

Optimization of the Dynamic Positioning
problem under unchanging weather
conditions
How to remain stationary in stormy seas

PETER LAURITZSON

Department of Mathematical Sciences
Chalmers University of Technology
Gothenburg, Sweden 2015

Abstract

This thesis concerns dynamic positioning, which is important in the shipping industry.
Dynamic positioning uses thrusters to stabilize marine vessels horizontally, in contrast
to the more traditionally used anchors. This is important because better dynamic posi-
tioning solutions enable the use of vessels in rougher ocean conditions. We were provided
with model data to review, develop, and implement optimization algorithms suited for
the problem.

There are several different results, each important in its own right. Solutions found by
different algorithms are contrasted to what is currently used, and it is shown that many
standard optimization algorithms find sub par solutions. The discontinuous nature of the
model data can be well approximated with a smooth function, using a Gaussian filter,
on which the Augmented Lagrangian method can be used. The Augmented Lagrangian
method is one of the algorithms with the highest convergence rates. Lastly, there is no
guarantee that any solution found is close to a local optimum.

The thesis concludes with a recommendation of algorithms that improve on the cur-
rent solution. The main recommendation is to use the Augmented Lagrangian method
on the smooth approximation of the problem, starting from the solution found by cur-
rently used algorithms. Another recommendation is to further look into the branch and
bound algorithm. The implementation of the branch and bound algorithm given in this
thesis is intractable, but possible improvements are suggested.

Acknowledgements

I wish to thank to my examiner, Michael Patriksson. He always had good advice when
I needed it. I also want to thank my supervisor at GVA, Johan Lennblad. He was able
to steer me in good directions and kept me productive even when things looked dark.
Lastly I thank GVA for proposing this thesis and giving me data to work with.

Peter Lauritzson, Göteborg 9/6/2015

Contents

1 Introduction 1
1.1 Background . 2
1.2 Short introduction to the problem . 3
1.3 Report overview . 4
1.4 Overview . 4

2 Problem description 6
2.1 Real world description . 6
2.2 Weather conditions and model data . 7
2.3 Measure of success . 8

3 Optimization background 10
3.1 What is mathematical optimization . 10
3.2 Local and global optimization . 11
3.3 How optimization is performed . 12

4 Mathematical formulation of the DP problem 13
4.1 Problem properties . 14

4.1.1 Complexity of the problem . 15
4.1.2 Properties of the problem . 15

4.2 Guarantees for the solution to the static DP problem 18

5 The current algorithm 19
5.1 Description of the algorithms . 19
5.2 Issues and strengths . 20

6 Algorithms described in modern text books: any that work? 21
6.1 Possible algorithms . 21

6.1.1 Penalty method with line search 21
6.1.2 Algorithms for constrained optimization 23
6.1.3 Particle swarm optimization . 23

i

CONTENTS

6.1.4 Iterated hill climbing . 23
6.2 Results . 24
6.3 Conclusions . 24

7 Reviewed optimization algorithms 25
7.1 Deterministic, line search . 25

7.1.1 Derivative free descent method . 25
7.1.2 [Conjugate] gradient descent . 26
7.1.3 [Quasi-]Newton method . 26

7.2 Deterministic, model based . 27
7.2.1 Trust region . 27
7.2.2 Surrogate function / Simulation based methods 28

7.3 Stochastic . 28
7.3.1 Particle swarm optimization . 28
7.3.2 Simulated annealing . 29

7.4 Branch and bound . 29
7.5 Unconstrained model of constrained problem 31

7.5.1 Penalty method . 31
7.5.2 Augmented Lagrangian . 31
7.5.3 Exact penalty and exact augmented Lagrangian methods 32

8 Implemented algorithms 33
8.1 Branch and bound . 33
8.2 Simulation based algorithm . 33

8.2.1 Penalty method with line search 34
8.2.2 Augmented Lagrangian with trust region optimization 34

8.3 Global search (specific to DP) . 34

9 Computational results 36
9.1 Branch and bound . 36
9.2 Simulation based method . 36

9.2.1 Line search and penalty method 36
9.2.2 Trust region and augmented Lagrangian 37

9.3 Global search (specific to DP) . 38

10 Conclusion and future work 39
10.1 Conclusion . 39
10.2 Future work . 40

A Tables 42

ii

CONTENTS

B Complete results 44
B.1 First implemented algorithms . 45

B.1.1 Using dpopt as warm start . 45
B.1.2 Cold start . 50

B.2 Final results . 54
B.2.1 Augmented Lagrangian, Smoothed eff, Trust region solver 54

iii

1
Introduction

Figure 1.1: A basic top-down view of a
general floater with thrusters marked. The red
line outlines the hull of the floater, and the blue

triangles are the positions of the thrusters.

This thesis focuses on the optimization as-
pect of dynamic positioning, henceforth
called DP. DP is essentially stabilizing the
horizontal motions of a floating structure
(see Figure 1.1 for an overview), which
we call floater for short. The movements
of the floater will be influenced by the
weather. Wind, waves and currents will all
exert force and moment1 on the vessel. In-
stead of using anchors to stabilize the ves-
sel, DP uses thrusters (basically propellers
that can be rotated to any azimuth) to
counteract the weather’s influence. The
aim of DP is to stabilize a marine vessel
horizontally, either to keep it at a certain
location or with respect to a moving ob-
ject.

This thesis discusses optimization of DP in unchanging weather conditions, which is
referred to as the static DP optimization problem. Assuming that the forces acting on
the vessel are static, we seek the best way to direct the thrusters and at what output.
In reality weather and wind are always changing, or the vessel is changing heading, or
something else imposes a change. The optimization done here can later be used as a
foundation for solving DP in changing conditions. The conditions in the DP optimization
problem should be such that the vessel is stationary, meaning no net moment (the floater
should not spin) and no net side force (the floater is only moving against the wind, not
perpendicular to the wind direction). The description given in [1] states, ”A DP system

1The term used instead of torque in this field.

1

is to be designed to have a certain level of station keeping capability, reliability and
redundancy.”. This means that our optimization should be able to handle fail cases,
which are cases where one or several of the thrusters fail to produce force. Redundancy
is often measured by how much force can be produced against the wind (with no net
moment and side force). This is because force against the wind is not used to negate
moment or side forces. Hence, thrusters directed against the wind may be better used to
counteract moment and side forces if necessary. One solution is thus more desirable than
another if it produces more force opposite the wind direction and fulfills the conditions
outlined above. That is to say, the objective function (the function our optimization
problem maximizes) is the force against the wind.

The main reason that this optimization problem is complex and is of theoretical value,
is the discontinuous nature of the functions in the problem. The function describing the
maximum force generated for each degree azimuth will be called eff , which is sometimes
referred to as the thruster efficiency. Each thruster has a maximum possible force output,
but hull and stream-to-stream interactions will lower the force produced. The thruster
efficiency of any degree azimuth yields the fraction of force that is produced, compared
to the maximum possible force output of that thruster. Due to structural effects eff
is discontinuous and is not guaranteed to be differentiable even where it is continuous.
Figure 1.2 illustrates how the direction of the thrust impacts its efficiency. The existence
of so called forbidden zones is clear in Figure 1.2, that is directions where the thruster
is turned off to avoid compromising the structural integrity of the floater.

1.1 Background

Figure 1.2: Thruster efficiency for different
directions. The y-axis is the fraction of

maximum possible force that can be produced
and the x-axis is azimuth degree. We can see

the existence of a forbidden zone approximately
between 75◦ and 175◦.

Dynamic positioning involves using thrusters
and propellers to automatically stabilize a
floating structure in the horizontal plane,
in contrast to the traditional use of an-
chors. Up until the 1960s [2] drilling
rigs used were submersible and fixed. At
that time it was discovered that semi-
submersible rigs were more stable than
submersibles, and better able to maneu-
ver in confined waters. This, combined
with moving drilling rigs over deeper parts
of oceans, increased the interest in semi-
submersible rigs that used DP. Jack-up
rigs have a large depth of around 200 m,
while anchoring vessels have become less
economical to operate over increasingly
deeper waters. In contrast, Cuss 1 (the
first drilling ship to utilize DP, depicted
in Figure 1.3) was stationed in waters that

2

were over 3000 m deep.
DP increases the ocean area over which a floater can operate, which increases the

potential earning of each vessel, but there are also other ways to improve the earning
potential. The potential profit from a vessel can be improved by increasing the time it
can stay operational. This can be done by improving the design as well as the placement
of the thrusters on the vessel. Another way to improve the earning potential is to improve
the steering of the thrusters. Better steering translates into less fuel used, or an increased
ability to endure harsher ocean conditions.

