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Abstract

This thesis presents the design and implementation of an attitude estimation system for control-
ling orthopedic and prosthetic devices. Recent developments have uncovered that human limb
orientation relative to the ground is a convenient input signal and helps to improve functionality
and comfort.
A sensor module provides self-contained measurements of angular rates, acceleration and mag-
netic field components. In order to yield accurate attitude estimates, an Extended Kalman
Filter is designed to combine the measurements with a system model and to take advantage of
the complementary sensor error characteristics. The system model is based on a quaternion at-
titude representation and derived from rigid body kinematics. Quaternions have the advantage
of being computationally efficient and do not suffer from singularities.
The designed attitude estimation algorithm is verified with MATLAB in a hardware-in-the-loop
environment and evaluated for floating-point and fixed-point number representations. In order
to yield a portable, self-contained system with low power consumption, the algorithm is im-
plemented on a 32-bit microcontroller. The computational limitations of microcontrollers have
been considered throughout the filter design and tests have shown, that only the fixed-point
version can be computed fast enough to provide accurate attitude estimates.
Static and dynamic accuracy of the system are determined for axes lying in the plane orthogonal
to the gravity vector. The earth magnetic field occurred to be almost parallel to the gravity
vector at the test location, which prevents the algorithm to provide reliable estimates of the
angle about the vertical axis.

Keywords: AHRS, Inertial and magnetic sensors, Quaternions, EKF, TRIAD, Fixed-point im-
plementation

Duderstadt, June 2010
Timo von Marcard
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Nomenclature

Abbreviations

A/D Analogue/Digital
AHRS Attitude Heading Reference System
DCM Direction Cosine Matrix
DOF Degree Of Freedom
DSP Digital Signal Processor
EKF Extended Kalman Filter
FPU Floating Point Unit
GPS Global Positioning System
HIL Hardware-In-the-Loop
IDE Integrated Development Environment
INS Inertial Navigation System
MEMS Micro-Electro-Mechanical System
NED North East Down
PCB Printed Circuit Board
QUEST QUaternion ESTimaton algorithm
TRIAD TRIAD algorithm (based on two triads)
UKF Uncented Kalman Filter

Mathematical conventions

x column vector of dimension n× 1
~x column vector of dimension 3× 1
x̂ estimate of x
ẋ time derivative of x
xB vector x in body frame
xN vector x in NED frame
A matrix of dimension n×m
A−1 matrix inverse
AT matrix transpose
CN
B rotation matrix from body to global frame

Rx rotation matrix about axis x
E(·) expectational operator
x̂+ a posteriori estimate of x
x̂− a priori estimate of x
q∗ quaternion conjugate
N(q) norm of q
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Symbols

x state vector
x̂ estimate of state vector
u vector of input signals
y vector of output signals
ŷ estimate of output signals
ê vector of estimation errors
A system matrix
B input matrix
C output matrix
s system noise vector
v measurement noise vector
Q system noise covariance matrix
R measurement noise covariance matrix
P state covariance matrix
K Kalman gain matrix
f (nonlinear) function of system dynamics
g (nonlinear) function of output equations
F Jacobian matrix of f w.r.t x
L Jacobian matrix of f w.r.t s
H Jacobian matrix of g w.r.t x
M Jacobian matrix of g w.r.t v
q quaternion
w, x, y, z quaternion components of q
ψ, θ, φ Euler angles Yaw, Pitch, Roll
p, q, r angular rates about body axes (x,y,z)
ωx, ωy, ωz angular rates about NED-axes (x,y,z)
~g gravity vector
~a acceleration vector (measurement)
~B earth magnetic field vector
~m magnetic field vector (measurement)
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1. Introduction

1.1. Motivation

Standing, walking, sitting, grabbing, lifting, just to name a few, are all activities which are

natural and normal to every healthy person. Accidents, diseases or congenital malformation

may strongly impede these activities, if extremities are amputated or missing. Considering the

physical consequences, a comparable reduction of life quality applies to persons with temporal

or permanent limb dysfunctionalities. In order to enable affected persons to live their life inde-

pendently and possibly without any restrictions, great effort has been put into development of

prostheses and orthoses. Orthoses aim to support restricted limb functionalities, whereas pros-

theses completely replace missing extremities. Historically these products were pure mechanical

constructions.

The revolutionary progress of measurement techniques and computer technology over the last

decades has made it possible to implement sensors and actuators, all processed and controlled

through microcontrollers. These complex, mechatronic innovations brought major improvements

in functionality, flexibility, reliability and comfort to orthopedic products. Commonly utilized

and required physical quantities include measurements of various joint angles, angular velocities

and moments.

Recent developments showed the need to sense limb orientations relative to the ground to serve

as an additional input signal. This Master Thesis Project ”Design and implementation of an

attitude estimation system to control orthopedic components” in cooperation with Otto Bock

Healthcare GmbH deals with investigating and developing such a sensor system.

1.2. Problem statement

In order to enhance existing and upcoming orthopedic products, reliable and complete informa-

tion about human limb orientations relative to the ground are required. Therefore a stand-alone

attitude estimation module, equipped with inertial and magnetic sensors shall be developed.

Desired limb attitude information will be accessible by rigidly attaching the module to the part

of the body, which should be monitored.

The attitude estimation system has to be capable of a broad range of dynamical movements

and must not depend on any external signal sources like GPS or optical trackers. This setup

theoretically allows operation in any surrounding and can be implemented on a single, small

and light weight board meeting the requirements for use in orthopedic products.

1



CHAPTER 1. INTRODUCTION

Commercial products, which may be used for the designated application are already available

on the market. The unit price ranges at four figures, whereas costs for the individual hardware

components are considerably smaller. For this reason it is desired to develop an own, separate

solution.

A Printed Circuit Board (PCB) equipped with three orthogonal gyrometers, three orthogonal

accelerometers and three orthogonal magnetometers serves as a basis for preliminary studies.

National Instruments (NI) measurement cards in combination with Mathwork’s MATLAB/Si-

mulink are provided for measuring, modeling and verification of sensors and attitude estimation

algorithms. Subsequently, the derived algorithm has to be implemented on a microcontroller

and final results concerning estimation accuracy have to be determined and discussed.

1.3. Thesis organization

This thesis describes the derivation and verification of an algorithm to estimate attitude with

inertial and magnetic field sensors suitable for real-time operation in a microcontroller. A state

observer setup is created, combining a dynamic process model with sensor measurements by an

Extended Kalman Filter. The thesis is organized as follows.

Chapter 2 reviews the theory and tools, which build the theoretical foundation of the thesis.

The principle of state estimation, including state observers and Kalman Filters are presented.

Required definitions for describing orientation in space are given and different attitude represen-

tations are reviewed. Inertial and magnetic field sensors principles are briefly introduced along

with common and individual sensor errors. Besides, a short description of designated sensors

and the utilized sensor module is included. A small section is dedicated to number representa-

tions in a digital computer or microcontroller.

Chapter 3 presents the mathematical modeling of the attitude estimation algorithm. Absolute

attitude determination and attitude estimation approaches are reviewed. Modeling human mo-

tions is briefly discussed. A process model is derived and a Kalman Filter is designed, providing

the desired estimation algorithm.

Chapter 4 is dedicated to implementation and verification of the algorithm designed in Chap-

ter 3. The principle functionality of the algorithm is verified with MATLAB and tested for dif-

ferent configurations. Implementation of the attitude estimator in a microcontroller is described

and evaluated. Additionally accuracy of the final attitude estimation system is determined.

Chapter 5 concludes the thesis by discussing the designed system and analyzing achieved re-

sults. Furthermore, suggestions for future work are given.

2



2. Theory

2.1. State estimation

In order to control or supervise a system in a desired way it is necessary to have knowledge

about the actual internal states. State estimation subsumes the theory and tools to accurately

determine these internal states from measurable input and output signals. This comes along with

four major challenges: input and output dependencies have to be known, sensor measurements

are corrupted by noise, disturbed by other signals and often the desired state can not be measured

directly. In the latter case the state has to be computed through other, measurable signals.

A pure deterministic approach is to compute internal states directly from input and output

sensor measurements. This requires an accurate system model, relating input and output signals

to internal states and is mainly limited by the model accuracy and noise properties of sensors

measuring input and output signals. A further requirement that applies to all state estimation

approaches, is the states of interest have to be computable from system input and output

variables, usually denoted as state observability.

In order to improve estimation accuracy, stochastic properties of the system model, disturbances

and the sensors can be considered. This is very common, since measurements are always subject

to noise processes, disturbances are rarely predictable and a system model can only approximate

a real system.

The following sections introduces the principle of state observers and Kalman filtering. Presented

information, properties and equations are taken from [Sim06] and [AW96].

2.1.1. State observer

In order to estimate internal states of a dynamical system a common concept is to implement

a state observer. A state observer is a mathematical model of the real system, which provides

internal state estimates based on measurable input and output signals. This approach requires

that the real system can be modeled by a discrete time state space representation

xk+1 = f(xk,uk) (2.1)

yk = g(xk), (2.2)

where xk is the internal state vector and uk are input signals at time k. The function f(xk,uk)

describes how the states at time k + 1 depends on the previous state xk and inputs uk. The

system outputs yk are related to the internal states by a function g(xk).

3



CHAPTER 2. THEORY

Equations (2.1) and (2.2) are assumed to model the real, physical system, where xk is supposed

to be the ”true” state vector. The state observer is based on the same equations, but holding

an estimate of xk denoted as x̂k. Based on the actual state estimate, the output signals can be

predicted through Equation (2.2), denoted as ŷk, respectively. Thus, the observer equations are

x̂k+1 = f(x̂k,uk) (2.3)

ŷk = g(x̂k). (2.4)

An illustrative graphic describing the general process of state estimation with a state observer

real system

system model

inputsignals uk
(known or measurable)

outputsignals yk
(measurable)

estimated
outputsignals ŷk

estimation
error êk

internal states x̂k

Fig. 2.1.: State observer in open-loop configuration

is depicted in Figure 2.1. The state observer operates in parallel to the real system and both

yield the same input signal uk. Assuming the mathematical model accurately describes the real

system and the estimate x̂k is correct, both blocks produce the same output and the estimation

error êk, formed by the difference of yk and ŷk, equals zero. If x̂k is not correct, the real system

output differs from the output estimate and êk becomes non-zero. Thus, the estimation error

gives a benchmark how accurate the actual state estimates are. In order to improve the state

estimate, êk could be used for correction, which is depicted in Figure 2.2. This state observer

setup with feedback, commonly referred to as Luenberger observer, corrects the state x̂k by a

function k(êk), which has to be chosen in such a way that the estimation error will be as small

as possible. A common approach that minimizes the variance of the estimation error is the

Kalman Filter, which is presented in the next section.

2.1.2. Standard Kalman Filter

The standard Kalman Filter is a widely used filtering and estimation technique, which combines a

linear system model with statistical methods to accurately estimate the system’s state variables.

It was named after Rudolf E. Kalman, who played a key role during its development around

1960.

The Kalman Filter is a recursive filter, which only stores the estimated state of the previous

time step and current measurements to compute the actual state estimate. This property makes

4



2.1. STATE ESTIMATION

real system

system model

inputsignals uk
(known or measurable)

outputsignals yk
(measurable)

estimated
outputsignals ŷk

estimation
error êk

internal states x̂k

k(êk)

Fig. 2.2.: State observer with feedback

it very useful for real-time applications. Besides, it is the optimal state estimator, regarding

minimizing the error variance between true and estimated system states, if the modeled noise

processes are Gaussian. For alternative white noise processes it is still the optimal linear state

estimator.

A standard Kalman filter requires a linear system model in state space form according to

xk = Ak−1xk−1 + Bk−1uk−1 + sk−1 (2.5)

yk = Ckxk + vk (2.6)

E(sks
T
j ) = Qkδk−j (2.7)

E(vkv
T
j ) = Rkδk−j (2.8)

E(skv
T
j ) = 0, (2.9)

where

• xk: state vector with dimension n×1

• Ak−1: system matrix with dimension n×n

• Bk−1: input matrix with dimension l×n

• uk−1: input vector with dimension l×1

• sk−1: system noise vector with dimension n×1

• yk: output vector with dimension m×1

• Ck: output matrix with dimension m×n

• vk: measurement noise vector with dimension m×1

5



CHAPTER 2. THEORY

• E(·): expectational operator

• δk−j : Kronecker delta function

{sk−1} and {vk} are noise processes modeling the uncertainties of the system equation and

measurements. They are required to be white, zero-mean, uncorrelated with known covariance

matrices Qk and Rk. Since the filter is usually implemented on a computer or microcontroller,

only discrete time system models and filter equations are considered.

The Kalman Filter is a recursive filter, periodically predicting the state variables based on the

system equations and subsequently correcting them by considering the sensor measurements.

These steps are commonly denoted as time-update and measurement-update respectively. The

state correction is based on the state vectors covariance matrix denoted as Pk.

The filter is initialized by

x̂+
0 = E(x0) (2.10)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] . (2.11)

Subsequently, the Kalman filter equations are computed periodically at each sampling interval

and are given as follows.

1. Perform a time-update, which includes computation of a priori state and covariance esti-

mates based on the system equations:

x̂−k = Ak−1x̂
+
k−1 + Bk−1uk−1 (2.12)

P−k = Ak−1P
+
k−1A

T
k−1 + Qk−1 . (2.13)

2. Perform a measurement-update, which corrects the state estimates based on measurements

yielding a posteriori state and covariance estimates:

Kk = P−k CT
k (CkP

−
k CT

k + Rk)
−1 (2.14)

x̂+
k = x̂−k + Kk(yk −Ckx̂

−
k ) (2.15)

P+
k = (I−KkCk)P

−
k (I−KkCk)

T + KkRkK
T
k . (2.16)

Kk is the Kalman gain, which amplifies the estimation error and corrects the states in an optimal

way. Several other ways of writing the Kalman filter equations exist, which are mathematically

equivalent. The Joseph stabilized version of the covariance expression in Equation (2.16) is

chosen, because it guarantees that P+
k is symmetric positive definite, as long as P−k has this

property.

