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Abstract

�is paper describes how large scale �ocks can be simulated e�ciently with modern computer graph-
ics using parallelization techniques and spatial data structures. �e results show that parallelism is
essential in improving performance, both in CPU and GPU implementations. Best performance was
achieved using CUDA, uniform grid, and batching which resulted in a simulation of two million agents
at a frame rate of 30 frames per second. �e simulation was extended with a graphical user interface,
predators, colours and user interaction in order to create a simple game.

Keywords— Craig Reynolds, Simulation, Flock, Herd, School, Multithreading, Parallelism, GPGPU, CUDA, TBB,
Agent, Spatial Hashing

Sammandrag

Denna rapport beskriver hur storskaliga �ockar kan simuleras e�ektivt med modern datorgra�k med
hjälp av tekniker så som parallelisering och avancerade datastrukturer. Resultaten visar a� parallelism
är avgörande för a� förbä�ra prestanda, både i CPU och GPU implementeringar. Den bästa prestandan
uppnåddes med användning av CUDA, datastrukturen Uniform Grid samt batching vilket resulterade
i en simulering av två miljoner agenter med en bildhastighet på 30 bilder per sekund. Simuleringen
utökades med e� gra�skt användargränssni�, rovdjur, färger och interaktivitet för a� skapa e� enkelt
spel.
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1 An Introduction to Huge Flocks

Flocking, schooling and herding are commonly seen throughout the animal kingdom, with congrega-
tions reaching millions of individuals. �ese gatherings exhibit complex behaviour, yet it seems that
many of them do so without any central leader. In fact, it has been shown that similar behaviour can
result from individuals following only a few simple behavioural rules [1]. It is not even necessary
that individuals are aware of the group’s behaviour as a whole. Instead they may only act upon local
information, such as the position and velocity of their closest neighbours [2]. Flocking is therefore
o�en described as a emergent property of these few rules, which can be loosely de�ned as “features of
a system that arise unexpectedly from interactions among the system’s components.” [1]

Emergent properties are all around us, in the form of such disparate phenomena as memories stored in
the brain [3] and tra�c jams. In the la�er example, individual car drivers can successfully be modelled
as agents following a set of simple rules, analogous to �ock members [4]. Tra�c is just one example
where agent-based modelling can help unravel a seemingly complex behaviour. Aside from under-
standing existing phenomena, knowledge about emergent behaviour can also help us in developing
new technology, such as creating �ock-like behaviour in drones to help in disaster areas.

As an emergent behaviour is the result of the interactions of many agents, it can be hard to accurately
represent it with a single equation describing the system as a whole. An alternative approach is to
model the individual agent, run a computer simulation of the interactions, and study the behaviour
that emerges. However, large scale simulation can be computationally heavy since calculations must
be made for every agent’s interactions with other agents. �e number of calculations needed can grow
quadratically with the number of simulated agents if care is not taken when designing the program
[5].

Larger �ocks can be simulated by utilising the power of modern computer hardware. Graphics APIs
such as OpenGL or Vulcan grants the programmer full control over the rendering process, in a way
that every required step of the simulation can be optimised. And instead of calculating and updating
the agents sequentially, which would be the naive approach, multi-threading can be used both on the
CPU and GPU. Since today’s hardware (especially graphics hardware) is built for parallelism, there are
many tools and libraries making it easier to utilise this technique.

1.1 Purpose and scope

�e primary purpose of this paper is to describe, and compare the performance of , di�erent imple-
mentations of an application that simulate massive �ocks of independent agents which follow simple
rules. As a starting point, the three �ocking rules �rst described by Craig Reynolds are to be used,
namely: collision avoidance, velocity matching, and �ock centring [6]. �e goal is to achieve complex
behaviour emerging from these simple rules with �ocks of at least one million agents. Following this,
a discussion and a comparison of which techniques grant the most agents are presented, as well as
a subjective evaluation of how realistic the resulting �ock behaviour is. As a way of presenting the
result, the simulation is extended with more behaviours as well as some interactive features, making
it into a simple game.
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2 Flocking behaviour

One basic algorithm that elegantly imitates the behaviour of a �ock was �rst introduced by Craig
Reynolds at the SIGGRAPH conference in 1987 [6]. Reynolds’ conference paper used particle systems
together with three di�erent forces for each individual agent (or “boid”; bird-like object as he called
them) to simulate �ocking behaviour. Combining these forces with the agent’s current velocity will
result in an updated velocity. �e three forces are: �ock centring, velocity matching and collision avoid-
ance. When these simple forces are applied to many agents, a complex behaviour will emerge and the
agents will form groups of �ocks.

2.1 Reynolds’ original �ocking algorithm

Each force of Reynolds’ algorithm is calculated for, and applied to every agent. As seen in Figure 1,
�ock centring is the urge of an agent to steer towards the centre of the �ock. Velocity matching causes
each agent to align its speed and velocity with its surrounding neighbours. Collision avoidance acts
as a counterbalance, repelling agents too close to each other in order to avoid collisions. Every force
calculation requires information about an agents neighbours, where the neighbours are de�ned as the
group of agents located within a certain range of the agent. Reynolds did not provide a detailed
account of how the forces were calculated in his implementation. �e mathematical formulas in the
following sections instead re�ects how the authors chose to implement the forces.

(a) Flock centring: agents adjust
their heading towards the �ock
centre.

(b) Velocity matching: agents
match their speed and heading to
nearby agents.

(c) Collision avoidance: agents
separate from nearby agents to
avoid collisions.

Figure 1: Reynolds’ three original �ocking forces.

2.1.1 Flock centring

An essential part of �ocking is that agents stay together instead of spli�ing up, which is the main
responsibility of the �ock centring force. �is force creates a vector pulling the agent towards the
centre of the neighbouring agents. Flock centring v⃗c velocity for agent i can be expressed as

v⃗c =
1
n (

n
∑
j
p⃗j) − p⃗i ,

where n is the number of neighbours and pi is the position of agent number i.

2.1.2 Velocity matching

Another key part of �ocking is the velocity matching, also called alignment. Velocity matching is the
urge of an agent to match its velocity with the velocities of the neighbouring agents. Similarly to how
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the �ock centring force was calculated, velocity matching can be calculated by averaging the velocity
of nearby agents. �e alignment velocity va for agent i can be expressed as

v⃗a =
1
n (

n
∑
j
v⃗j) − v⃗i

where n is the number of neighbours and vi is the velocity of agent number i.