A small improvement in steering can lead to a big increase in earning. A simple
example illustrates this point nicely. Assume an oil platform needs to be operational 290
days a year to be break even. Increasing the average operational time from 300 to 303
days (a 1% increase) will increase the profits by 30%.

1.2 Short introduction to the problem

Figure 1.3: The first floater to utilize DP was
Cuss 1 in 1961, where it was able to be

stationed over a depth of approximately 3500 m
and drilled over 180 m beneath the sea floor

(NSF photograph).

The static DP optimization problem can
be described as maximizing the pull of a
vessel against the wind, while negating the
moment and side forces that occur2. Fig-
ure 1.4 illustrates how moment and push
created by wind vary with the direction
of the wind. The dips at 0 and 180 de-
grees of the push and moment in Figure
1.4 is due to the vessel having bigger sur-
face area when seen from the side (which
can be gleaned from Figure 1.1)

The lack of a guarantee that eff is con-
tinuous with respect to the azimuth, com-
bined with big3 changes of the environ-
mentally induced moment (with respect
to wind direction) creates some issues.
The discontinuous nature of the function
means that it is hard to give any mathe-
matical guarantees of optimality. It also
means that using a solution to the static
DP problem for one wind direction as a
starting point when searching a nearby di-
rection could be worse than starting ran-
domly, even though it is intuitive to expect

similar directions to have similar solutions.

2See Figure 1.4 for how the moment as well as the push changes with the direction of the wind, that
is, for the same weather condition oriented differently.

3Several orders of magnitude

3

1.3 Report overview

The current method of solving the static DP problem is rule based. The aim of this
thesis is to analyze the static DP problem mathematically, and hopefully supply a more
theoretically robust optimization algorithm for the problem. Figure 1.4 shows how the
forces acting on a vessel changes with wind directions, showing that the difficulty of
solving this problem is most pronounced when the wind is perpendicular to the floating
structure. Due to this we hope to see the most improvement compared to the current
algorithm in wind directions perpendicular to the heading of the ship.

Chapter 2 contains information about the dynamical positioning problem and some
important properties thereof. Chapters 3 and 4 delve into mathematical optimization
and how it is applicable to the DP problem. The current rule based algorithm used for
solving the static DP problem is described in Chapter 5. Other possible algorithms are
reviewed in Chapter 6 wherein we see how some standard algorithms fare in the DP
problem. Chapters 7 and 9 describe algorithms better suited for the problem, as well as
specific algorithms implemented, respectively.

Figure 1.4: The moment (green line) and force (blue dotted line) created by a specific
weather condition, as it is rotated around the ship (the x-axis is the direction of the wind
compared to the vessel heading, in degrees).

1.4 Overview

The purpose of this thesis is to improve the computational aspect of DP. The objective
of this thesis is to analyze the static DP problem mathematically, and using this analysis
to implement one or two optimization algorithms. A review of a number of standard op-
timization algorithms and their performance on the problem will also be performed. We
hope that this will help companies in the Marine sector make better informed decisions
about what algorithms to use, even for floaters with different properties than the ones

4

considered in this thesis. Many types of marine vessels have DP, which means that the
potential benefit of good results at this point in time is large.

There are some interesting questions that are outside the scope of the thesis. An
expansion to the static DP problem is to simultaneously optimize the number of thrusters
as well as their placements also. Another logical extension is to use knowledge about
the static DP problem to solve a dynamic DP problem4.

4The dynamic DP problem allows changing weather conditions, which trivially allows changing the
heading of the ship.

5

2
Problem description

This chapter is gives a cursory introduction to the DP optimization problem, with focus
on the purpose of DP optimization.

2.1 Real world description

Work done on a marine platform, or vessel, could be sensitive to horizontal movement1,
which means that it is important to keep the floater horizontally stationary. Weather
(wind, waves and currents) exerts forces on a marine vessel—forces that need to be
negated for the vessel to be stationary. One common way to counteract the weather’s
influence is to use anchors, another is to use thrusters designed for that purpose. The
latter is called Dynamic Positioning (for short, in what follows: DP). An important
question to answer when using thrusters is how they should be directed and what the
optimal output is, in order to counteract the effects of the weather. Please note that
even if the vessel is not moving horizontally there might be room for improvements;
for example, lower total output translates to lower fuel consumption2. Often what is
used for grading different solutions to the DP problem is not fuel consumption, but
rather how much force can be produced against the wind direction. The reason that
this metric is used is because it both positively correlates with the ability of using less
fuel to counteract the weather forces as well as gives more leeway to handle unforeseen
circumstances. A condensed practical description of the DP problem follows:

We have a number of thrusters in given positions below the vessel. They
may have different maximum thrust. The efficiency of each thruster depends

1An example would be an oil rig that should be stationary above the drilling hole
2An easy way to see this is that two thrusters yielding forces with opposite direction and same

magnitude exert the same sum of forces as not using thrusters at all, the latter being a more fuel efficient
way of maintaining that equilibrium.

6

on its azimuthal direction3, with the orientation of the vessel being zero.
At some angles the thruster might interact with the hull or other thrusters,
which decreases the force produced considerably.

Our goal is to obtain a maximum force against the wind direction, with
low (within a predefined tolerance) moment and low (within a predefined
tolerance) side force. This is done by changing the thrusters’ angle and
power. The tolerances are specific to the vessel considered. The moment
mainly produced by wind, and the side force (the force perpendicular to the
wind direction) appears due to the thrusters counteracting the moment. In
addition, the algorithm used to solve the example above should be able to
handle fail cases, that is conditions where some of the thrusters are not used.
This will add complexity since the thrusters are no longer symmetric on the
ship.

While the description above regards optimization using only thruster angle and output4

as variables, it might be of interest to expand the problem to include the placement of
the thrusters on the vessel as variables also, instead of having them as parameters.

2.2 Weather conditions and model data

In our model the weather is described by three effects on the vessel: the magnitude and
direction of the force by which the weather acts on the vessel, as well as the generated
moment. Force magnitude and generated moment for each direction is provided by model
testing. We studied 16 different weather conditions (These are described in Table 2.1),
ranging from mild to hurricane force, which span the most common weather conditions.
The effects of the weather conditions on the vessel is given for 8 directions uniformly
spaced around the vessel, starting at 0 degrees (the heading of the vessel).

Weather condition: 1 2 3 4 5 6 7 8

Wind speed (m/s) 2.5 5 7.5 10 12.5 15 17.5 20

Weather condition: 9 10 11 12 13 14 15 16

Wind speed (m/s) 22.5 25 27.5 30 32.5 35 37.5 40
Table 2.1: Wind speed for the weather conditions used

We also have a model of the floating structure. The model of the floater is given by
the following properties: thruster placement, depicted in Figure 1.1, maximum thruster
force, and a function describing the efficiency of each thruster in different directions.
This information suffices for a full mathematical description (detailed in Chapter 4) and
is heavily influenced by the shape and structure of the floater.

3All directions in this thesis refers to the azimuthal direction, and will henceforth be known solely as
direction.

4Power output, output, power, and force will be used synonymously in this thesis, meaning the power
output of the thruster.

7

2.3 Measure of success

The vessel needs to remain stable in all weather conditions as well as in all wind direc-
tions. This implies that an algorithm which finds good solutions in headwind but cannot
find a feasible point (i.e. a point such that all constraints are fulfilled) for side winds is
worse than one which solves all wind directions but with low force against the wind. One
solution is said to be better than another for the same weather conditions and direction
if the magnitude of the constraint violation is less than the other, and if they are similar
(or if there is no constraint violation) then objective function values are compared. The
reason for comparing the magnitude of the constraint violations is that the algorithms
should be robust5.
An important image to understand is Figure 2.1, which represents a solution given by
an optimization algorithm for a sample weather condition. It is instrumental to first
study this image, since similar images are used to present results in this report. The
idea behind this graphical representation of results is that it is easy to see whether there
may be room for improvements, as well as unwanted behavior. The way the figure is
structured implies that the closer the green line is to the red line, the less room for
improvement exists, which means that the solutions depicted are close to optimal for
head- and tailwinds. Also, if the green line dips below the purple line at any point
(which almost happens at 90 and 270 degrees), the objective function is negative (i.e.
the wind pushes the vessel backwards). The reason for the behavior of the wind force
is the larger area exposed to the wind from the side compared to the front and back.
This is also the cause for the dips of the green line at the same spots—we require a lot
of force from the thrusters to equalize the moment created, which means less force that
can be used to maximize the objective function.

