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Abstract

Sparse array antennas employ fewer elements than non-sparse array antennas and
can therefore provide less costly solutions without necessarily compromising the
high degree of functionality. A trade-off investigation, conducted for RUAG space,
of sparse array antennas focusing on satellite communication (SATCOM) applica-
tions is presented in this MSc thesis. Of primary importance are the number of
elements and controls required which depends on the side lobe level, gain loss, Field
of View (FoV), inter-beam distance, total aperture size, element positioning and
element size. Furthermore the number of elements depends also on weather one
common element or two separate elements are employed for the receive (RX) and
transmit (TX).

The methodology for obtaining sparse array antennas utilises convex optimisation
while including Mutual Coupling (MC) effects and allowing multi-beam optimisa-
tion. Additionally, by integrating the full-wave EM simulation software FEKO MC
effects are accounted for accurately. Moreover, the convex optimised array antennas
are compared to Taylor synthesised and density tapered array antennas.

The synthesis problem turned out intractable for full size array antenna cases making
it necessary to exclude MC effects. However, when MC effects are small, accurate
results can be obtained while simultaneously reducing computations in the order
of weeks. Such is the case for the array antenna, with the FoV 4° and inter-beam
distance 1°, with separate RX/TX apertures and elements where as for the array
antenna with common RX/TX apertures and separate RX/TX elements the radi-
ation patterns violated the radiation mask, which can be attributed to the higher
element number density of the shared RX/TX aperture.

Results indicate that the convex optimised array antennas lie in the region of 100-
1000 elements when varying the FoV between 4°—8° and inter-beam distance be-
tween 0.5°—1°. Furthermore, Taylor synthesised array antennas are comparable to
convex optimised array antennas with respect to the number of elements, while the
density tapered array antennas requires significantly denser array antennas. More-
over, by employing common RX/TX elements the number of elements were reduced
significantly compared to array antennas of separate RX/TX elements, with a draw-
back of rendering it more difficult to obtain solutions through the convex optimisa-
tion. Furthermore, when employing shared RX/TX apertures and separate RX/TX
elements the total aperture size is reduced significantly compared to array antennas
with separate RX/TX apertures and elements. In conclusion, the array configura-
tions with common RX/TX apertures proved to be the most desirable due to the
total aperture size, gain and number of elements.

Keywords: sparse array antenna, trade-off study, FEKO, convex optimisation, an-
tenna array synthesis, RUAG space.
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1

Introduction

A brief introduction to the subject of array antennas and the main focus of the report
will be provided in this chapter. First, the background to this project is presented
which is followed up by the purpose and limitations of the thesis which is finally
concluded with the thesis outline.

1.1 Background

There are several benefits of using array antennas in satellite communication (SAT-
COM) applications, including the prospect of increasing the overall gain as well as
the functionality of steering the main beam in a desired direction. Furthermore, the
main motivation for designing optimal sparse array antennas is that they present
the possibility of having antennas with high degree of functionality while lessening
the number of elements in comparison with non-sparse array antennas, as the man-
ufacturing costs are reduced significantly. Of importance is that the reduction in
the number of elements does not necessarily compromise the degree of functionality
of the sparse array antennas compared to the non-sparse array antennas. Indeed,
some non-sparse array antennas would prove too expensive and possibly too heavy
to be realised for the targeted applications [1]. It is therefore of interest to research
and improve the performance of array antennas to RUAG space.

The approaches previously used to design sparse array antennas can be categorised
into two approaches. The first approach is referred to as the Sparse Array approach
and the second is referred to as the Thinned Array approach. These approaches
encompasses various number of mathematical techniques, for example stochastic,
analytical and deterministic methods [2]. The stochastic techniques often utilises
genetic algorithms, particle swarm or ant colony. These algorithms are, rather com-
putationally demanding which makes them a poor choice for optimising large array
antenna problems [3]. The analytical implementation utilises methods such as Ma-
trix Pencil Beam Method and Almost Different Sets. These approaches are com-
putationally inexpensive, making them suitable for large array antenna problems,
although the analytical methods usually assumes no Mutual Coupling (MC) effects.
[2]. Finally, deterministic methods are for example that of density tapering [4] and
Taylor synthesis [5], these approaches also do not consider MC effects but are com-
putationally inexpensive.

The methodology employed for designing optimum array antennas in this thesis has
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been established at the department of Signals and Systems at Chalmers, it utilises
convex optimisation and undertakes the problem of accounting for realistic antenna
elements, i.e. including MC effects in the optimisation. The method minimises the
number of elements while simultaneously allowing for multi-beam optimisation if
desired. As a comment, the reader may bare in mind that the previous mentioned
approaches to sparse array antennas often only consider simplified situations or re-
sort to exclude MC effects altogether [6].

Furthermore, RUAG Space is currently in cooperation with Chalmers University of
Technology, Royal Institute of Technology and Ericsson, within Chalmers Antenna
Systems Excellence Centre (CHASE). The main interest for RUAG lies thus in
developing sparse array antennas for SATCOM applications that are more cost-
effective. This MSc thesis will therefore be focused on finding sparse array antenna
designs with requirements for SATCOM applications through techniques previously
developed at Chalmers.

1.2 Purpose and Limitations

With newly developed theory and methodology further array antenna designs and
analysis were possible to investigate for SATCOM applications, making the objec-
tive of this thesis to complete a trade-off investigation where multiple array antennas
will be designed. The trade-offs that will be considered for the investigation are:

o Number of elements and controls depending on the coverage, the latter which
is also referred to as the Field of View (FoV)

» Total aperture size

« Element positioning

« Element size versus number of elements

o Number of elements versus side lobe level (SLL) and gain loss

« Effects of changed coverage or inter-beam distance

e Common versus separate RX and TX elements

The convex optimised array antennas will furthermore be compared to determinis-
tically determined array antennas. In particular these are classically Taylor synthe-
sised array antennas with the Tschebyscheff-error as well as density tapered array
antennas. As an addition to the existing code and developed method, the commer-
cial software FEKO will be interfaced with MATLAB to simulate the MC effects,
as this would provide results with a fully-fledged calculation tool.

1.3 Thesis Outline

The chapters that will follow the Introduction are Theory, Method, Results, Dis-
cussion, Conclusions and lastly Future Recommendations. Moreover, an appendix
is provided with more detailed results from the trade-off investigation.
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An introduction to antenna theory will be given Ch. 2. That in Sec. 2.1 begins
with theory dealing with general electromagnetism and antenna concepts such as
the field regions, far-field function, directivity and radiation patterns. In particular,
in Sec. 2.1.7 is the terminology used for radiation pattern characteristics presented.
This will be followed up in Sec. 2.2 by theory on array antennas where concepts
such as the far-field function of array antennas, beam scanning and MC effects will
be discussed. Concluding Ch. 2 is Sec. 2.3 where the deterministic procedures,
Taylor synthesis and density tapering, of array antennas are described.

In Ch. 3 will the methodology of the trade-off investigation be presented, which
includes the three array antenna configurations, array element types with their con-
struction in FEKO, convex optimisation algorithm as well as the modifications con-
sidered to the initial algorithm and synthesis procedure. In particular, in Sec. 3.1
are the details for the trade-off investigation presented, which accounts for antenna
specifications as well as the imposed radiation masks.

The numerical results, radiation patterns and array antenna designs from the trade-
off investigation will be presented in Ch. 4. Additionally, simulations including MC
effects in the post-evaluation are also presented for case where the FoV is 4° and the
inter-beam distance is 1° of array antenna configurations 1 and 2. These results are
discussed in Ch. 5 leading up to the conclusions and recommendations for future
research, in Ch. 6 and Ch. 7, respectively. Concluding the thesis, is the Appendix
in Sec. A where radiation patterns and array antenna designs are given for FoV
5°-T7°.
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Theory

Theory for obtaining a good insight in the results and simulations of sparse array
antennas is presented in this chapter. Sec. 2.1 includes a basis to antenna theory
and electromagnetism with the concepts of the employed units and EM field quanti-
ties, field regions in space, the far-field function of antennas, antenna polarisation,
radiated power, directivity, gain, antenna efficiency, S-parameters, Z-parameters
and radiation patterns.

Afterwards, in Sec. 2.2, theoretical details regarding array antennas are provided
which includes the far-field function for linear and planar array antennas, steering
the main beam of array antennas and MC effects. Lastly, the procedures of the deter-
ministic approaches to array antennas are presented in Sec. 2.3, which encompasses
Taylor synthesis and densily tapering.

2.1 Antennas and Electromagnetism

It is common to use Sl-units or units derived from SI-units when working with
antennas and EM field theory. The most common quantities and their units used in
this thesis are given below in Table 2.1 [7].

on
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Table 2.1: Relevant quantities and units of antenna and EM field theory.

Electric field E [V/m]
Far-field function G V]
Magnetic field H [A/m]
Wave impedance i (€]
Electric current [ [A]
Electric impedance Z Q]
Wave number k [1/m]
Wavelength A [m]
HPBW BHPBW [{l&‘g]
FNBW GFNBW Ideg]
Instantaneous power density vector W [W/m?]
Power density vector Waye [W/m?]
Radiation intensity U [ﬁidangﬁ}
Voltage V [V]
Radiated power P4 (W]
Instantaneous radiated power P (W]
Directive gain Dy [dBi]
Maximum gain G [dBi]

2.1.1 Field Regions and the Far-field Function

The volume enclosing a radiating object can be separated into three regions, these are
commonly referred to as the reactive near-field region, the radiating near-field region
and the far-field region. The latter two are regions where the Fresnel and Fraunhofer
approximations hold, respectively [8]. The antenna theory can be greatly simplified
by the fact that the EM field and derived quantities are typically considered in the
far-field region. The far-field region can be described as the region where the angular
field distribution is considered independent of the distance from the observation
point to the antenna. This distance, r, is known to be

202
A

(b (2.1)

where D is the largest diameter size of the antenna, A is the wavelength and r is
the distance from the antenna to the observation point [7]. In Fig. 2.1 are the field
regions depicted with the approximative limits

2D?

r1| = 0.62 and |rg| = (2.2)
for the radiating near-field region and the far-field region, respectively. The antenna
has an aperture diameter D and its phase reference point is placed in the centre of

the aperture.
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2
ry, |ro| = 2D~

Phase reference point

/_
}
ri, |I‘1| = 062@
Reactive near-field region Radiating near-field region Far-field region

Figure 2.1: Illustration of the field regions surrounding an antenna with diameter
D and phase reference point in the centre of the antenna.

The region in space where the far-field region commences can not be definitely de-
fined, as it can be required larger or smaller than 2D?/\ depending on what type of
antenna is considered. Furthermore, for SATCOM applications will the observation
point will clearly lie in the far-field region as the wavelength will be in the order
of 1072 m, while the distance from the Earth of the antenna will be in the order of
10" m and the diameter of the array antennas will be in the order of 10° m.

Next, the antenna far-field function G(t) and its radiated electric field, E(r), are
presented of an arbitrary antenna by considering it for an observation point r in the
far-field region, i.e.

r=R+r,. (2.3)

As the distance from the antenna to the observation point and angular dependencies
become separable in the far-field region, the following expression is obtained for the
electric field of an antenna positioned in the origin and with its phase reference point
in the origin and observation point r as

eIkt e—ikr
E(r) =G() = E(n,0,9)=G0,¢)——, (2.4)
where T = r/|r| = r/r is the normalised vector of r. Continue by considering the

electric field when the phase reference point is moved from the origin to ry, which
is depicted in Fig. 2.2.

Figure 2.2: A Coordinate system with the observation point r and phase reference
point ry.
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As the electric field should not change if the phase reference point is moved, the
electric field can be expressed in terms of R,f and ¢ as

—ij

B(r,0,) = B(R,6,0) = G'(6,0) (2.5)
where R is approximately the distance |r — rg| in the far-field region and G'(8, ¢)
is unknown. It is desired to express the electric field only in the known far-field
function, G(, ¢), introduced at the very beginning. By considering the Fraunhofer
approximations,

1o 4 R

. R for the amplitude and (2.6)

r~R4rp-T for the phase,
the RHS of Eq. (2.5) may be rewritten as

o—IkR _ o—IkR —jkR
C'(6,9)—— = G(0,4)eHPE__ — g, g — (27)
R R
This gives the final expression of the electric field and far-field function as
R 9 9 —Jk(l‘o £) eI JkR
&(6,6) = GO, e s

To obtain the expression when the antenna is positioned in a point in space r,, with
its phase reference point in the origin —rg is substituted with r,. The expressions
for the electric field and far-field function is then derived as

—j’k‘r

Ex, (1,0,6) = G(8, §)erer =T
0,6) = G(0, 9)c7™~*.

It is thus possible to express the far-field generated by several antennas placed in
arbitrary positions [8].

(2.9)

2.1.2 Antenna Polarisation

The polarisation performance is an important antenna characteristic as the electric
field radiated by an antenna can have various polarisation states. In particular the
orthonormal co- and cross- polarisation vectors are to be considered, which may be
viewed as the polarisation states which are desired and not desired, respectively. It
is thus required to suppress the cross polarisation component relative to the co po-
larisation component. The co- and cross- polarisation vectors for linear polarisation
are generally defined as

¢o = cos(¢p — e)é — sin(¢ — €)o, (2.10)
Xp = —sin(¢p — €)8 — cos(¢ — €)¢ (2.11)

where € can be chosen to achieve various polarisations. In order to achieve linear -
polarisation € is set to 0 and to achieve y-polarisation e is set to w/2. Furthermore,

8
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for the Right Hand Circular Polarisation (RHCP) the co- and cross- polarisation
vectors are written as

@D = ef_j¢/\/§£§ B JAJ)) or Bi=1/5/2@—4) (2.12)
Xp = e7?//2(0 + jo) Xp = 1/v2(% + j§)

and for the Left Hand Circular Polarisation (LHCP) the vectors instead are written
as

{ o = F_J_.:"Gb/\/i(é +J(33) - { o = 1/\/§(f +J5‘) (213)

Xp = e7%/\/2(0 — j@) Xp = 1/vV2(& — ji)

for the cross- and co- polarisation components [8]. Finally, the far-field function
may be expressed in the co- and cross- polarisation vectors as

G = G0 + GpXp, (2.14)
(2.15)
with
G oy =" 510y (2.16)
Grp = Goo - X", (2.17)

which will render a clear insight into the polarisation characteristics [1].

