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Abstract
On the road to fully autonomous vehicles, advancements in sensor technology have
enabled Advanced Driver-Assistance Systems (ADAS) in assisting the driver with
tasks such as lane-keeping and collision avoidance. ADAS systems are enabled by
perception systems which, given sensor input, outputs a perception model. Recently
proposed perception models utilize data from the Light Detection And Ranging (Li-
DAR) sensor, that measures nearby occlusions with high definition and frequency.
This enables perception models to detect objects and identify environmental seg-
ments relevant to ADAS tasks.

The critical safety requirements of perception models have created a demand
for a framework that can efficiently assess the performance of the model on large
amounts of labeled sensor data. Scalable analysis frameworks such as Apache Spark
allow developers to perform large-scale data analysis using abstract interfaces while
exploiting data-level parallelism in a cluster of nodes.

As Spark is a general platform designed for business intelligence and machine
learning, there is a trade-off in both expressive power and efficiency for specialized
data types. This trade-off is relevant for processing LiDAR data and by extension
validating perception models. This lack of specialization impacts model validation
such that only expert users have access to efficient implementations. Non-expert
users are forced to write complex custom functions for their data which impact
efficiency negatively. This increases the risk of errors in the implementation as
custom functions are more difficult to interpret.

As the query compiler of Spark is inherently extensible, we investigate how its
query language, optimizer, and engine have been extended with support for special-
ized operations on spatial and spatio-temporal data. Furthermore, we investigate
how these extensions perform when applied to validating LiDAR sensor perception
systems. In our pre-study, we identified spatial joins between volumes and points
to be useful unsupported data operations. By implementing these operations with
different approaches in Spark, we evaluate the expressive power and efficiency they
provide. Finally, we perform a scalability analysis of the query response time of each
implementation. We find that using spatial libraries does not improve the efficiency
for the specific spatio-temporal join. Furthermore, we find that implementing the
query and predicate is not easier with the specialized libraries. However, we find
that accounting for different types of shapes of the volumes may impact efficiency
on larger datasets.
Keywords: LiDAR, Apache Spark, Spatial, Spatiotemporal, 3D, Point Cloud
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1
Introduction

This chapter introduces the main topic of this thesis, the motivation behind the
topic, and the contribution of the thesis. Firstly, Section 1.1 introduces autonomous
sensors and objectives in the automotive domain as well as how they relate to this
thesis. Secondly, the problem definition is presented in Section 1.2 where scope, de-
limitations, and research questions are defined based on the objectives and problems
in the domain. Finally, the main contributions, an outline of the thesis, and how
they relate to the research questions are presented in Section 1.3.

1.1 Background
A recent goal in the automotive industry is to implement autonomous systems that
can take driving decisions to safely maneuver a vehicle in different environments. To
enable the development of such a system, it needs to understand its surroundings.
For this purpose, a perception system ingests sensor data and outputs a model of
the perceived physical environment captured by the sensor which can be fed to the
autonomous system. A sensor that is widely used in the autonomous domain is
the Light Detection And Ranging (LiDAR) sensor [32, 24, 29, 28]. The perception
system takes measurements from the LiDAR sensor as input and outputs a model
of the perceived environment. An example of such an output model is a description
of all pedestrians detected by the perception system for the input data.
Given the safety requirements in the automotive domain, having high confidence in
the performance of the autonomous system is vital [13, 36]. To confidently reason
about the safety of an autonomous system, the performance of the perception system
needs to be validated. That is, quality metrics of the model produced by the per-
ception system needs to be computed as the model is what the autonomous system
acts on. In order to be statistically confident about the abilities of the perception
system, it needs to be validated against large amounts of data. The scale of the
data is further emphasized by the requirement that the data needs to be collected
from all environments the perception system is expected to operate in. For example,
one can not be statistically confident in the abilities of the perception system when
operating in the rain if it has only been validated on data gathered when it did not
rain.
Input data magnitude and variation are two aspects of performance evaluations for
perception systems, another is the implementation of the evaluation. When speci-
fying metrics for the performance of a perception system, the implementation that
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1. Introduction

evaluate these metrics need to be simple in order to safely reason about the semantics
of the code. Furthermore, it should be possible to leverage the efficiency and ease
of implementation for domain experts and data analysts who are not necessarily
computer scientists and experts at the inner workings of the computing environ-
ment. We observe two requirements in our computing environment to enable the
evaluation of perception systems:

1. The computing environment needs to be efficient in evaluating the performance
of perception systems on large amounts of data.

2. The computing environment needs support for high-level operations such that
an evaluation is easy to implement and reason about.

Numerous data processing frameworks utilize the MapReduce paradigm to achieve
data-level parallelism with two general data operations, map and reduce. Map
operations produce one output item per input item independently, which means
that it can be distributed across a cluster of workers to be run on different parts of
a distributed dataset in parallel [12]. Drawing inspiration from the breakthroughs
and to remedy the limitations of MapReduce, Apache Spark was implemented using
an abstraction of distributed datasets called Resilient Distributed Datasets (RDDs)
[57]. This allowed many different Map- and Reduce-type operations to be supported
while the abstraction made Spark state-of-the-art in large-scale data processing due
to the in-memory model and fault-tolerance enabled by RDDs. This ability to
process large amounts of data makes Spark an interesting framework based on the
first requirement.
For the second requirement, different projects such as Pig [33] and Shark [54] aim to
support data manipulation languages for general large-scale data processing frame-
works. Expanding on the ideas of Shark [54], Spark SQL was introduced as a package
in the Spark project that implemented a rule-based query compiler named Catalyst
[4]. Catalyst supports several high-level languages for manipulating large amounts
of data in RDDs. For special operations, Spark SQL does not only support User
Defined Functions (UDFs) written in high-level languages, but the inherent exten-
sibility of the rule-based model of Catalyst allows the development of libraries with
optimized UDFs that can harness the RDD primitives to provide efficient implemen-
tations of special operations.
Related works that propose frameworks for processing spatial, geospatial, and spatio-
temporal data in Spark have been surveyed in [3, 16, 21, 37]. While proposed
frameworks implement various specialized operations, these recent surveys show a
lack of support for three-dimensional spatiotemporal data types, and by extension,
LiDAR data operations.

1.2 Problem Statement
The lack of support for three-dimensional data operations in large-scale processing
frameworks is a problem both in terms of computational efficiency and ease of imple-
mentation when evaluating LiDAR perception systems. It should be noted though,
that Spark is a promising candidate for a framework that could satisfy these two
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1. Introduction

requirements for LiDAR data processing. This is mainly because the inherent exten-
sibility of Catalyst’s design has enabled a straightforward methodology to implement
libraries that add specialized operations to Spark SQL. The main objective of this
thesis is to investigate how well-suited Spark is for processing LiDAR data, what
might be missing to improve such processing, and to survey existing techniques in
the Spark ecosystem to find a trade-off between ease of implementation and perfor-
mance. In order to better understand the requirements for LiDAR data processing,
this thesis project is conducted in collaboration with Annotell, a Gothenburg-based
company that operates in analytics and annotation of autonomous vehicle percep-
tion systems [25].
First, the requirements outlined in the previous section for determining whether
Spark is well-suited or not need to be clarified:

• Efficiency - The computation time for the data processing needs to scale well
with the input data size.

• Expressive Power - The validation needs to be simple to express and under-
stand.

To expand on the main objective and these requirements, we define the following
research questions which the thesis aims to answer.
RQ1 - What are the requirements of a framework for developing large-scale LiDAR

data processing pipelines?
RQ2 - What useful properties that could speed up the processing of LiDAR data

are not utilized?
RQ3 - Can we utilize the properties identified in the previous question to reduce the

computation time for a LiDAR data processing problem defined by Annotell?
These questions and our thesis are scoped for evaluating the efficiency and expres-
sive power of high-level operations for LiDAR data processing. The thesis is not
concerned with how to best utilize these operations or how to best define a LiDAR
classification evaluation. While efficiency is considered, this thesis will not delve into
trade-offs between accuracy and computational efficiency for LiDAR classification
evaluations.

1.3 Contribution and Outline of Thesis
The main contribution of this thesis is an evaluation of the state of the art for LiDAR
data processing in Apache Spark. To evaluate the contribution in the context of this
thesis and to understand the results, some supporting chapters are needed before the
conclusion and results are presented. In Chapter 2 we present preliminaries necessary
to understand the evaluation of a perception model end-to-end, from sensor data
collection to output evaluation metrics. To identify what techniques are available,
gaps in current research, and the contribution space, Chapter 3 introduces related
work focused on specialized, efficient data analysis in Apache Spark. Not only does
this help shape the methods for designing and evaluating contributions, presented
in Chapter 4, but also provides insight towards answering the research questions.
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1. Introduction

These methods are applied to different approaches to create and implement solutions
in Chapters 5, 6, and 7. In Chapter 8 these implementations are evaluated and
compared in terms of both efficiency and expressive power in order to relate them
to the research questions. Furthermore, the implementation strategies, execution
plans, and results are discussed to give an understanding of the findings. Finally, a
conclusion relating the results to the purpose of the thesis is presented in Chapter
9.
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2
Preliminaries

This chapter presents preliminary information needed to understand the setting of
the thesis as well as what a LiDAR perception model evaluation consists of. First,
the LiDAR sensor and the annotation process are presented. This is followed by an
explanation of how evaluations of performance models are enabled by relating per-
ception model data to annotation data. After this, Resilient Distributed Datasets,
the core concept behind Apache Spark are explained. Then, query processing and
relational operations in traditional databases are introduced. Finally, we tie together
the Apache Spark concepts with query processing by expanding on how Spark SQL
bring these together.

2.1 LiDAR Sensor Data Annotation
A popular type of sensor in distributed cyber-physical systems is the Light Detec-
tion And Ranging (LiDAR) sensor [32]. The LiDAR sensor continuously scans its
surroundings with lasers, measuring the relative distance to objects and surfaces
by measuring the time it takes for the light to reflect back. This repeatedly creates
detailed descriptions of the surrounding environment, called point clouds. This data
is used as input for perception tasks, whether they are performed by a system or a
human. The perception task at hand specifies a task objective such as “detect all
pedestrians”, or “mark all road signs”. As there is a wide variety of pedestrians and
road signs, writing step-by-step algorithms is not exhaustive enough. This is one of
the reasons to why proposed perception systems rely on machine learning models to
efficiently mimic the judgements of a human. These judgements make up the ground
truth data set of the perception task, which the perception system learns from by
optimizing an objective function over the examples. There are major differences in
how this task is performed by the perception system during training, validation,
and production. During development and validation, the classification function is
improved and evaluated interchangeably batch-wise, whereas in production, percep-
tion needs to be performed continuously on the arriving sensor stream. In order
to evaluate performance on a perception task, an evaluation data set is needed for
which two perception models are compared. This is usually done with experimental
output from a trained perception system and another ground truth data set.
To produce a ground truth data set, the sensor data is displayed to a human which
perceives the data and performs manual annotation according to the perception task.
The effort required for each example depends on the granularity of the task and

5



2. Preliminaries

the richness of the data. In semantic segmentation, each individual measurement
such as a pixel in an image or a point in a point cloud is classified [20]. This
is usually very expensive as the size of the perception model is as large as the
number of measurements. Detection tasks, where the objective is to detect and
classify objects, are less fine-grained. As objects identified in an image consist of
multiple measurements, a detection task encapsulates multiple points at once. For
the sake of cost-effectiveness, rather than manually labeling each point individually,
simpler shapes such as bounding boxes is commonly used [7]. A figure showing the
visualization of a point cloud image together with annotated boxes around vehicles
can be seen in Figure 2.1. One thing to note is that this shows how the annotator
receives a reference view to enrich the perception of the scene.

