
Including a Collaborative Robot in
Digital Twin Manufacturing Systems
Master’s thesis in Master Programme in Systems, Control and Mechatronics

CHRISTIAN LARSEN

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Including a Collaborative Robot in
Digital Twin Manufacturing Systems

CHRISTIAN LARSEN

Department of Electrical Engineering
Systems and Control

Chalmers University of Technology
Gothenburg, Sweden 2019

Including Collaborative Robots in Digital Twin Manufacturing Systems
CHRISTIAN LARSEN

© CHRISTIAN LARSEN, 2019.

Supervisor: Johan Carlson, Fraunhofer Chalmers Centre
Examiner: Bengt Lennartsson, Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: 3D rendition of a KUKA LBR iiwa R800.

Typeset in LATEX
Gothenburg, Sweden 2018

Abstract

Great potential lie in unlocking the capabilities of industrial robots through
simulation in terms of cost saving, productivity, and flexibility. The concept
of digital twin has emerged in recent year which aims to further improve the
impact of simulations. A digital twin is an virtual counter part of a physical
system that is capable of accurately simulating the physical system using data
from the real system. The knowledge gained from the simulation can thus be
used for real-time optimization and decision making.

In this thesis it is investigated how one can create the needed capabilities to
allow a KUKA iiwa robot within a digital twin manufacturing system. This
includes investigating and developing the necessary capabilities to be able to
simulate the motion of the iiwa robot depending on given motion commands as
well as creating a interface to a real world iiwa robot adhering to the concept
of digital twins.

The developed interface with the real iiwa robot is used to evaluate the devel-
oped simulation capability in terms of how well it can capture the geometrical
path of the motion as well as cycle time. The results shows that the utilized
method is capable of accurately capturing the geometrical path of the robot as
well as estimating the cycle-time within 15% depending on the given motion
commands.

1

Acknowledgements

It has been a great experience working at the Fraunhofer-Chalmers Centre
(FCC). This thesis would not have been possible without the help from my
colleagues at FCC. I express my gratitude towards Johan Carlson, director at
FCC, for giving me the opportunity to do my thesis and all the valuable advice
during the process.

I would also like to thank my colleagues in the Geometry and Motion Planning
group, specifically Daniel Gleeson, Robert Bohlin, Staffan Björkenstam, Jonas
Kressin, Simon Vajedi and Domenico Spensieri for all the valuable input and
advice.

Great appreciation goes to Kristofer Bengtson at Chalmers for all the help
and advice regarding any robotics and networking. I’m very grateful that he
allowed me to use the robot for experiments throughout the thesis.

Gothenburg, March 2019
Christian Larsen

2

CONTENTS

Contents
1 Introduction 1

1.1 Purpose and goal . 2
1.2 Limitations . 3
1.3 Ethical and sustainability aspects 3
1.4 Thesis structure . 4

2 Virtual Representation 5
2.1 Robot motion overview . 5
2.2 Simulation approach . 7
2.3 Geometric Path . 8

2.3.1 Serial robot kinematics 8
2.3.2 iiwa kinematics . 11
2.3.3 Path representation . 11

2.4 Trajectory generation . 19
2.4.1 Trajectory calculation algorithm 19
2.4.2 iiwa trajectory calculation 20

3 Physical Robot Interface 23
3.1 iiwaDrive implementation . 23

3.1.1 Sunrise Cabinet Robot Program 24
3.1.2 iiwaDrive application . 26
3.1.3 External application . 27

4 Evaluation of Blending Methods 28
4.1 iiwa path representation . 28
4.2 Evaluating existing methods . 31
4.3 Extension of existing method 33

5 Results 37
5.1 Evaluation of proposed simulation method 37

5.1.1 Geometric end-effector path estimation 37
5.1.2 Cycle time estimation 37

5.2 Demonstration of capabilities within a digital twin 41

6 Conclusion 43
6.1 Future work . 43

A Acceleration and jerk limit experiment 48

B Zone velocity experiment 52

C Settling time experiment 54

3

Introduction

1 Introduction

The concept of digital twins, which aims to improve the impact and fidelity of
simulation capabilities, has gained traction in recent years [1]. A digital twin
is a digital model of real-world physical systems. A digital twin of a physical
system is utilized to increase the performance of the product throughout its life
cycle. This is done through the employment of data driven simulation during
the design and planning phase as well as while the system is in operation. This
process enables the user to optimize the performance during the whole lifetime
of the product.

The conceptual definition of a digital twin is first introduced by the National
Aeronautics and Space Administration (NASA) [2]. NASA defined a digital
twin as a digital representation of a physical flying aircraft that uses the best
available physical models, sensor data, and flight history. The goal of this
process was to continuously update the digital representation with data from
the real aircraft, which are then used in simulations of the digital twin. NASA
contends that this process reduced the errors by simulating future outcomes
based on the updated digital representation. If the simulations determine it
necessary, the mission profile could be changed to increase the mission suc-
cess.

In recent years, the digital twin concept has been used in the field of manufac-
turing engineering[3]. In this context, the digital twin is described as a virtual
counterpart of the manufacturing system. This digital representation contains
information, such as functional descriptions and computer-aided design (CAD)
models, that can be useful throughout the lifecycle – from product design to
production execution and production intelligence [4, 5]. One important aspect
of the digital twin concept is the possibility to synchronize the state of the
digital representations with the measured state of the real-world counterparts
[3]. This feature allows users to perform real-time optimization and decision-
making based on simulation outcomes of the digital representation given the
initial conditions of the real-world counterpart. As such, digital twin has in-
creasingly gained traction as devices are fitted with more and more sensors,
along with internet connections following the lines of The Internet of Things
[6].

For example, a production cell proposed by Söderberg et al. [7] and Bohlin et
al. [8] employs a digital twin for geometry assurance. The authors outlined
in these works the composition of a production cell in which the quality of
the incoming parts is improved by employing the ideas of digital twin. They
proposed a cell consisting of spot welding robots, handling robots, fixtures,
and cameras working together and they used a digital twin to decrease the
geometric quality without tightening the tolerances by adjusting the welding
process. This process is to be performed by simulating the quality of the
products and by learning based on the outcome of the digital representation

1

Introduction

of the production cell.

In such a system, the fidelity of the simulation if affected by how accurately
the motions of the robot can be described. However, for third-party simulation
software, accurate simulations of industrial robots are only available through
the manufacturers’ proprietary offline programming software or through the
standardized Realistic Robot Simulation (RRS) interface [9]. The robot exam-
ined in this thesis is the KUKA LBR iiwa 7 [10]. Currently, the manufacturer
of this robot has not provided simulation capabilities for simulating motion
programs. Thus, great potential exists in unlocking simulation capabilities to
allow advanced optimization algorithms to be independently developed.

1.1 Purpose and goal

In this thesis, the goal is to create the needed capabilities to allow the iiwa
robot to work within a digital twin of a production cell. Given the definition
of a digital twin manufacturing system, two main functionalities are needed, a
virtual representation of the robot and an interface to the real robot allowing
synchronization and re-planning.

Virtual representation: A digital representation that shares the function-
ality of the real robot is needed. The functionality of an industrial robot
is to perform tasks such as arc welding and glue joining [11]. To en-
able the simulation of such tasks, a method for simulating how the robot
moves to accomplish aforesaid processes needs to be determined. This
includes how the motions of the robot can be predicted based on the
given commands.

Physical robot interface: The virtual representation should also allow for
synchronization with the physical robot. This process includes updating
the joint values of the robot based on the position of the real robot as
well as updating the current state of input and output (IO) signals and
available sensor data when needed. The ability to synchronize enables
the execution of possible optimization algorithms based on the virtual
representation with the initial state from the real robot.

The state of the robot, including its joint position, IO data, and sensor
data needs to be made available to synchronize with the virtual repre-
sentation. A network connection will be utilized for this process. The
prospect to control the robot from an external application needs to be
possible to allow for adaptation and flexibility during production.

In summary, the goal of this thesis is to attain the ability to employ a KUKA
iiwa robot within a digital twin manufacturing system. In order to achieve this
goal, this thesis will determine how one can accurately simulate the movements

2

Introduction

and cycle-time of the robot based on the given commands. This thesis will also
demonstrate how users can monitor and control the real robot remotely, al-
lowing for optimization and production re-planning to be performed, adhering
to the digital twin concept.

1.2 Limitations

The following limitations apply to the thesis:

• The focus of this work is on the creation of needed capabilities in order
to use the iiwa within a digital twin manufacturing system. Overlaying
intelligence, such as optimization and production re-planning, will not
be considered.

• Only high-level motion instructions in configuration space will be con-
sidered during the simulations.

• On-line trajectories and the possibility to recalculate trajectories based
on sensor input will not be covered. Only static off-line motions will be
considered during this work.

• Simulation in compliance mode and reaction to unforeseen events will
not be considered.

• No control aspects are handled in this thesis. Only nominal trajectories
are calculated. The control accuracy of the internal controller of the
robot is taken for granted.

1.3 Ethical and sustainability aspects

The ethical question one might face when working with robotics and automa-
tion is if these processes are taking over manual labor jobs in factories. Au-
tomation is a substitute for labor, however research has shown that automa-
tion can lead to a higher demand of labor by raising the productivity [12].
The KUKA LBR iiwa 7 robot employed in this thesis is a so-called collabo-
rative robot. It is designed to work with and alongside humans, supporting
the workers, contrary to traditional industrial robots which can be considered
dangerous. By letting the robot work alongside the human performing the
repetitive and straining tasks by assisting the worker it can create a more
sustainable work environment.

3

Introduction

1.4 Thesis structure

The report is structured in the following way:

2 Virtual Representation: This chapter describes how to create a virtual
representation of the real-world robot. Theory regarding robot motion
is described.

3 Physical Robot Interface: This chapter describes how the interface with
the real physical iiwa robot has been developed.

4 Evaluation of Blending Methods: This chapter ties back to the theory
of robot motion and applies it to the iiwa robot. Different methods for
calculating the blending motion of the robot is evaluated. An extension
is proposed to capture the motion of the iiwa robot.

5 Results: The simulation methods are evaluated, utilizing the developed
physical robot interface.

6 Conclusion: Concluding remarks and possible future work is presented.

4

Virtual Representation

2 Virtual Representation

This section presents the theory behind a virtual representation of the iiwa
robot. It starts with an overview how the motion of a robot is calculated and
controlled. Based on this the simulation approach is motivated. Then, theory
regarding kinematics and motion generation is presented.