2.1.3 Total Radiated Power

The radiated power of an antenna is necessary to introduce for the concepts of
directivity, gain and radiation patterns. Hence, a brief derivation of the radiated
power of an antenna is conferred is this section. Firstly, the instantaneous power
density, P, is evaluated through an integral of the instantaneous power density
vector, W, over a closed surface, S. The expression of the instantaneous power

density is given as
Vo # W.ds = # W-nda, (2.18)
s S

where da is the infinitesimal area of the closed surface and 7 the outward pointing
normal to the closed surface S [7]. However, in antenna theory it is of interest to
compute the averaged radiated power, as opposed to the instantaneous one, which
is computed from the averaged power density vector Wy [§]

1 1 1 1
Wae = —Re[E x H| = |[H= - x E| = —|E|*f = —|G|*. 2.1

From this point it is handy to introduce the radiation intensity U, which can be
expressed as [7]

R 7.2 1 :
U(ga (;b) == r""2‘&"&\«3 s %|E(T} 91 ¢)|2 = %UG(G, (;b)xpl? + |G(97 ¢)co|2)= (22(})

9
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where the wave impedance in free space is n = 1207w (). From this equation it is
rather easy to compute the average radiated power accordingly

2 pmw 2T pw
P = # (Waye - T)da = / / (Waye - #)r?sinfdfde = / / U(6, ¢)sinfdfde,
i o Jo o Jo

(2.21)
where the integration is taken over the far-field sphere, for which n = t. The total
radiated power can finally be computed, by considering equation (2.20), as

1

2w T
Ty = Ploom 5 [ dé f dbsind (|Geo(6, 9)[* + |Grp (6, 9)[?) . (2.22)
0 0

making the total radiated power dependent on the far-field function only [8].

2.1.4 Antenna Directivity and Antenna Gain

The directive gain, Dy, and the directivity, D(8, ¢), are measurements of how the
antenna distributes the radiated power in the volume surrounding the antenna [7].
The ideal directive gain of an antenna is defined as

4
DO o ﬁAaperturee (223)

where Agperture i the area aperture of the antenna. This is, however, not an exact
value as array antennas will suffer from for example phase errors [1]. The directivity
is defined generally as the ratio of the radiation intensity in a given direction to the
radiation intensity averaged over all directions. This may be expressed as

4 U(8,9)
D(0,¢) = 5—U0,¢) = —— (2.24)
Pra.d UU
The directive gain can then instead be found as
Uma.:l(
Dy= 2%, 2.25

which typically gives a more accurate value, but requires a numerical integration
over the far-field sphere.

The maximum antenna gain, Gy, and gain, G(8, ¢), on the other hand combines the
directivity properties of the antenna with its efficiency. The efficiency of the antenna
is characterised by a coefficient ey which is the total efficiency of the antenna and may
be linked to two main sources; reflections due to mismatch between the connecting
antenna and the transmission line and ohmic losses. also referred to as I2R losses.
The total efficiency coefficient of the antenna is written as

€0 = €r€c€4, (2.26)
where ¢, = (1 — |[|?) is the reflection efficiency coefficient and T is the voltage
reflection coefficient at the input of the antenna. To clarify T is defined as
Zin — 20

= ;
Zin + 2o

(2.27)

10
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where z;, is the input impedance to the antenna and zp is the characteristic impedance
of the antenna. The latter two efficiency coefficients in Eq. 2.26 are the conduction
efficiency, €., and the dielectric efficiency, ¢;. Often the total efficiency coefficient
can be written as

e0 = (1 — |TP)eca (2.28)

because measurements usually determines the combined efficiency coefficient €., i.e
the total ohmic losses. Due to these losses in the antenna, the power that is radiated
will not be the the total input power but rather P4 = €yP,. Finally the gain can
be expressed in terms of the efficiency coefficient and radiation intensity as

G(6,9) = U (6,9) = ecall = ITP)D(6, ). (2.20)

The maximum gain is subsequently found as [7]

Go = €ea(1 — |T)?) Do. (2.30)

2.1.5 Scattering and Impedance Parameters

The scattering and impedance parameters, often referred to as S- and Z- param-
eters, are considered for the antenna efficiency in terms of mismatch between the
transmission line and the antenna. It will be shown that the S- and Z- parameters
can relate to the reflection coefficient which in turn can be related to the reflection
efficiency coefficient, as described in the previous section.

As an example a two-port network will be studied and is illustrated conceptually in
Fig. 2.3.

L ]

v > e—— v
Uy -—| — Uy

Figure 2.3: Depicts a two-port system.

The S-parameters for such a network can be written as

2.31)

Vg = S0y + 82207, 2.32)

v = suvi" - 512'{.-';',

—_—

11
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where the total voltage in port i is the sum v; = v;" + v; and the corresponding
current is 4; = i — i;. The relation between the voltage to the S-parameters can
be written in matrix form as

V™ = SV* where s;; = (2.33)

LaET‘E+|EEE|

Furthermore, the current can be related to the voltage and characteristic impedance
as

'U?t
it = (2.34)

¥ et
<0

leading to the current i; = %(U: — v; ) making it possible to calculate S- and Z-

parameters in matrix form as [9

S = (Z - anL)_l(Z — Zg]l) (235)
Z=z1+9)a-S" (2.36)

From here the reflection coefficient for the input can be computed as

Zin — 40 si2salL
N=— =811, +———, 2.37
P i)
where I'y, is the reflection in the load of the antenna [10]. The reflection efficiency
coefficient of the antenna can thus be computed as €, = (1 — |T'|?).

2.1.6 Radiation Patterns

The radiation pattern is defined as the mathematical function of the radiation prop-
erties of space coordinates. It is often evaluated in the far-field region and may be
visualised in various scales. A logarithmic scale is often used as it shows details well
[7]. The radiation pattern may further be visualized in terms of the co- and cross-
polarisation components separately, giving a further insight to the performance of
the antenna for a particular polarisation. The definition of the co polarisation log-
arithmic radiation pattern is

47| Geo (6, 9)|?
Praa2n

Deo(0,¢) = 10 - mlog( ) =20- lolt}g( PLLW IGCU(Q@)I)- (2.38)

radzn

Subsequently the definition for the cross polarisation must be

A7t |Gxp (0 @)|? A
. B 10 o o EPATY I — . 10 ¥ v
Dy, (0, ¢) = 10 log ( Praa2n 20 log Froa2n |Gxp(6,9)| ] . (2.39)

The units of this pattern is given in dBi which means that the radiation pattern is
normalised with respect to an isotropic antenna. The pattern may also be expressed
in dB or dBp which corresponds to an arbitrary rescaling factor and a dipole antenna,
respectively [8].

12
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2.1.7 Radiation Pattern Characteristics

When an antenna is designed certain characteristics are desired, depending on the
application, which are manifested in the radiation mask. For array antennas in this
thesis the radiation mask will be given in the parameters of Side Lobe Level (SLL),
Edge of Coverage (EoC), Out of Coverage (OoC) and Field of View (FoV). For a
cell system that is hexagonal these parameters can be defined accordingly:

o 0oC is the angle that is placed nearest to the EoC and lies in the same channel,
also referred to as colour

« SLL is the level which is defined as the maximum gain in the region outside
the FoV

« EoC is defined as the angle where the edges of the beams cross over, this can
be better understood in Fig. 3.1, where for a hexagonal cell system EoC has
the value inter-beam distance over /3

o FoV, also referred to as coverage, is the angle where the gain is no longer
constricted by the gain specified after OoC

In addition the OoC region can be established as the region from OoC to FoV, the
radiation pattern is constrained to have a maximum level in this region. Also an
EoC region may be referred to as the region from the center of the main beam to
EoC, which has a minimum requirement for the radiation pattern [1]. A conceptual
radiation mask is presented in Fig. 2.4 as a clarification to the reader. In the figure
EoC, OoC, FoV and SLL are displayed, i.e. the radiation pattern must be larger
than the EoC gain, smaller than the OoC gain and the SLL in order to be a truly
successful design.

Radiation mask

(=]

EoC

are g '
w o [4)]

SLL

Gain [dBi]
o s
o

n
w

@
=)

OoC FoV

&)
]

A
o

0 20 40 60 80
Theta [deg]

Figure 2.4: Shows the concept of a radiation mask.

2.1.7.1 Beam Parameters

The main beam in the radiation pattern is characterised by the half power beam

width (HPBW) and the first null beam width (FNBW). The HPBW is defined as

13
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the angle where the beam contains half of its power and the FNBW is defined as
the angle where the first null of the radiation pattern occurs [7]. The HPBW and
FNBW are depicted in Fig. 2.5 along with the main beam, side lobes and back lobe
in units of dBi. For a circular aperture the diameter, D, is related to the HPBW as

A

HHPBW

D =0.8%6 (2.40)

where fyppw is the angle where the radiation pattern has dropped 3 dB in strength
[1]. Furthermore, the first null can be related to the diameter of the aperture, D, as

A
Ornpw = 1.226=. (2.41)
D
x 20
120 &0
15
150 10 a0 &de kjbes
" Back lobe__ Main lobe
HPBW
180 o
FPBW
210 330
Strong  Weak Strong
240 300 signal signal signal
270

Figure 2.5: Ilustrates the FNBW, HPBW, main lobe, back lobe and side lobes in
the radiation pattern and how it corresponds to the strength of the signal.

Thus, the FNBW and HPBW are shown to determine the shape of the main beam
and furthermore the aperture size [7].
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2.2 Array Antennas

An array antenna is a set of several smaller antenna elements, which allows for var-
ious radiation patterns to be formed without necessarily demanding very complex
array antenna elements. The radiation patterns of array antennas will be shown to
depend on the type of chosen array antenna element, the current excitation and the
positioning of array antenna elements.

This section will thus undertake the concepts of the far-field function of linear and
planar array antennas, for these are the type of antennas which will be the main
focus in the thesis. Of course non-planar antennas can be assembled, it is however,
not expected that a non-planar array antenna would be significantly better than
that of a planar [11]. The section will also present concepts of the array factor (AF)
and MC effects.

2.2.1 The Far-Field Function of Linear Array Antennas

A linear array with N elements is now to be considered. The electric field of the
n:th array element positioned in r, of such an array antenna is generally expressed
as

Eo(r,0,6) = e G, (6, g)eent. (2.42)

By combining all array elements the far-field function of the array antenna, G (6, ¢),
can be computed as

N
Ga(0,4) = Y A" G, (0, )&, (2.43)
n=1

where A,ei? is the amplitude and phase of the excitation current of element n, G,,
is the far-field function of element n and ¢/*% is the factor which makes up for the
fact that the array element placed in r, instead of the origin.

If the array pattern for the array elements are identical the summation can be
simplified as G,, = G V n € 1,..., N. It should noted that MC effects are ignored
for this case. In this situation the AF is commonly used as a simplification of the
far-field function and gives rise to the expression

Ga(6,9) = G(0,9)AF (2.44)

as the isolated radiation pattern is taken out of the summation in Eq. (2.43). The
expression for the AF is thus

N N
AF(0,¢) =) A, eI%neikrat — Y wyed*nt (2.45)
n=1

n=1
where w, denotes the complex excitation current of element n in the array. As

mentioned in Ch. 1 an array antenna has the ability to steer the main beam, and
even shape it, in a particular direction t,, or simply (6, ¢5) which also can be referred
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to as the scanning angle [12]. This means that the main beam of every element is
directed along a particular steering vector with fixed angles by altering the phase of
the excitation current, which is written as [2]

wl = wye Iknts (2.46)

The expression of the array factor when steered thus changes to

N
AF(6,¢9) =" WyeFEnt—Tats) (2.47)

n=1

Going back to the far-field function in general the steering beam would change the
far-field function accordingly

Z Wy G (6, §)FEnT—rnts) (2.48)

n=1

2.2.1.1 Steered Uniform Linear Array Antennas

Consider a linear array with N, elements of length L, placed symmetrically on
the x-axis which is equidistant, has a uniform excitation current amplitude and a
linear phase dependence. In addition the array is steered in direction (6, ¢). The
length can thus be written as L, = N,d, and the excitation current as w, = w V¥
n=1,..., N,. This enables us to express the array factor as

Nz .
AF =w)) | ¢f*nds(u—ta) (2.49)

n=1

where u = sinflcos¢ and ¢ = 0 as the array in positioned along the z-axis [12].
Furthermore, the normalised array factor can be expressed as

1 sin(N,V¥,/2)
AF 75 it 2.
adls . sin(U;/2) N (2:50)
U, = kdyu —
B = kd u,.
If the array is placed along the y-axis the AF can be written as
Ny
AF =w ) ef*ndu(v—vs) (2.52)
n=1

where v = sinflsing and ¢ = 7/2. The normalised AF can for this case be written
as

| 1 sin(N, ¥, /2) : 3
U, = kdyv — By (2.54)
B, = kdyvs.
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Finally, if the array is positioned along the z-axis the array factor may be written

as
N

AF=w)_ eIz (cosf—cosfs) (2.55)

n=1

which may be written, in a normalised form, as

1 sin(N,V,/2)

AF| =
[AF] N, sin(V,/2)

‘ , with (2.56)

U, = kd,cosf — (3,
B, = kd,cosbs .

It should be noted again that MC effects are ignored for this case [13].

2.2.2 The Far-Field Function of Planar Array Antennas

Consider now a planar array antenna instead with N elements along the z-axis
and M elements along the y-axis, which are symmetrically placed. It can easily
be understood that the far-field function of the planar array antenna is expressed
accordingly [14]

N M N M
Ca(0:8) =X Y Aume® ™G0, 0™ = 3" 3" wamGm(6, $)e™.
n=1m=1 n=1 m=1
(2.58)
Additionally, if all the elements in the array are identical the same simplification
as for linear array holds, Ga(6,¢) = G(0,¢9)AF [12] for which the array factor is
expressed as

M N ; ) N M N - .
AF(0,8) = Y 3 Appeltomed®omm® — NN 4 med Tt (2.59)
n=1n=1 n=1n=1

where w,,, denotes the excitation current for element in position r,,,. For a planar
steered array the excitation current is written as

Wl = Wome IenmFs (2.60)
along with the array factor
M N _ ) .
AF(0,¢6)=>>" Wy € K (Fnm T—Fnim £s) (2.61)
n=1n=1

However, if the elements are not identical the far-field function of the array can
generally be computed as

N M
Ga(0,0) =Y " W Grm(0, g)e?*FnmT—Tnmta) (2.62)
1

n=1m=

where MC effects can be considered [2].
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2.2.2.1 Steered Uniform Planar Array Antennas

As a clarification of the steered beam the corresponding example, in Sec. 2.2.1.1,
for the linear case will be shown with a planar array antenna. The length of the
array antenna is L,, L, with intermediate spacing d, d, and N, M as the number of
elements along the - and y- axis, separately. The array factor and far-field function
may then be written as

N M
AF=w) > Il (u—us)+mdy (v—-vs)] (2.63)

mn m

with the coordinates u = sinfcos¢ and v = sinfsing [14]. Assuming that the sums
are separable the AF is expressed as

N M
AF =w [z ejk[“d“(“_”’)]] [Z ejk[md'g(”_”“}]] ; (2.64)

Similarly to the linear case the normalised array factor may now be written as

 [sin(Nkdg(u— u,)/2) | |sin(Mkdy(v — vs)/2) X
A = Nsin(kdg(u — u)/2)| | Msin(kdy(v — v5) /2) - L
_ |sin(NW,/2)| |sin(MT,/2) Y
[AF] = Nsin(¥,/2)| | Msin(¥,/2) (2.66)
with
U, = kdyu— By and v, = kdyv — By (2.67)
By = kdati, B, = kdvs.

Similarly to the the linear case the current excitation is assumed to be uniform with
respect to amplitude. [15].