Figure 2.1: A perception task of drawing boxes around vehicles where two vehicles
are identified and accordingly surrounded by bounding boxes.

It is important to note that while the annotation data set is referred to as ground
truth it does not necessarily model reality perfectly. For example, in Figure 2.1 the
vehicles are annotated as cuboids which is a simplification of their actual shapes.
Allowing for annotations to be approximate increases the annotation speed signifi-
cantly which is relevant given the scale of the data that needs to be evaluated and
by extension annotated. Furthermore, the annotations only need to be accurate for
the parts of the data that are relevant for autonomous driving tasks. For example,
a cuboid annotation of a car still correctly models the space that is unsafe to en-
ter as a driving action as visualized in Figure 2.2. For other combinations of tasks
and objects, this approximation might not be acceptable. An example of this is an
overpass where a cuboid annotation could model the overpass as collision-relevant
when it is not as illustrated in Figure 2.3. To conclude, annotations do not always
model reality perfectly, have various precision as they take either a cuboid or concave
shape, and the desired precision is highly contextual.

6



2. Preliminaries

Figure 2.2: A cuboid annotation of a car highlighted in red. Despite the lack of
precision in cuboid annotations the car is correctly encapsulated and models that
the area is unsafe to enter.

(a) (b)

Figure 2.3: The same overpass annotated as a cuboid in (a) and as a concave
shape in (b) where the cuboid annotation incorrectly models that it can not be
driven under and the concave shape correctly models that it is can be driven under.

2.2 Point Cloud Segmentation Evaluation
The evaluation process analyzes the confusion between the two perception models,
usually the classifications produced by the perception system and by human an-
notations. To enable the evaluation process, the same perception task has to be
performed both by the perception system and the annotator. The four types of out-
comes when analyzing the confusion between the two perception models for a task
are True Positive (TP), False Positive (FP), False Negative (FN), and True Negative
(TN) as shown in Table 2.1. Evaluating an outcome is highly dependant on the per-
ception task. For example, for the detection task of identifying pedestrians, a true
positive would be defined by the manual annotation agreeing with the perception
system on the position of a pedestrian. A false positive means that the automated
system identifies a pedestrian where the manual annotation does not, this can be
due to disagreeing on the position, classification, or both. An example of this could
be a mannequin in a store window which the perception system falsely identified as

7



2. Preliminaries

a pedestrian whereas the manual annotation does not specify any pedestrian in the
same location.

Annotated Positive Annotated Negative
Classified Positive True Positive False Positive
Classified Negative False Negative True Negative

Table 2.1: A confusion matrix for manual annotations and automated classifica-
tions produced by the perception system.

The example with the pedestrian is a detection task, where the output model is a
set of detections. Comparing the two sets of detections gives subsets TP, FP, and
FN. As TN is the complement of the prior three, and the universe is usually infinite,
TN is also infinite and therefore not meaningful for detection metrics. Therefore,
confusion metrics such as precision and recall, which are based on TP, FP and FN,
are often used to evaluate detection tasks [48].
To validate a semantic segmentation perception system, various statistical confu-
sion metrics have to be calculated on diverse test data. The first step of this process
is to create the validation data set. As there are several ways to annotate se-
mantic segmentation [20], this may require some preprocessing. When performing
semantic segmentation through volumetric annotation, as described in the previous
section, the actual classifications of each point in the point cloud is retrieved by
cross-matching the point cloud data with the volumetric labelling. This models the
classification function

semseg(point) ∈ {class|(volume, class) ∈ V olumes, contains(volume, point)}

where the contains(volume, point) predicate holds if the point is in the volume in
both the spatial and temporal dimensions. As observed in the previous section with
cars volumetrically annotated as cuboids, the precision of these volumes may vary.
Usually, this is acceptable in semantic segmentation as points contained within the
cuboid are likely part of the car so other potential objects in the bounding space are
disregarded. An example of how points are distributed in two cuboids, exemplifying
how volumetric annotations can be suitable for semantic segmentation evaluations,
can be seen in Figure 2.4.
When the perception models are both in the same point-wise space, various metrics
have been proposed to evaluate the confusion of the models [48, 39, 20]. Apart
from these, various other Key Performance Indicators (KPIs) are used in industry
to communicate the quality of annotated data sets and perception systems [25].
As there are numerous possibly interesting confusion metrics and KPIs they all
have to be performed on large validation datasets to ensure statistical safety [40].
Since these are required to contains many hours of recorded data, efficiency in com-
putations as well as supporting data-level parallelism is critical to enable quick
query-response time for short development cycles.
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(a) (b)

Figure 2.4: Cuboid annotations of two vehicles as seen from above in (a) and from
the back-right in (b). The cuboids are largely empty as the LiDAR can not see
through the vehicles.

2.3 Resilient Distributed Datasets
The core of the Apache Spark framework is built on the Resilient Distributed Dataset
(RDD) model [57] which enables in-memory execution of MapReduce [12] jobs. An
RDD is described as an immutable, partitioned collection of records that can be
defined in two ways. Either by reading some data from a distributed storage solution
or by applying some transformation operation to an existing RDD. An example of a
transformation is the map function. By applying a map function on each record of an
existing RDD one can create a MappedRDD. These transformation operations allow
the creation of RDDs. The other supported type of operations are actions. Actions
compute some output based on the contents of the RDD and the action performed.
An example of an action is count which calculates the number of records in the RDD.
An important detail for performance reasons is that RDDs are not materialized until
an action is performed on them. This is possible since RDDs track their lineage as
chains of transformations, e.g. a MappedRDD knows that in order to materialize it
will need to apply the provided mapping function to each record of another RDD.
Not only does this mean that operations on RDDs can be evaluated lazily but it
also means that fault tolerance can be achieved by recomputing missing RDDs as
each RDD specifies how it can be materialized.

The RDD model builds upon the MapReduce paradigm and while MapReduce pro-
grams do not need to employ the RDD abstraction, doing so has some clear ad-
vantages. An example of this is how MapReduce lacks abstractions for in-memory
computations. This leads to depending heavily on writing to and reading from disk,
especially when performing iterative computations. This is bad from a performance
standpoint but is a necessity in how the popular MapReduce frameworks achieve
fault tolerance. This can be compared to RDDs which instead, using their lineage,
recompute missing results, minimizing expensive disk operations.

The execution model enabled by RDDs allow developers to write a driver program
defining RDDs, transformations, and actions. This abstracts away the underlying
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Figure 2.5: Visualization of partition dependencies of four RDD transformations.
Two with narrow dependencies and two with wide dependencies.

distributed execution model efficiently, hiding details like which data is on which
node and what data needs to be shuffled between nodes. However, some knowledge
of what transformations are cheap and expensive is still required. This is mainly
communicated through the concept of narrow and wide dependencies, depending
on whether each input partition is dependant on one or more output partitions.
For narrow dependencies, less data shuffling is required as the new partition can
be created from where the old is located. For wide transformations such as joins,
which requires the comparison of each combination of records in the input RDDs,
data shuffling may becomes very expensive. These dependencies are visualized for
four operations in Figure 2.5.

Since its launch new APIs and libraries have been added to the Spark ecosystem,
all of these are built on top of the RDD core of Spark.

2.4 Query Processing and Operations in
Relational Databases

The computational model of Spark made a big leap away from traditional database
systems in order to support very large data sets. While Spark efficiently abstracts
away some complexities of the distributed MapReduce model, the RDD API is still
far from declarative. Traditional database systems utilize the relational data model
proposed by Codd [8], to enable users to write declarative queries, explaining what
result they want rather than what steps are needed to take in order to generate it.

The relational data model is based on set-theory, where a relation R is a set of
tuples (t1, t2, ..., tn) and each element ti is of type Ti. A relational database is then
a collection of relations. The tuple (T1, T2, ..., Tn) is referred to as the schema of the
relation. A relational database defines two sets of relations, the stored set and the
expressible set. The relations in the stored set are usually referred to as tables and
are materialized in some arbitrary fashion. The expressible set of relations contain all
relations which can be expressed using queries written in the Data Query Language
(DQL) supported by the relational database.
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2.4.1 Relational Operators
While it is possible to specify and support a DQL in an infinite number of ways,
Codd proposed a generalized algebra of relational operators which transform one or
more input relations to an output relation.
The relational algebra introduces three major operands: Projections (Π), Selections
(σ) and Joins (./). These operands are semantically similar to the map, filter and
join functions of RDDs respectively. A common extension to the algebra introduced
by Codd is to include Aggregations [34]. As Aggregations are semantically similar to
the reduce function in RDDs, they are a core feature of Spark and the MapReduce
paradigm, where aggregations of large amounts of data is one of the key benefits of
the system.

Projection (Π)

Projections simply transform each tuple in the input relation R to a tuple in the
output relation S given a projection function π : R→ S.

Ππ(R) = {s|r ∈ R ∧ s ∈ S ∧ π(r) = s}

Selection (σ)

Selections filter the input relation based on a predicate relation θ.

σaθ(R) = {r|r ∈ R ∧ r.a ∈ θ}

Selection is unary as it takes one relation R with the domain T , one subset of the
domain a ⊆ T , and one relation θ in the same domain as a. The output of a selection
operation then gives all tuples in R for which r.a is contained in θ. For instance,
if one has the relation points with the domain (x, y, z, time), and wants to select
all point at time t for some visualization purposes, the selection operation would be
defined as:

σtime=t(points) = {p|p ∈ points ∧ p.time ∈ {t}}

Notice that “= t” is shorthand for the relation θ containing only the element t.
If one would want to query all succeeding points of t, the relation θ would be
θ = {s ∈ time|s > t}

Aggregation (G)

Aggregate functions calculate output based on all values in a column. Examples
include averages, minimum, maximum, and number of values. Combined with ag-
gregate functions is the concept of grouping. When combining an aggregate function
with a grouping specification, the aggregation is performed on the values of each
group, resulting in one aggregate value for each group.
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Join (./)

Joins are binary operands which means they have two input relations R and S.
Similarly to Selection, they require a predicate relation θ which has the domain
Tθ ∈ TR × TS. It is therefore a subset of all possible combinations of some attribute
in R and S, indicating that the result are the combinations of tuples in R and S
which the join attribute is in θ.

