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Integrating Programmable Smart-NICs into Industrial Packet-Processing Systems

Lina Blomkvist and Tove Svensson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In order to cope with the requirements of 5G, Smart Network Interface Controllers
are being used to offload general use CPUs. For them to be able to become more
widely used, research of how to integrate them into already existing industrial sys-
tems and the cost of such a transition is needed. This thesis presents the method of
integrating a P4 programmed Netronome Agilio Smart Network Interface Controller
(SNIC) into a high speed industrial packet processing pipeline. A partition of the
industrial system handling packet classification is translated and implemented and
run on the SNIC and tested and compared to the original program performing the
same task. The effect on performance is analysed and a qualitative evaluation of the
process conducted. The challenges faced in this project consisted of understanding
the industrial system environment and how to seamlessly translate the code without
losing the original functionality.
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1
Introduction

With the growing network transmission speeds of 5G, packet handling using general-
use CPUs is a bottle-neck in regard to speed. To improve the performance in packet
handling, Network Interface Controllers (NIC) are used to handle full or partial
packet offload from the CPUs in data centers. Furthermore, to be able to adapt
to clients’ changing demands on features, programmable NICs, called Smart-NICs
(SNIC), are increasingly being used.

The SNICs are able to be programmed using various programming languages, an
example of such is P4 [1], which is utilized by many large companies including Cisco,
Intel, and Google [2]. P4 is a domain specific language for network programming and
was developed to improve the flexibility and reconfigurability of networks. These
capabilities, in combination with the programmable SNIC, are crucial to be able to
apply Software Defined Networking (SDN) which includes a control plane allowing
change of network functionality without physical interference. The possiblity to use
SDNs is key to being able to adapt to new technology and integrate new function-
alities efficiently, which is why it is necessary to research the feasibility of replacing
existing NICs in exiting data centers, with SNICs.

Though the possible performance gains of using SNICs have been known for a couple
of years, little research on the integration process have been conducted. Research
is required to investigate the method of integration, limitations to the type of and
amount of logic that can be transferred the Smart-NIC, as well as the impact the
integration has on performance. During this project, a part of an C-programmed
5G industrial packet processing pipeline was translated to P4 to then be offloaded
to a P4-programmed SNIC. The performance the system gained by using the SNIC
was then evaluated against the challenges the translation process brought to arrive
at a final evaluation. The project strived to further the understanding of the SNIC
integration process and the possibilities and limitations that it entails.
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1. Introduction

1.1 Problem
In order for the use of P4-programmed SNICs to increase, it has to be evident that
the performance gain in using SNICs is greater than the cost of transitioning to
using them. This stresses the need to investigate the challenges in the process of
offloading an industrial pipeline to a SNIC using P4. For a system operating mainly
on CPUs or regular NICs to transition to P4-programmed SNICs, limiting factors of
the language in terms of functionality must be identified in order to conclude which
parts of the pipeline can and cannot be translated. Furthermore, it is necessary to
evaluate the performance of the offloaded functions in a real system to ensure that
the research suggesting that the use of SNICs with P4 will improve the performance
of a system, holds up in practice.

With this in mind, the problem statement of the project has been phrased as the
following research questions:

1. Do the performance gains justify the costs when integrating a SNIC to offload
the CPU/ASICs of packet processing in an industrial cloud native data plane?

2. What are the limiting factors when using P4 programmed SNICs as opposed
to CPU/ASICs?

3. Does the limited scope experiments performed in testing environments result-
ing in higher performance hold up in real scenarios?

A summary of current research within the area of using Smart-NICs can be found
in Section 2.7.

1.2 Goals
In order to answer the research questions stated in the previous section, three goals
for the project have been outlined. Presented below, these goals involve translating
a part of an industrial packet processing pipeline to P4 and running it on a SNIC.
To ensure that the functionality is intact and measure the performance of the re-
sulting system rigorous testing must be performed. The evaluation of the project
should account for the performance of the system, and there should be a qualitative
evaluation of the difficulty of the process and limitations of the technology.

The goals of the project have been summarised as follows:

1. Identify a part of the cutting edge industrial packet processing pipeline suitable
for offloading to a SNIC and translate the logic of this section into a P4
program.

2. Offload part of the initial production level pipeline to a SNIC while preserving
the functionality of the system.

3. Evaluate the performance of the resulting system with consideration to the
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1. Introduction

limits and difficulties of the process.

1.3 Challenges
For the choice of which part of the system logic would be used for translation into
a P4 program to control the SNIC, the guidance of industrial experts is required.
The specific functionality of this part to be converted is also pinpointed by experts.
However, in order to understand how the chosen logic communicated with its envi-
ronment and how to mimic this in the translation, further investigation has to take
place. Since the system is large and complicated, the main challenge in this is to
understand the environment within which the chosen logic is deployed.

After the logic had been translated, the next challenge consisted of integrating the
use of the SNIC with the P4 code into the industrial system. This challenge included
preserving the dynamicity of the previous code and finding a way to communicate
between the SNIC and the original C code at an acceptable speed.

1.4 Method
One of the main goals of this project regards evaluating the process of the imple-
mentation of a P4 program and integration of a SNIC into a large pipeline. In order
to perform the evaluation in an ordered manner, the methodology of the project
requires careful consideration. Each step of the process can be isolated to ensure it
is clear at what stage any issue arises and what challenges are associated with each
part of the process. The details of the development is further explained in Section
3 and 4, but the following list gives an overview of the projects methodology.

1. A development environment was set up where a P4 programmed switch and
a few end hosts were simulated using a network simulation software. This
environment was used to test the functionality of the program during the
implementation, before testing on real hardware.

2. Before translation of the industry code, an initial P4 program was created.
The program did not include any specific functionality, but was rather just a
shell to make sure parsing and deparsing of packets worked correctly and the
development environment was operating as intended.

3. A suitable part of the industry pipeline was then selected for translation, and
the initial P4 program was extended to accommodate this. A custom output
header was introduced to deliver the results of the computations, and the
functionality of the industry code translated to P4.

4. The SNIC was then loaded with the code and put in a testing environment to
simulate the actual system. From which the performance was measured and
compared to that of the initial system’s.

5. After this, a qualitative evaluation was performed, discussing the difficulty of

3



1. Introduction

the integration process.

6. The final result was then concluded by weighing the results of the qualitative
evaluation and the performance evaluation against each-other.

1.5 Limitations
There are several limitations in measuring the impact Smart-NIC usage may have on
performance in an industrial system. For example, due to lack of time and resources,
the research of this project is based on tests performed in one particular system only.
Therefore, it is not known if the performance of systems structured differently will
be affected by Smart-NIC usage in the same manner. Naturally, the difficulty of
Smart-NIC integration in other systems is also unknown.

Another limitation to the performance impact measurements is that the project
is limited to using one particular Smart-NIC hardware, again due to time and re-
source limitations. Hence, it could be that other Smart-NIC devices could affect
performance differently.

The evaluation is also limited in scope, in that the main points of interest chosen are
performance and ease of implementation. As such, other aspects such as the cost of
the respective hardware or the difference in energy consumption of the devices has
not been considered.

Further, the project is limited to handling only one part of a larger pipeline. The
pipeline handles packet processing in a large scale industrial 5G network, and the
part that is examined in this project performs simple classification of incoming
packets. The reason for choosing only this part of the pipeline is primarily due
to time constraints but also due to limitations of the use of P4 in the Smart-NIC.
While P4 offers great flexibility, it is not possible to inspect the application layer
of a packet in a P4 program, making in unable to perform operations that rely on
this, for this reason, some parts of the industrial pipeline considered in this project
are not possible to offload to a P4 programmed SNIC. There is hence a possibility
that other programming languages could have other possibilities and thus effects
on performance. However, due to time constraints, the choice was made not to
investigate any additional languages.

1.6 Report structure
The thesis begins by describing the needed background in Chapter 2. This chapter
starts with Section 2.1 which describes the requirements on 5G and its architecture.
Thereafter, Section 2.2 explains the workings of NIC to then introduce Smart-NIC
by first motivating the need for them followed by an architectural description and
an illustration of a packet’s path through a SNIC. Section 2.4 then describes the use
of the P4 language and its functionality. The background continues by Section 2.6
where additional software used in the project is briefly introduced. The final section

4



1. Introduction

discusses related works to illustrate the current state of research in SNIC and P4
usage.

Chapter 3 regards the implementation of the project, including the setup of the
environment, translation of the C code to P4 and, the integration of the program
into the industrial pipeline. Following in Chapter 4 the evaluation of the project is
depicted. The testing environment is presented along with the testing criteria and
methodology, followed by a description of the qualitative evaluation criteria.

In Chapter 5 the results of the tests done are described in detail along with the
assessment of the qualitative evaluation criteria. Finally, Chapter 6 contains the
conclusions drawn by the authors as well as a discussion of the results.
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2
Background

The fifth generation cellular networks (5G) have to satisfy the needs of the coming
years. The amount of traffic will not only significantly increase, but also introduce
new demands as the nature of the connected devices change and the IoT grows
[3]. In order to support the growth in uses such as cloud based technology, virtual
streaming (vstreaming), and online gaming as well as the significant increase of
Internet of Things (IoT) devices, demands on the networks are very high. The 5G
networks need to satisfy low latency as well as a huge increase in bandwidth from
4G, while still pursuing to further decrease in energy consumption [4]. In order
to meet the new requirements, the underlying architecture of the network needs to
be both efficient and flexible. It is demonstrated in simulations that Smart-NICs
could offer a possible solution to this problem [5, 6, 7, 8, 9, 10]. P4 is a new and
increasingly popular language for programming these Smart-NICs.

