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Delay-tolerant Multi-Agent Path Finding
Delay-tolerant methods for solving multi-agent path finding problems in autonomous
systems
JOAKIM GYLLENSKEPP
KEVIN NORDENHÖG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Multi-agent path finding algorithms find collision-free paths that agents should fol-
low according to a schedule. The schedules found by multi-agent path finding algo-
rithms are strict, meaning that when a robot in an autonomous system is delayed
and fall behind schedule, the schedule is invalidated and the movement of all agents
are paused until a new schedule is found. Computing these schedules is inherently
slow due to the hardness of multi-agent path finding problems. There are methods,
such as MAPF-POST, which find the delay tolerance of a given schedule and, in
some cases, allow agents to be delayed without doing expensive replanning.

We propose a modification to the multi-agent path finding algorithm Conflict-based
search, which makes the schedule found by the algorithm tolerant to delays. The
delay tolerance that the schedule should have can be selected by the user. Our re-
sults show that the delay tolerant conflict-based search can successfully reduce the
number of recalculations in a system with delays, at the cost of a higher run-time.

We also propose a method called refined component stalling, which avoids recal-
culations by purposefully delaying a subset of the agents in order to retain a valid
schedule. Our experiments show that this method successfully reduces the number
of agents affected by delays and the need for recalculations, at the cost of giving the
agents longer paths.

Our contributions reduces the time spent on recalculations significantly, which means
that the time it takes for the agents to follow a schedule may be faster compared to
existing multi-agent path finding algorithms, which sometimes spends a lot of time
on recalculations. This is especially clear when agents move fast, since the longer
path length of our contributions are less noticeable.

Keywords: Computer science, multi-agent path finding, path finding, simulation,
conflict-based search, autonomous systems.
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1
Introduction

1.1 Background

Automated storage systems where robots operate on a grid can be found in auto-
mated warehousing, cross-docking, car parking systems, and container handling [1].
One system used for automated warehousing is AutoStore [2], where robots move
in a 4-directional manner along the x and y directions of a grid, which is located
on top of an array of storage units. This allows the robots to access any cell in the
grid, where they can place or grab a storage bin from the storage unit.

The autonomous robots that move around in these systems should move fast for
efficiency, while simultaneously avoiding collisions with each other. Multi-agent
path finding (MAPF) can be used to find a schedule with collision-free paths that
the robots can follow. These paths need to be strictly followed in order to avoid
collisions, and if a robot falls behind the schedule it is invalidated and all robots are
stopped while a new schedule is found by replanning. Replanning should be avoided
since MAPF problems are NP-hard and sometimes very time-consuming [3].

In order to reduce the amount of replanning needed, Hönig et al. [3] proposed
MAPF-POST which can post-process the schedule output by a MAPF algorithm,
and create a plan execution schedule that, in some cases, allows agents to be delayed.
The impact of this method is limited by how much room for errors there is in the
existing schedule, e.g., if there is a lot of room for error in the schedule, larger delays
are allowed without causing replanning.

In this thesis, we propose methods that can reduce the impact of delays and replan-
ning in systems where autonomous robots move according to a MAPF algorithm.
Furthermore, we have designed and implemented a simulator that can be used to
evaluate MAPF algorithms in a system where delays are present. The simulator uses
grid-based maps similar to AutoStore, where agents may move in a 4-directional
manner to adjacent positions in the grid every time unit.

1



1. Introduction

1.2 Thesis statement

Consider an automated system where autonomous robots move around according to
a MAPF schedule. If the speed of the robots is slow enough, we assume that they
are guaranteed to keep up with the schedule without falling behind. If we increase
the speed of the robots, we assume that, at a certain point, some robots are bound
to fall behind the schedule and get delayed.

Assume that we have a system where robots may be delayed. How do MAPF
algorithms perform in these systems? Can we improve the MAPF algorithms to
work better?

1.3 Our contribution

In this project, we have proposed a model for delay-prone multi-agent path finding
systems, as well as solutions that advance state-of-the-art multi-agent path finding.
We have implemented the model in an evaluation environment that simulates agents
that can be delayed. This was done in order to evaluate our novel algorithms Delay-
Tolerant Conflict Based Search (DT-CBS) and Refined Component Stalling, that
were made in order to handle agent delays.

DT-CBS is an algorithm that is based on the state-of-the-art MAPF algorithm CBS.
DT-CBS finds a schedule that tolerates a predefined amount of agent delay. DT-
CBS successfully reduces the number of recalculations compared to CBS, at the cost
of an increased run-time of the algorithm and slightly longer paths. This resulted
in a faster plan execution in cases where the system was executed fast and CBS
encountered many recalculations, which happens when the probability for delays
are high, the paths are long, or when there are many agents in the system.

Refined Component Stalling handles delays that happen during plan execution, by
purposefully delaying a subset of the agents such that the delay will be tolerated.
Refined Component Stalling reduces the need for recalculations, but it increases
the path-lengths of the agents during plan execution. This means that Refined
Component Stalling can be beneficial in instances where the MAPF problem is hard
to solve, i.e., big maps with many agents that otherwise requires many recalculations.
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2
Background

Here we present existing well-known algorithms used for both single-agent and multi-
agent path finding. Single-agent path finding refers to finding an appropriate path
for a single vehicle, whereas multi-agent path finding finds an appropriate set of
non-colliding paths for a number of vehicles such that each vehicle can travel from
its origin to its destination.

2.1 Definitions

Definition 1. Multi-agent path finding problem. Multi-agent path finding
problems are specified by a graph G = (V , E) and a set of agents a1, .., ak. Each
agent aj has a start position sj ∈ V and destination gj ∈ V . The goal of a MAPF
algorithm is to find a valid conflict-free solution to a MAPF problem.
Definition 2. Solution to a MAPF problem. The solution to a MAPF problem
consists of a set of non-colliding paths P1, ..,Pk, one for each agent. Each path
P = {s0

j , .., g
T
j } contains the schedule for agent j from the start position s0

j at time
0 to the destination gT

j at time T .
Definition 3. Optimal MAPF solution. A MAPF algorithm is optimal if the
solution found is guaranteed to be the solution with the lowest possible cost for the
given problem, otherwise it is suboptimal.
Definition 4. Bounded suboptimal solver. Bounded suboptimal solvers let the
user specify a bound w, letting the solver only return solutions with cost less or
equal to (1 + w) · C, where C is the cost of the optimal solution.
Definition 5. Unbounded suboptimal solver. Unbounded suboptimal solvers
offer no guarantee on the quality of the solution. The cost of the solution returned
can be very expensive even if cheap solutions exist.
Definition 6. Time. Time is defined as a finite discrete integer where T is equal
to the length of the longest path in the solution.
Definition 7. Conflict. In a MAPF algorithm a conflict is when two agents occupy
the same position at the same time. A conflict between agent ai and aj at position
v at time t is denoted by the tuple (ai, aj, v, t).

3



2. Background

Definition 8. ε delay-tolerance. Consider that there is a solution SOL to a
MAPF problem. When SOL is executed, one or more agents are delayed by at
most ε. We say that SOL is ε delay-tolerant if these delays do not cause conflicts
between agents, regardless of when they happen.

Definition 9. SIC and makespan. The solution of a MAPF problem is evaluated
by the sum of individual costs (SIC) or makespan. The SIC is the total time costs
over all agents, whereas makespan is the maximum time cost of a single agent. An
optimal solution C refers to a solution with the lowest possible cost for a given
problem, i.e., the optimal solution can change depending on if it is optimized after
SIC or makespan.

2.2 Single-agent path finding algorithms

Single-agent path finding is used to find the shortest paths between two vertices in
a graph. MAPF algorithms often utilize single-agent path finding algorithms when
finding paths for multiple agents.

The most commonly used single-agent algorithm by MAPF algorithms is A* [4]. A*
works in a similar manner as the well-known algorithm Dijkstra’s algorithm, that
finds the shortest path between two vertices by assigning values to all the vertices
in the graph based on the distance from the start vertex [5]. Dijkstra’s selects
the closest unvisited vertex to the start vertex and assign values (distances) to its
neighbors, overwriting any values if the new value is lower and saving the vertex as
the previous vertex, and when done the vertex is marked as visited. This process
repeats until the goal vertex is marked visited and the shortest path can be found
by backtracking the vertices saved as the previous vertex.

Instead of simply searching the graph in cost order, A* uses a heuristic in order
to prioritize vertices closer to the goal vertex and assigns values to those vertices
first. This allows A* to often visit fewer vertices and save time while still finding
the optimal path. The A* algorithm can be seen in Algorithm 1.