2.1.3. Extended Kalman Filter

In order to extend Kalman Filters to nonlinear system models, the Extended Kalman Filter

(EKF) was developed. The EKF is based on a linearized system model, evaluated at the current

6



2.1. STATE ESTIMATION

state estimate. Assuming a non-linear system given by

xk = fk−1(xk−1,uk−1, sk−1) (2.17)

yk = gk(xk,vk) (2.18)

sk ∼ (0,Qk) (2.19)

vk ∼ (0,Rk) (2.20)

and initializing the filter identically to Equations (2.10) and (2.11), the EKF equations are given

as follows.

1. Time-update:

x̂−k = fk−1(x̂+
k−1,uk−1,0) (2.21)

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1 , (2.22)

where Fk−1 =
∂fk−1

∂x

∣∣∣
x̂+
k−1

and Lk−1 =
∂fk−1

∂w

∣∣∣
x̂+
k−1

are Jacobian matrices, evaluated at the

current state estimate.

2. Measurement-update:

Kk = P−k HT
k (HkP

−
k HT

k + MkRkM
T
k )−1 (2.23)

x̂+
k = x̂−k + Kk[yk − hk(x̂

−
k , 0)] (2.24)

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkMkRkM
T
kKT

k , (2.25)

where Hk−1 =
∂hk−1

∂x

∣∣∣
x̂−k

and Mk−1 =
∂hk−1

∂v

∣∣∣
x̂−k

are Jacobian matrices, evaluated at the

current state estimate.

The advantages of the EKF are the commonly simple derivations of Jacobian matrices and a

deterministic computational effort. A disadvantage comes along with the linearization, which

is only a first order approximation of the non-linear equations. This introduces linearization

errors, which can be reduced by using higher order approaches at the cost of higher complexity

and computational expense.

2.1.4. Alternative state estimators

Several other approaches exist for state estimation of linear and non-linear systems. The H∞-

filter was specifically designed for robustness capable of handling large modeling errors and

noise uncertainties. It is a filter, which minimizes the worst-case estimation error. For non-

linear systems, the Uncented Kalman Filter (UKF) is an alternative to the extended Kalman

filter. The UKF avoids linearization of the system equations and approximates the non-linear

transformation of the variable’s distribution instead. This is done by computing the system

equations for a set of so called sigma points and estimate the new mean and covariance from the
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results. The UKF has the advantage of avoiding linearization but requires more computations,

due to the number of sigma points. More examples for alternative state estimators are methods

of information filtering, Fuzzy methods, particle filters and neuronal networks, which are not

further described [vR06].

2.2. Attitude representation

This section determines necessary conventions of coordinate systems required for the present

work. Additionally, three representations for describing orientation in space are presented: Di-

rection Cosine Matrix (DCM), Euler angles and quaternions. Accompanying definitions, prop-

erties and formula for these representations are derived from [Ber07], [VvVB04] and [Vic01].

2.2.1. Coordinate Systems and Definitions

The spatial orientation generally describes how a coordinate system is aligned with respect to

another (reference) coordinate system. In order to describe the orientation of an object it is

necessary to define a body-fixed coordinate system. It is fixed to the objects geometry and

moves with the object as it changes position or rotates. For the present work the body-fixed

coordinate system is defined for the sensor module as depicted in Figure 2.3. The x-axis points

in the direction of the long side of the sensor module, y-axis in the direction of the short side to

the right and z-axis completes the right hand axis set.

The reference coordinate system is usually defined as a non-moving, non-rotating coordinate

Fig. 2.3.: Definition of body frame within the sensor module

system. A common choice is a tangential, earth-fixed coordinate system with NED-convention

shown in Figure 2.4 [Far08]. NED stands for North-East-Down, which means that the global

x-axis points to north direction, y-axis to east direction and z-axis points down to the center of

earth. Vectors and axes are labeled with a superscript B in the body-fixed frame and with a

superscript N in reference, global or NED frame, respectively.

According to Euler’s rotation theorem, the orientation of a coordinate system to another can be

described by a rotation about a single axis, if one common point is fixed (e.g. the coordinate

origin) [Wei03]. In three-dimensional euclidean space this requires at least three parameters.

Often more parameters are used, which comes along with different advantages in certain appli-

cations. Three orientation representations with a different number of parameters are described

in the following subsections, namely direction cosine matrix, Euler angles and quaternions.

8



2.2. ATTITUDE REPRESENTATION

Fig. 2.4.: Definition of tangential NED frame [Far08]

2.2.2. Direction cosine matrix

The Direction Cosine Matrix (DCM) represents attitude or orientation of two coordinate systems

by relating their accompanying basis vectors. Generally, basis vectors can be interpreted as

vectors of unit length pointing in the direction of x, y and z-axis of a Cartesian coordinate

system. A vector ~a within such a coordinate system can be written as:

~a = a1~e1 + a2~e2 + a3~e3 = a1

1

0

0

+ a2

0

1

0

+ a3

0

0

1

 , (2.26)

where ~en are the basis vectors and an the basis components respectively. The vector is also

said to be expressed in e, where e stands for the summation of the basis vectors ~en. In order

to express the same vector in a different coordinate system the following equation has to be

fulfilled

~a = a1~e1 + a2~e2 + a3~e3 = b1~n1 + b2~n2 + b3~n3 , (2.27)

where ~nk are the basis vectors of the new coordinate system and bk the basis components

respectively. The latter relationship can be expressed in matrix form according toa1

a2

a3

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33


b1b2
b3

 , (2.28)

where each matrix element cnk is the cosine of the angle between en and nk, also referred as

direction cosine. Therefore, the matrix formed by the cnk elements is commonly named ”Di-

rection Cosine Matrix”. A DCM transforms a vector from e to n, thus it is also considered a
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”rotation matrix from e to n”. Even though the derivation is straight forward, it is not easy to

imagine attitude from a DCM, thus it is not very intuitive.

Advantages of a direction cosine matrix for attitude representation:

• No singularities

Disadvantages of a direction cosine matrix for attitude representation:

• Not intuitive

• 9 parameters for attitude representation (not independent)

2.2.3. Euler angles

Euler angles describe the orientation of two coordinate systems by three successive rotations

around separate coordinate axes. As the name suggests, this form of orientation representation

has been developed by Leonhard Euler. There exist 12 different possibilities to rearrange the

order of rotations, if only ”right-handed” axes are considered. Each order defines a different

Euler angle convention.

Because of its intuitive clarity the ZYX-convention is presented and used throughout the present

work. For this convention Euler angles are defined by the following sequence of rotations to rotate

a vector from NED frame to body frame:

1. positive rotation about the z-axis by an angle ψ

2. positive rotation about the new y-axis by an angle θ

3. positive rotation about the new x-axis by an angle φ

The angles ψ, θ and φ are also known as Yaw, Pitch and Roll respectively. These names are

reserved for this convention and have the following ranges

ψ = ±π θ = ±π
2

φ = ±π . (2.29)

A rotation around the x-axis about an angle φ can be written as a rotation matrix according to

Rx(φ) =

1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 . (2.30)
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Similarly for θ and ψ:

Ry(θ) =

cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.31)

Rz(ψ) =

 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 . (2.32)

The sequence of rotations described above can be summarized to a single rotation matrix

CB
N = RxRyRz =

1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)


 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 =

=

 cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

− cos(φ) sin(ψ) + sin(φ) sin(θ) cos(ψ) cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ) sin(φ) cos(θ)

sin(φ) sin(ψ) + cos(φ) sin(θ) cos(ψ) − sin(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ) cos(φ) cos(θ)


(2.33)

In order to rotate a vector from NED frame to body frame the following computation has to be

performed:

~xB = CB
N~x

N . (2.34)

It should be mentioned that matrix multiplication is not commutative, so the order of multipli-

cation has to be considered. Since CBN is a rotation matrix its inverse is equal to its transpose.

Thus, a rotation from body coordinates to NED coordinates can be described by

~xN = (CB
N )−1~xB = (CB

N )T~xB = RT
z RT

y RT
x ~x

B = CN
B~x

B . (2.35)

Advantages of Euler angles for attitude representation:

• Very intuitive

• Minimum number of 3 parameters used for attitude representation

Disadvantages of Euler angles for attitude representation:

• Singularity at Pitch angle θ = ±π
2 ; for this case Roll and Yaw axes are parallel and attitude

has no unique Euler angle representation, since only the sum of φ and ψ is relevant.
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2.2.4. Quaternions

An alternative method to describe orientation are quaternions. A quaternion is an extension

of the complex numbers, consisting of a real scalar and a complex vector. The vector part

contains three complex elements denoted i,j and k. They can be interpreted as basis vectors of

a three-dimensional Cartesian coordinate system. Several quaternion definitions exist:

q = w + xi+ yj + zk =


w

x

y

z

 = (w,~v), (2.36)

where the imaginary parts have the following properties:

ii = i2 = −1 (2.37)

jj = j2 = −1 (2.38)

kk = k2 = −1 (2.39)

and

ij = k = −ji (2.40)

jk = i = −kj (2.41)

ki = j = −ik. (2.42)

Intuitively, a quaternion represents orientation of two coordinate frames by defining a rotation

axis with the complex vector part and the scalar part denotes the angle to rotate around this axis.

According to Euler’s theorem this is sufficient to describe any orientation in three-dimensional

space.

Quaternion operations are almost identical to common vector operations. This is valid for

component wise operations like equality, addition and multiplication with a scalar. A special

case is quaternion multiplication, which is defined for two quaternions

q1 = w1 + x1i+ y1j + z1k and q2 = w2 + x2i+ y2j + z2k

as

q1 ∗ q2 = (w1w2 − x1x2 − y1y2 − z1z2) + (x1w2 + w1x2 − z1y2 + y1z2)i+

+(y1w2 + z1x2 + w1y2 − x1z2)j + (z1w2 − y1x2 + x1y2 + w1z2)k . (2.43)

The conjugate of a quaternion q = w + xi+ yj + zk = (w,~v) is defined as

q∗ = (w − xi− yj − zk) = (w,−~v) (2.44)
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and the norm or magnitude N(q) is

N(q) =
√

q ∗ q∗ =
√
w2 + x2 + y2 + z2 . (2.45)

A quaternion is normalized by

qnormalized =
q

N(q)
. (2.46)

A normalized quaternion is also denoted as a unit quaternion, since it has norm of unity. Quater-

nion inverse is defined as

q−1 =
q∗

N2(q)
=

q∗

q∗q
, (2.47)

which simplifies for a unit quaternion to

q−1 = q∗ . (2.48)

In order to perform transformations between coordinate frames with quaternions, they are re-

quired to be of unit length. A rotation of an angle θ about an axis defined by unit vector ~v can

be represented as a quaternion of the form

q = (cos(
θ

2
), ~v sin(

θ

2
)) . (2.49)

Thus a rotation about negative θ is equal to the quaternion conjugate of q. Representing a

vector ~p = [px py pz]
T in different coordinate systems can be computed by rotating ~p about a

quaternion q = [w x y z], where q describes the orientation of the coordinate systems. Therefore

~p has to be written in quaternion form according to

pq =
[
0 px py pz

]
.

Rotation of pq by a quaternion q is defined as:

protated = q ∗ pq ∗ q−1 . (2.50)

Multiplying pq with q according to quaternion multiplication rules, reordering the result and

considering just the vector part, a rotation can be written in matrix form:

~protated = vec(q ∗ pq ∗ q−1) =

=
1

N(q)

w
2 + x2 − y2 − z2 −2wz + 2xy 2wy + 2xz

2wz + 2xy w2 − x2 + y2 − z2 −2xw + 2yz

−2wy + 2xz 2wx+ 2yz w2 − x2 − y2 + z2

 ~p = M(q)~p . (2.51)
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Advantages of quaternions for attitude representation:

• No singularities

• Low number of 4 parameters used for attitude representation

Disadvantages of quaternions for attitude representation:

• Not intuitive

2.3. Sensors

This section presents a description of sensors and the sensor module used in the present work.

Three different sensor types are used, a 3-axis gyroscope, a 3-axis accelerometer and a 3-axis

magnetometer. They are chosen because of their autonomous operation, not requiring any ad-

ditional artificial source. The sensors are built in Micro-Electrical-Mechanical Systems (MEMS)

technology, which make it possible to produce them in a small package size, low power consump-

tion, cheap and with high availability. Further, MEMS technology develops very fast and new

releases are still accompanied with major improvements in precision and longtime stability.

2.3.1. Error modeling

In general, sensors measure a certain physical quantity and output a value that depends on

its strength and direction. The output value is commonly an electric voltage, that has to be

processed in order to yield a value that is in the same domain as the quantity of interest.

Preprocessing usually include bias removal and scaling. Bias is any nonzero sensor output, if

the input is zero. Scaling factors are used to scale the output to the correct amplification and

correct for misalignments of nominal and real sensor axes.

A simple error model, including bias, scaling and misalignment parameters for a 3-axis sensor

type is derived in [GWA01] according to

~zout = snominal (I3×3 + Msa)~zinput +~bz , (2.52)

where ~zout and ~zinput are the three sensor output and input values, respectively. The input

vector is scaled by a nominal scale factor snominal and Msa contains individual scale factor

deviations and input axis misalignments. The additive bias values are denoted as ~bz. The

individual elements mij of Msa are illustrated in Figure 2.5, where the larger arrows represent the

nominal input axes and the smaller arrows represent scaling deviations (i = j) and misalignments

(i 6= j). The measurable sensor outputs result from adding scaled input values and sensor biases.