5A difference of 1% in the constraint violation does not imply much difference in robustness, while a
constraint violation one magnitude or more less implies that there is some leeway.

8

Figure 2.1: This image depicts the performance of the solutions found to the static DP
problem. The horizontal axis is the direction of the wind, compared to the heading of the
vessel, the vertical axis is the force generated, and the purple (bottom) line is the force the
wind exerts on the vessel. The green (middle) line is the force generated from the thrusters,
and the red line is the relaxed maximum. The blue line is the maximum of the sum of
magnitudes of thruster forces, that is, regardless of direction.

9

3
Optimization background

The main purpose of this chapter is to provide a strong enough mathematical foundation
to create a mathematical description of the static DP problem (described in Chapter
2). This chapter also provides a cursory glance at the theoretical concepts required
to understand this thesis1. The mathematical models used will be explained more in
depth in related chapters. The reader is assumed to have knowledge corresponding to a
bachelor degree in mathematics.

3.1 What is mathematical optimization

Optimization is the mathematical discipline concerned with searching for the best value
of a function. Usually the best value is taken to be the minimum value possible, but there
are other metrics that can be used. Letting f be a function of variable x with domain D, a
formulation of an unconstrained optimization problem can be mathematically described
by

min
x∈D

f(x).

The function f to be optimized is called an objective function.
There may be constraints that have to be fulfilled for a solution to an optimization
problem to be valid. Denoting equality constraints2 by h and inequality constraints3 by
g, and assuming that the domains of the functions f ,g and h are supersets of D, the
constrained optimization problem over the set D is described mathematically by

1If any concepts remain unclear the reader is recommended to research these on their own (see [3] for
a good introduction to optimization).

2Constraints such that a function h has to be equal to zero.
3A function g such that it needs to be less than or equal to zero.

10

Figure 3.1: A local minimum (the red downwards triangle), a local maximum (the black
diamond) and the global minimum (the green upwards triangle) of the function x4 +x3−x2.
The horizontal axis is the variable values, and the vertical axis the function values.

min
x∈D

f(x)|h(x) = 0 ∧ g(x) ≤ 0.

Which is often stated as

minimize f(x)

subject to h(x) = 0

g(x) ≤ 0

Defining the set S := D ∩ {x : h(x) = 0} ∩ {x : g(x) ≤ 0}, we can equivalently state the
above problem as

min
x∈S

f(x).

The set S is called the feasible set.

3.2 Local and global optimization

There may be many points in the set S that optimize the function in some way. Points
that are the best that can be found in a neighborhood are called local optima. A point

11

x∗ ∈ S is called a local minimum of a function f if

(∃δ > 0)(∀x ∈ S ∩ (‖x− x∗‖ < δ))(f(x∗) ≤ f(x)).

The idea of the definition is that there exists a neighborhood of the local minimum such
that all function values in this neighborhood are greater than, or equal to, the objective
value at the minimum. Points in S that yield the best value possible of f are called
global optima4. A point x∗ ∈ S is called a global minimum of f if

(∀x ∈ S)(f(x∗) ≤ f(x))

This implies that any global optimum is also a local optimum. Conversely, if the point
x′ is not a local optimum it can not be a global optimum.

3.3 How optimization is performed

In Section 3.2 it is shown that any global optima needs to be a local optima, and many
optimization algorithms search for local optima, hoping that the found solution performs
sufficiently well. Please observe, as is stated later in this paragraph, that trying to find a
local optimum is not the same as guaranteeing that one is found. An exhaustive search is
rarely computationally efficient, and often there is no easy way to find all the points which
fulfill some necessary condition for global optimality. The idea behind many optimization
algorithms is to move around in the function landscape trying to find the best point,
and terminating when they cannot improve further. The terminating condition is often a
necessary condition of local optimality5. Please note that a necessary condition is often
not sufficient, which means that a solution found might not even be a local optimum.
What is certain is that we can not reject the possibility that the solution is a local
optimum. This is generally the best possible result, with local or global optimality
guarantees only for specific class of problems.

4There may be more than one; take for instance the constant function f(x) = 1 where all points are
global optima.

5A local optimum is a point such that a small step in any direction will always be worse than staying
put, so this is not surprising.

12

4
Mathematical formulation of the

DP problem

A mathematical formulation of the DP problem can be created by combining the descrip-
tion given in Chapter 2 with the mathematical foundation in Chapter 3. Starting with a
description of the parameters and variables used in the mathematical formulation, this
chapter then continues by defining and motivating the objective function. Please ob-
serve that a structural optimization is also possible, where the positions of the thrusters
as well as the number of thrusters are variables instead of parameters. The structural
optimization was not a focus of this thesis, but could be interesting for future work.
Note that we could also do a structural optimization, adding the positions of the thrusters
(and the number of thrusters) to the variables instead of setting them as parameters.

Parameters

N, the number of thrusters.

{xi,yi}1≤i≤N , the positions of the thrusters.

{ei,φ}1≤i≤N,0≤φ<360, the efficiency of thruster i at angle φ, in fraction of maximum thrust.

{ti}1≤i≤N , the maximum thrust possible for thruster i.

wd, wind direction.

wt, moment created by the wind.

wl, wind load, i.e., the force produced by the wind.

tolt, moment tolerance.

tolsf , side force tolerance.

13

Variables

di, direction of thruster i, 0 ≤ di < 360, 1 ≤ i ≤ N .

fi, force of thruster i, in fraction of maximum possible, 0 ≤ fi ≤ 1, 1 ≤ i ≤ N .

Def:
Let τi be the demanded force from thruster i,

τi := fi · ti · ei,di

Henceforth, index i denotes an index in the index set {i : 1 ≤ i ≤ N}. The objective to
maximize is the force against the wind, as measured by the sum of the forces provided by
the thrusters, while neutralizing moment and side forces. The moment and side forces
are said to be neutralized when their magnitudes are below a predetermined threshold,
called tolerance. The objective function is thus defined as the sum of the force from each
thruster in the wind direction.1 The side force is described analogously. The moment is
the force created perpendicular to the lever arm2, which can be decomposed into x-axis
and y-axis components.

Objective function

maximize −wl +
∑
i
τi · cos(di−wd

180/π)

subject to |
∑
i
τi sin(di−wd

180/π)| ≤ tolsf

| − wt +
∑
i
τi(cos(

di
180/π)yi − sin(di

180/π)xi)| ≤ tolt

Note that we may state the problem equivalently with a change of variables from a
percentage of the maximum power (variable fi) to an absolute power amount, by letting
the new force variable be f ′i := fi · ti · ei,di =: τ ′i (note that we can obviously discard
either f ′i or τ ′i , the main reason to define both equally is as a call back to our problem
statement above), and having the constraints 0 ≤ f ′i ≤ ti · ei,di .

4.1 Problem properties

The mathematical formulation given above has many advantages over a descriptive for-
mulation. The main advantage of a mathematical formulation is that it is easier to
analyze the properties of the optimization problem. Finding these properties are advan-
tageous for determining which optimization algorithm to employ (further discussed in

1Mathematically this is done as the sum over τi (the force from each thruster) times cosine the angle
between the power output and the wind direction.

2Defined as the cross product between the displacement vector and the force

14

Chapter 7, but also in Chapters 6 and 9). Another important advantage of the mathe-
matical formulation is the possibility of finding convergence guarantees on solutions.

4.1.1 Complexity of the problem

There are several sources leading to the high complexity of the DP optimization prob-
lem. The first is the dependence between the two constraints3. The second is the
discontinuous efficiency function (depicted in Figure 4.1). Note the appearance of for-
bidden zones, which are areas where the thruster must be turned off since the jet would
otherwise interact strongly with the hull4. The discontinuous nature of the efficiency
function (henceforth known as eff) makes the optimization problem discontinuous5,
and discontinuous optimization problems are harder to solve than continuous ones. The
discontinuities are a consequence of, among other things, the existence of forbidden
zones. These forbidden zones raise the complexity of the problem since most algorithms
will have trouble exploring the feasible set efficiently6.

4.1.2 Properties of the problem

This section will present mathematical properties of the functions involved in the DP
optimization problem.

Periodicity

A glance at the objective and constraint functions might lead to the conclusion that they
are periodic (since they contain trigonometric functions), but the angle is required to be
in [0,360) which means that only one period of the trigonometric functions is used. The
trigonometric functions allow a trivial extension of the domain of the direction variables
from [0,360) to (−∞,∞). There is no analogous way to remove the bounds on the force
variables.