2.2.3 Mutual Coupling (MC)

In array antennas MC will often greatly affect the radiation patterns as it changes
the currents and the radiated fields in magnitude, phase and distribution. A simple
way to describe MC is by considering the impedance, voltage and current of the
elements in an array antenna. These quantities can be connected according to the
following relation

N
=Y Zaapbiis (2.68)

where vy, is the applied voltage and i, the excitation current of element n, where the
total number of elements are N. What the equation tells us is that the isolated case
corresponds to when the impedance matrix Z is a diagonal matrix of equal values
of zun = 2 [16]. The effects of MC are illustrated in Fig. 2.6 for an array antenna
where the dashed lines correspond to the isolated radiation pattern of an array of
the first element and the filled lines represent the embedded radiation pattern for
the initial element.
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Figure 2.6: Example of the effects of MC. The dashed dark lines represent the
isolated co- and cross- polarisation radiation pattern, the filled lines represents the
embedded co- and cross polarisation radiation pattern.

2.3 Array Antenna Synthesis

In order to enhance the performance of array antennas, particular current, distribu-
tions can be utilised in contrast to utilising an excitation current of uniform am-
plitude. In this section two methods of enhancing the antenna performance will be
shown. Firstly, the synthesis procedure of an array antenna with a Taylor distributed
current is presented, referred to as Taylor synthesised array antennas. Secondly, an
array antenna with a Taylor distributed current of equivalent aperture is presented,
referred to as density tapered array antennas. This section will furthermore extend
the concept of AF to the space factor, SF, which corresponds to a discrete aperture
and continuous aperture, respectively [17].

2.3.1 Taylor Synthesised Array Antennas

The Taylor distribution has the advantage of allowing the FNBW of the radiation
pattern to be the smallest possible depending on what highest allowed side lobe level
is chosen, making it suitable as a reference to convex optimised array antennas [5].
This section will provide the procedure proposed by Taylor [18] which incorporates
the Tschebyscheff-error for a line source, and then extending it to a planar array
antenna. This synthesis also has the advantage of being applicable to asymmetric
array antenna patterns, which is suitable for the possibility of changing the radiation
mask [19)].

It is known that for an continuous line source of length 2a and its distribution a(z)
that the space factor can be written as a function of v = cosf written as

SF(v) = k.‘[ a(z)e* ™ dy (2.69)

by Fourier transform. By making the substitutions u = 2‘;—” and p = 7F the space
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factor can be written as

2a

" ; 2a
SF(u) = 7[ a(p)e’™dp = —F(u). (2.70)

A

Generally for antenna synthesis the distribution is required to be single valued,
piecewise continuous in the interval —m < p < 7 and uniformly bounded [18]. Fur-
thermore, it was shown by [20] that the ideal space factor of an Dolph-Tschebyscheff
arrays becomes

F(u) = cosmy/u? — A2 (2.71)
as the number of elements goes to infinity [20]. In the works of [7], the ideal space
factor from the Dolph-Tschebyscheff array is written as

SF(u, A) = cosh [‘!(ﬂ'A)Q — u? (272)

cosh(rA) T

for a linear array antenna of length [, where u = “chose‘?, and is referred as the ideal

pattern in this section. The constant A is given by cosh(wA) = Ry, where Ry is the
maximum desired value of SLL [5].

However, the ideal SF' violates the requirement for having a uniformly bounded
distribution, and is thus unreleasable. This can be understood as outer side lobes
do not decay and the member of the n:th zero pair are asymptotic to +[n — (1/2)],
as showed by Taylor [18]. Since this SF is not possible to realise, it can be approx-
imated the with the Tschebyscheft-error given as

sin(u) 8 i [1 . (ﬁ)z}
w a0
Ix

where u, = mv, = Jcosth, and u = v = %TCOSG. Along with the the parameter

SF(u) =

(2.73)

- A%+ (7 —1/2)2

which has the property of fusing inner nulls with the outer nulls in the radiation
pattern, creating a smooth radiation pattern for a Taylor distributed current. n is
a chosen parameter and the nulls are found as

(2.74)

24 (n—1/2)2 re 1<n<n
s — :|:7TG'\/A +(n—1/2)2 where 1<n<n (2.75)
+mn where 7 <n < oo.
Lastly the current distribution is found as
/\ n—1
i) =~ |71 +2)  SF(p, A, ﬁ,)cos(%rp;z/l)-' with (2.76)
LA J
n—1)! 2 — I mp . L =
—K—U—(ﬁ_l o) (lﬁl_l_p)Q ) )2 [l . (u: )2] where |p| <7
SF(p,A,n) = (2.77)

0 where |p| > n
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where [ is the length of the array and the SF(p, A,n) is an even function. By
assuming that the excitation vectors are separable for the z- and y- directions the
current distribution of a planar array antenna can be found as

i(x,y) = i(x)i(y). (2.78)

i(x,y) will thus constitute the excitation current wyy, in the expression for the far-
field function in Sec. (2.62) of an array antenna [5].

2.3.2 Density Tapered Array Antennas

If the array antenna has uniform excitation current amplitudes the ohmic losses
can be reduced [4]. Therefore will an array antenna that is Taylor distributed with
respect to equivalent aperture be considered in this section. The idea of tapering the
array antenna with respect to element density is to satisfy the following condition

integral over area elements in area

(2.79)

integral over the antenna aperture  elements in the antenna aperture’

This synthesis will be concerned with the ideal radiation pattern of the array an-
tenna, Iy, and ideal excitation current, ip, as well as the approximated array antenna
radiation pattern F, (or AF) and approximated excitation current i,. Initially it
can be beneficial to consider a linear array antenna with N elements and length 2a
placed symmetrically along the z-axis. For such an array antenna are the ideal and
approximated radiation patterns expressed as

Fy(u) = /- io(x)e?* dx (2.80)
- |

AF(u)=)_ ane?Fon (2.81)
n=1

where ig(x) is the continuous current distribution and a, are the amplitude coeffi-
cients, that is the discrete current. With these expressions in mind the synthesis of
the array can commence accordingly:

« Firstly, divide the area in to slices according to the excitation current distri-
bution, shown in Fig. 2.7a. Secondly, place an element at the median of every
slice with assigned amplitude coefficients, ay

With the current distribution iy(z) in mind and its cumulative distribution function,
computed as
T
Ia) = [ ito)a, (2.82)
—a

the synthesis can also be achieved in two equivalent steps:

« Firstly, divide the vertical axes of the cumulative distribution function accord-
ing to the amplitude coefficients, as depicted in Fig. 2.7b Secondly, place an
array antenna element at the middle of each vertical slice of assigned ampli-
tude excitation [21]
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A procedure will now be presented for tapering a planar circular array antenna. For
such an array antenna are the radiation pattern and excitation current symmetric
with respect to rotation. The ideal radiation pattern is thus evaluated as

Fo(w) = Holio(p)) = 2n fo " iolp)pdo(kup)dp (2.83)

where u = sinfl, Hy is the Hankel function and .J; is the Bessel function of 0:th order.
Furthermore, the cumulative distribution functions and array antenna patterns are
related as

fm Hol) = Fa(u)|2udu- = /m Tl Iﬂ(p)lzpdpa (2.84)
0 0

(ku)? kp?

which represents the weighted mean square errors with an inverse quadratic weight-
ing function of the radiation pattern and cumulative distribution function, respec-
tively [4].

Assume now that an array antenna has N rings that are assigned with power excita-
tions {px}h-; of unknown ring radii {rg}a,, unknown element diameter {Arg}n_,

and unknown ring area Ay = 2nriArg. The approximative excitation current and
radiation pattern of such an array antenna can be expressed as

N N
ia(p) = biix(p) and Fy(u) = byge(u). (2.85)
k=1 k=1

Here i, gr are the aperture fields and by amplitude coefficient of the k:th ring.
Assume additionally that i, will have a squared shaped silhouette, i.e.

N R
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where © is the unit step function. Moreover, the aperture field g is determined as

aetw) =27 [~ (o) n(kup)dp - (2.87)
4 15 # T E 4 T
T ((?‘k + A2 k) Ay (k'u. (?“k + %)) — (T‘k — A;k) A (k-u_. ('rk — AQk)))
(2.88)

where the A is defined as
Jo(x 3
Ay(z) =2°T(p+ 1)# and A,(0) = 1. (2.89)

The coefficients of the radiated power of ring k is computed from the integral of
the amplitude coefficient and approximative excitation current over the element
boundaries as

Ar
T+ —%

2
Pk :Q?Tf Ay |bkik(P)|2PdP = 2‘?I'|bk|27'kAT'k = |bk|2Ak- (290)
Th——5

2

The assumption that the approximate cumulative distribution function is equal to
the ideal cumulative distribution function enables us to express the difference be-
tween the ideal and approximative cumulative distribution function in p; and pg_,

as
Pr
Io(p) — To(pr1) ~La(pe) = Lloxr) = [ ialodpdp = by (291)
Pr—1
By approximating that ry = pp = % and Ar, = Apg the relation
'-’ZO(T'k)APk = bkA?‘k (292)

can be combined to express the ideal excitation current as

AT
io(rk) Mgk = "’;m". (2.93)

It is thus possible to relate the ideal excitation current, by substituting the Ary with
Apy, as

Qﬂig(rk)rkApk = P (2.94)
By noting the following relation
Pk
2?1'[ ig(n)ndn ~ 2mia (rg ) rrApr = pr (2.95)
Pr—1

the synthesis can be initiated by considering the grading function E(p) = [ dppi3(p)
and inverting it, leaving us to compute the boundaries, pg, for the rings accordingly

Pr -2 k
Jo pig(p)dp o Yl iﬂn} Vi=1 N 2.96
{pk I pid(p)dp TN pa o .
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The diameters of the rings are determined with the expression of the amplitude
coefficients ay

ar = Io(pr) — To(pr—1) (2.97)

and the feasibility condition
Ary < Ar®® = 2min((ry — pe—1), (o — 7x))- (2.98)

The diameters of the elements are finally be determined as

2
Lo

Ary = Pk . (2.99)

2
= ap 1
max ('.Dk‘-l"k —.&r:‘az )

As this step is completed the amplitude coefficients, by, and the approximative radia-
tion pattern, F, can be computed according to the equations presented previously in
this section. Furthermore, we will consider utilising assigned average powers {q }2_,
for the elements in th k:th ring. The amplitude coefficients by must now obey the

relation
[ Pk ;
bk = @ (2.100)

where AFFE is the radiating area of an array antenna element. In addition the number
of elements in the k:th ring should be

27Ty,
Ni ~ ; 2.101
- Ary ( )
where the power excitation of a the k:th ring is
N 2T (2.102)
D~ Npp ~ ; :
Pr k4K Ary Ik

This results in the relation of the ideal excitation current with the element power
excitation as

PRATy e (2.103)

The synthesis can finally initiated by determining the boundaries, pi, according to
the inverted grading function as

{pk  Jotiolp)de _ Yoo Vi
" [ d(p)de T TN e

At this point the necessary quantities can be obtained from the previously presented
equations [4].

io("'k)APk = Trk =

} Vk=1,..,N. (2.104)

The results of this array design and synthesis was computed with a —25dB max-
imum side lobe level and 8 rings with a maximum aperture radius of 22\, as was
done by [4], for the purpose of verifying the implementation. First an array antenna
with constricted element diameter of 2 A\ was synthesised. The first case is depicted
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in Fig. 2.7, where the ideal cumulative distribution function, ideal and approxima-
tive current distribution, array antenna design and radiation patterns are shown.
Secondly, in Fig. 2.7 the results were depicted for the maximum diameter 3.4 \.
Finally, an array antenna, depicted in Fig. 2.9, was synthesised with no constraints
for the element diameters. The test cases agreed well with those presented by [4].
It can be noted that the approximative radiation patterns are more similar to the
ideal radiation patterns when there are no constraints than with constraints of the

element diameters.
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Figure 2.7: Shows the synthesised array antenna pattern when the element diameter

is constricted to 2 A as the maximum diameter.
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Figure 2.8: Shows the synthesised array antenna pattern when the element diameter
is constricted to 3.4 [A] as the maximum diameter.
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Figure 2.9: Shows the synthesised array antenna pattern when the element diameter
is not (,011btr1(:t-e{l. It can be noted that the circular array antenna has the best
performance when the element diameter is not limited.
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Method

The aim of this chapter is to give the reader a deeper insight to the development of the
results presented in Ch. 4. To begin the antenna specifications given by RUAG will
be presented in Sec. 3.1. This is followed by the utilised array antenna configurations
and array antenna elements for the trade-off investigation in Sec. 3.2. In Sec. 3.3 is
the software FEKQO and its implementation into the convexr optimisation algorithm
presented, which is followed by Sec. 3.4 where the algorithm for obtaining sparse
array antennas through conver minimisation, as well as the needed modifications of
the method are given. Concluding this chapter will be the modification of the density
tapered arrays, presented in Sec. 3.5.

3.1 Antenna Specifications

The specifications for the array antennas that RUAG space desired to investigate
are summarised in Table 3.1. These specifications will be the foundation for the
trade-off investigation.

Table 3.1: Requirements of array antennas to be investigated in the trade-off inves-
tigation for RUAG space.

TX frequency 17.7-20.2 GHz
RX frequency 27.5-30.0 GHz
Polarisation RHCP and LHCP
Coverage/FoV Circular with semi angle 4°-8 °
Inter-beam distance 0.49°-1°
Cell system Hexagonal, 4-colour
Gain EoC gain critical point is the crossover gain divided by /3

0oC gain < 30dB below maximum gain

The FoV is depicted in Fig. 2.4, which is one of the parameter varied in the speci-
fications presented in Table 3.1. The reason for the variation of the FoV is that not
all applications must cover the whole Earth, but will suffice with a portion of the
Earth’s surface. For the considered SATCOM applications the geostationary orbit
of the Earth was of main focus. Furthermore, the required FoV to cover the Earth
can be calculated by considering the average orbit radius, 35786 km, and the radius
of the Earth, 6371 km, which gives the FoV semi angle as

6371

—— ] = 8.69°. 3.1
6:371+:35786) Bt 31

arcsin (
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The maximum required FoV can thus be assumed to be 8° [1].

Moreover, the inter-beam distance, the second parameter to be varied, will influence
the value of OoC. The OoC may be determined by considering the hexagonal four
colour cell system illustrated in Fig. 3.1 where the OoC is specified to be the distance
from the center of the beam of colour 7 to the point where the colour i reappears.
For the four colour hexagonal system this implies that the OoC angle is related to
the inter-beam distance as

GOOC =1 -42249iuter—beam- (3 2)

Coverage
—Inter-beam distance

Inter-beam distance

V3

Figure 3.1: Shows the definition of coverage (also referred to as FoV), EoC and
inter-beam distance for a hexagonal four colour cell system.

The aperture diameter must not be given to be too large in order to meet the re-
quirement of OoC and EoC. For the lowest frequency, 17.7 GHz, this corresponds
approximately to 0.84m and 1.68 m for inter-beam distance 1° and 0.5°, respec-
tively. For the highest frequency, 30 GHz, it corresponds approximately to 0.49m
and 0.99 m for inter-beam distance 1° and 0.5°, respectively.