This chapter gives an introduction to 5G networks followed by an explanation of
what a SNIC is and how it works. Thereafter, the P4 language and other software
tools used in the project are presented. Finally, there is a summary of relevant
related work.

2.1 Requirements of 5G
This Section begins by giving a closer introduction to the requirements of 5G, briefly
explaining the main solution concepts. The following sections goes deeper into how
the architecture of 5G vows to fulfill the requirements.

2.1.1 5G Use-Cases
The 5G network is designed with vertical industries (markets catering to specific
industries) in mind. These industries, including industrial automation, mission crit-
ical IoT, and medical care, come with new network use cases which put a new kind
of pressure on the network architecture [11].

The different services of each industry demand appropriate data- and network re-
source allocation. Mission critical IoT for example, may contain services needing
certain resources guaranteed at all time to be able to pull of critical tasks without
being interrupted by network traffic. The solution to this is for the 5G architecture

7



2. Background

Applications

Management and Orchestration

Access

Cloud Infrastructure

Transfer

Figure 2.1: The layers of the 5G infrastructure.

to provide separate logical networks per industry. The separate logical networks are
called network slices and each separate network slice contains functions specialized
in the field it is managing. In order to handle the complex allocation management
of resources slices incur, telecommunication operators deploy special orchestration
functions. Further, if an operator lacks in a resources, or certain services, there is a
need for the possibility of cross-domain orchestration, which also pushes the limits
of the 5G architecture [12].

One of the main concepts of 5G is to facilitate deployment, management, and cre-
ation of new services. To be able to provide for this a Service-Based Architecture
(SBA) is used, providing applications as a set of micro-services. For optimal perfor-
mance, these micro-services should be further deployed in a so cloud-native 5G core
network, where cloud services are used to the utmost ability to decouple networks
and network functionality from hardware. For example, router functions could be
moved from hardware to a remote virtual machine making it easier to deploy and
remove [13].

In order to accommodate for a cloud networking environment, the 5G architecture
further needs to integrate a way to manage hardware functionality in software, and
an infrastructure where functionality within the hardware may be transferred to the
cloud. Together, these infrastructures make cloud-native networks possible. These
methods also promote creation of automation software to minimize manual handling
of the 5G network [12, 11].

2.1.2 5G Architecture
The general structure of the 5G Architecture is defined as shown in Figure 2.1 where
the horizontal boxes represent the different infrastructure layers. A more detailed
view of how the different layers are connected can be seen in Figure 2.2, where the
user plane, which is the part this project concerns, is encompassed by a blue line.

The top layer is the application layer. This layer contains the applications using the
network for their services. An application in the 5G network is defined as a software
that uses underlying micro-services for it is provided functionality. This approach,

8



2. Background

Figure 2.2: More detailed view over the different layers [14].

shown in Figure 2.3, steps away from the previous monolithic approach where each
application is constructed as a single unit. The benefits of the modular approach
includes the ability to scale only the micro-services in demand when scaling the
application and the simplicity in only having to rebuild and deploy a new micro-
service instead of the whole unit when making small changes to the code. The
micro-service architecture also makes it easier to distribute and maintain services
without needing large amounts of processing power and memory [15, 12, 16].

The challenge of using a micro-service architecture is the large amount of orchestra-
tion needed to maintain it. This is where the management and orchestration layer
comes into play. A part of this layer manages network functions and interfaces,
to for example micro-services, by available physical and virtual resource. Another
part of the management and orchestration layer concerns maintaining the software
defined control plane needed for SDNs. This control plane moves away control from
hardware by making it possible to manage devices beyond physical connectivity
via control software. By providing open API through software, the SDN control
plane enables central programming of network behavior which in turn provides in-
creased simplicity in management for operators. Using SDN also provides network
automation which orchestrates the direction of network traffic depending on certain
conditions [15, 12, 16].

With SDNs, NFV becomes more compelling. NFV focuses on the decoupling of
network functions and hardware devices by using virtual machines on standardized
(non-specialized) hardware. This eliminates need for specialized hardware and cre-
ates the possibility of using one machine for multiple network functions. Another
benefit of NFV is to be able to move network functions around as demand changes,
increasing flexibility. For example, if a new network function is needed, a new virtual

9



2. Background

Figure 2.3: Explanation of the micro-service architecture compared to the mono-
lithic approach [15].

machine is simply set up and when it is not needed the Virtual Machine (VM) is
removed. The NFV resource and network demands are also orchestrated by the sec-
ond layer and together with the SDN approach a network decoupled from hardware
from functions to control is created [17, 18, 19].

Another concept of the 5G architecture is to enable network community innovation,
making it possible for anyone to use the networks capabilities to evolve network
functionality. In order to do this, the second layer also includes control functions for
network exposure, meaning to present an API for programmer to use the provided
services [16, 20].

The access layer contains the access and communication services and the packet
core. The access services established access to the edge nodes of the network and
distributes data plane functions to the edges of common core networks. The commu-
nication services manage how services communicate over different service providers
as well as to a client over a single provider. It further defines how IP Multime-
dia Services (IMS) are distributed in the new cloud environment as well as how
inter-networking with 3G and 4G is executed [16, 21].

The third layer contains the packet core. The packet core separates different data
channels between an IP and user equipment (UE) in order to set parameters regard-
ing performance. Thereafter, the PDN (Packet Data Network) Gateway is set as
an IP anchor point for IP-communication between the UE and external PDNs (the
Internet). The PDN Gateway also provides packet filtering and policy enforcement
such as Quality of Service (QoS). The Serving Gateway (SGW) is the mobility an-
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2. Background

chor that makes sure packets are routed properly to then be delivered between the
UE and PDN even though the UEs position changes. Finally, the User Plane (UP)
includes mobile anchor functionality, external PDU session connection points, and
packet routing and forwarding. This is where the packet traffic is carried over the
data-link layer using Ethernet-frames with MAC-addresses, which is where Network
Interface Controllers (NICs) are used [22, 23, 24, 16].

The cloud infrastructure layer contains all cloud functionality and resources includ-
ing such for security. These are all the tools needed to build the cloud. Finally, the
transfer layer contains the hardware for the network communication [16, 12].

2.2 Smart Network Interface Controllers
This Section vows to give a conviction to the need for Smart-NICs in the 5G industry.
Following is an explanation to how a Smart-NIC works in more detail.

2.2.1 The NIC
A NIC is a hardware component used to connect a computer to a network. It acts as
a packet transceiver and has as a main function to convert packets between digital
signals and data form. The NIC provides devices with MAC addresses and strips or
appends the packets’ data layer frames upon arrival and dispatch respectively [25].

General NICs contain multiple smaller parallel cores in order to handle multiple
transmit/receive queues in parallel as well as increase packet processing speed [6].
Older NICs may further use the host’s general use CPU for running network stacks.
However, the use of host CPUs for running networks stacks in the time of cloud
computing has been proven to decrease available processing power from VMs and
increases latency to the network performance [26]. Therefore, modern NICs contain
extended hardware in order to offload the CPU on top of optimization hardware
to increase network packet processing speeds [9]. For example, NICs may have
offload engines (such as the TCP offload engine [27]) to relieve the TCP/IP packet
processing stack from the CPU and include interrupt and Direct Memory Access
(DMA) interfaces to the host processor to avoid accesses needing to pass through
the CPU [9, 28].

Low speed (<10Gbps) packet processing is still possible using simply Operating
System (OS) drivers paired with high-end CPUs. However, the mentioned extended
techniques are crucial to reach speeds of 100G without overloading the CPU [9].

2.2.2 The Need for Smart-NICs
While the regular NICs provide several performance increasing features, problems
arrive when NICs are used in the continuously evolving networks of today. Firstly,
the networks’ applications demand increasing amounts of features including support
for new protocols, evolving intrusion detection, and dynamic load balancing, on top
of the already existing ones. Secondly, the rapid development of 5G has created the
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possibility for new network use cases such as cloud computing, machine learning,
and big data applications. As a result of this there is a need for new ways to architect
communication networks.

The requirements of flexibility, dynamicity, performance, and efficiency demand
carefully engineered NICs, which not only require a lot of time and money to de-
velop, but also large deployments of dedicated hardware to run. Due to these issues,
vendors tend to only add features which have been in demand for a longer time,
which slows down development at the same time as the further addition of features
slows the NICs down [29].

To mitigate the gap between the increased network bandwidth and the stagnat-
ing computing power of the CPUs as well as mend the flexibility issue of the NIC,
SNICs have been developed [8]. Smart-NICs are network interface cards that provide
programmability in the data path [6] by extending the foundational NIC with a pro-
grammable engine such as a Field Programmable Gate Arrays (FPGA), Application-
Specific Integrated Circuits (ASIC), or an embedded CPU. This engine makes it
possible for new features to be introduced to the already existing SNIC by using the
programmable hardware functions [30].

Due to its programmability, the introduction of SNIC makes it possible to use SDN
programmable data and control planes. By using these SDN planes, the features of
the packet processing and routing can be defined in software and then optimized in
hardware [9]. The programmability also makes the SNIC able to accelerate a larger
variety of workloads compared to the previous ones [31].