2.1 Robot motion overview

In order to understand how an industrial robot moves, one can look at how
such robot is controlled. A simplified graphical representation of how a robot
is controlled is drawn in Fig. 1. This illustration is based on the presented
drawing in [13].

2018-01-30 thesisGraphics

1/1

Motion Planning T rajectory Generation Controller Robot

Figure 1: Simple conceptual drawing of a robot control system.

Motion planning defines, on a high-level, how the robot should move. For ex-
ample, the path of the robot can be established to perform specific tasks, such
as arc welding and glue dispensing [11]. The path of the robot represents how
it should geometrically move between a set of points to fulfill its task. These
points can either be defined as joint positions or as positions where the tool of
the robot is located. This path can be programmed by the operator or calcu-
lated by path planning algorithms where metrics such as collision avoidance is
considered [14].

Trajectory generation introduces the concept of time to the path. At this stage,
the overall path of the robot is known. The trajectory is generated along this
path with respect to some criteria on velocity, acceleration and the actuator
limit of the robot [15]. The actuator limit can be enforced with difference
fidelity. In fact, the methods where the maximum permissible velocity and
acceleration of every actuator is enforced is a typical occurrence [15]. Limits on
the acceleration do not typically capture the non-linear dynamics of the robot.
Given these limitations, more involved methods where the torque limit of the
every joint have been developed [16, 17]. The downside of torque limit-based
methods are the need for dynamical models. The dynamic parameters of the
robot are typically not provided by the manufacturer and need to be identified
using system identification methods. An overview of system identification for
robots can be found in [18].

To allow the robot to traverse a path fast, consecutive motions can be blended

5

Virtual Representation

2018-01-31 thesisGraphics

1/1

Point 1

Point 2

Start

Figure 2: Example of motion blending.

together as can be seen in Fig 2. For example, during the motion planning
stage, it is determined that the robot should go via point 1 and continue
to point 2. In industry, the robot is typically allowed to take a shortcut,
allowing it to not decelerate fully and traverse the path faster. There are
various approaches to calculate the shape of the blend. One of which is purely
geometrical, where the shape of the blend is not a function of time. Such
methods usually describe the path using a normalized scalar path parameter,
examples of this can be found in [19] and [20]. Methods where the shape
of the blend is a function of time and velocity, such as the parabolic blend
method [21]. This method assumes that the timing of the way-points is known
and therefore the velocity is already known. When the blend is a function
of time, it essentially creates a coupling between the motion planning and the
trajectory generation since the path might change slightly during the trajectory
generation.

The trajectory is executed by the controller of the robot. The controller tries
to follow the calculated trajectory and corrects the control input to the robot
based on the state of the robot in order to achieve high accuracy when following
the trajectory. More information regarding the control of the robots can be
found in [15]. The four simplified steps illustrated in Fig. 1 enables the robot
to move and perform its programmed task.

Generally, industrial robots have their own language in which high-level motion
instructions may be specified to accomplish a given task. If the robot-specific
language is utilized, then trajectory generation is performed internally in the
robot controller – adhering to the constraints specified by the manufacturer.
There are middle-ware, such as the Robotic Operating System (ROS) [22],
in which motion planning and trajectory generation are implemented based
on adaptive sensor input. Instead of high-level instructions, the trajectory is
passed to the controller and is then executed provided that the robot has such
functionalities.

6

Virtual Representation

2.2 Simulation approach

One desired outcome of this thesis is to investigate how one can simulate the
movements and cycle time of the iiwa robot. The cycle time is the time it
takes for the robot to finish executing its motion program.

The approach taken in this thesis is to mimic how the motion planner and the
trajectory generator translate high-level instructions into trajectories. Once
the trajectory is calculated, the accuracy of the robot when following such
trajectory is assumed to be perfect. According to the specification of the iiwa
robot, its accuracy and repeatability when following the controller-generated
trajectory is high [10]. It is therefore a question of capturing the path and
time evolution that internal robot controller generates. If the trajectory is
known, the movements with respect to time are also known. As such, these
movements can be simulated under the assumption that the robot will follow
the trajectory perfectly.

The manufacturer-specified high-level instructions defining the path of the
iiwa robot are found in the programming manual [23]. High-level movement
instructions, such as point-to-point (PTP) in configuration space, linear tool
(LIN), circular tool movement (CIRC), and interpolating spline (SPL) can
be programmed. The movement instructions may be associated with options
such as velocity for the path and how consecutive motions should be blended
together, either as a Cartesian distance or as a percentage in the configuration
space.

A delimitation has been implemented in this work to limit the considerations
to PTP instructions only. The blend is specified as either a Cartesian distance
or a percentage in configuration space. The geometric path and the motion
blending are calculated based on high-level instructions in configuration space
without any consideration of time. Once the path is known, the trajectory is
calculated with respect to joint velocity and acceleration bounds. This allows
the velocity to be changed along the path without changing the shape of the
path. This approach is common for industrial robots since it is desirable to
verify the motions with lower velocities before the motions are executed with
its full velocity in production.

In reality, the trajectory generation needs to consider the effects of jerk and
joint torque for the robot to accurately follow the trajectory. However, as the
simulation assumes ideal conditions, this process is omitted. Thus, it becomes
a question of achieving a movement execution time that is as close as possible
to the manufacturer-created trajectory generation with as little information as
possible.

The following sections in this chapter therefore present the necessary theory
needed to accurately describe the path and trajectory of the robot.

7

Virtual Representation

2.3 Geometric Path

The geometric path is calculated based on high-level instructions, taking into
consideration the kinematics of the robot. The geometric path represents
how the robot moves geometrically without any consideration of time. The
following section introduces the necessary theoretical concepts to calculate the
geometric path of the robot.

2.3.1 Serial robot kinematics

The kinematics of the robot describes the analytical relationship between the
joint positions and the rotation and translation of the end effector (tool) of the
robot. This relationship can be modelled using homogeneous transformations
[15]. The relative distance and rotation between two frames can be represented
with homogeneous transformations, T a

b , which belongs to the special Euclidean
group SE(3). The superscript represents the frame wherein the subscript
frame is expressed. The homogeneous transformation, T a

b , is made up by a
translation tab and a rotation Ra

b . The translation, tab , defines the distance
between the origin of frame b and frame a expressed in frame a, defined as a
3× 1 vector

tab =

oxoy
oz

 . (1)

The rotation Ra
b defines how frame b is oriented with respect to frame a. It

is a 3× 3 matrix, where the columns of Ra
b define the position of the the unit

axis of frame b expressed in frame a when the origins coincide

Ra
b =

xx yx zx
xy yy zy
xz yz zz

 . (2)

The rotational and translation relationship between two frames are combined
to form the homogeneous 4× 4 matrix T a

b

T a
b =

[
Ra
b tab

0 0 0 1

]
. (3)

The transformation can be visualized as in Fig. 3 where frame b is expressed
in frame a. Consecutive homogeneous transformations can be compounded as
in Eq. (4). If the transformations between frame a and frame b as well as

8

Virtual Representation

2017-12-18 thesisGraphics

1/1

xa

ya

za

xb

zb

yb

T
a
 b

Figure 3: Simple illustration of a homogeneous transformation.

frame b and frame c are known, they can be used to find the transformation
between frame a and frame c. This is done by simply post-multiplying the
homogeneous transformations together

T a
c = T a

bT
b
c. (4)

Most conventional industrial robots can be seen as serial manipulators, where
n + 1 rigid links are connected by n revolute joints in a series. The base of
the manipulator, link 0, is typically static. An end effector, such as a welding
gun, sealant dispenser, or gripper, is normally attached to link n + 1. Every
link i has an associated frame i that is fixed with respect to the link. The
transformation between consecutive link i− 1 and link i can be parameterized
with respect to the joint value θi.

The end effector position of the robot with respect to the base frame, T 0
E,

is calculated using the compound rule given in Eq. (4). Consecutive link
transformation parameterized with respect to the joint values are compounded
to reach the end effector frame

T 0
E(θ) = T 0

1(θ1)T 1
2(θ2)...TN−1

N (θN)TN
E . (5)

This allows us to calculate the forward kinematics, meaning given the joint
values θ of the robot, what is the position of the end effector T 0

E(θ). The
transformations, with their respective joint value parameterization between
links, can be determined systematically using the Denavit-Hartenberg (DH)
convention [24]. To describe the relationship using the DH convention, the
frames of the respective links are first assigned. This is done by choosing zi
along the axis of joint i+ 1. The origin of frame i is placed at the intersection

9

Virtual Representation

of zi with the common normal between zi and zi−1. The xi axis is assigned
along the common normal between zi and zi−1 in the direction of the common
normal from i − 1 to i. The yi axis is assigned to complete the right-handed
frame. An example of the frame assignment is shown in Fig. 4.

2017-12-15 thesisGraphics

1/1

 yi

lin
k i

 xi+1

 yi+1

 zi+1

(

)

T i
i+1 θ

i+1

 xi−1

 yi−1

 xi

(

)

T
i−1

i

θ i

θi

link
i+1

θi+1

 zi−1

 zi

Figure 4: Frame assignment following the DH convention for a serial manipu-
lator.

When all the frames are assigned to every link, the homogeneous transfor-
mations, Eq. (3), between links can be obtained. If the DH convention is
employed, only four parameters are required to be determined to describe the
relationship between consecutive frames. The four parameters ai, αi, di, and
θi are determined as follows:

di: Distance between the respective origin of frame i− 1 and i along the
axis zi−1.

θi: Angular displacement between axis xi−1 and xi around axis zi−1.

ai: Distance between the respective origin of frame i− 1 and i along the
axis −xi.

αi: Angular displacement between axis zi−1 and zi around axis xi.

The relationship between frame i − 1 and i can now be calculated as in Eq.
(8), following the DH convention. Since the z-axis is chosen along the axis of
the joint, for a revolute joint, the transformation is parameterized with respect
to the joint value.

10

Virtual Representation

T i−1
i (θi) = Translationz(di)Rotationz(θi)Translationx(ai)Rotationx(αi)

(6)

=
1 0 0 0

0 1 0 0
0 0 1 di

0 0 0 1

cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 cos(αi) −sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1


(7)

=


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (8)

2.3.2 iiwa kinematics

The KUKA iiwa robot is a serial manipulator with seven revolute joints. A
graphical rendition of the robot can be seen in Fig. 5. The forward kinematics
of the iiwa robot are determined in order to calculate the position of the end
effector following the method described in Section 2.3.1. The end effector is the
tool carried by the robot. The frame associated with the tool defines the tool
center point (TCP). The link frames and the DH parameters for the iiwa robot
have been identified and are given in Table 1 and Fig. 6, respectively.