3.2 Element Types and Antenna Configurations

The different types of array elements, previously developed at RUAG space, are
presented in this section. The element types, i.e. the separate RX/TX elements
and the common RX/TX element, could in turn yield the array configurations pre-
sented in Sec. 3.2.1. Furthermore, the characteristics of the array element types are
presented in further details in Sec. 3.2.2 and Sec. 3.2.3.
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3.2.1 Array Antenna Configurations

In a previous investigation of array antennas conducted for RUAG space by [1] the
following three different array antenna configurations were proposed:

o Separate RX/TX apertures with separate RX/TX elements
« Common RX/TX apertures with separate RX/TX elements
e Common RX/TX apertures with combined RX/TX elements

These configurations were considered in this thesis as well and will be referred to
as configuration 1, 2 and 3 for brevity. The concept for the first configuration is
visualised in Fig. 3.2a, which is to use two types of array elements and two separate
apertures, one for the TX and another for the RX. This configuration should exhibit
less the MC effects than that of array configuration 2 but also demands a bigger
total aperture. The considered second configuration is depicted in Fig. 3.2b, where
the reader can see that two types of array elements are employed similarly to array
configuration 1 while the RX and the TX apertures are shared.

,a!f v v Y ,’f o Y v o v & i k

r | |

I\ v J.r‘\ o} o} ;‘J a v a o

(a) Array antenna with (b) Array antenna with (c) Array antenna with
separate RX/TX apertures common RX/TX apertures common RX/TX apertures
and separate RX/TX ele- and separate RX/TX ele- and common RX/TX ele-
ments. ments. ments.

Figure 3.2: Shows three different types of array antenna configurations.

The third array configuration is the case when the aperture is shared by both the
TX and RX frequencies but also the array elements share the RX and TX, as shown
in Fig. 3.2¢c.

3.2.2 Separate RX/TX Elements

A pipehorn antenna was chosen to create the first and second array configuration,
scaled with a radius of 12.74mm for the TX frequency band and 7.79 mm for the
RX frequency band. The geometry of the pipehorn is depicted in Fig. 3.3a with
FEKO. Further, the isolated pattern was plotted in Fig. 3.3b for 20 GHz which lies
in the TX frequency, as the horn is simply scaled for the RX frequency the isolated
pattern has the same characteristics as the isolated pattern of the TX.
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(a) Pipehorn antenna designed for
20 GHz or 30 GHz depending on the scal-
ing factor. The figure is constructed
in CADFEKO and visualised in POST-
FEKO.

o & 8
—T—

Gain [dBi]

s

(=1

50 150

100
Theta [deg]
(b) Isolated radiation pattern of the sep-
arate RX/TX element excited with a
waveguide port when transmitting in 20
GHz.

Figure 3.3: Separate RX/TX element with the isolated radiation pattern.

The pipehorn has a maximum gain of 9dBi. Furthermore, it can be noted that the
pipehorn is not very directive as when # = 40° the gain has only decreased by about
4dB, therefore MC effects may be exhibited in a non-trivial manner.

3.2.3 Common RX/TX Element

A corrugated pipehorn antenna was chosen to create the third array configuration.
This array antenna element is capable of having a shared RX and TX and was also
constructed in FEKO. Furthermore, the horn was visualised with the help of FEKO
in Fig. 3.4. The largest radius of the element is 24.4 mm, making the common
RX/TX elements significantly larger than the separate RX/TX elements.

Figure 3.4: Common RX/TX element constructed in CADFEKO and visualised in

POSTFEKO.

The isolated radiation patterns were plotted in Fig. 3.5a and Fig. 3.5b for the TX
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and RX, respectively. It can be noted that this array element is far more directive
than the separate RX/TX elements where the maximum gain in 20 GHz, ie. TX
frequency, is 16.6 dBi and 19dBi in 30 GHz, i.e. RX frequency. As this pipehorn is
rather directive, arrays with common RX/TX elements are expected to exhibit less
MC effects than array antennas that consist of separate RX/TX elements.

20 20
10t 10}
. 0r . Oor
E E
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Theta [deg] Theta [deg]
(a) Isolated radiation pattern of the com- (b) Isolated radiation pattern of the

mon RX/TX element when transmitting common RX/TX element when trans-
in 20 GHz. mitting in 30 GHz.

Figure 3.5: Isolated radiation patterns of the common RX/TX element.

3.3 Array Antenna Simulations with FEKO

In order to simulate array antennas while accounting for MC effects FEKO was
interfaced with the convex optimisation algorithm and will be discussed in this
section. FEKO is an electromagnetic multi-purpose calculation tool where array
antenna elements can be constructed as well as simulated in a realistic manner. The
software offers several solver types for the electromagnetic problems, which includes
MoM (Method of Moments), FEM (Finite Element Method), Physical Optics (PO),
Multi-level Fast Multi-pole Method (MLFMM), Geometrical Optics (GO), Uniform
Theory of Diffraction (UTD) and Finite Difference Time Domain (FDTD). For the
purposes of full-wave simulations of array antennas FEKO mainly uses MoM and
MLFMM [22]. The methods scales rather badly with respect to time as the number
of elements increase, which had a significant effect on the simulations.

Moreover, the specifications for the array antennas defined the polarisation to be
circular, which rendered two approaches of exciting the array elements in FEKO,
as the circular polarisation consists of an electric field with two perpendicular com-
ponents that are separated 90° in phase with equal amplitudes. The first method
will be denoted as the edge port excitation and the second as the waveguide port
excitation.
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3.3.1 Edge Port Excitation

By utilising two edge ports a circular polarisation could be obtained. Furthermore,
the entire configuration with respect to excitation was possible to vary in one FEKO
script which computed the Embedded Element Patterns (EEPs). Subsequently the
computational time was reduced as the geometry was created in FEKO only once.
Additionally, MLFMM rather than MoM was possible to employ and as MLFMM is
faster than MoM the computational time as well as the memory requirements were
reduced further.

The simulation times for a set of arrays of different sizes with respect to the num-
ber of elements are listed in Table 3.2. It can be noted that the simulation time

Table 3.2: Simulation times for the edge port excitation method with MFLMM
employed as solver.

No. of elements in array | Simulation time
1 485

8 457s

71 2h 17 min

148 16h 45 min

scales poorly with respect to the number of elements, and as the number of elements
were expected to be approximately 500 for full scale array antenna cases [1] the total
simulation times needed to be investigated. The proposed convex optimisation algo-
rithm, presented in details in Sec. 3.4.3, iterates until set of active elements remains
the same for two consecutive iterations when including MC eftects. The solution
usually converges in 10 iterations giving a total simulation time for 148 elements to
be at least 170 h & 1 week (excluding the simulation time for convex minimisation).
However, as this lies in the lower end of the expected number of elements for the
convex optimised arrays, the expected simulation time for the largest array antenna
cases would be in the order of months.

The S-parameters were also simulated in the TX frequency interval in FEKO for
both methods. The results were plotted in Fig. 3.6, it can be noted that the S-
parameters in general are higher for the edge port excitation than the waveguide
port excitation.
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Figure 3.6: S-parameters simulated with FEKO of the pipehorn antenna with a
waveguide port and two edge ports.

3.3.2 Waveguide Port Excitation

By utilising a waveguide port a circular polarisation could be obtained by using
only one physical port in FEKO and exciting two perpendicular TE;; modes 90°
out of phase. The current version of FEKO installed at RUAG did not present
a possibility of changing the excitation configuration in one FEKO script. [t was
thus necessary to provide one script (and simulation) for every element in order to
simulate the EEPs. As a consequence, the geometrical data must be constructed for
every element, which is in itself a rather cumbersome task.

However, a cut-off radius was possible to introduce, in contrast to the edge port
excitation. By implementing a cut-off radius in the simulations, the complexity and
simulation time could be reduced which subsequently reduced the memory require-
ments in FEKO. A simulation for a linear array placed along the z-axis, depicted
in Fig. 3.7b, was carried out in order to investigate the cut-off radius. The linear
array used the separate RX/TX elements where the element radius was scaled to
12.74mm. The intermediate element distance was set to 27 mm and the frequency
was set to 20 GHz. In Fig. 3.7a are the embedded radiation patterns from the sim-
ulation with the cut-off radius 2, 5, 6, 8, 10, 15 and 20 A depicted in addition to the
isolated element pattern.
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Figure 3.7: Embedded radiation patterns and set up of simulations using a cut-oft
radius.

It can be noted that the radiation patterns diverges from each other after 70°. An
additional simulation with the same array element and element spacing 27 mm was
carried out for a circular array depicted in Fig. 3.7c along with the investigated
cut-off radii in order to determine the expected total simulation times of the large
array antenna cases of the convex optimisation algorithm. The simulation times for
one element in these environments are shown in Table 3.3.

Table 3.3: Simulation times for one array element with respect to the number of
elements in the array and cut-off radius, with MoM as solver.

Cut-off radius [A] | Number of elements | Simulation time (1 element)
0 1 155 s
2 8 192.8 s
4 22 1888 s
6 and up 43 and up out of memory

The cut-off radius of 4 A was chosen in order to include the MC effects while not
running out of computer memory. The waveguide excitation thus reduced the sim-
ulation time in FEKO to scale linearly with respect to the number of elements, i.e.
the total simulation time in the worst case scenario should be 1888 x N s, where NV
is the number of elements in the array antenna. Thus, for an array antenna with
148 elements, the simulation time could be 776 hours ~ 32.3 days, assuming the
convex optimisation algorithm converges in 10 iterations (excluding simulation time
for the convex minimisation).

3.4 Convex Optimised Array Antennas
The method of creating the sparse irregular array antennas was an iterative convex

minimisation procedure. First, in Secs. 3.4.1 and 3.4.2, will the software CVX
used together with MATLAB and FEKO be presented along with the mathematical
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formulation of the minimisation problem. In the following subsection, Sec. 3.4.2.1,
will the formulation of the problem when reduced through symmetry be presented.
Finally will the entire algorithm of convex optimised array antennas as well as a
needed simplification of the originally proposed method be given.

3.4.1 Convex Programming

The utilised software package together with MATLAB and FEKO for the convex
optimised arrays is called CVX. This package allows the user to obtain solutions for
convex minimisation problems, and combines the following methods:

« Least square, LS, method
» Linear programming, LP
o Quadratic programming, QP

Before using CXV it is of great importance that the problem is properly formulated
as convex as CVX does not offer any tool for checking this. Indeed, if the model of
the optimisation problem is incorrect the result will subsequently be false [23]. The
most important observation to make is that CVX allows the problem (3.6) subject
to the set of constraints to be solved [6].

3.4.2 Convex Minimisation in the /{-norm and /y;-norm

The lg-norm minimisation is normally a solution to the electromagnetic problem of
optimising sparse array antennas and is formulated according to equations (3.3)-

(3.5)

argmin  ||w|;, Vw € C" s.t. (3.3)
Geolfs) = 1, (34)
|G(7)|? < My(7) V # € radiation mask, (3.5)

where w is the excitation current, M, is the radiation mask that is desired and G is
the far-field function. The intrinsic issue for this problem is that it can’t be solved
in the [y-norm but must be approximated by a solution in the l;-norm. Fortunately,
the initial problem may be reformulated in the /;-norm accordingly

argmin  ||Z'w||;, Vw' €C s.t. (3.6)
Colf) =1, (37)
|Go(F)]? < M,(7) V# € radiation mask, (3.8)

where the matrix Z* is defined as

: 1
P .
A | v (3.9)
|wm | + €
Z* has the property of allowing elements which in previous iterations have been
determined inactive to become active. Furthermore, the Nyquist sampling condition
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requires that the intermediate distance of the sample points are < 0.1A [6]. It should
be noted that the consequence of the Nyquist sampling condition together with the
convex formulation of the problem does not allow for a constraint that eliminates the
possibility of array elements to be placed equal or closer than the element aperture
diameter D. If such solutions are obtained, these would be non-physical.

3.4.2.1 Symmetry

In computationally demanding simulations computer memory and speed are of in-
terest. The computational limitations can be rather neatly handled by imposing
symmetry on circular apertures. Consider a circular planar array antenna, where
rotational symmetry holds and can thus be divided into sections of the ¢-plane. The
symmetry renders the following relation of the far-field function of the array as

N
GH™(0,0) = Y w. G (0, 9) (3.10)
n=1

where N is the number of elements in the symmetry region. The total far-field

function of element n can be expressed in the number of symmetries, Ngym(n), as

Ns}'m (ﬂ) jdbacan
GF= N G (3.11)
5=1
The iterative [;-norm optimisation will consequently also be modified and changes
the Z* matrix accordingly
, 1 1

z = = (3.12)

" Ei\;’ﬁm(m) |-w£fl_1)| +e Nsym('m.”wg_l” .

This will reduce the simulation time for CVX substantially as the array will merely
constitute a piece of the array antenna. The symmetry will reduce the problem as
1/Nyym and the simulation time will therefore scale as 1/N2, . [6].

3.4.3 Convex Optimisation Algorithm

The algorithm is divided into two parts that are separately involved with the iso-
lated and embedded radiation patterns, respectively. A flowchart for the algorithm
may be viewed in Fig. 3.8.

Firstly in Step 1, the Isolated Element Pattern (IEP) are simulated with FEKO.
When the IEP are obtained the iterative [;-norm minimisation is initiated, which en-
ables for the element positions, i.e. set of active elements, to be determined, denoted
Initial Array Configuration (IAC). After Step 1 is finished Step 2 is initiated, where
firstly the EEPs are computed from the IAC in FEKO. When the EEPs are found
new element positions are determined through the iterative l;-norm minimisation.
These positions constitutes an approximate Final Array Configuration (FAC) and if
the set of active elements, i.e. new element positions, remaine the same compared to
the former iteration of IAC the algorithm is finished. If, on the other hand, the set
of active elements changed Step 2 is repeated with the FAC until the set of active
elements remained the same for two consecutive iterations [6].
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Figure 3.8: The flowchart depicts the algorithm that shows how sparse array an-
tennas can determined through convex minimisation that optimises for multiple
scanning beams and also undertakes the issue of MC effects.
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3.4.3.1 Modified Convex Optimisation Algorithm

It quickly arose issues regarding the simulation time for array antennas in FEKO as
the simulation times would be in the order of weeks. This can easily be seen from
the proposed optimisation method, presented in details in Sec. 3.4.3, which iterates
until set of active elements remains the same for two consecutive iterations when
including MC effects. Furthermore, it can easily be seen that Step 2 of the algorithm
depicted in Fig. 3.8 was the bottleneck in the process and finally it was concluded
that the problem was intractable for the anticipated large array antennas. Thus,
the modification of Step 2 of the algorithm depicted in Fig. 3.8 will be discussed in

this section.

The algorithm had to be changed in two ways. For the first and third array configu-
rations the procedure was only slightly modified as second step was simply reduced
to simulating the EEPs. For the second array configuration Step 1 of the algorithm
in Fig. 3.8 optimised first either for the TX or RX, Step 1 was then repeated in
order to optimise with a reduced area for the RX or TX. The modification of the
algorithm in the case of array configuration 2 is illustrated in Fig. 3.9 when the TX
is optimised first and the RX is optimised secondly. The initial given area of the TX
is shown as the lighter and biggest circle, the array elements are shown with black
dots for the TX array solution and the aperture area given to Step 1 for the RX is
thus the darker smaller area.