The use of programmable SNIC, to offload logic for packet processing has already
been researched and proven to improve processing speed even while using only partial
offload [5, 6]. The research of the possibilities of offloading network stack function-
ality onto the SNICs has lead to development of multiple different system models
designed for ease of use and performance in different environments [7]. For example,
there are frameworks specialised in offloading distributed applications [8] and for
running Azure network stacks [26].

Though the programming models of the Smart-NICs still are in development, there
are languages, such as P4, that are designed with the features of Smart-NICs con-
sidered [6].
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Figure 2.4: NFP-4000 Flow Processor Block Diagram [32].

2.2.3 Smart-NIC Architecture
To be able to add support for new functions to be added after purchase, the Smart-
NIC needs additional computational power and onboard memory which is not pro-
vided to a regular NIC. These needs can be provided by different architectures, but
most are constructed with a control processor at the core [33]. This core is used
to initialize and configure the SNIC, hold all additional features, as well as other
control plane management features such as packet steering. By using this additional
core, the host CPU’s use of cycles is offloaded [34].

The additional computational power is usually provided by adding clusters of ASICs,
Flow Processing Cores (FPCs), or by using an FPGA. Where ASICs are circuits spe-
cialized for a certain purpose, FPCs are customizable cores designed for optimizing
packet flow processing, and FPGAs contain low level reconfigurable circuits. FPCs
provide the cheapest, most flexible solution in comparison to the other two and is
hence the most popular architectural approach [35, 33].

2.2.3.1 Netronome Agilio Smart-NIC

In this project, a Netronome Agilio SmartNIC with a Netronome Flow Processor
(NFP) 4000 as control processor will be used. These NFPs use the FPC approach,
supporting multiple threads each with access to dedicated instruction and data
memories [36]. The Agilio NFP-4000 has possiblity to support up to 60 FPCs with
each FPC able to use 8 threads each. This makes it possible for the SNIC to
process 480 packets in parallel. A closer look into the NFP can be seen in Figure
2.4, where the output PCIe-Gen3 interfaces as well as different accelerators are
visible. A sample design of a SmartNIC can further be viewed in Figure 2.5 where
it is connected to a host through the PCIe-Gen3 interfaces. This section will now
continue to explain a packet’s path through the Agilio NFP-4000 SNIC.

When a packet is received at the SNIC ingress port, it firstly goes through an
integrity check. Thereafter, it is stored in a buffer and delivered to the ingress
processing stage. In the processing stage, Packet Processing Cores (PPCs) are used
to parse the packet, generate its metadata, and finally the packet is sent to the
DMA engine. The DMA engine then sends the packet headers to the FPCs and the
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Figure 2.5: Agilio SNIC Sample Design [32].

payload to a buffer. All of this is done under complete software control. The FPCs
do the flow processing, including generating keys for table matching, table lookups,
and forward, Drop, and Add/Remove header actions. Finally, the PCI repackages
the packet with headers and payload, and sends it to the host. When the packet is
delivered from the host to the egress port instead, the PCI first delivers the packet
to the FPCs where packet processing is performed. Thereafter, the packet is sent
to the Egress PPCs where it is put in a traffic queue, to finally get its checksum
computed and be delivered to a network interface the Egress MAC.
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Figure 2.6: The P4 abstract switch model [38].

2.3 The Packet Processing Pipeline
The packet processing pipeline contains multiple stages performing different network
functionality that may change depending on what functionality is needed. When
a packet arrives a typical pipeline may begin by extracting necessary data from a
packet. In this step, multiple headers may be parsed and data from them can be
used to match against a set of rules decide if the packet should for example be
dropped, delivered, or maybe a reply should be sent. The next step could be a
security check, to see so that for example headers are formatted in the way they
should be, that they have the correct sequence numbers, and that the packet isn’t
expired. A further step could be to change certain values of the header, for example
to decrement the TTL. The final step could be to perform some kind of action with
the packet, for example send a response, or to reassemble the packet and change
its address to the next one in the switching table. A NIC can be used to perform
some or all of these actions. With the SNIC, it’s possible to change the actions on
demand, while the NIC needs physical upgrades to adapt to new actions.

2.4 Introduction to the P4 Language
P4 is a high level language for programming protocol independent packet processors,
with three main goals in focus: reconfigurability, protocol, and target independence.
Because of these properties, it is well suited to deal with some of the challenges of
adapting to the requirements of 5G and its multitude of IoT devices. While the
programming framework of P4 is not the standard for SNIC programming, the fact
that P4 is protocol-independent and can be compiled and run on multiple different
targets (FPGA, CPU, ASIC) [37] makes it a suitable language choice for SNICs. P4
programs are able to run on systems with different vendors and architectures, easing
the integration process into preexisting systems. P4 programmed SNICs have been
proven to increase flexibility of packet systems [9].

The P4 model, as shown in Figure 2.6, generalizes how the processing works in
different forwarding devices and by different technologies. It is this generalization
that makes P4 programs special. The different parts of the model, from the header
fields and parser to the actions in the match+action stages, are all configurable by
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1 header ethernet_t {
2 bit<48> dst;
3 bit<48> src;
4 bit<16> etherType ; }
5
6 header ipv4_t {
7 // field definitions
8 }
9

10 header some_header_t {
11 bit<32> some_type ; }
12
13 struct headers {
14 ethernet_t ethernet ;
15 ipv4_t ipv4;
16 some_header_t some_header ; }
17
18 struct metadata {
19 bit<32> useful_information ;
20 }

Listing 2.1: P4 header example.

the programmer. In the following sections of this chapter the different parts of a P4
program will be further explained.

2.4.1 Headers

In P4, headers must be explicitly defined by the programmer. As shown in the
example in Listing 2.1, each header and the fields it contains must be stated in
order for the program to recognise it in a packet. The definition includes every field
in the header and their length in bits. As seen in the example, the programmer can
construct headers freely, with fields of varying sizes.

The different headers can be used to make header structs, that are used in the
program. The header struct on line 13 in Listing 2.1 states the three headers that
may be present in the incoming packets. This struct is then passed through the
different parts of the program, and the stated headers, if present, can be accessed
and modified. Not all headers in the struct must be present in the packet, but any
headers that are extracted by the parser must be part of the header struct. On line
1 in Listing 2.2, the output of the parser is signified by the keyword out, in this case
hdr.

Aside from the packet headers, metadata can also be stored and accessed throughout
the processing. In the parser definition, as well as in the definition for every control
block, the metadata is both input and output, using the inout keyword. The
structure of the metadata is defined in the metadata struct on line 18 in Listing
2.1. In the example, there is one 32 bit field in the metadata, but it is up to the
programmer to define the number of metadata fields and their respective length.
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1 parser MyParser ( packet_in packet , out headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata ) {

2
3 state start {
4 transition parse_ethernet ;
5 }
6
7 state parse_ethernet {
8 packet . extract (hdr. ethernet );
9 transition select (hdr. ethernet . etherType ) {

10 TYPE_IPV4 : parse_ipv4 ;
11 default : accept ;
12 }
13 }
14
15 state parse_ipv4 {
16 packet . extract (hdr.ipv4);
17 transition select (hdr.ipv4. protocol ){
18 PROTOCOL_SOME_PROTOCOL : parse_some_header ;
19 default : accept ;
20 }
21 }
22
23 state parse_some_header {
24 packet . extract (hdr. some_header );
25 transition accept ;
26 }
27 }

Listing 2.2: P4 parser example.

2.4.2 Parser

The parser ensures that the header sequence of incoming packets are valid and
extracts the values of the header fields. As seen to the left in Figure 2.6, the parser
is constructed as a state machine traversing the header fields and creating a parsed
representation of the packet to be used in the processing.

At each state, the parser can extract headers, and check the values of any extracted
fields to determine the next step. The first state of the parse is called start. In
the example in Listing 2.2, this step immediately moves to extract the Ethernet
header, expecting it to be present in any arriving packet. Depending on a value in
the header, the next state subsequently is determined. Parsing is completed when
transitioning to the accept or reject state.

The state machine functionality provides a means for P4 programs compiled to
programmable switches, to handle new protocols without the need for individually
reprogramming the switch or getting specialised hardware. During parsing, as well
as later in the process, metadata can be added to the P4 packet to be used in the
processing. A short snippet of a P4 packet parser is included in Listing 2.2. The
parser definition includes the type of header structure the parser will produce, in
this case headers, as defined on line 13 in Listing 2.1.

To later be able to reassemble the packet before forwarding, there is also a deparser.
The function of this part of the program is to take the parsed representation of the
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packet, with all its metadata and state which parts are to be present in the outgoing
packet, deparsing the relevant headers and discarding all metadata. The deparser
uses an inbuilt function in P4 to emit packet headers in an order specified by the
programmer, an shown in the example in Listing 2.3. Unlike the parser, the deparser
is not a unique structure in the P4 program, but rather it is the last of the Control
Blocks, further described below.

1 control MyDeparser ( packet_out packet , in headers hdr) {
2 apply {
3 packet .emit(hdr. ethernet );
4 packet .emit(hdr.ipv4);
5 packet .emit(hdr. some_header );
6 }
7 }

Listing 2.3: P4 deparser example.

2.4.3 Control Blocks

The control blocks of a P4 program specifies what will happen to a packet after
it is parsed. Depending on what headers are present in the packet, or other data
extracted by the parser, it determines what actions and tables to apply to the
packet. It resembles an imperative program, made up of conditionals, functions and
references to tables and actions, but without any loops.