Table 1: DH-parameters for the KUKA iiwa lbr 7 R800.

Linki ai αi di θi
1 0 −π

2 d1 = 340 mm θ1
2 0 π

2 0 θ2
3 0 π

2 d3 = 400 mm θ3
4 0 −π

2 0 θ4
5 0 −π

2 d5 = 400 mm θ5
6 0 π

2 0 θ6
7 0 0 d7 = 152 mm θ7

The end effector position relative to the base of the robot, Eq. (5), can now
easily be calculated as a function of the seven joints, θ

T 0
E(θ) = T 0

1(θ1)T 1
2(θ2)T 2

3(θ3)T 3
4(θ4)T 4

5(θ5)T 5
6(θ6)T 6

7(θ7)T 7
E. (9)

2.3.3 Path representation

This section presents the theory and concepts which describe the process to
geometrically represent the path of a robot. The path of the robot is made up

11

Virtual Representation

Figure 5: 3D rendering of the KUKA LBR iiwa R800 robot.
2018-01-04 thesisGraphics

1/1

y0x0

z0

,x1 x2 ,z1 y2

y1

z2

,x3 x4 y4

z3

,y3 z4

,x5 x6 ,z5 y6

y5

z6

d1

d3

d5

d7

y7x7

z7

Figure 6: Link frames following the DH convention. Joint θi rotates around
axis zi−1 in a counter-clockwise direction.

12

Virtual Representation

by a set of segments which together creates a path. A segment, P i(s), describes
how the robot moves between two positions defined in the configuration space
of the robot, θi−1 and θi. The segment is conveniently parameterized with
the scalar parameter s which is defined between 0 and 1. The procedure of
describing the segment with a scalar parameter s allows one to separate the
notion of time from the path, [25]. Once the path is known, the time evolution
can be calculated.

In this work, the PTP or point-to-point instruction has been considered for
simulation. The PTP instruction defines a straight line segment in configura-
tion space. A PTP segment, P i(s), between two joint position vectors, θi−1
and θi, can be linearly interpolated as

P i(s) = θi−1 + s(θi − θi−1), s ∈ [0, 1]. (10)

To allow for the robot’s smooth transition between two consecutive segments,
motion blending can be used. When the high-level motion instruction is pro-
grammed, it is typically defined alongside a joint-position vector θi and a
radius of where the blend will start, br. This radius defines a sphere in the
operational space centered at the corresponding Cartesian position ci of the
joint-position vector θi as can be seen in Fig. 7.

2018-03-04 thesisGraphics

1/1

ci−1

ci

ci+1ci,0

br

ci,1

Figure 7: Geometrical path of the TCP when the robot is allowed to blend the
consecutive segments.

The path of the TCP will at some point intersect with the incoming segment
P i(s) and the outgoing segment P i+1(s). The Cartesian positions of the end
effector ci,0 and ci,1 correspond to the joint position vectors θi,0 and θi,1. In
turn, these joint position vectors correspond to where the motion blending
will start and end. These intersection can be found by searching along the
segment until the absolute distance of the TCP is displaced at the distance
of the radius br from ci. An example of such a search is given by Algorithm
1 which has been proposed in [26]. The algorithm is applied to the incoming
and outgoing segments respectively; although the outgoing segment is reversed.
The algorithm returns values for s that correspond to the joint values θ that
make the TCP intersect with the sphere.

13

Virtual Representation

Algorithm 1 Determines where translation of the end effector defined by the
segment P (s) intersects a sphere with the radius br within a tolerance ε.
Require: (P (1) = θi) ∧ (br > 0)
1: ci ← T 0

E(θi) Eq. (9)
2: ∆L← 0
3: ∆s← 1
4: s← 1
5: while |∆L− br| > ε do
6: if ∆L ≥ br then
7: s← s+ ∆s

2
8: else
9: s← s− ∆s

2
10: end if
11: ∆s← ∆s

2
12: ∆L← ||ci − T 0

E(P (s))||
13: end while
14: return s

When the start and stop of the blend is know, it is a question of connecting the
segments with a smooth transition. A geometric method for performing motion
blending between two consecutive segments has been proposed in [20]. This
method works by constructing a new blend segment P b(s) that blend together
an incoming linear segment P 0(s) and outgoing linear segment P 1(s). The
incoming segment is defined from the start of the blend to the joint position
that is to be blended away

P 0(s) = θi,0 + s(θi − θi,0). (11)

The outgoing segment is defined from the joint position that is to be blended
away to the end of the blend

P 1(s) = θi + s(θi,1 − θi). (12)

To achieve a smooth transition between P 0(s) and P 1(s), the method pre-
sented in [20] introduces a function α(s), together with Eq. (11) and Eq. (12),
to form the blend segment

P b(s) = P 0(s) + α(s)(P 1(s)− P 0(s)). (13)

An conceptual illustration of the resulting blend together with the used nota-
tion is given in Fig. 8.

14

Virtual Representation

(s)P
k

b

θ
k

i

θ
k

i+1

(s)P
k

i
(s)P

k

i+1

θ
k

i−1

θ
k

i,0
θ

k

i,1

(s)P
k

0 (s)P
k

1

(s)Pb

θi

θi+1

(s)Pi (s)Pi+1

θi−1

θi,0
θi,1

(s)P0 (s)P1

Figure 8: Conceptual drawing of a blending motion in configuration space.

The goal is to calculate a blend segment, P b(s), that ensures a smooth tran-
sition between P 0(s) and P 1(s). The resulting blended segment P b(s) has to
be continuous during the start and end transition in the zone. Continuity of
the N :th degree means that the the blend segment has to have continuity of
the derivatives up the the N :th degree

dnP b(0)
dsn

= dnP 0(0)
dsn

, n = 1, 2, ..., N

dnP b(1)
dsn

= dnP 1(1)
dsn

, n = 1, 2, ..., N.
(14)

The function α(s), which fulfills the constraints in Eq. (14), is found by
differentiating P b(s), as in Eq. (15) & Eq. (16).

dP b(s)
ds

= dP 0(s)
ds

+ dα(s)
ds

(P 1(s)− P 0(s)) +α(s)
(
dP 1(s)
ds

− dP 0(s)
ds

)
(15)

d2P b(s)
ds2 =d

2P 0(s)
ds2 + d2α(s)

ds2 (P 1(s)− P 0(s)) +

2dα(s)
ds

(
dP 1(s)
ds

− dP 0(s)
ds

)
+ α(s)

(
d2P 1(s)
ds2 − d2P 0(s)

ds2

) (16)

By analyzing Eq. (15) and Eq. (16), it can be seen that the constraints
in Eq. (14) are fulfilled if α(s) is chosen so that it satisfies the following
constraints

15

Virtual Representation

α(0) = 0
α(1) = 1

dnα(0)
dsn

= 0, n = 1, 2, ..., N

dnα(1)
dsn

= 0, n = 1, 2, ..., N. (17)

If α(s) is chosen as a polynomial of degree 2N+1, where N specifies the degree
of continuity in the zone, the α(s) that adheres to the constraints in Eq. (17)
can be solved for. Some examples of such polynomials, where N = 1, 2 & 3,
are given in Eq.(18).

α(s) = 3s2 − 2s3, N = 1
α(s) = 10s3 − 15s4 + 6s5, N = 2
α(s) = 35s4 − 84s5 + 70s6 − 20s7, N = 3 (18)

This method described above has been used in works such as [19] and [26]
to describe the paths of industrial robots. The described methods provides
a smooth transitions between consecutive segments, but it is not possible to
control the shape of the transition. A method to allow control of the shape of
the transition is presented as well in [20]. This is done by introducing another
polynomial, β(s), and a fixed vector u to Eq. (13)

P b(s) = P 0(s) + α(s)(P 1(s)− P 0(s)) + β(s)u. (19)

To ensure a continuous transition between the incoming and outgoing seg-
ment, the following constraint has to apply to the polynomial β(s) to ensure
continuity of N order using the same reasoning as for α(s)

β(0) = 0
β(1) = 0

dnβ(0)
dsn

= 0, n = 1, 2, ..., N

dnβ(1)
dsn

= 0, n = 1, 2, ..., N. (20)

A polynomial of order 2N + 1 will satisfy the constraints in (20). The polyno-
mial β(s) is although chosen as a polynomial of order 2N + 2 to get one more

16

Virtual Representation

degree of freedom. This extra degree of freedom allows the shape of the blend
to be controlled. Example of such polynomials adhering to the constraints in
Eq. (20) can be calculated as follows

β(s) = k(s2 − 2s3 + s4), N = 1
β(s) = k(−s3 + 3s4 − 3s5 + s6), N = 2
β(s) = k(s4 − 4s5 + 6s6 − 4s7 + s8), N = 3. (21)

A polynomial of order 2N+2 is obtained that is scaled by a free scalar variable
k. The term that is unknown in Eq. (26) is β(s)u, k is set to one in Eq. (21)
and is instead seen as the scaling of the magnitude of u. In [20], it is proposed
to calculate the vector u by minimizing the average acceleration during the
blend

min
∫ 1

0

∣∣∣∣∣
∣∣∣∣∣d2P b(s)

ds2

∣∣∣∣∣
∣∣∣∣∣
2

ds. (22)

The optimal value of u will depend on the order of α(s) and β(s). In [20],
has been shown that if the continuity order N is chosen as two, the average
acceleration is minimized by assigning the vector u to the following

u = −15
2

(
dP 2(s)
ds

− dP 1(s)
ds

)
(23)

= −15
2 ((θi,1 − θi)− (θi − θi,0)) (24)

= −k ((θi,1 − θi)− (θi − θi,0)) (25)

The optimal vector u is scaled with the scalar k which at its optimum in terms
of minimizing the average acceleration is set to 15

2 . The final equation for the
blending motion using this method now becomes

P b(s) = P 0(s)+α(s)(P 1(s)−P 0(s))−kβ(s) ((θi,1 − θi)− (θi − θi,0)) . (26)

The so far described methods to achieve a smooth transition between consec-
utive segments utilize polynomials, (13) and (26). Another method that exists
in the literature simply creates a circular segment between the consecutive
segment. This method has been proposed in [27]. A graphical representa-
tion is given in Fig. 9. The incoming, P i(s), and outgoing, P i+1(s), segment

17

Virtual Representation

θi

θi+1

(s)Pi

(s)Pi+1

θi−1

θi,0

θi,1

γ

x ̂ i
y ̂

i

r

Δθ

oi

(s)Pb

Figure 9: Conceptual drawing of the resulting circular blend.

is simply blended together by following the circumference of a circle in the
configuration space.