R ./aθb S = {r ∪ s|r ∈ R ∧ s ∈ S ∧ (r.a, s.b) ∈ θ}

The output of a θ-Join thus produces the output relation P of the union domain
which contains all tuples in the input relations connected by θ. This is useful for
connecting disparate relations. For instance, if one wants to translate points based
on some recorded vehicle trajectory, the following join and projection is all that’s
required.

Πtime,point+translation(points ./timeθtime translations)

where
θ = {(a, b)|a ∈ Time ∧ b ∈ Time ∧ a = b}

These different definitions of θ predicates are what allow many different variations
of selection and join operations to be created.
One subset of predicate relations are spatial relations. We can identify different spa-
tial relations in natural language such as inside, intersects, touch, disjoint,
covered etc [14]. These help describe what relation entities of spatial type have.
Spatial types have been implemented in various relational databases according to the
Simple Features standard, formalized by the International Standardization Organi-
zation (ISO) [26] and Open GIS Consortium (OGC) [9]. These define spatial types,
functions, and predicate relations including those mentioned above. An ST_ prefix
is applied to make explicit that these are applied to spatial types e.g. ST_Contains.

2.4.2 Query Processing
The purpose of the relational model is to support an expressive and declarative
DQL. The declarative language style expresses how an output relation is derived
from other relations, as opposed to the execution steps required in order to produce
the output relation. This allows the user to not have to worry about how the data
is physically stored or partitioned when manipulating it. It is instead up to the
designer of the system to employ different database techniques to strike balance
between optimizing specific queries while supporting other queries the system may
be asked to support in the future.
In order to support a declarative DQL, traditional computer language techniques
found in interpreters are utilized. The processing of a query is described in the
database field as a series of steps from query text to a result [17]. Figure 2.6 shows
the three major steps. (1) Parsing translates the query into a logical query plan,
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represented as an abstract syntax tree. (2) Optimization transforms the plan into
a physical execution plan, consisting of the primitive operations of the execution
engine, by using different optimization strategies and metadata such as the schema
and table sizes obtained from the catalog. (3) Finally, Execution runs the physical
execution plan in the execution engine against the stored data, outputting the query
result.

Figure 2.6: Query processing steps.

Similar to a type of language compilers, called interpreters, the three query pro-
cessing steps (1) creates, (2) manipulates, and (3) consumes an internal abstract
syntax tree [45]. Optimizations that ensure that an efficient physical execution plan
is generated in (2) are critical. Heuristics of available tricks and shortcuts, are en-
coded in the query optimizer which manipulates the abstract syntax tree in a way
that produces the same result in an optimal way. which means that for specific
workloads such as spatial workloads, a specific set of heuristics exists which needs
to be implemented to accelerate these workloads [46].

2.5 Spark SQL

In order to make the Spark framework more accessible, the Spark SQL module
introduced relational processing on top of RDDs [4]. Spark SQL implements the
ideas of Shark [54], with a query optimizer called Catalyst. Catalyst allows users to
write queries using two declarative APIs: DataFrames and SQL. Catalyst is able to
generate optimized execution plans for the Spark Runtime given code written using
these APIs.
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2.5.1 Catalyst
The compilation process in Catalyst takes a query and produces a physical Spark
plan in four steps, parsing, analyzing, optimizing, and physical planning. Through
these steps, Catalyst turns the query into an optimized physical execution plan,
based on RDD primitives, that can be executed by the Spark engine.

Spark SQL provides a high-level DataFrame API that allows users to scale their
evaluation to larger data sets without having to worry about the underlying physical
execution plan. For many use-cases, using declarative languages allows Catalyst
to generate a more efficient execution plan compared to writing it manually [4].
The query processing in catalyst takes a query and produces a physical Spark plan
of RDD primitives using the general query processing steps described in Section
2.4.2. Internally, catalyst divides the optimization step into analyzing, where names
referring to tables and columns are resolved using the catalogue of schemas, and
optimizing where the logical plan is translated into an optimized physical plan. The
physical plan is different from the logical plan in that the nodes of the syntax tree
are RDDs. This means that operations are map- or reduce-type functions or specific
patterns of data-shuffling. An overview of this can be seen in Figure 2.7.

Figure 2.7: The catalyst compilation process from query to physical plan with
custom extension points [27].

As seen in Figure 2.7, all of the steps are defined using rules and strategies. This
allows general use cases to harness general optimizations and strategies, while also
allowing external optimizations and strategies to extend Spark to specialize it for
certain problem domains.

One useful strategy called predicate pushdown tries to apply filters as early as pos-
sible. This reduces the overall amount of data that is processed and for operations
such as joins where the number of comparisons is at worst quadratic, this strategy
has a big impact on the query complexity. This strategy is encoded into Catalyst as
the PushPredicateThroughNonJoin and PushDownLeftSemiAntiJoin rules, which
move filter-predicates before operations such as Projections and Joins. For a syntax
tree, produced by query parsing, which first performs a join between two relations
and then filters the result, the following Logical Plans demonstrate how the pred-
icate pushdown strategy is applied. Note the order in which Filter and Join is
applied.
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Analyzed Logical Plan

== Parsed Logical Plan ==
Deduplicate [Annotation.timestamp]
+- Project [Annotation.timestamp]

+- Filter (Annotation.timestamp = 123456)
+- Project [...]

+- Join Inner, (Annotation.timestamp = LiDAR.timestamp)
:- Relation[Annotation] parquet
+- Relation[LiDAR] parquet

Optimized Logical Plan

== Optimized Logical Plan ==
Aggregate [Annotation.timestamp], [Annotation.timestamp]
+- Project [Annotation.timestamp]

+- Join Inner, (Annotation.timestamp = LiDAR.timestamp)
:- Project [Annotation.timestamp]
: +- Filter (isnotnull(Annotation.timestamp) AND
: (Annotation.timestamp = 123456))
: +- Relation[Annotation] parquet
+- Project [LiDAR.timestamp]

+- Filter ((LiDAR.timestamp = 123456) AND
: isnotnull(LiDAR.timestamp))
+- Relation[LiDAR] parquet

Multiple optimization strategies allow Spark SQL to support various declarative and
imperative-style APIs for defining queries.

2.5.2 DataFrame
Spark SQL includes an API for DataFrames, a concept for which implementations
already exist in the R language and the Python data science library Pandas [2].
Similar to those APIs, a DataFrame in Spark is analogous to a table in the relational
data model in the sense that it is a collection of rows with a schema. Under the
hood, DataFrames in Spark SQL share the same underlying data model as RDDs,
where both are abstractions of collections of distributed data items. DataFrames also
share other aspects to RDDs, such as lazyness where no execution occurs until an
action is performed. Unlike RDDs, actions on DataFrames call Catalyst to perform
query optimization which transforms the DataFrame to an equivalent RDD to be
materialized. This enables one of the most important distinctions from DataFrames
in Pandas and R in that DataFrame operations in Spark SQL are optimized before
any evaluation starts.
With the addition of a schema, DataFrames allow different relational operations such
as select, where, and join via its functional-style API. To illustrate the expressive
power of the DataFrame API when compared to the RDD API we observe the two
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code snippets below for which we implement a solution to getting the number of
points in a point cloud for each timestamp using the two APIs.

RDD

parsedRDD
.map { case(_, _, _, timestamp) => (timestamp, 1) }
.reduceByKey(_+_)

DataFrame

parsedDataFrame
.groupBy('timestamp).count()

2.5.3 Spark SQL Dialect
While DataFrames largely support the same set of operations as SQL, having sup-
port for writing SQL directly can be useful. This is especially true for users transi-
tioning from a DBMS to Spark for data exploration as well as for computing mul-
tiple aggregates. For this purpose, a DataFrame can be registered as a temporary
table on which one can perform SQL queries. It is important to remember that the
DataFrame is still registered in the catalog as a non-materialized view which enables
Catalyst to optimize the SQL queries and DataFrame expressions. An example of
counting the number of points in a single point cloud instant using the SQL API
can be seen below.

df.registerTempTable("pointcloud")
spark.sql("""

SELECT count(*)
FROM pointcloud
WHERE timestamp = 123456789

""")

It is also possible to modify the DataFrame before registering it as a table which
can be quite useful, an example of this for the same problem can be seen below.

df.filter('timestamp === 123456789)
.registerTempTable("filtered_pointcloud")

spark.sql("""
SELECT count(*)
FROM filtered_pointcloud

""")

From the above example, we can also see that the SQL code and DataFrame API
are quite similar. For example, filter for a DataFrame corresponds to where in SQL.
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2.5.4 Partitioning Strategies
Both the RDD and DataFrame API in Spark expose two types of partitioning strate-
gies: hash partitioning, and range partitioning. These make sure that data is dis-
tributed evenly between partitions, both physically, so partitions contain an even
amount of data, and logically, so that partitions contain all data that will be re-
duced together. Logical co-partitioning enables otherwise expensive transformations
with wide dependencies to be evaluated as a cheaper transformation using narrow
dependencies.
Hash partitioning distributes tuples based on the values of hashed keys. Each parti-
tion is assigned a evenly sized range covering the entire range of the hash function.
Hashing keys yields a deterministic, uniform distribution of hash values, making
this strategy useful for reducing tuples on equal keys. This is due to the uniform
distribution alleviating data skew, while ensuring that all tuples with equal keys end
up in the same partition, making reduction on keys a transformation with narrow
dependencies.
Not all reductions are performed on equal keys. For some operations that aggregate
similar items, such as bin joins [52] and similarity joins [41], strict equality reduction
is not sufficient. To partition similar tuples together the range partitioning strategy
comes into play. Range partitioning assigns a low and high bound for each partition
such that items with values within that range are only stored in that partition. To
determine these low and high bounds in a way that prohibits skew, the data is first
sampled. This partitioning strategy enables partition pruning, where partitions that
are disjoint to the query can be safely ignored. For example, if all points measured
in a time span are to be selected, using the high and low bound, we can safely
determine whether each partition overlaps the time span or not and only process
overlapping partitions.
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Related Work

As shown in the previous chapter, Apache Spark is an interesting candidate for
evaluating LiDAR perception models on large amounts of data. This chapter high-
lights previous work that extends the language and runtime of Apache Spark with
specialized operations and optimizations. We are specifically focused on explor-
ing work that brings support for spatial and spatio-temporal data types to Apache
Spark. This serves two secondary purposes, by studying the current state-of-the-
art we learn how Spark can be extended, as well as what types of operations and
optimizations extensions choose to bring. In Table 3.1, the synthesized findings of
related surveys are presented to create an overview of related contributions and what
meaningful aspects these have. We also break down these aspects and highlight their
usefulness for our purposes.
While there are several other related works that propose system-level architectures
for storage [15], management [35], indexing [30], perception [42] and evaluation [31]
of large amounts of LiDAR data with Apache Spark, the system-level perspective
goes beyond the scope of this thesis.