2.3 Multi-agent path finding algorithms

Given a graph and a set of agents with unique start and goal nodes, a multi-agent
path finding algorithm finds a path for each agent such that the agents will not
collide with each other. MAPF can be approached using different methods, there
are search-based solvers, reduction-based solvers, rule-based solvers, hybrid solvers,
and also AI-based solvers [3, 6]. This report only covers search-based MAPF solvers.

In order to give an overview of existing search-based solvers, this section describes
multiple well-known search-based MAPF algorithms, brought up by Felner et al. [7].

4



2. Background

Algorithm 1 A* search algorithm
1: Variables:
2: closedSet = {} . Contains the explored vertices
3: openSet = {} . The frontier, containing the vertices to explore
4: cameFrom = empty map . Maps vertices to its lowest cost neighbor
5: cost = ∅ . Cost from start to this vertex
6: priority = ∅ . Heuristic score
7: Add start to openSet
8: cost[start] = 0
9: priority[start] = HeuristicCost(start, goal)

10: . Calculates the Manhattan distance
11: while openSet not empty do
12: current = vertex in openSet with the lowest priority value
13: if current = goal then
14: return (cameFrom, current) . Used for reconstructing the path
15: remove current from openSet
16: add current to closedSet
17: for each neighbor of current do
18: if neighbor in closedSet then
19: continue . ignore already evaluated neighbors
20: neighborcost = cost[current]+ distance(current, neighbor)
21: . tentative cost for the neighbor
22: if neighbor not in openSet then
23: add neighbor to openSet
24: else if neighborcost ≥ cost[neighbor] then
25: continue
26: cameFrom[neighbor] = current
27: cost[neighbor] = neighborgscore
28: priority[neighbor] = cost[neighbor]+ HeuristicCost(neighbor, goal)

5



2. Background

The most important algorithm to consider in order to understand our contribution
is conflict-based search presented in Section 2.3.2.

2.3.1 Cooperative A*

Cooperative A* (CA*) is a suboptimal unbounded MAPF algorithm that plans the
path of all agents individually in succession based on some predefined order [8].
Each path is calculated using A* and is written down in a reservation table so that
the next agent in line cannot occupy the same position at the same time. Because
CA* calculates the paths of the agents in succession, a solution from a finished agent
may prevent any solution from another agent. For example, if the goal of a finished
agent is in a corridor other agents can be blocked from going through that corridor,
making CA* an incomplete search algorithm.

CA* performs a series of k single agent searches, where k is the number of agents,
meaning that run-time of CA* is linear in the number of agents. This is very fast
compared to most optimal MAPF algorithms whose run-time is exponential in the
number of agents, but at the cost of being suboptimal and incomplete.

Algorithm 2 Cooperative A* [8]
1: Variables:
2: constraints = ∅ . Positions occupied by other agents at specific time units
3: schedule = ∅ . Contains paths for agents that finished pathfinding
4: for each agent k do
5: schedule[k] = A*(k, constraints)
6: . Single-agent A* which considers constraints
7: for each (position, time) in schedule[k] do
8: constraints += (position, time) . Add new schedule to constraints

2.3.2 Conflict-based search

Conflict-based search (CBS) as introduced by Sharon et al. [6] aims to solve the
MAPF problem optimally. The run-time of CBS is exponential in the number of
conflicts, as opposed to other MAPF algorithm which are often exponential in the
number of agents [9]. This can be beneficial in some environments but also unfavor-
able in some. Sharon et al. demonstrates that CBS outperforms many MAPF algo-
rithms in environments with bottlenecks but suffers in open space environments [6].

CBS is divided into high level and low level. The high-level search uses a constraint
tree in order to store the constraints for all the agents. A constraint is a specified
position that an agent is not allowed to occupy at a specified time. Each node
in the constraint tree stores constraints, a schedule containing the paths of all the
agents that satisfies the constraints, and the SIC of the schedule. Each child inherits

6



2. Background

Algorithm 3 Conflict-based search, high-level [6]
1: Variables:
2: Root.constraints = ∅ . Root node has no constraints
3: Root.solution = find shortest paths for each agent separately using low-level
4: Root.cost = SIC(Root.solution) . Cost is Sum of Individual Costs (SIC)
5: OPEN = ∅ . OPEN is a priority queue containing nodes to expand
6: insert root to OPEN
7: while OPEN not empty do
8: P ← best node from OPEN . Best node has lowest cost (SIC)
9: Validate P.solution until conflict . Check for conflicts in solution

10: if no conflict then
11: return P.solution . P is the goal node
12: C ← first conflict (ai, aj, v, t) in P
13: for each conflicting agent ac in C do
14: A← new node
15: A.constraints← P.constraints+ (ac, v, t) . Old constraints + new
16: A.solution← P.solution
17: Find new A.solution fulfilling new constraints with low-level
18: A.cost = SIC(A.solution)
19: insert A to OPEN

the constraints of the parent and one new constraint, starting with the root node
without any constraints. The low-level calculates the shortest paths for the agents
of a node which fulfills its constraints by running single-agent path finding for each
agent independently, and saves the solution and SIC in the node. The high-level
search decides what node to expand, which is the node with the lowest total SIC.
The root node will be expanded first as it is the only node.

When expanding a node a validation process starts, where all paths are simulated. If
all agents reach their goals without any conflict, node N is considered the goal node
and the node’s solution is returned. If there is a conflict during the validation, the
node is considered a non-goal node and is split into two new children each adding
a new constraint for one of the conflicting agents. If the conflict C = (ai, aj, v, t)
is found during the validation, one of the nodes would give agent ai the constraint
(aj, v, t) and the other node would give agent aj the constraint (ai, v, t). If the
number of conflicting agents are more than two at one time during the validation,
the node is split into k children (k being the number of conflicting agents). The
high-level CBS can be seen in Algorithm 3.

2.3.3 Greedy-CBS

Greedy-CBS (GCBS) is an unbounded suboptimal version of CBS where both the
high- and low-level are relaxed and more flexible [10]. For the high-level, this means
that instead of expanding the nodes with the lowest cost, GCBS expands the solu-

7



2. Background

tions closest to a goal node. Therefore GCBS has a better performance than CBS,
i.e., it expands fewer nodes and finds a solution faster. Barer et al. [10] tested five
different heuristics in order to determine how close a solution is to the goal:

• h1: number of conflicts

• h2: number of conflicting agents

• h3: number of pairs with at least one conflict

• h4: vertex cover (a combination of h2 and h3, where a graph is defined with
the conflicting agents as the nodes and the pairs as the edges)

• h5: alternating heuristic (alternate between the different heuristics in a round
robin fashion)

They found that the different heuristics have their own advantages and works great
in some instances. h5 provides the best performance, h4 provides solutions with the
lowest costs and h3 is the most robust across different environments.

In order to relax the low-level a suboptimal low-level path finding algorithm can be
used. However, it is important to not use an algorithm that provides too long paths
since this would add to the number of conflicts, further increasing the high-level’s
load.

2.3.4 Bounded-CBS

Bounded-CBS (BCBS) is a bounded suboptimal version of CBS that modifies the
high level of CBS by utilizing focal search in order to apply a cost bound [10]. Focal
search keeps two lists, one for OPEN nodes (regular OPEN nodes from A*) and one
for FOCAL nodes. The list of FOCAL nodes keeps track of the OPEN nodes that
still satisfy the cost-bound and are worth expanding. Focal search uses two functions
f1 and f2, f1 compares the value to the bound and determines which nodes should
be in FOCAL, and f2 is used to choose which FOCAL node to expand.

2.3.5 Increasing cost tree search

Increasing cost tree search (ICTS) is an optimal MAPF algorithm that solves the
problem by using an increasing cost tree (ICT) [11]. Sharon et al. demonstrates
that, compared to other MAPF algorithms, ICTS performs well in environments
with many open areas and worse in dense environments [11]. The performance of
ICTS scales according to the difference in cost between the optimal multi-agent
solution and the sum of all optimal single-agent solutions, which corresponds to the
depth of the ICT.

The ICT is a tree where each node contains costs [C1, .., Ck] associated with each

8



2. Background

agent k. At the root, the sum of the costs is equal to sum of the length of the
optimal single-agent paths for each agent. Each node has a branching factor equal
to the number of agents, where each child increases the cost of one agent by one.
The high-level search does a breadth-first search on the ICT where for each node
the low-level search checks if it is the goal node. Breadth-first search ensures that
the first solution that is found is optimal since nodes at the same level of the ICT
has the same total cost. The low-level search does a goal test for each node in the
ICT. The goal test searches for a combination of non-conflicting single-agent paths
where the cost for each agent is equal to the cost associated with the node. If there
is a valid solution it is returned, otherwise the algorithm continues with the next
node given by the high-level search.