There are usually at least two control blocks in a P4 program, one for ingress and one
for egress processing. Each control block can contain multiple actions and tables,
that can be referenced within the block. Aside from action and table definitions, the
control blocks main function is called apply, and it is this function that is called as
the control block is executed. An example of a control block is shown in Listing 2.4.
The execution starts on line 14, where the program first checks if a certain header
was present in the incoming packet. If so, the action packet_forward is executed.
Otherwise the packet is dropped.

2.4.4 Actions

Actions are constructed from a set of some predefined actions, for example adding
and removing headers or modifying field values. Shown on line 7 in Listing 2.4 is
an action, packet_forward, that replaces the destination MAC address with the
source in the ethernet header, and sets a value in another header to a predefined
value. Actions can be defined within control blocks or on their own. An action
defined within a block can access any input to that block, stated on line 3 in the
example. The packet_forward action in this case is directly changing values in hdr.
While this is useful in many cases, it might not always be preferable as if an action
is defined within a control block, it can only be accessed from within the same block.
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1
2 control MyIngress ( inout headers hdr , inout metadata meta , inout standard_metadata_t

standard_metadata ){
3 action drop () {
4 mark_to_drop ( standard_metadata );
5 }
6 action packet_forward (){
7 /* Swap the MAC addresses */
8 bit<48> tmp;
9 tmp = hdr. ethernet .dst;

10 hdr. ethernet .dst = hdr. ethernet .src;
11 hdr. ethernet .src = tmp;
12 }
13 apply {
14 if(hdr. header . isValid ()){
15 packet_forward ();
16 } else {
17 drop ();
18 }
19 }
20 }

Listing 2.4: P4 control block example.

1 action set_some_type (bit<32> some_type ){
2 meta. some_type = some_type ;
3 }
4
5 table some_type {
6 key = {
7 hdr.ipv4.dst: lpm;
8 }
9 actions = {

10 drop;
11 set_some_type ;
12 }
13 default_action = drop ();
14 }

Listing 2.5: P4 table example.

2.4.5 Match+Action Tables

The match+action tables are used when information not necessarily available at
compilation is needed to determine the actions to take in the processing. An example
in shown in Listing 2.5. In this example, if the destination IP address is present
in the table, the input value for set_some_type will be provided by the table, and
then the action preformed. The keys of a table can be matched either exactly, using
wildcards, or as in this case, using lpm, the longest prefix match. The possible
actions when a match occurs are stated in the table specification, as well as the type
of matching. If there is no match, the specified default action will be taken.

The size of the table can be specified explicitly, as in the example, or left up to the
compiler to determine.
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1 extern Register <T> {
2 Register (bit<32> size);
3 T read(bit<32> index );
4 void write (bit<32> index , T value );
5 }
6 Register <bit<32>>(1) count ;

Listing 2.6: P4 extern register definition [39].

2.4.6 Externs
Externs have many uses in P4, such as extern blocks and functions, however in
this section we will look closer at one example specifically relevant to the project,
namely as a way to implement global objects that are shared between executions.
Extern objects rely on the underlying architecture functions to implement things
like registers in P4 programs.

An example of an extern definition is shown in Listing 2.6. The definition of the
register object is much like an abstract class in object oriented languages, it states
the constructor and methods of the object, while leaving the implementation of them
unspecified. This particular extern takes a type and a size, and represents a register
that is in effect a list of variables of that type. The definition is then used as a type,
and objects of that type can be initiated as shown on line 6 in the example. This
register count is then shared between the threads and executions of the program.

2.4.7 Compilation
The compilation of a P4 program is done in parts, each part shown as a box in Figure
2.7, where yellow represents a representation and blue a part of the compiler. First,
the program’s Intermediate Representation (IR) is generate by a front-end compiler,
such as the open source GitHub compiler by p4lang [40]. After this a target specific
compiler is needed to convert the code to code functional for the target device. In
the case of the Netronome Agilio SmartNIC, the back-end compiler converted the IR
to C for the data path on the NFP. The Netronome SDK then uses the Netronome
Flow C Compiler (NFCC) to be able to compile and the C code to generate the
NFP firmware file, which can then be uploaded to the SNIC using Netronome’s
own uploading software. Tables are written as JSON files, either manually or by
using Netronome’s Programmer Studio, and are uploaded to the SNIC thorugh the
Netronome Runtime API.

2.4.8 Limitations of P4
There exists several limitations in the P4 language, following, the one’s relevant to
this thesis will be presented. To begin, there are no pointers in the P4 language,
however this is not unusual for programming languages. Neither are there any switch
statements, which instead can be implemented as match action tables. Return
statements that makes the code return in the middle of an actions does not exist
either.
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Figure 2.7: The P4 to Netronome Agilio NFP-4000 compilation.

There are no arrays in P4, which makes it necessary to implement each array element
as an own variable, or perhaps as one variable containing a multiple of the number
of bits of the elements’ size. There is also no way to accept headers with variable
length-field unless multiples of such a header with different length of such fields
is defined. Hence, application layer information is difficult to inspect, since these
usually differs greatly.

The lack of arrays, is however not a big loss since the P4 language does not contain
any loop-functionality for processing the arrays anyway. Any loop functionality will
need to be rolled out in some way, and the number of times the loop is performed
has to be hardcoded (if-statements could be used for certain cases).

Finally, there are no variables saved between different packets unless registers are
created and values are stored in these. Though it is not certain that all Smart-NICs
have support for such registers.

It is worth noting that there is support for using external C-code in some Smart-
NICs. Which may be a way to circumvent the issue of these limitations, but due
to the project striving for the most general implementation which should work on
various Smart-NICs, as well as optimal performance, no deeper investigation of
external C-code was performed.

2.4.8.1 Differences Between P414 and P416

The first version of P4, now referred to as P414, was released in 2014. Following the
release the language was updated frequently to meet the demands of the growing
user base. In order to keep up with the expansion, the language went through several
significant changes in it’s earlier years. In an attempt to stabilize the language while
maintaining the ability to adapt and include new functionality when necessary, P416
was released in 2016. P416 split what was P414 into a smaller language and a
core library, namely core.p4, containing some fundamental constructs. While the
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Figure 2.8: The GTPv2 Header.

versions are similar and the syntax looks much the same it is important to note that
P416 made many backwards incompatible changes from P414.

One main difference regards how there are no control blocks in P414, where all
actions and parser pieces are placed directly in the file with different prefixes. This
difference makes compiling P414 in a P416 compiler not possible and neither the
other way around. Another significant difference between the two versions lies in
the way that P414 does not use a deparser but simply emits the packet headers as
they came in. This results in a severe lack of flexibility in P414, since headers can
only be modified and not removed or added.

2.5 The GPRS Tunneling Protocol

The GPRS Tunneling Protocol (GTP) (shown in Figure 2.8) is one of the protocol
that the chosen part of the system was programmed to handle and therefore needs
to be briefly presented. GTP is a protocol used by mobile network operators on
interfaces within Random Access Networks (RAN), roaming, and in the packet core.
The protocol allows mobile device users to be continuously connected to the network
while moving [41].

To connect through GTP-Interfaces and to divide traffic into different communica-
tion flows, GTP uses tunnels. These tunnels transport IP-payloads between different
user and GTP equipment and the Internet. These tunnels are then modified, re-
moved, and added on demand. The protocol focused on in this projects is the user
plane protocol GTP-U, which handles user data.

2.6 Software Tools

During this project, a collection of software tools have been used. The first two
sections describes Scapy and Mininet which were involved in the initial testing of
the P4 code. Section 2.6.3 then describes the Agilio P4C Software Development Kit
which was acquired after the SmartNIC was ordered and primarily used for testing
using the SNIC. Finally Section 2.6.4 and 2.6.5 introduces Docker and the Data
Plane Development Kit (DPDK), used in the testing environment.
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2.6.1 Scapy
Scapy is a powerful and versatile tool for network manipulation written in Python
[42]. Scapy can be used for a wide range of purposes including scanning, fingerprint-
ing, unit testing, attacking, sniffing. For the purposes of this project, however, the
focus was Scapy’s incredibly flexible packet forging. It enables the user to create
packets freely, defining new headers and inserting any values in the fields of existing
ones. The headers can be layered in any manner the programmer choose without
limitations of predefined templates or methods. Scapy is often simple to use as it is
possible to build almost any tool you could think to require, and most of the time,
it can be implemented in just two lines of code [42].

2.6.2 Mininet
Mininet [43] is a tool for creating a virtual network and is useful for testing and
developing SDN functionality. Mininet can simulate multiple hosts and switches on
a single machine, with the code executed at the nodes running on a real Linux kernel.
This allows the user to run any program they wish to control their network. Using
Mininet, the user is able to easily create a network with a desired topology. This
network will be a realistic simulation without the need for any additional hardware.
This means that the code developed in the simulated network can be used in a
physical network with little or no modification needed.

2.6.3 Agilio P4C Software Development Kit
The Agilio P4C Software Development Kit (SDK) 6.x is a datapath programming
tool which supports C and the P4 language. It contains a Full-Featured IDE for
windows called Programmer Studio, which includes a GUI and simulator. The
simulator is however deactivated in Programmer Studio 6.1.0, which is the only
version supporting P416, leaving it unusable in this project [44].

Further contained within the SDK is also the Linux and Debian back-end toolchains
containing the compiler, assembler, and linker. This toolchain maps P4 code to
any Netronome flow processor. The SDK host software’s also contains a real-time
environment which includes functionality to update the NICs rule tables at run-
time as well as a means for the SDK to download user-programmed binaries to the
SmartNIC.