3.1 Spatio-Temporal Libraries
Multiple Spark libraries improve working with specific types of spatio-temporal data.
In recent studies, meaningful differences of Spark-based systems are compared [3, 16,
21, 37]. Specifically, these differences are found in supported data types, partitioning
strategies, indexing strategies, query language, and queries. While these include
both internal and external aspects, external aspects, such as supported language,
data types, and queries, are most critical with regard to expressive power. Internal
aspects may provide major performance gains, however, utilizing these is not viable
without an understanding of internal low-level operations.
While there is ongoing work on RDD-level libraries supporting spatial analysis such
as Spark3D [38], SparkGIS [5], LocationSpark [47] and SpatialSpark [55], the scope
of this thesis focuses on libraries that support the Spark SQL query languages.
These systems, denoted with “Spark SQL” in the API column of Table 3.1, integrate
directly with Spark SQL to enable optimized spatial queries through the SQL and
DataFrame interfaces.
Libraries achieve this by implementing custom functions such as projections, selec-
tion predicates, and join predicates as well as strategies to optimize queries using
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partitioning and indexing techniques. This makes the evaluation of queries using the
custom functions more efficient than using regular User-Defined Functions (UDFs).

Name and Active Years Spark Version API Data Types Partitioning Indexing Queries

Sedona [56]
(2015-2021)

3.0.1,
2.4.7

Spark SQL,
RDD

2D Point,
LineString,
Polygon,
Rectangle

Uniform-Grid,
Voronoi,
R-Tree,
Quad-Tree,
KDB-Tree,
Hilbert

R-Tree
Quad-Tree

Range Selection,
kNN Selection,
Spatial Join,
Distance Join

STARK [22]
(2016-2020) 2.4.0 Spark SQL,

RDD STObject Fixed-Grid,
Binary-Space R-Tree kNN Selection,

Spatio-Temporal Join

SpatialSpark [55]
(2015-2017) 2.0.2 RDD

2D Point,
LineString,
Polygon,
Rectangle

Unifrom,
Binary-Split,
STR

R-Tree Range Selection,
Spatial Join

Elcano [18]
(2018) Unknown Spark SQL,

RDD

2D Point,
LineString,
Polygon

N/A GeoHash,
R-Tree Spatial Join

Simba [53]
(2016-2018) 2.1.0 Spark SQL,

RDD 2D Point STR R-Tree

Range Selection,
kNN Selection,
Distance Join,
kNN Join

LocationSpark [47]
(2015-2017) 1.6.2 RDD

2D Point,
LineString,
Polygon,
Rectangle

Uniform-Grid,
R-Tree,
Quad-Tree

R-Tree,
Quad-Tree,
IR-Tree

Range Selection,
kNN Selection,
Spatial Join,
kNN Join

Magellan [43]
(2015-2018) 2.3.1 Spark SQL,

RDD

2D Point,
LineString,
Polygon,
MultiPoint,
MultiPolygon

Z-Curve N/A Range Selection
Spatial Join

SparkGIS [5]
(2015-2016) 2.1.0 RDD

2D Point,
LineString,
Polygon

Fixed-Grid,
Binary-Space,
Quad-Tree,
Strip-based,
Hilbert-Curve,
STR

R*-Tree
Range Selection,
kNN Selection,
Spatial Join

Table 3.1: Comparison of Spatial Libraries in Spark.

3.1.1 Data Types and Operations
For custom functions to be useful as spatial operations they need to be able to
manipulate spatial datatypes. In Spark, these are registered by the library as User-
Defined Types (UDTs). Many libraries implement UDTs which either borrow from
or comply with the Simple Features specifications for two-dimensional geometrical
data types and functions by ISO and the Open GIS Consortium (OGC) [9]. While
the latest version of this specification by OGC specifies 3D data types, no libraries
comply at this level. Instead, Elcano [18] distinguishes itself from other libraries
by being strictly compliant at a lower compliance level while other libraries do not
qualify for compliance at a basic level.
Geometries specified in Simple Features include point, line, and polygon. Spatial
functions included in the standard either provides details about a shape, compare
two shapes or create a new shape from another shape. Comparisons include predi-
cates such as intersects, touches, and contains [44]. A large portion of libraries
employ the Java Topology Suite (JTS) [11] to implement the UDTs specified by Sim-
ple Features. JTS offers wide support for two-dimensional spatial data types and
functions, enabling spatial libraries to work as a middle layer between Spark and
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the Simple Features specification. While some work specializes in spatial trajectory
data and such data is available from the annotation process, these data types are
outside the scope of this thesis.

3.1.2 Partitioning and Indexing
For the manipulation of UDTs to be efficient, partitioning and indexing strategies
that support these UDTs need to be implemented to perform informed decisions on
how to distribute data between and inside partitions respectively.
Multiple scalar dimensions are supported in Spark’s native range partitioning which
means that 3D points can be partitioned with regards to both X, Y, and Z. How-
ever, axis-aligned ranges do not sufficiently express arbitrary shapes such as lines,
planes, and volumes. This prohibits expressivity as analysts need to define redun-
dant columns for axis-aligned bounding boxes in order to utilize partition pruning.
This is something that spatial libraries provide by extending Spark with custom
partitioning and indexing strategies [52, 49]. Apache Sedona has the most diverse
range of partition techniques as seen in Table 3.1. It provides various Grid- and
Tree-based partitioning strategies as well as the Hilbert Curve, which is a type of
Space-Filling Curve (SFC) that projects a space onto a line. Another SFC is the
Z-Curve which Magellan employs as a partitioning strategy [43].
Spatial indexing organizes data such that spatial queries can be answered more
efficiently. In some of the literature, partitioning is referred to as global indexing
as it distributes data between partitions to achieve this. Furthermore, indexing
strategies, or local indexing, speed up intra-partition processing using indexes such
as spatial index trees like R-trees and Quad-trees. By first building and querying
this tree, an expensive spatial predicate can be evaluated on a smaller dataset.
Some libraries also support persistent indices, that store a global or local index to
accelerate consecutive queries on the same spatial dataset.
Apache Sedona [56] (formerly GeoSpark) is one of the most active spatial libraries
for Spark. It provides custom operations together with both custom optimization
strategies to Catalyst and an extended RDD. The authors of Sedona also outline the
limitations of Spark-based systems Simba, Magellan, SpatialSpark, and GeoMesa.
STARK is a library for working with spatio-temporal data in Spark [22]. It both
extends the physical plan model with SpatialRDD, enabling efficient spatio-temporal
analysis algorithms using partitioning and indexing strategies, providing Spark SQL
with integrations for a declarative interface. STARK distinguishes the temporal
dimension and predicates are conjunctions of spatial and temporal predicates.
There are more libraries proposed for similar purposes. While many of these are
open-source, none have attracted the development community such as Apache Se-
dona. This has lead to a lack of maintenance and only Apache Sedona fully supports
Spark version 3. While this means that most performance enhancements that come
with the latest major version of Spark are not available when using STARK, STARK
is still an interesting library to consider as it considers the temporal dimension.
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Problem Specification

In the previous chapter, related work that extends Apache Spark with Spatial and
Spatiotemporal operations was presented. As the surveys of Geospatial and Spa-
tiotemporal libraries show, there is no literature or libraries, that optimize the pro-
cessing of LiDAR sensor data for Apache Spark. This indicates room for optimizing
analysis of LiDAR perception systems with Spark SQL, in terms of both efficiency
and expressive power. To build and ultimately evaluate different solutions in this
space, a clearly scoped problem is defined. This enables a concrete and contrastive
evaluation of different approaches, presented in Chapters 5-7.

This chapter introduces the problem definition, the motivation behind it, and the
evaluation metrics for a solution.

4.1 Problem Definition and Motivation

The problem definition will be explained as a spatial relation defined as the count
aggregation of a spatiotemporal join of two input data sets, which counts the number
of points that are contained by volumes.

Gcount(annotation ./contains lidar)

In order to understand this output, its dependencies, and by extension the problem
definition, first we need to understand the input data.

4.1.1 Input 1 - Point Cloud Data
Section 2.1 briefly explained how the LiDAR sensor outputs point clouds. In this
section, the structure of point clouds is formalized since it is one of the inputs for
our problem definition. A point cloud consists of multiple points, each of which has
a classification as given by the perception model as well as a spatial and a temporal
location. The spatial location consists of the points coordinates in the X, Y, and Z
dimensions. The temporal location consists of a timestamp denoting when the point
was measured. The relevant data types with a brief description are summarized in
Table 4.1.
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Point Cloud Data
Data Description
Classification From perception model
Timestamp Temporal Location
X Point X-position
Y Point Y-position
Z Point Z-position

Table 4.1: Input data types and descriptions for point cloud data.

4.1.2 Input 2 - Volumetric Annotated Data
In Section 2.1, the annotation process was introduced as an option to create ground
truth data to which the perception model classes can be compared. Here the output
of the annotation process is formalized, since it is one of the inputs used in the prob-
lem definition. An annotated object has a classification as given by the annotator as
well as a spatial and a temporal location. The temporal component is a timestamp
relating it to a point cloud with the same timestamp. For annotations, the spatial
component is more complex than for points in point clouds, as annotations can con-
sist of various shapes to represent objects in the real world. For an annotation to
represent different shapes there are two spatial components:

• Vertices - Each vertex has a unique identifier and X, Y, Z coordinates
• Faces - A face combines three vertices to create a triangle in 3D space, a shape

is made up of a set of faces.

(a) (b)

Figure 4.1: A shape represented as just vertices in (a) and as faces denoting triplets
of those vertices in (b).

Figure 4.1 visualizes how vertices and faces combine to create a cuboid shape, how-
ever, more complex shapes could be created similarly by having more vertices, faces
and by combining the vertices into faces differently. The relevant data types for
annotations with a brief description are summarized in Table 4.2.

22



4. Problem Specification

Volumetric Annotated Data
Data Description
Classification From annotation
Timestamp Temporal location
AnnotationId Identifier of this annotation
FaceID Identifier of this face
Vertice1 The first VertexID of this face
Vertice2 The second VertexID of this face
Vertice3 The third VertexID of this face
VertexID The identifier of this vertex
Vertex_X The X coordinate of this vertex
Vertex_Y The Y coordinate of this vertex
Vertex_Z The Z coordinate of this vertex

Table 4.2: Input data types and descriptions for volumetric annotation data.

Note that both face- and vertex-attributes share the same table. This means that a
row has null-values for the vertex-attributes if its a face and vice-versa.

4.1.3 Output - Spatially Relating of Inputs
The output is defined by the outcome of a spatial relation on the two inputs. The
output should count the number of points in a point cloud that are contained within
at least one of the volumetric annotations. For a point to be contained within a
volumetric annotation it needs to be spatially located inside of an annotated volume
and exist at the same timestamp as that annotated volume. A visualization of which
points qualify and should be counted is given in Figure 4.2.

Figure 4.2: A visualization of the contains predicate in three steps. Firstly the
annotation is projected on the point cloud. Secondly, points not contained by the
annotation are removed. Thirdly, the projection of the annotation is removed and
the resulting point cloud remains.