2.4 Multi-agent path finding optimizations

Here we present some existing techniques that improve the performance of multiple
MAPF algorithms.

2.4.1 Independence detection

Independence detection is a technique used to increase the speed of complete MAPF
algorithms [9]. It divides agents into independent groups such that there is an
optimal solution for each group and that there are no conflicts between groups.
Independence detection essentially divides the MAPF problem into several smaller
MAPF problems when possible. The run-time of solving most MAPF problems
are exponential in the number of agents and dividing them into smaller groups can
therefore significantly improve the overall performance.

The algorithm starts by assigning each agent to its own group and plans the paths
for each agent independently. Then it simulates the execution of the paths until a
conflict occurs, where it merges the two conflicting groups and plans the paths for
the new group using a MAPF algorithm. This is repeated until a final conflict-free
solution is found.

The algorithm for simple independence detection is described in Algorithm 4. A
more refined version which is called full independence detection uses multiple opti-
mizations and can speed up the run-time of complete search algorithms exponen-
tially.

2.4.2 MAPF-POST

Hönig et al. [3] presents the algorithm MAPF-POST which post-processes a MAPF
schedule into a plan execution schedule that can be executed on real robots. MAPF-
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Algorithm 4 Simple Independence detection as explained by Standley (2012) [12]
1: assign each agent to a singleton travel group
2: plan a path for each travel group with A*
3: iterate through all paths until a conflict occurs
4: while conflicts occur do
5: merge two conflicting travel groups into a single travel group
6: use MAPF to generate paths for the new travel group
7: iterate through all paths until a conflict occurs
8: solution = paths of all travel groups combined
9: return solution

POST provides three properties that are desirable in real systems. Firstly it consid-
ers kinematic constraints, such as velocity limits. Secondly, it guarantees a safety
distance between agents. Thirdly it utilizes slack to avoid replanning due to imper-
fect plan execution, i.e., it may avoid replanning when an agent is delayed from the
MAPF plan.

In this project, we have taken inspiration from the third property of MAPF POST.
We will therefore only elaborate on how MAPF-POST utilizes slack to avoid replan-
ning, and we will not explain the other properties which are not very relevant for
our work.

Consider the case where two agents are scheduled to pass the same location v at
different times. If the first agent passes v at time t, and the second agent passes v at
time t+ ε, the slack that exists between the agents at location v is ε. Now consider
that the agents may be delayed during plan execution. As long as the first agent is
delayed by less than ε, it is guaranteed that the two agents will not collide at v, in
which case the delay can be tolerated and replanning can be avoided. By looking at
every position where a pair of agents pass and finding the slack ε between them, it
is possible to generate a plan execution schedule that sometimes allows agents to be
delayed while avoiding replanning. We say that a schedule is ε delay-tolerant when
the minimum slack for any position is ε.
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3
System

Here we present the system developed and used in this project. Firstly, we describe
the architecture that is used for running path finding algorithms and executing their
schedules in a system where delays are present. Secondly, we present the simulation
model and the system that we use for the evaluation of MAPF algorithms.

3.1 Architecture

The architecture contains two layers, a global planner and a local planner. The
global planner executes path finding on a static map using normal MAPF algorithms
and finds a preliminary plan execution schedule that the agents should follow. Dur-
ing plan execution, the local planner handles deviations that occur in a dynamic
system and strives to adapt the schedule such that it will not be invalidated by the
deviation.

3.1.1 Global planner

The global planner will run a MAPF algorithm which generates a path from the
starting point to the destination for each agent on a static map. The global planner
is the first thing that is executed when launching the system and finds the ini-
tial schedule intended to be followed by all the agents. For example, the MAPF
algorithms presented in Chapter 2.3 can be used as global planners.

3.1.2 Local planner

After the initial schedule has been computed by the global planner, a phase called
plan execution starts, where agents follow the paths in the initial schedule. During
plan execution, the system is dynamic and deviations may occur. The local planner
handles these deviations, which would normally prevent the agents from following
their given paths, for example when an object blocks the planned path of an agent
or when an agent is delayed.

11
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The local planner is executed every time a deviation occurs. Depending on what
local planner is used, it might modify the existing schedule to accommodate for the
deviation, provide a new schedule or decide to keep the old schedule if the deviation
can be tolerated by the system.

Here we present an example of a local planner. Consider a set of agents following
a plan execution schedule. Suddenly a deviation occurs, and one agent is delayed.
The local planner detects the delay, but it finds that the delay is small enough not to
cause any collision. The local planner then allows the agents to continue following
the plan execution schedule since the delay was not big enough to cause any collision.
On the other hand, if the delay would be too high the local planner would pause all
the agents while computing a new schedule.

3.2 Evaluation environment

Here we present the models that are used for evaluation of MAPF algorithms. The
step execution model describes the maps that we are using and how agents may
move around in the maps. The agent deviation model covers our definition of devi-
ations and how they appear in our system. Finally, we briefly present how we have
implemented the simulation model in the simulator which we use for evaluation.

3.2.1 Simulation model

The architecture needs to be implemented in a non-deterministic simulator in order
to evaluate the performance of the local planner. Due to the computation costs of
simulators such as V-Rep [13] and Gazebo [14] that considers kinematic constraints
and vehicular dynamics, we will develop an elegant non-deterministic grid-based
simulator to experiment with the selected algorithms. The idea is to have a model
that can be used to evaluate MAPF algorithms in a simple system to get an overview
of their performance, the model is not meant to investigate how the algorithms work
in real systems. Instead of kinematic constraints and vehicular dynamics, which are
the cause of delays in real systems, delays are modeled through random motion
failure where the agents simply do not move for one time unit.

Figure 3.1 briefly describes the simulator. To start the simulation, the paths for
all agents are computed offline by the global planner. The schedule is sent to the
agent deviation model, which applies deviations such that the next system state
will differentiate from the expected one, according to some binomial distribution.
The agent deviation model outputs the changes to be made from the current system
state to the next system state. These changes are applied in the step execution
stage which outputs the new system state. The deviation detection checks whether
the new system state deviates from the intended state, and if there is a deviation it
is handled by the local planner which will find new paths when necessary.
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Figure 3.1: Description of simulator

Step execution model

Figure 3.2: A 3x3 map with two
agents and one obstacle. The non-
stationary agent may move to non-
occupied positions, as shown by the
arrows.

The model uses discrete time steps, where
each step in time corresponds to one action
for each agent on the grid. Agents may at
each time step wait at their current position
or move in a 4-directional manner to adja-
cent positions on the grid, as long as the po-
sition is not an obstacle and the action does
not result in a collision, as seen in Figure 3.2.
To clarify, the 4 directions that an agent may
move in is west, north, east, and south, i.e.,
agents may not move diagonally. We define
a collision as two agents that at the end of
the step occupy the same node in the grid, or
when two agents swap positions during two
parallel steps. That is, when two agents at
one point in time occupies two adjacent po-
sitions, they may not simultaneously move
to the other agent’s position such that their
positions swap during one time step.

Agent deviation model

To the end of representing a dynamic system behavior, our simulation model consid-
ers non-deterministic step execution. Specifically, our model considers agents that
are randomly delayed as well as the appearance of an obstacle, such as a container
We model these phenomena via a random motion failure, i.e., the agent simply does
not change location, and locations where obstacles may randomly appear at any
point in time to where the agents are not allowed to move.
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These random motion failures are based on a binomial distribution, where for every
action each agent may be delayed according to a user-specified probability p. As
each delay is seen as an independent occurrence, the binomial distribution gives
the expected delay that the agents will have after taking m steps, and if m is the
makespan this gives the expected delay of a given schedule. This distribution allows
the user to select the probabilities of random motion failure, which means that the
user can choose the delay according to the system they are interested in.

These random failures is our way to model much more complex phenomena and still
keep the computational costs affordable, and significantly lower than the ones of
V-Rep and Gazebo [13, 14].

The term deviating agents refer to agents that are affected by these random motion
failures in a way that prevents them from following the planned schedule.

Extensions to the model

The model described in this section is a simple one that can be extended. Possible
such extensions are agents that may occupy more than one location, non-uniform
cost functions for moving between positions, and agents with unequal speed. It is
possible to extend the distribution that is used for random motion failures if a more
realistic distribution is required.

3.2.2 Simulation system

The simulation system is implemented using Python and the method used for the
visual presentation of the simulation system is Matplotlib [15], which is a large 2D
plotting library in Python used to draw the map and the agents on the screen.

The map is represented as a 2-dimensional grid. Each cell in the grid is either
empty, an obstacle, or a dynamic obstacle. A dynamic obstacle is when obstacles
may randomly appear according to the agent deviation model. It is possible to draw
a map and use it for simulation, by specifying the grid size and the positions of the
static and dynamic obstacles in a configuration file. The number of agents and their
start and goal positions are also specified in the configuration file.
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Algorithms

In this section, we present our contributions that aim to improve the performance
of MAPF algorithms in systems where agents may be delayed.

