
A Novel Ethernet Network Layer Protocol for
Automotive Network Communications

A Degree Project Report in Computer Science and Engineering

EBBA HÅKANSSON

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Degree Project Report 2022

A Novel Ethernet Network Layer Protocol for
Automotive Network Communications

EBBA HÅKANSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

A Novel Ethernet Network Layer Protocol for Automotive Network Communications
EBBA HÅKANSSON

© EBBA HÅKANSSON, 2022.

Supervisor: Björn Bergholm, Broccoli Engineering
Supervisor: Neethu Bal Mallya, Chalmers University of Technology
Examiner: Lars Svensson, Chalmers University of Technology

Degree Project Report 2022
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

University of Gothenburg
SE-405 30 Gothenburg
Telephone +46 31 786 0000

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

A Novel Ethernet Network Layer Protocol for Automotive Network Communications
EBBA HÅKANSSON
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
This project investigates the possibility of replacing CAN bus with an Ethernet con-
nection by sending CAN messages in Ethernet frames. A new protocol for Ethernet,
called CANEthernet, was developed for this purpose and a corresponding Ether-
Type is proposed. CANEthernet packs several CAN messages within an Ethernet
frame and different design options for the protocol are discussed and compared.
The new protocol can carry all types of CAN messages and does not change the
contents of them. CANEthernet is evaluated by comparing it to using a regular
CAN bus in regards to throughput, latency and energy efficiency. The evaluation
shows that CANEthernet outperforms regular CAN in all evaluated aspects. For
throughput CANEthernet can reach 9Gbps over 10Gbps Ethernet, while the fastest
CAN throughput is 8Mbps. In latency, CANEthernet can transport a CAN message
in 11.2 us while CAN requires 108 us for sending the same CAN message. Finally,
CANEthernet uses 10.8 nJ per bit while CAN uses 153 nJ per bit.

Keywords: CAN, CAN FD, Ethernet.

v

Acknowledgements
This was a degree project for a Degree of Bachelor of Science in Computer Engineer-
ing at Chalmers University of Technology. It was written in collaboration with the
company Broccoli Engineering. I want to thank my supervisors Neethu Bal Mallya
and Björn Bergholm, for helping me.

Ebba Håkansson, Gothenburg, June 2022

vii

List of Acronyms

ACK Acknowledgment
CAN Controller Area Network
CAN FD Controller Area Network Flexible Data-rate
CRC Cyclic Redundancy Check
ECU Electronic Control Unit
EOF End of Frame
FCS Frame Check Sequence
IEEE Institute of Electrical and Electronics Engineers
IFS Inter Frame Space
IPG Inter Packet Gap
MAC Media Access Control
OSI Open Systems Interconnection
RTR Remote Transmission
SFD Start Frame Delimiter
SPI Serial Peripheral Interface
SOF Start of Frame

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Goal . 1
1.4 Limitations . 2
1.5 Thesis Organization . 2

2 Method 3

3 Theory 5
3.1 CAN . 5

3.1.1 Data frame . 6
3.1.2 Remote frame . 7
3.1.3 Error frame . 7
3.1.4 Overload frame . 7

3.2 Ethernet . 8

4 Development 9
4.1 Minimizing CAN message size . 10
4.2 Finding beginning and ending of each CAN message 10

4.2.1 Bit pattern . 11
4.2.2 Parsing CAN messages . 11
4.2.3 Size field . 11
4.2.4 Padding messages . 11

4.3 Indicating end of the message . 13
4.3.1 Bit pattern . 13
4.3.2 Size field . 13
4.3.3 Number of CAN messages . 13

4.4 Acknowledgment . 14
4.5 The CANEthernet protocol . 15

4.5.1 Finding beginning and ending of each CAN message 15

xi

Contents

4.5.2 Indicating end of the message 15
4.5.3 Acknowledgment . 16
4.5.4 Order of protocol fields . 16

5 Implementation 17
5.1 Hardware Setup . 17
5.2 Software library . 18

6 Evaluation 21
6.1 Throughput . 21

6.1.1 CAN . 21
6.1.2 CANEthernet . 22
6.1.3 Summary . 25

6.2 Latency . 25
6.2.1 CAN . 25
6.2.2 CANEthernet . 25
6.2.3 Summary . 25

6.3 Energy efficiency . 26
6.3.1 CAN . 26
6.3.2 CANEthernet . 26
6.3.3 Summary . 26

7 Conclusion 27
7.1 Project Execution . 27
7.2 Future work . 28

Bibliography 29

A Appendix 1 I

xii

List of Figures

3.1 Different Data Frames . 6
3.2 Fields of an Ethernet message . 8

4.1 Example showing how padding effects size of CAN size field 12
4.2 Example showing how data and acknowledgment message are built . 14
4.3 Overview of the CANEthernet protocol 15

5.1 Setup . 18
5.2 Photo of the hardware setup . 18

6.1 Throughput of standard CAN at 1Mbps 22
6.2 Maximum number of CAN messages in CANEthernet frame 23
6.3 Size of CANEthernet when filled with different size CAN messages . . 23
6.4 Throughput of CANEthernet . 24

7.1 The planned schedule for the project 27

xiii

List of Figures

xiv

List of Tables

4.1 Example: 4702-bit message with 64-bit padding and without padding 13

6.1 Latency calculation for a CANEthernet message 25
6.2 Power consumption for CANEthernet 26

xv

List of Tables

xvi

1
Introduction

1.1 Background
Today’s vehicles are, to a large degree, controlled by computers. A vehicle contains
several Electronic Control Units (ECUs). Each ECU is responsible for different parts
of the vehicle, such as the engine, steering, and driver controls. Robust and efficient
communication between the ECUs is essential for a functioning vehicle. The number
of ECUs in vehicles has increased significantly over the last three decades, and with
that, the amount of network communication within a vehicle has grown rapidly[2].
Because of this, automotive manufacturers can save a lot of money and resources
by making communication within a vehicle more efficient.

1.2 Purpose
The project is intended to determine if communication between nodes in a vehicle is
more efficient by using Controller Area Network (CAN) messages or packing several
CAN messages into one Ethernet message. The scenario imagined for this project is
two nodes within a vehicle that both have a CAN and an Ethernet connection. The
nodes need to communicate using CAN messages. This project will help determine
whether it is more efficient to use the CAN connection or send the CAN messages
over Ethernet. In order to make the Ethernet communication as efficient as possible,
a custom EtherType will be created to stow CAN messages.
If the communication is found to be more efficient via Ethernet, the CAN connection
could be removed. Such change could lead to thousands of cars being produced
with fewer resources and would positively impact the ecological footprint of vehicle
production.
The project was done in collaboration with the consulting company Broccoli. The
company has many consultants working in the automotive industry, so a project
with ties to this industry was appropriate.