Equation (2.52) relates sensor output and input in error-generating form, which shows how the

input value is corrupted by the errors. In an application, it is desired to calculate the input

values from sensor output values. This can be done by solving Equation (2.52) for the sensor
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Fig. 2.5.: Elements of scaling and misalignment matrix [GWA01]

input values:

~zinput =
1

snominal
(I3×3 + Msa)

−1
(
~zout −~bz

)
=

1

snominal

(
I3×3 −Msa + M2

sa −M3
sa + ...

) (
~zout −~bz

)
≈ 1

snominal
(I3×3 −Msa)

(
~zout −~bz

)
. (2.53)

Defining

M =
1

snominal
(I3×3 + Msa)

−1 (2.54)

gives the following short form of notation of the most basic sensor errors:

~zinput = M
(
~zout −~bz

)
. (2.55)

Matrix M and bias vector ~bz have to be determined through a sensor calibration.

2.3.2. Accelerometers

A linear accelerometer is a device measuring acceleration in a single or in multiple spatial axes.

The common principle of various existing sensor types is to sense the force on a proof mass and

determine acceleration by Newton’s second law of motion F = ma.

Accelerometers can be roughly classified into mechanical and solid state devices [Woo07]. Me-

chanical accelerometers measure displacement of a mass suspended by springs. Solid state

devices consist of a cantilever beam, attached to a free moving proof mass at one end and rigidly

attached to the case on the other end. Acceleration displaces the proof mass and the resulting

force can be determined by measuring the beam’s strain. MEMS accelerometers are based on

the same principles as mechanical and solid state devices.
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For the present work the MEMS inertial sensor LIS344ALH by ST is used, which is a very com-

pact 3-axis accelerometer with a selectable full-scale of ±2g or ±6g. The LIS344ALH contains

a proof mass in form of suspended silicon structures. Displacement of the proof mass is mea-

sured with capacitive half-bridges, producing a voltage proportional to the applied acceleration.

Table 2.1 presents a selection of mechanical and electrical specifications taken from the accompa-

nying datasheet for a supply voltage Vdd=3.3V. In order to prepare the analogue sensor output

voltages for sampling and A/D-Conversion a lowpass-filter is applied to each output. According

to the datasheets a first order lowpass-filter with 145 Hz cut off frequency was chosen.

Parameter Test condition Min. Typ. Max. Unit

Sensitivity
Full-scale ±2g 0.66 -5% 0.66 0.66 +5% V/g
Full-scale ±6g 0.22 -10% 0.22 0.22 +10% V/g

Zero-g-level Full-scale ±2g 1.65 -5% 1.65 1.65 +5% V

Bandwidth 1.8 kHz

Acc. noise density 50 µg/
√
Hz

Supply voltage 2.4 3.3 3.6 V

Supply current normal mode 680 850 µA

Dimensions LGA-16L Package 4x4x1.5 mm

Table 2.1.: Selection of mechanical and electrical specifications of accelerometer LIS344ALH by ST
[ST08]

2.3.3. Gyroscopes

Angular rate sensors, commonly denoted as gyroscopes, exist in various types. They are roughly

classified into mechanical, optical and MEMS gyroscopes [Woo07]. Optical devices are based on

the principle of Sagnac effect, whereas mechanical and MEMS derivates operate on the principle

of conservation of angular momentum. For the system of interest only MEMS gyroscopes are

considered. The major disadvantage of MEMS gyroscope compared to mechanical and optical

counterparts is their limited accuracy. According to [GWA01] this is due to various error sources

including:

• bias variability from turn-on to turn-on, caused by changing gyroscope and electronics

properties

• bias drift, due to thermo-mechanical white noise, which is usually modeled as a random-

walk process

• temperature effects

• calibration errors

However, accuracy of MEMS gyroscopes increased noticeably over the last years, so further

improvements are expected.

For the present work a two-axis (LPR550AL) and a single-axis (LY550ALH) MEMS gyroscope
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by ST are used to measure angular rates in all spatial dimensions. A single-cased three-axis

sensor was not available at the moment of time. The LPR550AL senses angular rates in Roll and

Pitch, whereas the LY550ALH measures angular rate for Yaw. Both sensors are based on Coriolis

principle and produce an analogue voltage related to the applied angular rate. Table 2.2 presents

a selection of mechanical and electrical specifications taken from accompanying datasheets for a

supply voltage of 3V. In order to prepare the analogue output voltages for sampling and A/D-

Conversion a lowpass-filter is applied to each output. According to the datasheets a first order

lowpass-filter with 100 Hz cut off frequency is applied.

Parameter Test condition Min. Typ. Max. Unit

Measurement range
4x OUT (amplified) ± 500 ◦/s
OUT (not amplified) ± 2000 ◦/s

Sensitivity
4x OUT (amplified) 2 mV/◦/s
OUT (not amplified) 0.5 mV/◦/s

Zero rate level 1.23 V

Bandwidth 140 Hz

Rate noise density 0.059 ◦/s/
√
Hz

Supply voltage 2.7 3 3.6 V

Supply current
LY550ALH 4.8 mA
LPR550AL 6.8 mA

Dimensions LGA-16 Package 5x5x1.5 mm

Table 2.2.: Selection of mechanical and electrical specifications of gyroscopes LPR550AL and
LY550ALH by ST [ST09b], [ST09a]

2.3.4. Magnetometers

A magnetometer is a device that measures magnetic field direction and strength. Various devices

and measurement principles exist, capable of measuring magnetic fields in a range of 10−15T

to 10T. Common MEMS magnetometers are based on the hall effect or resistors that change

resistivity if a magnetic field is applied.

Apart from sensor errors due to bias, scale and misalignment deviations, magnetic field measure-

ments are distorted by ferromagnetic elements in the vicinity of the sensor, labeled hard iron and

soft iron distortions. Hard iron distortions are caused by materials, which exhibit a constant,

additive magnetic field, whereas soft iron distortions are the result of materials, influencing or

distorting but not necessarily generating the field [Kon09]. These errors have to be considered

during calibration and make this process considerably more complicated.

The magnetometer HMC1053 by Honeywell utilized for the present work is a very compact

3-axis magnetometer including offset and set/reset straps. The HMC1053 basically contains a

magneto-resistive Wheatstone bridge for every spatial direction, converting an incident magnetic

field to a differential voltage output. Table 2.3 presents a selection of mechanical and electri-

cal specifications of the sensing bridge elements taken from the accompanying datasheet. The

HMC1053 provides differential voltage outputs, which have to be amplified and low-pass filtered

17



CHAPTER 2. THEORY

Parameter Test condition Min. Typ. Max. Unit

Supply voltage 1.8 3.0 20 V

Resistance Bridge current = 10mA 800 1000 1500 Ω

Field range -6 +6 gauss

Sensitivity Set/Reset Current = 0.5A 0.8 1.0 1.2 mV/V/gauss

Bandwidth Magnetic signal 5 MHz

Noise density @ 1kHz, Supply Volt. = 5V 50 nV/
√
Hz

Dimensions 16-Pin LCC Package 7.4x7.4x2.8 mm

Table 2.3.: Selection of mechanical and electrical specifications of magnetometer HMC1053 by Honey-
well [Hon06]

before sampling and A/D-conversion. The amplification is necessary due to the weak magnetic

field strength on the earth’s surface, which is shown in the following calculation.

The magnetic earth field ranges from less than 0.3 gauss to over 0.6 gauss [Can08]. A sensor

supply voltage of 3.0V would give a sensor sensitivity of approximately 0.33mV/gauss. Then

a local magnetic earth field strength of 0.5 gauss (50µT) and a perfectly aligned sensor axis

would produce a differential voltage of 0.165mV. Only a fraction of that voltage is available if

the vector is not perfectly aligned with the sensitive axis. In comparison, a 12 bit A/D-converter

with 5V reference voltage has a resolution of approximately 1.22mV. Thus, measurements of the

earth magnetic field are smaller than the A/D-converter resolution.

In order to achieve a sufficient resolution the output signal is amplified with a factor of approx-

imately 371 by a differential amplifier INA333 by Texas Instruments (TI). The low-pass filter

cut off frequency is set to 100 Hz to avoid anti-aliasing during A/D-conversion.

2.3.5. Sensor board configuration

This section provides information about the sensor board that has been used throughout the

thesis. The sensor PCB has a two layer structure and dimensions 65 × 35 × 8 mm. It is

equipped with three orthogonal gyroscopes, accelerometers, magnetometers, components for

analogue signal processing and power regulation. Figure 2.6 shows the sensor board. In order to

obtain very accurate sensor measurements, amplified gyroscope outputs and a full-scale of ±2g

accelerometer sensitivity is used.

2.4. Computer arithmetics

In a digital computer numbers are represented by strings of zeros and ones and the hardware can

only perform a simple and primitive set of Boolean operations [Okl92]. Thus, to perform com-

plex operations on ”real-world” numbers in decimal format, it is necessary to find an adequate

binary representation and to provide arithmetics based on boolean operations. The following

subsections present two different approaches for number representation and briefly describes

accompanying arithmetics, condensed from [Okl92] and [VvVB04].
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Fig. 2.6.: Sensor module PCB

2.4.1. Floating-point numbers

In computer arithmetics, a real number x can be approximated by a pair of integers (s,e) in

exponential form according to

x ≈ s · 2e , (2.56)

where s is the significant and e is the exponential. If e is not known in advance and varies during

runtime the number is denoted as a floating-point number, because the radix point of x changes

or floats according to e. In order to store the floating-point number in binary form, a specific

number of bits is assigned to the binary representation of s and another string of bits is used to

store the binary representation of e.

Floating-point numbers are standardized in IEEE 754. This standard includes the definition of

different formats, which assign the number of bits for significant and exponent. A single precision

floating-point number is 32 bits long with a 24 bit significant. Double precision numbers assign

64 bits and have a 53 bit significant.

In order to express floating-point arithmetics with boolean bit operations the significants and

exponents have to be treated separately. This includes scaling, rounding and normalization

of interim results. To accelerate these operations often Floating-Point Units (FPU) are used.

These units are special processors, which are able to perform a mathematical operation during

one processor clock cycle. If no FPU is used, the operations have to be emulated with software,

which increases computation time considerably.

2.4.2. Fixed-point numbers

In contrast to floating-point numbers fixed-point representations have a fixed position of the

radix point, meaning the exponent e is fixed and has to be know in advance. A certain number

of bits is assigned to represent the integer in front of the radix point and the remaining bits

represent the fractional part.

Fixed-point arithmetics include only basic integer operations and shifting of bits, briefly de-
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scribed in [ARM96]. Thus, mathematical operations can be processed very fast. Due to the

fixed position of the radix point only a small range of numbers can be represented compared to

floating-point representations. Choosing an appropriate scaling for fixed-point numbers, which

avoids overflows but remains accurate enough is the major challenge using this number repre-

sentation. Depending on the processor structure, usually 8, 16, 32 or 64 bits are assigned for a

fixed-point number.
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3.1. Introduction

A system that maintains an accurate estimate of an objects orientation is commonly referred

to as an Attitude Heading Reference System (AHRS). Originally these systems were utilized

for navigation of aircrafts, spaceshuttles, submarines, ships and missiles. Recent advances in

production technologies and miniaturization brought up MEMS sensors, which enabled the de-

velopment of miniature, light weight and less expensive AHRS. That circumstance enhanced

the range of possible applications including human motion tracking as well as motion sensitive

controls for mobile devices or game consoles.

Accoring to [Woo07], early AHRS are based on a stabilized platform using gimbals, which allows

the platform to rotate in all three axes. The platform is equipped with gyroscopes detecting

any occurring rotations. Torque motors receive the gyroscope outputs and rotate the gimbals to

cancel out such rotations and keep the platform aligned with the global frame. The orientation

is then simply obtained by reading the angles of adjacent gimbals. This principle is also used

for Inertial Navigation Systems (INS), where the platform also includes accelerometers to track

position and velocity. This setup is depicted in Figure 3.1.

Fig. 3.1.: Stable platform principle [Woo07]
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Another approach is to rigidly mount sensors onto the device and track the sensor outputs in

body frame rather than global frame. This strapdown principle requires to process the sensor

outputs in order to yield attitude information in global frame. Common sensor types used in

strapdown configurations are gyroscopes, accelerometers, magnetometers and optical horizon

or star trackers. Often a combination of different sensor types is used to either enable 3-DOF

attitude determination or to increase accuracy. Additionally GPS or optical tracking systems

are sometimes used to decrease errors in attitude estimation, having the disadvantage of being

dependent on artificially generated, external signals.

According to [Woo07], strapdown systems have the advantage of being physically smaller and

mechanically less complex compared to platform systems. Disadvantageous is a higher com-

putational demand, but computational cost has decreased tremendously, which make them the

preferred type of AHRS nowadays.

For the present work it is desired to design a small, low-power and self-contained AHRS in strap-

down configuration. The following sections describe the mathematical modeling and derivation

of the attitude estimation algorithm. Section 3.2 describes, which attitude information can be

extracted from a single sensor type and Section 3.3 presents how attitude can be estimated by

a combination of multiple sensors. Afterwards, an explicit attitude estimation algorithm is de-

rived in Sections 3.4-3.6, which includes a simple human motion model, a process model and the

Kalman Filter design, respectively. The presented algorithm is almost identical to an approach,

presented by Yun et al. in [YB06] and [YBM08]. Advantages of the chosen algorithm as well as

alternative approaches are presented throughout the sections and finally discussed in Section 5.