4.1 Delay-tolerant CBS

An optimal MAPF algorithm will always arrive at the solution with the lowest
possible cost and therefore provide the best performance in a static system, which
does not have any delays. But in a dynamic system where delays are present,
an optimal solution might be sensitive to delays, which would force the system to
recalculate the paths as often as delays appear. If delays are common in the system a
schedule that is not cost-optimal but more tolerant to delays can be more beneficial
and reduce the need for recalculations during runtime.

Here we present a method that finds an ε delay-tolerant solution, i.e., the solution
tolerates that agents are delayed by up to ε time units. This algorithm was inspired
by MAPF-POST introduced by Hönig et al. [3], as described in Section 2.4.2, which
can be used to find the ε delay-tolerance of a given solution. In our algorithm, the
delay bound ε can be selected by the user. A high ε tolerates higher delays but may
result in a more expensive lower quality solution.

The method works by adding a tail of size ε to each agent, where agents are not
allowed to step on the tails of other agents. This allows for a delay of ε without
causing any collisions. We present this method for Cooperative A*, which can
be found in Algorithm 5. Because Cooperative A* is suboptimal and incomplete,
Algorithm 5 will not provide the best result with regards to the quality of the
schedule. However, it is a fast and simple algorithm that demonstrates the method.

One of our contributions is a modified algorithm for CBS, called Delay-Tolerant
CBS (DT-CBS), that makes the solution found by CBS delay-tolerant. The im-
plementation of the algorithm can be found in Algorithm 6, which shows that by
extending CBS with the same method as Algorithm 5, by adding a tail of length ε
to the agents, an ε delay-tolerant solution can be found. When two agents collide
in normal CBS, a constraint is added at the position of collision at time t. The way
algorithm 6 works is that it, in case of a collision with an agent or its tail, adds
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Algorithm 5 Tail algorithm for maximizing window size for Cooperative A*, the
differences from Cooperative A* are seen in the boxed lines.

1: Variables:
2: constraints = ∅ . Positions occupied by other agents at specific times
3: schedule = ∅ . Contains paths for agents that finished pathfinding
4: tail = ε . The solution tolerates a delay of at most ε
5: for each agent k do
6: schedule[k] = A*(k, constraints)
7: . Single-agent A* which considers constraints
8: for each (position, time) in schedule[k] do
9: for each i = −tail; i < tail; i+ + do

10: constraints += (position, time+ i)
11: . Add new schedule to constraints

multiple constraints at the position of collision at time t = [t− ε, .., t+ ε]. By adding
constraints from time t− ε to t+ ε, the algorithm ensures that another agent or its
tails won’t occupy the position at time t or during the time the current agent’s tail
occupy the position. The constraint from time t to t+ ε ensures that the conflicting
agent won’t collide with the tail of the current agent. The constraints from time
t−ε to t is used to make sure that the agent which the constraints are set for cannot
occupy the position at time t, since it would otherwise be possible for that agent to
arrive at an earlier point in time which could cause its tail to remain at time t.

Consider that agent ai on time ti collides with the tail of agent aj at position v,
where aj was at time tj. Due to this conflict one node is generated for each agent.
On the first node a set of constraints are added that says that agent ai may not visit
position v from time tj − ε to tj + ε. Similarly on the second node, the constraints
says that agent aj may not visit position v from time ti − ε to ti + ε. The solution
for each node is calculated and put into OPEN .

4.2 Component stalling

Here we introduce a method that has the goal of stopping only a subset of all agents
in the event of a deviation. We decide which subset to stop depending on the com-
ponent of the deviating agent.

Definition 10. Component. We define a component as a set of agents whose
paths intersects directly or indirectly. Meaning that if one agent’s path intersects
with two other agents, whose paths do not overlap directly, all three agents would
be in the same component.

Definition 10 entails that the paths from agents within a component is separated
from the paths of agents from other components. Algorithm 7 demonstrates the
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Algorithm 6 Find an ε delay-tolerant solution using CBS, the differences from CBS
are seen in the boxed lines.

1: Variables:
2: tail = the wanted delay tolerance of the solution
3: Root.constraints = ∅ . Root node has no constraints
4: Root.solution = find paths for each agent using low-level
5: Root.cost = SIC(Root.solution) . Cost is Sum of Individual Costs (SIC)
6: OPEN = ∅ . OPEN is a priority queue containing nodes to expand
7: insert root to OPEN
8: while OPEN not empty do
9: P ← best node from OPEN . Best node has lowest cost (SIC)

10: Validate P.solution until conflict with another agent or its tail
11: if no conflict then
12: return P.solution . P is the goal node
13: C ← first conflict (ai, aj, v, ti, tj) in P . ti = tj if collision is not with tail
14: for each conflicting agent ac in C do
15: A← new node
16: for each x from −tail to tail do
17: A.constraints← P.constraints+ (ac, v, tj + x)
18: . ac should not visit v during tj ± tail
19: A.solution← P.solution
20: Invoke low-level to update A.solution
21: A.cost = SIC(A.solution)
22: insert A to OPEN

construction of such components given a complete MAPF solution. When an agent
in a component is deviating from its schedule, we refer to its component as the
affected component.

Algorithm 7 Creating components
1: calculate paths using a MAPF-algorithm
2: assign each agent to its own component
3: iterate through all paths until agents from separate components overlap
4: while component paths overlap do
5: merge overlapping components
6: iterate through all paths until agents from separate components overlap
7: return components

Now consider the case when one agent is delayed by δ time units from its schedule.
We propose a method called component stalling, presented in Algorithm 8, as a
local planner that manages this delay by stopping the execution of the agents in
the affected component and delaying all non-deviating agents by δ until the deviant
catches up. Consequently, all the non-deviating agents in the affected component are
delayed by the same amount of time as the deviant. This would make all agents in
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the component equally delayed, and they can maintain their relation to each other
and follow the original schedule even after the delay has occurred. The affected
component has a solution independent from any other components, and for that
reason it is not necessary to stop agents from other components. This allows the
agents outside of the affected component to keep running since the components are
calculated offline, letting some agents reach their destination faster and possibly
save time.

Algorithm 8 Delay component
1: Variables:
2: δ = amount of deviation (in time steps)
3: solution = old paths from the current time and positions
4: stops the execution of affected component
5: delay all agents except the deviant in solution with δ time steps
6: return solution

Algorithm 8 has a computational cost that is constant in the number of deviations,
since it simply delays agents, i.e., the algorithm runs fast and agents do not need to
stop and wait for an expensive MAPF algorithm. Because agents are delayed and
their paths do not change, the components will remain the same after the algorithm
has finished running. Given a delay of δ, the makespan of the solution will at most
increase by δ, when the agent with the longest path is in the affected component.
Similarly, the sum of individual cost will always increase by δ ∗ k, where k is the
number of agents in the affected components.

In order to reduce the cost when handling a delay using component stalling, it is
possible to minimize the component sizes with a algorithm we call Refined compo-
nent stalling presented in Algorithm 9. Components can be minimized by bounding
the amount of accepted stalling. To do this agents would only be placed in the
same component if the overlaps of their paths are within the bounded time of each
other. This would allow the local planner to stall fewer agents possibly resulting
in better performance. However, since there is a bound on the amount of stalling,
this approach only works for delays less than the bound within each component.
When the bound is exceeded a recalculation is needed, as the paths otherwise can
affect agents outside of the affected component. Using this method you can bound
the stalling by the expected amount of delay of a schedule, ensuring that as long
as the number of delays is within expectations the components are not bigger than
necessary.

The component size can be reduced further by also accounting for from what time
step a delay occurs when calculating the components. Consider an intersection
where two or more agents paths overlap, if the paths are considered from any time
before the intersection the agents will be considered to be in the same component.
However, if the paths are considered from any point in time after the intersection,
the agents would not be in the same component unless they overlap again later in
the schedule. Considering this principle, it is possible to reduce the component size
by calculating the components for all time steps before the deviation occurs. At

18



4. Algorithms

Algorithm 9 Creating components using a time bound
1: Variables:
2: bound = amount of allowed stalling
3: calculate paths using a MAPF-algorithm
4: assign each agent to its own component
5: iterate through all paths until agents from separate components overlap within
±bound

6: while components occupy the same position within ±bound do
7: merge overlapping components
8: iterate through all paths until agents from separate components overlap

within ±bound
9: return components

the time of the deviation, the local planner can then simply use the component
corresponding to the current time step, i.e., the components becomes smaller during
the later stages of plan execution since less paths intersect. The calculation can
happen offline, either before or during plan execution.
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5
Evaluation

Here we describe the method that will be used to evaluate the algorithms and the
system. Firstly, we present the research questions that we aim to answer. Secondly,
we show the evaluation criteria which will be used to compare the results of our
experiments. Thirdly, we go through the experiment plan and the experiments that
we will use to answer our research questions. Lastly, we present the evaluation
environment which shows the problem instances that the experiments will solve.

