0
age significance 1.0
survival thresh 0.20
mutate only prob 0.25
mutate random trait prob 0.1
mutate link trait prob 0.1
mutate node trait prob 0.1
mutate link weights prob 0.9
mutate toggle enable prob 0.00
mutate gene reenable prob 0.000
mutate add node prob 0.03
mutate add link prob 0.05
interspecies mate rate 0.001
mate multipoint prob 0.6
mate multipoint avg prob 0.4
mate singlepoint prob 0.0
mate only prob 0.2
recur only prob 0.0
pop size 150
dropoff age 15
newlink tries 20
print every 10000
babies stolen 0
num runs 1

B Vehicle model parameters

The physical vehicle parameters used in the vehicle model, based on estimations of the CFS17 race car.

Mass: m = 188.0
Moment of inertia: Iz = 105.0
Wheel base: L = 1.53
Front wheel axis to center of gravity: l1 = 0.756
Friction coefficient: µ = 0.9
Magic Formula parameters:
Cα = 25229.0
c = 1.0
e = −2.0

28

C Maps

Pictures of the 20 unique shapes of the tracks used for training and testing. To enlarge the set most of the
tracks had both big and small variants, where the size was altered while shape and track width were preserved.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

Figure C.1: Track1

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

Figure C.2: Track2

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

Figure C.3: Track3

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

45

50

55

Figure C.4: Track5

29

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

Figure C.5: Track6

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

Figure C.6: Track7

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

Figure C.7: Track8

40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure C.8: Track9

-20 0 20 40 60 80 100

0

10

20

30

40

50

60

70

Figure C.9: Track10

-170 -160 -150 -140 -130 -120 -110 -100 -90 -80

-200

-190

-180

-170

-160

-150

-140

Figure C.10: Track11

30

-220 -210 -200 -190 -180 -170 -160 -150

-155

-150

-145

-140

-135

-130

-125

Figure C.11: Track12

-90 -80 -70 -60 -50 -40 -30 -20

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

Figure C.12: Track13

-100 -95 -90 -85 -80 -75 -70 -65

-280

-275

-270

-265

-260

-255

-250

-245

-240

-235

Figure C.13: Track14

-140 -135 -130 -125 -120 -115 -110 -105 -100 -95

-75

-70

-65

-60

-55

-50

-45

Figure C.14: Track15

-25 -20 -15 -10 -5 0 5 10 15 20

-125

-120

-115

-110

-105

-100

-95

-90

Figure C.15: Track16

-440 -420 -400 -380 -360 -340 -320 -300

-300

-280

-260

-240

-220

-200

-180

Figure C.16: Track17

31

-300 -295 -290 -285 -280 -275 -270 -265 -260 -255

-160

-158

-156

-154

-152

-150

-148

-146

-144

-142

-140

Figure C.17: Track18

-200 -180 -160 -140 -120 -100

-70

-60

-50

-40

-30

-20

-10

0

Figure C.18: Track19

-280 -260 -240 -220 -200 -180 -160 -140 -120

-220

-210

-200

-190

-180

-170

-160

-150

-140

Figure C.19: Track20

-160 -140 -120 -100 -80 -60 -40 -20 0 20 40

-100

-50

0

50

100

150

Figure C.20: TrackFSG

32

	Abstract
	Preface
	Acknowledgements
	Nomenclature
	Contents
	Introduction
	Purpose
	Limitations

	Theory
	Knowledge-based driver models
	The Sharp driver model
	Neuroevolution
	Neuroevolution of augmenting topologies

	Method
	Path planner
	Aim point steering
	Velocity control
	Evolutionary network generation
	Vehicle model

	Results
	Knowledge-based driver model results
	Neuroevolutionary driver model results

	Discussion
	Advantages of knowledge-based models
	Advantages of black-box models

	Conclusion
	References
	Appendix
	NEAT parameters
	Vehicle model parameters
	Maps