Number of local optima

The number of local optima is an important characteristic of the problem. If the function
has few local optima, a randomly selected local optimum has high probability of being the
global optimum. Hence, an algorithm that converges to a local optimum might perform
well regardless of starting point. Conversely, if the function has many local optima it is
important to try to ensure that the algorithm does not get stuck in a bad performing
local optimum. The number of local optima of the objective function is investigated by

3When any thruster is changed to counteract moment, it will impact side forces, and vice versa.
4There is a forbidden zone of around 100 degrees for thrusters 3 and 6, and a smaller one for thrusters

4 and 5, in the model data depicted.
5When eff is discontinuous it will make both the objective function and the constraint functions

discontinuous.
6A thruster directed into its forbidden zone means that the thruster can not produce any force, most

likely leading to a worse solution.

15

Figure 4.1: The efficiency (depicted as the blue line), as a function of the degree azimuth,
for the thrusters on a sample model. Note in particular the forbidden zones, where the
efficiency is zero (the thrusters are turned off), in the two bottom images.

taking a random weather condition (9 was selected) and a random direction (90 degrees
was selected), and letting a coordinate descent (refer to Section 7.1.1 for a description of
the algorithm) start from random starting points 9 times. Out of 21 generated starting
points, 20 solutions found were unique (defined as ‖x∗i − x∗j‖max ≤ 0.01 of domain of
variable). This result correlates with a high number of local optima of the objective
function. Please note that there is no guarantee that coordinate descent reaches a local
optimum.

Difference between optima

The number of local optima of a function does not always have a big impact on the
optimization. There may be many local optima whose function values do not differ sig-
nificantly from the global optimum. Hence, the question becomes what the probability
is of reaching an optimum that performs similarly to the global optimum, starting ran-
domly in the domain. This is an important question because if there is a procedure for
finding local optima quickly, it may be iterated many times to find a good performing
local optimum. The difference between different local optima is investigated in a similar

16

manner to the number of local optima above. Taking the solutions found in Section
4.1.2, the difference between the best function value and the third best (100 percentile
vs. 90 percentile) is 13% in thrust generated. This difference in thrust generated is more
than desired, and hence the idea presented above (execute a descent algorithm many
times and return the best value) is not recommended.

Differentiability

Differentiability is an important aspect of the optimization problem. The number of
times the functions can be differentiated impacts both the mathematical guarantees
on solutions found, as well as the performance of different optimization algorithms.
Generally speaking, increasing the number of derivatives that exists improves both the
guarantees and the performances of algorithms. The objective function as well as the
constraint functions are sums of smooth functions conjoined with eff . Hence both the
objective function and the constraint functions are as many times differentiable as eff .
Looking at Figure 4.1 we see that eff is discontinuous, particularly near the forbidden
zones. In conclusion, the static DP problem is not continuous, and hence not once
differentiable either. Please note that it is always possible to find a numerical gradient
given a small step length, but there exists no limit when the step length tends towards
zero. That is, for any given displacement δ the numerical gradient in that direction can
be set as f(x+δ)−f(x)

|δ| , but this expression does not converge as δ → 0.

Convexity

The domain is convex, and both sine and cosine are convex for half their period, but eff
is not. This implies that it is easy to conclude whether a problem, constrained to a sub
domain in which eff is convex, is convex. There is no general procedure for finding the
largest sub domains in which eff is convex, which means that splitting the static DP
problem into convex and non-convex subproblems is not possible.

Other

Some other interesting properties are the computational costs of evaluating the objective
and constraint functions. If the objective or constraint functions are expensive (either
in time or resources required) to evaluate, it might be a reason to use response surfaces
or surrogate functions (see for example [4] and [5] for more information about black box
optimization). Analysis shows no substantial cost of evaluating the function, 10 000
calls took 8.73 seconds, and thus there is no immediate reason for utilizing black box
optimization. The type of constraints impacts the problem type, and consequently what
algorithms to use as well as their convergence theory. The main constraints are that
the domain of the functions (i.e. not the feasible set) is bounded and closed, and the
constraints are non-linear, discontinuous inequality constraints.

17

4.2 Guarantees for the solution to the static DP problem

The sections above show that many difficulties may arise when solving the DP optimiza-
tion problem. The discontinuous nature of the objective and constraint functions means
that no guarantees of convergence is possible for most algorithms, nor any guarantee that
the solution found is a local optimum. Even so, it is nonetheless interesting to analyse
how well algorithms that require differentiability perform when supplied with numerical
derivatives. The existence of forbidden zones means that there is a high risk of being
caught in a section of the domain containing no good feasible points. These difficulties
make us cautious about giving any guarantees preceding the research in this thesis, i.e.
we can not make any immediate mathematical guarantees on any solution found. We
see no properties of the problem that allow a clear line of attack, and thus we feel that
the probability of finding an algorithm outperforming the current rule based one is low.

18

5
The current algorithm

Two rule-based optimization algorithms were provided by GVA. These algorithms were
built specifically for solving the static DP problem (described in Chapter 4). In essence
the algorithms aim to solve the problem in the same way a human might, by first setting
the thrusters directly against the wind, and then making small adjustments to try to
fulfill the constraints. Computing the solution takes little time due to the rule-based
nature of the algorithms1.

5.1 Description of the algorithms

Both algorithms follow a similar list of rules when determining the solution. Given model
and weather data, there are four distinct steps taken:

1. Find the relaxed maximum, i.e. the maximum of the objective function under no
constraints.

2. Reduce the thruster with most impact on moment, until zero net moment is
achieved (This is done for several thrusters iteratively, if needed).

3. Assume a new wind direction, and pull towards it, until the original side forces are
equalized.

4. Use the reduced thrusters from step 2 to negate any left-over moment and side
forces.

The only difference between the two algorithms lies in step 2. The main principle of one
of the algorithms to achieve moment balance is to reduce the power output from one or
a few thrusters, while the other changes the thruster direction instead. The latter has
the complication that eff is dependent on direction.

1The algorithms both run 160 cases in about 4 seconds, including cache time

19

5.2 Issues and strengths

There are many good properties of these algorithms, but also one bad. The main
strengths of the algorithms are the speed by which they provide and answer to the
problem, that they explore the domain efficiently (i.e. initialize subroutines on all sides
of the forbidden zones, which means that the forbidden zones matter less to these al-
gorithms), that the results seem to be close to optimal for easy weather conditions,
and that the combination of both of them manage to find feasible points under some
tougher conditions. The main issue is that there is no real theoretical justification for
the algorithms (which means that they may be provably suboptimal), which is due to
the rule-based nature of the algorithms.

Similar to human based optimization

A human solving the static DP problem might follow a similar procedure to these algo-
rithms. It is thus easy to follow what they do, and improve on the rules followed, but
it also implies that they do not utilize information about the objective and constraint
functions fully.

Rule-based

A rule-based algorithm is often created from a particular set of circumstances. Hence, a
potential problem with a rule-based algorithm is that it may be too specific. That is, it
may work well in situations similar to the one it was created for, but not in situations that
differ in certain ways—and it can be hard to figure out what differences are important.
As an example, both algorithms described in Section 5.1 solve the static DP problem for
a specific vessel model in easy weather conditions very well, but break down in some of
the harsher conditions. This is most likely due to the rules being set beforehand, with
standard conditions in mind, which means that they do not react appropriately when
the weather forces are larger.

Explores the domain

The algorithms converge quickly. The quick convergence allows them to explore many
different starting points (which is also part of their implementation). The algorithms
explore both sides of any forbidden zone, and are fast enough that trying tens of different
starting points still yields a fast execution speed.

Lack of robustness

They yield good results quickly for easier conditions (but lack in harsher ones). It may
be that the solutions found (even those close to the relaxed maximum) are not locally
optimal.

20

6
Algorithms described in modern

text books: any that work?

This chapter details the performance of a few algorithms, recommended as good can-
didates in modern literature, on the static DP problem. The static DP problem is
formulated in Chapter 4. Where derivatives are required, a numerical approximation
was supplied.

6.1 Possible algorithms

These methods are mainly taken from [3] and [6], with the particle swarm optimization
found in [7]. Some convergence theory will be supplied. For further reading and theory
see the previously mentioned books.