2.1.3 Collision Avoidance

In contrast to the cohesive properties of �ock centring, collision avoidance is responsible for making
sure that no agents collide. �e natural instinct of avoiding collisions should be stronger when the
agents are closer to each other and weaker the further away from each other they are. To achieve this,
�rst decide the magnitude of this force by calculating the inverse square of the distance between the
agents. Secondly, let the direction of the force point away from the agents neighbours. �e separation
velocity vs for agent number i can be expressed as

v⃗s =
1
n (

n
∑
j

p⃗i − p⃗j
||p⃗i − p⃗j ||2)

,

where n is the number of neighbours and pi is the position of agent number i.

2.2 Extensions to �ocking

Flocking animals typically show a range of behaviours not covered by Reynolds’ model. Extensions to
the model have been developed by several other authors: with predators [7], �ock leaders [8], muta-
tions, food, di�erent species [9], to name a few.

Figure 2 shows the extended rules considered in this paper, predators and a repelling line. All agents
other than predators are regarded as prey and will �ee from predators. In turn, predators hunt and
kill prey agents, which removes them from the simulation. And as the name suggests, the repelling
line repels agents away from the line. Implementation details of these extensions are described later,
in section 4.2.

(a) Agents vs. Predator: Agents
spreading out to avoid an ap-
proaching predator.

(b) Repelling line: Agents repel from a point
when being targeted by a line resembling a
laser.

Figure 2: Extensions to Reynolds’ three original �ocking rules.
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2.3 Resulting velocity

Each force produces a vector which a�ects the agents’ velocity in the next timestep. One way of
combining the di�erent vectors is to simply take a weighted average of them. Each force is weighted
and summed resulting in an output vector that constitutes the agent’s new velocity. How the forces
are weighted against each other has a large impact on the �ock’s emerging behaviour. �e updated
velocity v⃗′ for an agent becomes:

v⃗′ = a ⋅ v⃗c + b ⋅ v⃗a + c ⋅ v⃗s ,

where a, b, c are constants.

�e drawback with this approach is that con�icting “urges” can make the agents indecisive in certain
situations. For example, if an agent at the edge of a �ock is heading towards an obstacle, a collision
avoidance rule may produce a vector aimed to the le�, while the �ock centring rule produces a vector in
the opposite direction. �e two vectors cancel each other, and the agent crashes into the obstacle.

An alternative to the weighted average approach is to allocate acceleration to the di�erent rules ac-
cording to a priority order. In each time step, each agent starts o� with some prede�ned maximum
amount of acceleration le�. In order of priority, the di�erent rules are then allocated their requested
amount of acceleration, as long as there is acceleration available. �e scaling of each vector produced
by the rules is described by the following formula, where the variable ma has been initialised to the
prede�ned maximum amount of acceleration:

v⃗i ← min (‖v⃗i‖, ma) ⋅ ̂⃗vi

ma ← max (0,ma − ‖v⃗i‖) .
Here, v⃗i is the vector produced by rule i. A�er scaling each vector, the new velocity of the agent is
simply

v⃗′ = v⃗c + v⃗a + v⃗s .
�is approach ensures that the most pressing “urges” are ful�lled �rst, possibly leaving some rules
completely ignored. For example, if obstacle avoidance is the highest prioritised rule, an agent that is
very close to an obstacle may “use up” all available acceleration in order to dodge the obstacle.

It goes without saying that in the physical world there are limits to how high acceleration an agent can
produce, and how high velocity it can reach. �erefore, for a more realistic simulation one can choose to
limit these values to prede�ned constants in a simulation. Mathematically it can be expressed as

a⃗ ← v⃗′ − v⃗

v⃗′ ← v⃗ + min (‖a⃗‖, amax) ⋅ ̂⃗a

v⃗′ ← min (‖v⃗′‖, vmax) ⋅ ̂⃗v′

where v⃗ is the old velocity, v⃗′ is the updated velocity, amax is the maximum magnitude of acceleration,
vmax is the maximum magnitude of velocity.
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3 Technical Description and Utilising the Hardware

Simulating a large number of individual agents in real time requires a powerful programming lan-
guage, such as C++. Doing this also requires utilising the language in a powerful way, requiring an
investigation of hardware, libraries, algorithms and data structures. As such, the focus in this chapter
is twofold: the �rst sections centre around utilising the hardware as e�ciently as possible. Towards the
end of the chapter, the focus changes towards more pure so�ware approaches, such as data structures
and algorithms.

3.1 CPU parallelism with TBB

Even though Central Processing Units (CPUs) are mainly optimized for sequential code [10], they o�en
have multiple cores - meaning that they are capable of running multiple processes in parallel. Taking
advantage of this resource can be done by using �read Building Blocks (TBB), a library for C++ de-
veloped by Intel Corporation [11], which simpli�es the process of creating parallel tasks on the CPU.
�e library does so by dividing the workload onto multiple CPU cores, mainly by using algorithms and
data structures adapted for parallel executions. If a system has a CPU with four cores a program could
theoretically be up to four times faster with TBB by utilizing all of the cores in parallel.

One drawback with trying to maximise performance by parallelisation on the CPU alone is the fact
that CPUs o�en only have a few cores. Performance can be improved more on a modern Graphics
Processing Unit (GPU), which o�en have thousands of cores. Writing GPU code has, and can still be,
quite cumbersome, but with tools such as OpenGL, it has been made a lot easier.

3.2 Accessing the GPU with OpenGL

OpenGL is an Application Programming Interface (API) used for writing computer graphics applica-
tions that access and control the GPU on the device it runs on. It provides an abstraction layer between
the graphics hardware and so�ware, essentially making it easier for developers to focus on quality and
performance instead of having to worry about di�erent implementations for di�erent platforms. To
achieve great performance on modern graphics processors, OpenGL uses a combination of pipelining
and parallelism [12].

Pipelining, or more speci�cally the graphics pipeline, consists of several stages that need to be per-
formed whenever something is being rendered to the screen. �ere are multiple stages in the graphics
pipeline, an example is depicted in Figure 3. In this example, three vertices represent a triangle that
will be rendered on screen. First, these vertices are sent to the vertex shader. �is �rst stage runs par-
allel programs for every vertex and can be used to transform or colour every vertex of the triangle.
Each vertex is then sent to the next stage where the vertices are processed together and merged into
shapes. �e shapes are then sent to the rasterizer which basically makes a pixelated representation of
each shape. �e fragment shader then receives these rasterized shapes as input and runs a program for
each fragment of the total picture in parallel. �e fragment shader is o�en responsible for calculating
the �nal colour of each pixel. Before the image is rendered on the screen, all parts of the picture that
will not be visible in the �nal result are removed and blending is applied. �e �nal image is rendered
to something called the framebu�er and the image is shown on the display.