The circular segment is calculated by first defining the vector ŷi as the unit
vector specifying the direction from θi−1 to θi

ŷi = θi − θi−1

||θi − θi−1||
. (27)

The angle between the incoming and outgoing segment, γi, is calculated as

γi = cos−1(ŷi ◦ ŷi+1). (28)

Given a defined distance in the configuration space, ∆θ, from where the blend
starts and stops, the radius of the circle can be calculated

ri = ∆θ
tan(γi

2) . (29)

When ri and γi is known, the center of the circle, oi, can be calculated

oi = θi + ŷi+1 − ŷi
||ŷi+1 − ŷi||

ri
cos(γi

2) . (30)

The vector x̂i is orthogonal to ŷi and gives the direction from the center of
the circle, oi, to the start of start of the blend θi,0

18

Virtual Representation

x̂i = θi −∆θŷi − oi
||θi −∆θŷi − oi||

. (31)

Utilizing these defined quantities, one can now calculate the joint values of the
robot throughout the circular blend

P b(s) = oi + ri(x̂icos(sγi) + ŷisin(sγi)). (32)

Three existing methods for calculating the path during a motion blend has
now been described. One method simply blends the motions together using
a polynomial, Eq. (13), another method that minimizes the average acceler-
ation Eq. (26) during the blend and a third method that simply follows the
circumference of a circle to achieve a smooth transition.

2.4 Trajectory generation

The trajectory calculation problem is to assign timestamps to the s-parameterized
path described in the previous section. The method used during this work for
assigning timestamps has been proposed in [28]. This methods solves the tra-
jectory generation as a optimization problem with consideration to constraints
to the joint velocity, joint acceleration and joint torque. To consider the joint
torque, knowledge of the dynamical parameters is needed. The manufactures
of industrial robots do typically not disclose to what extent the dynamics is
considered during trajectory generation. The consideration to joint torque is
therefore not considered since the treatments is unknown and will require sys-
tem identification. This sections first presents the used existing algorithm and
later describes how it has been applied to the iiwa.

2.4.1 Trajectory calculation algorithm

The time stamp assignment algorithm works by for every segment in the path,
P i(s), uniformly sample every segments with N samples on the interval of
s ∈ [0 1]. This results in a original time assignment, ti,0, for every sample θi.
The resulting path as a function t0 can be seen in Fig. 10.

Every sample, θi, represents a geometric position defined in configuration space
that has the same dimension as the number of joints, n. Every sample, θi, has
an assigned joint specific maximum velocity and maximum acceleration that
constrains the velocity and acceleration as can be seen in Eq. 33. Different
samples can have different velocity and acceleration constraints.

19

Virtual Representation

0 1 2 3 4 5
-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 10: Example of sampling a random path by the s-parameterization.

−θ̇ki,max ≤ θ̇ki ≤ θ̇ki,max

−θ̈ki,max ≤ θ̈ki ≤ θ̈ki,max, k = 1, 2, ..., n (33)

The algorithm sweeps over the samples, one joint at the time, and calculates
what the updated time stamp tki+1 that adheres to the velocity and acceleration
constraint of sample i+1. The updated time stamp for sample θi+1 is selected
as the maximum permissible time-stamps among the joints, Eq. 34.

ti+1 = max[t1i+1, t
2
i+1, ..., t

k
i+1], k = 1, 2, ..., n (34)

This means that at least one joint is always running in saturation, either
in terms of velocity or acceleration. An illustration of how the velocity and
acceleration constraints effects the updated time stamp for joint k is given in
Fig. 11.

2.4.2 iiwa trajectory calculation

To enable the use of the trajectory calculation algorithm described in the
previous section, the joint velocity and acceleration limits for the iiwa robot

20

Virtual Representation

Figure 11: Illustration of how timestamps are shifted with respect to veloc-
ity and acceleration constraints. In this case, the permissible time-stamp is
determined by tkt+1,acc.

needs to be determined. The maximum joint velocity for the iiwa 7 is given in
the technical specification. The maximum acceleration has been determined
experimentally by moving the individual joints short distances at max speed
while sampling the resulting path. From the resulting path, the acceleration
profile is obtained by differentiating twice and observing the maximum value,
see Appendix A for more details. The resulting maximum joint velocity and
acceleration is summarized in Table 2

Table 2: Velocity and acceleration limits for the iiwa.

Joint k 1 2 3 4 5 6 7
θ̇max [deg/s] 98 98 100 130 140 180 180
θ̈max [deg/s2] 490 490 500 650 700 900 900

When programming the robot, the high-level instructions can be assigned a
velocity specifying how fast the robot moves during this instruction. For a
PTP instruction, this is done by specifying the relative velocity(v% ∈ (0 1]).
The relative velocity is defined as a percentage relative to the maximum joint
velocity, θ̇max. This is incorporated in the trajectory calculation algorithm
through the velocity constraint as given in Eq. 35.

21

Virtual Representation

−v%θ̇
k
i,max ≤ θ̇ki ≤ v%θ̇

k
i,max

−θ̈ki,max ≤ θ̈ki ≤ θ̈ki,max, k = 1, 2, ..., n (35)

The constraint is applied to the samples associated with the segment defined
by the PTP instruction. When two segments are blended together, the sam-
ples associated with the blend segment is constrained by the velocity of the
following PTP instruction. This has been determined experimentally, see Ap-
pendix B. If there is no blend defined for the PTP instruction, the robot is
kept stationary at the point associated with the instruction for 0.05 seconds,
see Appendix C. This is likely imposed by the manufacturer to decrease the
vibration and tracking error.

Utilizing this algorithm, it is now possible to calculate the time evolution along
the geometrical path and obtain a cycle time estimation. The next chapter
will deal with how the robot can be remotely controlled and sampled to get
the real cycle time.

22

Physical Robot Interface

3 Physical Robot Interface

This chapter presents how the communication with the real iiwa robot has
been establish to allow synchronization and control of the robot. An appli-
cation called iiwaDrive has been created that enables one to communicate
with the real robot over a network. This chapter presents an overview of the
implementation and the underlying design choices.

3.1 iiwaDrive implementation

To allow the KUKA iiwa robot to work within a digital twin manufacturing
system, basic functionalities need to be made available for external applications
to connect to the real robot. The state of the virtual representation needs to
be synchronized with the real-world iiwa robot to allow the intelligence behind
the digital twin to simulate possible outcomes. The state of the real iiwa robot
that needs to be monitored, to allow synchronization, has been identified as
follows:

Joint positions state: The position of the robots seven axis. Utilizing the
forward kinematics, this defines the position of the robot in space.

Input/Output(IO) state: The robot is likely to carry some kind of tool.
The tool can be controlled through the IO interface. The state of the IO
defines the state of the tool.

Sensor state: Various sensors can be mounted on the robot, which data can
be useful for external applications. For example, the iiwa robot has tem-
perature sensors in every joint. The temperature reading can be useful
for diagnostic purposes and possible fault detection such as overheating.

In a digital twin manufacturing system, there is some form of intelligence
and decision-making process connected to the real robot. There is therefore a
need to remotely control the robot, allowing the decision maker to act upon its
decision by moving the robot. This can be done on the iiwa robot by specifying
high-level motion instructions such as PTP that the robot then executes. It
is also possible to specify a trajectory, timestamped joint positions, that the
iiwa robot can execute.

The iiwa robot is controlled through the KUKA Sunrise Cabinet[29]. The
Sunrise cabinet is the next generation of robot controllers from KUKA. It
is running the Sunrise Operating System (OS) [23] which allows the user to
program the robot through an extensive JAVA interface. The JAVA interface
exposes all the features needed to acquire the states mentioned, as well as the
possibility to run high-level motion instructions. These features are however
only available through the code running on the Sunrise cabinet. If the iiwa

23

Physical Robot Interface

robot is to be part of a digital twin manufacturing system, these features need
to be exposed to external applications. Luckily, the Sunrise cabinet has two
Ethernet ports that can be used to communicate with other applications over
a network.

The iiwaDrive has been created specifically to unlock the features of monitor-
ing and control of real iiwa robot from external application over a network.
The iiwaDrive utilizes the Fast Robot Interface (FRI) [30] that gives real-time
access to the KUKA Sunrise OS. The FRI connection allows for monitoring of
joint positions at up to 1 ms intervals from an external PC. No other proto-
col currently offer the speed that is achievable with FRI since it is interfacing
with the real-time system of the Sunrise OS. It is also possible to command
the robot through the FRI connection by cyclically sending new joint positions
to the robot. This effectively bypasses the internal robot trajectory genera-
tion that translates high-level motion instruction. The developed iiwaDrive
offers both capabilities in terms of running trajectories through FRI and let-
ting the internal trajectory generator move the robot though high-level motion
instructions. Besides FRI, iiwaDrive uses the ZeroMQ [31] messaging library
to interface with the robot from an external PC. The ZeroMQ was chosen as
the messaging library because of its asynchronous messaging capability, mean-
ing that the applications or processes that share messages will not become
blocked.

External applications that have a virtual representation of the real iiwa robot
can connect to the iiwaDrive through the ZeroMQ interface. The iiwaDrive can
stream the joint positions of the real robot allowing the virtual representation
to be synchronized with the real robot as well as instruct the robot to execute
motions. The iiwaDrive has three main parts: a JAVA program running on
the iiwa Sunrise Cabinet, a C++ application called iiwaDrive running on a
external PC and a external application that has a virtual representation of the
robot. The external application can either be running on the same PC as the
iiwaDrive or running on a second PC connected over a network with the PC
running the iiwaDrive.

A conceptual overview of the iiwaDrive is given in Fig. 12. The following
sections present a more detail description of its main parts.