6.1.1 Penalty method with line search

The constrained DP problem is converted to an unconstrained problem using the penalty
method (also known as exterior penalty method). The penalty method converts a prob-
lem of the form

min
x
f(x)

s.t. g(x) ≤ 0

to the form
min
x
f(x) + φ(g(x))k

where φ is called the penalty function. The idea behind the penalty method is that
by letting φ tend to infinity for positive values of g, when k → ∞, the minimum of

21

the penalty problem will tend towards the constrained minimum. Convergence of the
penalty method is seen (with usual notation) if f,g,φ ∈ C1, as well as φ′(x) ≥ 0∀x ≥ 0.
Then if the point x∗k is stationary for the problem containing φk, and x∗k → x∗ as k →∞,
as well as x∗ being feasible and linear independence constraint qualifications hold at x∗,
x∗ is stationary for the constrained problem. In our problem f,g /∈ C1, so this result does
not apply, but even without proven convergence, the idea is interesting. There is still a
need to solve every subproblem (that is, solve the penalty problem for specific k), which
is done here with line search algorithms. The different line searches implemented are
coordinate descent, gradient descent, conjugate gradient descent, quasi-Newton (BFGS)
and Newtons method.

Overview of the line search algorithms

A more thorough discussion of deterministic line search algorithms is presented in sec-
tion 7.1, this section presents the basic idea behind a few of the line search algorithms
mentioned in section 6.1.1, as well as some convergence theory.
Gradient descent is a line search method, based on the idea that following the steepest
descent direction might improve the function value most. The steepest descent direction
is the negative gradient, hence the name gradient descent. After finding the steepest
descent direction, a line search is executed to find the approximate minimum of the
function along that direction. The next iterate is then started from that minimum. This
continues until the gradient is zero (or less than a predetermined threshold). The idea
behind gradient descent seems like it should reach a stationary point, which is not true.
A common convergence result is as follows: If we have that f is once differentiable, ∇f
Lipschitz continuous, c1‖∇f(xk)‖ ≤ −∇f(xk)

Tρk, c1 > 0, ‖ρk‖ ≤ c2‖∇f(xk)‖, c2 > 0
and the step length αk satisfies αk → 0 and limk→∞

∑k
i=1 αi = ∞, then for gradient

descent we have that either f(xk)→∞ or ∇f(xk)→ 0.
The quasi-Newton method approximates a Hessian for the function, and solves a
quadratic approximation to find the line search direction. The advantage of the quasi-
Newton over pure gradient descent is that the approximated Hessian will allow the al-
gorithm to use information about the curvature of the function. Also, since the Hessian
is approximated, the function does not need to be in C2. There is a similar conver-
gence result for the quasi-Newton method to the gradient descent method. Suppose that
f ∈ (C)3, and assume that {xk} converges to a point x∗ such that ∇f(x∗) = 0 and
∇2f(x∗) is positive definite. Then if and only if

lim
k→∞

‖(Bk −∇2f(x∗)ρk)‖
‖ρk‖

= 0

holds, {xk} converges super linearly.
Newtons method uses the true Hessian for the quadratic approximation, instead of an
approximate Hessian as is the case in the quasi-Newton methods. Using the true Hessian
implies that the quadratic model is a better fit to the original function, but this also
presupposes that the true Hessian is known. The convergence theory only differs slightly
from the quasi-Newton above. For Newtons method, suppose instead that f ∈ (C)2 and

22

that ∇2f is Lipschitz continuous in a neighborhood of a solution x∗. Then if the starting
point is sufficiently close to x∗, the iterates converge quadratically to x∗, as well that
{‖∇fk‖} converges quadratically to zero.

6.1.2 Algorithms for constrained optimization

There are other ways to handle constrained problems than using the penalty method.
An interior point method (also known as barrier or interior penalty method) using BFGS
approximation of the Hessian was executed on the problem. The interior point method
assumes that the initial point is feasible, and sets up a barrier function so that the min-
imization never crossed to infeasible points. This barrier function is smooth, and grows
without bound as the constraints get closer to being unfulfilled. The logarithmic func-
tion is commonly used as a barrier function. The interior point method has convergence
theory quite similar to the penalty method. Assuming same properties as for the penalty
method, we have that if xk is stationary, xk → x∗ and linear independence constraint
qualifications hold at x∗, x∗ is stationary for the original problem. Other possibilities
include the active set method (disregarding inactive constraints to optimize more effi-
ciently), sequential quadratic programming (approximating the function by quadratic
functions to find the next iterate) and trust-region reflective (using a simpler function
as a model of the true function, which is then solved to find the next iterate).

6.1.3 Particle swarm optimization

Particle swarm optimization (further known as PSO) is an interesting optimization algo-
rithm. A priori it is a strong candidate, since it requires no continuity, and has specific
steps against getting caught in a local optimum (the inertia of each particle). The generic
PSO algorithm works on unconstrained problems, so the trials run in the thesis are on
two different penalty functions. The first is a simple quadratic penalty function, and
the second utilizes the interior point idea—any infeasible point will be graded as worse
than any feasible point, two feasible points will be graded on the objective function value
of those points, and two infeasible points will be graded on the size of the constraint
violation. Please read [8] for more in depth information about constraint handling in
PSO.

6.1.4 Iterated hill climbing

The idea here is to utilize a quick local optimization algorithm (coordinate descent) with
random starting points a large number of times, and then returning the best found. The
same caveats apply as in section 6.1.1, since this is still a coordinate descent algorithm.
The trials run here tested 1000 different starting points, taken with uniform probability
over the domain.

23

6.2 Results

The results (seen in appendix B) clearly show that most of the algorithms tested in this
chapter perform worse than the currently implemented rule based algorithm. Algorithms
that fail to find a feasible point when the environmental conditions are mild (wind speeds
below 10 m/s) can be discarded. The most probable reason that the algorithms fail is
that they can not deal with the discontinuities, not improving where there may exist
descent directions.
Some interesting results to be noted are as follows. Firstly, the bad performance of the
PSO algorithm. A priori it seemed like a good candidate (does not require continuity
as well as avoidance staying in local optimum). We believe that the bad performance
is mainly due to badly selected parameters. If bad parameter values is the reason, it
highlights a problem with PSO—it requires extensive parameter tweaking. One set of
parameters that perform well for some enviromental conditions is not guaranteed to
work for others. Also note that there are no guarantees on the solution. The second
interesting result is that there are some algorithms that perform OK on the static DP
problem, main the active set method and the penalty method with line searches (for the
warm start scenarios). It seems that these algorithms handle a numerical approximation
to the gradient better than others, being able to find improvements from the supplied
starting point. Neither the active set nor the penalty method performs well with a cold
start, and as such they seem to explore the domain only locally.

6.3 Conclusions

The current algorithm outperforms all tested algorithms when using a cold start. The
tested algorithms neither have proof of convergence with on the static DP problem (there
is, for example, no Lipschitz continuity), nor perform better than the current algorithm.
This clearly shows that other ideas are needed.

24

7
Reviewed optimization algorithms

This chapter details some possible ideas for algorithms, while noting that the standard
algorithms tested in Chapter 6 all performed worse than the current rule-based algorithm.
Chapter 9 gives a more in detail look at the algorithms selected for implementation. That
is, the methods in this chapter that seem most promising.

7.1 Deterministic, line search

A line search method for optimizing a function consists of two steps. First, a direction
is selected. Second, an optimum is found along this direction. There are several ways to
select a search direction, four of which are described below.

Wolfe and Goldstein conditions

Finding the exact solution along the search direction is more computationally expensive
than finding an approximate solution, with no real advantage. The Wolfe as well as the
Goldstein conditions1 are conditions that try to determine when an approximate solution
is ’good enough’ to terminate our line search. There are other ideas beside finding the
exact solution and using either set of conditions described above. One of these ideas is
deciding a longest allowed step length, then making a grid between the start and end
points, lastly selecting the best function values in the grid as the approximate solution.

7.1.1 Derivative free descent method

Coordinate descent is, as the name implies, testing the coordinate directions to see
whether any might be a descent direction. A basic implementation would be to select a
coordinate direction (along both the positive and negative axis), and see if a small step

1See [6] for detailed description

25

along this direction yields a decrease in the function value. If a decrease was found, a
line search is commenced along this direction. The solution to the line search is taken
as the next iterate, and the steps are repeated. If the direction selected is not a descent
direction, select another coordinate direction and repeat the steps above. Terminate
when no coordinate directions yield improvement. The main advantage of this method
is that it does not require continuity. Coordinate descent will also converge to the global
optimum for convex, smooth function. If the function is not smooth (as with the static
DP problem), no such guarantee exists.