3.2. Absolute attitude determination

Several ways exist to determine attitude from inertial or magnetic field measurements arranged

in strapdown principle. This section presents how attitude may be determined from a single

sensor type and discusses accompanying constraints and limitations. These descriptions build

the foundation for all upcoming approaches, which combine two or three of them.

Attitude determination with gyroscopes

A simple and intuitive way to determine attitude is to use a 3-axis gyroscope, which measures

angular rates in all three spatial dimensions. By simply integrating the sensor outputs it is

possible to determine attitude if initial conditions are known. The major disadvantages of this

approach are the need to know initial conditions and particularly the inevitable integration of

angular rates. Any error in the gyroscope outputs produce an attitude estimation error, that

grows proportional to time, which is illustrated by the following calculation.

Assuming a system is at rest, a gyroscope attached to it is supposed to produce an output of

ω = 0◦/s. But due to a small bias error it shows ω = 0.1◦/s. Integrating the gyroscope output

produces an angle that grows proportional to time according to α = ωt. Thus, after t = 60s

the angle calculated from the gyroscope output is 6◦ and after 10 minutes it has grown to 60◦.
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Furthermore, the error accumulates for gyroscope measurements in multiple spatial dimensions.

As described in Section 2.3.3, gyroscopes have various error types some of them time-varying so

they can not be eliminated permanently. The effect of integrating errors reduces, if the system

undergoes dynamical rotations and the actual angular rate is big compared to the errors.

It can be concluded that attitude determination with gyroscopes is only accurate for short time

spans after initialization and during times of high dynamical motion. Additionally gyroscope

measurements are relatively robust against linear accelerations.

Attitude determination by vector observations

An alternative method to determine attitude is to use vector observations of a physical quantity

in body and global frame. Several quantities might be used, but only gravity vector ~g and earth

magnetic field vector ~B are considered at this point.

Acceleration measurements of components of ~gB in body frame are related to components of ~gN

in global frame by an objects attitude represented as a rotation matrix RB
N according to

~gB = RB
N~g

N . (3.1)

If ~gN is known and ~gB is measured by an accelerometer it remains to find RB
N , relating both

vector observations. This comes along with two major difficulties. Accelerometers measure force

on a proof mass, which is a combination of a force caused by gravity and a specific force due to

dynamic motions:

fmeasure = fspecific + fgravity . (3.2)

Thus, attitude determination by gravity observation is only accurate if the specific force is

considerably small, which equals a system almost at rest. The second limitation is a full 3-DOF

attitude representation takes at least three independent parameters, whereas vector observations

provide only two [Hal03]. Even though vectors have three parameters, one parameter is needed to

fulfill a magnitude constraint, since gravity has a well defined value. This can also be illustrated

by observing that Yaw cannot be determined from gravity measurements, since a rotation about

Yaw is not observable in sensor outputs.

Attitude determination with magnetometers share the same properties as with accelerometers.

As long as no external magnetic fields distort the earth magnetic field it is possible to estimate

attitude for two axis. Again, a rotation about the magnetic field vector is not observable in

sensor outputs.

3.3. Attitude estimation

This sections presents different approaches to estimate attitude from inertial and magnetic

field sensor data. They can be roughly classified into static and dynamic attitude estimation

algorithms [Hal03]. Static estimation algorithms subsume algorithms to compute attitude from
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vector observations at a single time instance. Dynamic attitude estimators commonly base on

a state estimation setup, merging the sensor data by a dynamic system model.

3.3.1. Static attitude estimation

Static attitude estimation algorithms are originated in spacecraft attitude systems, where mea-

surements of magnetic fields, sun position and star constellations are available as vector observa-

tions. Recall from Section 3.2 that it takes three independent parameters to determine attitude

and a single vector observation provides two parameters. In order to find a third independent

parameter it is necessary to combine at least two vector observations, inevitably producing an

overdetermined problem. Thus attitude determination with vector observations always turn to

an estimation problem, commonly referred to as Whaba’s problem.

In 1965, Grace Whaba formulated an optimality criterion that seeks to find an orthonormal

matrix A which minimizes the cost function

J(A) =
1

2

∑
i

ai|bi −Ari|2 , (3.3)

where bi is a set of unit vectors observed in body frame, ri are the corresponding vectors in a

reference frame and ai is a set of positive weights [Wha66]. Several algorithms exist to solve

Whaba’s problem and just a few are mentioned and briefly described in the following. A more

detailed and complete description of algorithms can be found in [Shu06], [Wer78] and [Mar02].

A simple, deterministic but suboptimal approach using two vector observations is the TRIAD

algorithm, well described in [Hal03]. The TRIAD algorithm basically forms two orthonormal

frames (triads) by using one vector observation as the first basis vector and creating the succes-

sive axis by vector orthogonality principles. It remains to calculate the direction-cosine matrix,

which relates the body frame triad to the reference frame triad. This involves only simple, alge-

braic operations. The TRIAD algorithm is considered suboptimal because it requires that one

vector observation is exact, representing the first basis vector. The second vector observation

just adds information to yield the third unknown parameter to determine attitude.

Sensor measurements naturally contain errors so it is usually desired to use all available infor-

mation in measurements. In addition, it might be advantageous to use more than two vector

observations to further decrease the estimation error. This approach is pursued with statistical

methods, aiming to find estimators which minimize Whaba’s cost function, defined in Equa-

tion (3.3).

According to [Shu06] several analytical, optimal least-squares solutions were published immedi-

ately after the problem was stated. They are all based on a rewritten problem formulation, sim-

plifying the minimization. The computations, including matrix decompositions and inversions,

were not suitable for spacecraft applications due to their computational demands. Davenport

reformulated the method by using a quaternion attitude representation and showed that the

minimization can be solved by finding the largest eigenvalue of a 4x4 matrix, constructed from

vector observations and weighting factors. This method, commonly named q-method, reduces
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the computational demand but is still numerically intensive. Shuster and Oh derived the QUEST

algorithm (QUaternion-ESTimator), which is an approximation of the q-method, providing a

more efficient way to solve the eigenproblem. A problem with QUEST is that the algorithm

contains singularities, which can be avoided by extra calculations.

Alternatively, the minimization of Whaba’s cost function can be performed iteratively, e.g. by

Newton’s method. Iterative approaches require an initial attitude matrix and iteratively adapt

it to minimize the cost function to a predefined lower bound. The major disadvantages of itera-

tive methods are: convergence may not be guaranteed and computation time until convergence

varies. These are properties, which are not desirable for real-time applications.

Static attitude determination algorithms require sensor measurements only at a single time in-

stance and some approaches are capable of considering noise properties of sensors. This could

also include to detect disturbed measurements and adapt noise properties. However, since no

information about the system dynamics is used these algorithms are very sensitive to distur-

bances.

3.3.2. Dynamic attitude estimation

Dynamic attitude estimation approaches rely on a process model considering motion dynamics

and specific application properties to estimate attitude from noisy or disturbed sensor measure-

ments. These specific properties could include individual motion restrictions or typical time

constants. They are different for every application, thus only the fusion of dynamic motion

models and sensor measurements are presented in the following.

Motion dynamic models are generally derived from rigid body kinematics, describing how at-

titude changes depending on current angular rates of the object. The following paragraphs

describe the derivation of motion dynamics for an Euler angle and quaternion attitude repre-

sentation, presented in [Dum99] and [Mar00] respectively.

Angular rates about x-, y- and z-axis are denoted as p, q, r in body frame and ωx, ωy, ωz in

earth frame, respectively. The Euler rates ψ̇, θ̇ and φ̇ are related to angular velocities of the

earth frame axes according to

Eω =

ωxωy
ωz

 =

0

0

ψ̇

+ RT
z

0

θ̇

0

+ RT
y RT

z

φ̇0
0

 , (3.4)

where the matrices Ri are defined in Section 2.2.3. It has to be considered that Euler rates are

not identical to angular earth rates, because they are defined for a fixed order of rotations about

separate axes. Angular body rates are obtained by rotating Eω into body frame

Bω =

pq
r

 = RxRyRzEω (3.5)
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and plugging (3.4) in the latter equation gives

Bω = RxRyRz

0

0

ψ̇

+ RxRy

0

θ̇

0

+ Rx

φ̇0
0

 =

=

 − sin(φ)

sin(θ) cos(φ)

cos(θ) cos(φ)

 ψ̇ +

 0

cos(φ)

− sin(φ)

 θ̇ +

1

0

0

 φ̇ =

1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)


φ̇θ̇
ψ̇

 .

(3.6)

Solving for Euler rates by multiplying both sides of Equation (3.6) with the matrix inverse from

left givesφ̇θ̇
ψ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)


pq
r

 . (3.7)

In the latter equation it becomes obvious how the singularity at a Pitch angle of θ = ±π
2 cause

problems. For this case certain matrix elements contain a division by zero.

For the derivation of quaternion derivatives in dependence of angular body rates it is helpful to

define the following quaternions:

• m
E(t)
B(t): rotates a vector in body frame into earth frame at time t

• m
E(t+∆t)
B(t+∆t): rotates a vector in body frame into earth frame at time t+∆t

• n
B(t)
B(t+∆t): rotates a vector in body frame at time t+∆t into body frame at time t

Each of the listed quaternions represent a vector rotation, depicted in Figure 3.2.

Fig. 3.2.: Determining quaternion derivatives [Mar00]
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The differential of mE
B at two successive time steps denoted as t+∆t and t is

dmE
B = m

E(t+∆t)
B(t+∆t) −m

E(t)
B(t) , (3.8)

where

m
E(t+∆t)
B(t+∆t) = m

E(t)
B(t)n

B(t)
B(t+∆t) . (3.9)

Plugging Equation (3.9) into (3.8) gives

dmE
B = m

E(t)
B(t)(n

B(t)
B(t+∆t) −

[
1
0
0
0

]
) . (3.10)

Assuming n
B(t)
B(t+∆t) represents a rotation of a small angle dα about a vector defined by ux,uy

and uz, the following approximation holds:

n
B(t)
B(t+∆t) =


cos(dα2 )

ux sin(dα2 )

uy sin(dα2 )

uz sin(dα2 )

 ≈


1

ux
dα
2

uy
dα
2

uz
dα
2

 . (3.11)

Combining Equation (3.10) and (3.11) gives

dmE
B =

1

2
m
E(t)
B(t)


0

dαux

dαuy

dαuz

 . (3.12)

Dividing both sides with the time differential dt leads to an expression of quaternion derivatives

as a function of body rates.

ṁE
B =

1

2
m
E(t)
B(t)


0

p

q

r

 . (3.13)

Replacing m
E(t)
B(t) by its real and complex components w, x, y, z and reordering Equation (3.13)

gives 
ẇ

ẋ

ẏ

ż

 =
1

2


0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0



w

x

y

z

 . (3.14)
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As stated above, motion dynamic models usually depend on angular body rates, which are di-

rectly measurable with gyroscopes. Alternatively they can be calculated from time-dependent

attitude variations determined by vector observations. [GEEPP00] and [TP02] presented such

attempts. Anyhow, this approach works only for low dynamical motions due to the sensitiveness

of vector observations to disturbances.

Recall from Section 3.2 that attitude determination with gyroscopes as the only type of sensor

lacks long-term stability and requires accurate initial conditions. For this reason, it is common

to use a combination of gyroscopes, accelerometer and magnetometer. Gyroscopes are precise

during short terms and high dynamical motions, but integration of sensor errors cause a drift

in time. Vector observations produce a non-drifting attitude estimate, but are prone to distur-

bances caused by motions or disturbing magnetic fields. Thus, it seems logical to combine the

complementary sensor error characteristics with an algorithm to yield the best possible attitude

estimate. This kind of sensor fusion is commonly done by a Kalman filter, which considers

statistical error properties of the process model and sensors. A drawback, which is generally

connected to geometric multi-spatial problems are nonlinear relationships of system variables,

so an Extended or an Uncented Kalman Filter have to be used.

3.4. Human motion modeling

In order to design an observer which accurately tracks human motions it is necessary to derive a

process model of human motion dynamics. Such a model ideally depends on the human skeleton,

considering kinematic and dynamic constraints. A lot of research has been performed on these

models, but they are complex and often combined with external image-tracking systems [WP98].

Thus an alternative model has to be found, which is simple but still accurate enough to model

human motion dynamics. Yun et al. showed that a first-order linear model driven by white

noise is a simple and sufficiently accurate approach to model angular velocities of limb segments

[YB06]. The model equation is given by

τ ω̇ + ω = v , (3.15)

where τ is a time constant describing how fast the limb segment typically moves, ω is its angular

velocity and v is a white noise process. This kind of model is commonly named angle random

walk process. The basic idea is that human limbs have a mass and moment of inertia, thus

velocities change continuously and with characteristic time constants.

3.5. Process model

3.5.1. General considerations

In order to design a state observer for attitude tracking, a system model is required. This

system or process model is derived throughout the following sections, which basically follows an
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approach presented by Yun et al in [YB06] and [YBM08]. This was mentioned at the beginning of

the current chapter and is repeated just for clarification. Various different modeling approaches

exist for a broad range of applications. The process model for the present work is selected with

the aim to yield an accurate model, which is as compact as possible. The latter consideration is

elementary for microcontroller implementation of the state observer.

3.5.2. Definition of state vector

In order to derive a state space representation of the process a state vector has to be defined. The

state vector contains variables describing the actual attitude estimate and states representing the

process dynamics. The present work is based on a quaternion attitude representation, describing

how the body has to be rotated to be aligned with the NED coordinate system. Quaternions have

no singularities, are computationally efficient and eliminate the need to compute trigonometric

functions.

Alternatively Euler angles or a direction cosine matrix could be used to represent attitude.

Euler angles have the advantage of being easy to imagine and using the minimum number

of parameters to describe attitude. The major disadvantage are singularities, which occur if

Pitch is close to ±pi
2 . Direction cosine matrices do not suffer from singularities, but include

nine variables to describe attitude. This is not desirable, since keeping track of nine variables

increase the computational demands.