5.1 Research questions

• Q1. Consider a multi-agent system where agents follow a path according to a
MAPF algorithm. Assume that there is a known probability p for an agent to
be delayed, according to the model in Section 3.2.1. Optimal MAPF schedules
are invalidated when at least one agent is delayed. In this case, recalculation
is needed. How often is it necessary to recalculate the paths?

• Q2. Consider a system where delays are present according to the model in
Section 3.2.1, where each delay requires all agents to stop and recalculate the
schedules before resuming. How can one mitigate the impact of these delays?
Can we reduce the number of recalculations? Can we reduce the number of
agents that needs to pause due to these delays?

• Q3. When agents are delayed and fall behind schedule, is it worthwhile to use
the refined component stalling algorithm presented in Section 4.2?

• Q4. Is it worthwhile to find a delay-tolerant schedule using the DT-CBS
algorithm presented in Section 4.1?

• Q5. Is it worthwhile to use the DT-CBS algorithm that finds a delay-tolerant
schedule presented in Section 4.1 together with refined component stalling
presented in Section 4.2 to mitigate the impact of delays?
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5.2 Evaluation criteria

During the evaluation the algorithms are compared with CBS according to these
evaluation criteria:

• The execution time of the path finding algorithm that finds the initial schedule
to be followed. We do not measure the number of operations but rather the
run-time of the algorithm on a mid-ranged cost computer. The execution time
of a schedule is highlighted in Figure 5.1.

• Makespan of the initial schedule, i.e., the longest path length of any agent
in the schedule. The makespan gives a measurement on how long it takes to
execute the entire schedule in a system.

• SIC of the initial schedule, i.e., the sum of the path lengths of all agents in the
schedule. This divided by the makespan gives an idea of the average number
of agents that are moving concurrently, which also affects the number of delays
in the system.

• The number of nodes generated by CBS and its delay-tolerant version, which
correlates to the memory usage of the algorithm.

• Success rate, i.e., how often the algorithm successfully solves a given problem
within 5 minutes. In small maps with a lot of agents, the success rate is
expected to decrease.

For some experiments, the evaluation will take place in a system where delays are
present and where recalculations may be needed. In these cases the evaluation
criteria will also include the following:

• Number of time slots where at least one delay occurs. This is equal to the
number of recalculations of algorithms not tolerant of delays.

• Number of recalculations that are necessary due to delays. If this is lower
than the number of time slots where at least one delay occurs, it means that
the algorithm successfully reduced the number of recalculations needed due to
delays.

• The total execution time of all recalculations. This shows how long agents need
to stop in order to handle delays that occur during run-time. In Figure 5.1,
the total execution time of all recalculations is the sum of the two recalculation
times.

• The stretch factor, i.e., after plan execution, how much did the makespan and
sum of individual costs increase due to delays? This shows how the algorithms
that handle delays affect the path lengths.
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Figure 5.1: The execution time and recalculation time of a schedule.

5.3 Experiment plan

Here we present the experiments that we intend to use to evaluate our work:

5.3.1 Frequency of recalculation with MAPF

This experiment evaluates how often existing optimal MAPF algorithms are required
to do recalculations in a system with delays. The experiment will take place in the
evaluation environment presented in Section 5.4, where we will look at the number
of time slots where at least one delay occurs, which is equal to the number of
recalculations needed. We will also investigate the makespan of the solutions since
it affects the number of deviations. The experiment will only consider CBS and no
other optimal MAPF algorithm, since all optimal MAPF algorithms should arrive
at the same solutions.

Multiple tests will be performed and the number of recalculations for different prob-
abilities of delays will be tested. Delays may occur according to the probabilities
p = [0.1%, 1%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%], and these delays will be managed
by stopping all agents and doing recalculation with an optimal MAPF algorithm.
Only an 8x8 map with no obstacles will be used, with the intention to reduce the
computational need while getting an overview of how optimal MAPF performs in
regards to recalculations in a system with delays.
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5.3.2 Evaluation of CBS and DT-CBS

This experiment evaluates the performance of our implementations of CBS and DT-
CBS. The results will be used to compare how the state-of-the-art MAPF algorithm
CBS performs in comparison to DT-CBS presented in Section 4.1. The performance
of DT-CBS will be evaluated for delay tolerance δ = [1, 3].

The experiment will take place in the evaluation environment according to the eval-
uation criteria presented in Section 5.2. Both an 8x8 map without obstacles and
a 21x20 map with obstacles resembling a warehouse will be tested. Note that this
experiment will not investigate how CBS performs in an environment where delays
are present and where recalculations are needed but instead only test the execution
of the algorithms.

5.3.3 Component stalling used with CBS and DT-CBS

This experiment evaluates the refined component stalling presented in Section 4.2
for component bound δ = 1, where CBS is used for recalculation when a delay
exceeds δ. Furthermore, the experiment evaluates the performance of DT-CBS used
together with refined component stalling. It will be evaluated for delay tolerance
ε = [1, 3] and component bound δ = 2 · ε. When selecting δ, we reason that DT-CBS
will have a higher run-time, and that a higher δ will lead to fewer recalculations.
Furthermore, the bound δ needs to be bigger than ε, since a delay tolerant schedule
would only stall agents when the delays exceed ε, otherwise making the refined
component stalling redundant.

The experiment will take place in the evaluation environment with an 8x8 map
with no obstacles, where the schedule will be executed in a system where delays
occur based on the probability p = 5%. The main objective of this experiment is to
investigate if refined component stalling can reduce the number of agents affected by
delays. Measurements will be taken according to the second part of the evaluation
criteria, which considers the time needed for recalculations and the stretch factor.

5.4 Evaluation environment

The algorithms will be evaluated through measurements taken during simulation.
The simulation will run on different configurations with changes to map layout and
the number of agents.

Two map layouts will be tested. The first map is based on the experiments conducted
by Sharon et al. for CBS [16], it is an 8x8 map with no obstacles where the number of
agents will range from k = [3, 13]. The other map is meant to resemble a warehouse
that contains rows of shelves with narrow corridors in between them, as well as a
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Figure 5.2: Warehouse map

number of wider pathways, which can be seen in Figure 5.2. The number of agents
in the warehouse map will also range from k = [3, 13].

Each configuration will be run on 100 instances where the start and goal positions
of the agents will be randomized. Note that the same 100 instances will be used for
the different algorithms to keep the evaluation consistent. For each instance, the
global planner will run a MAPF algorithm and compute a schedule. If an instance
cannot be solved within 5 minutes it is halted, and the instance will only affect the
success rate and no other measurements.

The simulator presented in Chapter 3 can be used to execute the schedule in a
system where delays occur according to some probability p. These delays will be
managed by the local planner which will change the schedule when necessary, such
that no collisions occur.
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6
Results

Here we present an experimental evaluation of our contributions presented in Chap-
ter 4, which is used to validate whether or not our contributions improve the per-
formance of MAPF algorithms in a system where agents may be delayed.

The experiments are used to answer the research questions introduced in Section
5.1. How often do existing MAPF algorithms need to do recalculation due to delays
when executing in a system where agents may be delayed? How can one mitigate
the impact of these delays? Can we reduce the number of recalculations? Can we
reduce the number of agents that needs to be paused? Is it worthwhile to use the
component stalling algorithm presented in Section 4.2? Is it worthwhile to use our
algorithm DT-CBS presented in Section 4.1? Is it worthwhile to combine component
stalling with DT-CBS?

From our experiments, where there is a probability of delay p = 0.05 on an 8x8
map with 3 to 13 agents, we could observe that MAPF algorithms such as CBS
require up to three recalculations during plan execution. The experiments show
that DT-CBS can reduce the number of recalculations needed to zero, at the cost
of a 10-100 times higher run-time, 5-14% higher makespan, and 2-10% higher SIC.
Furthermore, we observe that Refined Component Stalling used together with CBS
reduces the number of recalculations to zero, and reduces the number of agents that
needs to be paused due to delays by more than half, at the cost of 4-11% higher
makespan and SIC.