Figure 3.9: Shows the modified method for convex optimised array antennas of
configuration 2. The lighter circular area is the initial given area for the TX problem
where the black dots represent the array elements in the TX solution. Lastly, the
initial area for the RX problem is the darker circular area.

When both the RX and TX solutions are determined, the EEPs could be simulated
with FEKO. The modifications were a significant change from initially proposed
method, as it meant that the optimisation had a high probability of not meeting
the requirements of the radiation mask when MC effects were accounted for.
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3.5 Modification of Density Tapered Array An-
tennas

The procedure of density tapered array antennas developed by [4] faced feasibility
issues in determining the diameters of the array elements. This issue was due to
that the elements could initially be chosen as small as desired. However, for the
purposes of this project array elements were constricted to a constant diameter.
Where the element diameter was either 2.7.79mm, 2-12.74mm or 2-24.4mm de-
pending on weather the separate RX/TX elements were employed or the common
RX/TX element. Initially the boundaries for the elements were computed as

{p Jiolp)de _ E
Y ip)de T N Vi

To solve the feasibility issue, i.e. allowing the use of a constant diameter Ary = r V
k=1,...,N, the condition

} Vk=1..N: (3.13)

Pr— Pr—1 = D (314)

was imposed where D is the diameter of the array antenna element.
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Results

This chapter will present results with the methodology introduced in Ch. 3 and 2.3
of the trade-off investigation given in Ch. 1 and Ch. 3 in four separate sections.
These results encompasses FoV 4° and & as well as inter-beam distance 0.5° and
1°. Furthermore, in Appz. A results for FoV 57 and inter-beam distance (0.5°-1°
are given as well.

Firstly, array configuration 1, which is array antennas employing separate RX/TX
apertures and elements, of Taylor synthesised and density tapered array antennas
will be presented. The first section also presents the conver optimised array anten-
nas with configurations 1 and 2, where the second configuration are array antennas of
common RX/TX apertures and separate RX/TX elements. The section is followed
up with results of the third array configuration; array antennas employing common
RX/TX apertures and elements for both convex optimised, Taylor synthesised and
density tapered array antennas. The third part will give a summary for the entire
trade-off investigation and finally the MC' effects are presented for array configura-
tions 1 and 2 with FoV 4° and inter-beam distance 1°.

The results will be presented with radiation patterns for the RX and the TX, that
is 30 GHz and 20 GHz, along with the radiation mask. The separate RX elements
will be depicted with filled circles and the separate TX elements will be represented
with empty circles for the separate RX/TX elements. For the case of the common

RX/TX elements these will be depicted with sems filled circles.

4.1 Array Antennas Utilising Common and Sepa-
rate RX/TX Apertures and Separate RX/TX
Elements

The radiation pattern and array designs will be given as results, where in the case
of array configuration 1 simply one pattern is presented as it represents both the
RX and the TX frequencies. Configuration 1 is presented for both the deterministic
approaches as well as the convex optimised array antennas, while configuration 2
was achieved only for the convex optimised array antennas.
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4.1.1 Taylor Synthesised Array Antennas

The Taylor synthesised array antennas with the Tschebyscheft-error are presented
firstly with inter-beam distance 1° and secondly with inter-beam distance 0.5°.

4.1.1.1 Inter-beam Distance 1°

The array designs are given for the FoV 4° and 8°. Furthermore, in Appx. A.1.1.1
further array designs are presented to the reader for classically Taylor synthesised
array antennas. In Fig. 4.1 are the radiation pattern and array design with the FoV
4° and inter-beam distance 1° depicted. The array consisted of 71 array elements
for the TX array and the RX array respectively, thus the array antenna in total
consisted of 142 elements. The corresponding maximum gain was 26.4 dBi.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and the RX.

Figure 4.1: Array design of the Taylor synthesised arrays and radiation pattern with
inter-beam distance 1° and the FoV 4°.

In Fig. 4.2 are the radiation pattern and array design with the FoV 8° and inter-
beam distance 1° depicted. The array consisted of 128 array elements for the TX
array and the RX array respectively, and the maximum gain 29.9dBi. Thus, the
total number of elements were 256 for the array antenna.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and the RX.

Figure 4.2: Array design of the Taylor synthesised arrays and radiation pattern with
inter-beam distance 1° and the FoV 8°.
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4.1.1.2 Inter-beam Distance 0.5°

The corresponding results with inter-beam distance 0.5 ° are presented for the Taylor
synthesised array antennas, with additional results in Appx. A.1.1.2. The arrays are
here expected to have a diameter that is approximately double that of the aperture
diameter for arrays of inter-beam distance 1°. In Fig. 4.3 are the radiation pattern
and array design with the FoV 4° and inter-beam distance (.5 ° depicted. The array
consisted of 106 array elements for the TX array and the RX array, respectively.
The total number of elements were thus 212 with the maximum gain 28.5dBi for
the array antenna.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and the RX.

Figure 4.3: Array design of the Taylor synthesised arrays and radiation pattern with
inter-beam distance 0.5° and the FoV 4°.

In Fig. 4.4 are the radiation pattern and array design with the FoV 8° and inter-
beam distance 0.5° depicted. The array consisted of 316 array elements for the TX
array and the RX array respectively, meaning that the total number of elements
were 632 for the array antenna. The corresponding maximum gain was 33.5 dBi for
this array antenna.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and the RX.

Figure 4.4: Array design of the Taylor synthesised arrays and radiation pattern with
inter-beam distance 0.5° and the FoV 8°.

4.1.2 Density Tapered Array Antennas

In this section the results from the density tapered array antennas will be presented,
beginning with arrays that have inter-beam distance 1° and continuing with inter-
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beam distance (0.5°.

4.1.2.1 Inter-beam Distance 1°

The array designs will be presented for the FoV 4 — 6° and 7 — 8°, constituting
the entire study with respect to FoV. Therefore, no further results are given in the
appendix. In Fig. 4.5 are the radiation pattern and array design with the FoV 4—6°
and inter-beam distance 1° depicted. The array consisted of 356 array elements, for
the TX array and the RX array, respectively. The maximum gain was 34.8 dBi and
the total number of elements for the antenna were thus 712.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and the RX.

Figure 4.5: Array design of density tapered arrays and radiation pattern with inter-
beam distance 1° and the FoV 4°-6°.

In Fig. 4.6 are the radiation pattern and array design with the FoV 7°—8° and
inter-beam distance 1° depicted. The array consisted of 391 array elements for the
TX array and the RX array, respectively. The maximum gain was 34.9 dBi and the
array antenna had in total 782 elements.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and the RX.

Figure 4.6: Array design of the density tapered arrays and radiation pattern with
inter-beam distance 1° and the FoV 7° and 8°.

4.1.2.2 Inter-beam Distance 0.5°

The array designs will be presented for the FoV 4° and 8°. In Appx. A.1.2 further
results are presented to the reader for density tapered array antennas of inter-beam

44



4. Results

distance (0.5°. In Fig. 4.7 are the radiation pattern and array design with the
FoV 4° and inter-beam distance 0.5° depicted. The array antenna consisted of
1748 elements in total, or 874 array elements for the TX array and the RX array,
respectively. The maximum gain for the TX and the RX was 38.5 dBi.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and the RX.

Figure 4.7: Array design of the density tapered arrays and radiation pattern with
inter-beam distance 0.5° and the FoV 4°.

In Fig. 4.8 are the radiation pattern and array design with the FoV 8° and inter-
beam distance 0.5° depicted. The array consisted of 1331 array elements, for the
TX array and the RX array, respectively, and the maximum gain 40.3 dBi. In total
array antenna consisted of 2662 elements.
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(a) Radiation pattern for (b) Array configuration 1.
the TX array and the RX

array.

Figure 4.8: Array design of the density tapered arrays and radiation pattern with
inter-beam distance (.5° and the FoV 8°.

4.1.3 Convex Optimised Array Antennas

In this section will the convex optimised array antennas, as described in Ch. 3, be
presented beginning with array antennas of inter-beam distance 1° and continuing
with inter-beam distance 0.5 °. For the array antenna of configuration 2 there are two
separate radiation patterns as results, one for the RX and one for the TX. For the
first configuration, either the radiation pattern of the RX or the TX will correspond
to the array designs. Moreover, two different radiation masks were used. The first
mask presented suppresses the radiation pattern up to 8° and will be referred to as
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the short mask. The second mask suppresses the radiation pattern up to 15°, this
radiation mask is referred to as the long mask.

4.1.3.1 Inter-beam Distance 1°

The array designs will be presented for the FoV 4° and 8° while in Appx. A.1.3
results for the FoV 5°-7° are presented. In Fig. 4.9 are the array designs and the
corresponding radiation patterns depicted for the FoV 4° and inter-beam distance
1° with the short mask. For the array antenna of configuration 2, the number of
elements were 208 with the maximum gain 27.8dBi for the RX array 28.3dBi for
the TX array. For the array antenna of configuration 1 the number of elements were
192 with maximum gain 27.8 dBi for both the TX and the RX, where the radiation
pattern corresponds to the RX array.
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(a) Radiation pat- (b) Radiation pat- (c) Array configura- (d) Array configura-
tern for the TX. tern for the RX. tion 2. tion 1.

Figure 4.9: Array designs for convex optimised arrays and radiation patterns of
inter-beam distance 1°, the FoV 4° and radiation mask range 8°.

In Fig. 4.10 are the array designs and the corresponding radiation patterns depicted
for the FoV 4° and inter-beam distance 1° with the long radiation mask. For the
array antenna of configuration 2 the number of elements were 397 with maximum
gain 26.5 dBi for the TX and 30.8 dBi for the RX. The array antenna of configuration
1 corresponds to the TX design, which gives a total number of elements of 310 and
26.5dBi as maximum gain.
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Figure 4.10: Array designs for convex optimised arrays and radiation patterns of
inter-beam distance 1°, the FoV 4° and radiation mask range 15°.

In Fig. 4.11 are the array designs and the corresponding radiation patterns depicted
for the FoV 8° and inter-beam distance 1° with the short mask. For the array
antenna of configuration 2 the number of elements were 257 with the maximum
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gain 28.9 dBi for the RX array and 29.0 dBi for the TX array. For the array antenna
of configuration 1, with radiation pattern corresponding to the RX case in this
instance, the number of elements were 256, with maximum gain 28.9 dBi.
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Figure 4.11: Radiation pattern and array designs for an convex optimised array with
inter-beam distance 1°, the FoV 8° and the radiation mask range is 8°.

In Fig. 4.12 are the array designs and the corresponding radiation patterns depicted
for the FoV 8° and inter-beam distance 1° with the long mask. For the array
antenna of configuration 2 the number of elements were 485 with the maximum
gain 31.5 dBi for the RX array and 30.6 dBi for the TX array. For the array antenna
of configuration 1, corresponding to the TX case, the number of elements were 442
with maximum gain 30.6 dBi for both the RX and the TX.
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Figure 4.12: Array designs for convex optimised arrays and radiation patterns of
inter-beam distance 1°, the FoV 8° and radiation mask range 15°.

4.1.3.2 Inter-beam Distance 0.5°

The convex optimised array designs will be presented for the FoV 4° and 8°. In
Appx. A.1.3 the results for the FoV 5°-7° are given additionally. In Fig. 4.13 are
the array designs and the corresponding radiation patterns depicted for the FoV 4°
and inter-beam distance 0.5° with the short radiation mask. For the array antenna
of configuration 2 the number of elements were 451 with the maximum gain 31.8dBi
for the RX array and 28.9 dBi for the TX array. The array antenna of configuration
1, which corresponds to the RX case, had 434 elements with maximum gain 28.9 dBi.
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Figure 4.13: Array designs for convex optimised arrays and radiation patterns of
inter-beam distance 0.5°, the FoV is 4° and radiation mask range 8°.

In Fig. 4.14 are the array designs and the corresponding radiation patterns depicted
for the FoV 4° inter-beam distance 0.5° with the long mask. For the array antenna
of configuration 2 the number of elements were 617 with the maximum gain 32.9dBi
for the RX array 31.6 dBi for the TX array. For the array antenna of configuration
1, corresponding to the TX case, the number of elements were 618 and maximum
gain 31.6dBi.
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Figure 4.14: Array designs for convex optimised arrays and radiation patterns of
inter-beam distance 0.5°, the FoV is 4° and radiation mask range 15°.

In Fig. 4.15 are the array designs and the corresponding radiation patterns depicted
for the FoV 8° inter-beam distance 0.5° with the short mask. For the array antenna of
configuration 2 the number of elements were 685 with the maximum gain 32.8 dBi for
the RX array and 30.9 dBi for the TX array. For the array antenna of configuration 1,
which corresponds to the RX case, the number of elements were 650 with maximum
gain 32.8dBi.
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Figure 4.15: Array designs for convex optimised arrays and radiation patterns of
inter-beam distance 0.5°, the FoV 8° and radiation mask range 8°.

In Fig. 4.16 are the array designs and the corresponding radiation patterns depicted
for the FoV 87 inter-beam distance 0.5° with the long radiation mask. For the array
antenna of configuration 2 the number of elements were 903 with the maximum gain
34.4dBi for the RX array and 33.4dBi for the TX array. For the array antenna of
configuration 1 the number of elements were 926 with maximum gain 33.4 dBi, as it
is represented by the TX array.
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Figure 4.16: Array designs for convex optimised arrays and radiation patterns of
inter-beam distance 0.5°, the FoV 8° and radiation mask range 15°.

4.1.4 Summary

As a summary the four Tables 4.1- 4.4 are presented that corresponds to the inter-
beam distances 0.5° and 1° and the different radiation masks. The tables show the
numerical values of the maximum gain in units of dBi and the number of elements.
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Table 4.1: Shows the maximum gain in dBi as well as the number of elements for
convex optimised array antennas of configuration 1 and 2, Taylor synthesised array
antennas of configuration 1 and density tapered array antennas of configuration 1
with inter-beam distance 1°, for short radiation masks.

FoV | GF | GI* | N (G | Ve | 687 | N2 | 6™ | Ny
4° | 283 | 27.8 208 27.8 192 26.4 142 34.8 712
5° | 29.0 | 271 225 27.1 194 26.7 142 34.8 712
6° | 29.4 | 28.1 241 28.1 226 28.3 212 34.9 782
7 | 29.2 | 28.6 240 28.6 224 28.5 212 34.9 782
8 | 29.0 | 289 257 28.9 256 29.9 256 34.9 782

Table 4.2: Shows the maximum gain in dBi as well as the number of elements for
convex optimised array antennas of configuration 1 and 2 with inter-beam distance
1°, with the long radiation mask.

FoV | GTX | GBX | N, | G | Neny,

4° | 26.5 | 30.8 | 397 26.5 310

5% | 30.1 | 30.8 | 419 30.1 398

6° | 29.5 | 31.0 | 441 29.5 442

7 |1 306 | 31.9 | 263 30.6 442

8 | 30.6 | 31.5 | 485 30.6 442
Table 4.3: Shows the maximum gain in dBi as well as the number of elements for
convex optimised array antennas of configuration 1 and 2, Taylor synthesised array
antennas of configuration 1 and density tapered array antennas of configuration 1
with inter-beam distance 0.5°, with short radiation masks.