3.1.1 Sunrise Cabinet Robot Program

A robot program written in JAVA has been created that is running on the
Sunrise Cabinet. When the robot program is started, the FRI communication
is established and two ZeroMQ sockets are created operating on two different
ports. One ZeroMQ socket handles incoming instruction from the iiwaDrive
and another is used to synchronize the state of the robot program with the
iiwaDrive. The iiwaDrive and the robot program can enter into three differ-
ent states: idle, runningMotion and runningTrajectory that are synchronized

24

Physical Robot Interface

iiwaDrive

Application

REQ REP REPREQ

REQREP

PUBSUB FRI

Sunrise
External

Robot
Controller

iiwa

FRI

Handler

Thread

Instruction

Thread

State Change

Thread

iiwa
State

Synchronization
Cabinet

Instructions Instructions

Robot Change

Joint Positions

Figure 12: Graphical overview of the iiwaDrive implementation. The blue line
represents a ZeroMQ connection while the black is the FRI connection.

through the two sockets. The instructions and state synchronization utilize
the Request(REQ)-Reply(REP) pattern provided by ZeroMQ. It is a simple
server-client pattern where the REQ socket act as a client and the REP socket
act as a server. The REQ socket sends a request message to the REP socket,
the message is processed and a reply is sent back to the REQ socket. The
socket pair is in lockstep, meaning that the REQ socket has to receive a reply
from the REP socket before a new request can be sent. This behavior has been
used in the iiwaDrive to make the robot program acknowledge the instruction
that are sent from he iiwaDrive application, making sure that they have been
received. The same goes for when the state is changed at the robot program
end, the change of state then has to be acknowledge by the iiwaDrive.

Once the communication has been initialized the application enters the passive
idle state where it is waiting for instruction from the iiwaDrive application.
The instructions can either be a set of high-level PTP motion commands with
an associated motion settings, trajectory execution request, sensor readings
request, IO get or IO set. The sensor readings request, IO get or IO set can
be executed when the robot program is in the idle state. When the iiwaDrive
sends high-level motion commands the state changes to runningMotion. When
the real robot has executed its motions, the robot program sends a state change
message to the iiwaDrive changing both the applications state to idle. When a
request to run a trajectory is received, the robot program and iiwaDrive enters
a runningTrajectory mode when the robot is commanded through timestamped
joint positions sent through FRI. When the trajectory execution is done, the ii-

25

Physical Robot Interface

waDrive sends a instruction specifying that the trajectory is done and the robot
program cancels the trajectory execution and enters the idle state again.

3.1.2 iiwaDrive application

The iiwaDrive application act as a middle layer between the robot and the ex-
ternal application that wants to interface with the robot. When the iiwaDrive
is started, three threads are created. One handling incoming instructions,
one waiting for state changes from the iiwa robot and one handling the FRI
communication.

The FRI communication between the iiwaDrive and the sunrise cabinet has to
be running cyclically for the connection to not deteriorate. The Sunrise cabinet
sends out data containing information about the current state of the robot such
as joint positions and expects a reply from the iiwaDrive within a fixed time
interval. The FRI communication is therefore running in its own thread to
minimize the computational burden allowing the iiwaDrive to reply within
the fixed time interval. The FRI can operate in two modes, monitoring or
commanding. If the mode is monitoring, the reply is just an acknowledgment.
If the FRI is in commanding mode the reply will contain an updated joint
position set-point which the robot will track, effectively allowing the iiwaDrive
to execute trajectories.

The ZeroMQ implementation of the Publish(PUB)-Subscribe(SUB) pattern has
been utilized to share the joint position of the robot with the external applica-
tion. In the PUB-SUB pattern, the publisher is sending a constant stream of
messages that a number of subscribers can listen to. The PUB-SUB pattern is
useful since the publish operation is asynchronous in the ZeroMQ implementa-
tion. The asynchronous property means that the FRI-thread will not become
blocked whenever it has to share the current state of the robot. Every cyclic
message that the FRI thread receives contains the current joint position of the
robot. Before a reply is sent back to the robot, the current joint positions
are published on the ZeroMQ PUB socket. This allows the external applica-
tion to subscribe to a stream of joint values whenever it is desired. Multiple
subscribers can subscribe to the stream of joint positions if desired, but in
this thesis, only one has been evaluated. The PUB-SUB pattern is very useful
when synchronizing the joint values of the virtual representation with the real
robot. Whenever synchronization is desired, the external application holding
the virtual representation subscribe to the joint values of the real robot and
update the graphical representation accordingly at a fast rate.

The instruction handler thread is constantly waiting for incoming instruction
on a REQ-REP socket. An external application is able to connect and send
requests in the shape of instructions to the iiwaDrive. As previously mentioned,
the instructions can either be a set of high-level motion instructions, trajectory
execution request, sensor readings request, IO get or IO set. The iiwaDrive can

26

Physical Robot Interface

enter into three state idle, runningMotion and runningTrajectory. The idle
state is adopted during initialization. This state is mainted until a request
to execute a set of high-level motion instructions or a request to execute a
trajectory is received from the external application. If a request to execute
a set of high-level motion instructions is received, the iiwaDrive enters the
runningMotion state. The samples received in the FRI thread is now buffered
locally, as well as published. The instruction handler thread forwards the high-
level motion instructions to the robot program which acknowledge the message
and starts to execute the motions. When the motions have been executed, the
robot program signals a state changed to the iiwaDrive. The buffered samples
are now sent back as a reply to the external application before the state of the
application become idle again.

If a trajectory execution request is received by the instruction handler thread,
the application enters in to the runningTrajectory state. The timestamped
joint positions are fed to the FRI thread and an instruction to start the trajec-
tory execution is passed to the robot program. The trajectory is executed and
the samples received by the FRI thread is buffered locally. When the trajec-
tory is done executing, instruction handler thread signal to the robot program
to enter the idle state again. Before the iiwaDrive enters the idle state, the
buffered samples are sent back as a reply to the external application.

Whenever a sensor reading or IO request is received by the instruction handler
thread, they are simply forwarded to the robot program. The robot program
either execute the IO set or answers with the resulting sensor reading or IO
state.

3.1.3 External application

The messages that are exchanged between the iiwaDrive and the external ap-
plications have been defined using the JSON format. The JSON format is a
language independent way of defining data in a human-readable way. The idea
is to keep the communication with the iiwa robot to any outside application
generic as much as possible. If one wants to use another communication library
instead of ZeroMQ to communicate with the iiwaDrive it is possible as long as
the defined JSON format is kept.

An external application can connect communicate with the iiwaDrive through
the instruction REP-REQ socket and receive a constant stream of joint position
of the robot through the PUB-SUB socket. This allows for remote control
of the robot as well as monitoring and state synchronization of the virtual
representation.

27

Evaluation of Blending Methods

4 Evaluation of Blending Methods

To be able to simulate the motion of the iiwa robot, a good match between
the geometrical path in simulation and the real robot controller is required. In
this section, it is therefore evaluated how well the blending methods described
in section 2.3.3 is able to capture the geometrical path of the real iiwa robot.
Based on the result from the evaluation, a extension to the described blending
methods is presented. Firstly, the high level motion commands possible for
the iiwa robot is translated to be able to calculate the geometrical path of the
blends.

4.1 iiwa path representation

A PTP segment for the iiwa robot is calculated utilizing Eq. (10). There
exist two ways of defining a motion blend for the iiwa robot, Cartesian blend
(br in mm) and a relative blend (b% ∈ [0, 0.5]). The Cartesian blend defines
a sphere around the point ci while the relative blend defines a percentage in
configuration space before the joint position that is to be blended away.

The start, θi,0, and the end, θi,1 defined with a relative blend, b%, can easily
be found as

θi,0 = θi−1 + (1− b%)(θi − θi−1)
θi,1 = θi + b%(θi+1 − θi). (36)

When it comes to determining the start and end of the Cartesian blend, Al-
gorithm 1 could be adopted. This algorithm can although not guarantee that
the right intersection with the sphere is found. This is due to the fact that
the sphere is defined in operational space while the path is interpolated in
configuration space. Algorithm 1 has therefore been modified to search along
the incoming and outgoing segments respectively until an intersection is found.
This is done by incrementally decreasing s until the first intersection is found
closest to the blending position ci. As long as two intersections do not occur
for one increment the right intersection will be found. While this algorithm
cannot guarantee that the right intersection is found, it has been deemed more
likely to succeed. This simple algorithm is given in Algorithm 2. To limit two
consecutive blend to not overlap, s is limited to 0.5.

When Algorithm 2 has been applied to the incoming segment, P i(s), and the
reversed outgoing segment, P i+1(s), the joint-values of the intersection can be
found

28

Evaluation of Blending Methods

Algorithm 2 Determines where translation of the end effector defined by the
segment P (s) intersects a sphere with the radius br using incremental decrease
of s.
Require: (P (1) = θi) ∧ (br > 0)
1: ci ← T 0

E(θi) Eq. (9)
2: ∆c← 0
3: sbr ← 1
4: while ∆c < br do
5: sbr ← sbr − 0.001
6: ∆c← ||ci − T 0

E(P (sbr
))||

7: end while
8: if sbr < 0.5 then
9: sbr ← 0.5
10: end if
11: return sbr

P i(s) = θi−1 + s(θi − θi−1)
P i+1(s) = θi+1 + s(θi − θi+1)

θi,0 = P i(sbr,i)
θi,1 = P i+1(sbr,i+1). (37)

How well these methods of calculating the start and stop of the blend given
br or b% applies to the iiwa robot has been experimentally tested. A path
consisting of two PTP instructions where only joint two and four are moved
has been tested. For the middle PTP instruction, the robot is allowed to blend
with a br of 200 mm. The resulting end effector path of the real iiwa robot
can be seen in Fig. 13a. The circles in Fig. 13a represents the start and stop
of the blend if Algorithm 2 is used. It can be seen that it does not capture the
start and stop of the blend since the blend does not start where the circles are.
If one instead looks at the path in configuration space, Fig. 13b, one can see
that the blending of the sampled path from the real iiwa robot starts and stops
at an absolute distance ∆θ from the point θi. One can therefore conclude that
the shortest absolute distance will control where the blending starts and stops
if a match with the real iiwa robot path is desired.

This behavior can easily be achieved by scaling the longest absolute distance
of the two. Given the joint position to be blended away, θi, and an initial start
and stop of the blend calculated either with Eq. (36) or (37), the updated start
and stop position of the blend can be found using Algorithm 3.

If Algorithm 3 is applied to the test case mentioned above, where the blend
starts and stops are captured accurately as can be seen in Fig. 14. It is now
known at what joint configuration the blend starts, θi,0, and stops, θi,0.

29

Evaluation of Blending Methods

(a) End effector path during experi-
ment with a blend br of 200 mm. The
circles represents the calculated start
and stop of the blend, ci,0 and ci,1.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

(b) Corresponding path in configura-
tion space. The circles represents the
calculated start and stop of the blend
in configuration space θi,0 and θi,1

Figure 13: Resulting path of two PTP instructions sampled on the real iiwa
robot.