Looking at the results that show the plan execution time of DT-CBS and stalling, we
point out that in some cases DT-CBS is faster than CBS when agents move fast, i.e.,
when the step time is small. We highlight that in the difficult case when there are
more than 10 agents that move every 100ms, we can see that the plan execution of
DT-CBS used together with Refined Component Stalling is between 16-49% faster
than CBS. This is a hard case for CBS since there are many recalculations and
every recalculation is time-consuming, but this shows that there are cases where
delay-tolerant path finding provides better performance.
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6.1 Frequency of recalculations with MAPF

In this section, we present the results of how often existing MAPF algorithms need
to do recalculation when executing in a system where agents may be delayed ac-
cording to a set of different delay probabilities. The number of recalculations would
be the same for any MAPF algorithm, but for this experiment we use CBS. The ex-
periment does not cover the entire evaluation criteria, it simply looks at the number
of recalculations done and the makespan in an 8x8 map. During our experiments
we could observe that even for small problems where the makespan is 8-10 it is
necessary to do at least one recalculation for 5-13 agents if the probability of delay
is 5% during plan execution.

6.1.1 Anticipated results

We expect that recalculations will rarely happen when there are few agents and when
the probability of delay is low, but as the number of agents and the probability of
delay increases we believe there will be instances where at least one recalculation is
necessary for every problem instance. Note that for MAPF algorithms recalculation
is done every time there is a delay, i.e., the number of recalculations is equal to the
number of time slots where at least one delay occurs.

6.1.2 Actual results

Figure 6.1 shows the average makespan that the agents have on the 8x8 map with
no obstacles. The median makespan is very similar to the average makespan, but we
do not show it to save space. Observe that the makespan increases with the number
of agents.

The number of recalculations made by the optimal MAPF algorithm can be found
in Figure 6.2. As the probability of a delay increases, the number of unique delays
seems to increase in a linear fashion. Similarly, the number of delays becomes higher
as the number of agents grows. When the probability of delay is 5% or more and
there are at least 5 agents we observe that on average at least one recalculation is
needed for each problem instance.

6.1.3 Difference between the anticipated and actual result

The result were as expected, the number of recalculations increased as the number
of agents and the probability increased. One thing worth mentioning is that the
makespan increases by up to 27% as the number of agents grow, which also affects
the average number of delays.
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Figure 6.1: The resulting makespan after executing a schedule in a system with
delays using CBS for recalculation.

Figure 6.2: Number of recalculations when executing a MAPF schedule, which is
equal to the number of time slots where at least one delay occurs.
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6.2 Evaluation of CBS and DT-CBS

This section presents the experimental comparison between the standard CBS and
DT-CBS according to the first part of the evaluation criteria, which looks at the
general performance of the algorithms and the quality of the schedule it generates.
The experiments evaluate DT-CBS for delay tolerance ε = [1, 3]. The experiments
take place in the 8x8 map with no obstacles, as well as the 21x20 map with obstacles
resembling a warehouse.

From the experiments, we observe that DT-CBS has a significantly higher run-time
than CBS, which becomes worse as ε increases. Furthermore, the run-time has a
very high variance, i.e., the time it takes to solve the problem instances varies a lot,
and this variance is higher for DT-CBS. The makespan and SIC increase slightly,
but not significantly, for DT-CBS compared to CBS.

6.2.1 Anticipated results

Since DT-CBS is an adaptation of regular CBS, where agents essentially occupy
more than one location at any point in time during the execution of the algorithm,
we expect to see more conflicts and therefore more nodes generated before finding
the solution. Because CBS is exponential in the number of conflicts, we should
also see an increase in run-time as ε gets bigger. However, we anticipate that the
number of recalculations needed when executing the schedule is reduced compared to
regular CBS since the schedule should be delay-tolerant for up to ε delays. Since this
experiment only covers the algorithms and not the plan-execution of their schedules,
the results on the number of recalculations will be covered in Section 6.3.

Because we expect the run-time to be higher for DT-CBS than CBS, we believe
that the success rate of DT-CBS will be lower, as the success rate is based on if the
algorithm can solve the given problem within five minutes.

We also expect to see a bigger makespan and SIC for the schedules provided by DT-
CBS compared to the ones provided by CBS. This is because CBS provides optimal
schedules while DT-CBS puts further requirements on the solutions, the accepted
solutions should be a bit more costly.

6.2.2 Actual results

From Figure 6.3 we can see that both the average and median runtime of DT-CBS is
higher than regular CBS and that a bigger ε seems to contribute to a longer run-time.
We can also observe from the figure that the variance in run-time for both algorithms
are very high, both from the variance graph and by observing the big differences
between the values in the median and average run-time graphs. Furthermore, while
still significant, the variance is less notable in the warehouse map compared to the
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(a)

(b)

(c)

Figure 6.3: Average and median run-time together with the variance, on the 8x8
map (left) and the warehouse map (right).

8x8 map.

Similarly as the run-time, Figure 6.4 shows that the number of nodes generated by
DT-CBS is significantly higher than CBS, and the number of nodes necessary to find
a solution increases with ε. The number of nodes scales according to the number
of conflicts while executing the algorithm, which means that DT-CBS encounters
significantly more conflicts during its execution. We can also observe a similar
discrepancy between the values seen in median and average graphs as with the run-
time, indicating a high variance on the number of nodes.
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(a)

(b)

Figure 6.4: Average and median number of generated nodes on the 8x8 map (left)
and the warehouse map (right).

(a)

Figure 6.5: Average makespan on the 8x8 map (left) and the warehouse map
(right).

Looking at Figure 6.5 we can see that the difference in average makespan between
CBS and DT-CBS using ε = 3 goes from about 0.5 to 1.5 for 3 to 13 agents. Meaning
that a schedule from DT-CBT for 13 agents using ε = 3 is only expected to add up to
1.5 time steps to the total execution time. Similarly, we can observe the average SIC
in Figure 6.6 , where the difference between the algorithms seems to be somewhere
between 0 and 5 for both maps and does not seem to increase significantly more
when using more agents.
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(a)

Figure 6.6: Average SIC on the 8x8 map (left) and the warehouse map (right).

(a)

Figure 6.7: The success rate on the 8x8 map (left) and the warehouse map (right).

Looking at the success rate visualized in Figure 6.7, we can observe a significant
decrease for DT-CBS at ε = 2 and ε = 3 on the 8x8 map, while CBS and DT-CBS
with ε = 1 are successful in most of the cases even for k = 13. In the result for the
warehouse map however, the success rate is much more similar for both algorithms
and we only see DT-CBS with ε = 3 diverge at k = 12 and k = 13.

6.2.3 Difference between the anticipated and actual result

As expected the results demonstrated a difference between the run-time of the two
algorithms, where DT-CBS takes a significantly longer time. Similarly, our expec-
tations of the increase in generated nodes were correct.

The big variance in run-time and the number of nodes generated was not something
we directly foresaw but still did not find unexpected. The variance is most likely
a consequence of CBS being exponential in the number of conflicts and not in the
number of agents. Algorithms that are exponential in the number of agents would
most likely have lower variance and therefore more consistent results. But since the
number of conflicts is highly dependent on the map and the placement of the agents,
our results exhibit high variance. However, we also observe the positive ramifications
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of this by comparing the results from the warehouse map and the 8x8 map where
we see that the runtime and the number of nodes generated are often smaller on the
warehouse map, even though there are more positions for the algorithm to process
on the map.

The reason for the better performance on the warehouse map likely is that CBS, as
mentioned in Section 2.3.2, favors environments with bottlenecks over open maps
without obstacles. And since the corridors in the warehouse map create bottlenecks
for the agents and that the 8x8 map does not have any obstacles, we can see a faster
run-time, fewer nodes generated and higher success rate of the algorithms on the
warehouse map. A bigger map with more open tiles also reduces the probability of
conflicts, as the agents have more open tiles to choose from when calculating their
paths. Furthermore, adding a tail of ε = 3 to the agents is a significant percentual
increase in blocked tiles on the 8x8 map area, as one agent then covers up to 4
tiles which are half the height or width of the map. And all agents for k = 13 and
ε = 3 can cover up to 4 · 13 = 52 positions on the map, while the entire 8x8 map
consists of 8 · 8 = 64 tiles in total. This is likely to be one of the reasons for the low
performance and success rate for DT-CBS on the 8x8 map.

Throughout the results, a fluctuation can be observed when the number of agents
gets higher, especially for k = [12, 13] and ε = [2, 3] on the 8x8 map. We believe this
is a consequence of the low success rate when using these settings. The low success
rate means a smaller set of test cases contributing to the average and median values,
making the result less reliable. It also means that the hard problems solved by CBS
and DT-CBS with ε = 1, which increases the average and median, most likely are
the problems that fail. This results in a lower average and median value since only
the easy problems are considered.

The results from Figure 6.5 and Figure 6.6 shows that, as expected, the SIC and
makespan grows as ε gets bigger. However, we can see that the increase in makespan
is a bit more substantial than the SIC increase. We expect this is because CBS and
DT-CBS prioritize nodes based on SIC and therefore optimizes the solution based
on the SIC value.