2.6.4 Docker
Docker [45] is a an open source project that lets you design, build and run software in
an isolated container. This container can be constructed to contain any dependencies
you require, and the behaviour inside the docker container is the same regardless of
the underlying device. While similar in many ways to a VM, a docker container is
much lighter, as it does not require an entire OS to run, only the bare necessities
are included.
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2.6.5 DPDK and pktgen
The Data Plane Development Kit [46] is a set of libraries aimed at enabling fast
and efficient packet processing. It is a vast open source project with many academic
and industry contributors and users, with support for many if not all major CPU
architectures and NICs. DPDK can be used for many things and contain a vast
array of functionality for multi core packet processing in a cloud infrastructure.
The Poll Mode Driver (PMD), is a DPDK feature that enables the application to
use as the name suggests, a poll mode rather than interrupt to receive packets,
making for highly efficient transmission. Powered by DPDK, pktgen is a powerful
packet generator that can generate highly customizeable traffic flows at line rate.
Pktgen can generate a large amount of packets that are created on the fly using a
user provided configuration and TCP/UDP port numbers. The software selects the
packet to create depending on which UDP/TCP port it is addressed to, which can
be selected as a range of multiple ports by the user. Then the user provided range
of addresses (Ethernet and IP) is used.

2.7 Related Work
The testing done in many previous papers have been executed on systems created
for the purpose of assessing gains of using SNICs in packet processing scenarios only
in controlled testing environments [5, 6, 7, 8, 9, 10]. Other papers instead only
regard integration into a special kind of system [26]. However, there has been little
research of how to integrate the P4 programmable SNICs in deployed industrial
systems. This is something in need of research for the SNICs to be applied to real
scenarios. The remainder of this section will present three papers relating to the
integration SNICs in modern networks.

2.7.1 Offloading 5G Functions to a Programmable ASIC
Promising research has been done in regards to offloading user plane functions using
P4. In [47] the authors explored the possibility of offloading the 5G Mobile Packet
Core (MPC) User Plane Functions to a P4 programmable switch ASIC. In the
project, a Virtual Evolved Packet Gateway (vEPG) [48] pipeline was implemented
in P4 and compiled to a Tofino Barefoot programmable ASIC.

The research shown that the Barefoot Tofino switch can handle the vEPG functions
at the rate they are received with low latency. The tests performed in the project
were with up to 100 000 active users, but the authors theorize that the results
could scale up to accommodate as many as 1.7 million in a commercial switch. The
authors tried variations of optimising the P4 program with significant changes in
the performance and memory use, showing that P4, like many other languages, can
be optimised with great results.

The research in [47] much like that of this thesis concerns offloading in a 5G network
with the use of a P4 programmed switch, a main difference being the use of a
programmable ASIC rather than a SNIC.
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2.7.2 Using Smart-NICs to Decrease Host Processor Usage
In [5], an approach for effective integration of SNICs as a way to decrease host
processor usage while not stressing the SDN-controller is presented. The paper
motivates the need of SNICs to relieve the host processor of NFs. Further, it discusses
the issue of using SNICs for NF offload as a separate entities from the host hypervisor
to the external network due to the increase in management pressure this puts on
the external SDN-controller. To solve this issue, a generalized SDN-controlled NF
offload architecture, UNO, is suggested. This architecture makes it possible to hide
the existence of SNICs in the local network behind a virtual plane so that no changes
in the external planes need to be made.

The UNO virtual plane is responsible for mapping virtual switches, shown to the
outside with the physical switches divided over several SNICs and hosts. It also
contains a translation algorithm for rules gained from the SDN-controller to “virtual-
rules”, due to that a virtual egress and ingress port can be mapped to two different
switches.

Since multiple NFs interact with each other, the placement of the NFs within the
local switch network is proven important. To minimize PCI-bus usage (which in-
creases latency and decreases throughput) the UNO virtual control plane therefore
provides an algorithm for determining which switch a NF should be placed for op-
timal performance.

The benefits of the UNO-architecture using a partial offload algorithm is lower CPU-
usage, lower power usage, higher throughput, and lower latency than when using
only a host processor. Further, the research proves partial offload to give better
latency than when applying full offload.

This study suggests a plan for integrating Smart-NICs as a stand-alone entity in
SDNs, refraining from using the host processor as a gateway. However, the process
does not involve how to use the concept in practicality. If our research shows frutiful
however, trying to apply the UNO functionality could be a further step in decreasing
load on the host processor.

2.7.3 P4-enabled Smart-NIC Offloading
To cope with the requirements of 5G, the authors of [9] investigate how offloading
data plane functions to a Smart-NIC decrease latency and increase the throughput
of a network. The authors describe the process of design, implementation and
validation of a P4 programmed FPGA Smart-NIC. They also show how this solution
improves the flexibility of the network, enabling the functionality of the data plane
to be changed in seconds.

In order to optimize the performance of the setup, packets are processed according
to their specific requirements, whether it be low latency or throughput. Segment
Routing (SR) [49], which uses a special header to redirect data along a chosen path,
is used to make this functionality work. P4’s ability to insert specific headers is used
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to help the processing in the beginning of the pipeline, and removing them in the
end.

The Smart-NIC was able to reach an impressive maximum throughput of 84.82
Gbps and the bandwidth of the network reached up to 30% wider with compared
to without the SNIC.

The focus of [9] closely resembles that of this thesis in the use of a P4 programmed
switch for handling NF to meet 5G requirements. Some differences in [9] are the
focus on network slicing specifically as well as the FPGA-based SNIC.
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Implementation Methodology

In this chapter the process of implementing the P4 program is described. First,
the development environment used will be presented, and then the different steps of
developing the program for the SNIC will be discussed. Finally, the integration of
the SNIC with the industry pipeline is explained.

3.1 Environment Setup

As part of the resources available on GitHub from the P4 consortium, there was
tutorial to the language. This tutorial includes multiple exercises designed to let
the learner implement missing parts of different P4 programs. Since these exercises
were made for a workshop setting, there also existed a downloadable virtual machine
set up with the P4 compiler and all its dependencies to be able to program directly.
The virtual machines also contained an automatic Mininet setup to run a specified
topology every time the project was built. This mininet setup uses the P4 compiler’s
backend support for the library p4c-bmv2, which is the behavioral model used for
setting up virtual software switches.

Scapy was also already installed on the VM, together with Python code for sending
packets from one host to the SNIC and then receiving the outgoing packet on another
host. Using this Mininet-Scapy setup, it was easy to make sure that the code
functioned properly.

In the exercises, the switch programming model provided was the v1model, shown
in Figure 3.1, which is a library specified to work with the virtual switches defined
by the bmv2 backend. Due to its general approach, and direct support by the p4c
compiler, the guess was that few, if any, changes would be needed for the code
created for the v1model to work on the Agilio SNIC.

Completing the exercises on the virtual machine was a good introduction to P4 as
well as to the Mininet setup. The provided environment could also easily be used
to develop new P4 programs. The automatic Scapy-Mininet setup was convenient,
and easily configurable. This was a time-saver, since setting up the P4 language
from scratch in Windows (which was the OS installed on the company computers)
was especially complicated (and not fully supported).
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Figure 3.1: The v1model [50].

Using the same Mininet environment, it was also possible to use C rather than
Python to send and receive the packets at the hosts. This was useful to further on
be able to develop test programs in C to more accurately imitate the original code
and to easily send and receive packets with custom headers needed for the project.

3.2 Initial P4 Test Program
The initial P4 program created was made by taking bits of pieces of the provided
exercises to first be able to send a packet from a host to itself. The recycling of
parts ensured the new P4 program was built according to the v1model standard
and simple to test using the provided Mininet topology. A new header was created
to be able to receive input from the existing system code. The header is placed
underneath the IP-protocol and the python code for Scapy was changed to support
this. To ensure the program was working correctly, the fields of this header was
changed during P4 processing. After making sure the packet with added header was
processed and received properly, the existing system code to be translated could be
examined.

3.3 Translation of industry code to P4
This Section aims to present the functionality which the program fulfills and discuss
the changes that are needed to translate C-code to P4.

In consultation with an industry expert, a small part of the program was isolated.
The purpose of this part of the program is to perform the initial classification of
incoming packets and calculate some values to be used at a later stage. The target
code classifies two types of incoming packets, regular IPv4 packets and GTP IPv4
packets. This part was chosen due to its relatively isolated functionality which does
not depend on many other files.
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3.3.1 Brief Overview of The Original Program
In the program, a packet arrives on the ingress port and, after calling some interme-
diary functions, calls the classify function. The classify function then classifies the
packet as depending on its destination address and certain current system variables.
The program then calculates the relevant values for the classification of the packet,
puts the values in a struct, and returns it. The result struct is then used to set
the packet structs header offsets and further its values are used when the packet is
processed to be forwarded or dropped.

3.3.2 Required Changes for Translating C Code to P4
The packets that arrive to the SNIC are received from the external network, which
means that ethernet headers are present in the P4 program, while the pointer to
the packet struct that is delivered to the packet-classifying function already has
the ethernet header removed. However, this does not affect the functionality of the
program.

In the packet processing using C language, pointers are frequently used to point to
different parts of a packet, such as headers and fields. However, this approach is not
needed in P4 where the parser and header definitions are used to extract all headers
and their fields before performing any functions.