FoV | GE* | GF* | Newmg, | o™/ | Néomty | Go ' | Neggy | Go' " | Néewyy

4° | 289 | 31.8 | 451 28.9 434 28.5 212 38.5 1748

5% | 28.6 | 31.3 | 469 28.6 434 29.7 296 39.0 1902

6° | 30.0 | 31.3 559 30.0 579 31.0 394 39.4 2222

© | 307 | 32 613 30.7 614 32.0 504 39.4 2378

8 | 30.9 | 32.8 685 30.9 650 33.5 632 40.3 2662

Table 4.4: Shows the maximum gain in dBi as well as the number of elements for
convex optimised array antennas of configuration 1 and 2 with inter-beam distance
0.5°, with the long radiation mask.

FoV | GEX | G | Nz, | 687 | Ny
2 [ 316329 617 | 316 | 618
5 [ 328331 727 | 328 | 706
6° [ 323333 | 771 | 323 | 706
7 323343 | 771 | 323 | 706
§ 334344 903 | 334 | 926
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It can be noted that the number of elements for Taylor synthesised arrays lied in the
region 142 — 265 and 212 — 632 for inter-beam distances 1° and 0.5°, respectively.
Thus, the number of elements increases as the FoV increases and as the inter-beam
distance decreases. The gain lied in the region 26.4 — 29.9dBi and 28.5 — 33.5dBi
for inter-beam distances 1° and 0.5°, respectively. The array antennas are therefore
more directive as the FoV in increased and the inter-beam distance decreases.

The density tapered array antennas exhibit a similar behavior, but demanded signif-
icantly more elements for all arrays. The number of elements for the density tapered
arrays lied in the region 712 — 782 and 1748 — 2662 for inter-beam distances 1°
and 0.5°, respectively. The method could only give two array antenna designs for
inter-beam distance 1° as the elements are confined to diameter 2-12.74 mm and to
be placed in the xy-plane. For the smaller inter-heam distance, the aperture is big-
ger which gives a larger area to create the approximative current distribution more
similar to the ideal current distribution and thus results for every FoV investigated
were obtained. The gain lied in the region 34.8 — 34.9 dBi inter-beam distance 1°
and 38.5—40.3 dBi for inter-beam distance 0.5 °, giving here as well a more directive
pattern as the FoV in increased and the inter-beam distance decreased.

The convex optimised array antennas of configuration 1 with inter-beam distance 1°
the total number of elements ranged between 192—256 for the short radiation mask,
and 310 — 442 for the long radiation mask. For the corresponding array antennas
of configuration 2 the number of elements varied from 208 — 257 for the short
radiation mask and 397 — 485 for the long radiation mask. For inter-beam distance
0.5° the number of elements for convex optimised array antennas of configuration
1 varied from 434 — 650 for the short mask and 618 — 926 for the long radiation
mask. For the array antennas of configuration 2 the number of elements lied in the
region 451 — 685 for the short radiation mask and 617 — 903 for the long radiation
mask. It can further be noted that the maximum gain depends on the FoV and
inter-beam distance as the Taylor synthesised and density tapered array antennas.
Furthermore, the maximum gain varied for the RX and the TX which depended on
what solution had the most elements which in turn depended on weather the RX
or the TX was optimised first. In addition the maximum gain varied slightly when
the longer radiation mask was applied, the larger effect to note is the number of
elements which increased significantly.

4.2 Array Antennas Utilising Common RX/TX
Apertures and Common RX/TX Elements

The third and last configuration considered was array antennas with common RX/TX
apertures in combination with the common RX/TX element. First the results of
the Taylor synthesised array antennas will be conferred, which will be followed by
the density tapered array antennas and finally the results of the convex optimised
array antennas will be presented.
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4.2.1 Taylor Synthesised Array Antennas

In this section will the Taylor synthesised array antennas with Tschebyscheft-error be
presented. Beginning with array antennas of inter-beam distance 1° and continuing
with inter-beam distance (0.5°, the array designs will be presented for the FoV 4°
and 8°. Furthermore, in Appx. A.2.1 further results are presented to the reader for
the FoV 5°-7°.

4.2.1.1 Inter-beam Distance 1°

In Fig. 4.17 are the radiation patterns and array design with the FoV 4° and inter-
beam distance 1° shown. The array antenna consisted of 71 array elements and the
maximum gain 34.1dBi and 37.3 dBi for the TX and the RX, respectively.
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(a) Radiation patterns for (b) Radiation patterns for (e) Array configuration 3.
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Figure 4.17: Array design of a Taylor synthesised array antenna and radiation pat-
terns with inter-beam distance 1° and the FoV 4°.

In Fig. 4.18 are the radiation patterns and array design with the FoV 8° and inter-
beam distance 1° depicted. The array antenna consisted of 148 array elements and
the maximum gain 37.6 dBi and 41.0dBi for the TX and the RX, respectively.
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Figure 4.18: Array design of a Taylor synthesised array antenna and radiation pat-
terns with inter-beam distance 1° and the FoV 8°.

4.2.1.2 Inter-beam Distance (0.5°

In Fig. 4.19 are the radiation patterns and array design with the FoV 4° and inter-
beam distance 0.5° depicted. The array antenna consisted of 148 array elements
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and the maximum gain 37.0 dBi and 40.0 dBi for the TX and the RX, respectively.
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Figure 4.19: Array design of a Taylor synthesised array antenna and radiation pat-
terns with inter-beam distance 0.5° and the FoV 4°.

In Fig. 4.20 are the pattern and array design with the FoV 8° and inter-beam
distance 0.5° depicted. The array antenna consisted of 547 array elements and the
maximum gain 44.7 dBi and 47.0dBi for the TX and the RX, respectively.
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Figure 4.20: Array design of a Taylor synthesised array antenna and radiation pat-
terns with inter-beam distance 0.5° and the FoV 8°.

4.2.2 Density Tapered Array Antennas

In this section will the density tapered array antennas be presented, beginning with
arrays that have inter-beam distance 1° and continuing with inter-beam distance
057,

4.2.2.1 Inter-beam Distance 1°

The array designs will be presented for the FoV 4° — 8° with one array design,
as the method could not handle a variation of FoV. In Fig. 4.21 are the radiation
patterns and array design with the FoV 4°—8° and inter-beam distance 1° shown.
The array antenna consisted of 209 array elements and the maximum gain 38.8 dBi
and 41.6 dBi for the TX and the RX, respectively.
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Figure 4.21: Array design of a density tapered array antenna and radiation patterns
with inter-beam distance 1° and FoV 4° — 8°.

4.2.2.2 Inter-beam Distance 0.5°

The array designs will be presented for the FoV 4° and 8°. The remaining results
for the FoV 5° — 7° can be viewed in Appx. A.2.2 . In Fig. 4.22 are the radiation
patterns and array design with the FoV 4° and inter-beam distance 0.5° shown.
The array antenna consisted of 524 array elements and the maximum gain 43.5 dBi
and 46.3 dBi for the TX and the RX, respectively.
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Figure 4.22: Array design of a density tapered array antenna and radiation patterns
with inter-beam distance 0.5° and FoV 4°.

In Fig. 4.23 are the radiation patterns and array design with the FoV 8° and inter-
beam distance (0.5° depicted. The array antenna consisted of 748 array elements
and the maximum gain 44.9 dBi and 47.6 dBi for the TX and the RX, respectively.
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Figure 4.23: Array design of a density tapered array antenna and radiation patterns
with inter-beam distance 0.5° and FoV 8° .

4.2.3 Convex Optimised Array Antennas

In this section will the convex optimised array antennas be presented, beginning
with array antennas that have inter-beam distance 1° and continuing with inter-
beam distance 0.5°.

4.2.3.1 Inter-beam Distance 1°

The array designs will be presented for the FoV 4° and 8° while in Appx. A.2.3.1
more results are displayed to the reader. In Fig. 4.24 are the radiation patterns and
array design shown for the FoV 4° and inter-beam distance 1°. For this array antenna
the number of elements were 85 with the maximum gain 33.0 dBi and 38.8dBi for
the TX and the RX, respectively.
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Figure 4.24: Array design and radiation patterns of a convex optimised array an-
tenna with the inter-beam distance 1° and the FoV 4°.

In Fig. 4.25 are the corresponding radiation patterns shown for the FoV 8° and inter-
beam distance 1°. For this array antenna the number of elements were 191 with the
maximum gain 38.0 dBi and 43.8 dBi for the TX and the RX, respectively. It should
be noted that some of the elements overlap, which is an unphysical solution.
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Figure 4.25: Array design and radiation patterns of a convex optimised array an-
tenna with the inter-beam distance 1° and the FoV 8°.

4.2.3.2 Inter-beam Distance 0.5°

The array designs will be presented for the FoV 4° and 8° where more results are
given to the reader in Appx. A.2.3.2. In Fig. 4.26 are the radiation patterns and
array design shown with inter-beam distance 0.5° and the FoV 4°. For this array
antenna the number of elements were 193 with the maximum gain 43.7 dBi for both
the TX and the RX.
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Figure 4.26: Array design and radiation patterns of a convex optimised array an-
tenna with inter-beam distance 0.5° and the FoV 4°.

In Fig. 4.27 are the corresponding radiation patterns shown with inter-beam dis-
tance 0.5° and the FoV 8°. For this array antenna the number of elements were 545
with the maximum gain 48.2 dBi and 48.5 dBi for the TX and the RX, respectively.
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Figure 4.27: Array design and radiation patterns of a convex optimised array with
inter-beam distance (0.5° and the FoV 8°.

4.2.4 Summary

A summary of the convex optimised and synthesised array antennas are given Tables
4.5 and 4.6 with inter-beam distance 1° and (.5 °, respectively. It can be noted that
the number of elements required for Taylor synthesised array antennas lied in the
region 7T1—148 and 148—547 with inter-beam distances 1° and 0.5°, respectively.
For inter-beam distance 1° the maximum gain lied in the region 34.1-37.6 dBi and
37.3-41.0dBi for the TX and the RX, respectively. Correspondingly, for inter-beam
distance (.5° the maximum gain varied as 37.0-44.7dBi and 40.0-47.0dBi for the
TX and the RX, respectively. Thus, the maximum gain is larger for these array
antennas than the first and second array configurations, whilst having less elements.

For the density tapered array antennas only one solution for the bigger inter-beam
distance was obtained with 209 elements with gain 38.8 dBi for the TX and 41.6 dBi
for the RX. This can be expected as the current distribution differ more from the
ideal excitation current on the smaller aperture area. For inter-beam distance 0.5°
the number of elements required lied in the region 524—748 with the maximum gain
43.5-44.9dBi for the TX and 46.3-47.6 dBi for the RX. It can be noted that the
number of elements required are significantly higher than for the Taylor synthesised
array antennas.

It was not possible to suppress the side lobes outside FoV for the convex optimised
array antennas, as the convex optimisation method would provide non-physical so-
lutions where the elements were placed on top of each other if a longer radiation
mask was applied. For inter-beam distance 1° the number of elements ranged as
85-191 and the maximum gain lied in the region 33.0-38.0 dBi for the TX and 38.8-
43.8dBi for the RX. The number of elements varied as 193—545 with inter-beam
distance (.5°, the corresponding gain lied in the region 43.7-48.2 dBi for the TX and
43.7-48.5dBi for the RX.
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Table 4.5: Shows the maximum gain in dBi as well as the number of elements
for convex optimised, density tapered and Taylor synthesised array antennas of
configuration 3 with inter-beam distance 1 °, while having a mask for the radiation
pattern up to FoV °.

BV | GFF [GF | Nemg [GFF | 6FF | NN | 68X | 6FF | NiTis
42 330388 ] 8 [341[373] 71 [388]416] 209
5° 350 [ 404 109 [344 377 71 [388]416] 209
6° [ 364420 148 [359 386 | 106 | 388 |41.6] 209
7 [ 373429 ] 169 [36.6 393 106 | 38.8[41.6 | 209
8° [380 438 | 191 |376 | 41.0 | 148 | 388|416 209

Table 4.6: Shows the maximum gain in dBi as well as the number of elements
for convex optimised, density tapered and Taylor synthesised array antennas of
configuration 3 with inter-beam distance (.5 °, while having a mask for the radiation
pattern up to FoV °.

FoV | GIX | GI™ | Ny | B | G | N | Ga™ | G | Ny,
4° | 43.7 | 43.7 193 37.0 | 40.0 148 43.5 | 46.3 Hh24
5° | 45.3 | 45.3 273 38.7 | 42.0 197 44.3 | 47.0 661
6° | 46.4 | 46.6 337 40.0 | 43.0 253 44.3 | 47.0 662
i 48.2 | 48.2 497 42.0 | 44.7 386 449 | 47.6 749
8 | 48.2 | 48.5 545 44.7 | 47.0 547 449 | 47.6 748

A similar pattern for the FoV and inter-beam distance parameters can be noted in
the tables for convex optimised, Taylor synthesised, density tapered array antennas
as for the previous array configurations, where the number of elements and the max-
imum gain increases as the FoV increases and the inter-beam distance decreases. As
the common RX/TX element is more directive than the separate RX/TX elements
the maximum gain was also higher for these array antennas while utilising less ele-
ments. It should be noted that for the FoV 8° and inter-beam distance 1° that the
elements actually overlap, which is not a physical solution.

4.3 Summary of Trade-off Investigation

A summary for the convex optimised array antennas and synthesised array anten-
nas in the possible configurations, inter-beam distances and FoVs are given for the
maximum gain in Fig. 4.29 and number of elements in Fig. 4.28.
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Figure 4.28: Number of elements and controls depending on the FoV and inter-beam
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Figure 4.29: Gain depending on the FoV and inter-beam distance.
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4.4 Effects of MC

The MC effects were investigated for array configuration 1 of the separate TX array
of inter-beam distance 1° with the FoV 4°, depicted in Fig. 4.9d, while suppressing
the rest of the radiation pattern up to 8°. This array contained 96 array elements for
both the RX and the TX. The MC effects were accounted for by utilising FEKO for
the waveguide port excitation and cut-off radius 6 A. The radiation patterns with
MC effects included are depicted in Fig. 4.30.
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(a) Shows the radiation pattern for the (b) Shows the radiation pattern for the
TX array up to 20°. TX array up to 90°.

Figure 4.30: Radiation pattern for array configuration 1 with MC effects included.

It can be noted that the mask still holds for the radiation pattern, as depicted in
Fig. 4.30. In addition the array antenna of configuration 2, depicted in Fig. 4.9c,
was simulated with FEKO for the same radiation mask, that contained 96 and 112
elements for the RX and the TX, respectively.
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Figure 4.31: Radiation patterns for array configuration 2 with MC effects included.

It can be noted that the mask is violated for both TX and RX frequencies and that
the pattern of the RX array is far more affected than the TX array as shown in Fig.
4.31. This is expected as the RX array is embedded in the TX array.
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Discussion

In this section will the results be discussed further details, specifying on the trade-off
points listed in chapter 1. Moreover, the results from the simulations in FEKO will
also be discussed and what implications there may be for the simulations of array
antennas.