The process dynamics can be considered by keeping track of the actual angular body rates. Thus,

the state vector is defined to contain the angular body rates and a quaternion, representing the

actual attitude:

x̂ =
[
p q r w x y z

]T
, (3.16)

where

• p : angular rate about sensor x-axis

• q : angular rate about sensor y-axis

• r : angular rate about sensor z-axis

• w: scalar part of quaternion

• x, y, z : imaginary part of quaternion

In order to improve estimation accuracy it is possible to consider sensor errors in the state

equations. This is common practice, if proper sensor error models exist and if they are observable

in the sensor data. Then, the state vector is enhanced by sensor errors, which typically includes

variables for sensor bias and scale factors. [Far08] presents such approaches. Every additional

state increases the number of necessary computations considerably, so this approach is not

followed.
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3.5.3. System equations

The system equations model the process dynamics and describe how the state vector evolves in

time. Thus, the first derivatives of the state vector have to be found according to

˙̂x = f(x̂) . (3.17)

Since it is not predictable how the sensor module will change its angular rates, a simplified

human motion model described in Section 3.4 is used. Angular accelerations are modeled as an

angle random walk process according to

ṗ = − 1

τp
p+

1

τp
sp (3.18)

q̇ = − 1

τq
q +

1

τq
sq (3.19)

ṙ = − 1

τr
r +

1

τr
sr , (3.20)

where τp, τq and τr are time constants, describing how fast angular rates typically change for

each axis. These constants depend on the current application and could be determined for

certain application setups. For the present work it is desired to use the sensor module without

any additional information needed, so the time constants are equally set to τi= 0.5s. This value

is determined iteratively and showed good results during tests. The driving noise processes sp,

sq and sr of the angular random walks are assumed to be independent and white, which requires

a verification and further investigations.

It remains to find the quaternion derivatives, which describe how attitude changes based on the

current attitude and angular body rates. This is shown in 3.3.2, where quaternion rates are

related to angular body rates by
ẇ

ẋ

ẏ

ż

 =
1

2


0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0



w

x

y

z

 . (3.21)

Equation (3.21) is only valid for unit quaternions, so it is important to normalize the quaternion

before applying the system equations. In summary, the (non-linear) state equations are given

by

ṗ = − 1

τp
p+

1

τp
sp (3.22)

q̇ = − 1

τq
q +

1

τq
sq (3.23)

ṙ = − 1

τr
r +

1

τr
sr (3.24)
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ẇ =
1

2
(−xp− yq − zr) (3.25)

ẋ =
1

2
(wp− zq + yr) (3.26)

ẏ =
1

2
(zp+ wq − xr) (3.27)

ż =
1

2
(−yp+ xq + wr) . (3.28)

It has to be mentioned, that the quaternion state equations do not include any process noise.

This is because they are derived analytically and describe a correct mathematical relationship,

as long as the small angle approach from Section 3.3.2 is not violated. Thus, the state equations

have to be computed at a rate, such that the attitude angles only change a little in between two

samples.

3.5.4. Definition of system outputs

The sensor module provides measurements of angular rates, accelerations and magnetic field

components. By defining the same values as the system output, it is possible to calculate the

difference of real and predicted variables and process it with a Kalman filter. So it is natural to

choose the system outputs identical to the sensor measurements, which gives

ŷ =
[
p q r ax ay az mx my mz

]T
, (3.29)

where

• p : angular rate about sensor x-axis

• q : angular rate about sensor y-axis

• r : angular rate about sensor z-axis

• ax: x component of acceleration

• ay: y component of acceleration

• az: z component of acceleration

• mx: x component of local magnetic field

• my: y component of local magnetic field

• mz: z component of local magnetic field
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In Section 3.5.5 it is described how the output vector can be computed from the state vector.

The resulting equations are highly nonlinear so Yun et al. proposed an alternative output vector

according to

ŷ =
[
p q r w x y z

]T
, (3.30)

where

• p : angular rate about sensor x-axis

• q : angular rate about sensor y-axis

• r : angular rate about sensor z-axis

• w: scalar part of quaternion

• x, y, z : imaginary part of quaternion

Since an attitude quaternion is not measurable directly it has to be derived by preprocessing

accelerometer and magnetometer measurements. Preprocessing includes a static attitude es-

timation approach to provide such a ”measurement” quaternion. This simplifies the output

equations significantly, which is shown in Section 3.5.6.

3.5.5. Output equations I

The output equations derived in this section describe how the output vector ŷ defined in Equation

(3.29) depends on the internal states x̂. The angular body rates are part of the state vector, so

the first three elements of the output vector are identical to the first three elements of the state

vector. It remains to compute gravity and magnetic field vectors in body frame.

In order to compute gravity and magnetic field components in body frame, the earth frame

representations have to be rotated into body frame by the current attitude estimate. Since the

state quaternion contains information how to rotate a vector from body to earth frame, the

conjugate quaternion has to be used. Reconsider from Section 2.2.4, that a quaternion rotation

of a vector can be written in matrix form according to

~aB = M(q∗)~gN =

w
2 + x2 − y2 − z2 2wz + 2xy −2wy + 2xz

−2wz + 2xy w2 − x2 + y2 − z2 2xw + 2yz

2wy + 2xz −2wx+ 2yz w2 − x2 − y2 + z2

~gN , (3.31)

where the quaternion conjugate is plugged into the matrix representation M(q). The gravity

vector in body frame is denoted as ~ab and the gravity vector in earth frame is ~ge. The same

quaternion rotation has to be performed for magnetic field components in body and earth frame.

Equation (3.31) is only valid for unit quaternions, so the quaternion has to be normalized before.
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In summary, the output equations are given by

ŷ1 = p+ v1 (3.32)

ŷ2 = q + v2 (3.33)

ŷ3 = r + v3 (3.34)

ŷ4 = (w2 + x2 − y2 − z2)gx + (2wz + 2xy)gy + (−2wy + 2xz)gz + v4 (3.35)

ŷ5 = (−2wz + 2xy)gx + (w2 − x2 + y2 − z2)gy + (2wx+ 2yz)gz + v5 (3.36)

ŷ6 = (2wy + 2xz)gx + (−2wx+ 2yz)gy + (w2 − x2 − y2 + z2)gz + v6 (3.37)

ŷ7 = (w2 + x2 − y2 − z2)Bx + (2wz + 2xy)By + (−2wy + 2xz)Bz + v7 (3.38)

ŷ8 = (−2wz + 2xy)Bx + (w2 − x2 + y2 − z2)By + (2wx+ 2yz)Bz + v8 (3.39)

ŷ9 = (2wy + 2xz)Bx + (−2wx+ 2yz)By + (w2 − x2 − y2 + z2)Bz + v9 . (3.40)

The vi elements stand for measurement noise, modeling the uncertainty of sensor measurements.

They can be taken from sensor datasheets or determined by measurements. Alternatively they

can be used to model sensor uncertainties due to appearing disturbances, which is further dis-

cussed in Section 5.

3.5.6. Output equations II

The output equations derived in this section describe how the output vector ŷ defined in Equa-

tion (3.30) depends on the internal states x̂. Analogously to the output equations I, the first

three elements of the output vector are identical to the first three elements of the state vector.

It remains to compute a ”measurement” quaternion from acceleration and magnetic field mea-

surements. Therefore a static attitude estimation algorithm has to be designated.

For the present work the TRIAD algorithm is used, which elegantly combines two vector ob-

servations with a low computational cost. The property of TRIAD to require one observation

to be very accurate fits with the available sensor types. Disturbing magnetic fields can easily

overlay the earth magnetic field due to its low magnitude. Thus, it is advantageous to put more

trust in accelerometer measurements and determine only the angle about the vertical axis with

magnetometer measurements.

An iterative approach is not suitable for real-time implementation with limited computation re-

sources. It can not be guaranteed, that the algorithm converges successfully during a predefined

time interval. In [YB06] Yun et al. propose to use the QUEST algorithm, which optimally com-

bines noisy vector observations, but at a higher computational cost. Furthermore, according to

[Hal03] the QUEST algorithm has approximately the same accuracy as the suboptimal TRIAD

given only two vector observations.

Recall from Section 3.3.1, that the TRIAD algorithm basically forms two orthonormal frames

by using one vector observation as the first basis and creating the successive axis by vector or-

thogonality principles. The first basis vector of the body frame is simply given by measurements
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of the acceleration sensors

r̂1 = ~aB . (3.41)

The second basis vector is constructed by taking the normalized cross product of r̂1 and the

magnetometer measurements:

r̂2 =
(~aB × ~mB)

|~aB × ~mB|
. (3.42)

Thus r̂2 is orthogonal to r̂1 and the magnetometer measurements just add information how r̂2 is

orientated about the axis formed by accelerometer measurements. To complete the body triad,

the third basis vector is constructed by taking the cross product of r̂1 and r̂2:

r̂3 = r̂1 × r̂2 . (3.43)

The same procedure has to be followed to construct the earth triad from gravity and magnetic

field vector in the reference frame:

ŝ1 = ~gN (3.44)

ŝ2 =
(~gN × ~BN )

|~gN × ~BN |
(3.45)

ŝ3 = ŝ1 × ŝ2 . (3.46)

Body and earth frame triads are related by a orientation matrix A, which transforms the body

triad into earth triad according to[
ŝ1 ŝ2 ŝ3

]
= A

[
r̂1 r̂2 r̂3

]
. (3.47)

By considering that both triads are a set of orthonormal basis vectors, their inverse are equal

to their transpose, thus A can be expressed as

A =
[
ŝ1 ŝ2 ŝ3

] [
r̂1 r̂2 r̂3

]T
. (3.48)

The procedure to derive a quaternion representation of the orientation matrix A is described in

Appendix A. After calculating the ”measurement” quaternion the measurement equations are

simply given by

ŷ = x̂+ v , (3.49)

where v ∈ R7×1 is the measurement noise vector with covariance matrix R ∈ R7×7.
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3.6. Kalman Filter design

3.6.1. General considerations

In the previous sections a process model in state space representation is derived. The system

equations turn out to be non-linear thus an Extended Kalman Filter has to be implemented.

Figures 3.3 and 3.4 illustrate the filter setups for output equations I and II of the process model

introduced by Yun et al. in [YB06].

EKF

~a

~m

~ω

q̂attitude

Fig. 3.3.: Kalman Filter setup I

EKF

~a

~m

~ω

q̂attitude
TRIAD

q̂triad

Fig. 3.4.: Kalman Filter setup II

3.6.2. Discretized process model

In order to implement the Kalman filter on a microcontroller, the process model has to be

discretized. For the present work, this is done by using a zero-order hold approach

f(t) = f(tk) tk ≤ t < tk+1 (3.50)

and approximating derivatives with Euler’s method according to

ẋ ≈ xk+1 − xk
dt

, (3.51)

where dt is the sampling period [AW96]. Replacing derivatives in the state equation with Eulers

method and reordering the result gives

pk+1 = (1− dt

τp
)pk +

dt

τx
spk (3.52)

qk+1 = (1− dt

τq
)qk +

dt

τy
sqk (3.53)

rk+1 = (1− dt

τr
)rk +

dt

τz
srk (3.54)

wk+1 =
dt

2
(−xkpk − ykqk − zkrk) + wk (3.55)

xk+1 =
dt

2
(wkpk − zkqk + ykrk) + xk (3.56)

yk+1 =
dt

2
(zkpk + wkqk − xkrk) + yk (3.57)

zk+1 =
dt

2
(−ykpk + xkqk + wkrk) + zk . (3.58)
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The measurement equations do not contain any derivatives, thus time-dependent variables are

assumed to be piecewise constant over the sampling interval according to Equation (3.50).

3.6.3. Linearized process model

The non-linear state equations have to be linearized to process them with an Extended Kalman

filter. This is done by taking the partial derivatives of the state equation at the actual state

estimates:

Fk =
∂fk
∂x

∣∣∣∣
x̂k

=



1− dt
τp

0 0 0 0 0 0

0 1− dt
τq

0 0 0 0 0

0 0 1− dt
τr

0 0 0 0

−dt
2 xk −dt

2 yk −dt
2 zk 1 −dt

2 pk −dt
2 qk −dt

2 rk
dt
2 wk −dt

2 zk
dt
2 yk

dt
2 pk 1 dt

2 rk −dt
2 qk

dt
2 zk

dt
2 wk −dt

2 xk
dt
2 qk −dt

2 rk 1 dt
2 pk

−dt
2 yk

dt
2 xk

dt
2 wk

dt
2 rk

dt
2 qk −dt

2 pk 1


(3.59)

Lk =
∂fk
∂s

∣∣∣∣
x̂k

=



dt
τp

0 0 0 0 0 0

0 dt
τq

0 0 0 0 0

0 0 dt
τr

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (3.60)

The output equations II are linear by nature so the do not have to be linearized. In contrast,

the output equations of approach I are non-linear and it can be easily seen why this approach is

computational more demanding. The partial derivatives of the output equations at the actual

state estimate are given by:

Hk =
∂hk
∂x

∣∣∣∣
x̂k

=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 H44 H45 H46 H47

0 0 0 H54 H55 H56 H57

0 0 0 H64 H65 H66 H67

0 0 0 H74 H75 H76 H77

0 0 0 H84 H85 H86 H87

0 0 0 H94 H95 H96 H97


, (3.61)
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where

H44 = 2wgx + 2zgy − 2ygz H45 = 2xgx + 2ygy + 2zgz

H46 = −2ygx + 2xgy − 2wgz H47 = −2zgx + 2wgy + 2xgz

H54 = −2zgx + 2wgy + 2xgz H55 = 2ygx − 2xgy + 2wgz

H56 = 2xgx + 2ygy + 2zgz H57 = −2wgx − 2zgy + 2ygz

H64 = 2ygx − 2xgy + 2wgz H65 = 2zgx − 2wgy − 2xgz

H66 = 2wgx + 2zgy − 2ygz H67 = 2xgx + 2ygy + 2zgz

H74 = 2wBx + 2zBy − 2yBz H75 = 2xBx + 2yBy + 2zBz

H76 = −2yBx + 2xBy − 2wBz H77 = −2zBx + 2wBy + 2xBz

H84 = −2zBx + 2wBy + 2xBz H85 = 2yBx − 2xBy + 2wBz

H86 = 2xBx + 2yBy + 2zBz H87 = −2wBx − 2zBy + 2yBz

H94 = 2yBx − 2xBy + 2wBz H95 = 2zBx − 2wBy − 2xBz

H96 = 2wBx + 2zBy − 2yBz H97 = 2xBx + 2yBy + 2zBz .