�e small programs that run on each stage of the graphics pipeline are called shaders, and in contrast
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Figure 3: �e graphics pipeline: Each stage has di�erent responsibilities and each stage takes an input
and output from adjacent stages

to coding as usual or with TBB, the shader code only resides on the GPU. �e shader for each stage
runs its code in parallel for every input. �is parallelism is what grants the shaders its power. For
example, if you have a screen resolution of 1980x1080 pixels and you draw two triangles �lling the
whole screen, the fragment shader will run the same code for all two million pixels in parallel. �is
e�ciency is so powerful that it becomes interesting to use the GPU and the shaders for other purposes
than rendering, something that is made possible by the OpenGl Shading Language (GLSL).

3.2.1 Coding shaders with GLSL

�e OpenGL Shading Language (GLSL) was a response to a growing trend of replacing �xed function-
ality with programmable functionality in areas of the graphics hardware that had grown exceedingly
complex [13]. �e new language granted programmers with the ability to write their own shaders.
Being able to customize shaders allows for more control and also the potential of improving perfor-
mance in general. For example, calculations such as transformations could easily be moved to the
vertex shader, where all vertices can be transformed in parallel. �e main advantage of calculating the
transformations in parallel on the GPU instead of sequentially on the CPU is that the parallel imple-
mentation is more e�cient. And as the graphics hardware grew more powerful, so did the interest of
utilizing its performance for other things than graphics.

3.3 Utilizing the GPU with GPGPU

�e performance boost in graphics hardware over the last few decades has been dramatic, with it
probably being the most cost-e�cient computational hardware today [10]. General purpose computing
on graphics processing unit (GPGPU) takes advantage of this e�ciency, by utilizing the graphics card
for computations that are normally done by the CPU. �e cores in GPUs are generally simpler than
those in CPUs in that they have a smaller instruction set and a smaller cache, but in turn there are
many more of them. While CPUs may have a few cores, a GPU can have thousands of them. �is
makes the GPU very powerful for processing many smaller computations in parallel. With �ocking
as an example, updating every agent’s position according to a few forces is a task that a GPU might
complete faster than a CPU since there are many simple computations. However, sending data between
the CPU and the GPU can however introduce signi�cant latency in an application[14], so where the
data (that is to be processed) resides must be taken into consideration. Ideally, all data that is to be
processed by the GPU should be transferred there once, and then stay there for the full duration of the
program.
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3.3.1 Simplifying GPU programming with CUDA

CUDA is a parallel computing platform that simpli�es GPGPU programming. It features language
extensions that enable programmers to write functions that are executed on the GPU directly in C or
C++ code. �ese GPU accelerated functions are o�en referred to as kernels. A drawback with CUDA
is that it can only be used with CUDA-enabled GPUs manufactured by Nvidia[15].

One very useful CUDA feature is uni�ed memory. It is a way of allocating data in a single memory
address space that can be accessed by both the CPU and the GPU. For example, it is possible to ini-
tialize an array in uni�ed memory, let the CPU �ll it with data, and then launch a CUDA kernel that
manipulates the data in the array. Of course, the data still needs to be transferred on the bus to the
GPU, but there is no need for the programmer to explicitly instruct the CPU to do so.

CUDA also features OpenGL interoperability, which means it can share data on the GPU with OpenGL
[16]. Used right, this feature makes it possible to greatly reduce the amount of data that is being
transferred on the bus between the GPU and CPU, by keeping and updating agent data in GPU memory
and then instructing OpenGL to render it directly.

3.3.2 Compute shaders

Libraries such as CUDA are very popular when it comes to general purpose programming because they
are great for data-parallel computing. One drawback is that they can be quite cumbersome to use and
initialise since they require dedicated drivers and installation of additional toolkits. Compute shaders,
on the other hand, is part of the OpenGL core. �ey use the GLSL language so OpenGL programmers
will be familiar with the code. Compute shaders can also share data directly with other shaders in the
graphics pipeline but most importantly they are not part of the pipeline. �is means that they can be
directly invoked whenever it suits the application.

3.4 Avoiding congestion with batching

As has been mentioned earlier, sending data between the CPU and the GPU can introduce signi�cant
latency in an application [14]. �is is because the bus between the CPU and the GPU can become
congested, which will lower the e�ciency of any program. Batching is a way of decreasing this com-
munication between the CPU and GPU by grouping the data and sending it in larger chunks. �e time
it takes to send a small amount of data is similar to the time it takes to send a large chunk of data in
one go, which is why it is more e�cient to send few large packets of data instead of many small.

For example, position data for agents in a game world are typically initiated on the CPU and then sent
to the GPU for rendering. A naive way of rendering these agents would be to loop through each of
them and sending them one at a time together with a transformation matrix to the GPU. But because
the CPU is responsible for sending this data the performance of the application would depend on how
fast the data can be sent, rather than by depending on the GPU [17]. With batching, a chunk of data
is instead sent once every frame and the pressure on the CPU is decreased signi�cantly for larger
amounts of agents. �is concept is shown here in pseudocode:
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# rendering without batching

for each agent a in agents

{

// send transformation matrices to gpu

render(a);

}

# rendering with batching

for each agent a in agents

{

// transform agent a on the cpu

}

render(agents);

Notice how the render function is only called once in the batching example, while in the �rst example
is called for every agent in the simulation. �is is an example of how the so�ware has to be optimised
in order to be e�cient in cooperation with the hardware, which naturally leads us to the part of this
chapter that focuses on so�ware optimisation.

3.5 Optimising using data structures and algorithms

When simulating large scale �ocking behaviour in real time, one of the bo�lenecks that arise is the
process of comparing agents with one another. Comparing agents in �ocking is needed in order to
decide whether they are close enough to a�ect one another. And as the number of agents grows, the
number of comparisons needed for �ocking grow quadratically - which quickly turns ine�ective. �is
problem is shared with many di�erent simulations and programs, and this chapter aims to describe
data structures and algorithms that mitigate and prevent this bo�leneck.