This output and by extension problem definition is chosen for three reasons. Firstly,
without specialized 3D support, it is difficult to implement both in terms of efficiency
and readability. Secondly, it varies in difficulty with the different annotation shapes,
for example, axis-aligned cuboids are easier than concave shapes. Lastly, it is an
interesting problem for a lot of different analyses within the space. For example,
the accuracy of the perception model for a specific class could be measured by: (i)
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filtering out all the volumetric annotations that are of that class; (ii) dividing the set
of points into two sets, points that are contained and points that are not contained
in the filtered annotations using the contains predicate, and finally, (iii) counting
the number of contained points with a different class than the annotations and the
number of points not contained with the same class as the annotations.

4.2 Evaluation Metrics
This section will define evaluation metrics that relate the problem definition from
the previous section to the research questions introduced in 1.2 and formalize how
proposed solutions are evaluated.
The research questions are focused on two things, computational efficiency, and
expressive power. For a proposed solution to the problem defined in the previous
section, computational efficiency is evaluated by implementing the idea, running it
ten times, and computing the average time as well as the deviations for various
cluster sizes. The evaluation in terms of computation time will also be related to
whether the implementation supports all 3D shapes or some subset. For example,
an efficient solution that can only handle axis-aligned cuboids is not very interesting
if there exists a solution that is equally efficient but can handle concave shapes.
When evaluating expressive power of an entire domain, there is a large risk of the
evaluation being opinionated. By clearly defining the input and output of the query,
there are fewer possibilities for subjectivity to have an impact. Highly specialized
operations are desirable and can be achieved either by implementing the operation
as a UDF or by utilizing a Spark library that extends Spark SQL with the operation.
For imported operations some data conversion is needed for the input data to fit
the data types supported by the operation. In terms of expressive power, the data
translation needed to enable usage of the imported operations needs to be easy to
implement and understand. Providing data translation as UDFs in order to access
specialized operations is likely to be more convenient and efficient than implementing
the specialized operation on your own. This is due to libraries utilizing the internals
of Spark and extending it to achieve optimized operations. However, the data types
added by the library need to make sense and be easy to utilize. It is worth noting
that expressive power is not valuable if the code is inefficient, as such these traits
have to be related to the performance of the code. When discussing expressive
power, it will be done from the perspective of someone with little to no Apache
Spark experience and knowledge.
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Approach 1 - Utilizing
User-Defined Functions

This chapter describes how the approach of utilizing UDFs to encode a spatial pred-
icate can be used to solve the task introduced in the previous chapter. As UDFs
are very flexible, two variants of encoding the spatial predicate are developed and
implemented. Both solutions use the same spatial filtering and an identical query.
In order to understand and motivate the implementations and design choices, first
the landscape and possibilities when utilizing UDFs in SparkSQL are presented and
applied to the problem. This is coupled with the query used by both implemen-
tations. Secondly, the designs of the spatial filtering and the two versions of the
spatial predicate are disclosed and justified. Finally, the implementations of the
spatial filtering and the two versions of the spatial predicates are given.

5.1 Application

The query for this approach can be written with DataFrames in two ways. Either by
performing operations supported by the relational, domain-specific language (DSL)
on them or by registering them as tables to use in a SQL query. As both options
perform equally and are optimized by Catalyst [4], the choice comes down to pref-
erence. For this implementation, SQL is chosen as we find it easier to explain the
solution using SQL queries in the thesis.

SQL Query that counts all points inside any annotation

Prior to executing the query, the input data sets lidar and annotation are regis-
tered as DataFrames such that they can be accessed from the SQL context. The
query below returns all points from the lidar DataFrame that are contained both
spatially and temporally by at least one annotation from the annotation DataFrame
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and includes extra clauses for spatial filtering:

SELECT count(*)
FROM lidar, annotation
WHERE lidar.time == annotation.time AND

annotation.min_x < lidar.pointX AND
lidar.pointX < annotation.max_x AND
annotation.min_y < lidar.pointY AND
lidar.pointY < annotation.max_y AND
annotation.min_z < lidar.pointZ AND
lidar.pointZ < annotation.max_z AND
contains(annotation.volume, lidar.point)

For Spark to execute the query successfully, an implementation of the contains
predicate is needed. By utilizing the UDF API, which allows users to define custom
functions that Spark can utilize, contains can be implemented as a function. As the
UDF API is available both in Spark and PySpark, UDFs provide access to external,
non-spark libraries written in Java/Scala or Python. Furthermore, UDFs provide
the user with the flexibility of defining the input and output parameters to fit their
data types. These properties of UDFs, which make them easy to work with, are
achieved by Spark treating UDFs as black boxes. However, this means Catalyst can
not optimize UDFs during query optimization impacting performance negatively.
As the UDFs are associated with performance constraints, minimizing the number
of function calls to them can boost performance.

5.1.1 Axis-Aligned Spatial Filtering

The objective of the spatial filtering is not to solve the contains problem for all input
combinations, but rather to remove combinations of points and annotations where
the point is clearly not contained by the annotation. As such, one could argue that
the filtering should be part of an optimized implementation of the contains predicate.
However, by separating the spatial filtering to be performed outside of the UDF,
Catalyst is able to consider the filtering when it performs query optimization.

To give an example of a point cloud with corresponding annotations for which there
are points that are not spatially close to any annotation, see Figure 5.1. In the
Figure, we see how a majority of the points are not in close proximity to either of
the two annotations. Without spatial filtering, all combinations of points and anno-
tations would have to be tried by the contains predicate to perform the evaluation
whereas with spatial filtering the number of combinations can be reduced drastically.

For the spatial filtering, the extreme points of the annotation in the X, Y, and Z
dimensions are used to create an axis-aligned cuboid spanning the extreme points of
the annotation. A visualization of this for an axis-oriented cuboid annotation can
be seen in Figure 5.2. The axis-aligned cuboid is then used for spatial filtering as
any point not contained by it can not be contained by the annotation.
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Figure 5.1: A cropped point cloud with two vehicle annotations.

(a) (b)

Figure 5.2: In (a) we see an axis-oriented cuboid annotation. In (b), the annotation
from (a) is encapsulated by an axis-aligned cuboid that spans the extreme points of
the annotation.

5.1.2 Point in Polyhedron Predicate
One way to implement the contains predicate for arbitrary polyhedrons and points
is with the even-odd method [23]. The idea behind this is to create a ray originating
in the point and to cast the ray in any direction. By determining whether the
number of intersections between the ray and the surfaces of the polyhedron is even
or odd, we know if the point is inside the volume or not. For the point to be inside
the volume, the number of intersections must be odd. To understand why this is,
assume that the point is inside the volume and that the volume is finite in size.
Draw an infinite line starting at the point in any direction, eventually, the line exits
the volume, when this happens the line has intersected the surface of the volume
once. At this point, if the line intersects with the surface again the line re-enters
the volume and the number of intersections is even. As the volume is finite, by
continuing in the same direction, the line will eventually exit the volume again,
resulting in an odd number of intersections. A 2D Visualization of this can be seen
in Figure 5.3.
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Figure 5.3: The rays and intersections of points inside and outside a concave
polygon.

5.1.3 Point in Oriented Cuboid Predicate
For volumes represented as simpler shapes, there are other strategies for evaluating
the predicate. One such approach can determine if a point is within an oriented
cuboid.
To determine if the point is inside the cuboid, the point is projected onto an edge
of the cuboid. If this projection is on the line between the end vertices of that edge
the point is considered inside in that dimension. This property has to be tested true
for each orthogonal dimension to be considered inside the entire cuboid.
First, the orthogonal edges u = p1 − p2, v = p1 − p4, w = p1 − p5 are retrieved.
Checking whether the projection of a point x fall on these edges is done by calculating
three scalar values. The origin: u · p1, the side length of u: u · p2 and the position of
x on the edge u. If the position of x on the edge u is between the origin and the side
length of u, the point x is inside the cube in that dimension. If this is true for u,
v, and w, the point is is inside the box. A visualization of this for a point P and a
point Q where P is contained by the annotation and Q is not can be seen in Figure
5.4.

Figure 5.4: In (a) we see a cuboid annotation with two points P and Q. In (b) we
see how P and Q are located when projected on the lines u, v, and w.

5.2 Implementation
When making the choice between Python, Scala, and Java for the implementation of
the UDF, two things are important to consider. Firstly, whether a library exists in
one of these languages that will aid the developer in implementing a UDF. Secondly,
in terms of performance whether the developer can afford the overhead costs that
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come with PySpark. These overhead costs have previously been major [50], where
input and output have been piped to the python environment via Unix pipes from the
JVM and back again. The overhead cost of this process is relative to the amount
of input data as well as the complexity of the function. For a function that is
highly complex and only operates on small amounts of data, the cost might be
negligible. However, if there are many small pieces of input data and a simple
function, serialization is going to be a large portion of the cost of the UDF.
Later versions of Apache Spark have opted for utilizing Apache Arrow [1] as a lan-
guage and environment-agnostic implementation to store and manipulate columnar
data in memory. This Spark API is referred to as PandasUDFs or vectorized UDFs,
as operations can be made on batches of items in a column instead of rows as is the
case with regular UDFs. Performance-wise, vectorized UDFs suffer less from I/O
overhead and are therefore more efficient compared to the earlier Python UDF API.

5.2.1 Axis-Aligned Spatial Filtering
The annotations in the input data are represented spatially as vertices and faces.
As faces only combine vertices, the spatial x, y, and z values are contained in the
vertices. As such the vertices are used to find the extreme points of the annotation
using the min and max functions which given a field finds the minimum/maximum
value for that field. The minimum and maximum values need to be found for each
individual annotation and for all three spatial dimensions. This is achieved with the
following SQL query which creates new columns to hold the extreme values:

Annotation Preprocessing

SELECT collect_list(
struct(annotation.VertexID

annotation.Vertex_X,
annotation.Vertex_Y,
annotation.Vertex_z)) as Vertices,

collect_list(
struct(annotation.Vertex1,

annotation.Vertex2,
annotation.Vertex3)) as Faces,

min(annotation.Vertex_X) as min_x,
max(annotation.Vertex_X) as max_x,
min(annotation.Vertex_Y) as min_y,
max(annotation.Vertex_Y) as max_y,
min(annotation.Vertex_Z) as min_z,
max(annotation.Vertex_Z) as max_z,

FROM annotation
GROUP BY timestamp, id

This is how the min_{x,y,z} and max_{x,y,z} columns used in the query in Section
5.1 are created.
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5.2.2 Point in Polyhedron Predicate

In Scala, there is a 3D geometry library, Apache Commons Geometry, which pro-
vides data types and functions for working with geometries and that supports 3D.
This library also provides raycasting functionality which can be used as an efficient
solution to determine whether a point is contained by a concave 3D geometry using
the even-odd method [23]. The pseudocode for this algorithm is given in Algorithm
1.