7.1.2 [Conjugate] gradient descent

Gradient descent as well as conjugate gradient descent utilizes local information about
the function around a point. Gradient descent finds the quickest descending direction
in that point, by linearizing the function at that point and selecting the best direction.
This is possible because f ∈ Ck, f(x+∆x)−(f(x)+∆xT∇f(x))→ 0 as ∆x gets smaller.
That is, in a small enough neighborhood around a point the gradient is the best predictor
of nearby function values. The search direction chosen by gradient descent is −∇f
when minimizing, which explains the name. A variant called conjugate gradient descent
uses information about the previous iterates to better select the next search direction.
The difference between conjugate and basic gradient descent is that conjugate gradient
descent requires the descent direction in iterate k to be conjugate2 to the previous descent
direction. Both of these algorithms require f ∈ C1, and for continuous functions they
generally outperform coordinate descent. Conjugate gradient descent ensures that the
descent directions selected do not repeat the mistakes of previous iterations, which leads
to better convergence at a higher computational cost. When these algorithm terminate
the gradient is less than some predetermined tolerance, and hence the solution found
will approximately be a stationary point.

7.1.3 [Quasi-]Newton method

Newtons method utilizes not only the slope of the function at the current point, but also
the curvature. Newtons method will select a descent direction using information about
how the line selected will behave a bit further out (i.e. the curvature). Contrast this
to the gradient descent method, which takes the steepest descending direction at the
point as the search direction, with no regard to the curvature. This usage of curvature
is done by implementing a search direction dependent on the Hessian of the function at
the given point.
The main difference between the Newton and the quasi-Newton method is that the
quasi-Newton method does not require an explicit Hessian, rather approximating the
Hessian by other means. Because of this approximating procedure, the quasi-Newton
method does not require the function to be twice differentiable. Other than using an
approximation of the Hessian, the idea behind both methods is the same. Most standard

2Two vectors u and v are conjugate with respect to A if < u,v >A= 0

26

approximations of the Hessian yield similar convergence properties for the quasi-Newton
method as for the Newton method. Both methods have quadratic convergence given start
in a neighborhood around a local optimum where the Hessian is both non-singular and
Lipschitz continuous. This quadratic convergence is possible due to the extra properties
required of the problem for these methods, in contrast with gradient descent or coordinate
descent.

(a) Rosenbrocks banana function solved with
quasi-Newton, BFGS approximation. The cir-
cle to the right is the global minimum, and the
leftward circle is the starting point.

(b) Rosenbrocks banana function solved with
gradient descent, terminated after 250 function
calls.

Figure 7.1: Difference in convergence rate between gradient descent and quasi-Newton
(BFGS) showcased, using the Rosenbrock banana function. It is easy to see that the usage
of curvature information in the Newton methods allow better convergence.

7.2 Deterministic, model based

Model based optimization algorithms work by utilizing a simpler model function, either
to find the next iterate or to execute a global optimization on. The model based algo-
rithms can be split into two camps, the black box algorithms which aim to approximate
the true function over its entire domain, and the methods which use a local model to
find the next iterate.

7.2.1 Trust region

A trust region algorithm is an example of an algorithm which uses a local model to find
the next iterate. This usage of a local model is in a sense opposite to a line search.
Instead of deciding a search direction and then finding the step length, trust region
decides a biggest step length and then finds where to go. More specifically, to the
problem minx∈S f(x), at iteration k with current best solution xk, the next iterate,
xk+1, is found as follows:

• Create a model m of f

• Set a largest step ∆

27

• Find x∗ s.t. x∗ = argmin
‖x−xk‖≤∆

m(x)

• If f(xk) − f(x∗) is large enough, increase ∆ and repeat. This difference is often
compared to the predicted difference (i.e. m(xk)−m(x∗)), and a large value means
that the model approximates the true function well, and hence it can be possible
to search further away.

• Else if f(xk) − f(x∗) is too small, decrease ∆ and repeat. This means that the
model function is a bad approximation, and shorter steps are needed to make
progress.

• Else set xk+1 = x∗

The idea is to create a simple model of how the function f behaves near our current
iterate, then optimizing this model to find the next iterate. The advantage of the trust
region method is that the model is often easier to solve than the real function.

7.2.2 Surrogate function / Simulation based methods

Simulation based methods aim to create a model of the function over its entire domain,
which is then optimized. The model function is called a surrogate function. Surrogate
functions are often used if the problem is expensive to evaluate (either high in cost or
time), or if there is no explicit model of the function—so called black box optimization.
The main advantage of simulation based methods is that they can be low cost, regardless
of the cost of the real function, as well as the surrogate function can be chosen to be
more easily optimized. The main disadvantage is the need to find a surrogate function
that describes the problem well.

7.3 Stochastic

Stochastic optimization algorithms refer to methods that are stochastic, not optimizing
stochastic functions. The main idea behind stochastic optimization algorithms is to use
randomness to influence the exploration of a function, and thus better search for an
optimum.

7.3.1 Particle swarm optimization

Particle swarm optimization (henceforth abbreviated PSO) is a stochastic optimization
algorithm inspired by the movement of herds in nature. PSO emulates a flock of birds
exploring a landscape, where each bird is affected by the others. More specifically, each
iteration of a PSO method contains several (hence the term ’swarm’) function values at
different points (called particles, corresponding to individuals in the herd), that each is
trying to maximize its fitness. Due to this, PSO requires only function evaluations, not
continuity or differentiability.

28

The idea behind PSO is that each particle is influenced by its best previous value, as well
as the best previous value for the swarm. These previous values will influence the path
taken by each particle. The particles also have velocities associated with them, just like
a flock of birds can have faster and slower moving members. This velocity will change
randomly in proportion to the distance to the previous best values. Lastly, as with herds
of animals in nature, the particles have inertia, helping them avoid getting stuck in local
optima. Due to the fact that PSO has no requirements on the function, it is versatile and
can tackle many different problems. The stochasticity of the method, combined with the
lack of extra conditions on the function, mean that there is no guarantee on the found
solution.

7.3.2 Simulated annealing

Simulated annealing is in some ways the other end of the stochastic optimization algo-
rithm spectrum, compared to PSO. Whereas PSO uses a swarm to explore the function
landscape, simulated annealing uses one estimate. The idea is to have the exploration
and exploitation behavior dependent on the time. In the beginning, simulated annealing
will explore the function landscape with a big step size, and the further along the algo-
rithm has come, the more it will search near the best values already found (exploit the
information it has). The same advantages and disadvantages as with PSO apply here.

7.4 Branch and bound

There is in particular one algorithm that does not fall into any of the previous categories,
and that is the Branch and bound algorithm3. Branch and bound is a deterministic
method that is neither a line search method nor model based. Branch and bound (further
referred to as BnB) in its most basic form is a deterministic algorithm for unconstrained
optimization, that requires no conditions on the objective function, and finds a solution
that is approximately globally optimal4.
BnB requires a way to find an upper and a lower bound for the objective function on
a set. The upper bound function is often denoted U , and the lower bound function
L. These functions need to have the following characteristics, with x∗d denoting the
argminxf(x)x∈d, U : U(d) ≥ f(x∗d) : f(x∗d) ≤ f(x)∀x ∈ d and L : L(d) ≤ f(x), ∀x ∈ d.
An additional requirement is that these bounding function should converge to the same
value as the set shrinks, |U(d) − L(d)| → 0 as ‖d‖ → 0. In practice, strict convergence
is not needed, rather |U(d)−L(d)| → ε as ‖d‖ → 0 is sufficient to find an ε-approximate
global solution. If the function is Lipschitz continuous, an upper bound can always be
found as the function value of any point in the set d. The main idea of the BnB method
is to start by finding the upper and lower bound of the entire domain. Then every
iteration, partitioning the domain further and computing the upper and lower bounds

3A well known implementation of a partitioning algorithm similar to the branch and bound algorithm
is the DIRECT (DIvide RECTangle) algorithm.

4An ε-approximate global minimum is here defined as a point x∗ s.t. f(x∗) ≤ f(x) + ε,∀x ∈ D

29

of each new subset. This continuous until the difference between the best lower bound
and the best upper bound is within a predetermined tolerance ε. This guarantees an
ε-approximate solution. Explicitly this is done as follows:

• Start by setting D = {D}, Uglobal =∞, Lglobal = −∞, and ε > 0.