1.3 Goal
The project aims to determine the most efficient communication method between
nodes in a vehicle - either (i) using CAN messages or (ii) packing several CAN
messages into one Ethernet message. The study will look at the current state of
vehicle network communications and recent research. The evaluation will primarily

1

1. Introduction

compare the efficiency of the two communication methods in terms of throughput,
latency, transmission speed, and amount of overhead. Each method’s cost efficiency,
energy consumption, ecological footprint, and reliability will also be examined.

1.4 Limitations
Due to time constraints, the project will have some limitations. It will not consider
the security aspects of network communication. Security is crucial in designing vehi-
cles, and it would be unethical to develop the internal network without considering
it. However, it does not fit within the time frame for this project. Another con-
straint is that no hardware development will be done; all technical development will
only be done with the software. This project will also not consider other types of
communication than CAN and Ethernet.

1.5 Thesis Organization
Chapter 2 discusses the plan made for carrying out the project, followed by Chap-
ter 3, which contains the relevant theory on CAN and Ethernet. Chapter 4 describes
the methodology of how the new protocol was developed. It discusses the various
design aspects, why certain solutions were chosen, and details of the final protocol
design.

Chapter 5 contains the hardware and software implementation, including the used
hardware, its setup, and the software library created for the project. The chapter
also explains how the tests were executed. Following that, Chapter 6 contains the
evaluation of the protocol, which compares it against CAN for throughput, latency,
and energy efficiency. Finally, Chapter 7 concludes the report with an analysis of
the project plan vs. execution and potential future work.

2

2
Method

The following steps outline how the project will be carried out:

Hardware Setup and Configuration: The first step in the project will be to set
up the hardware. The project will use two Arduino boards, two CAN network cards,
and two Ethernet network cards. The Arduino boards will be connected together
with both a CAN and an Ethernet connection. The hardware will then be configured
to send and receive messages. After this, several CAN and Ethernet testing messages
will be created. The messages will then be used to test the configuration.

Research: The next step is to research CAN and Ethernet. This phase will begin
during the hardware phase while waiting for ordered parts. The research will include
specifications of the different protocols used and variations of the protocols. It will
also include information on how EtherTypes work and how messages with a custom
EtherType can be transmitted and received with the provided hardware.

Development of the proposed EtherType: When the research is finished, the
development of the new EtherType will begin. The details of the EtherType as
well as the method of storing several CAN messages in an Ethernet message will be
calculated to achieve the highest efficiency.

Verification of the proposed EtherType: When the new EtherType has been
developed, the project will move to a testing phase. A number of test CAN messages
will be created. The messages will then be used to verify that the Ethernet messages
are sent and received correctly. To do this, a system for doing the verification will
be created.

Evaluation: The final step of the project will be to perform tests and calculations
that compare sending CAN messages with sending CAN messages using Ethernet.
The two ways of communicating will be compared on several criteria such as time
and cost efficiency, ecological footprint, energy consumption and reliability. The
evaluation will draw conclusions of what type of communication is appropriate for
different situations.

Documentation and Final Report: All the essential information related to the
project will be documented throughout the different steps. A final report and a
presentation will be made available towards the end of the project.

3

2. Method

4

3
Theory

This chapter describes the hardware and the communication protocols used for the
project.

3.1 CAN
CAN is a communication bus developed in 1986 for use in the automotive industry.
Today CAN is used in a wide range of applications, but it is still very commonly
used for automotive applications. The protocol is suitable for automotive applica-
tions because of its robustness and efficiency. In the 1990s, the increased number of
ECUs in vehicles led to a rapid increase in the use of CAN networks within the auto-
motive industry. Manufacturers chose the CAN communication bus for its efficiency
and low cost [2]. A new version of CAN, called Controller Area Network Flexible
Data-Rate (CAN FD), was developed in 2012. The amount of CAN FD in vehicles
has increased since then. CAN was not developed for sending large amounts of data.
It is designed for quickly transmitting messages between several nodes and for its
real-time properties, quick error detection, fast error recovery, and short reaction
times [2] [4].

Nodes on the CAN bus are connected with a two wire bus. The bus can be at one
of two states, either recessive or dominant. The base state on the bus is recessive,
and it only becomes dominant if at least one node transmits a dominant value. In
many parts of CAN messages it is not allowed to send more than five bits of the
same value consecutively. To prevent this from happening the transmitter inserts
a stuff bit of the opposite value when there are six or more bits of the same value
consecutively.

CAN FD differs from classic CAN in that it can send more significant amounts of
data per message. Unlike classic CAN, CAN FD can send different parts of a mes-
sage at different bit rates. With CAN FD, the data field of a message can be sent
at up to 8 Mbps, while the rest of the message can be transmitted at up to 1 Mbps.
Standard CAN has a maximum speed of 1 Mbps.

Apart from these differences, the two protocols are very similar. There are three
types of frames in CAN FD: Data frame, Error frame, and Overload frame. Classic
CAN has the same frame types plus a Remote frame. The message types are struc-
tured similarly for both protocols. This report does not require detailed knowledge

5

3. Theory

(a) Classic CAN Data frame

(b) Extended CAN Data frame

(c) Classic CAN FD Data frame

(d) Extended CAN FD Data frame

Figure 3.1: Different Data Frames

of how CAN messages are structured. Unless specified, the other chapters of this
report will use the term CAN to refer to both CAN and CAN FD messages. Below
is a basic description of the different types of CAN and CAN FD frames.

3.1.1 Data frame
CAN Data frames are used to transmit data. Figure 3.1a shows the fields of a clas-
sic CAN Data frame. The classic CAN Data frame has an 11-bit identifier field.
There is also an extended CAN Data frame with a 29-bit identifier. The extended
CAN data frame is shown in Figure 3.1b. Apart from the identifier, the classic and
extended CAN data frames are identical. The identifier field usually contains the
identity of the transmitting node. It also sets the priority of the message, which
decides which message takes precedence when collision occurs on the bus. This is
done by the nodes reading the value of the identifier field on the bus as they trans-
mit, and when noticing a higher value than the one being transmitted by themselves
they end the transmission. In essence this means that the node transmitting with
the highest value of the identifier field takes precedence. The identifier field can also
transmit data, which allows the message to send more than 64 bits. Storing data in
the identifier field is especially common in the extended format.

The CAN data frames can contain up to 8 bytes of data, and the DLC field indicates
the amount of data in a message. Each CAN message also has a Start Of Frame
(SOF) to mark the beginning of a message, an Acknowledgement Field (ACK), a

6

3. Theory

checksum field (CRC), and an End Of Frame (EOF) to mark the end of the message.
The Inter Frame Space (IFS) at the end of each message is 3 bits long [2].