Algorithm 1: Point in concave shape - Even-odd Test
Input: Faces: fs, Point: x
Output: Boolean
define ray with origin x and arbitrary direction;
foreach face in fs do

if ray intersects face then
count intersection;

end
if the sum of intersections is odd then

return true;
else

return false;
end

The weight of this approach lies on the intersects predicate which is evaluated on
all faces of the polyhedron to determine whether the number of intersections is even
or odd.

5.2.3 Point in Oriented Cuboid Predicate

For the implementation of the oriented cuboid predicate, the library from the previ-
ous section can be used as it also brings support for vector types and linear algebra
operations. The pseudocode for this algorithm is given in Algorithm 2. It is worth
noting that for the input data used in this thesis, the vertices in the annotation are
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ordered such that the orthogonal vertices always appear at the same indices.

Algorithm 2: Point in cuboid - Side Projection Test
Input: Vertices: vs, Point: x
Output: Boolean
p1 ← arbitrary vertex in vs;
(p2, p4, p5)← get orthogonal vertices of p1;
u← p1 − p2;
v ← p1 − p4;
w ← p1 − p5;
if u · x is between u · p1 and u · p2 then

if v · x is between v · p1 and v · p4 then
if w · x is between w · p1 and w · p5 then

return true
end
return false
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Approach 2 - Utilizing Sedona

This chapter describes a solution to the task introduced in Chapter 4 using the
Sedona library. First, the features from the library which are utilized in the im-
plementation are presented together with their strengths and weaknesses. Then,
the implementation choices with respect to the features are disclosed and justified.
This is coupled with the final implementation of the query and the surrounding code
needed to enable it.

6.1 Application
While Sedona provides the desired predicate, ST_Contains, it only supports 2D ge-
ometries and operations whereas the problem from Chapter 4 requires a 3D contains
solution. Furthermore, Sedona is a spatial library and does not support spatio-
temporal objects. As such the ST_Contains predicate does not verify that the two
geometries co-exist temporally. This section explains a methodology for solving the
3D spatio-temporal contains problem using the 2D spatial ST_Contains operation.
The methodology only supports cuboid shapes which are rotated in one axis, as de-
vising a methodology for solving the 3D contains problem for concave shapes using
a 2D contains operation is not feasible.
Given a 3D annotation and a 3D point, the 3D contains operation can be replaced by
three 2D contains operations. For the annotation, create three 2D planes XY, XZ,
and YZ, and verify that the point lies on these planes, disregarding the dimension
that is orthogonal to the plane. A visualization of this can be seen in Figure 6.1.
This idea needs to be combined with a temporal check in order to solve the problem
presented in Chapter 4, resulting in the following SQL code:

SQL Query that counts all points inside any annotation

SELECT count(*)
FROM annotation, lidar
WHERE annotation.timestamp == lidar.timestamp

and ST_Contains(annotation.XY, ST_Point(lidar.X, lidar.Y))
and ST_Contains(annotation.XZ, ST_Point(lidar.X, lidar.Z))
and ST_Contains(annotation.YZ, ST_Point(lidar.Y, lidar.Z))

For this query, the predicate is already provided by Sedona and does not need to
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Figure 6.1: The three different 2D planes (XY, XZ, and YZ) of the same 3D
cuboid, all containing the point p. As such, the cuboid contains p.

be implemented by the developer as opposed to in the previous Chapter. Not only
is this convenient but more importantly, Sedona extends Catalyst with new rules
enabling Catalyst to optimize all parts of the query.

In order to enable the query some data preprocessing and type conversions are
needed. The ST_Contains predicate takes two input geometries. As such, to utilize
the predicate the input data needs to be converted to a geometry type. As can be
seen in the query, this is straightforward for the points in the point cloud with the
ST_Point constructor. However, the three 2D planes of the annotations need to
be represented as geometries. In order to reason about the overhead costs of the
conversion and how difficult it is to translate the input data to data types compatible
with Sedona, the next section will detail the implementation and data pre-processing
needed to enable the query.

6.2 Implementation

To utilize the spatial predicates and functions provided by Sedona, the input data
is converted to geometries. A polygon, a subclass of geometry, can be created from
a string and a delimiter with the ST_PolygonFromText constructor. In order to
use the ST_PolygonFromText constructor we need a function which outputs a text
representation of a polygon given 2D vertices representing a plane of an annotation.
For this a User-Defined Aggregate Function (UDAF) is defined as: toWKT(v_dim1,
v_dim2): String. Using this UDAF the following SQL code creates three text
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representations text_XY, text_XZ, and text_YZ of polygons, one for each plane:
SELECT toWKT(

annotation.Vertex_X, annotation.Vertex_Y) as text_XY,
toWKT(

annotation.Vertex_X, annotation.Vertex_Z) as text_XZ,
toWKT(

annotation.Vertex_Y, annotation.Vertex_Z) as text_YZ
FROM annotation
GROUP BY timestamp, id

With the text representations of polygons for all planes, the polygon objects can
be created using the ST_PolygonFromText constructor. It should be noted that
the constructor inserts edges between the vertices in the order they appear in the
text and the input annotation data is ordered differently. This is remedied by using
the ST_ConvexHull function which given a geometry returns the convex hull of that
geometry. While this would not correctly represent concave annotations, it correctly
represents both cuboid and convex annotations which is what this implementation
supports. As such, the following SQL code prepares the three polygons XY, XZ,
and YZ used in the final query, presented in the previous section:
SELECT *,

ST_ConvexHull(ST_PolygonFromText(text_XY, ",")) as XY,
ST_ConvexHull(ST_PolygonFromText(text_XZ, ",")) as XZ,
ST_ConvexHull(ST_PolygonFromText(text_YZ, ",")) as YZ

FROM annotation
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Approach 3 - Utilizing STARK

This chapter describes a solution to the task introduced in Chapter 4 using the
STARK library, following the same structure as the previous. First, the features
from the library which are utilized in the implementation are presented together
with their strengths and weaknesses. Then, the implementation choices with respect
to the features available in STARK are disclosed and justified. This is coupled with
the final implementation of the query and the surrounding code needed to enable it.

7.1 Application
STARK, similarly to Sedona provides an implementation of the contains predicate,
ST_Contains. While neither library supports 3D, which is the problem space,
STARK is a spatio-temporal library and as such the predicate verifies that the
object is contained both spatially and temporally. In Section 6.1 we presented a
methodology for solving the 3D contains problem using three 2D contains opera-
tions, a similar methodology will be applied here. However, here the temporal check
is included in the predicate, resulting in the following SQL code:

SQL Query that counts all points inside any annotation

SELECT count(*)
FROM annotation, lidar
WHERE ST_Contains(annotation.ST_Geom_XY,

toSTObject(lidar.X, lidar.Y, lidar.timestamp))
and ST_Contains(annotation.ST_Geom_XZ,

toSTObject(lidar.X, lidar.Z, lidar.timestamp))
and ST_Contains(annotation.ST_Geom_YZ,

toSTObject(lidar.Y, lidar.Z, lidar.timestamp))

One of STARK’s strengths is that it extends RDDs with spatio-temporal partitioning
and provides spatio-temporal indexing techniques for the contents of the partitions.
While STARK does extend Catalyst, it does not extend Catalyst with rules to
dynamically use spatial partitioning or indexing. As this thesis focuses on ease of
use and queries as opposed to manually applying operations directly on RDDs, the
implementation in this Chapter will not include any spatial partitioning or indexing.
While the performance of the ST_Contains predicate still benefits from the additions
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to Catalyst the potential benefits of partitioning and indexing will not be evaluated.
It is important to note that STARK does not support versions 3.x of Spark. As
such, this implementation will not have access to Adaptive Query Execution (AQE),
a feature added in Spark 3.0 which allows for continuous optimization during query
execution [51].
The query is enabled by type conversions and preprocessing of the input data. The
ST_Contains predicate takes two input ST_Object (Spatio-Temporal Object). For
points, these are created using the toSTObject UDF we defined as seen in the
query. This UDF uses the STObject(double, double, long) constructor. For
annotations, similarly to the Sedona implementation, it is not as straightforward
and the next section will outline implementation details, such as type conversions,
enabling a better understanding of the overhead costs.

7.2 Implementation
An ST_Object can also be created using the ST_Object(string, long) constructor
which takes a string representing a geometry and a long representing a timestamp.
The string should have the Well-Known Text (WKT) format, standardised by the
OGC [10]. To create WKT representations of 2D polygons for the annotations, a
UDAF is defined as: toWKT(v_dim1, v_dim2): String. Using this UDAF the fol-
lowing SQL code creates three WKT representations Poly_WKT_XY, Poly_WKT_XZ,
and Poly_WKT_YZ of polygons, one for each plane:

SELECT toWKT(
annotation.Vertex_X, annotation.Vertex_Y) as Poly_WKT_XY,

toWKT(
annotation.Vertex_X, annotation.Vertex_Z) as Poly_WKT_XZ,

toWKT(
annotation.Vertex_Y, annotation.Vertex_Z) as Poly_WKT_YZ

FROM annotation
GROUP BY timestamp, id

The WKT strings representing polygons are now combined with a timestamp to
create an ST_Object via a fromWKTandTimestamp UDF - which utilizes the
ST_Object(string, long) constructor - as can be seen in the following SQL:

SELECT fromWKTandTimestamp(
annotation.Poly_WKT_XY, annotation.timestamp) as ST_Geom_XY,

fromWKTandTimestamp(
annotation.Poly_WKT_XZ, annotation.timestamp) as ST_Geom_XZ,

fromWKTandTimestamp(
annotation.Poly_WKT_YZ, annotation.timestamp) as ST_Geom_YZ

FROM annotation
GROUP BY timestamp, id

With this SQL code, all of the objects needed to enable the query from the previous
section are created finalizing the implementation for this Chapter.
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8
Evaluation

In Chapter 4 our problem was defined together with metrics for which solutions to
the problem should be evaluated. After that four implementations which solve the
problem using three different strategies were presented. This chapter first introduces
the evaluation environment. Then the optimized physical execution plans output
by Catalyst are presented and briefly analyzed for all implementations, providing
context for the results. After that, the four implementations are evaluated on com-
putation clusters of different sizes. A cluster consists of a master and a number
of worker nodes and by evaluating the computation time for different numbers of
worker nodes we find how well the different implementations scale with the avail-
able computing resources. After the evaluations, the results will be discussed. This
discussion relates the results to the scope of the thesis, the problem definition, and
the execution plans to understand and contextualize the results.