3.5.1 E�cient neighbour search using a uniform grid

As mentioned before, agents in Reynolds’ �ocking model only reacts to neighbouring agents that are
within a certain distance. �e naive method of determining which agents meet these criteria is to
simply compute the distance between each and every agent. �e time complexity for this is (n2),
which means it is not a suitable approach for �ocks with more than a few agents. A more e�cient
approach is to use spatial data structures, which is an umbrella term for techniques that organize
spatial data, such as 3D coordinates.

A uniform grid is an example of a simple spatial data structure. It works by dividing space into equally
sized cells of some size. Each cell has discrete coordinates in the grid. For example, assume a 2D space
that is divided into cells with the width a and height b. �en, a point with coordinates (x, y) is in a cell
that has the coordinates (⌊x/a⌋, ⌊y/b⌋). Agents can then be grouped together based on which cell it is
positioned in.

3.5.2 E�cient look-up using Spatial Hashing

Grouping agents together can be done by storing them in a hash table, using cell coordinates as keys.
�is means that agents that reside in the same cell will end up in the same hash table cell, or “bucket”.
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�is technique is called spatial hashing. For an agent to �nd the agents that are in the same cell, it is
now a ma�er of calculating its cell’s coordinates, do a hash table lookup with the coordinates as a key,
and iterate over the agents contained in the bucket. �e same goes for �nding neighbours in adjacent
cells, but using di�erent cell coordinates. Returning to the 2D example: to �nd neighbours in the cell
just to the right of the agent’s own cell, you just use the cell coordinates (⌊x/a⌋ + 1, ⌊y/b⌋) as the key
when doing the hash table lookup.

Another way of grouping agents is to simply sort them according to their cells’ coordinates. �is
approach has been suggested by Simon Green [18], but for particle collision instead of agents. With
this method, each cell is identi�ed by a unique integer. A�er sorting the array of agents by their cell
ID, two additional arrays are used to store the beginning and end indices of each cell. �e method is
perhaps best understood through an example. Consider an instance where agents have been sorted
by their cell ID. Agents a, b both resides in cell number 4, and agents c and d resides in cell number 2
and 3 respectively. Cell number 0 and 1 is empty, so cell start/end indices is null for these cells. Cell
number 2 contains only one agent (c), and that agent is found at index 0 in the agent’s array. So both
the cell start and end indices for this cell is 0. �e same goes for cell number 3, it contains one agent
that is found at index 1 so start/end indices are 1. Finally, cell number 4 contains two agents, the �rst
one is at index 2 and the last one at index 3. �us the start index for this cell is 2 and the end index 3.
For a more detailed example of actual implementation, see section 4.1.3.

Note that each cell in the grid requires one entry in cell start/end arrays. �erefore the space in which
the agents are simulated must be limited. By contrast, the hash table in a spatial hashing implementa-
tion only requires as many entries as there are occupied cells. In other words, it has at most n entries,
where n is the number of agents.

3.5.3 Generating grid cell identi�ers

When using a uniform grid with sorting, the cell identi�ers can be constructed in a number of ways.
Perhaps the most straightforward way is to simply concatenate the bits of the cell coordinates into a
single integer. For example, a cell in a 3D grid with binary coordinates (x3x2x1x0, y3y2y1y0, z3z2z1z0)
would be identi�ed by the integer x3x2x1x0y3y2y1y0z3z2z1z0, where each variable represents a single
bit. An alternative way is to interleave the bits: x3y3z3x2y2z2x1y1z1x0y0z0. �e la�er method is called
Z-order or Morton order [19]. See Figure 4 for a graphical example.

�e main advantage of Z-order is that cells that are close to each other in a 2D or 3D grid, on average,
get ID integers that are closer to each other than what you would get with simple concatenation. �is,
in turn, means that when the agents’ data has been sorted by their cell IDs, agents that are close to
each other in 3D space will be close to each other in memory. �e more formal way of expressing this
is that locality is preserved when multidimensional data is mapped to one dimension. Consider for
example two adjacent cells in a 3D grid with coordinates (0, 0, 0) and (1, 0, 0). Suppose the coordinates
are represented by 4 bits each. With bit concatenation their binary identi�ers are 0000 0000 0000 (0 in
decimal) and 0001 0000 0000 (256 in decimal.) �e Z-order identi�ers are, by contrast, 0000 0000 0000
and 0000 0000 1000 (8 in decimal.)
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Figure 4: Two di�erent ways of encoding cell IDs in a 2-dimensional grid

4 Creating the Application and Gathering Data

�e two previous chapters introduced the mechanics of �ocking, extensions of �ocking, graphics hard-
ware and some so�ware approaches of optimising �ocks. Drawing from these lessons, this chapter fo-
cuses on how the simulation was implemented using these techniques. �is includes implementations
with and without using GPGPU and e�cient data structures. It also includes the extensions of �ocking
mentioned in section 2, which has been developed into a game with some visual e�ects. Finally, the
chapter concludes with a small analysis of what ethical aspects have been taken into account.

4.1 Di�erent implementations of neighbour searching

In order to maximise the performance of the �ocking simulation, multiple combinations of data struc-
tures and techniques were implemented, as seen in table 1. �e label “naive” will herea�er refer to the
versions that use a pair-wise comparison of all agents for the neighbour search. Note that the �ocking
simulation (and the game as a whole) behaves exactly the same across all versions. Only performance
di�erences would be noticeable to an end user.

Table 1: Di�erent implementations of the �ocking simulation. “Algorithm” here refers to how agents
�nd their neighbours

Technique
Algorithm Naive Spatial hashing Uniform grid with sorting

CPU, single-thread ✔ ✔
CPU, multi-thread ✔ ✔
GPU, using CUDA ✔ ✔ ✔
GPU, using compute shaders ✔
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In the following subsections, implementation details for the di�erent versions are described. All ver-
sions use GLAD libraries, GLFW (for window creation and user input), GLM (for math operations on
matrices and vectors). Although vcpkg is not needed for creating this project, it was used to handle
the installation of libraries in order to save time. Batching was used for all implementations since it
would be essential for performance improvements in general.

4.1.1 Naive versions

�e naive approach does not present any particular challenges in terms of data structure choices. All
agents can be stored in a single array, and each agent loop through the whole array when searching for
its neighbours. In the multi-threaded CPU version, parallelism is achieved by iterating over the array
using the TBB library’s parallel for. In the CUDA version, a kernel is launched with one thread for
each agent. Each thread iterates over the whole array.