Generally, C program functions also use pointers to structs to deliver the necessary
values to other parts of the code. This is not possible when using the SNIC which
can not communicate directly with the code but instead must send the information
through packets. The solution to this problem is to, instead of using structs, create
a new headers and add these to the packet upon exiting the SNIC. This also means
that the point where the packet is delivered will need to extract the values of this
header to then put in a struct to deliver to the rest of the code.

To be able to save variable values between runs, P4 uses registers. These registers are
present only if the SNIC has capacity for them. The values in the registers are then
updated by sending certain control messages to the SNIC when the system value
is changed. To do this, a custom configuration header need to be added and the
protocol needs to be changed to indicate this. This header contains the new values
and a flag field, to indicate which values to update. Values that are temporary
(per packet) are simply saved in metadata until the headers’ values are set in the
deparser.

Usually, packet classifiers also contains lookup tables and switch statements which
in P4, can be done using a match+action tables. A switch statement may simply use
a variable as input to a table and an action is selected depending on the input value.
For a lookup table, the method would be a method that sets a specific variable in
the metadata, which may then be treated as the looked-up variable.

Arrays may also be used, which is neither applicable in P4. In some cases, this could
easily be solved by replacing the array with separate variables or merging multiple
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variables into a single bitfield using the OR operator and bitshifting. However, for
larger arrays, it is possible a different solution, containing external code in C when
the need for arrays occurs, could be applied instead. The netronome SNICs used
in this project supports this functionality of using external C code, it is however
uncertain whether all SNICs allow this.

Finally, a regular C-program usually contains some kind of for or while-loops, which
do not exist in P4, a language which does not contain any loop functionality at all
(except in the parser where there are GOTO statements). If the number of loops is
predictable, the solution could simply be to create a hardcoded implementation by
using loop unrolling. Another solution to loops could also be external C code, as
mentioned above.

3.3.3 Difficulties in Using Netronome’s Programmer Studio
In order to eventually compile and run the code on the SNIC, the program needs to
be built using Netronomes SDK on Linux or with Netronome’s Programmer Studio
IDE on Windows. The IDE, which was used for ease of setup, comes with certain
difficulties that can be hard to predict. The error messages provided by the IDE are
at times problematic to interpret and often lie in the so called list files generated
during the build process. We personally believe that some form of bug is involved,
as standard P4 keywords cause errors to occur whenever used, which is improbable
to be intentional. It is also the case that some programs will compile correctly once,
and cause errors the next time, despite no changes having been made to them.

One method of combating this behaviour used in the project was to simple insert
the code in pieces, and rewrite anything causing errors to circumvent them. The
IDE cannot handle the return statement, and so they need to be eliminated and
the code adapted accordingly. The inbuilt function isValid is another unusable
one in Programmer Studio IDE. The isValid function is a function which can be
called to check if a certain header was successfully extracted using the checksum
and whether or not the header was parsed at all (aka in the packet). In order to
preserve the functionality of the program, metadata fields to for each header can
be set in while parsing that can then be used in the processing. Of course, this is
a breach of security since this would cause even a deformed header to be seen as
valid, making the system open to for example DDOS-attacks. However, security was
not of concern to this project. It would also be a possibility to check the checksum
manually if security was of interest.

3.3.4 Dynamic Table Updates
A further necessary feature of the program is to be able to update the tables, without
recompiling the program. In this projects case, Netronome has its own CLI already
set up to perform this feature.

While Netronome SNICs have support for table updates through the described CLI,
it is not certain whether all SNICs have such features available.
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3.4 Creating the C-Program for Testing
The SNIC, as previously mentioned, is in this program the link between the external
and internal network. This is different from the way it is programmed in the original
program, where a separate packet receiver is implemented in another file and only
pointers to the packets are sent to the classifier. Hence, there is need to supplement
some C-code to receive the classified packet to then mediate data found in the result
header as well as the packets location in memory to the rest of the system. Further,
to be able to use the program separately from the rest of the original environment,
several struct and methods from the original program need to be included.

The following subsection presents how the C-program was implemented as a stan-
dalone program, followed by a subsection describing adaptions needed to the original
systems to use the new packet type as provided by the SNIC.

3.4.1 Adapting the Code for Standalone Tests
The C-program’s standalone version was first implemented for Mininet testing and
used the netinet library to receive and pick out the different layers of the packet.
The packet’s values were then checked so that packets arrived correctly with correct
values after going through the P4-program on the SNIC. Some values were for ex-
ample calculated beforehand and then compared to what the SmartNIC delivered
in its added header.

For testing within the testing environment the complete classifer was extracted from
the original code and then a process to pick out necessary includes and remove
the code not necessary was conducted. Since the program, used as a basis for
performance testing measurement, already had a way to create a pointer to a packet,
it was possible to let it function as the original code by only supplying the classifer
with a struct pointer, the pointer to the packet, and the packet’s length. Hence, the
original receiver created was not used in the actual testing process.

3.4.2 Adapting the Original System
In the original system, one method is used to do all classification of the packet.
However, when using an additional header, this kind of method is no longer needed.
Instead, the classification method should be replaced with a converter method which
takes the values from the added header and puts them in the respective field in the
struct. It must also add to the struct any values that are not present in the added
header, such as system variables and the packet’s memory address.

Some variables in the original system, are not optimal to save in registers within
the SNIC, since these values are easily accessed from within the original system.
These fields of the struct should preferably instead be set somewhere within the
original system instead of being picked from the result struct. However, in our
implementation, we provide a register solution to prove that it is possible to provide
the values from the SNIC as well. For this to work properly, the original system will
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need to send out updates with the register change protocols to the SNIC whenever
these values are changed.

3.5 Necessary Downgrades of the Program
Apart from issues occurring when trying to compile the program with the Netronome
SDK, more difficulties were faced when trying to load generated firmware onto the
SNIC. These issues whose reasons are still unknown, caused the Netronome loading
software to not be able to read the program configuration files containing program
tables. After weeks of being in touch with experts in using Netronome SNICs and
Netronome’s Support (who unfortunately didn’t have time to look into the issue) we
decided the only way was to not use tables. This meant that any necessary dynamic
functionality would need to be hardcoded.

Due to the time loss, we also decided to refrain from examining the use of registers,
since we would not have the time to investigate a way to properly use these.

Due to previously mentioned removal of tables, the use of the dynamic tables using
CLI could not be investigated further.
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This chapter presents the methodology used for evaluating of the results. The
methodology includes a performance evaluation section and a qualitative section.
The former giving insight in how the implementation using P4 performs compared
to the initial C implementation and the latter comparing different non-performance
related variables concerning the two implementations, such as the difficulty of pro-
gramming in the two languages.

4.1 Performance Evaluation

In order to compare the performance of the initial C implementation of the system
section to the translated P4 version, it was first necessary to decide how to measure
their performances. The sponsoring company strongly suggested packet throughput,
which was their main performance measurements, and after looking at other works
within the area, it seemed to be worth focusing on and then take other measurements
if time allowed (it did not). The test environment was to be set up between two
machines. One would run a traffic generator and the other one would run a test
program and by receiving the traffic measuring the selected measurement both for
the C program, with a program letting all packets through on the SNIC, and the
P4-program.

DPDK
Program Pktgen

SNIC

Compute PC-ToolRouter

NIC

Figure 4.1: Performance evaluation setup, the cubes representing the hypervisors.
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4.2 Test Environment
The basic testing environment, shown in Figure 4.1 consisted of two machines; "Com-
pute", which was connected to the SNIC, and "PC-Tool", which was connected to a
regular NIC, both machines located inside a data center for testing purposes. The
NICs were connected by a router and VLAN was set up to make it possible to use
only MAC addresses for messaging between them. The idea was that PC-Tool would
be used to generate a large enough packet stream to simulate the packet stream re-
ceived by the actual industrial system and that Compute would receive the packets
the NIC forwarded and measure the performance variables through a program. The
processor used for processing outside the SNIC on the Compute-machine was an
Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz. Intel’s Data Plane Development
Kit (DPDK) was presented as a way to provide for the traffic generating software
and also contained API to create a program for measuring several network statistics.

Due to limited network access in the lab environment the machines were placed
and two Docker images were set up to contain the necessary drivers for the SNIC
(provided by Netronome) as well as the DPDK software. DPDK would prove to
be necessary to set up a connection from within the hypervisors directly to the
hosts’ physical ports through its Poll-Mode Driver, eliminating any port-to-software
delays. DPDK’s pktgen was used as the traffic generator, and it was configured only
to send IPv4 UDP GTPU packets.

After the images were set up containing the previously mentioned software, the
image containing the statistics program and Netronome drivers were uploaded to
Compute, and the image containing pktgen was uploaded to PC-tool. The firmware
of the P4 program was generated using Netronome’s programmer studio and the
output of this was them loaded onto the Smart-NIC via Compute.

4.3 Performance Evaluation
The performance evaluation was solely based on packets per second. This was mea-
sured through a program using the DPDK API. The program was based on the
DPDK provided example application "DPDK Layer 2 Forwarding Sample Applica-
tion", which already contained functionality for measuring the amount of received
packets. By adding code for measuring further statistics in the main program loop,
a measurement for the packets received and processed per second was gained. Fol-
lowing is a detailed explanation on how the modifications to the program functions,
followed by how testing was conducted, and a discussion regarding the possibility of
integrated testing.