8.1 Evaluation setup
To create the different clusters needed for the evaluations we use Dataproc in Google
Cloud Platform. Both the master and worker nodes have the n1-standard-4 machine
type[19] which has 15GB of RAM and 4 CPU cores. As for the number of worker
nodes, six different cluster sizes are used; 0, 2, 4, 8, 16, and 32 workers. When there
are 0 workers the master node takes the role of a worker. The choice of both machine
type and cluster size is important in a scalability test. For example, compare having
access to two machines with 128GB of RAM and 32 CPU cores each to having
access to sixteen machines with 16GB of RAM and 4 CPU cores each. In total,
the available computing power is the same but running the implementations on two
machines is likely to be cheaper as a result of performing I/O operations locally.
However, the sixteen less powerful machines are cheaper than the two powerful
machines. Furthermore, from a scalability analysis, one could find that having
sixteen machines is redundant as the runtime is similar for twelve machines. As
such, the scalability analysis helps enable the trade-off between cost (number of
machines and machine type) and results (computation time or other metrics). In
that sense, our scalability analysis is to some extent, incomplete as it only considers
one machine type.
Experiments will be presented using the size of the cluster and the name for the
implementation, as shown in Table 8.1. For example, an evaluation result for the
experiment where the cuboid implementation from Chapter 5 runs on a cluster with
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4 workers and spatial filtering enabled will be presented as cuboid-filter-4. Evaluation
results for the experiment where the ray casting implementation runs on a cluster
with 32 workers and without spatial filtering are presented as raycast-32 and so
forth.

Approach Shape Filtering Name
1 Concave No raycast
1 Concave Yes raycast-filter
1 Cuboid No cuboid
1 Cuboid Yes cuboid-filter
2 Convex N/A sedona
3 Convex N/A stark

Table 8.1: List of Experiments.

The master node and the worker nodes run the same image. For the evaluations of
the implementations in Chapter 5 and Chapter 6 the 2.0.9-debian10 image is used.
For the evaluations of the implementation in Chapter 7 image 1.5.35-debian10 is
used as STARK does not support Spark 3.x. The versions of relevant software for
the images are listed in Table 8.2.

Name 1.5.35-debian10 2.0.9-debian10
Debian v10 v10
Spark v2.4.7 v3.1
Scala v2.12.10 v2.12.13

Table 8.2: Software versions for images 1.5.35-debian10 and 2.0.9-debian10.

The input data files are stored in Google Cloud Storage (GCS) in a bucket that is
located in the same region as the clusters. The input data for the evaluations consist
of 5 minutes and 19 seconds long LiDAR recording and corresponding annotations.
The input data consists of 362,164,330 LiDAR points and 23008 cuboid annotations,
which are measured and created over 12179 timestamps. All implementations are
tested on cuboid annotations to ensure consistency in the input for the different
implementations and evaluations.

All the implementations are written in Scala, built as JAR files, and uploaded to
GCS.

8.1.1 Query Execution Plans

While the individual Spark SQL queries are presented in Chapters 5-7, the optimized
physical plans created by Catalyst are presented here.
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Query Plan for Approach 1: UDF without Spatial Filtering

== Optimized Physical Plan ==
+- HashAggregate keys={} function=count()

+- Exchange SinglePartition
+- HashAggregate keys={} function=partial_count()

+- Project
+- BroadcastHashJoin keys={timestamp}, BuildRight UDF()

:- Project
: +- Filter not_null(timestamp)
: +- FileScan LIDAR*.parquet
+- BroadcastExchange HashedRelationBroadcastMode

+- Filter not_null(timestamp)
+- ObjectHashAggregate

keys={timestamp, MeshID}
function=collect_list(faces, vertices)

+- Exchange
+- ObjectHashAggregate

keys={timestamp, MeshID}
function=partial_collect_list(faces,

vertices)
+- Filter not_null(vertex)

+- FileScan ANNOTATION*.parquet

This plan consists of five phases with three shuffles, called exchanges in the physical
plan. The first exchange from the bottom is part of the aggregation of mesh faces
and vertices. The aggregation begins with local aggregation before an exchange is
made based on the aggregation key and is finished by aggregation at the beginning
of the second phase. This produces the left relation of the join which is performed
physically with a broadcast join. This join strategy is applied if the physical size of
the input relations is below the default configuration value of 10MB. The smaller
relation is broadcast to all workers and is applied as a map function, referred to
as a map-side join. This specific broadcast join is a BroadcastHashJoin, where
the hashed value of the timestamp is used to join tuples before any consecutive
predicate, in this case, the UDF, is evaluated.
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Query Plan for Approach 1: UDF with Spatial Filtering

== Optimized Physical Plan ==
+- HashAggregate count()

+- Exchange SinglePartition
+- HashAggregate partial_count()

+- Project
+- BroadcastHashJoin on timestamp, BuildRight

min_x < lidar.pointX &
max_x > lidar.pointX &
min_y < lidar.pointY &
max_y > lidar.pointY &
min_z < lidar.pointZ &
max_z > lidar.pointZ &
UDF()

:- Project
: +- Filter not_null(timestamp)
: +- FileScan LIDAR*.parquet
+- BroadcastExchange HashedRelationBroadcastMode

+- Filter not_null(timestamp)
+- ObjectHashAggregate collect_list(mesh)

+- Exchange
+- ObjectHashAggregate collect_list(mesh)

+- FileScan ANNOTATION*.parquet

While more predicates are added for the axis-aligned spatial filtering, this has no
effect on the plan other than that the predicates are included. The additional
predicates are appended to the BroadcastHashJoin to be evaluated before the UDF,
reducing the number of UDF calls but not the number of hash comparisons.
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Query Plan for Approach 2: Apache Sedona

== Optimized Physical Plan ==
+- HashAggregate keys={} function=count()

+- Exchange SinglePartition
+- HashAggregate keys={} function=partial_count()

+- Project
+- BroadcastHashJoin keys={timestamp}, BuildLeft

: ST_Contains AND ST_Contains AND ST_Contains
:- BroadcastExchange HashedRelationBroadcastMode
: +- ObjectHashAggregate keys={timestamp, MeshID}
: : function=toWKT()
: +- Exchange hashpartitioning
: : keys={timestamp, MeshID}
: +- ObjectHashAggregate
: : keys={timestamp, MeshID}
: : function=partial_toWKT()
: +- Filter isnotnull(timestamp)
: +- FileScan ANNOTATION*.parquet
+- Project

+- Filter not_null(timestamp)
+- FileScan parquet LiDAR*.parquet

While Sedona implements strategies for spatial joins, the optimized execution plan
above shows how the implemented query is optimized with the same join strategy,
BroadcastHashJoin, as with Approach 1.
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Query Plan for Approach 3: STARK

== Optimized Physical Plan ==
+- HashAggregate keys={}, function=count()

+- Exchange SinglePartition
+- HashAggregate keys={}, function=partial_count()

+- Project
+- BroadcastNestedLoopJoin BuildLeft, Inner,

: ((stcontains(Polygon_XY, xy) AND
: stcontains(Polygon_XZ, xz)) AND
: stcontains(Polygon_YZ, yz))
:- BroadcastExchange IdentityBroadcastMode
: +- SortAggregate keys={timestamp, MeshID},
: : function=polygonaggregator()
: +- Sort [timestamp ASC, MeshID ASC]
: +- Exchange hashpartitioning
: +- SortAggregate keys={timestamp, MeshID}
: : function=polygonaggregator()
: +- Sort [timestamp ASC, MeshID ASC]
: +- FileScan parquet [Annotations]
+- Project

+- FileScan parquet [LiDAR]

While STARK implements many indexing and partitioning techniques, none of these
are utilized in the execution plan. The execution plan includes the same five phases
as previous queries but instead of a BroadcastHashJoin, the less efficient join strat-
egy, BroadcastNestedLoopJoin, is used. This is due to the ST_Contains predicate
containing both the spatial and temporal predicates, leaving no equality condition
outside the UDF for Catalyst to optimize the join with.

8.2 Scalability analysis
The scalability analysis was performed by measuring the runtime of jobs submitted
to the various clusters. The jobs referenced JAR files in GCS containing the various
implementations and ten jobs were submitted for each combination of experiment
and cluster size. The runtimes of the jobs are aggregated and plotted as boxplots.
Furthermore, for each implementation, we will present how many seconds of recorded
data it processes per second, on average, on a cluster with eight workers.
To test the implementations for correctness, the Sedona implementation is used as
a baseline for correct output. This is because the Sedona library includes tests for
the 2D contains predicate. By comparing the output of the other implementations
to the output of the implementation that uses Sedona, we can determine whether
the implementations are correct. When comparing the output between the imple-
mentations, the cuboid UDF and the ray casting UDF, they find the exact same set
of 99137 point-annotation pairs. The Sedona implementation finds 99379 pairs and
overlaps the pairs found by the UDF implementations entirely. We sampled and
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visualized the additional pairs found by the Sedona library and verified that it was
impossible to tell whether the point was contained by the annotation or not. The
differences between the implementations come down to floating-point precision for
edge cases.

8.2.1 Summary
To provide an overview of how the different experiments relate to each other in terms
of performance, the results of the experiments running on a cluster with eight workers
are presented in Figure 8.1. The STARK implementation is not included in the graph
as it was unable to complete within an hour. The cuboid implementation when
spatial filtering is enabled is the fastest implementation, however, it can only handle
cuboid annotations. The ray cast implementation with spatial filtering enabled
performs similarly and supports all annotation shapes. While the Sedona library
is faster than both UDF implementations when they have spatial filtering disabled,
it is outperformed by both UDF implementations when they have spatial filtering
enabled.

Figure 8.1: The runtime results for all different experiments on a cluster with eight
workers. Note that the vertical axis is logarithmic.

As will be shown in the coming sections, none of the experiments achieved significant
speedups as the cluster size increased beyond 8 workers. The lack of scalability
observed in the experiments will be discussed and elaborated on in Section 8.3
whereas the coming sections will detail the evaluation results and scalability of each
experiment.
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8.2.2 Ray Casting UDF Implementation
The ray casting implementation as detailed in Chapter 5 is the only implementation
that supports concave annotation shapes. For this implementation, there are two
different experiments, one where the spatial filtering described in Section 5.1.1 is
disabled and one where it is enabled.

Spatial filtering disabled

The evaluation results for this implementation with filtering disabled can be seen in
Figure 8.2. On average, this implementation processed 0.4 seconds of the recorded
input data per second with 8 worker nodes. The speedup from 0 workers to 2 workers
is close to 2x. Furthermore, the speedup between the cluster with 2 workers and
the cluster with 4 workers is 1.95x which is very efficient given that the computing
resources are doubled. However this speedup reduces drastically for the remaining
clusters as the speedup from 4 to 8 workers is 1.40x, 8 to 16 is 1.12x and 16 to 32
is 1.02x. The final speedup result suggests that simply increasing the cluster size
further will not significantly improve the runtime.

Figure 8.2: Scalability test for the raycast implementation on the six different
cluster sizes with spatial filtering disabled. Note that the vertical axis is logarithmic.

Spatial filtering enabled

The results with filtering enabled can be seen in Figure 8.3. Most noticeably, en-
abling the spatial filtering results in a 78.6x speedup for the cluster with 0 workers
and more than a 20x speedup across all cluster sizes. This implementation, on av-
erage, processed 9.2 seconds of the recorded input data per second for 8 workers.
Unlike when spatial filtering is disabled, this implementation does not achieve a
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significant speedup between any consecutive cluster sizes. The largest speedup ob-
served is between 0 and 2 workers and it is only 1.34x. Furthermore, the speedup
drastically decreases as it is 1.11x between 2 and 4 workers and 1.09x between 4 and
8 workers. This suggests that simply increasing the cluster size does not significantly
improve the runtime.