4.1.2 Spatial hashing versions

In the spatial hashing versions, a uniform grid is used, as described in section 3.5.1. �e grid cells have
sides that are equal to the maximum distance at which agents reacts to each other. By choosing this
size, an agent’s neighbours are guaranteed to be found in the cells adjacent to the agent’s own cell.
�us, for an agent to �nd it’s neighbours, a total of 27 (33) cells needs to be checked.

Each agent is put in a “bucket” based on it’s hashed cell coordinates. What is put in the hash table is
actually a struct containing pointers to the �rst (head) and the last (tail) agent in the bucket. �ese
pointers are used together with an array nextAgent that contains pointers pointing to the next agent
in the bucket. If a bucket contains at least two agents, both the “head” and “tail” points to some agent.
When a new agent is added to the bucket, it replaces the tail agent, and a pointer to this new agent
is added to the old tail’s entry in nextAgent. �is creates something akin to a singly linked list. �e
reason an actual singly linked list (like std::forward list) is not used is that we know beforehand
that agents belong to exactly one bucket, so it is su�cient for each agent to point to only one other
agent. �is way, the extra performance overhead of dynamic memory allocation when creating the
lists can be avoided.

All versions follow the same basic steps:

1. Calculate each agents’ cell ID and put them in the hash table bucket accordingly

2. Fetch each agent’s neighbours from the hash table by calculating the IDs of its own cell and
adjacent cells.

3. Apply the �ocking rules and update the agents’ position and velocity.

4. Reset the hash table.

�e multithreaded CPU version performs step 2 in parallel using, again, TBB’s parallel for. In
contrast, all steps in the CUDA version is done in parallel. It performs step 1 in parallel by launching
a kernel with one thread per agent. To avoid race conditions (where several threads tries to update
the same variable at the same time), the tail and head pointers of the hash table buckets are atomically
updated using CUDA’s atomicExch. �ere is no need to make nextAgent thread-safe, since each
entry is updated at most once. Step 2 and 3 are parallel, again by launching a kernel with one thread
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per agent. Step 4 is carried out by launching a kernel with one thread per hash table entry.

For the CPU single thread version, the std::unordered map class is used as a hash table. Unfortu-
nately, there is no GPU implementation of this class available in CUDA, so for the CUDA implemen-
tation a custom hash function is used together with an array. �e cell hash ℎ is computed as

ℎ = [(x ⋅ u) ⊕ (y ⋅ v) ⊕ (y ⋅ w)]mod n

where x, y, z are the cell coordinates, u, v, w are large prime numbers, and n is the size of the ar-
ray.

4.1.3 Uniform grid with sorting

As mentioned in section 3.5.1, a uniform grid can be constructed using sorting. �is was implemented
with CUDA using a parallel radix sort from the CUB library ( cub::device radix sort) which has a
time complexity of (n). �is version works by following these steps, as visualised in Figure 5.

1. Calculate each agent’s cell ID using Z-order and store it in an array, cellIDs.

2. Initialise an array, agentIDs, that hold the agents ID’s (here, the agent ID is simply the agent’s
index in the agents array.)

3. Sort the agent IDs by their corresponding cell IDs.

4. Copy each agent to a an alternate agent array, agentsAlt according to the now sorted agentID
array. agentsAlt now contains all agents sorted by their cell ID.

5. Check where cells start and end in the cellIDs array and store the start and end indices in two
arrays, cellStartIndex and cellEndIndex, respectively.

6. Calculate the new position and velocity of the agents in agentsAlt according to the �ocking
rules. �e result is stored by simply overwriting the data in the original agents array. In this
step, each agent �nds it’s neighbours by looking up the start/end indices of the adjacent cells.

7. Reset the cellStartIndex and cellEndIndex with null values.

Each step here corresponds to a kernel that is executed in parallel. �anks to the use of two arrays
holding the agents, one can be used for reading and one for writing (as is done in step 4 and 6.) �is
eliminates the need for atomic operations.

�e reason for sorting agent IDs (which are unsigned integers) instead of sorting the agent data directly
is that cub::device radix sort doesn’t support sorting of custom types.
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Figure 5: �e di�erent steps of the “uniform grid with sorting” method.
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4.2 Game implementation

In order to present the application in an appealing and more immersive way, a game was implemented.
Extensions to �ocking as described in section 2.2 were added. �e added behaviour include predators,
predator avoidance, walls and a repulsive line. �e goal of the game is to prevent the predators from
killing the preys by shooting the predators with a laser. In addition to choosing when to use the laser,
the user may also choose to navigate through the three-dimensional space by looking around using a
mouse and traversing by pressing the WASD keys.

4.2.1 Repulsive force

When the laser is �red, agents will repel from the laser ray’s path. In order to �nd the direction in which
an individual agent is repelled, the closest point p⃗c on the ray’s path is calculated as follows

p⃗c = ((p⃗a − p⃗laser) ∙ v⃗dir) ⋅ ̂⃗vdir ,

where pa is the position of the agent, plaser is the position of the laser, and v⃗dir is the direction in which
the laser is pointing. �e force on the agent is then calculated as

v⃗ = p⃗a − p⃗c
‖p⃗a − p⃗c‖2

.

As seen, the magnitude is inversely proportional to the distance from the point, i.e the further away
from the ray’s path, the less an agent is a�ected by it.

4.2.2 Predators

It has been suggested that one of the reasons animals swarm is that it confuses predators. When prey
animals swarm in large numbers, it gets harder for predators to single out individuals to a�ack. �is
is called the confusion e�ect[20]. In order to model this indecisiveness, predator agents are a�racted to
the perceived center of neighbouring agents’, rather than to an individual agent. �is is similar to the
�ock centering rule for prey agents described in section 2.1.1, and can be mathematically expressed
as

v⃗ = 1
n (

n
∑
j
p⃗j) − p⃗i ,

where n is the number of neighbouring prey agents and pi the position of the predator agent i.