6.3 Component stalling used with CBS and DT-
CBS

This section covers the experimental evaluation of Refined Component Stalling used
in conjunction with both CBS and DT-CBS, in accordance with the evaluation
criteria. The experiment is used to validate whether or not our contributions can
decrease the impact of delays, in a system where agents may be delayed with the
probability p = 0.05.

The first question that the experiment answers is whether or not CBS can be used
together with Refined Component Stalling to reduce the impact of delays. The
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second question is whether or not DT-CBS used together with Refined Component
Stalling can reduce the impact of delays even further.

The experiments show that both Refined Component Stalling and DT-CBS signif-
icantly reduces the number of recalculations necessary compared to CBS. Further-
more, Refined Component Stalling can successfully decrease the number of agents
affected by delays. Compared to CBS, we observe that DT-CBS and stalling in-
crease the makespan and SIC slightly, but not by a lot. When Refined Component
Stalling is used together with DT-CBS, the experiment shows that the number of
stalls becomes lower as the delay tolerance ε increases. The results also shows that
the plan execution time for DT-CBS and stalling in some cases is faster than that
of CBS when agents move fast, i.e., when the step time is small.

6.3.1 Anticipated results

Because DT-CBS has a delay tolerance of ε, it allows significantly more delays than
standard CBS. This means that DT-CBS will allow more delays before stalling,
reducing the number of stalls during plan execution. Furthermore, the number of
recalculations will most likely be reduced significantly since more stalls are allowed
because the component bound of DT-CBS is α = 2 · ε compared to α = 1 of
CBS. If the number of recalculations for DT-CBS is close to zero, the total time
for recalculations will be zero during plan execution. On the other hand, we expect
standard CBS to have many recalculations and therefore a high recalculation time
during plan execution.

Following our expectation that CBS has more stalls than DT-CBS because DT-
CBS allows more delays, the stretch factor for both the SIC and makespan should
be larger for standard CBS, since a stall is usually more costly than a delay in terms
of SIC and makespan because it affects many agents. Furthermore, we anticipate
that the increased stretch factor of standard CBS should be larger for makespan
than SIC, since a stall affects the makespan more than SIC.

DT-CBS is expected to generate more costly initial schedules in regards to makespan
and SIC, although the stretch factor is expected to be smaller for DT-CBS. We also
expect the average number of time slots where at least on delay occurs will be quite
similar for standard CBS and DT-CBS, since this should have a correlation with the
SIC and makespan.

We expect to see a difference between the number of agents affected by delays when
comparing Refined Component Stalling with stalling, and recalculation of all agents.
This is because the bound α in Refined Component Stalling limits the component
size, which is related to the number of agents affected by delays, as explained in
Section 4.2.

Following our expectation that DT-CBS and Refined Component Stalling reduces
the number of recalculations, we expect to see the time it takes for CBS to execute
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Figure 6.8: Average number of time slots where at least one delay occurs for
stalling with CBS and DT-CBS

a schedule, including the recalculation times, to be longer than when using DT-CBS
and stalling in some settings. The time for executing a schedule can be calculated
by the equation m · ts + tr, where m is the makespan, ts is the step time and tr is
the recalculation time. Since the average makespan of DT-CBS is larger than the
makespan of CBS and the average recalculation time is expected to be larger for
CBS, we anticipate this result to heavily depend on the step time. When using a
small step time we should see more influence on the result from the recalculation
time, and when using large time steps we expect to see more impact from the average
makespan.

6.3.2 Actual results

The performance of CBS and DT-CBS can be found in Section 6.2.2, where the
run-time can be seen in Figure 6.3, the makespan in Figure 6.5, the SIC in Figure
6.6, number of nodes generated in Figure 6.4, and success rate in Table 6.7. Here
we present the post plan-execution results of CBS and DT-CBS used together with
stalling.

Figure 6.8 shows that the number of delays is quite similar for CBS and DT-CBS,
and that increases with the number of agents. We can also see some fluctuations at
k = [12, 13] agents.

Figure 6.9 shows that the average number of stalls for CBS is significantly higher
than DT-CBS. As ε grows the number of stalls required by DT-CBS seems to go
towards zero. Similarly, Figure 6.10 shows that the number of recalculations for
standard CBS goes from 0,18 to 0,75 as the number of agents increases, while DT-
CBS has close to zero recalculations for all the tests. Note that the results show a
peak at 11 agents for both the number of recalculations and the number of stalls.

36



6. Results

Figure 6.9: Average number of stalls for standard CBS and DT-CBS with stalling
bound α = max(1, 2 · ε).

Figure 6.10: Number of recalculations for stalling used together with standard
CBS and DT-CBS

37



6. Results

Figure 6.11: SIC before executing the schedule to the left. SIC after executing
the schedule with stalling and standard CBS and DT-CBS to the right.

Figure 6.12: Stretch factor of SIC for stalling used together with standard CBS
and DT-CBS

Figure 6.13: Makespan before executing the schedule to the left. Makespan after
executing the schedule with stalling and standard CBS and DT-CBS to the right.

Figure 6.11 shows the average SIC before and after plan execution. We can observe
that the SIC after plan execution does not differ very much between CBS and DT-
CBS. However, the SIC of DT-CBS with ε = 3 is between 2% to 10% larger than
CBS for k = [3, 10] agents. Note that after k = 10, the SIC of DT-CBS with
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Figure 6.14: Stretch factor of makespan for stalling used together with standard
CBS and DT-CBS

Figure 6.15: SIC when stalling all agents and when using refined components

ε = [2, 3] dips and becomes smaller than CBS. Figure 6.12 highlights the differences
of the SIC in Figure 6.11, where we observe that the SIC increases by about 5% to
10% during plan execution. The stretch factor of CBS generally seems to be a bit
higher than DT-CBS, although not by too much. Note that there are some peaks
in the result, e.g., at k = 13 agents DT-CBS with ε = 1 has a higher stretch factor
than CBS.

Figure 6.13 shows the average makespan before and after plan execution. After plan
execution, we can see that the average makespan is 3% to 13% higher for DT-CBS
than CBS. Observe that the makespan increases by 4% to 9% during plan execution,
where the increase seems to grow slightly bigger as the number of agents increases,
as highlighted by the stretch factor in Figure 6.14. The stretch factor seems slightly
larger for CBS than DT-CBS, but note that there are some peaks which makes the
results hard to read, especially for DT-CBS with ε = 3.

39



6. Results

Figure 6.16: The average total time needed for recalculations during plan execution
in an 8x8 map, where the probability of delay is 5%.

Figure 6.15 shows the difference in increased SIC when stalling all agents and when
utilizing Refined Component Stalling as delays occur. We can see that by using
Refined Component Stalling we only attribute to around 20% to 40% of the increase
in SIC compared to stalling all the agents (100%).

Figure 6.16 shows the recalculation time of CBS, CBS with stalling, and DT-CBS
with stalling. The recalculation time is very low for few agents, but for k = [10, 13]
agents we observe that the recalculation time increases slightly for CBS and for CBS
used together with stalling, while the recalculation time of DT-CBS used together
with stalling stays at zero because it does not do any recalculations.

Figure 6.17 shows the total time it takes to execute the schedule, calculated by
m · ts + tr, where m is the makespan, ts is the step time, and tr is the recalculation
time. Note that this does not include the time it takes to calculate the initial
schedule, but it includes the recalculation time. In the slow system with a step time
of 500ms, CBS consistently outperforms the delay tolerant algorithms when it comes
to plan execution time. Observe that the total plan execution time is generally faster
for CBS in the fast system with a step time of 100ms as well, but there are some
cases when DT-CBS and stalling have a faster plan execution time than CBS, which
partly depends on the higher recalculation time of CBS in these cases, as seen in
Figure 6.16.

6.3.3 Difference between the anticipated and actual result

As expected, the number of delays were quite similar for CBS and DT-CBS. Similarly
to other experiments, we believe that the fluctuation towards k = [12, 13] are caused
by a drop in success rate which means that the average is calculated from fewer tests.

According to our prediction, the number of stalls and recalculations were signifi-
cantly lower for DT-CBS than standard CBS. This implies that the total time for
recalculation of DT-CBS during plan execution is zero in most cases, in small maps
with 3-13 agents. On the other hand, the average number of recalculations for CBS
is lower than expected, where we can see it per average requires less than one recal-
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Figure 6.17: The total time it takes to execute the schedule, calculated bym·ts+tr,
where m is the makespan, ts is the step time, and tr is the recalculation time. The
graph to the left has ts = 100ms and to the right ts = 500ms.

culation. There is a spike in the number of recalculations for CBS at k = 13 agents,
which we believe may be caused because the number of delays also has a small spike
for k = 13 agents.