5.1 Number of Elements and Controls compared
to changed FoV

The FoV was varied from 4° to 8° in steps of 1° for the sparse array antennas. It
can be noted that the antennas had to obey rather strict requirements, presented
in Sec. 3.1, as the array antennas must be able to cope with rather narrow main
beams and a steep drop from the maximum gain to the OoC gain.

The noted overall trend was that the number of elements and controls increase as
the FoV increases for the deterministically synthesised array antennas as well as
the convex optimised array antennas. The number of elements lied in the region
100-500 elements for the convex optimised array antennas of configuration 1 and 2
and Taylor synthesised array antennas of configuration 1, if the arrays are consid-
ered separately for the RX and the TX. That is, for the entire array antennas the
number of elements lied in the region 200-1000 elements. In comparison the den-
sity tapered array antennas of configuration 1 lied in the region 700-2700 elements.
For the array antennas of configuration 3 the number of elements lied in the region
100600 for the convex optimised array antennas as well as the Taylor synthesised
array antennas, where the density tapered array antennas lied in the region 200-800
elements.

The relation between FoV and the number of elements are shown in Fig. 4.28. In
particular, the results are depicted for the convex optimised array antennas in Fig.
4.28¢ and Fig. 4.28d for inter-beam distance 0.5° and 1°, respectively. The results
for Taylor synthesised array antennas are depicted in Fig. 4.28a for inter-beam dis-
tance 0.5°-1° and the density tapered array antennas are depicted in Fig. 4.28b for
inter-beam distance (.5°-1°. These are expected results as the radiation pattern is
required to be 30 dB below maximum gain from OoC to FoV. The density tapered
array antennas were required to have significantly (with the maximum individual
array to have in the order of 1300 elements) more elements in order to meet the
antenna requirements, but still showed the same trend the the convex optimised

63



5. Discussion

and Taylor synthesised array antennas, as shown in Fig. 4.28b.

It can be noted that for array antennas of configuration 2 the number of elements
would vary for the RX and the TX array antennas depending on which array was
optimised first. This can be understood as the optimisation must be done twice and
that the area which is given to the second optimisation is limited, as explained in
Ch. 3. The effect of this approach is that array configuration 2 have a tendency to
require more elements than the first configuration.

5.2 Effects of changed Inter-beam Distance

The investigated inter-beam distance was varied from (.5° to 1°. The main observed
effect was the significant enhancement in the number of elements and total aper-
ture size. For inter-beam distance 1° the total aperture width (i.e. length along
the r-axis) depending on if the configuration was either the latter two or 1 varied
from 1.5m to 0.9m approximately, for inter-beam distance 0.5° the total aperture
width changed to vary from 3m to 1.8m. Additionally the number of elements
would approximately double for inter-beam distance (0.5° compared to the number
of elements required for FoV 1°. The third effect was the increased maximum gain,
however, this effect was not as significant as the other two.

5.3 Separate compared to Common RX/TX Ele-
ments and Element Sizes

The possibility of employing separate or common RX/TX elements are directly
linked to the element size, as these effects can be seen in the usage of the separate
or common RX/TX elements, where the common RX/TX element is the largest.
The overall gain is higher for the array antennas of configuration 3, as depicted in
Fig. 4.29. Furthermore, the number of elements for the array antennas were reduced

significantly, often to half compared to configuration 1 and 2.

Array antennas of configuration 3 suffered from uncontrolled SLLs outside the FoV
as the convex optimisation rendered solutions that were unphysical if the radiation
pattern was extended further, i.e. elements were placed where they were overlap-
ping. This issue is not as significant when using the separate RX/TX elements,
as these elements are approximately half the size of the common RX/TX element.
However, the number of elements required to suppress the radiation pattern further
was significant, especially if compared to the increase in gain. An example of an
unphysical solution for the array antenna of configuration 3 of inter-beam distance
1° and the FoV 8° is shown in Fig. 4.25.
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5.4 SLL, Gain loss and Element Positioning

As SLLs were suppressed for the separate RX/TX element outside FoV the gain
increased very little, as depicted in Fig. 4.29, often with the cost of 100-200 ele-
ments. This is a significant change as the number of elements to begin with are in
the order of 200-300 and for the array antennas where the inter-beam distance is 1°
and 400-700 elements for the array antennas where the inter-beam distance is 0.5°.
As the gain is not greater in any significant manner, it is rather questionable if it is
necessary to suppress the pattern outside FoV.

The total aperture width for configuration of the first compared to the latter two
lied in the region 1.5m—0.9m and 3m-1.8m for inter-beam distance 1° and 0.5°,
respectively. For the array antennas of configuration 1 the number of elements were
lower in general than the array antennas of configuration 2 for inter-beam distance
0.5° and 1°, when suppressing the radiation pattern up to 8° and 15°, as shown in
Fig. 4.28d. A bigger difference was observed for radiation mask range up to 15°,
which may be due to that less area was given for the second array to be optimised.
When the radiation pattern was suppressed to 8° the number of elements of array
antennas of configuration 2 were closer to the array of configuration 1 for both inter-
beam distances. Therefore are the array of configuration 2 preferable to the array
antennas of configuration 1, as the aperture size is reduced significantly while only
demanding slightly more elements.

5.5 Convex Optimised Array Antennas compared
Taylor Synthesised Array Antennas and Den-
sity Tapered Array Antennas

For the Taylor synthesised array antennas well performing array antennas of config-
uration 1 could be obtained while the number of elements could compete with those
of the convex optimised array antennas simultaneously. The element density tapered
array antennas on the other hand demanded significantly more elements than both
the convex optimised and Taylor synthesised array antennas. This is attributed to
that the density tapering approach was initially designed to utilise different sizes of
array elements, with respect to diameter. The functionality was implemented and
presented in Ch. 2 but not used for the investigation as the given elements each have
a constant radius in this thesis. It can be noted that the tapered array antennas had
more difficulties for the larger inter-beam distance, as there is less area to obtain an
approximative current distribution similar to the ideal current distribution.

Both the Taylor synthesised array antennas and the density tapered array antennas
provided solutions of high element number density resulting in that array antennas
of configuration 2 could not be obtained through these methods. It should be noted
that the Taylor synthesised and density tapered array antennas in this thesis are
optimised for the main beam only and are likely to perform worse in the scanning
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mode. In the specification it is understood that the array should have the opportu-
nity to steer the beam within the FoV, this should be better for the convex optimised
array antennas.

5.6 MC Effects and Simulation Time

For the array antenna of configuration 1 the MC effects were included for the FoV
4° and inter-beam distance 1° where the simulation in FEKO showed that the ra-
diation pattern complied with the requirements as depicted in Fig. 4.30. However,
this array is one of the least dense array antennas and therefor may denser antenna
designs violate the radiation mask when accounting for MC. It still suggests that
MC effects are less than expected for the antennas employing separate RX/TX ele-
ments, which are the least directive compared to the common RX/TX element.

For the case of including MC effect for the array antenna of configuration 2, shown
in Fig. 4.31, the radiation pattern violated the radiation mask for both the RX and
the TX. It can be noted that the TX case violates the radiation mask less than the
RX, which is expected because the RX array is embedded in the TX array causing
the RX array to be in a denser environment. Although, the exhibited MC effects
may be reduced for the RX case when the height of the RX elements are greater or
equal to the height of the TX elements.

These results therefore present a possibility of obtaining realistic array antennas
with significantly reduced simulation times, which would be in the order of weeks.
However, further simulations with greater values of the FoV, inter-beam distance 0.5°
and arrays with common RX/TX elements are needed to conclude this. Moreover,
the results presented provides qualitatively interesting results, and possibly realistic
results for many of the array antennas of configuration 3 and 1.
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The array antennas antennas presented in the Ch. 4 utilises three array configura-
tions which are schematically depicted in Fig. 3.2, where it additionally can be seen
that the RX and TX apertures are circular. The first array configuration has two
separate apertures as well as two separate array elements, presented in Sec. 3.2.2
for the RX and TX, where the RX frequency bandwidth is 27.5-30.0 GHz and the
TX frequency bandwidth is 17.7-20.2 GHz. The second array configuration has one
common aperture for the RX and the TX while still utilising two separate array ele-
ment types. The third and last array configuration has one common aperture as well
as one common array element type, presented in Sec. 3.2.3, for the RX and TX.
Furthermore, the array designs were obtained through three different approaches
where two of them are deterministic and the latter employ convex optimisation,
described in Sec. 3.4, which optimises the element positions and excitation current
to produce a radiation pattern which complies to the radiation mask. Of the deter-
ministic approaches one is the density tapering, as described in Sec. 2.3.2, which
utilises uniform element field amplitudes and creates an equivalent aperture to pro-
duce an excitation current that corresponds to the Taylor distribution. The other
deterministic approach is that of the Taylor synthesis, as described in Sec. 2.3.1,
which utilises uniformly placed elements and a varying element current excitation to

produce a radiation pattern which has the most narrow beam-width for the highest
allowed SLL.

The aperture diameters used for the simulations were for inter-beam distance 1°
2:0.45m for the TX and 2-0.3 m for the RX. For the case of inter-beam distance 0.5°
the diameters 2-0.9m and 2-0.6 m were used for the TX and RX respectively. This
subsequently means that for configuration 1 the spatial extension in z-direction will
be 1.5m and 0.9 m in the y-direction. The corresponding spatial extension for inter-
beam distance 0.5° will be 1.8 m in the y-direction and 3m in the z-direction. For
configuration 2 and 3 the spatial extension of the antennas will be equal in both the
z- and y- directions. Which for inter-beam distance 1° is 0.9 m and for inter-beam
distance 0.5° is 1.8 m.

In conclusion, the maximum gain for array antennas of configurations 1 and 2 proved
to be similar, usually varying as 0-4 dB from one another, as depicted in Fig. 4.29¢
and Fig. 4.29d for inter-beam distances (0.5° and 1° of convex optimised array an-
tennas. These are expected results as the aperture area of the individual RX and
TX arrays are equal for both configurations, where the only difference is that for
configuration 2 both the RX and TX arrays share the aperture. Furthermore, the
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first array configuration often achieves less total number of elements than the second
configuration, in the region of 0-80 elements which is depicted in Fig. 4.28d and
Fig. 4.28¢c. However, array antennas with configuration 2 achieves a smaller total
aperture while exhibiting more MC effects, which degrades the radiation pattern in
general as the SLLs are higher such that the radiation mask is violated, to a greater
extent than the first array configuration. Moreover, the MC effects are of impor-
tance if the MC effects are not included in the synthesis procedures, i.e. the design
procedure does not achieve optimum positions when accounting for MC effects such
that the radiation pattern is not violated, as the radiation pattern becomes more
degraded in this case. To achieve an optimum design of the array antennas the
MC effects should be included, i.e. designing an array antenna which have elements
placed such that the MC effects still obey the radiation mask, making the array
with configuration 2 a conclusively better option with respect to the total aperture
area, where the z-dimension is reduced from 1.5m to 0.9m and 3m to 1.8m for
inter-beam distance 1° and 0.5°, respectively. Additionally, the number of elements
can still be chosen equal or up to 80 more elements compared to configuration 1
while the gain is not significantly changed, but is increased in the region of 0-4 dB.

For the third array configuration the number of elements are reduced significantly,
often close to 50% of the elements as compared to configurations 1 and 2. This is
due to that the common RX/TX solution generates the radiation patterns in both
frequencies, in contrast for array configurations 1 and 2 which demands two different
solutions for the RX and the TX. The common RX/TX element is in addition more
directive than the separate RX/TX elements and array antennas of configuration 3
and could therefore achieve higher maximum gain of the third array configuration.
However, the convex optimisation showed difficulties in finding physical solutions, as
elements were placed on top of each other, for array configuration 3 which forced the
SLL outside Field of View (FoV) to be uncontrolled, where FoV is the angle which
is no longer suppressed by the QoC gain requirement. It was on the other hand
observed for the first and second array configurations that the number of elements
required to suppress the SLL outside FoV were surprisingly large in comparison to
the increase in gain. This makes the array antenna of configuration 3 a good candi-
date for SATCOM applications, with respect to the number of elements which ranges
from 85-191 for inter-beam distance 1° and 193-545 for inter-beam distance 0.5° for
the convex optimised array antennas, required aperture area, where the diameter is
0.9m for inter-beam distance 1° and 1.8 m for inter-beam distance 0.5°. Finally, the
gain is increased to lie in the region 33.0-38.0dBi and 38.8-43.8 dBi for inter-beam
distance 1° for the TX and RX, respectively, and 43.7-48.2dBi 43.7-48.5dBi for
inter-beam distance 0.5° for the TX and RX, respectively.

When taking MC effects into account, in the post-evaluation for the previously con-
vex optimised array antennas, the radiation patterns are expected to be degraded.
For the case of array configuration 1 of FoV 4° and inter-beam distance 1° the ra-
diation pattern, depicted in Fig. 4.30, complied with the applied radiation mask
where as for array configuration 2 of FoV 4° and inter-beam distance 1° the radi-
ation pattern, depicted in Fig. 4.31, violated the radiation mask. However, in the
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case of array configuration 2, the MC effects might be reduced if the RX elements
are raised to be higher or equal in height as the TX elements in the z-direction. It
might therefore be possible to dramatically speed up the array simulations in the
order of weeks while still obtaining realistic results for the array antennas of configu-
ration 1 and 3, as the common RX/TX element is more directive and is expected to
exhibit less MC eftects. However, further simulations for configuration 3, wider FoV
and narrower inter-beam distances are required to fully support this conclusion, as
the requirements FoV 4° and inter-beam distance 1° have a lower element number
density than that of the FoV 8° and inter-beam 1° for example. The array antennas
are for the latter case forced to obey constraints which are stricter than FoV 4° as
the radiation pattern is required to be below the OoC gain further, this pattern is
depicted in Fig. 4.28.

The array antennas presented in Ch. 4 obtained through Taylor synthesis could meet
the requirements presented in Sec. 3.1 with the number of elements in the same or-
der as sparse array antennas obtained through convex optimisation where number of
elements ranged from 71-547 for configuration 3 and 142-632 for configuration 1 of
both inter-beam distance 1° and 0.5°. On the other hand, the density tapered array
antennas encountered difficulties in meeting the stringent requirements presented in
Sec. 3.1, resulting in significantly more array elements which ranged form 209 to
748 for configuration 3 and from 712 to 2662 for configuration 1. This is attributed
to not using elements with varying diameters. In addition neither of the determin-
istic approaches could present solutions of array configuration 2, as the arrays were
too dense with respect to the number of elements. Furthermore, array antennas of
the deterministic approaches are optimised for the main beam only. Thus, when
scanning for various angles they may perform worse than convex optimised array
antennas.