Prey agents are repelled by predators. �e vector produced by this rule is an average of normalised
vectors pointing in the opposite direction relative to neighbouring predators, expressed as

v⃗s =
1
n (

n
∑
j

p⃗i − p⃗j
||p⃗i − p⃗j ||)

,

where n is the number of neighbouring predator agents and pi is the position of the prey agent i.
�is is similar to the collision avoidance rule described in section 2.1.3. However, for that rule, each
normalised vector was divided by the distance, as to weaken the urge to avoid collisions when the
distance is large. �e division by distance is omi�ed in the case of predator avoidance since a prey
agent is acutely concerned with avoiding predators as soon as they are within the agent’s scope.
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4.2.3 Light, colours and �ight animation

In order to improve the visual appeal and sense of depth, light was added to the simulation. �is was
done by adding a light source position and a light colour. When the model is rendered for each agent,
light is calculated for each side of the model by calculating the dot product between the ray vector and
the surface normal, see Figure 6. �e dot product is then multiplied with the light colour which in turn
is multiplied with the colour of the surface. �is method of calculating the light of each side of a model
is called di�use lightning [21].

Figure 6: Di�use lighting: How much light that is cast on a surface depends on its angle relative to the
light source.

Besides light, colours were tweaked for improved appearance and a �ight animation that moves the
wings of an agent up and down according to their velocity was added.

4.3 Ethical aspects

�e process of creating an application is usually not inherently unethical, but the resulting application
might be used for malicious practices. Models for �ocking behaviour can be applied in many di�erent
areas. It might be wise to imagine di�erent employments of our simulation to prevent that it is being
used in harmful ways. For example, any group of organisms where each organism follow a simple set
of rules can probably be simulated with some minor tweaks to our implementation. As an example,
�ocking behaviour has been implemented for swarms of automated drones [22]. Since automated
drones could be used for warfare or mass surveillance, it can be argued that �ocking behaviour has
contributed to the development of something that can be used for malicious purposes.

For our work, it is safe to assume that the result will not impact the research in the area in such
a drastic way that it could become harmful in any way, shape or form. �e worst thing that could
possibly happen is that the simulation is too heavy for public property computer hardware so much
that it breaks or becomes slow.
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5 Visual results

�is chapter details the visual speci�cations of a �ocking simulation that is implemented according to
the techniques described in earlier chapters. It contains pictures of the simulation ranging from game
mechanics, visual e�ects and the visual representation of all game elements.

5.1 Images from the simulation

Figure 7: 100k agents simulated using CUDA

It is hard to show the �ocking behaviour using only still images, but aspects to consider (Figure 7)
include the coherent grouping of agents, the agents pointing in the same direction and the uniform
distances between one agent to the another.

A simulation of light can be seen more closely in Figure 8. Each side of the model that is directed
towards the light is lit up more than sides that are directed away from the light.

While the player presses the le� mouse bu�on a laser will appear, destroying agents and repelling any
agents that are close enough. An example of this can be shown in Figure 9, where agents steer away
from the laser line.
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Figure 8: Light shed on the agent model.

Figure 9: A laser beam projected from the player gun towards the center of the screen. Agents are
repelled from the laser.
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(a) Predator model (b) Prey model

Figure 10: Models of predator and prey

�e predator and the prey agents di�er in a few ways. Figure 10a shows how the predators are red and
slightly larger than the prey illustrated in Figure 10b. It is harder to see how the prey �ee away from
the predators, but with a bit of imagination one can get an idea of how it works by looking at Figure
11.

Figure 11: Two predators disrupting the ordinary �ocking behaviours by instilling a bit of fear in nearby
agents.
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Figure 12: Measured performance of the di�erent implementations. Note the logarithmic scales.

6 Performance of Di�erent Implementations

In contrast to the visual presentation of the simulation in the previous chapter, this chapter focuses only
on the performance of the di�erent implementations of the simulation. �e di�erent implementations
were detailed in chapter 4.

�e di�erent implementations were benchmarked using a computer with the following speci�ca-
tions:

• CPU: Intel Core i5-7600 3.50GHz, 4 cores

• Physical Memory (RAM): 32 GB

• GPU: NVIDIA GeForce GTX 1060 6GB

• CUDA cores: 1280

• CUDA driver version: 9.1.84

• Operating system: Microso� Windows 10 Education

For each implementation, an average of 200 frames was recorded. All recorded times include both com-
puting the �ocking behaviour and rendering of the scene, if not stated otherwise. Only the �ocking
behaviour was tested; all interactive features were disabled in order to prevent any accidental inter-
ference.
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Figure 13: Performance of the CUDA implementations. Note the logarithmic scales.

6.1 Timing Compute Shaders

Whenever the CPU sends a task to the GPU, the CPU will do so and then directly continue its own
work - not waiting for the GPU to �nish all of the computations. �is means that a timer on the CPU
might not be accurate when we want to time processes on the GPU. Instead of using a timer residing
on the CPU we used OpenGL queries to achieve asynchronous benchmarks for the Compute Shaders
implementations. �erying for the results from the GPU gives a more accurate result but can stall the
application if the results are not directly available [23]. Since we did not resolve this issue the results
for Compute Shaders might seem somewhat worse than they are. �ery objects were not needed for
CUDA however, which has a built-in synchronization function that can be used instead.

6.2 CUDA implementations

Figure 13 shows the results for the CUDA implementations. All implementations utilise CUDA/OpenGL
interoperability in order to keep the agent data on the GPU. Transfer of agent data between the CPU
and the GPU therefore only occurs once, during initialization of the simulation. Batching is used during
rendering.

6.2.1 Timing of individual tasks

Figure 14 shows the portion of time spent on each step of the “CUDA uniform grid with sorting”
method. Each slice corresponds to a step described in section 4.1.3.
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1. Calculate agents' cell ID

2. Reset agent IDs array

3. Sort agent IDs

4. Rearrange and copy agent data

5. Check cell ranges

6. Calculate new positions and 
velocities

7. Reset cell IDs array

Figure 14: Breakdown of steps of the “CUDA uniform grid with sorting”. Number of agents: 2,000,000.

6.2.2 Z-order vs coordinate concatenation

Figure 15 shows performance for two di�erent ways of constructing the cell ID in the “CUDA sorting”
method. �e recorded times are averages for a full step in the simulation, including rendering.
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7 Analysis and Discussion

�e results clearly shows that it’s possible to increase the number of agents in an �ock simulation by
at least three orders of magnitude with the help of GPGPU and spatial data structures �e results
we achieved when we compared the di�erent implementations met our expectations quite well. TBB
increased the performance proportional to the number of CPU cores compared to the single threaded
version, just as expected. Using spatial hashing instead of the naive approach always increased the
performance. At 1,000 agents in CUDA, the naive approach was almost equal to the spatial hashing
version. �is is probably due to the fact that in that particular case, the number of CUDA cores is
higher than the number of agents.