1. Select a member d of D to partition into subsets di

2. Update D ← D ∪ di − d
3. Update Uglobal = min

d∈D
U(d) and Lglobal = min

d∈D
L(d)

4. Remove d ∈ D : L(d) > Uglobal from D
5. Repeat steps 1-4 until Uglobal − Lglobal < ε

The steps above is a generic description of the algorithm. Firstly, the lower and upper
bound functions impact the performance of the algorithm. A common implementation
is to have the lower bound as an relaxed solution. The choice of a solving a relaxed
problem can make it easier to find a solution, which improves the time complexity of the
BnB method. There is no generic way to find the upper bound though. In addition to
different possibilities of the lower and upper bound functions, there are several options
on implementation of some of the steps above. There are several ways to select which
leaf to branch (step 1 above). One standard method is to select the leaf with smallest
lower bound, with the idea to push the lower bound upwards (in other words, selecting
the smallest lower bound leaves best room for improvement). The partitioning of the
selected leaf can also be done in different ways, and the choice impacts the computational
complexity of the algorithm. Two standard implementations for the partitioning of the
selected leaf are to split the longest dimension in half, and to partition the leaf into
equally sized balls.

(a) A schematic view over the domain after each
branch

(b) The union of the branches on each level
equals their parents, D1 ∪D2 = D, D21 ∪D22 =
D2.

Figure 7.2: A sample branch and bound graph

There are some serious advantages as well as disadvantages to this method. A big
advantage is that the found solution is within ε from the global optimum. The main issues

30

are that the BnB method can be computationally intensive, depending on how many
leaves needs examining, trivially becoming exponential worst case time complexity5. The
other main issue is the problem of finding good lower and upper bounding functions, that
are quick to evaluate and still converge.

7.5 Unconstrained model of constrained problem

Many optimization problems are constrained optimization problems. The optimization
algorithms presented above, in Sections 7.1, 7.2, 7.3, 7.4, solve unconstrained optimiza-
tion problems. The methods presented in this section are ways of converting an con-
strained optimization problem to an unconstrained one.

7.5.1 Penalty method

A penalty method puts a penalty on constraint violations, with the idea that when the
penalty is made larger, the solutions to the penalty function will converge to a solution
to the constrained problem. See Section 6.1.1 for more detail. Suppose the problem is

min
x∈D

f(x)

s.t. g(x) ≤ 0

The quadratic penalty problem is then defined as

min
x∈D

f(x) + µ ·max(0, g(x))2

The solutions to the quadratic penalty problem (with µ ∈ R+) will, under suitable
conditions, tend towards the constrained optimum when µ → ∞. The convergence
toward the constrained optimum means that the constrained problem may be solved with
algorithms suited for unconstrained optimization, using the penalty method approach.
There are some problem specific parameters that can impact the solution. The penalty
parameter µ needs to increase fast enough (to reduce the number of subproblems to
solve), but not too fast (where the warm start of the next subproblem is too far removed
from the new local optimum). There is also no guarantee of finding a good approximate
solution unless the penalty parameters gets arbitrarily big.

7.5.2 Augmented Lagrangian

The augmented Lagrangian method is a mix between the penalty method and the La-
grangian of the problem. Note that the Lagrangian L for an optimization problem

5The exponential worst case time complexity is trivial, since all leaves smaller than or equal in size
to δ might need investigating

31

minx∈D f with equality6 constraints g = 0 is

L(x,λ) = f(x)− λ · g(x)

Where the global minimum of the original constrained optimization problem is a sta-
tionary point of the lagrangian.
The augmented Lagrangian, denoted as Φ below, is a method that utilizes a hybrid
between a penalty function and a lagrangian:

Φ(x,λ,µ) = f(x)− λ · g(x) +
µ

2
· g(x)2

Where each iteration updates the multipliers λk, converging to the true λ. This means
that the penalty parameter µ can stay small. A big advantage is that it often avoids
ill-conditioning, as well as a good solution might be found in fewer iterations than with
the penalty method.

7.5.3 Exact penalty and exact augmented Lagrangian methods

A short note on the existence of exact penalty and exact augmented Lagrangian meth-
ods. The solutions to the penalty method and the Lagrangian methods above will tend
towards a solution to the constrained problem, as the penalty parameters increase. An
exact penalty (or exact augmented Lagrangian) method is such that if µ > M , for some
constant M , only one optimization is required to find the constrained optimum. Please
see [9] for further information.

6Note that inequality constraints can be converted to equality constraints by the introduction of slack
variables.

32

8
Implemented algorithms

As seen in Chapter 6, many common optimization algorithms fail with this particu-
lar problem. The most interesting methods explained in Chapter 7 were implemented
instead, as the most likely candidates to succeed on the static DP problem. The imple-
mentation of these candidates are explained in this chapter.

8.1 Branch and bound

Branch and bound is one of the implemented algorithms. This implementation uses a
lower bound function that solves the relaxed problem, i.e. the problem without con-
straints, and the upper bound function is the value of any feasible point in the set. If no
feasible point is found, the leaf is discarded. Please see Chapter 4 for the mathematical
formulation of the function and constraints of the optimization problem. We select the
leaf to branch as the leaf with currently smallest lower bound (note that there are other
ways of selecting the leaf). Each leaf can be seen as a hyper rectangle (in this instance)
in Rn, i.e., denoting the leaf by l, l = I1 × · · · × In, where Ik is an interval. The selected
leaf is then branched along the middle of the largest dimension.

8.2 Simulation based algorithm

Another algorithm that was implemented is one that exchanges the objective and con-
straint functions for surrogate functions. The reason behind implementing surrogate
functions is that the surrogate function can be chosen to be smooth, and not that the
evaluations become less expensive (the function is already cheap to evaluate). This
smoothening avoids issues with the discontinuous eff function, and hopefully avoids the
problems plaguing the algorithms in Chapter 6. The original functions are not costly to
evaluate, hence smoothening the problem without replacing the functions completely is
a viable option—and the one we took. We only need to apply a filter on eff to make the

33

objective and constraint functions smooth.
The transformation chosen is eff correlated with a Gaussian (more specifically, normal
distribution), which, due to symmetry, is equivalent to setting the new eff function eff ∗:

eff ∗ := eff ∗ N (µ,σ2)

where we let µ = 0. This has two big consequences:

1. eff ∗ is smooth, since (f ∗ g)′ = (f ∗ g′)

2. eff ∗(x)→ const., ∀x, σ →∞, and eff ∗ → eff , σ → 0

That is, using eff ∗ in our objective and constraint functions means that they are smooth.
Hence we may use algorithms that require gradients, second derivatives and more to solve
this subproblem. Secondly, solving the subproblem for a small enough σ should let us
get close to a solution to the original problem. Lastly, note that starting with a large
σ means that we will have ’smudged out’ small variances and follow the main features
of the function. Thus the idea is to implement this algorithm, starting with a large σ,
solve the subproblem, decrease σ and use the previous solution as a warm start. Repeat
until σ is small enough. Our hope is that this will tackle both the discontinuous nature
of the static DP problem, as well as the forbidden zones.

8.2.1 Penalty method with line search

Two different ways of solving the subproblem for each σ were implemented. The first
of which is a penalty method with line search, where the next step is found by selecting
the step which minimizes the penalty function the most of the following line search
methods; coordinate descent, gradient descent, conjugate gradient descent, quasi-newton
and newton. Wolfe conditions (described in Section 7.1) were implemented to know when
to terminate the line search.

8.2.2 Augmented Lagrangian with trust region optimization

The second implemented method for solving the subproblem is an augmented Lagrangian
method, using a trust region approach. The trust region (see Section 7.2.1 for more
details) is taken as a quadratic approximation to the goal function, ie m(x) = f(x0) +
∇f(x0)Tx+ xTH(x0)x.

8.3 Global search (specific to DP)

The idea here is that smoothening eff might not be sufficient to help the algorithms
traverse the forbidden zones, it might be a good idea to implement something that
specifically counters them. Specifically, the main problem is that the efficiency table has
big dips that make any solution moving into these dips worse than previous iterates.
This means that it is likely that an algorithm will stop at the edge of a big dip instead

34

Figure 8.1: Thruster efficiency functions, with markings where a ’gap’ is defined to be.
This definition is the core idea in the global search method, where if any iterate reaches a
green point the algorithm initilizes a new instance on the other side of the gap.

of moving to the other side, even if the other side is preferable. A function was defined
to give the value ’true’ if the algorithm is in the vicinity of such a dip (denoted as green
dots in Figure 8.1). If a solution is selected that returns ’true’ of this function, a new
instance of the algorithm is initiated, starting from the other side of the dip. The point
is that both sides of the forbidden zones will be explored, with added computational
cost. This was implemented for an augmented lagrangian method, with a smoothed eff
, using a small σ.

35

9
Computational results

The compiler used is MATLAB 2012b. The OS used is windows vista, and the system
running the computations has 3 GB memory with an i3 M350 CPU at 2.27 GHz. We
have set a time limit of 5 hours for solving the problem for 8 wind directions of the
same wind conditions (i.e. using the same environmental field, but rotating it). If the
algorithm takes longer, we deem it unsuccessful. Any algorithm that takes less time will
have the solution compared to other solutions, time not taken into account.