After linearizing the process model the Extended Kalman Filter can be implemented by simply

programming the filter equations from Section 2.1.3 in a computer or microcontroller.

3.6.4. Implementation considerations

Filter initialization

The Kalman Filter and all its derivatives are recursive filters, requiring an initialization. As

stated in previous chapters, this initialization should be done according to the expected values

of the state and covariance. For the present work, the system is assumed to be at rest and

aligned with the NED coordinate system. Thus, the initial state vector is given by:

x̂ =
[
0 0 0 1 0 0 0

]T
. (3.62)

The covariance matrix is commonly initialized with an identity matrix multiplied by a scalar:

P = aI7×7 , (3.63)

where the scalar is chosen to a = 1. A bad initial guess can cause stability problems due to the

linearization and discretization. However, this was not observed through all tests and simula-

tions.

Remarks about system and measurement noise processes

The Kalman Filter is the optimal filter minimizing the estimation error variance. This requires,

that all noise processes in the system equations and output equations are white, uncorrelated

and zero-mean. Thus, to achieve the best performance of the filter, the statistical properties
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have to be investigated and determined.

Due to the limited time for the present work these investigations are not performed. For the

sake of simplicity the noise elements in the process equations are assumed to be Gaussian, inde-

pendent and numerical values are determined iteratively. Initial values are taken from [Mar00].

This work also includes investigations about the time constants of the human motion model.

Sequential Kalman Filter

Considering the Kalman Filter equations in Section 2.1.3, it can be seen that a matrix inversion

is included. The system model, designed in the last section contains 7 states, which requires a

matrix inversion of a 7x7 in the Kalman Filter equations. This is computationally extremely

demanding, so a sequential form of the Kalman Filter is considered. As long as the measurement

noise covariance matrix is either diagonal or constant, the measurement update equation can be

separated and each measurement processed sequentially. Then, matrix inversion of a 7x7 matrix

reduces to 7 scalar divisions plus a couple of additions and multiplications. The measurement-

update equations of the sequential Kalman Filter are taken from [Sim06]:

1. Initialize the a posteriori estimate and covariance as

x̂+
0k = x̂−k

P+
0k = P−k .

These are the a posteriori estimate and covariance at time k after zero measurements have

been processed; that is, they are equal to the a priori estimate and covariance.

2. For i=1,...,r (where r is the number of measurements), perform the following:

Kik =
P+
i−1,kH

T
ik

HikP
+
i−1,kH

T
ik + Rik

x̂+
ik = x̂+

i−1,k + Kik(yik −Hikx̂
+
i−1,k)

P+
ik = (I−KikHik)P

+
i−1,k(I−KikHik)

T + KikRikK
T
ik .

3. Assign the a posteriori estimate and covariance as

x̂+
k = x̂+

rk

P+
k = P+

rk .
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4. Model implementation

4.1. Introduction

The following sections describe the verification of the derived algorithm using real sensor data

and present its microcontroller implementation. In Section 4.2 it is shown how the algorithm was

programmed in MATLAB and verified for different number representations. This includes a de-

scription of the experimental setups and sensor calibration procedures. Subsequently, Section 4.3

deals with the implementation of the filter equations in a microcontroller. The algorithms were

investigated regarding their execution time and accuracy of the AHRS was determined by final

tests through measurements.

4.2. Implementation and verification with MATLAB

4.2.1. Hardware setup

In order to calibrate sensors and to investigate the derived Kalman Filter, two experimental

setups were used, which are briefly described in the following.

A data acquisition setup was created for sensor calibration and off-line testing of the attitude

estimation algorithm. Analogue sensor outputs were read by a A/D-converter card, which sent

the acquired values to a PC in specified time periods. The PC was equipped with MATLAB,

for further processing of the data. This setup is illustrated in Figure 4.1.

Laptop

MATLAB

DAQ-Toolbox

NI DAQCard-6036E

16x16bit A/D

Power

Supply

Sensor

Module

Fig. 4.1.: Experimental setup for data acquisition
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xPC-Target

Toolbox

Visualization

MATLAB

Real-time Kernel

Fig. 4.2.: Experimental setup with xPC-Target

The second setup consisted of a xPC-Target environment depicted in Figure 4.2. It is a real-

time, Hardware-In-the-Loop (HIL) environment used to adjust and evaluate the algorithm. The

Kalman filter algorithm was computed in real-time on a Target-PC, which obtained the analogue

sensor data through a data acquisition card. In specified time periods, the Target-PC sent the

filter output to a PC, where MATLAB visualized the attitude estimate.

4.2.2. Sensor calibration

The accuracy of any attitude estimation algorithm highly depends on the quality of the sensor

measurements. For this reason sensor bias and scaling errors have to be determined through a

sensor calibration. A high precision, three axis tilt table was not available, so calibration was

performed by alternative methods, briefly described in the following. For the sake of simplicity,

the sensor module axes are denoted as body axes to distinguish them from the incident sensor

axes.

Accelerometer calibration

The accelerometers were calibrated with a test bench described in Section 4.3.1. The test bench

consisted of three rods, connected through rotational potentiometers, which provided the angles

of each rod pair. The sensor module was attached to the test bench and accelerometer outputs

were recorded for several orientations. The offset was determined by reading off the maximal

and minimal sensor output for a full rotation around a body axis and calculating the arithmetic

mean. The scaling and misalignment matrix could be found by computing the least squares

solution, that relates unbiased sensor outputs to the gravity vector in body frame obtained

by the incident orientation. This is illustrated for sensor measurements ~aBi and related gravity

vectors in body frame ~gBi , which are related by the scaling and misalignment matrix M according
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to

~gBi = M~aBi . (4.1)

For at least three measurements (i ≥ 3) the solution is given by

M =
[
~gB1 ~gB2 ~gB3 ...

] [
~aB1 ~aB2 ~aB3 ...

]−1
. (4.2)

Gyroscope calibration

The gyroscopes were calibrated by a single axis DC-motor with a position and velocity controller.

The sensor module was attached to the motor shaft and sensor outputs were recorded, while the

shaft rotated with several angular velocities. Initial gyroscope bias factors were determined by

observing the sensor output, when the sensor module has been at rest. This had to be repeated

for each body axis, which required to dismount the sensor module from the motor shaft and

attach it again to calibrate the next axis.

Magnetometer calibration

Magnetometer calibration was a more difficult task compared to gyroscope and accelerometer

calibration. This was due to additional calibration parameters (hard and soft iron errors) and

the magnetic earth field vector was not known initially. Additionally, the magnetic earth field

vector is not constant in direction and strength. If the global sensor position is known, it is

possible to calculate a theoretical approximation of the vector with latitude and longitude in-

formation. Anyhow, local magnetic field variations are common and also change over time.

Several approaches exist in literature to calibrate magnetometers with and without external

magnetic field information. A brief summary can be found in [VES+08]. For the present work

an intuitive and non-iterative calibration technique proposed by J.Merayo et al. in [MBP+00]

was utilized. Magnetometer calibration is shown to be analogous to parameter identification of

an ellipsoid. It is a geometric approach, forming a linear parameter model through a non-linear

substitution of measurement values.

Measurements of a rotating, error-free 3-axis magnetometer in a constant external magnetic

field lie on a sphere centered around (0,0,0), if the vector components for each measurement

are plotted in a Cartesian coordinate system. Plotting vector measurements of a real, rotating

magnetometer result in an ellipsoid, not centered around the origin. Thus, the combined effect

of bias, scaling errors, misalignments, hard and soft iron errors cause a distortion from a sphere

to a biased ellipsoid. J.Merayo’s approach aims to compute a simple bias and scaling model from

ellipsoid parameters, identified from magnetometer measurements, which is further explained in

Appendix B.

Conclusions

Due to the lack of a three axis, precision tilt table, calibration was performed with a test bench

with limited accuracy and a single axis DC-motor, which required to mount the sensor module
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several times in order to calibrate all three axis. This came along with inevitable alignment

errors introduced by dismounting and re-mounting. Extensive investigations of linearity and

time-varying properties have not been performed due to the limited time of the present work.

Calibration of the magnetometer was performed by rotating the module by hand and finding bias

and scaling values using Merayo’s approach. Measurements with the calibrated magnetometer

showed, that the local earth magnetic field at the measurement location was almost aligned with

the gravity vector. In global frame, the normalized gravity vector is

~gN =
[
0 0 1

]T
(4.3)

and the normalized earth magnetic field is

~BN =
[
−0.13 0.17 0.98

]T
. (4.4)

The angle between these vectors is the arc-cosine of the dot product of ~gN and ~BN , which equals

11.5◦. Thus, only a small component of the magnetic vector contained additional information to

the gravity vector. Disturbing magnetic fields in combination with the uncertainties introduced

by the calibration process made it impossible to use magnetic field measurements with the

algorithm.

4.2.3. Model implementation

The EKF equations derived in the previous chapter were programmed in MATLAB and tested

with the experimental setups described in Section 4.2.1. Figure 4.3 shows the principle program

structure. The program starts by initializing hardware components, followed by a procedure to

determine gyroscope biases. This is necessary due to bias variability from turn-on to turn-on.

The biases are estimated by averaging the gyroscope outputs for 0.5 s requiring that the sensor

module is at rest. Afterwards, the filter initialization assigns initial values for the states and

the covariance matrix. Subsequently the Kalman Filter predicts and corrects the states and

covariance matrix periodically. The state correction is performed with gyroscope sensor outputs

and a computed measurement quaternion provided by the TRIAD algorithm from accelerometer

and magnetometer measurements. The implemented Kalman Filter algorithm in MATLAB is

shown in Appendix C.

In order to verify the general filter setup, the algorithm was implemented with double precision,

which is the standard setting in MATLAB. Double precision stands for a 64 bit floating-point

representation of all variables and mathematical operations are performed with this precision.

In order to reduce the computational demands of the algorithm, a second implementation was

created with a single or 32 bit floating-point representation.

The designated microcontroller has no FPU, thus floating point operations have to be emulated

by software, which is computationally very demanding. For this reason, a third implementation

using fixed-point arithmetics was programmed in C. Programming in C was necessary since a

42



4.2. IMPLEMENTATION AND VERIFICATION WITH MATLAB
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Fig. 4.3.: Principle program structure of the Kalman Filter

standard MATLAB version does not support fixed-point numbers and arithmetics. The C-code

was compiled to a Mex-file, which provides a function interface for C-code in MATLAB. Thus,

three different implementations were programmed and investigated:

• Implementation with double precision

• Implementation with single precision

• Implementation with fixed-point arithmetics

Sensor calibration showed, that the earth magnetic field vector was almost aligned with the grav-

ity vector at the location, where the measurements were taken. Due to the limited calibration

accuracy and the small difference of the vectors, it was not possible to use the magnetometer

to stabilize the Yaw axis. For this reason, subsequent investigations were performed with artifi-

cially generated magnetometer values, which enabled the algorithm to be computable, without

providing any information for Yaw stabilization. This was done by defining the earth magnetic

field as

~BN =
[
0 1 0

]T
(4.5)

and rotate it with the current attitude estimate to yield artificially generated magnetic field

measurements in body frame according to Equation (3.31).

4.2.4. Tests and Results

Initially, the general functionality of the algorithm was verified with the double precision al-

gorithm in the xPC-Target environment. The model sample rate was chosen to 1kHz and the
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attitude estimates have been visualized on a PC with Microsoft Windows operating system.

The animated visualization based on the attitude estimates followed the same rotations as the

real sensor module. A slight delay was observable, which is partly due to the algorithm and

to the visualization on the PC. Figure 4.4 shows a picture of the real and animated visualization.

Fig. 4.4.: Verification with real and visualized sensor module

This process of subjective verification was repeated for decreasing sample rates and showed

good performance down to 100Hz. Smaller sample rates violated approximations throughout

the model design and limited the ability of the EKF to track high dynamical motions.

The same tests were repeated for single floating-point precision and several fixed-point imple-

mentations. In order to compare accuracy of the different implementations, test data were

acquired and attitude estimates produced by the algorithms were compared off-line. Figure 4.5

shows the quaternion components w,x,y and z for a rotation around body x-axis from 0 to π
2

and back to 0 rad provided by the implemented number representations.

Double and single precision floating-point implementations produced the same output, whereas

the fixed-point version showed slight deviations. The results of the fixed-point algorithm de-

picted in 4.5 are based on 32 bit variables with 27 bits fraction length.

In order to investigate the influence of fraction length on accuracy, tests were repeated for a

different number of fraction bits. The difference of quaternion components produced by the

fixed-point versions and the floating-point realization are presented in Figure 4.6. A fraction

length of 27 bit had highest accuracy, while smaller fraction lengths diverged with time, thus

accuracy decreased. Tests with 32 bit variables and fraction lengths longer than 27 bit failed

due to overflows. Even though overflows have not been observed for a fraction length of 27 bit,

this should be further investigated to make sure that no overflows are possible for any case of

operation.