Algorithm 3
Require: θi, & θi,0,initial, & θi,1,initial
1: ∆θi,0 ← ||θi − θi,0,initial||
2: ∆θi,1 ← ||θi − θi,1,initial||
3: if ∆θi,1 ≥ ∆θi,0 then
4: θi,0 ← θi,0,initial
5: θi,1 ← θi + ∆θi,0 θi,1,initial−θi

||θi,1,initial−θi||
6: else
7: θi,0 ← θi + ∆θi,1 θi,0,initial−θi

||θi,0,initial−θi||
8: θi,1 ← θi,1,initial
9: end if
10: return θi,0 & θi,1

30

Evaluation of Blending Methods

(a) The circles represent the calcu-
lated start and stop of the blend, ci,0
and ci,1

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

(b) The circles represents the calcu-
lated start and stop of the blend in
configuration space θi,0 and θi,1

Figure 14: Result after applying algorithm 3. The circles represents the up-
dated start and stop of the blend.

4.2 Evaluating existing methods

Once the start and stop of the blend is know, it is possible to calculate the
shape of the blend. In chapter 2.3.3, three existing methods in the literature for
calculating the geometrical path during the blend has been described. These
consist of Eq. (13) where a polynomial α(s) is used, Eq. (26) where the
polynomial α(s) together with a scaled polynomial, β(s) that minimizes the
acceleration and Eq. (32) where a the blend follows the perimeter a circle.

It is desired to achieve an as accurate geometrical path as possible to ensure
an accurate simulation. An experiment has been conducted to evaluate if any
of these methods is capable of achieving a similar geometrical path during the
blend as the real iiwa robot. This has been done by instructing the robot with
two PTP instructions where only joint two and four are moving while sampling
the real path. This allows one to easily visualize the path in configuration
space. The first PTP instruction is defined with a relative blend, b%, of 0.25.
The second PTP instruction is varied in a circular fashion around the point to
be blended away resulting in 36 blending motions.

How the calculated blend utilizing Eq. (13) captures the blending motion can
be seen in Fig. 15. This method utilizes a blending polynomial α(s) to achieve
a smooth transition between the consecutive segments. It is clear that this
method fails to capture geometrical path during the blend, there is a clear
deviation between the calculated and the sampled path.

31

Evaluation of Blending Methods

(a) Overview in configuration space of
the resulting paths.

(b) Enlarged view of the blending mo-
tions.

Figure 15: Comparison between the calculated blend utilizing Eq. (13) and
the sampled path.

How the calculated blend utilizing Eq. (26) captures the blending motion can
be seen in Fig. 16. This methods utilizes a blending polynomial α(s) as well as
a polynomial β(s) that theoretically minimizes the average acceleration during
the blending motion if κ is chosen as 15

2 . This method fails as well to capture
the geometrical path of the real robot.

(a) Overview in configuration space of
the resulting paths.

(b) Enlarged view of the blending mo-
tions.

Figure 16: Comparison between the calculated blend utilizing Eq. (26) and
the sampled path.

How the calculated blend utilizing Eq. (32) captures the blending motion can
be seen in Fig. 17. It is clear that this method fails to reproduce the path of
the real robot. The sampled path does not follow a circular path as can be
seen in Fig. 17b.

32

Evaluation of Blending Methods

(a) Overview in configuration space of
the resulting paths.

(b) Enlarged view of the blending mo-
tions.

Figure 17: Comparison between the calculated blend utilizing Eq. (32) and
the sampled path.

4.3 Extension of existing method

None of the evaluated methods are able to reproduce the same path as the
real robot. Out of the methods evaluated, only the method described by
Eq. (26) offers the possibility to control the shape of the blend. This can
be done by varying the free variable k. If one analyzes Fig. 15b, it can
be seen that the calculated path at some instances overshoots and at others
undershoots the sampled path. This behavior varies depending on the angle
between the incoming and outgoing segment. Varying k will not affect the
continuity requirements, Eq. (20), since β(s) it zero at the beginning and end
of the blending segment. The fact that the continuity constraints for different
values of k are not violated can be seen in Fig. 18.

Varying k will have the effect of guiding the blend closer or further away from
the point to be blended away, θi, since it will scale the vector
((θi,1 − θi)− (θi − θi,0)), Fig. 19.

It is therefore proposed to control the shape of the blend by varying k depend-
ing on the angle between the incoming and outgoing segment. Let κ define
a magnitude that is dependent on the angle γi. A relationship between the
scaling magnitude κ and the angle γi has been experimentally determined by
manually tuning and observing the values that result in the highest correspon-
dence between the sample and calculated path. The experiment was performed
on the path used for evaluating the blending methods. The observed relation-
ship is shown in Fig. 20.

It can bee seen that there is a relationship between the scaling κ and the angle
γi. This relationship can be modeled with a second degree polynomial

33

Evaluation of Blending Methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 18: Effect of scaling the polynomial β(s) with different values of k.

(s)Pb

θi

θi,0 θi,1

(−)θi θi,0 (−)θi,1 θ0

(−) − (−)θi,1 θi θi θi,0

Figure 19: When the value of κ is varied, it will guide the blend along the
vector ((θi,1 − θi)− (θi − θi,0)).

34

Evaluation of Blending Methods

0 20 40 60 80 100 120 140 160 180

-4

-3

-2

-1

0

1

2

3

4

5

6

Figure 20: Manually tuned κ that results in the highest correspondence be-
tween the sample and calculated path

κ(γi) = 0.00028472γ2
i + 0.00626016γi − 3.97426471 (38)

It is therefore proposed that the blending motion for the iiwa robot can be
calculated as follows

P b(s) =P 0(s) + α(s)(P 1(s)− P 0(s))
− κ(γ)β(s) ((θi,1 − θi)− (θi − θi,0)) . (39)

The proposed method in Eq. (39) is capable accurately describing the geomet-
rical path of the iiwa robot during the blend as can be seen in Fig. 21. There
are some differences between sampled and calculated path as can be seen in
Fig. 21b, but utilizing this proposed method, the geometrical path can more
accurately be described compared to the methods in the literature.

35

Evaluation of Blending Methods

(a) Overview in configuration space of
the resulting paths.

(b) Enlarged view of the blending mo-
tions.

Figure 21: Comparison between the calculated blend utilizing Eq. (39) and
the sampled path.

36

Results

5 Results

In this section, the proposed method for simulating the movements is eval-
uated, this includes combining the geometrical path calculation described in
the previous chapter with the trajectory generation to estimate the cycle time.
The virtual representation and communication with the real robot through the
iiwaDrive has been implemented in the IPS -software developed by Fraunhofer-
Chalmers Centre[32]. A brief conceptual utilization case of the developed ca-
pabilities of simulating motions and interfacing with the real robot is lastly
demonstrated.

5.1 Evaluation of proposed simulation method

The approach for simulating the movements has been implemented in the IPS-
software. The interface with the iiwaDrive has been implemented which allows
one to execute motions and sample motions from the IPS software. These
capabilities have been utilized to validate the simulation method against the
motion of the real robot.

5.1.1 Geometric end-effector path estimation

A comparison between the estimated and real geometric path of the end-
effector can be seen in Fig. 22. The estimated path was calculated using
the proposed method described in section 4.3. The motion program is made
up of three PTP instructions. Fig. 22a shows the comparison when two of the
three PTP instruction are defined together with a relative blend and Fig 22b
show the result when two of the three PTP instruction are defined together
with a Cartesian blend. It can be seen in Fig. 22 that the geometrical path of
the robot is captured well.

5.1.2 Cycle time estimation

The proposed simulation capability in terms of cycle-time has been evaluated
by looking at the difference in simulated cycle-time, Ts, and the cycle time
when the real robot executes the same motion program, Tr. Five motion
programs consisting of ten PTP instructions each were randomly generated.
The evaluation has been set up so that the motion programs have three degrees
of freedom, relative blend(b%), relative velocity(v%) and path length(λ). The
length between every consecutive joint move instruction can be controlled with
the path length parameter λ that has been introduced for the experiment. A
low λ-value results in short paths while a larger value results in longer paths.

37

Results

(a) Relative blend b% ∈
[0, 0.1, 0.3, 0.5]

(b) Cartesian blend br ∈
[0, 50mm, 100mm, 150mm].
The circle represents a sphere with
radius br.

Figure 22: TCP trace when blending the segments with relative blend and
Cartesian blend. The blue path is the calculated path and the red is the real
robot path.

The error in cycle-time has been evaluated as a time difference, εt, and as a
percentage, ε%

εt = Ts − Tr
ε% = εt

Tr
.

(40)

The effect of varying the relative velocity can be seen in Fig. 23 for a given
path length and relative blend. The error, εt, stays around 0% for low relative
velocities while for high relative velocities it differs as much as 15%. This is
expected since running the robot at low relative velocity, the robot is going to
maintain its allowed maximum relative velocity for the majority of the path
and therefore not a minimal amount of time will be spent decelerating and
accelerating. If the estimated geometrical path is close to the real path, the
robot will maintain a low constant velocity along the path resulting in a good
estimation. For high relative velocities, the time spent accelerating and decel-
erating throughout the blend can be an explanation for the difference in cycle
time. The utilized trajectory generation algorithm maintains the acceleration
within the specified limits, but higher order constraints such as jerk and torque
imposed by the robot controller can cause the two to differentiate.

38

Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-15

-10

-5

0

5

10

15

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) The error, ε, in terms of percent-
age and seconds.

(b) Resulting TCP path. The blue
path is the simulated path and red is
the sampled from the real robot.

Figure 23: How a varying relative velocity affects the error in cycle time esti-
mation given a fixed path length (λ = 200) and relative blend (b% = 0.25) for
5 random paths.

The effect of varying the relative blend can be seen in Fig. 24 for a given
path length and relative velocity. When no blend is used, meaning that the
geometrical paths are identical, the simulated cycle time is less than cycle
time of the real robot. This is expected since the real robot considers the
effects of limited jerk during trajectory calculation. As the blend becomes
bigger, the simulated cycle time is close to the cycle time of the real robot.
When blending occurs there is a relatively small change in velocity between
consecutive instructions, this allows the robot to maintain is velocity which
results in a good cycle time estimation.

The effect of varying the path length can be seen in Fig. 25 for a given
relative blend and relative velocity. The error, εt, stays constant within 2%
when varying the path length for longer paths. For shorter paths, there is
a marginally bigger difference in the cycle time estimation. When the path
is shorter, it will cause the acceleration and deceleration phase to make up a
larger portion of the total cycle-time. The fact that jerk is not considers is a
plausible cause for this behaviour.

In summary, the cycle-time can be estimated for low velocities and when blend-
ing is present within a few percent. The worst cycle-time estimation is obtained
when motions are programmed with high velocities and no blending.