Figure 8.3: Scalability test for the raycast implementation on the six different
cluster sizes with spatial filtering enabled. Note the outlier for the medium sized
cluster denoted with an arrow

8.2.3 Cuboid UDF Implementation
This implementation uses linear algebra and UDFs to support cuboid shapes as de-
tailed in Chapter 5. Similar to the previous implementation, there are two different
experiments, one where spatial filtering is enabled and one where it is disabled.

Spatial filtering disabled

The evaluation results for this implementation with filtering disabled can be seen in
Figure 8.4. This implementation, on average, processed 2.5 seconds of the recorded
input data per second when running on the cluster with 8 workers. Similar to the
ray casting implementation, the speedup is significant between 2 and 4 workers at
1.76x. This implementation scales well for the next cluster size as well as the speedup
between the cluster with 4 and the cluster with 8 workers is 2.67x. However, the
drop-off is significant after this as the speedup is 1.08x between 8 and 16 workers,
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and 1.03x between 16 and 32 workers. The final speedup result suggests that simply
increasing the cluster size further will not significantly improve the runtime.

Figure 8.4: Scalability test for the cuboid implementation on the six different
cluster sizes with spatial filtering disabled. Note that the vertical axis is logarithmic.

Spatial filtering enabled

The results with filtering enabled can be seen in Figure 8.5. Enabling the spatial
filtering results in more than a 24x speedup for the cluster with 0 workers and
more than a 3x speedup across all cluster sizes. On average, this implementation
processed 9.4 seconds of recorded data per second using 8 workers with the spatial
filter enabled. Similar to the experiment for the ray casting implementation with
filtering enabled, this implementation does not scale well with the cluster size. The
speedup between 0 and 2 workers is noticeable at 1.32x. However, the best speedup
between two consecutive cluster sizes beyond this is only 1.08x. This suggests that
simply increasing the cluster size does not significantly improve the runtime.
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Figure 8.5: Scalability test for the cuboid implementation on the six different
cluster sizes with spatial filtering enabled.

8.2.4 Sedona Implementation

The implementation using the Sedona library, presented in Chapter 6, supports
cuboid and convex shapes. The results for this implementation can be seen in
Figure 8.6. This implementation processed 3.2 seconds of the recorded input data
per second when running on the cluster with 8 workers. The speedup is above 1.8x
both between 0 and 2 as well as 2 and 4 workers. The speedup is noticeable between
4 and 8 as well at 1.37x. However, for larger cluster sizes it is not significant.
Between 8 and 16 it is 1.09x and between 16 and 32 it is 1.04x. The final speedup
result suggests that simply increasing the cluster size further will not significantly
improve the runtime.
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Figure 8.6: Scalability test for the implementation using Sedona on the six different
cluster sizes. Note that the vertical axis is logarithmic.

8.2.5 STARK Implementation
The STARK implementation was unable to complete its execution within an hour
for all of the cluster sizes, at which point we intervened and stopped the jobs. Given
that the slowest non-STARK implementation completed the job in 15m14s there
was no point in letting the job continue past the hour-mark. As such there are no
runtime results to report from the STARK implementation other than that it did
not successfully complete the task within an hour.

8.3 Discussion
The results of the evaluation show that the two approaches using libraries were not
as efficient as the UDF implementations of the 3D spatio-temporal predicate. Fur-
thermore, we found that the queries utilizing UDFs were not less comprehensible
compared to those which utilize libraries. In this section, these findings are elab-
orated for the narrowly-scoped problem and put in the context of the wider scope
of the research questions. After that, the relation of these results to previous re-
search results exploring spatial data in Spark is discussed. Then, the execution plans
for the different implementations are discussed to provide an understanding of why
the implementations perform differently. This discussion helps summarize the key
concepts of the query execution and how they relate to the observed performance.
Finally, the impact of choices made during problem definition, library selection, and
query definition are discussed.
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8.3.1 Why are Spatial Libraries Slower?
In contrast to the findings in evaluations by the authors of Sedona [56] and STARK
[21], these results show no performance improvement over the native approach for
spatial and temporal predicates. One of the major differences between this eval-
uation and those cited is that the spatial join query is performed with annotated
LiDAR data. Since the LiDAR table is orders of magnitude larger than the anno-
tations table, a map-side join is performed through broadcasting the annotations
table in BroadcastHashJoin. As the optimization strategies implemented by Se-
dona optimize reduce-side joins for when this is not possible, these optimizations do
not accelerate the evaluated query.
Another thing to note is that the amount of data available to Catalyst can be more
important than letting the library perform all evaluations. The initial suitability
hypothesis focused on matching supported data types, where a lack of 3D spatio-
temporal data types was of concern. As observed in STARK, which supports 2D
spatio-temporal data types, this hides more of the predicate logic away from Cata-
lyst, reducing the available optimization strategies. In this case, the join is evaluated
with a BroadcastNestedLoopJoin instead. This has a complexity several orders of
magnitude higher, leading to the analysis not completing successfully.

8.3.2 What major factors impact efficiency?
One major factor in the overall performance is the number of contains tests per-
formed. The worst-case here is to test every point with every volume,

points× volumes

which yields
3.621 · 108 × 2.301 · 104 = 8.333 · 1012

comparisons. As the temporal predicate is separate from the spatial, Spark manages
to reduce the number of computations by performing a BroadcastHashJoin. This
join strategy broadcasts the smaller dataset to all partitions of the larger dataset.
The HashJoin is then performed locally by joining on equal timestamps using a
HashSet. While there is an additional overhead cost of hashing, the UDF is only
called once for each point that has the same timestamp as a volume. This number
of comparisons can be estimated from the number of points, the number of volumes,
and the number of timestamps using the following formula.

points

timestamp
× volumes

timestamp
× timestamp

For our dataset, this yields

3.621 · 108

1.349 · 104 ×
2.301 · 104

1.349 · 104 × 1.349 · 104 = 6.175 · 108

comparisons. This means that the number of comparisons is optimized by an order
of four compared to the possible worst case.
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For the two spatial predicates implemented using UDFs, there is also a strong cor-
relation between the complexity of the shape and the computational complexity of
the inclusion test. This means that specializing in simpler shapes may be beneficial.
Beyond reducing the number of expensive comparisons by performing simpler com-
parisons first, efficiency can be greatly improved by introspecting the type of shape
the volume has. Even though both UDFs in Approach 1 are executed the same
number of times, our results show that the general method performs 5− 6× worse
than the one assuming cuboid shapes when not performing axis-aligned filtering.
While Sedona supports spatial partitioning and STARK supports spatio-temporal
partitioning, this is not utilized in the execution. In Sedona, this is due to the
temporal predicate taking precedence in query optimization, and in STARK this is
due to the Spark SQL integration being a proof-of-concept that does not employ the
partitioning or indexing techniques it provides through the RDD API.
Although temporal partitioning might be sufficient, local indexing or query rewrites
should still be able to further reduce the number of comparisons. By providing
simpler tests as query predicates, the number of expensive comparisons should also
be reduced.
With Approach 1, the secondary axis-aligned predicate provides a big performance
benefit. Previously there have been discussions on further optimizing this type of
inner range by using queues to only perform this simpler predicate until the upper
bound is reached [58]. While these changes never made it upstream, they have been
implemented and released as part of the AXS package [59]. One observation to make
here is that astronomical applications are driving the optimization of multidimen-
sional spatial workloads, with Spark3D [38], ASTROIDE [6], and AXS [59].

8.3.3 Limitations
We have seen that for the problem specification in Chapter 4, the opportunity
to execute the join as a BroadcastHashJoin together with axis-aligned filtering
performed best. While a major improvement comes from the axis-aligned filtering,
this was only investigated in Approach 1 due to libraries having the ability to add
these predicates during query processing.
While there are many other queries useful in validating LiDAR perception, the small
perception model of object annotations means that broadcasts will be cheap gen-
erally. For larger perception models, such as segmentation, this might no longer
be available. The problem specification is a method for generating a semantic seg-
mentation perception model from volumetric annotations. Further analysis of the
generated model might have other data characteristics, but the contains predicate
is still fundamental for segmentation generation as well as other queries useful for
analyzing object detection models.
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Conclusion

From analyzing different LiDAR perception model evaluations and their require-
ments, the problem was scoped to joining three-dimensional spatio-temporal data
sets with the spatial contains relation. To conclude the result, first the research
questions with corresponding answers are presented. After this, the answers are
briefly analyzed. Finally we share some concluding thoughts.

RQ1: What are the requirements of a framework for developing large-
scale LiDAR data processing pipelines?

The key requirement based on the pre-study was whether it could provide
computational efficiency for implementations written with high-level,
declarative code.

RQ2: What useful properties that could speed up the processing of Li-
DAR data are not utilized?

While several 2D spatial and spatio-temporal libraries provide parti-
tioning, indexing and join strategies, our evaluation shows that neither
Apache Sedona nor STARK utilize these effectively in optimizing the
spatio-temporal join.

RQ3: Can we utilize the properties identified in the previous question
to reduce the computation time for a LiDAR data processing problem
defined by Annotell?

Yes, in the evaluation, the queries that use the hand-written implemen-
tations of the contains predicate were more efficient than the queries
using the predicate implementations provided by Apache Sedona and
STARK. While it is insufficient to completely disregard the libraries af-
ter evaluating one query, our results suggest that the performance of the
evaluated libraries may vary. In this case, it was found that moving the
temporal equality condition and axis-aligned range filtering outside the
UDF, played a vital role in the optimization performed by Catalyst.

While the results were superior for the UDF predicate in the case for spatial join,
this does not necessarily mean writing UDFs are superior to utilizing libraries for
other queries. Generally, libraries can be seen as UDFs with possible acceleration
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and future work may investigate how other types of LiDAR perception analysis can
be accelerated using global and local indexing.
To conclude, Apache Spark is a suitable framework for developing and optimizing
analysis of LiDAR perception systems. In our scope we have not proposed any op-
timization rules, as we believe that in order to make optimization efforts, a more
clearly defined query domain needs to be established. The early phase of applying
perception systems in autonomous vehicles means that there is a lack of industry
standards for metrics and key performance indicators of perception models. Fur-
thermore, the data sets of these models are not public as competing actors in the
industry have no incentives to share their data sets.
While actors in the industry are running their own types of perception model eval-
uation, ensuring the safety of these systems must be performed by independent
actors. This means that some sort of industry benchmark for answering queries in
the standardized domain needs to be created.
As the field evolves, the opinions on what metrics are critical are likely to change. For
each draft of a standardized benchmark, efforts in improving the query-response time
for the included metrics can be pursued. This means that the further development
of user defined types, functions and optimization rules in Apache Spark needs to
target the latest benchmark.
With these challenges in mind, we suggest future work to include building a Spark-
library that aims to enable domain-experts in expressing declarative queries which
analyze LiDAR perception models on large amounts of diverse driving scenario data.
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