4.3.1 Measurement Program Implementation
Listing 4.1 shows the part of the program receiving the packets and executing the
C-program for each one. The program begins by taking in packets in bursts of
32 packets and adds the amount of received packets to the port statistic struct on
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1 nb_rx = rte_eth_rx_burst (portid , 0, pkts_burst , MAX_PKT_BURST );
2
3 port_statistics [1].rx += nb_rx ;
4
5 for (j = 0; j < nb_rx ; j++) {
6 before_processing = rte_rdtsc ();
7
8 m = pkts_burst [j];
9

10 packet_length_t l3_length = ( uint64_t )m-> outer_l3_len ;
11 packet_data_t * l3_start = ( packet_data_t *)
12 rte_pktmbuf_mtod_offset (m, packet_data_t *, m-> outer_l2_len );
13
14 if (! handle_classify_packet (l3_start , l3_length ))
15 printf (" Error , cannot execute C- program .");
16
17 after_processing = rte_rdtsc ();
18 diff_processing = diff_processing + after_processing - before_processing ;
19 }
20
21 for (j = 0; j < nb_rx ; j++) {
22 m = pkts_burst [j];
23 rte_prefetch0 ( rte_pktmbuf_mtod (m, void *));
24 l2fwd_simple_forward (m, portid );
25 }

Listing 4.1: Measuring program: packet count and C-program execution.

rows 1 to 3. Then the program starts looping through the packets, finding the
length and start of the layer 3 protocol of each of them and uses these values to
execute the C-program. Surrounding this processing are the before_processing
and after_processing variables which uses the function rte_rdtsc() to measure
the time in cycles since the program started. By then adding the difference be-
tween these to the variable diff_variables, a measurement of the time the total
processing has taken can be gained.

When using the P4 classifier instead of the C-program classifier, a program extract-
ing the data from the result header is executed. The final rows 21 to 24 are parts
of the original Layer 2 Forwarding example-program, and sends the packets back to
where they came from using another port.

Listing 4.2 shows the part of the program calculating the statistic measurements.
Once again uses the function rte_rdtsc() is used for time measurement. The
statistics are printed and calculated around each 10th and 40th second to avoid them
being updated too quickly to read, hence the use of the timer_period variable, for
measuring 10s intervals, as well as the ten_second_loop_counter, for measuring
40s intervals.

Note that depending on the time the latest receiving and processing loop took, the
period may not always be exactly 10 seconds, but it was deemed that the deviations
was small enough to not impact our results.

The program first checks so that the time of the period has passed and that the
program is on the core handling the main port on rows 3 to 6. The delta_pkt
variable is then calculated as the difference in packets received in total minus the
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previously received packets from other iterations of the main loop. This value is then
later used to calculate the latest_rx_pps on row 9 which is the packets received per
second during the latest 10 seconds and is calculated as the delta_pkt divided by 10
seconds. latest_receival_cycles_per_packet is a variable used track the cycles
each packet takes to be received and is calculated as the cycles during the 10 second
period minus the cycles spent executing the C-program, divided by delta_pkt. The
latest_processing_cycles_per_packet is the cycles each packet takes to be run
through the C-program and is calculated using the processing time in cycles. The
following variables with the same titles without beginning by "latest" are used to
measure an average of the values over 40 seconds, which is done in the loop using
modulus 4 on the current loop number to calculate the 40 seconds mark. After four
10 second loops, the average is calculate by simply dividing these variables by 4,
creating an average. These averages are then summed to calculate the average total
cycles per packet. Finally, this measurement is used to divide the cycles per second
to get the total packets received and processed per second, which is the desired
measurement value. Of course, variables are reset or set to appropriate values after
each loop.

4.3.2 Testing Method

With both pktgen and the measurement program ready, the final resulting mea-
surements were ready to be taken. The measurements for the SNIC were taken
with the P4-program loaded onto the Smart-NIC and with the C-program execu-
tion commented-out. The processing time was then zero, and the measurements
depended on the receival time.

The statistics for the C-program was taken with a P4-program accepting all packets
loaded on the SmartNIC and the C-program execution un-commented.

The pktgen was started before the measurement program and the measurement
program was run for circus 5 minutes (timed by hand). To check that the P4-
programs was correctly loaded, GTPU packets was sent to check that they arrived
or did not arrive respectively.

4.3.3 Possibility of Fully Integrated Testing

The original intention was to analyse the performance of the whole system with
and without the SNIC integrated and compare these values. However, while this is
possible, it was deemed to need the support of further personnel at the company,
which probably would not have the time to offer their help on such quick notice.
To avoid a deadlock situation, the partial integration described above was used
instead. This way, one would be able to receive the necessary performance data in
a less involved way.
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1 cur_tsc = rte_rdtsc ();
2
3 if ( timer_period > 0) {
4 timer_tsc += diff_tsc ;
5 if ( unlikely ( timer_tsc >= timer_period )) {
6 if ( lcore_id == 1) {
7 delta_pkt = port_statistics [1].rx - prev_rx ;
8
9 port_statistics [1]. latest_rx_pps = ( delta_pkt )/10;

10 port_statistics [1]. latest_receival_cycles_per_pkt = timer_tsc /( delta_pkt );
11 port_statistics [1]. latest_processing_cycles_per_pkt =
12 diff_processing /( delta_pkt );
13
14 rx_pps = rx_pps + ( delta_pkt )/10;
15
16 receival_cycles_per_pkt = receival_cycles_per_pkt +
17 (timer_tsc - diff_processing )/( delta_pkt );
18
19 processing_cycles_per_pkt = processing_cycles_per_pkt +
20 diff_processing /( delta_pkt );
21
22 if( ten_second_loop_no %4==0) {
23 port_statistics [1]. avg_processing_cycles_per_pkt =

processing_cycles_per_pkt /4;
24
25 port_statistics [1]. avg_receival_cycles_per_pkt = receival_cycles_per_pkt /4;
26 port_statistics [1]. avg_rx_pps = rx_pps /4;
27
28 uint64_t tot_time_per_pkt = port_statistics [1]. avg_receival_cycles_per_pkt

+ port_statistics [1]. avg_processing_cycles_per_pkt ;
29
30 port_statistics [1]. avg_handle_pps = ( rte_get_timer_hz () *1.0) /(

tot_time_per_pkt *1.0) ;
31
32 processing_cycles_per_pkt = 0;
33 receival_cycles_per_pkt = 0;
34 rx_pps = 0;
35 }
36
37 port_statistics [1]. loop_number = ten_second_loop_no ;
38
39 print_stats ();
40
41 /* reset */
42 ten_second_loop_no = ten_second_loop_no +1;
43 timer_tsc = 0;
44 diff_processing = 0;
45 prev_rx = port_statistics [1].rx;
46 }
47 }
48 prev_tsc = cur_tsc ;
49 }

Listing 4.2: Measuring program: statistics calculation.
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4.4 Qualitative Evaluation Criteria
The qualitative evaluation consists of investigating the pros and cons of program-
ming in the P4 language compared to programming in the C language, as well as
weighing the limiting factors of using SNICs to the ones when using regular NICs.

For this qualitative evaluation, a collection of evaluation criteria has been set up.
These are presented and briefly summarised in the list below.

1. Ease of environment setup, describing the difficulty of setting up an environ-
ment where the respective language can be compiled in.

2. Availability of documentation, describing the difficulty in getting information
regarding the language, including functionality and modules.

3. Programming difficulty and limiting factors, describing the difficulty to first
understand the syntax and how difficult it is to program when considering the
language’s limiting factors.

4. Hardware Limitations, investigating the limitations of using SNICs compared
to NICs.
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Results

This chapter presents the results obtained from the testing. The first section presents
the results of the performance testing and the following section regards the qualita-
tive testing, presenting the discovered challenges of using the SNIC and P4, including
the difficulties of using the SNIC drivers as well as the limiting factors of P4.

5.1 Performance Evaluation
The testing, done as described in the previous chapter, focused on measuring the
packet throughput in packets per seconds of the two setups when handling heavy
streams of GTPU packets. The first setup being the P4 programmed SNIC with the
classifier P4-program and the second the SNIC loaded with an empty program and
the classifier C-program on the machine connected to it.

The result of the throughput measurement is shown in Figure 5.1 and indicates a
5 percent higher throughput for the SNIC focused setup, compared to the CPU
focused setup.

When looking at the individual cycle measurements shown in Figure 5.2, it can be
concluded that the processing time of running the whole classifier C-program on the
CPU, need around 13 percent more cycles than when only picking out the necessary
data from the result header after running the SNIC P4 classifier. From the same
graph it can also be seen that the cycles for receiving the packets are the same in
both setups, meaning the time it takes for the SNIC to run the classifier P4-program
is negligible compared to the time it takes to run the empty P4-program.

Overall, the results point to the need to further optimize the way data is extracted
from the result header to get better results.
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Figure 5.1: Difference in throughput between the SNIC implementation and the
original system when handling GTPU packet stream.
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5.2 Qualitative Evaluation
This Section describes the resulting evaluation of the qualitative evaluation criteria
motivated in the previous chapter.

5.2.1 Ease of Environment Setup
During the first part of the project, the initial thought was to install P4 from scratch.
However, after investigating further this seemed unnecessary complicated when the
virtual machines already existed. Nevertheless, in the middle of the project, due
to an issue that was thought to be due to the P416 compiler not being fully up to
date (16.0 instead of 16.1) in the virtual machine, a few days were spent trying to
install P4 from scratch on both a virtual machine using the same OS as the virtual
machines (Ubuntu 14) and newer OS’s (Ubuntu 16 and 20). The instructions used
for the installation were the guides from the P4 repositories created by P4lang on
GitHub. These contained a detailed guide on all dependencies needed, which were
installed both manually and per a automatic script contained within one of the
Github repositories. The conclusion of our efforts unfortunately proved pointless,
as it seemed to always be some dependencies that could not be installed and it was
unclear why. Proceeding without the dependencies also proved fruitless, since the
installation then failed.