We predicted that the stretch factor of SIC and makespan would be higher for CBS
than DT-CBS, which turned out to be true, although the difference was smaller
than we predicted.

We can see that the stretch factors spike at k = [11] for CBS and k = 12 for DT-
CBS with ε = 1. For DT-CBS, we believe that the cause is a spike in the number
of delays at the same time, which makes sense since the number of delays should
have a correlation to the SIC, since a delay increases the SIC. For CBS, we also
observe that the number of delays increases at k = 11, which causes the number of
stalls to peak at k = 11, further increasing the SIC. Furthermore, the stretch factor
of the makespan of DT-CBS with ε = 3 fluctuates a lot, which correlates to the
number of delays, although the number of delays affected the stretch factor more
than anticipated. We believe that the component bound α = 2 · ε may be the cause
since a higher component bound results in larger component groups which cause
more agents to be affected by a stall. Since stalls affect the makespan significantly,
it does make sense that DT-CBS with higher ε should give higher spikes in the
makespan.

From the results, we conclude that Refined Component Stalling can reduce the
number of agents affected by a delay, compared to stalling all agents. We can draw
this conclusion by comparing the SIC since each agent that is stalled for one time
unit should add 1 to the SIC after plan execution. Since we only see a 20% to 40%
increase in SIC compared to stalling all agents, we can see that we have successfully
reduced the number of agents affected by a delay by using Refined Component
Stalling.

We expected the recalculation time of CBS with stalling to be longer than DT-CBS
with stalling, as it turns out the recalculation time was mostly close to zero due to
the number of recalculations being small. But we can see that when recalculations
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occurred, the recalculation time was higher for CBS than DT-CBS as anticipated.
Similarly, due to the lack of recalculations it was hard to see if the plan execution
time of DT-CBS was better than CBS, but we note that in the cases where recal-
culations occurred we could see that DT-CBS actually had a faster plan execution
than CBS, in the case where the system had a lower step time and agents moved
fast. This suggests that DT-CBS used together with stalling performs better in
systems where the agents move fast.

We believe that the total time for plan execution would have a more consistent result
if a larger map was used. This depends on two factors, the recalculation time and
the makespan. In a larger map, there would occur more recalculations due to longer
path lengths, which would increase the recalculation time so that it would be more
consistent. Furthermore, according to our results, the makespan seems to increase
more proportionately in smaller maps than larger maps for DT-CBS compared to
CBS, which means that DT-CBS will affect the makespan less for larger maps and
it will get a better plan execution time.
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In this chapter, we include a discussion about the project and the results and present
our conclusions.

7.1 Discussion

The results show that the time required for plan execution for DT-CBS and compo-
nent stalling performs better than CBS in some cases. More specifically, they seem
to outperform CBS in hard cases where there are many agents and lots of delays,
although more extensive experiments would be required to be certain that this is
always the case.

As shown in the results, Refined Component Stalling could successfully reduce the
number of agents affected by delays, and it also decreases the number of recalcu-
lations needed. The impact that Refined Component Stalling has on the number
of agents affected is heavily dependent on the component bound δ. The experi-
ments we carried out covered δ = 1 for CBS, and δ = 2 · ε for DT-CBS with delay
tolerance ε ∈ {1, 2, 3}. In order to get a clearer picture of exactly how δ affects
the performance of Refined Component Stalling, more thorough testing would be
needed.

We found that DT-CBS, which finds a delay-tolerant schedule for a MAPF problem,
has a higher computational cost compared to CBS, which finds a non delay-tolerant
solution. Although still worse than CBS, DT-CBS seemed to perform better rela-
tively to CBS in the warehouse map compared to the 8x8 map with no obstacles.
Furthermore, DT-CBS showed a clear improvement in reducing the number of recal-
culations and the impact of delays in the system during plan execution. This can be
considered as a trade-off between a worse performance during the offline calculations
for improved performance during the plan execution. This can be very beneficial if
the schedule for the next task can be precomputed in parallel with plan execution
of the current task.

Consider a system where agents have to finish a set of tasks. During the time
that the current task is being executed, it is possible to precompute the schedule
of the next task. This is only possible if the time required for plan execution of
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the task is higher than the run-time of the algorithm. By precomputing schedules
with DT-CBS, we remove the disadvantage of DT-CBS, which is the increased run-
time, while we keep the advantage of fewer recalculations. This means that the
system very rarely needs to pause, either for recalculation or for computing task
schedules. To further remove the need for recalculations, DT-CBS can be combined
with component stalling which acts as a fail-safe, such that if the delay exceeds the
delay tolerance, it is still not necessary to do recalculation.

Now assume that it is possible to precompute the schedule of the next task. From
our results, we observe that the plan execution time of DT-CBS in some cases
outperform the plan execution time of CBS. Our experiments were limited to small
maps, due to time restrictions. We believe that in larger maps where there is an
increase in makespan and the number of recalculations, DT-CBS may consistently
outperform CBS during plan execution, especially in a fast system where the step
time is low.

One problematic aspect of CBS is that the run-time is unpredictable, as CBS is
exponential in the number of conflicts rather than the number of agents and the
map size. Given two very similar problems in the number of agents and the map
size, one problem may finish almost instantly while the other one will run for a long
time. This is clear when looking at the success rate in our results, where we observe
that the success rate of DT-CBS is worse than CBS. We believe that it would be
interesting to look at other MAPF algorithms with more predictable run-times and
explore if these could be made delay-tolerant while preserving consistent run-times.

We saw a pattern that when the success rate decreased, the results became less
consistent, which decreases the reliability of results where the success rate is low.
In order to counteract this, it would better to have more test cases than 100. Fur-
thermore, running more than 100 instances would give a more consistent evaluation,
as the results changed significantly depending on which problem instances were in-
cluded in the evaluation. In the end, we decided to limit the number of problem
instances to 100 anyway, as the tests are very time consuming, but we used the same
problem instances for all tests.

7.2 Risk analysis and ethical considerations

The area of the studied problem considers safety-critical of self-driving agents and in
general transport is a very important sector in society. The exact studied problem
deals with abstract agents that solve a planning problem. The plan then needs to
be carried out by a safety-critical system. We note that there is another system
that carries out the plan and it has an autonomous ability to always perceive safety
regardless of the plan provided by the studied algorithms. The studied algorithms
do consider improved performance and some of them also consider optimization. As
such, there is a clear benefit for society since these improvements can imply reduced
costs of future systems.
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Increased performance and reduced cost in systems that are using MAPF algorithms,
such as autonomous warehouses, means that energy consumption potentially can be
reduced. By improving the efficiency of such systems, there would likely be less
energy, time and money wasted both in existing autonomous systems and future
systems. This could result in making these systems more common, increasing the
growth of autonomous systems, as the benefits of them become clearer.

Furthermore, something that cannot be neglected is that there are a lot of people
affected when these systems are automated, e.g., employees currently working in
warehouses that have a risk of losing their jobs to automation. Although this is true
to some extent, new jobs are certainly created within maintenance, development,
and also logistics since these systems still require some kind of human interference
when things go wrong. The process of constantly improving the efficiency of existing
infrastructure can be seen as a necessary part of the development of society.

7.3 Conclusion

Multi-agent path finding algorithms can find collision-free paths for a set of agents
with different start and goal positions. When one of these agents is delayed, all
paths are generally invalidated and the agents need to pause for recalculation of
their paths.

We have successfully modified the MAPF algorithm CBS so that the paths found by
CBS is tolerant to delays. The modified algorithm, which we call DT-CBS, allows
the user to select the delay tolerance that the paths should achieve. Our experiments
show that the number of recalculations needed when using DT-CBS is significantly
lower compared to CBS, at the cost of an increased run-time of the algorithm.

We have introduced Refined Component Stalling, which can be used to decrease
the impact of a delay by avoiding recalculation while only affecting a subset of all
agents, at the cost of slightly longer path lengths. More specifically, when an agent
is delayed, the nearby agents that it may collide with due to the delay are stalled to
compensate for the delay. The number of agents affected by a delay can be tuned
through a parameter which we call the component bound, and with a smaller bound
fewer agents are affected by delays, at the cost of an increased number of complete
recalculations.

In this project, we have explored the area of delay tolerance in multi-agent path
finding. We have concluded that DT-CBS used together with stalling in some cases
have a lower plan execution time than CBS when the agents move fast, which sug-
gests that DT-CBS and stalling may work more efficiently for fast systems. Further
development is required to find less computational expensive alternatives to CBS,
such as expanding more recent suboptimal variants of CBS to become delay-tolerant.
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