The CAN FD data frame also has a classic frame with an 11-bit identifier, shown
in Figure 3.1c and an extended version with a 29-bit identifier, shown in Figure
3.1d. The figures show that CAN and CAN FD data frames are similar, but they
have important differences. One main difference is that the CAN FD data frame
can send data between 0 and 64 bytes. This means that a CAN FD data frame can
be significantly larger than a CAN data frame. Another difference is that CAN FD
can send data messages with two different predetermined bit rates. The CAN FD
message contains a flag bit before the data field begins, which sets at which of the
two bit rates the rest of the message will be sent. With this format, a message can
be transmitted with different bit rates for the identifier field and the data field [4].

The CRC and ACK fields are used in the same way for all Data frames. The CRC
field contains the result of the cyclic redundancy check calculation. CAN and CAN
FD use this field to ensure that the message is correctly built and received by other
nodes. Within the ACK field, there is a 1-bit ACK slot set to recessive (1) by the
transmitting node. If the receiving node has a successful CRC check, it forces the
bus to be dominant (0) during the ACK slot. If the transmitting node reads a dom-
inant (0) signal from the bus at the ACK slot, it knows that the other node has
received a correct CRC.

3.1.2 Remote frame
Remote frames are used for requesting data from a node, and they are very similar
to data frames. CAN FD does not have a remote frame. There are two important
differences between CAN data and remote frames. First, the RTR-bit is set to
recessive(1) as opposed to dominant(0) as it is in a data frame. The main difference
is that a remote frame has an empty data field. The data length content field now
contains the size of the requested data.

3.1.3 Error frame
The Error frame is sent by nodes when they discover an error on the bus. The error
frame is identical for both CAN and CAN FD. The first field of the Error frame
is the Error flags which consist of 6-12 identical bits that are either dominant(0)
or recessive(1). The value of the error flags indicates the type of error. Following
that is the error delimiter, composed of 8 recessive(1) bits. This leads to the Error
frames size between 14-20 bits long.

3.1.4 Overload frame
The Overload frame is sent by a node that is overloaded and can not participate in
more communication. An overload frame can also be used to report some types of
errors. The frame is identical to the error frame. CAN receivers can differentiate

7

3. Theory

Figure 3.2: Fields of an Ethernet message

between the two because error frames are sent while a message is transmitted on
the bus, while overload frames are sent between messages when the bus is empty.
Another difference is that error frame causes re-transmission of the previous frame,
while overload frames do not.

3.2 Ethernet
CAN dominates the communication between ECUs in today’s vehicles, but Ether-
net has emerged as a replacement for automotive communications. The number of
connected ECUs within a vehicle and the overall amount of transmissions on auto-
motive networks are increasing. Ethernet may be a good alternative for handling a
large amount of data transferred [7] [3].

Ethernet is a collection of standards for computer communications. It covers the
physical and the data link layer in the Open Systems Interconnection (OSI) model.
All fields of an Ethernet message are shown in Figure 3.2. The 7-byte preamble is
used for synchronization and is followed by a 1-byte Start Frame Delimiter (SFD)
which indicates the beginning of the message.

Ethernet uses Media Access Control (MAC) fields which contain 6-byte addresses
for the transmitting and the receiving node. Following that is an optional field for
an 802.1Q tag, which will not be used in this project. The next 2 bytes contain a
value. If the value is over 1536, the field contains the EtherType of the message.
If it is under or equal to 1500, the value represents the size of the payload. The
meaning of the EtherTypes is explained in the next chapter.

The payload of an Ethernet message is 46-1500 bytes long. After the payload there
is a 4 byte long Frame Check Sequence (FCS). The FCS is a cyclic redundancy check
which allows the receiver to confirm that the received data is not corrupted [11]. The
protocol does not state how a receiver should act if it detects a corrupted frame.
The message ends with a 12-byte long Inter Packet Gap(IPG) [5].

The EtherType of an Ethernet message implies which protocol is used within the
Ethernet packet so the receiving node can correctly interpret the message. Ether-
Types are registered by the Institute of Electrical and Electronics Engineers (IEEE)
Registration Authority. The current list of registered EtherTypes contains registra-
tions from private companies and non-profit organisations such as the IEEE [6].

8

4
Development

The development of a new protocol, called CANEthernet, was the main goal of this
project. The protocol should be placed over Ethernet, meaning all data concerning
the new protocol will be placed in the 46-1500 byte payload field in the Ethernet
message. The EtherType for this new protocol must have a value over 1536, and it
can not be an already registered EtherType. The new EtherType was chosen to be
13090, corresponding to the hexadecimal value 0x3322.

The protocol is created to store several CAN messages within an Ethernet message.
Additionally the protocol describes how to order the data in the Ethernet message
payload to make it as efficient as possible. Efficiency has two sides. First, the more
CAN messages that can fit within one Ethernet payload, the more time is saved, and
the throughput increases. Second, the data must be structured to make unpacking
it as simple as possible for the receiver of the message. In creating this protocol,
both aspects of efficiency have been taken into consideration.

Due to a lack of data, some assumptions and decisions had to be made without any
exact data to point to. This was mainly the case with the sizes of the CAN mes-
sages. There was no knowledge of the average sizes of CAN messages, and therefore
the only data that could be used was the possible message sizes.

Another aspect of this was the lack of knowledge on whether all types of CAN mes-
sages would be sent using this protocol. For example, had it been known that Error
and Overload messages would not be sent with this protocol, it may have been de-
signed differently.

In order to handle this lack of data, the development focused on making the protocol
as broad as possible, to allow for all types and sizes of CAN messages.

This chapter describes the different aspects needed to be considered when creating
this protocol. It describes different solutions for each aspect that was considered
when designing the protocol. In this chapter, CAN refers to both standard CAN
and CAN FD.

9

4. Development

4.1 Minimizing CAN message size

One of the aspects of creating the protocol is whether it is possible to decrease the
sizes of the CAN messages by removing bits. Making the CAN messages smaller
would lead to a larger number of them fitting in a single Ethernet message, which
would increase speed and throughput.

In theory, this would mean that the transmitting node would remove bits from the
CAN messages, which would then be added again at the receiving node. It would
require clear rules for which bits would be removed, so that the receiving node knows
what bits to add. However, this was not used in the CANEthernet protocol due to
two reasons.

The first reason was that there is a large difference in structure between different
types of CAN messages. The Error and Overload frames share almost no similarities
to the Remote and Data frames. There would need to exist an indicator for each
message indicating which type it is. Each type of message would need its own set of
rules for which bits to remove and add. This would make the protocol significantly
more complicated and challenging to implement and use. In addition, if new types of
CAN message types are introduced in the future, the CANEthernet protocol would
have to be updated.