To summarise, the convex optimised array antennas achieved good results for all
configurations, albeit configurations 2 and 3 present more interesting advantages
with respect to the number of elements, total aperture size and maximum gain than
the first array configuration. Where for configuration 3 the number of elements
reduces to close to half to that of configuration 1 and 2, while increasing the gain in
the range of 10dB. Although configuration 2 is still similar to configuration 1 with
respect to number of elements it can require up to 80 elements more while the gain
is increased up to 4dB. Lastly the total aperture area is reduced to 69% of the total
aperture area of configuration 1, which is also true for configuration 3.
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Future Recommendations

There are several aspects of this thesis that may be addressed where the most im-
portant part would be to complete the investigation while optimising with MC, as
proposed in Ch. 3. As FEKO provides results for MC effects well, with less time
constrictions, the results would be interesting to obtain. However, for further re-
search the usage of the software CAESAR (CAESAR is a calculation tool developed
at the department of Signals and Systems at Chalmers) instead of FEKO in the
convex optimisation method would be beneficial. The main interest in doing so is
that CAESAR is significantly faster than FEKO, albeit still in a developing phase.
As RUAG space are interested in using a commercial EM calculation tool the EEPs
could as a last step be simulated with FEKO of the optimised array in addition to
the optimisation done with CAESAR. This approach would render two final radia-
tion patterns, one with CAESAR and one with FEKO where the radiation pattern
simulated with FEKO would serve as a reference.

Furthermore, it would be of interest for RUAG space to have the latest version of
FEKO, which allows for the use of built in calculation tools of arrays in combina-
tion with waveguide ports. With the latest version FEKO presents the possibility
of calculating the EEPs for the array antennas faster while providing a circular po-
larisation with waveguide ports instead of two edge ports.

For the density tapered array antennas it would be interesting to fully use the
method, i.e. let the diameter of the array elements vary in order to produce optimal
array antennas while keeping the number of controls to one (with respect to ampli-
tude). Finally, it may be of interest to extend the convex optimisation algorithm
when designing the array antennas of configuration 2. For example, the separate
RX/TX array elements which lie in the same area for TX and RX may be replaced
by a single common RX/TX array element type which could reduce the number of
elements required.
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A

Array Antennas of the FoV 5° — 7°

Complementary results for FoV 5°-7° are given in this appendix to the results in
Ch. 4. The array designs are shown along with the radiation patterns and imposed
radiation masks. The separate TX array elements are depicted with empty circles,
the RX array elements are shown in filled circles and the common RX/TX array
elements are shown in semi filled circles.

A.1 Array Antennas Utilising Common and Sep-
arate RX/TX Apertures and Separate RX/TX

Elements

This section gives the results for the array antennas of configuration 1 and 2.

A.1.1 Taylor Synthesised Array Antennas

In this section are the results for the arrays of configuration 1 depicted of Taylor
synthesised array antennas.

A.1.1.1 Inter-beam Distance 1°

In Fig. A.1 are the array design and radiation pattern shown for the FoV 5° and
inter-beam distance 1° of a Taylor synthesised array antenna.
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(a) Radiation pattern for (b) Array configuration 1.

the TX and RX.

Figure A.1: Array design and radiation pattern of the Taylor synthesised arrays
with inter-beam distance 1° and the FoV 5°.



A. Array Antennas of the FoV 5° — 7°

In Fig. A.2 are the array design and radiation pattern are shown for the FoV 6°
and inter-beam distance 1° of a Taylor synthesised array antenna.
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Theta [deg] X [m]

(a) Radiation pattern for (b) Array configuration 1.
the TX and RX.

Figure A.2: Array design and radiation pattern of the Taylor synthesised arrays
with inter-beam distance 1° and the FoV 6°.

In Fig. A.3 are the array design and radiation pattern shown for the FoV 7° and
inter-beam distance 1° of a Taylor synthesised array antenna.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and RX.

Figure A.3: Array design and radiation pattern of the Taylor synthesised arrays
with inter-beam distance 1° and the FoV 7°.
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A. Array Antennas of the FoV 5° — 7°

A.1.1.2 Inter-beam Distance 0.5°

In Fig. A4 are the array design and radiation pattern shown for the FoV 5° and
inter-beam distance (0.5° of a Taylor synthesised array antenna.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and RX.

Figure A.4: Array design and radiation pattern of the Taylor synthesised arrays
with inter-beam distance 0.5° and the FoV 5°.

In Fig. A.5 are the array design and radiation pattern shown for the FoV 6° and
inter-beam distance (0.5° of a Taylor synthesised array antenna.
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Theta [deg]

(a) Radiation pattern for (b) Array configuration 1.
the TX and RX.

Figure A.5: Array design and radiation pattern of the Taylor synthesised arrays
with inter-beam distance 0.5° and the FoV 6°.

In Fig. A.6 are the array design and radiation pattern shown for the FoV 7° and
inter-beam distance 0.5° of a Taylor synthesised array antenna.
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A. Array Antennas of the FoV 5° — 7°
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(a) Radiation pattern for (b) Array configuration 1.
the TX and RX.

Figure A.6: Array design and radiation pattern of the Taylor synthesised arrays

with inter-beam distance 0.5° and the FoV 7°.

A.1.2 Density Tapered Array Antennas

In this section are the results for the array antennas of configuration 1 depicted of
density tapered array antennas.

A.1.2.1 Inter-beam Distance 0.5°

In Fig. A.7 are the array design and radiation pattern shown with the FoV 5° and
inter-beam distance (0.5° of a density tapered array antenna.
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(a) Radiation pattern for (b) Array configuration 1.
the TX and RX.

Figure A.7: Array design of density tapered arrays and radiation pattern with inter-
beam distance 0.5° and the FoV 5°.

In Fig. A.8 are the array design and radiation pattern shown with the FoV 6° and
inter-beam distance 0.5° of a density tapered array antenna.
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(a) Radiation pattern for (b) Array configuration 1.
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Figure A.8: Array design of density tapered arrays and radiation pattern with inter-
beam distance 0.5° and the FoV 6°.

In Fig. A.9 are the array design and radiation pattern shown with the FoV 7° and
inter-beam distance 0.5° of a density tapered array antenna.
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Figure A.9: Array design of density tapered arrays and radiation pattern with inter-
beam distance 0.5° and the FoV 7°.

79



A. Array Antennas of the FoV 5° — 7°

A.1.3 Convex Optimised Array Antennas

In this section are the complimentary results for the arrays of configurations 1 and
2 depicted of convex optimised array antennas.

A.1.3.1 Inter-beam Distance 1°

In Fig. A.10 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 5° and inter-beam distance 1° with radiation mask range

8°.
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(a) Radiation pat- (b) Radiation pat- (c)Array configura- (d) Array configu-
tern for the TX. tern for the RX. tion 2. ration 1.

Figure A.10: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 1°, the FoV 5% and radiation mask range 8°.

In Fig. A.11 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 5° and inter-beam distance 1° with radiation mask range
15°.
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Figure A.11: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 1° and the FoV 5° and radiation mask range 15°.

In Fig. A.12 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 6° and inter-beam distance 1° with the radiation mask
range 8°.
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Figure A.12: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 1°, the FoV 6° and radiation mask range 8°.

In Fig. A.13 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 6° and inter-beam distance 1° with radiation mask range
15°.
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Figure A.13: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 1°, the FoV 6° and radiation mask range 15°.

In Fig. A.14 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 7° and inter-beam distance 1° with radiation mask range

8°.
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Figure A.14: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 1°, the FoV 7° and radiation mask range 8°.

In Fig. A.15 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 7° and inter-beam distance 1° with radiation mask range

15°.
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Figure A.15: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 1°, the FoV 7° and radiation mask range 15°.

A.1.3.2 Inter-beam Distance 0.5°

In Fig. A.16 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 5 ° and inter-beam distance (.5° with radiation mask range

8°.
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Figure A.16: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance (.5° and the FoV is 5° with radiation mask range 8°.

In Fig. A.17 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 5 © and inter-beam distance 0.5° with radiation mask range
15°.
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ration 1.
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Figure A.17: Array designs of convex optimised arrays and radiation patterns with

inter-beam distance (0.5° and the FoV is 5° with radiation mask range 15°.

In Fig. A.18 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 6 ° and inter-beam distance 0.5° with radiation mask range

8°.
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Figure A.18: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 0.5° and the FoV is 6° with radiation mask range 8°.

In Fig. A.19 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 6 © and inter-beam distance 0.5° with radiation mask range
15°.
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Figure A.19: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 0.5° and the FoV is 6° with radiation mask range 15°.

In Fig. A.20 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 7° and inter-beam distance (.5° with radiation mask range

8

.
5 = 0.5
- £ o
8 ” 05

-4

4 0 1
Theta [deg] X [m]

(a) Radiation pat- (b) Radiation pat- (¢) Array configura- (d) Array configu-
tern for the RX. tern for the TX. tion 2. ration 1.

Figure A.20: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 0.5° and the FoV is 7° with radiation mask range 8°.

In Fig. A.21 are the array designs and radiation patterns shown for convex optimised
array antennas of the FoV 7° and inter-beam distance (.5° with radiation mask range
15°.
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Figure A.21: Array designs of convex optimised arrays and radiation patterns with
inter-beam distance 0.5° and the FoV 7° with radiation mask range 15°.

A.2 Array Antennas Utilising Common RX/TX
Apertures and Common RX /TX Elements

In this section are the results for array antennas of configuration 3 given as a com-
pliment to the results in Ch. 4.

A.2.1 Taylor Synthesised Array Antennas

In this section are the results for the arrays of configuration 3 depicted of Taylor
synthesised array antennas.

A.2.1.1 Inter-beam Distance 1°

In Fig. A.22 are the array design and radiation patterns shown for a Taylor synthe-
sised array antenna with inter-beam distance 1° and the FoV 5°.
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(a) Radiation pattern for (b) Radiation pattern for (c) Array configuration 3.
the RX. the TX.

Figure A.22: Array design and radiation patterns of a Taylor synthesised array
antenna with inter-beam distance 1° and the FoV 5°.

In Fig. A.23 are the array design and radiation patterns shown for a Taylor synthe-
sised array antenna with inter-beam distance 1° and the FoV 6°.
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Figure A.23: Array design and radiation patterns of a Taylor synthesised array
antenna with inter-beam distance 1° and the FoV 6°.

In Fig. A.24 are the array design and radiation patterns shown for a Taylor synthe-
sised array antenna with inter-beam distance 1° and the FoV 7°.

40 0.5

- .49 0 %"‘f‘f'ﬁm
@ @ i f— =
3 22— "% E o
£ S Opifin | >
o G201 "1

40l ' -0.5

0 10 20 0 10 20 -0.5 0 0.5
Theta [deg] Theta [deg] X [m]

(a) Radiation pattern for (b) Radiation pattern for (¢) Array configuration 3.
the RX. the TX up to 20°

Figure A.24: Array design and radiation patterns of a Taylor synthesised array
antenna with inter-beam distance 1° and the FoV 7°.

A.2.1.2 Inter-beam Distance 0.5°

In Fig. A.25are the array design and radiation patterns shown for a Taylor synthe-
sised array antenna with inter-beam distance 0.5° and the for FoV 5°.
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Figure A.25: Taylor synthesised array antenna and radiation patterns with inter-
beam distance 0.5° and the FoV 5°.

In Fig. A.26are the array design and radiation patterns shown for a Taylor synthe-
sised array antenna with inter-beam distance 0.5° and the for FoV 6°.
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Figure A.26: Taylor synthesised array antenna and radiation patterns with inter-
beam distance (.5° and the FoV 6°.

In Fig. A.27are the array design and radiation patterns shown for a Taylor synthe-
sised array antenna with inter-beam distance 0.5° and the for FoV 7°.
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Figure A.27: Taylor synthesised array antenna and radiation patterns with inter-
beam distance 0.5° and the FoV 7°.
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A.2.2 Density Tapered Array Antennas

In this section are the results for the arrays of configuration 3 depicted of density
tapered array antennas.

A.2.2.1 Inter-beam Distance 0.5°

In Fig. A.28 are the array design and radiation patterns shown for a density tapered
array antenna with inter-beam distance 0.5° and the FoV 5°.
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Figure A.28: Array design and radiation patterns of a density tapered array antenna
with inter-beam distance 0.5° and the FoV 5°.

In Fig. A.29 are the array design and radiation patterns shown for a density tapered
array antenna with inter-beam distance 0.5° and the FoV 6°.
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Figure A.29: Array design and radiation patterns of a density tapered array antenna
with inter-beam distance 0.5° and the FoV 6°.

In Fig. A.30 are the array design and radiation patterns shown for a density tapered
array antenna with inter-beam distance 0.5° and the FoV 7°.

87



A. Array Antennas of the FoV 5° — 7°

1

40 1 h
o o 20 ——=40 i B
= =2 i 'fvw‘ﬁ.':"l'f"ﬁ' lell. J‘i'ﬂ,u ST .g. 0
£ £ o i;}-I!‘IIT”i‘ﬁ?ﬂ-"'f e ha L
3] [} | : e "
(O] (O] -20 i '05

-40 ' -1

0 10 20 -1 0 1
Theta [deg] Theta [deg] X [m]

(a) Radiation pattern the (b) Radiation pattern the (c) Array configuration 3.
TX. RX up to 20°

Figure A.30: Array design and radiation patterns of a density tapered array antenna
with inter-beam distance 0.5° and the FoV 7°.

A.2.3 Convex Optimised Array Antennas

In this section are the results for the arrays of configuration 3 depicted of convex
optimised array antennas.

A.2.3.1 Inter-beam Distance 1°

In Fig. A.31 are the array design and radiation patterns shown for a convex opti-
mised array antenna with inter-beam distance 1° and the FoV 5°.
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Figure A.31: Array design and radiation patterns of a convex optimised array an-
tenna with inter-beam distance 1° and the FoV 5°.

In Fig. A.32 are the array design and radiation patterns shown for a convex opti-
mised array antenna with inter-beam distance 1° and the FoV 6°.
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Figure A.32: Array design and radiation patterns of a convex optimised array an-

tenna with inter-beam distance 1° and the FoV 6°.

In Fig. A.33 are the array design and radiation patterns shown for a convex opti-
mised array antenna with inter-beam distance 1° and the FoV 7°.

0.5
40 e 40 \
g ol g ! =
—_— ! —_— ' 7 L 0
.% 0 . _% 0 ..,_1 4 K
O 29 1 ; _ O 29 'f
HR By, iy
-40 GRGRAk TS " L ! J i 3l -05
0 10 20 400 20 -0.5 0.5
Theta [deg]

10 0
Theta [deg] X [m]

(a) Radiation pattern for (b) Radiation pattern for (c) Array configuration 3.
the RX. the TX.

Figure A.33: Array design and radiation patterns of a convex optimised array an-
tenna with inter-beam distance 1° and the FoV 7°.

A.2.3.2 Inter-beam Distance 0.5°

In Fig. A.34 are the array design and radiation patterns shown for a convex opti-
mised array antenna with inter-beam distance 0.5° and the FoV 5°.
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Figure A.34: Array design and radiation patterns of a convex optimised array an-
tenna with inter-beam distance 0.5° and the FoV 5°.

In Fig. A.35 are the array design and radiation patterns shown for a convex opti-
mised array antenna with inter-beam distance 0.5° and the FoV 6°.
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Figure A.35: Array design and radiation patterns of a convex optimised array an-
tenna with inter-beam distance 0.5° and the FoV 6°.

In Fig. A.36 are the array design and radiation patterns shown for a convex opti-
mised array antenna with inter-beam distance 0.5° and the FoV 7°.
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Figure A.36: Array design and radiation patterns of a convex optimised array an-
tenna with inter-beam distance 0.5° and the FoV 7°.
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