Up to 20,000 agents, spatial hashing outperforms sorting in CUDA. A�er that point, spatial hashing
quickly becomes worse than sorting. One possible interpretation of this is that it’s related to how
neighbour data is stored and accessed. When agents are stored in the hash table, using the spatial
hashing algorithm, their position in the array is basically random and will not correlate with their
position within the world. Two agents that are close to each other in the world might be far away from
each other in the hash table, thus they will be further away from each other in memory as well. When
linking together cell sharing agents in the same bucket with the help of pointers in the nextAgent
array, again, there is no correlation between the spatial distance of the agents and the distance in
memory. For example, agents with ID a and b, where a ≪ b might be close neighbours in the scene,
but their places in the nextAgent array is locked to indices a and b respectively. By contrast, in the
sorting implementation there is a high probability that a and b’s data will be close to each other in the
memory a�er the sorting step.

When the number of agents is relatively low, the algorithmic simplicity of spatial hashing, compared
to the more complex sorting, makes up for the fact that memory accesses are more sca�ered in the
former case. But as the number of agents grows, in�ating the arrays holding agent and cell contents,
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the probability of cache misses increases. It seems like from somewhere around 200,000 agents and
upwards, cache misses are so frequent that the spatial hashing simply cannot compete with the sorting
approach.

Perhaps the most striking result is the performance impact of using Z-order encoded cells, instead
of simple coordinate concatenation. Already at 500,000 agents, the Z-order performs be�er by an
order of magnitude. Similarly to the spatial hashing versus sorting comparison, the performance of
Z-order and concatenation are very similar up to 20,000 agents. Our interpretation is, again, that this
is due to memory access pa�erns. As explained in section 3.5.3, spatially close cells will on average
end up closer in memory a�er sorting when they are encoded by Z-order compared to coordinate
concatenation. In other words, coordinate concatenation is worse at preserving relative distances be-
tween the agents. When array sizes increases, the absolute distances between agents whose locality
isn’t perfectly preserved increases, making the probability of cache misses during neighbour search
increasingly higher.

We used OpenGL queries to synchronise the CPU and GPU so that we could measure performance
for Compute Shaders correctly. Still the results that we acquired seemed to be to good to be true. For
example, 50,000 agents resulted in an update time of less than 0.2 milliseconds per frame which is very
low compared to about 10 milliseconds per frame for CUDA. �is results suggests that either Compute
Shaders are very e�cient, or that the timer did not synchronize properly with the GPU. Sadly, we
didn’t have time to investigate this ma�er further.

7.1 Accurately representing a �ock

�e rules that govern the agent simulation are su�cient to give good �ocking behaviour. However, if
one only uses the three basic Reynolds rules, some problems arise. �e simulation will be very rigid,
since the agents have no other goal than to cluster, and follow the path of the rest of the �ock. �is
means that they will merge into large spheres that move in a uniform direction.

�e rigid motion of the �ock is a result of the rigid motion of individual agents themselves. Simply
put, once the rules are balanced, each individual agent will have no reason to ever move in a di�erent
direction than the �ock, and this isn’t accurate to how �ocks move in nature. For example, it has been
observed that birds can randomly shoot o� in a playful manner wherea�er the �ock follows that bird
as if it was a leader [8]. It is not clear to us how such a behaviour can be implemented as it seems
like the agents would need to temporarily set aside some of the other �ocking rules in order to act as,
or follow, a leader. An a�empt was made to “loosen up” the rigid behaviour by adding add a random
vector each agent, that is added to its �nal velocity by a certain probability. However, it resulted in
a �ickering behaviour rather than a smooth, more dynamic movement as we had hoped for. It also
had no e�ect on the behaviour of the �ock at the macro level, probably because vectors in random
directions over a large sample will result in a net change of close to zero.

�ese are problems that can be dealt with by introducing new rules to the simulation, but introducing
new rules is an inherent problem in itself. Many complex systems are hard to accurately model. �is
means that what may seem like good behaviour may be completely unnatural. For example, we have
added behaviour that ensures that the agents do not collide with the boundaries in the model, but the
interaction that is done when this occurs is very sudden. �is is also apparent in how we tried to add
some randomness to the movement of the agents, as stated above.

Moreover, one very concrete example of this would be to add leading agents, that direct the �ocks in
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some way, either scripted or according to some AI system. However, this is inaccurate to how most
�ocking behaviour is done, where there is no leader at all, especially not one with more complex or
di�erent behaviour.

Hence, We need to be careful of what rules we should add to the simulation, and what the results of
these rules represent. it is of our belief that the additional rules should act dynamically, and we should
work on improving the simulation by indirect measures. I.e, rules that add other kinds of motivated
behaviours, such as hunger, predators or other needs.

Another pressing problem is that the agents by design lack long-range perception. When an agent
diverge so far from the �ock that no neighbours are within its scope, the agent aimlessly �ies around
in the scene until it by chance encounters some �ock mates again.

When it comes to combining the rules, the prioritised acceleration allocation approach yielded more
pleasing results than the weighted average approach. When using the former, behaviour is more dy-
namic since individuals in the �ock can choose to temporarily ignore rules with lower priority in
certain situations. �is is especially evident when a predator a�acks the �ock, the individuals closest
to the predator make forceful a�empts to avoid it, causing a disturbance that propagates throughout
the �ock.

�e behaviour of the predators needs re�ning but is nonetheless interesting. When predators approach
a �ock or �ies through it, it does look like they �nd it hard to single out individual prey to a�ack. But
once they succeed in forcing an individual out of the �ock, they o�en pursue that individual. So even
if the rule dictates that the predator should aim for the average position of neighbouring prey, they are
successful in catching prey as soon as their surrounding is not very crowded.

7.2 Challenges and di�culties with the project

Developing the application has been a lot harder than we expected. In order to have tight control
of the optimisation techniques we use, we developed the application in C++ and OpenGL. We could
have developed our application in a platform such as Unity or Unreal Engine, and completed it in a
shorter time, but then we wouldn’t have learned as much about low level optimisation techniques.
Tasks that are trivial in game development platforms, such as rendering a simple triangle and applying
transformations to it, took us some time to accomplish. But even though we had to deal with this slow
progression of things, developing in this fashion also made the project more rewarding. Every li�le
progress could be a�ributed to someone’s improved knowledge. It was, however, a problem that some
of the group members had previous knowledge with graphics programming while others didn’t, this
made the distribution of the programming contribution quite uneven.