The second reason was that the technique of removing bits requires that the CAN
messages are correctly built by the sender. If the CAN messages can be faulty, it
is impossible to ensure that the correct bits are added by the receiver. CANEther-
net is a protocol and can not check that CAN messages are correctly built. That
responsibility would fall on the sender. CANEthernet is created to be a general
protocol and is not made for a specific use. Therefore, it was decided not to trust
that the sender only sends correct CAN messages, since it is unknown what type of
transmitter will be used.

Due to the reasons described, the CANEthernet protocol does not use any bit re-
moval to decrease the CAN message sizes.

4.2 Finding beginning and ending of each CAN
message

In order for the receiving node to extract the CAN messages from the CANEthernet
message, it needs to know when each CAN message begins and ends. This can
be done by finding bit patterns that indicate message ending, by parsing the CAN
messages and using the contents to calculate its size, or by including a field with the
size of each CAN message in the protocol. This section describes several different
solutions.

10

4. Development

4.2.1 Bit pattern
The first possible solution is for the receiver to identify a bit pattern that indicates
when each CAN message ends. That requires there to be such a pattern for all CAN
messages. This pattern could be naturally occurring within the CAN message itself.
All types of CAN messages ends with 8 recessive(1) bits. While this may seem like
a possible bit pattern to use, it is not due to the possibility that the same pattern
occurs at other places in CAN messages. The bit pattern could also be added at the
end of each CAN message by the transmitting node. However, the same problem
occurs since all bit patterns could occur within a CAN message.

Even if there was a bit pattern that could be used to denote the end of a CAN
message, it would not be possible to use. As explained in a previous chapter, there
is no guarantee that the CAN messages are correctly built. Because of this, there
is no possible way to ensure that a particular bit pattern does not occur in a CAN
message. Because of the explained reasons, the CANEthernet protocol does not use
bit patterns to identify the ending of the CAN message.

4.2.2 Parsing CAN messages
Another solution could be to use the data within the CAN messages to find the size
of them. CAN messages of data and remote type have data that indicates whether
it is extended or not, if it is CAN FD, and the size of the data field. With this
information, it is possible to know the exact size of each message. However, this is
not possible to use because the Error and Overflow messages are distinctly different
from the data and remote messages. The size of Error and Overflow messages is
not set and can not be obtained from information within the messages. In addition,
parsing messages could be CPU intensive and increase energy consumption. Because
of this, using the internal data of the CAN messages is not an option for finding the
ending of the CAN messages in the CANEthernet protocol.

4.2.3 Size field
The last solution is to include a field per CAN message that indicates the size of the
CAN message. This solution makes it possible for the receiver to find each CAN
message without reading any data in the CAN messages. This is the solution chosen
for the CANEthernet protocol. For this solution, it may be beneficial to pad out
the CAN messages, because that may lead to shorter CAN-size fields. The following
chapter describes padding the messages and the calculations for the best amount of
padding.

4.2.4 Padding messages
In this instance, padding a CAN message means adding bits after each message bit
to increase the size of the message to the desired size. The CAN messages could be
padded out to any size, but this project only considers no padding or padding to
multiples of 8 bits (bytes). In order to lower the complexity of the protocol, this

11

4. Development

Figure 4.1: Example showing how padding effects size of CAN size field

project only looked at the case where all CAN messages were padded in the same way.

Figure 4.1 shows an example of how padding a 50-bit long CAN message to full
bytes can make the CAN-size field shorter. Without padding, the CAN-size field
would need to contain the number 50, which requires a CAN-size field of 6 bits.
If the message is padded out to full bytes, it becomes 7 bytes long. To describe 7
bytes, the CAN-size field only needs 3 bits. This means that the size field becomes
6-3=3 bits shorter when padded to bytes. However, the downside to padding is the
space needed for the padding. When the CAN message was padded to full bytes, 6
bits were added to its end. When considering this, the padding did not save space
in this instance. Whether padding saves space or not is dependent on the size of the
message and the size of the padding.
Because of the lack of data on the prevalence of the different sizes of CAN messages,
it is not possible to calculate the ultimate amount of padding for this protocol. In
the absence of the data, it was chosen that the CANEthernet protocol will pad out
CAN messages to full bytes. Designing the protocol to include padding will make it
easier to change the protocol to a different type of padding if needed.

When a CANEthernet message with padded CAN messages arrives, the receiver
must find where the CAN message begins and the padding ends. This can be solved
by the knowledge that all types of CAN messages end on a recessive(1) bit. If the
padding is done with only dominant(0) bits, the receiver can find the spot where
there is a recessive(1) bit by going backward through the padded message. Since it
needs to find the end of each CAN message, the work that the receiver needs to do
increases. In this project, it is not possible to estimate the amount of work needed
by the receiver, and it is therefore not considered in the protocol creation.

To calculate the needed size of the CAN-size fields the largest possible CAN message
must be considered (596 bits). When padded out to full bytes, the message becomes
75 bytes. To describe 75, the CAN-size fields for the CANEthernet protocol are 1
byte. This also provides the possibility to handle an increase of maximum CAN
messages sizes as the size field allows up to 255 bytes.

12

4. Development

4.3 Indicating end of the message
The receiving node has to know when the message ends, i.e., when all CAN messages
have been received. Similarly to the previous section, it can be done either by the
receiver parsing the message to find a bit pattern that indicates the ending. It can
also be done with a field in the CANEthernet protocol header indicating either the
number of CAN messages or the size of the whole CANEthernet frame.

4.3.1 Bit pattern
In the case of the receiver parsing the message and looking for the specific bit pattern,
there needs to be a distinct pattern that indicates the end of the whole message.
This pattern could be added to the message by the sender. But, as explained in the
previous chapter, there is no bit pattern that could not occur in a CAN message.
Therefore, it is not possible to use a bit pattern to identify the end of the message.

4.3.2 Size field
The next option is a field in the CANEthernet header indicating the size of the
whole message. In this case, there may be padding done to decrease the size of this
field. An example of how padding could work is shown in Table 4.1. The table shows
how long the size field would be for a 4702-bit long message when sent with 64-bit
padding and without padding. Without padding, the size field is 13 bits, making the
total number of bits 4715. If padded to 64 bits, the padding would be 34 bits which
would make the message 4736 bits long. The size field has to represent 4736/64
= 74, which is sent in binary and requires 7 bits. This makes the total number of
used bits for the 64-bit padded message 4743 bits. In this example, it would be
more efficient not to pad the message as compared to padding it to 64 bits but the
difference is very small. However, it is not possible to determine the most efficient
padding with the current known data, as was explained in the previous chapter.