A 64 bit fixed-point implementation was realized to investigate fraction lengths longer than 27

bit. Mathematical operations were emulated in software, since the microcontroller and MATLAB

have a 32 bit structure. Tests showed that accuracy did not increase significantly. Implementa-
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tion of 64 bit variables was not further followed, since the accompanying software emulation of

mathematical operations are computationally demanding, comparable to software floating-point

implementations.
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Fig. 4.5.: Precision of floating-point (green) and fixed-point (blue) implementations; the quaternion
components w,x,y and z are shown for a rotation around body x-axis from 0 to π

2 and back
to 0 rad.
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Fig. 4.6.: Deviations of quaternion components w,x,y and z for fixed-point implementations with fraction
lengths of 27 bits (blue), 26 bits (green), 25 bits (red) and 24 bits (cyan) to the floating-point
results are shown for a rotation around body x-axis from 0 to π

2 and back to 0 rad.
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4.3. Microcontroller implementation

4.3.1. Hardware setup

The major challenge of implementing a Kalman Filter in a microcontroller is the limited compu-

tational resources to guarantee a sufficient sample rate of the algorithm. It is possible to attack

this problem by using a special Digital Signal Processor (DSP) with a high clock frequency

or a microcontroller equipped with a FPU. Both approaches are connected to a relative high

power consumption, which is not desired in the present work. Thus, the aim is to implement

the designed filter on a microcontroller without FPU.

A 32-bit microcontroller STM32F103 by ST with an ARM7-CortexM3 core was chosen for im-

plementation. The STM32F103 has up to 72MHz clockrate, 16 12bit A/D-Converters and 128kB

Flash memory. The IAR workbench was used as Integrated Development Environment (IDE)

for programming and debugging.

The hardware setup was given as follows. An evaluation board equipped with the microcon-

troller was connected to the sensor board by flexible and thin cables. Generally, it is possible

to mount the controller on the sensor board, which is planned for future work. In order to

visualize the estimated attitude, the microcontroller sent the filter output to a PC via RS-232.

The complete setup is illustrated in Figure 4.7.

Laptop

MATLAB

Power
Supply

Sensor

Module

Microcontroller

16x12bit A/D

Model

Visualization
RS-232

Fig. 4.7.: Experimental setup for microcontroller implementation

In order to verify the accuracy of the designed filter, a test bench was designed, which is depicted

in Figure 4.8. It consisted of three rotational potentiometers connected through rods, similar to

a three axis robot arm. The sensor module was attached to the end of the arm and moved and

rotated by hand. The ”real” orientation of the robot arm was obtained by reading off the po-

tentiometer values, providing attitude in Euler angles. Recording the potentiometer values and

algorithm outputs with MATLAB in parallel, enabled to determine accuracy of the algorithm

by comparing real and estimated orientation. Data recording happened at a sample rate of 10

Hz. A higher sample rate was not realizable due to limited speed of MATLAB interfaces with

the serial port and the A/D-converter card.
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The test bench lacked high precision bearings and potentiometers, which introduced measure-

ment uncertainties due to slackness and limited angle resolution. Thus, measurement accuracy

was estimated to ±1.5◦ for each Euler angle axis.

Fig. 4.8.: Test bench for accuracy determination

4.3.2. Model implementation

In order to investigate the derived Kalman Filter equations on the designated microcontroller,

they were required in machine code. The IAR-Compiler was used to generate machine code

from C-code versions of the algorithm for each number representation. MATLAB was used to

auto-generate C-code from the double and single precision floating-point algorithms. The fixed-

point algorithm was programmed in C from the beginning. Additionally, the single precision

implementation was programmed ”by hand”, to check the performance of the auto-generated

code. Tests of the microcontroller implementations were performed to investigate achievable

filter update rates and estimation accuracy.

4.3.3. Tests and Results

In order to investigate achievable update rates, the number of required clock cycles for a single

filter iteration were recorded for each number representation. Table 4.1 shows the averaged
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results from this test. The listed update frequencies of the filter implementations consider a

clock frequency of 72 MHz of the microcontroller.

Algorithm Clock cycles Max. update frequency

Double precision 1330000 54.1 Hz
Single precision 1004000 71.7 Hz
Single precision II 753000 95.6 Hz
Fixed-point 310000 232.3 Hz

Table 4.1.: Performance of filter algorithms in C-code

According to Section 4.2.4 a filter update rate of at least 100 Hz was required. Thus, only the

fixed-point version achieved a sufficient update rate and was applicable for implementation in

the designated microcontroller. Therefore, subsequent investigations about estimation accuracy

were performed for the fixed-point implementation exclusively.

In order to investigate estimation accuracy, the test bench described in Section 4.2.1 was used.

The filter update rate was chosen to 200 Hz, controlled by a timer interrupt of the micro-

controller. The estimation errors were formed by the difference of estimated and measured

orientation. For a better imagination the errors were transformed from quaternion attitude es-

timates to Euler angles.

The static accuracy was determined by observing the estimation error for several orientations

while the sensor module was at rest. The static accuracy of the estimation algorithm lied within

the measurement accuracy of the test bench of ±1.5◦.

Accuracy for dynamic motions was determined by observing the estimation errors during dy-

namic motions and rotations. The measurements were performed ”by hand”, thus explicit

angular rates and angular accelerations could not be set in advance. During low rotational ac-

celerations the error lied withing the measurement accuracy, but increased to a maximum of ±5◦

in times of high velocity changes. The numerical value of dynamic accuracy is the maximum

error observed for the performed test scenarios. Two test scenarios are briefly described the

following. The first setup contained a rotation around body y-axis, with a following rotation

around body x-axis. Figure 4.9 shows the real and estimated attitude values for this setup. The

second setup rotated the sensor module around body y- and x-axis in parallel. The result is

shown in Figure 4.10. Static and dynamic accuracy are summarized in Table 4.2.

Euler angle Static accuracy Dynamic accuracy

Roll ±1.5◦ ±5◦

Pitch ±1.5◦ ±5◦

Yaw not determinable not determinable

Table 4.2.: Static and dynamic accuracy of the AHRS
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Fig. 4.9.: Dynamic accuracy of Roll and Pitch angle provided by EKF (φEKF ,θEKF ) and test bench
(φ,θ) for a rotation about sensor y-axis with a following rotation about x-axis
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Fig. 4.10.: Dynamic accuracy of Roll and Pitch angle provided by EKF (φEKF ,θEKF ) and test bench
(φ,θ) for a parallel rotation about y- and x-axis

50



5. Results and Conclusions

This thesis presents the design and implementation of an attitude estimation system based on

inertial and magnetic field measurements. An Extended Kalman Filter was designed to merge

the sensor data with a quaternion-based system model. The algorithm was implemented on a

microcontroller and its static accuracy for Roll and Pitch axes was determined to ±1.5◦ and

dynamic accuracy to ±5◦. Due to an unfortunate direction of the earth magnetic field at the test

location, magnetometer measurements turned out to be unreliable to stabilize attitude estimates

about Yaw. Current products of Otto Bock Healthcare GmbH do not require absolute heading

information, thus the designed system still provides a well founded basis for future work.

5.1. Mathematical modeling

The mathematical modeling included an investigation of attitude estimation approaches with

inertial and magnetic field measurements. An Extended Kalman Filter setup was derived, which

combines a system model with sensor measurements to take advantage of the complementary

sensor errors. The system model is based on a quaternion attitude representation and derived

from rigid body kinematics. The algorithm is computationally efficient and capable of tracking

attitude in any orientation without singularities. The derived filter is similar to approaches

proposed by Yun et al. in [YBM08] and Adiprawita et al. in [AAS07].

System model

Several alternative approaches exist to design a system model. A common approach is to include

sensor errors as state variables, which is especially advantageous for tracking the gyroscope bias.

This is connected to a higher computational load of the algorithm, due to the higher dimension of

the state observer. Another approach, which is commonly applied in inertial navigation systems

is to estimate only the sensor errors with a Kalman Filter. This setup is depicted in Figure 5.1

and follows a complementary filter methodology. According to [BH97], the filter problem be-

comes linear through the differencing operation, which ”washes out” the nonlinear measurement

relationships. The filter operates on the sensor errors and attitude is determined directly from

corrected inertial output, which gives a high dynamic response. Since this complementary filter

approach needs very accurate sensor models and usually relies on external aiding sources it was

not considered for the present work.

In order to linearize the measurement equations of the designed Kalman Filter, the static attitude

estimation approach TRIAD has been used. This is a suboptimal and deterministic approach.
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Fig. 5.1.: Complementary filter approach [BH97]

Alternatively the QUEST algorithm could be utilized, which eventually provides more accurate

attitude estimates at the cost of a higher computational cost. Recently, Yun et al. proposed

the factored quaternion algorithm (FQA), which is almost identical to TRIAD but produces

quaternions estimates instead of a rotation matrix [YBM08].

Linearization and discretization

In order to avoid estimation errors introduced by linearization in the EKF equations, the UKF

could be used. LaViola compared estimation accuracy and computational efficiency of EKF and

UKF for a quaterion-based tracking application of human head and hands [LJ03]. Tests showed

that accuracy for both filters is almost the same thus it can be concluded that the EKF is the

preferred choice for the present application due to its lower computational cost.

Discretizing the system model was done by Euler’s method. Alternatively, Tustin approximation

or higher order approaches might be considered to reduce discretization errors. Additionally, a

review of sensor filter cut off frequencies to avoid anti-aliasing is required. During the sensor

board design, cut off frequencies for accelerometers, magnetometers and gyroscopes were chosen

to 100 Hz and 145 Hz. Thus, the final sample rate for microcontroller implementation of 200

Hz violates Nyquist-Shannon’s sampling theorem.

Sensor modeling

Accuracy of the designed algorithm highly depends on the sensor quality. Due to the limited

time of this thesis an extensive investigation of sensors and accompanying errors was not per-

formed. Especially time-varying error characteristics, saturation and temperature effects have

to be considered and investigated.

Disturbances

An important topic, which was not investigated within this thesis is the response of the filter

to disturbances in form of external magnetic fields and linear accelerations. Generally, it would
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5.1. MATHEMATICAL MODELING

be advantageous to adapt the measurement noise properties. This would require to detect these

disturbances and to find appropriate rules for adaption. According to [DWR06], popular adap-

tive methods can be roughly classified into covariance scaling, multi-model adaptive estimation

and adaptive stochastic modeling. These methods basically investigate the estimate residuals

and scale the noise properties accordingly. [RH04] presents an approach to estimate attitude

with gyroscopes and accelerometers using two Kalman-Filters in parallel. In times of low ac-

celeration, only gravity is measured by the accelerometer and the filter operates in ”normal”

mode. If high accelerations are detected, a switching to another filter setup takes place, which

basically disregards accelerometer measurements.

Numerical values for the Extended Kalman Filter

Numerical values for noise processes have been determined iteratively, instead of analyzing them

empirically. Especially the implementation with fixed-point arithmetics required an intensive

adaption of the system and measurement covariance matrices. Covariance values smaller than

one caused the covariance of the related state to quickly converge to zero, due to the limited

range of the fixed-point variables. The presented results in this thesis were achieved by setting

the system covariance matrix to

Q =



1.1 0 0 0 0 0 0

0 1.1 0 0 0 0 0

0 0 1.1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(5.1)

and the measurement covariance matrix to

R =



1.11 0 0 0 0 0 0

0 1.11 0 0 0 0 0

0 0 1.11 0 0 0 0

0 0 0 1.01 0 0 0

0 0 0 0 1.01 0 0

0 0 0 0 0 1.01 0

0 0 0 0 0 0 1.01


. (5.2)

Absolute values of covariance matrices can be chosen arbitrarily, since only the ratio of sys-

tem to measurement noise is relevant [Swa00]. However, according to [Sim06], non-empirical

determination of numerical values for noise processes in the Kalman Filter happens at a risk of

sacrificing the filters optimality properties and can lead to stability problems.
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Magnetic field measurements

An elementary weakness of the designed algorithm occurred during tests with real sensor mea-

surements. The earth magnetic field vector, which basically provides information about the

magnetic north direction turned out to be almost aligned with the gravity vector at the test

location. In combination with the low precision calibration procedure, the magnetometer did

not generate reliable measurements. It might be advantageous to use field variations instead of

absolute values.

Furthermore, the earth magnetic field is much weaker than magnetic fields generated from elec-

tronic devices and permanent magnets in the sensor environment. The effects of disturbing

magnetic fields might be reduced by considering a magnetic disturbance model presented in

[RBV07].

5.2. Model implementation

The software development included the process of verifying the algorithm and implementing

it on a low-power microcontroller without FPU. Initially, the algorithm was programmed in

MATLAB for fixed-point and floating-point number representations. Accuracy of the different

number representations were compared. A fixed-point 32 bit variable with 27 bit fraction length

had comparable accuracy as the floating-point versions. The general algorithm functionality was

verified in a real-time, hardware-in-the-loop environment for filter update rates larger than 100

Hz. The implementation on a 32bit microcontroller with 72 MHz clock frequency showed that

a sufficient update rate is only achievable for a fixed-point number representation. Accuracy of

the final algorithm implementation was determined for a filter update rate of 200 Hz.

Accuracy

The achieved accuracy of the designed system can be expected to improve, if sensor calibration

and accuracy tests are performed with a high precision 3-axis tilt table. Alternative calibration

procedures allowed only a limited accuracy of sensor scale and misalignment determination. The

designed test bench for accuracy determination was sufficient to verify the general performance

of the algorithm, but lacked high precision bearings and angle sensors. Additionally, accuracy

should be monitored over large time spans, to investigate the effect of time-varying gyroscope

biases.