39

Results

0 0.1 0.2 0.3 0.4 0.5
-15

-10

-5

0

5

10

15

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) The error, ε, in terms of percent-
age and seconds.

(b) Resulting TCP path. The blue
path is the simulated path and red is
the sampled from the real robot.

Figure 24: How a varying relative blend affects the error in cycle time estima-
tion given a fixed path length (λ = 200) and relative velocity (v% = 0.4) for 5
random paths.

50 100 200 300 400 500
-15

-10

-5

0

5

10

15

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 25: How a varying path length affects the error in cycle time estimation
given a fixed relative blend (b% = 0.25) and relative velocity (vr = 0.4) for 5
random paths

40

Results

5.2 Demonstration of capabilities within a digital twin

To put everything in to context, a short demo has been created in the IPS
software to highlight the results. A digital twin of a real-world setup has been
modeled in the IPS software. The digital twin contains CAD representations of
the environment as well as the iiwa robot with the developed capabilities. The
virtual representation can be seen in Fig. 26a and the physical counterpart
can be seen in Fig. 26b.

(a) Virtual representation rendered in IPS. (b) Real iiwa robot.

Figure 26: Digital twin example.

The joint position of the virtual representation can be synchronized with the
real robot through the developed iiwaDrive joint value streaming interface.
When the robot moves in reality, it is continuously updated in IPS. This
enable one to utilize the functionality of IPS such as real time distance mea-
sures between the robot and environment and perform collision-free path plan-
ning.

When the robot moves in reality, the virtual representation of the robot is up-
dated in IPS. Positions of the robot can be saved in the software and collision-
free robot programs can be calculated and simulated. When the simulation
outcome is satisfactory, the robot program can be sent to the robot and exe-
cuted. The resulting trajectory from the real robot is sent back to the software

41

Results

and can be replayed if desired. An example is shown in Fig. 27 where the robot
goes from a position outside the cage to a position inside the cage. The mo-
tion can be simulated with the developed method and verified before it is
executed.

(a) Robot positioned outside the cage.
(b) Robot positioned inside the cage after the cal-
culated final position.

Figure 27: Example where a the robot is moved inside the cage.

42

Conclusion

6 Conclusion

During this work, the needed capabilities to allow the KUKA iiwa robot to
work within a digital twin manufacturing system has been developed. This in-
cludes adapting existing methods for simulating the movements resulting from
high-level motion commands. An application named iiwaDrive has been de-
veloped that enables external application to communicate with the real robot.
The developed features include being able to synchronize virtual representa-
tion with the state of the real robot as well as allowing external applications
to execute high-level motion commands on the real robot. The proposed in-
terface with the real robot has been successful in allowing external monitoring
of the real robot as well as allowing external applications to interface with
the real robot. By utilizing the FRI protocol together with ZeroMQ, external
monitoring at down to 1 ms is possible.

Existing methods for calculating the geometrical path has been evaluated and
built upon to create a method for describing the geometrical path of the iiwa
robot. Utilizing this method it is possible to achieve accurate estimations of
how the robot will move geometrically based on the given commands.

The evaluation performed in terms of estimating cycle time shows that the
methods utilized to simulation the motion is capable of estimating the cycle
time of the real robot for a given motion program defined with PTP instruc-
tions within 15%. No consideration to jerk or torque limits of the manipulator
has been considered. This is a drawback of the utilized trajectory generation
method since it fails to capture the cycle-time when the robot is programmed
with high velocities.

6.1 Future work

No tool has been considered to be mounted on the robot during this work. The
extra load on the robot will most likely cause the internal robot trajectory gen-
erator to at some degree limit the velocity and acceleration during the motion.
One important future aspect to consider is therefore how this behaviour can
be included in the cycle time estimation.

Only PTP instructions in the configuration space has been considered during
this work. A natural extension is to include motions defined in the operational
space such as linear and circular movements of the end-effector.

When the robot is operating, large amount of data is constantly being sent
from the iiwaDrive application in the form of joint value positions. ZeroMQ
might not be ideal if one wants to share and keep track of large amounts of
data. It might therefore be of interest to integrate the developed iiwaDrive

43

Conclusion

to communicate with external applications using a messaging software such
as Apache Kafka [33] which is capable of efficiently streaming data as well as
storing if over time.

44

REFERENCES

References

[1] E. J. Tuegel, A. R. Ingraffea, T. G. Eason, and S. M. Spottswood, “Reengi-
neering aircraft structural life prediction using a digital twin,” Interna-
tional Journal of Aerospace Engineering, vol. 2011, 2011.

[2] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne,
and L. Wang, “Modeling, simulation, information technology & processing
roadmap,” National Aeronautics and Space Administration, 2012.

[3] E. Negri, L. Fumagalli, and M. Macchi, “A review of the roles of digital
twin in cps-based production systems,” Procedia Manufacturing, vol. 11,
pp. 939–948, 2017.

[4] R. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen, “About the
importance of autonomy and digital twins for the future of manufactur-
ing,” IFAC-PapersOnLine, vol. 48, no. 3, pp. 567–572, 2015.

[5] S. Boschert and R. Rosen, “Digital twin—the simulation aspect,” in
Mechatronic Futures. Springer, 2016, pp. 59–74.

[6] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,” In-
ternational Journal of Communication Systems, vol. 25, no. 9, p. 1101,
2012.

[7] R. Söderberg, K. Wärmefjord, J. S. Carlson, and L. Lindkvist, “Toward
a digital twin for real-time geometry assurance in individualized produc-
tion,” CIRP Annals-Manufacturing Technology, 2017.

[8] R. Bohlin, J. Hagmar, K. Bengtsson, L. Lindkvist, J. S. Carlson, and
R. Söderberg, “Data flow and communication framework supporting digi-
tal twin for geometry assurance,” in ASME 2017 International Mechanical
Engineering Congress and Exposition. American Society of Mechanical
Engineers, 2017, pp. V002T02A110–V002T02A110.

[9] R. Bernhardt, G. Schreck, and C. Willnow, “Realistic robot simulation,”
Computing & Control Engineering Journal, vol. 6, no. 4, pp. 174–176,
1995.

[10] KUKA. Lbr iiwa series. [Online]. Available: https://www.kuka.com/
en-my/products/robotics-systems/industrial-robots/lbr-iiwa.html

[11] S. Y. Nof, Handbook of industrial robotics. John Wiley & Sons, 1999,
vol. 1.

[12] H. David, “Why are there still so many jobs? the history and future of

45

https://www.kuka.com/en-my/products/robotics-systems/industrial-robots/lbr-iiwa.html
https://www.kuka.com/en-my/products/robotics-systems/industrial-robots/lbr-iiwa.html

REFERENCES

workplace automation,” Journal of Economic Perspectives, vol. 29, no. 3,
pp. 3–30, 2015.

[13] E. Wernholt, “Multivariable frequency-domain identification of industrial
robots,” Ph.D. dissertation, Institutionen för systemteknik, 2007.

[14] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[15] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators.
Springer Science & Business Media, 2012.

[16] Q.-C. Pham, “A general, fast, and robust implementation of the
time-optimal path parameterization algorithm,” IEEE Transactions on
Robotics, vol. 30, no. 6, pp. 1533–1540, 2014.

[17] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl,
“Time-optimal path tracking for robots: A convex optimization ap-
proach,” IEEE Transactions on Automatic Control, vol. 54, no. 10, pp.
2318–2327, 2009.

[18] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter iden-
tification of robots,” Robotics and computer-integrated manufacturing,
vol. 26, no. 5, pp. 414–419, 2010.

[19] D. Forsman, “Bangenerering för industrirobot med 6 frihetsgrader,” 2004.

[20] J. Lloyd and V. Hayward, “Trajectory generation for sensor-driven
and time-varying tasks,” The International journal of robotics research,
vol. 12, no. 4, pp. 380–393, 1993.

[21] J. J. Craig, Introduction to robotics: mechanics and control. Pearson-
/Prentice Hall Upper Saddle River, NJ, USA:, 2005, vol. 3.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA
workshop on open source software, vol. 3, no. 3.2. Kobe, Japan, 2009,
p. 5.

[23] KUKA. Sunrise.os. [Online]. Available: https://www.kuka.com/en-se/
products/robotics-systems/software/system-software/sunriseos.html

[24] R. S. Hartenberg and J. Denavit, Kinematic synthesis of linkages.
McGraw-Hill, 1964.

[25] K. M. Lynch and F. C. Park, Modern Robotics. Cambridge University
Press, 2017.

46

https://www.kuka.com/en-se/products/robotics-systems/software/system-software/sunriseos.html
https://www.kuka.com/en-se/products/robotics-systems/software/system-software/sunriseos.html

REFERENCES

[26] T. Ustyan and V. Jönsson, “Implementation of a generic virtual robot
controller,” Master, Chalmers University of Technology, 2011.

[27] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path
following with bounded acceleration and velocity,” Robotics: Science and
Systems VIII, 2012.

[28] D. Gleeson, S. Björkenstam, R. Bohlin, J. S. Carlson, and B. Lennartson,
“Towards energy optimization using trajectory smoothing and automatic
code generation for robotic assembly,” Procedia Cirp, vol. 44, pp. 341–346,
2016.

[29] KUKA. Sunrise sunrise cabinet. [Online]. Avail-
able: https://www.kuka.com/en-se/products/robotics-systems/
robot-controllers/kuka-sunrise-cabinet.html

[30] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface for
the kuka lightweight robot,” in IEEE Workshop on Innovative Robot Con-
trol Architectures for Demanding (Research) Applications How to Modify
and Enhance Commercial Controllers (ICRA 2010), 2010, pp. 15–21.

[31] P. Hintjens, ZeroMQ: messaging for many applications. " O’Reilly Media,
Inc.", 2013.

[32] Fraunhofer-Chalmers Centre. IPS. [Online]. Available: http://www.fcc.
chalmers.se/software/ips

[33] N. Garg, Apache Kafka. Packt Publishing Ltd, 2013.

47

https://www.kuka.com/en-se/products/robotics-systems/robot-controllers/kuka-sunrise-cabinet.html
https://www.kuka.com/en-se/products/robotics-systems/robot-controllers/kuka-sunrise-cabinet.html
http://www.fcc.chalmers.se/software/ips
http://www.fcc.chalmers.se/software/ips

Acceleration and jerk limit experiment

Appendix A Acceleration and jerk limit ex-
periment

The limit on the joint acceleration and joint jerk has been determined experi-
mentally. This was done by placing the robot at different poses and individu-
ally commanding the joints to go from -20 degrees to +20 degrees relative to
the point at max speed. The commanded joint values were sampled using FRI
and numerically differentiated to obtained acceleration and jerk values for the
movement. An example can be seen in Fig. 28 where a movement for joint 1
is tested.