Padding Full msg size Size-field size Total used bits
None 4702 bits 13 bits 4715 bits

To 64bit 4736 bits 7 bits 4743 bits

Table 4.1: Example: 4702-bit message with 64-bit padding and without padding

4.3.3 Number of CAN messages
Another option is to have a field in the header that indicates how many CAN
messages are in the CANEthernet message. With this information, the receiver
knows when it has extracted all CAN messages. The size of this field depends
on the number of CAN messages in the message. The minimum amount of CAN
messages is always 1, but the maximum number of CAN messages depends on how
the other parts of the protocol is designed.

13

4. Development

Figure 4.2: Example showing how data and acknowledgment message are built

Both the number of CAN messages field and the size field were possible solutions,
and there was no data to calculate which would be more efficient. The option of a
field with the number of CAN messages was chosen for CANEthernet because of its
simplicity.

4.4 Acknowledgment

The CAN protocol uses cyclic redundancy checks to confirm that a correctly built
message has been received. During the transmission, the receiver confirms that the
message is correct by forcing a dominant (0) bit at a certain place. Ethernet does
not have any acknowledgment. Because it is designed to replace CAN transmissions,
the CANEthernet protocol should use some type of acknowledgment to achieve the
same message security as CAN. Cyclic redundancy checks are an extensive and
complicated area. Since this was not the focus of this project, it was not implemented
in CANEthernet.
A simpler way of acknowledging that a message has been received is to answer
with a type of acknowledgment message when transmission has been received. The
CANEthernet implements this by having a 2-byte long acknowledgment field at the
beginning of the CANEthernet header. The first bit of the acknowledgment field
indicates if the message is an acknowledgment message. The bit is set to 0 for data
transmissions and 1 for acknowledgment transmissions. The remaining 15 bits of
the acknowledgment field are a number chosen by the sender of a data message. The
receiving node then answers with an acknowledgment message, with the first bit of
the acknowledgment field set to 1 and the remaining bits the same as the received
messages acknowledgment field.
Figure 4.2 shows an example of what the acknowledgment field could look like. The
first message is the data message which has the first bit set to 0. The second message
has the same acknowledgment field with the first bit set to 1. This message does
not contain any data, it is only meant to show that the data message was received.
The solution of using an acknowledgment field and message only notifies the sender
that a message with that acknowledgment field has been received. It does not check
that the message is correctly built or that the correct data was received.

14

4. Development

Figure 4.3: Overview of the CANEthernet protocol

4.5 The CANEthernet protocol
This section describes the design of the created CANEthernet protocol. The CANEth-
ernet protocol has fields for acknowledgment, number of CAN messages, and size of
the CAN messages.

4.5.1 Finding beginning and ending of each CAN message
The CANEthernet protocol uses a one byte long field per CAN message indicating
the size of the CAN message. All CAN messages in the protocol are padded to
whole bytes and the padding is done with 0s.

4.5.2 Indicating end of the message
To find the end of a message the CANEthernet protocol includes a field indicating
the number of CAN messages stored in the CANEthernet message. The size of this
field depends on the other parts of the protocol. Because it has been decided to
use 1 byte for message size per CAN message and 2 bytes for acknowledgment, the
maximum number of CAN message (N) is calculated with: 3 b

N = ⌊MaxSpace − 2
minCAN + 1 ⌋

where MaxSpace is the largest possible size of the message (1500) byte) and minCAN
is the smallest possible byte padded CAN message (2 byte).

15

4. Development

The calculation does not take into account the size of the number of messages field,
since it has very little impact. Calculating the formula with the known numbers
gives that the maximum number of CAN messages (N) is 499. To represent this
number the protocol needs 9 bits. For simplicity the field is extended to be two full
bytes long.

4.5.3 Acknowledgment
Each message in CANEthernet begins with a 2 byte long acknowledgment field. A
node sends a data message with the first bit of the field set to 0 and the rest of the
field as a random number. When a node receives a message it responds with an
acknowledgment message, which only contains the acknowledgment field. The field
is identical as in the received message except for the first bit which is set to 1.

4.5.4 Order of protocol fields
In order to make the acknowledgment messages as short as possible, it is the first
field in the protocol. This way the acknowledgment message only has to contain the
two byte acknowledgment field. Following that is the two byte long field indicating
the number of CAN messages. After that comes the 1 byte field for the CAN size
of message 1, followed by CAN message 1. Next is the next CAN size field followed
by CAN message 2. The rest of the CAN messages are stored the same way. An
overview of this can be seen in Figure 4.3.

16

5
Implementation

The implementation of the project included setting up the hardware using Arduino
boards and creating a reusable software library to enable the testing. The require-
ment included (i) sending a CANEthernet message containing CAN messages, (ii)
receiving the CANEthernet message, (iii) unpacking the CAN messages from the
CANEthernet message, and then (iv) sending the unpacked CAN messages over a
CAN bus. The CAN messages must be received and checked to match the original
CAN messages from the CANEthernet message. The following sections discuss the
chosen hardware setup and the software library.

5.1 Hardware Setup

This project used two Arduino UNOs[1] for testing the created protocol. Arduino
UNO is a board that uses the ATmega328P microcontroller. The Arduino board is
programmed using C++ with the addition of some Arduino-specific functions. The
project also used Ethernet modules of the model ETH Click[10] from Microe. ETH
Click has an Ethernet controller and uses the SPI serial interface. Modules of model
CAN Bus Click[9] from Mikroe were also used. The CAN Bus Click module has an
MCP2515 CAN controller from Microchip and a CAN transceiver. It uses the SPI
serial interface. The project used Arduino UNO click shields[8], an extension to the
Arduino UNO board that makes connecting the Click-modules easier.

Each Arduino was equipped with one Ethernet module and one CAN module to
do this implementation. The Ethernet modules were then connected to each other,
and the CAN modules were connected to each other as well. Figure 5.1 illustrates
the setup, and Figure 5.2 shows a photo of the actual hardware setup. The thought
behind this setup was that one Arduino would create a CANEthernet message that
contains CAN messages. This Arduino would then send the CANEthernet message
to the second Arduino via an Ethernet connection. The second Arduino would
unpack the CAN messages and send them via the CAN connection to the first
Arduino. The first Arduino would then compare the received CAN messages to the
CAN messages in the previously sent CANEthernet message. If the CAN messages
were identical, it would indicate that the software, hardware and protocol were
correctly done.

17

5. Implementation

Figure 5.1: Setup

Ethernet module

CAN module

Arduino

Figure 5.2: Photo of the hardware setup

5.2 Software library
A software library was developed for testing and verification purposes. The library
can generate CAN test messages, assemble them into a CANEthernet frame, and
send them over Ethernet using the correct EtherType. It can also receive and un-
pack the CANEthernet frame into CAN messages. The library facilitated testing of
the new protocol and may also make further development of CANEthernet easier.
The code is written in C/C++. The main part of the library is divided into two
C++ files with corresponding header files.