One of the larger challenges has been where on where to put our focus, as many of the features are
either working completely or not working at all, especially the GPU optimisation. �is means that it
has been a continuous issue on what parts of the project requires most e�ort for optimisation; some
of the features that we have implemented have been made irrelevant, or had a very low impact, while
other features, such as when we got CUDA to work for the �rst time had a tremendous impact on
performance when simulating large numbers of agents.

Another one of our big issues have been dealing with the game aspects of the project. It is not obvious
how massive �ocks, with millions of agents, can be made relevant in a game se�ing. Already at 100,000
agents the �ocks becomes hard to overview, and adding more agents does not exactly improve the
gaming experience. In the end we se�led for fewer agents in the game, but still benchmarked larger
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�ocks to get more data on how e�cient our applications is.

Finally, and perhaps most crucially, we didn’t have enough time to implement all combinations of tech-
niques and neighbour search algorithms that we intended. Some combinations are more interesting
than other. For example, it’s highly unlikely that a single-threaded CPU implementation of the sorting
method would outperform our current best-performing implementation, but it would be interesting to
implement the sorting method using compute shaders.
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8 Future Work

�ere are many possible optimisations that we did not have enough time to implement, or thoroughly
research. In this section, we will describe these methods, and why we believe that they would be
interesting for our project.

8.1 Improvements to spatial hashing approach

One drawback with our spatial hash implementations is that agents are spread out more or less random
across the hash table. If we instead had used locality-sensitive hashing[24], we could have preserved
spatial coherence, possibly resulting in fewer cache misses and be�er performance.

In our spatial hash implementations we used an array (nextAgent) with agent pointers to link together
agents residing in the same bucket. �is may be e�cient in terms of memory usage, but it introduces
a lot of pointer hopping, which can degrade performance. One possible improvement to this could be
to copy and rearrange the nextAgent array so that linked together agent pointer are stored contigu-
ously. Iterating over bucket sharing agent pointers would then be ma�er of starting at the bucket head,
accessing the nextAgent entry for the head, and then access subsequent array entries until you reach
the entry pointing at the tail. Such a rearrangement can be done in (n) time, but would require an
extra pointer for each head in the bucket that indicates the start of the chain in nextAgent.

Furthermore, if the nextAgent array were to be rearranged in the above suggested way, the agent
data itself could be rearranged accordingly. In that case, at least agents residing in the same bucket
would have its data stored contiguously in memory, and that would certainly improve memory access
pa�erns.

8.2 Improvements to the sorting approach

As already mentioned, using Z-order encoded cells in the CUDA sorting implementation increased
performance signi�cantly by preserving some spatial locality in the agents data. When the agents
perform neighbour search, however, they always check neighbouring cells in the same order: column
major order. An alternative approach would be to check the cells in order by their Z-order ID. Doing
it this way would ensure that potential neighbour agents are accessed in the order they are stored in
memory, improving memory access pa�erns even further.

In the tested CUDA sorting implementation, the start and end indices indicating each cell’s range in
the agent array are stored in two arrays (cellStartIndex and cellEndIndex). �e cell ID is used as
an index when storing the range information. For example, the start index for a cell with ID i is stored
at cellStartIndex[i]. �is of course means that the number of cells, and in turn the space of the
scene, must be limited. However, if one were to use a hash table for storing the cell ranges, it would be
possible to use an unlimited space, much as in the case of the spatial hashing approach. Such a hash
table would preferably use a locality-sensitive hashing, since the lookups would be clustered around
the cells containing agents.
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Figure 16: Illustration for the di�erent steps in Bitonic sort.

8.2.1 Bitonic sort

A potential alternative to parallel radix sort is a sorting algorithm called Bitonic sort. �is is a parallel
algorithm suitable for the GPU, that sorts an array in (log2 n) parallel time. �is is done by merging
sequences into larger bitonic sequences, starting by adjacent numbers, and then merging these bitonic
sequences. �is is done until the whole list has become a bitonic sequence - a bitonic sequence is a list
with no more than one local maximum and one local minimum. Endpoints are considered to be wrap-
around points for the sequence. If we then take this sequence and compare/replace the corresponding
elements in one half to the second half, and recursively do this for the whole array, we will then get a
sorted list, in e�cient parallel time. An illustration of this can be seen in Figure 16.

�is algorithm is more e�cient at sorting large data sets (n ≥ 1M ) over the more standard radix sort
for parallellised computing sort.bitonic

8.3 Framebu�er Objects

We tried to implement another GPU approach that uses something called Framebu�er Objects, but we
did not get it to work properly. If we had more time we would spend more time on get this version to
work. Framebu�ers are normally used when something is being rendered on screen (see Figure 3) but
they could also be used to render things that does not appear on screen. Basically we can utilise the
fact that what is being rendered to the framebu�er objects are stored on the GPU. �e data for each
agent can be represented as pixels of these rendering targets. When the fragment shader processes the
information of these rendering targets it would do so in parallel for each pixel, meaning that all agents
would be updated in parallel.

8.4 Additional work with Compute Shaders

Compute Shaders became our last resort of another GPGPU approach than CUDA, something to com-
pare CUDA with. But since it was quite hard to get Compute Shaders to work we only had time to
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implement and test it with the naive neighbouring algorithm. If we had more time we would have tried
di�erent approaches just as we did with the CUDA version.

8.5 Reducing the number of re-calculations for positions and velocities

One way to improve the number of agents we can simulate would be to reduce the amount of times we
calculate new positions and velocities. As seen in Figure 13, one can tell that much of the processing
time per frame is spent on this. However, since each frame only amounts to minuscule movement, one
alternative would be that the agents only update velocity & direction every few frames instead.

If one ensures that the agents update at di�erent intervals, they could each ensure that they don’t collide
when they do re-calculate velocity and direction. One idea here would also be to have a value for how
much the di�erent rules a�ect the agent, and update more frequently if that number is high.

However, it may be an issue where more calculations are made than what is actually minimized. Still,
the concept of le�ing their collective behaviour be more dominant than their individual in�uence
should still be usable to minimize the time spent on unnecessary calculations.
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