At this point, we deem it difficult to set up P4 from scratch, unless perhaps one
has some experience with the needed dependencies, which we did not. However,
when we further down the line decided to install the P4 compiler in one of the
Docker images due to what was thought were problems with the compilation using
Netronome’s programmer studio, it proved to be surprisingly easy. We are not sure
what was the problem with the previous installations, but we do recommend the
using a hypervisor for anyone wanting to install the P4 environment on their own.

If not using Linux however, Netronome’s Programmer Studio IDE for Windows
needed no setup at all after installation, making it simple to start programming
straight away. However, the Programmer Studio IDE has other problems, such as
incomprehensible errors and possible bugs, as well as the lack of a working simulator
for P416.

On the other hand, C is, due to its wide use, very simple to set up.

5.2.2 Documentation Availability
The documentation availability for P416 was limited, probably due to its novelty
in the industry. The only up-to-date, extensive resource for information on the
language was the P4 Language Specification ([39]) and the tutorials on P4Lang’s
Github and on the virtual machines. The P4 language website [1] further linked to
the tutorials site open-nfp.org [51] where more tutorials were available, although the
majority used P414.

Due to the lack of documentation, it was difficult knowing how exactly to use cer-
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tain functionality in the language. These functionalities were usually seen used in
arbitrary GitHub repositories and then one had to guess regarding whether or not
they existed in the language as a concept or not. Registers were an example of
such a concept. The use of registers were found in a repository and in the language
specification but had to be implemented using different syntax than both of these
sources to be able to be built. This makes one question if the language specification
document also might be a bit out of date.

The limit in documentation also makes the different modules of the language some-
what mysterious. There is only brief texts on for example how the v1model and
p4runtime work. The whole P4 language generally seems to be used within the
group of people who are building it. However, over time this will hopefully change.

C is naturally very well documented.

5.2.3 Programming Experience

Although the lack of documentation is evident, the basic concepts of P4 are simple
to understand after doing just a few of the tutorials on P4Lang’s GitHub. The
syntax is close to that of C and no extensive learning is needed.

As previously mentioned, there are several limiting factors of the P4 language, most
prominent being the lack of loops and the non-variable sizes of header variables. The
former is unavoidable when translating a regular program to pure P4. However, if
the number of times the loop should be done is somewhat predictable, it is possible
to unroll the loop to provide the same functionality. Of course, loops that are run
an unpredictable amount of times are not translatable.

The non-variable size of header variables is also a limitation of the P4 language.
This, however, seems to be a work in process where there is code being developed
for measuring the size of a header, which pokes at the possibility that headers could
be of different sizes. As of now, the header variables are set at defined sizes only,
but perhaps this limitation will be fixed.

5.2.4 Hardware Limitations

Since the Smart-NIC basically is a regular NIC with added memory and computing
power, there’s no limiting factors of the Smart-NIC hardware that are not also
limiting in the NIC. However, there are limits to the offloading that can be done
with a SNIC when comparing offloaded and non-offloaded software. One of these
is that the computing power that modern Smart-NICs contain are, in most cases,
significantly less than those of the host processor. This means that the amount
of offloading that can be done on the SNIC is limited to the processor hardware.
The offloading capabilities are also limited to the amount of memory present on the
SNIC.
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5.2.5 Netronome
The P4 compiler issues as previously mentioned, proved not to be our only problem,
since we would also need a backend compiler to be able to load the program to
the specific Netronome hardware. For this purpose, Netronome provides a software
development kit that can be used to both compile P4 programs and load the firmware
and the configuration onto the SNIC. This software was not properly documented
in Netronome’s official guides, and nowhere was it mentioned whether it would be
able to compile P416. Thinking it could only compile P414, some days were spent
trying to find other solutions, when finally another thesis [52] was found to describe
the certain command used to compile P416 to a specific Netronome Smart-NIC and
load the compiled files onto the same.

Further, when attempting to load the program onto the NIC, using the method de-
scribed in [52], additional problems appeared. While the method for compiling the
program worked well, loading the files onto the SNIC did not. While it was possible
to load the firmware using the guide described in [52] as well as the instruction found
in the documentation for Netronome’s SDK, the configuration caused unexpected
errors. The configuration file in question was created using Netronome’s Program-
mer Studio, and so syntactically correct, yet the software tool proves unable to load
it onto the SNIC.

This issue was not resolved within the bounds of this project, and so we were forced
to exchange the program for one that did not require a configuration file in order to
perform any testing at all.
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6
Concluding Remarks

In this chapter there will be a brief discussion of the results presented in Chapter 5
followed by a recommendation for future work and finally the conclusions reached
by the authors during this project.

6.1 Discussion
This Section will contain a discussion of the results presented in Chapter 5.

6.1.1 Performance Evaluation
The performance evaluation conducted support the theory that performing packet
processing on a SNIC rather than general use CPU is faster. The testing was however
limited in scope, testing only GTPU streams and lacking the table configuration in
the implementation. Because of this it is difficult to state with certainty that the
results would not change if the scope was extended. Despite this, it is likely that
the results of such testing would show a much greater improvement in comparative
speed of the SNIC implementation. This is because the difference in processing time
on the SNIC was negligible when performing the processing on the device compared
to simply forwarding the packets. The implication of this is that the increase in
processing time in the SNIC for extending the functionality is very likely to be
much smaller than that of extending the C-program to perform additional tasks.
Furthermore the time it takes the CPU to receive and extract the results from the
P4-programmed SNIC would not increase despite adding logic to the program on
the SNIC.

6.1.2 Qualitative Evaluation
The main problem that was encountered multiple times during the project was the
lack of documentation. Further, many of documents that were found were outdated,
such as the tutorials directed to by P4’s site, which were mainly regarding P414,
except 2 tutorials using P416. Another example was Programmer Studio which did
not contain a usable version of the simulator, which also seemed to no longer be
updated since the latest update from 2018. Many sources of information regarding
P416 also seemed to no longer be updated. With P416 being quite new in terms of
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programming languages together with the outdated material, it resulted in difficulty
understanding the language on a deeper level, resulting in usage of parts of the
language while they were still not fully understood.

Due to the amount of information on P414, as well as the working simulator, a
question during the project was if it would not have been easier to use P414 instead.
However, P416 is not backwards compatible with P414, which meant that there was
a need to reprogram large parts of the program. The most severe problem was
however the lack of a deparser in P414, which only emits the headers that came in
in the same order, making it impossible to add a new header, making it necessary
to rethink the whole result-struct approach. Also, since P4 does not operate on the
payload of a packet, the only straight forward way would then be to change the
existing headers to contain the result struct’s values, which does not sound like a
good solution.

6.2 Future Work
For future work the program should be tested as it was initially translated, with
registers and tables. Without tables, there is no way P4 can be used in the way it is
needed to be used in real scenarios, except perhaps very limited parts. It is therefore
crucial to find out why the tables cannot be properly loaded onto the SNIC and fix
it. Perhaps the best way of solving this is not using a Netronome Smart-NIC.

The dynamic table updates are also necessary to be examined for usage in the real
environment. Therefore, the CLI need to be investigated more in detail to see that
this can be done.

More measurements, perferably in a more simply controlled environment, should also
be conducted for to gain a more precise insight in how much faster the Smart-NIC
processing actually is compared to using a regular CPU.

Further, this project focused on a very specific part of the program at hand. An
extension could for example be to translate the a classifier to P4.

Moreover, testing using different SNICs should be done and interfaces to update
tables should be further researched to make sure they are available for all SNICs
contrary to what Netronome has provided which may not be universally available.

6.3 Conclusion
The purpose of this project was to investigate how Smart Network Interface Con-
troller can be used to offload packet processing in a realistic scenario, and identify
the limitations and challenges of integrating the SNIC into an industrial system.
The research that has been done in the years since the release of the language sup-
port the hypothesis that a P4 programmed SNIC can greatly increase the efficiency
of packet processing compared to a general use CPU.
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During the project, it was clear that one of the main limitations of the technology at
this point is the lack of documentation for the product and the language. This made
it difficult to with certainty determine the increase in performance and thereby the
possible resources saved. As the finished test program was smaller than intended,
the results are inconclusive. All tests performed do however still indicate that there
is potential performance gain in using SNICs.

What can be said with some certainty based of the results of this project is that as
of now, the Netronome SmartNIC, with at times lacking and/or incorrect documen-
tation and an IDE with undefined behavior is not ready to be integrated in a real
industrial system. There are simply too many unknown factors with the product to
work with it as of now. Perhaps other SNICs are more documented and thus better
candidates.

In contrast, the process has shown that the P4 language, is however ready to be
used in real settings. It is a small and relatively easy language to understand that
has good documentation and all parts of a basic C-program can be translated to.
There’s however more complicated behaviour that needs to be examined to know if
all kinds of C-programs can be translated.

It is the belief of the authors of this thesis that with enough time, and perhaps further
development of the products, using SNICs programmed with P4 to offload packet
processing from general use CPUs could be key in facilitating the requirements of
the 5G networks.
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