• Message_functions.cpp contains methods for creating CAN test messages
and assembling them into a CANEthernet message. Since the focus of the
library is testing, the CAN test messages it creates are made up of random-
ized bytes with random sizes (within the boundaries dictated by CAN frame
size rules). The file also contains methods for handling the ACK field, adding
MAC addresses, and adding the EtherType.

18

5. Implementation

• Parse_functions.cpp contains methods for reading from a CANEthernet
message. It contains methods for retrieving ACK, number of messages, Ether-
Type, and actual CAN messages. It also includes a method for checking if the
ACK of a received message corresponds to the ACK of a sent message.

The function definitions in both files are included in Appendix A.

Testing was done according to the previously described plan using the software
library. The testing confirmed that the CANEthernet protocol is functional on the
hardware and during the conditions used in this project. No issues or errors were
discovered. The successful testing indicates that CANEthernet should work on other
Ethernet devices as well.

19

5. Implementation

20

6
Evaluation

The evaluation of the CANEthernet protocol consists of comparing sending several
CAN messages with transmitting those same CAN messages in an Ethernet message
with the proposed CANEthernet protocol. CAN and CANEthernet are compared
on three main points; throughput, latency, and energy efficiency. The calculations
are based on viewing the CAN messages as data and all other bits as overhead. For
clarity, this section will refer to Ethernet frames with the CANEthernet protocol
simply as CANEthernet messages.

The calculations do not consider CAN stuff bits since it would significantly compli-
cate the formulas and only make a small difference. It is assumed that there is no
competing traffic on the network and that there are no errors.

6.1 Throughput
Throughput depends on several factors, such as the type of CAN, type of Ethernet
and the amount of other traffic on the network. The analysis in this project is made
using the highest theoretically possible throughputs.

6.1.1 CAN
The throughput for CAN depends on the size of the CAN messages. When CAN
messages are sent, the CAN controller adds a 3-bit inter frame space (IFS) after each
message. The IFS is viewed as the overhead in the CAN throughput calculations.
The throughput (TP) of a standard CAN message (not CAN FD) can be calculated
using:

TP =
(

size × speed

size + 3

)
(6.1)

where size is the size of the CAN message, speed is the transmission speed and +3
is the overhead due to IFS.

Figure 6.1 shows the throughput of standard CAN at 1Mbps. It is evident that as
the message size gets larger, the throughput increases. This is due to the overhead
being constant per message. The maximum throughput is 0.97Mbps and is achieved
when sending the largest possible message size, which is 108 bits.

21

6. Evaluation

CAN message size (bits)

Th
ro

ug
hp

ut

0,75

0,80

0,85

0,90

0,95

1,00

10 20 30 40 50 60 70 80 90 100 110

Figure 6.1: Throughput of standard CAN at 1Mbps

When calculating throughput for CAN FD, the dual bit rate for data frames must
be included. The maximum speed is assumed to be 8Mbps for the data field and
1Mbps for other parts of the message. The data field is between 22-538 bits long.
The rest of the message is between 27-46 bits long. CAN FD has a constant overhead
of 3 bits, which leads to the the maximum throughput at the largest possible frame
size. For CAN FD, it is 584 bits. The calculation for maximum throughput assumes
the speed for the full message as 8Mbps. Since the non-data part of the frame is
very small compared to the data field, the maximum speed can be approximated
to 8Mbps. Thus, the maximum throughput is calculated to be 8Mbps using the
Equation 6.1.

6.1.2 CANEthernet
A CANEthernet message has an overhead consisting of 26 bytes for the Ethernet
header, 2 bytes for the Acknowledgment, 2 bytes for the number of CAN fields, the
1-byte size field for each CAN message, and a 12-byte inter packet gap(IPG). It has
in total 1496 bytes for storing the CAN messages and their 1-byte size fields.

In order to calculate the CANEthernet throughput, all CAN messages are assumed
to have the same size. This may not be the scenario in a real-life application of the
protocol, but it is a necessary assumption to do the calculations. With this assump-
tion, the number of CAN messages (N) that can fit in a CANEthernet message can
be found using:

N =

 1496(
⌊CANMsgSize

8 ⌋ + 1 + 1
)
 (6.2)

where CANMsgSize is the size of a CAN message which is the same for all CAN
messages, the first +1 is the CAN message padding, and the second +1 is the size
field for a CAN message.

22

6. Evaluation

Figure 6.2: Maximum number of CAN messages in CANEthernet frame

Figure 6.3: Size of CANEthernet when filled with different size CAN messages

Figure 6.2 plots the value of N for all possible sizes of CAN messages. The sharp
angle shapes are due to the padding of the CAN messages. For example, the frame
can carry an equal amount of 1-bit and 8-bit messages as the 1-bit messages are
padded to the 8 bits.

Using N, the size of the complete Ethernet message (FullCANEthSize) in bytes can
be calculated using:

FullCANEthSize =
(

⌊CANMsgSize

8 + 1 + 1⌋ × N

)
+ 2 + 2 + 26 (6.3)

where +2, +2 and +26 are the bytes required for the number of CAN messages
field, Acknowledgement field and the Ethernet header.

Figure ?? plots FullCANEthSize for CAN messages of different sizes. The plot
clearly indicates that CANEthernet message size varies depending on the CAN mes-
sage size.

23

6. Evaluation

Size of CAN message (bits)

Th
ro

ug
hp

ut
 (M

eg
ab

its
/s

ec
on

d)

0

25

50

75

100

100 200 300 400 500

(a) CANEthernet throughput at 100Mbps

Size of CAN message (bits)

Th
ro

ug
hp

ut
 (M

eg
ab

its
/s

ec
on

d)

0

250

500

750

1000

100 200 300 400 500

(b) CANEthernet throughput at 1Gbps

Figure 6.4: Throughput of CANEthernet

Using N and FullCANEthSize, the throughput (TP) in bits per second can be cal-
culated using:

TP = N × CANMsgSize

(FullCANEthSize + 12) × 8 × EthSpeed (6.4)

where +12 is the interpacket gap and EthSpeed is the speed of the Ethernet con-
nection.

Figures 6.4a and 6.4b show the throughput for CANEthernet at 100Mbps and
1Gbps. The shapes of the plots are identical, and they only differ on the scale
of the vertical axis. The plot’s sawtooth shape comes from two factors. The first is
how much padding (wasted bits) is required. The second factor is that as messages
increase in size, fewer will fit into a CANEthernet frame.

24

6. Evaluation

Several simplifications have been done for the calculations. They assume all CAN
messages are equal in size, with no competing traffic and no errors. The ACK
frames are not included either because their small size would barely impact the
result. While keeping the assumptions in mind, the plots show that when CAN
messages are not very small, the throughput is over 80% of the Ethernet speed.