Depending on the joint positions, the torque acting on the joints will be dif-
ferent. The experiment is therefore performed for 20 initial positions, given in
Table 3, to see if it affects the maximum acceleration and jerk. The results are
presented in Table 4 and Table 5. The experiment shows that the commanded
max acceleration remain the same independent of the initial position. Notable
is that no tool was mounted on the robot during the experiments which might
effect the result.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-100

-50

0
Joint 1

P
os
it
io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-100

0

100

V
el
oc
it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-500

0

500

A
cc
el
er
a
ti
on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2

0

2
x 10

4

J
er
k

t

Figure 28: Example experiment for joint 1.

48

Acceleration and jerk limit experiment

Table 3: Initial joint positions during experiment

Initial joint position [Deg]
Run θ1 θ2 θ3 θ4 θ5 θ6 θ7
1 -44.91 27.72 96.85 49.32 -97.77 71.79 65.26
2 4.06 -13.72 -145.50 -81.72 -40.66 -70.54 -103.57
3 146.56 -3.80 -114.28 -99.07 -147.33 -24.42 9.82
4 21.36 7.12 32.15 -66.75 48.91 -9.84 -45.84
5 -132.89 7.54 85.00 60.52 5.96 -39.61 116.55
6 68.00 31.91 127.72 7.87 -107.30 -7.58 -82.05
7 108.67 -20.33 83.90 68.73 149.04 99.94 34.56
8 -32.27 -16.37 -60.82 68.03 -142.88 -24.83 -126.29
9 53.16 -31.06 -147.36 83.76 -67.23 -45.42 27.25
10 57.35 23.63 67.95 -3.01 -88.39 48.75 -9.78
11 -12.61 31.44 73.33 -78.34 29.71 -22.95 72.85
12 32.69 5.07 -41.60 -69.69 -82.47 -14.97 93.89
13 5.13 34.30 75.46 -30.89 -99.31 31.46 -2.51
14 -130.94 13.98 1.44 -70.50 134.88 -71.68 125.59
15 57.87 -13.79 -22.03 -85.92 139.98 36.64 -107.50
16 113.18 22.52 24.61 -61.73 -96.63 63.44 -7.67
17 -103.33 0.27 69.61 -18.88 -66.13 13.75 56.49
18 76.76 15.53 -7.41 -75.40 -39.66 66.94 -144.12
19 5.10 11.41 -22.13 -79.06 134.80 84.28 15.36
20 -46.20 -1.98 -37.51 69.40 -54.94 -8.78 -70.71

49

Acceleration and jerk limit experiment

Table 4: Measured maximum acceleration

Max Acceleration [Deg/s2]
Run θ̈1 θ̈2 θ̈3 θ̈4 θ̈5 θ̈6 θ̈7
1 490.45 491.02 500.77 650.31 700.73 900.69 900.69
2 490.45 490.45 500.77 650.88 700.73 900.69 900.69
3 490.45 491.02 500.77 650.31 700.73 900.69 900.69
4 491.02 491.02 500.77 650.88 700.73 900.12 900.69
5 491.02 490.45 500.77 650.88 700.73 900.69 900.69
6 490.45 491.02 500.77 650.88 700.73 900.69 900.69
7 491.02 491.02 500.77 650.88 700.73 900.69 900.69
8 491.02 490.45 500.77 650.88 700.73 900.69 900.69
9 491.02 491.02 500.77 650.88 700.73 900.69 900.69
10 491.02 490.45 500.77 650.88 700.73 900.69 900.69
11 491.02 491.02 500.77 650.31 700.73 900.69 900.69
12 491.02 490.45 500.77 650.88 700.73 900.69 900.69
13 490.45 491.02 500.77 650.88 700.73 900.69 900.69
14 490.45 491.02 500.77 650.31 700.73 900.69 900.69
15 490.45 490.45 500.77 650.88 700.73 900.69 900.69
16 491.02 490.45 500.77 650.88 700.73 900.69 900.69
17 491.02 491.02 500.77 650.88 700.73 900.69 900.69
18 490.45 491.02 500.77 650.31 700.73 900.69 900.69
19 490.45 491.02 500.77 650.31 700.73 900.69 900.69
20 491.02 490.45 500.77 650.88 700.73 900.69 900.69

Mean 490.77 490.80 500.77 650.71 700.73 900.66 900.69
Standard deviation 0.29 0.29 0.00 0.27 0.00 0.13 0.00

50

Acceleration and jerk limit experiment

Table 5: Measured maximum jerk

Max Jerk [Deg/s3]
Run

...
θ 1

...
θ 2

...
θ 3

...
θ 4

...
θ 5

...
θ 6

...
θ 7

1 10026.76 7276.56 9854.87 8880.85 19537.86 32314.82 33174.26
2 9969.47 8307.89 9740.28 10141.35 19251.38 31569.97 32887.78
3 10714.31 9453.80 10657.01 9854.87 19480.57 32945.07 33231.55
4 10313.24 7505.75 10828.90 9740.28 19423.27 32658.59 33403.44
5 11000.79 7849.52 9625.69 10313.24 19365.97 33002.37 33460.74
6 9912.17 6531.72 10255.94 8708.96 19652.45 31569.97 33403.44
7 10599.72 8422.48 9969.47 9224.62 19365.97 32601.30 32658.59
8 10255.94 8250.59 9511.10 9224.62 19537.86 31569.97 33288.85
9 11287.27 8078.70 9167.32 8995.44 19365.97 32429.41 32486.71
10 10886.20 6589.01 10313.24 9052.73 19537.86 32486.71 33002.37
11 9396.51 8594.37 10313.24 10313.24 19365.97 32028.34 33231.55
12 10599.72 8307.89 9625.69 9682.99 19423.27 32314.82 33460.74
13 9396.51 6818.20 10141.35 11000.79 19480.57 31627.27 32658.59
14 9969.47 7505.75 9682.99 9912.17 19251.38 31971.04 33231.55
15 11344.56 7677.63 9396.51 9797.58 19480.57 32372.12 32601.30
16 9339.21 7333.86 9969.47 9740.28 19194.09 32314.82 33403.44
17 11974.82 6703.61 10084.06 8995.44 19251.38 32200.23 33231.55
18 9854.87 7620.34 10886.20 11000.79 19194.09 32601.30 32486.71
19 10198.65 8365.18 9625.69 10313.24 19423.27 31856.45 32658.59
20 10657.01 7964.11 10084.06 9110.03 19537.86 32773.19 32601.30

Mean 10384.86 7757.85 9986.65 9700.18 19406.08 32260.39 33028.15
Standard deviation 697.75 754.50 464.77 674.89 128.92 453.62 357.80

51

Zone velocity experiment

Appendix B Zone velocity experiment

When programming the robot, two consecutive instructions can have different
assigned velocities when blended together. An experiment was performed on
the real iiwa robot to determine how the velocity varies throughout the blend.
A program with varying velocities and blend sizes moving joint 2, 4 & 6 was
tested resulting in a TCP trace in the XZ-plane.

• Initial position(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

• PTP(0.0, -0.337023, 0.0, -0.984366, 0.0, 1.685115, 0.0), br = 200.0 mm,
v% = 0.75

• PTP(0.0, -0.474031, 0.0, -1.991944, 0.0, 1.531526, 0.0), br = 50.0 mm,
v% = 0.1

• PTP(0.0, 0.739496, 0.0, -0.778068, 0.0, 1.578825, 0.0), br = 100.0 mm,
v% = 0.5

• PTP(0.0, 1.110378, 0.0, -1.156979, 0.0, 0.895354, 0.0), v% = 0.2

The sampled path in joint space was numerically differentiated to obtain the
joint velocities. The velocity for the three moving joint was overlaid the TCP
trace individually as can be seen in Fig. 29. It can be seen that the decelera-
tion occurs before entering the blend segment and a constant velocity is kept
during the blend segment. The experiment shows that the velocity through-
out the blend segment is constrained by the assigned velocity of the following
instruction.

52

Zone velocity experiment

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

0.50

0.20

Joint 2 velocity overlaid TCP trace

x [m]

0.75

0.10

z
[m

]

R
el
a
ti
v
e
jo
in
t
v
el
o
ci
ty

0.00

0.10

0.20

0.30

0.40

0.50

(a) Joint 2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

0.50

0.20

Joint 4 velocity overlaid TCP trace

x [m]

0.75

0.10

z
[m

]

R
el
a
ti
v
e
jo
in
t
v
el
o
ci
ty

0.00

0.12

0.24

0.36

0.49

0.61

(b) Joint 4

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

0.50

0.20

Joint 6 velocity overlaid TCP trace

x [m]

0.75

0.10

z
[m

]

R
el
a
ti
v
e
jo
in
t
v
el
o
ci
ty

0.00

0.15

0.30

0.45

0.60

0.75

(c) Joint 6

Figure 29: Joint velocity overlaid TCP trace. The circles represents where the
blend segment starts and stops(c1 & c2). The numbers in the graph is the
relative velocity assigned to the instructions.

53

Settling time experiment

Appendix C Settling time experiment

It has been observed that the trajectory generator of the controller adds a time
to let the robot settle when a instruction is programmed without any blend.
The added time was experimentally tested on the real robot by instructing the
robot to go to 200 random points with random velocity and no blend. The
result is given in Table 6. The time stationery time added was observed to be
around 0.005 second.

Table 6: Experimentally determined stationary time applied when entering a
point without blend.

Mean Stationary Time Standard Deviation Stationary Time
0.049608 s 0.009818 s

54

	Introduction
	Purpose and goal
	Limitations
	Ethical and sustainability aspects
	Thesis structure

	Virtual Representation
	Robot motion overview
	Simulation approach
	Geometric Path
	Serial robot kinematics
	iiwa kinematics
	Path representation

	Trajectory generation
	Trajectory calculation algorithm
	iiwa trajectory calculation

	Physical Robot Interface
	iiwaDrive implementation
	Sunrise Cabinet Robot Program
	iiwaDrive application
	External application

	Evaluation of Blending Methods
	iiwa path representation
	Evaluating existing methods
	Extension of existing method

	Results
	Evaluation of proposed simulation method
	Geometric end-effector path estimation
	Cycle time estimation

	Demonstration of capabilities within a digital twin

	Conclusion
	Future work

	Acceleration and jerk limit experiment
	Zone velocity experiment
	Settling time experiment