Robustness

In order to prove robustness of the designed system, stability against initial attitude errors and

sensor disturbances should be investigated. Consequences of the limited range and precision of

the fixed-point number representation have to be further inspected. It might be advantageous

to assign an individual fraction length to each variable in the implemented algorithm. This

requires to know the range of each variable in advance, which might be difficult to determine.
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5.3. Future prospects

In order to improve the designed attitude estimation system, future work should consider empir-

ical investigations to find optimal parameters for the Extended Kalman Filter. For the present

work, numerical parameters of the filter were determined iteratively and adapted until the al-

gorithm showed ”good” results. Especially sensor parameters, noise properties of the TRIAD

algorithm and properties of the human motion model should be investigated empirically to im-

prove estimation accuracy.

The current implementation is not capable of providing reliable Yaw estimates, due to the earth

magnetic field at the test location and an inaccurate magnetometer calibration. A high precision

calibration and a magnetic field disturbance model might help to overcome these difficulties. Al-

ternatively, a redesign of the algorithm could be considered, which uses magnetic field variations

instead of absolute values.

The implemented algorithm is based on fixed-point arithmetics to achieve a sufficient update

rate on the designated microcontroller. It might be advantageous to consider alternative mi-

crocontrollers with FPU or DSP. This would enable an implementation of the algorithm with

floating-point arithmetic, which has higher precision and avoids problems due to overflows. Spe-

cial low-power derivates might overcome the disadvantage of a higher power consumption.

Recently, the design of small, low-power and self-contained attitude estimation system gains

much attention in research projects and product developments. Current advances in sensor

miniaturization and accuracy permits the conclusion, that a fully integrated solution can be

expected within the next five years, which contains sensors and signal processing on a single,

low-cost chip.
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A. Conversion from rotation matrix to

quaternion representation

A matrix describing attitude or a rotation in three-dimensional space contains nine elements

according to

T =

m00 m01 m02

m10 m11 m12

m20 m21 m22

 .

A rotation about a unit quaternion q can be expressed in matrix form M(q), where

M(q) =

w
2 + x2 − y2 − z2 −2wz + 2xy 2wy + 2xz

2wz + 2xy w2 − x2 + y2 − z2 −2xw + 2yz

−2wy + 2xz 2wx+ 2yz w2 − x2 − y2 + z2

 .

By comparing the elements of T and M(q) it is possible to compute the quaternion components

w, x, y and z of q according to

w = ±0.5
√

1 +m00 +m11 +m22

x =
m21 −m12

4w

y =
m02 −m20

4w

z =
m10 −m01

4w
.

In case w equals zero, which would give a division by zero, it is possible to compute x, y or z

from the diagonal elements and compute the remaining quaternion components by off-diagonal

elements. This is shown in [Bak].
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B. Magnetometer calibration

In [MBP+00] Merayo et al. propose a magnetometer calibration method, which finds bias,

scaling and misalignment errors based on magnetometer measurements taken in several orienta-

tions. Plotting the three-axes measurements in a Cartesian coordinate system yield an ellipsoid,

whereas perfect measurements would result in a sphere centered around (0,0,0). The calibration

is shown to be identical to parameter identification of the ellipsoid, given by

(v − c)T (UTU)(v − c) = 1 , (B.1)

where v is a three-axes magnetometer measurement, U is a 3× 3 upper triangular matrix and

c is the ellipsoid center. After c and U have been found, a calibrated measurement w can be

computed by

w = U(v − c) . (B.2)

In order to find the required bias vector and the triangular matrix the ellipsoid equation is

rewritten in a linearized parameter model form[
x2 y2 z2 xy xz yz x y z

]
p = 1 (B.3)

where p is a 9 × 1 parameter vector to estimate. Merayo et al. show that U can be found by

Cholesky factorization of a positive definite matrix formed by components of p:

A = UTU =

 p1 p4/2 p5/2

p4/2 p2 p6/2

p5/2 p6/2 p3

 . (B.4)

The ellipsoid center c can be found by

c = A−1

p7

p8

p9

 . (B.5)

Estimating the parameter vector p requires at least nine measurement in different sensor orien-

tations. Then Equation (B.3) can be rewritten as

Dp = 1 (B.6)
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where D is a matrix containing N magnetometer measurements of the x-, y- and z- components

according to

D =



x2
1 y2

1 z2
1 x1y1 x1z1 y1z1 x1 y1 z1

x2
2 y2

2 z2
2 x2y2 x2z2 y2z2 x2 y2 z2

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

x2
N y2

N z2
N xNyN xNzN yNzN xN yN zN


The least-square solution to the estimation problem is given by

p = [DTD]−1D1 . (B.7)

In order to achieve accurate estimates, a high number of measurements should be considered,

which increases the demand for computational power and precision to compute [DTD]−1. This

can be avoided by reformulating Equation (B.6) according to

D′p′ = 0 (B.8)

where D′ contains N magnetometer measurements, enhanced by a column of ones:

D′ =



x2
1 y2

1 z2
1 x1y1 x1z1 y1z1 x1 y1 z1 1

x2
2 y2

2 z2
2 x2y2 x2z2 y2z2 x2 y2 z2 1

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

x2
N y2

N z2
N xNyN xNzN yNzN xN yN zN 1


and p′ is now a 10 × 1 parameter vector. The solution to this homogeneous equation set can

be found computationally efficient by a singular value decomposition (SVD) approach, derived

in [Svo05]. This method is also followed by Barraud and Lesecq, who published accompanying

MATLAB-code in [BL08].

62



C. MATLAB code of EKF implementation

The following code presents the MATLAB implementation of the designed filter algorithm in

standard double precision.

1 function [quat]= EKF(in_omega_x ,in_omega_y ,in_omega_z ,in_acc_x ,in_acc_y ,in_acc_z)

2 % constant bias and scale factors

3 bias_acc_x =1.493;

4 bias_acc_y =1.5;

5 bias_acc_z =1.496;

6 bias_omega_x =1.206;

7 bias_omega_y =1.218;

8 bias_omega_z =1.224;

9 scale_acc_x =-5.2;

10 scale_acc_y = -5.05;

11 scale_acc_z =4.7;

12 scale_omega_x =8.95;

13 scale_omega_y = -9.45;

14 scale_omega_z =-8.8;

15

16 % scale and remove bias from gyros

17 omega_x=scale_omega_x *( in_omega_x -bias_omega_x);

18 omega_y=scale_omega_y *( in_omega_y -bias_omega_y);

19 omega_z=scale_omega_z *( in_omega_z -bias_omega_z);

20

21 % scale and remove bias from accelerometers

22 scale_acc =[ scale_acc_x 0.15 0.1;...

23 0.09 scale_acc_y -0.03;...

24 0.04 0.06 scale_acc_z ];

25 acc_out= (scale_acc *([ in_acc_x;in_acc_y;in_acc_z]-[ bias_acc_x;bias_acc_y;bias_acc_z ]))’;

26 acc_x=acc_out (1);

27 acc_y=acc_out (2);

28 acc_z=acc_out (3);

29

30 % normalize accelerometer measurements

31 norm_acc =1/ sqrt(acc_x .^2+ acc_y .^2+ acc_z .^2);

32 acc_x=norm_acc*acc_x;

33 acc_y=norm_acc*acc_y;

34 acc_z=norm_acc*acc_z;

35

36 persistent x

37 persistent P

38 if isempty(x)|| isempty(P)

39 x=[0 0 0 1 0 0 0]’; % state vector

40 P=1*eye(7); % state covariance matrix

41 end

42

43 dt =0.01; % sample rate

44 tau =0.5; % constant to model angle random walk of human motion dynamics

63



APPENDIX C. MATLAB CODE OF EKF IMPLEMENTATION

45

46 % system covariance matrix

47 Q=[ 1.1 0 0 0 0 0 0;...

48 0 1.1 0 0 0 0 0;...

49 0 0 1.1 0 0 0 0;...

50 0 0 0 0 0 0 0;...

51 0 0 0 0 0 0 0;...

52 0 0 0 0 0 0 0;...

53 0 0 0 0 0 0 0];

54

55 % measurement covariance matrix

56 R=[ 1.01 0 0 0 0 0 0;...

57 0 1.01 0 0 0 0 0;...

58 0 0 1.01 0 0 0 0;...

59 0 0 0 1.01 0 0 0;...

60 0 0 0 0 1.01 0 0;...

61 0 0 0 0 0 1.01 0;...

62 0 0 0 0 0 0 1.01 ;

63 ];

64

65

66 %--------------- time update ---------------------------------------------

67 % compute state prediction with system equation

68 x_old=x;

69 x(1)=(1-dt/tau)*x_old (1);

70 x(2)=(1-dt/tau)*x_old (2);

71 x(3)=(1-dt/tau)*x_old (3);

72 x(4)=dt/2* (-x_old (5)*x_old (1) - x_old (6)*x_old (2) - x_old (7)*x_old (3)) + x_old (4);

73 x(5)=dt/2* ( x_old (4)*x_old (1) - x_old (7)*x_old (2) + x_old (6)*x_old (3)) + x_old (5);

74 x(6)=dt/2* ( x_old (7)*x_old (1) + x_old (4)*x_old (2) - x_old (5)*x_old (3)) + x_old (6);

75 x(7)=dt/2* (-x_old (6)*x_old (1) + x_old (5)*x_old (2) + x_old (4)*x_old (3)) + x_old (7);

76

77 % normalize quaternion part of the state vector

78 norm_x =1/ sqrt(x(4) .^2+x(5) .^2+x(6) .^2+x(7) .^2);

79 x=[x(1:3);zeros (4,1)]+[ zeros (3,1);x(4:7) ].* norm_x;

80

81 % compute linearized system matrix

82 A_lin=[ (1-dt/tau) 0 0 0 0 0

0;...

83 0 (1-dt/tau) 0 0 0 0

0;...

84 0 0 (1-dt/tau) 0 0 0 0;

...

85 -dt/2*x(5) -dt/2*x(6) -dt/2*x(7) 1 -dt/2*x(1) -dt/2*x(2) -dt

/2*x(3) ;...

86 dt/2*x(4) -dt/2*x(7) dt/2*x(6) dt/2*x(1) 1 dt/2*x(3) -dt

/2*x(2) ;...

87 dt/2*x(7) dt/2*x(4) -dt/2*x(5) dt/2*x(2) -dt/2*x(3) 1 dt

/2*x(1) ;...

88 -dt/2*x(6) dt/2*x(5) dt/2*x(4) dt/2*x(3) dt/2*x(2) -dt/2*x(1) 1];

89

90 % compute covariance of prediction

91 P=A_lin*P*A_lin ’+Q;

92

93 %--------measurement update -----------------------------------------------

94 % compute quaternion measurement vector

95 acc_b=[acc_x;acc_y;acc_z]; % gravity vector in body frame
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96 acc_e =[0.0;0.0;1.0]; % gravity vector in earth frame

97 mag_e =[0.0;1.0;0.0]; % magnetic field vector in eart frame

98

99 % in order to generate artificial magnetometer measurements , the magnetic field vector

100 % in earth frame is rotated by the current attitude estimate (q*)

101 mag_x= 2*x(4)*x(7)+2*x(5)*x(6);

102 mag_y= x(4).^2-x(5) .^2+x(6).^2-x(7) .^2;

103 mag_z= -2*x(4)*x(5) +2*x(6)*x(7);

104 mag_b =([ mag_x;mag_y;mag_z ]); % magnetic field vector in body frame

105

106 % compute measurement quaternion with TRIAD algorithm

107 acc_b_x_mag_b=cross(acc_b ,mag_b);

108 acc_e_x_mag_e=cross(acc_e ,mag_e);

109 M_b=[acc_b acc_b_x_mag_b cross(acc_b_x_mag_b ,acc_b)];

110 M_e=[acc_e acc_e_x_mag_e cross(acc_e_x_mag_e ,acc_e)];

111 Rot_m=M_e*M_b ’; % Rotation matrix represents orientation derived from magnetometer and

accelerometer

112 qw=1/2* sqrt (1+ Rot_m (1,1)+Rot_m (2,2)+Rot_m (3,3)); % compute scalar quaternion from

rotation matrix

113 % check: if qw=0, then derive qx , qy or qz from diagonal elements

114 qm=[qw;(Rot_m (3,2)-Rot_m (2,3))/4/qw;( Rot_m (1,3)-Rot_m (3,1))/4/qw;( Rot_m (2,1)-Rot_m (1,2))

/4/qw]; % compute complex quaternion from rotation matrix

115

116 fy=[x(1);x(2);x(3);x(4);x(5);x(6);x(7)]; % create model measurement vector

117 data=[ omega_x;omega_y;omega_z;qm]; % create sensor measurement vector

118

119 e=data -fy; % compute error between sensor and model output values

120

121 % compute kalman gain and state covariance without matrix inversion

122 K=zeros (7,7);

123

124 H=eye (7);% Output matrix H is identy , so may be left out

125 for i=1:7

126 % compute Kalman gain

127 K(:,i)=P(i,:)./(P(i,i)+R(i,i));

128 % update state vector

129 x=x+K(:,i)*e(i);

130 % update covariance matrix

131 P= (eye(7)-K(:,i)*H(i,:))*P*(eye (7)-K(:,i)*H(i,:))’+K(:,i)*R(i,i)*K(:,i)’;

132 end

133

134 % normalize quaternion part of the state vector

135 norm_x =1/ sqrt(x(4) .^2+x(5) .^2+x(6) .^2+x(7) .^2);

136 x=[x(1:3);zeros (4,1)]+[ zeros (3,1);x(4:7) ].* norm_x;

137

138 quat=[x(4);x(5);x(6);x(7)]; % create output vector
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