6.1.3 Summary
The highest possible throughput for CAN is achieved using a full CAN FD message
and sending it at a speed of 8Mbps. Thus, CAN gives a maximum throughput under
8Mbps, while CANEthernet can reach 9Gbps on 10Gbps Ethernet, or 90Mbps on
100Mbps Ethernet. This shows that CANEthernet can have a significantly larger
throughput than CAN.

6.2 Latency
The latency of a connection depends on multiple factors, like the amount and size
of the CAN messages. This project will only make calculations and analysis of best-
case latency. The calculations will compare the latency of sending a single 108-bit
CAN message with and without using the CANEthernet protocol.

6.2.1 CAN
Using 1Mbps CAN, the calculation for the latency is 108bits/1Mbps = 108us.

6.2.2 CANEthernet
The minimum size of an Ethernet frame is 64 bytes, which would be able to carry a
108-bit CAN message. When the message is received, the receiver sends an Acknowl-
edgment. This message would also be 64 bytes long with an additional 12-byte inter
packet gap. Table 6.1 shows the latency calculation for transmitting and receiving
one 108-bit CANEthernet message at 100Mbps, giving a total latency of 11.2us for
the CANEthernet message.

Message type Latency
Data (64 × 8) / 100 = 5.1us
Ack (64 + 12) × 8 / 100 = 6.1us

Table 6.1: Latency calculation for a CANEthernet message

6.2.3 Summary
When sending a 108-bit CAN message over 1Mbps CAN, the latency is 108us. When
sending a 108-bit CAN message with a CANEthernet message, the latency is 11.2us
over 100Mbps Ethernet. In this situation there is a latency gain for using CANEth-
ernet.

25

6. Evaluation

6.3 Energy efficiency
The power consumption and energy efficiency depend on several factors, like the
components used, the amount of data transmitted per time unit, etc. The CAN
and Ethernet may have different power savings when in idle mode. Thus, it is
not straightforward to compare the power consumption between CAN and Ethernet
with the CANEthernet protocol. This section contains simple power consumption
modeling based on the components used in the implementation.

6.3.1 CAN
The CAN module used for the Arduinos is the 3.3V CAN Bus Click module. It has
two main components, the SN65HVD230 CAN transceiver from Texas Instruments
and the MCP2515 CAN controller from Microchip.

• SN65HVD230 consumes 17.5 mA, which corresponds to 58 mW
• MCP2515 consumes 5 mA, which corresponds to 16.5 mW

Thus, a total power of 149 mW for both the sending and receiving components.
Considering the maximum throughput of 0.97 Mbps on a 1 Mbps connection from
Section 6.1.1, the total consumption will be 153nJ per bit.

6.3.2 CANEthernet
The Ethernet communication is done using a 3.3V Eth Wiz Click module. There
is no power consumption specification for the module, but its main component is
a W5500 Ethernet controller. The W5500 datasheet indicates that at the highest
speed (100 Mbps), transmitting consumes 132mA, corresponding to 436 mW and
receiving consumes 128 mA, corresponding to 422 mW.

Device Power consumption
Sender 436 mW / 80 Mbps = 5.5 nJ per bit

Receiver 422 mW / 80 Mbps = 5.3 nJ per bit

Table 6.2: Power consumption for CANEthernet

Considering the maximum throughput of 80Mbps on a 100Mbps Ethernet connection
from Section 6.1.2, the power consumption per bit are calculated in Table 6.2. The
calculations show that sending and receiving one bit equates to a power usage of 10.8
nJ. The power consumed for creating and unpacking the CANEthernet messages is
not included.

6.3.3 Summary
For the hardware used in this project, CAN uses 153nJ per bit while CANEther-
net uses 10.8 nJ per bit. With this hardware there is a large difference in power
efficiency.

26

7
Conclusion

A new protocol called CANEthernet and an associated EtherType have been de-
veloped. It allows using Ethernet instead of a CAN bus to send CAN messages.
The CANEthernet protocol has been tested and verified using CAN and Ethernet
hardware.

CAN and CANEthernet were compared regarding latency, energy efficiency and
throughput using assumptions on CAN message size, CAN and Ethernet versions,
etc. For all three aspects, CANEthernet outperforms CAN. Despite the assumptions
made, it is still clear that CANEthernet, in general, performs better than CAN in
these aspects. The energy efficiency results is the most uncertain, since it depends
on the hardware used. Calculations in this project was done on the hardware used
for testing, however the hardware in vehicles may differ greatly from the testing
hardware. The results indicates that vehicular manufacturers should consider using
Ethernet instead of CAN when possible.

7.1 Project Execution
The method described in Chapter 2 has been followed without major changes. The
planned schedule for the project is presented in the Gantt chart in Figure 7.1. The
time spent on the different aspects has varied slightly from the original plan, but the
tasks were ordered as in the planning report. The research phase was shorter than
anticipated, while the development took more time. Verification and evaluation also
required more time than expected. The plan included four weeks towards the end
of the project for exclusively writing the report. But this couldn’t be met as other
tasks took more time than expected. However, overtime work enabled finishing the
report and the project on time. The purpose (Section 1.2) to determine if commu-
nication between two nodes in a vehicle is more efficient using CAN messages or
packing several CAN messages in an Ethernet message has been fulfilled. All parts
of the goal (Section 1.3) have been met.

Figure 7.1: The planned schedule for the project

27

7. Conclusion

7.2 Future work
Future work can include further exploration of the protocol architecture and better
modeling of the evaluations considered. One possible direction is defining the types
of CAN messages sent with CANEthernet. For example, removing Error and Over-
load frames may shorten the size field. Another potential direction is gathering data
about CAN message size distribution in a real scenario and using the data to make
more realistic evaluations. Finally, the evaluation of energy consumption could be
improved by using the parameters from real devices used in vehicular applications.

28

Bibliography

[1] Arduino. Arduino Uno Rev3. url: https://store.arduino.cc/products/
arduino-uno-rev3.

[2] Robert I. Davis et al. “Controller Area Network (CAN) Schedulability Anal-
ysis: Refuted, Revisited and Revised”. In: Real-Time Syst. 35.3 (Apr. 2007),
pp. 239–272. doi: 10.1007/s11241-007-9012-7.

[3] Timo Häckel et al. Secure Time-Sensitive Software-Defined Networking in Ve-
hicles. 2022. arXiv: 2201.00589 [cs.NI].

[4] Florian Hartwich and Robert P. Bosch. CAN with Flexible Data-Rate. Speci-
fication Version 1.0. Bosch, Apr. 2012.

[5] “IEEE Standard for Ethernet”. In: IEEE Std 802.3-2018 (Revision of IEEE
Std 802.3-2015) (2018), pp. 1–5600. doi: 10.1109/IEEESTD.2018.8457469.

[6] Internet Assigned Numbers Authority. IEEE 802 numbers. July 2021. url:
https://www.iana.org/assignments/ieee- 802- numbers/ieee- 802-
numbers.xhtml.

[7] Philipp Meyer et al. Network Anomaly Detection in Cars: A Case for Time-
Sensitive Stream Filtering and Policing. 2021. arXiv: 2112.11109 [cs.NI].

[8] Mikroe. Arduino UNO click shield. url: https://www.mikroe.com/arduino-
uno-click-shield.

[9] Mikroe. CAN SPI Click 3.3V. url: https://www.mikroe.com/can-spi-
33v-click.

[10] Mikroe. ETH WIZ Click. url: https://www.mikroe.com/eth-wiz-click.
[11] William Stallings. Data and Computer Communications. 9th Edition. Pearson,

2014.

29

https://store.arduino.cc/products/arduino-uno-rev3
https://store.arduino.cc/products/arduino-uno-rev3
https://doi.org/10.1007/s11241-007-9012-7
https://arxiv.org/abs/2201.00589
https://doi.org/10.1109/IEEESTD.2018.8457469
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://arxiv.org/abs/2112.11109
https://www.mikroe.com/arduino-uno-click-shield
https://www.mikroe.com/arduino-uno-click-shield
https://www.mikroe.com/can-spi-33v-click
https://www.mikroe.com/can-spi-33v-click
https://www.mikroe.com/eth-wiz-click

Bibliography

30

A
Appendix 1

Listing A.1: Methods from Message_functions.cpp

// Returns EtherType
uint16_t getEtherType (const uint8_t ∗ msg) {

return twoByteToDecimal (msg , 12) ;
}

// Returns ACK
uint16_t getACK(const uint8_t ∗ msg) {

return twoByteToDecimal (msg , 14) ;
}

// Returns Number o f messages
uint16_t getNrMessages (const uint8_t ∗ msg) {

return twoByteToDecimal (msg , 16) ;
}

// Returns the two bytes s t a r t i n g at o f f s e t as decimal
uint16_t twoByteToDecimal (const uint8_t ∗ ptr , i n t o f f s e t) {

const uint8_t ∗ tempPtr = ptr + o f f s e t ;
const uint16_t ∗ twoBytePtr = (const uint16_t ∗) tempPtr ;

r e turn ∗ twoBytePtr ;
}

// Ret r i eve s the CAN message with l ength f i e l d at o f f s e t
i n t getCANMessage (const uint8_t ∗ fu l lMsg , uint8_t ∗ CANMsg, i n t o f f s e t

) {
i n t l en = fu l lMsg [o f f s e t] ;
f o r (i n t i = 0 ; i<l en +1; i++){

CANMsg[i] = fu l lMsg [i+o f f s e t +1] ;
}

re turn l en ;
}

//Checks i f r e c e i v e d ack corresponds to sent ack
bool i sAckCorrect (uint16_t send_ack , uint16_t rece ive_ack) {

i f (send_ack >> 15 != 0) re turn f a l s e ;
i f (rece ive_ack >> 15 != 1) re turn f a l s e ;

r e turn (send_ack & 0xEFFF) == (rece ive_ack & 0xEFFF) ;
}

I

A. Appendix 1

Listing A.2: Methods from Parsing_functions.cpp

//Randomizes CAN−msg
s t a t i c uint8_t randomCANmsg(uint8_t ∗ write_pos , i n t max_can_len) {

long randnum = random (2 , max_can_len) ;
write_pos [0] = randnum ;

f o r (i n t i = 1 ; i < randnum+1; i++){
write_pos [i] = random (0 , UINT8_MAX) ;

}
re turn randnum ;

}

// Set f i r s t b i t o f ack
s t a t i c uint16_t setTopAckBit (uint16_t ack , bool i sResponse) {

i f (i sResponse) {
re turn ack | (1 << 15) ;

} e l s e {
re turn ack & 0xEFFF;

}
}

//Adds random ack number
void addAck (uint8_t ∗ msg) {

uint16_t ack = setTopAckBit (random (0 ,UINT16_MAX) , f a l s e) ;
uint16_t ∗ temp_ptr = (uint16_t ∗) (msg+14) ;
∗temp_ptr = ack ;

}

//Adds response ack f i e l d
void setResponseAck (const uint8_t ∗ msg , uint8_t ∗ response_msg) {

uint16_t ack = setTopAckBit (getACK(msg) , t rue) ;
uint16_t ∗ temp_ptr = (uint16_t ∗) (response_msg+14) ;
∗temp_ptr = ack ;

}

//Adds nr o f messages
s t a t i c void addNrOfMessges (uint8_t ∗ msg , uint16_t n_messages) {

uint16_t ∗ temp_ptr = (uint16_t ∗) (msg+16) ;
∗temp_ptr = n_messages ;

}

//Adds EtherType
void addEtherType (uint8_t ∗ msg) {

msg [1 2] = 0x33 ;
msg [1 3] = 0x22 ;

}

//Adds MAC addre s s e s
void addMac(uint8_t ∗ msg , const uint8_t ∗ address , const uint8_t ∗

remote) {
const i n t mac_len = 6 ;
memcpy(&msg [0] , remote , mac_len) ;
memcpy(&msg [mac_len] , address , mac_len) ;

}

II

A. Appendix 1

//Adds can messages , r e turn number o f messages
i n t addCANMessages (uint8_t ∗ msg , i n t max_total_len , i n t max_can_len) {

i n t len_index = 18 ;
uint16_t n_messages = 0 ;
whi l e (len_index<max_total_len) {

i n t msg_len = randomCANmsg(msg+len_index , max_can_len) ;
len_index += msg_len+1;
n_messages++;

}
addNrOfMessges (msg , n_messages) ;

}

III

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Goal
	Limitations
	Thesis Organization

	Method
	Theory
	CAN
	Data frame
	Remote frame
	Error frame
	Overload frame

	Ethernet

	Development
	Minimizing CAN message size
	Finding beginning and ending of each CAN message
	Bit pattern
	Parsing CAN messages
	Size field
	Padding messages

	Indicating end of the message
	Bit pattern
	Size field
	Number of CAN messages

	Acknowledgment
	The CANEthernet protocol
	Finding beginning and ending of each CAN message
	Indicating end of the message
	Acknowledgment
	Order of protocol fields

	Implementation
	Hardware Setup
	Software library

	Evaluation
	Throughput
	CAN
	CANEthernet
	Summary

	Latency
	CAN
	CANEthernet
	Summary

	Energy efficiency
	CAN
	CANEthernet
	Summary

	Conclusion
	Project Execution
	Future work

	Bibliography
	Appendix 1