9.1 Branch and bound

Branch and bound (described in Section 8.1) does not terminate within the time limit.
It seems that the upper bound functions takes most of the execution time. We note that
the upper bound function does not always return a feasible point, even when one exists,
but rather gets stuck in a non-feasible local optimum. We also note that the number of
leaves grows quickly to the tens of thousands.

9.2 Simulation based method

The simulation based method (described in Section 8.2) was implemented with two
different subroutines, the results of which is described in the coming subsections. We
mainly observe that, as seen in Figure 9.1, the smoothed function approximates the true
function quite well. The difference between the objective function value of the filtered
function and the true function at the solution found for σ = 0.25 is 0.47%.

9.2.1 Line search and penalty method

Using a single line search method (i.e. one of the following; coordinate descent, gradient
descent, conjugate gradient descent, quasi-newton or newtons method) was worse than

36

Figure 9.1: The eff function, in blue, compared to the smoothed eff values, in green, for
σ = 0.25

trying all of them and selecting the best next step, with little improvement in running
time. Regardless, the results from penalty method with line search was highly dependent
on the starting point. The simulated based method with a penalty method, line search
subroutine, does not find a global optimum. This is readily seen at 180◦. This failure
to converge to the global optimum is likely due to not being able to cross the forbidden
zones, regardless of the smoothing trick.

9.2.2 Trust region and augmented Lagrangian

The augmented Lagrangian, with a trust region subroutine, produces the best results of
the implemented algorithms. When cold starting the results are robust and often feasible,
but rarely beating the current algorithm. When warm starting, using the solution found
by the current algorithm (described in Chapter 5), the augmented Lagrangian method
greatly improves the solution—particularly in cases where the current algorithm does
not yield a feasible solution. We believe that the success of warm starting is due to the
current algorithm handling the forbidden zones well, which means that the starting point
for the augmented Lagrangian is in a neighbourhood of a good solution. This algorithm
is a good fit for the current problem, and merits further research.

37

9.3 Global search (specific to DP)

The global search algorithm (described in Section 8.3) outperforms the other imple-
mented algorithms when all are cold starting, except the current algorithm. Often 30
or more instances of the algorithm are created due to the forbidden zones, which means
that this algorithm takes long to terminate. Comparing the global search (cold starting)
to the augmented Lagrangian (warm starting), we see that the augmented Lagrangian
generally finds a better solution, faster. In instances where the augmented Lagrangian
does not find a feasible point, the global search method is a reasonable try before giving
up. Further research might improve running times and performance, since the current
implementation is naive.

38

10
Conclusion and future work

10.1 Conclusion

The static DP problem has properties which mean that most standard algorithms per-
form poorly. There are two algorithms detailed in this report, the global search (specific
to DP, described in Section 8.3) and the augmented Lagrangian (described in Sections
7.5.2 and 8.2.2) that we recommend further research into. The augmented Lagrangian
with a warm start improves on the current algorithm, and the global search might be a
more general way of exploring the domain than the current rule based algorithm.
In practice, we recommend using the already existing algorithm to provide a warm start
for the augmented Lagrangian with trust region solver, for a small σ (a value of 0.25
has sufficed in our computations) as the smoothing parameter. A big benefit of this
approach is the optimality guarantees for the subproblem, which seems to have some
transferability to the true problem. The second recommendation would be cold start-
ing in the augmented Lagrangian method, and go through a decreasing sequence of σ.
Although this leads to a great increase in computing time, this is more theoretically
justifiable and hence we can make better guarantees for the found solutions. We recom-
mend using this when warm starting fails (that is, when the existing algorithm does not
yield a good starting point) to avoid a high computational cost.
Honorable mention goes to the branch and bound algorithm as well as the global search
augmented Lagrangian. The branch and bound method is currently intractable, but
would have the advantages of not using a subproblem, as well as netting an approximate
global optimum, hence further research to try to make it tractable is warranted. Cur-
rently, the main issues seem to be finding a feasible point quickly and guaranteed (if one
exists) in the sub domains created, as well as updating the leaves when new bounds are
found. The main issue with the global search augmented Lagrangian is the time taken.
The main ideas to continue researching is ranking the different sub domains (divided due
to forbidden zones) with some heuristic and stop when satisfied with the solution—or

39

discard those sub domains that seem to yield bad solutions after few iterations.

10.2 Future work

There are two main extensions of the work done in this thesis. The first is to analyze
a dynamic DP problem, when the whether conditions can change. How to optimize
performance under changing environment. It might be possible to infer a decent solution
from the solutions to the static DP problem, which is why the dynamic DP problem is
a natural extension. The second natural extension is to allow the thruster placement to
change. This is hence a multi-objective optimization, where different thruster placements
impact the cost and other properties of the floating structure, but the placements also
impact the capabilities of the floater with regard to neutralizing environmental forces.

40

Bibliography

[1] American Bureau of Shipping, Guide for dynamic positioning systems.

[2] J. Dang, H. Lahehij, Hydrodynamic Aspects of Steerable Thrusters.

[3] N. Andréasson, A. Evgrafov, M. Patriksson, An Introduction to Continuous Opti-
mization.

[4] T. Hangelbroek, A. Ron, Nonlinear approximation using gaussian kernels.

[5] K. Holmström, N.-H. Quttineh, M. Edvall, An Adaptive Radial Basis Algorithm for
Expensive Black-Box Mixed-Integer Constrained Global Optimization.

[6] J. Nocedal, S. Wright, Numerical Optimization.

[7] M. Wahde, Biologically Inspired Optimization Methods: An Introduction.

[8] C. A. Coello Coello, A Survey of Constraint Handling Techniques used with Evolu-
tionary Algorithms, Computer Methods in Applied Mechanics and Engineering 191
(2002) 1245–1287.

[9] G. D. Pillo, Exact penalty methods, in: In I. Ciocco (Ed.), Algorithms for Continuous
Optimization, Kluwer Acad. Publ, 1994, pp. 1–45.

41

A
Tables

42

1 2 3 4 5 6 7 8

Direction Force Moment Force Moment Force Moment Force Moment Force Moment Force Moment Force Moment Force Moment

0 865.1 -12 1079 59.4 1473.3 180.9 2076.7 354.9 2860.3 583.1 3675.9 865.3 4491.3 1208 5375.4 1618

45 2018.8 -18390 2318.4 -23540 2824.7 -32590 3552.1 -44930 4534.4 -59020 5757 -75530 7141.8 -96450 8625.8 -122200

90 2409 3441 2671.1 564 3095.7 -4028 3721.7 -10540 4663.1 -19030 5916.8 -29770 7332.1 -42890 8781 -58440

135 2006.8 36450 2308.7 33360 2820.3 28900 3553.5 22230 4527.1 11690 5700.9 -2601 7002.3 -18820 8383.6 -36600

180 928.4 -630.2 1152.1 -468.9 1562.1 -201.5 2186.1 175.2 2997.3 652.1 3845.9 1212 4695.7 1844 5617.1 2540

225 2017.3 -34340 2306.8 -31020 2797.9 -26150 3502.5 -18920 4438.9 -7692 5567 7448 6812.7 24670 8130.2 43610

270 2379.1 -1810 2641.3 1418 3065.4 6566 3690.1 13820 4631 23220 5885.4 34990 7303.6 49170 8758.4 65770

315 1991.3 17430 2292.5 23140 2801.9 33170 3534.2 46900 4523.3 62820 5755.6 81690 7132.8 104800 8607.3 133000

360 865.1 -12 1079 59.4 1473.3 180.9 2076.7 354.9 2860.3 583.1 3675.9 865.3 4491.3 1208 5375.4 1618

9 10 11 12 13 14 15 16

Direction Force Moment Force Moment Force Moment Force Moment Force Moment Force Moment Force Moment Force Moment

0 6317 2103 7313.8 2675 8369.8 3344 9499.9 4127 10705.9 5044 12004.5 6114 13396.1 7358 14886.5 8796

45 10179.2 -152900 11817.7 -188700 13570.9 -229400 15448.8 -275300 17449.3 -326700 19490.1 -381500 21534.7 -438000 23679 -498200

90 10205.4 -76420 11643.2 -96910 13150.3 -120000 14744 -145600 16423.2 -174000 18199.4 -205000 20071.6 -238600 22054.4 -275000

135 9819.8 -56020 11330 -77310 12941.4 -100500 14665.9 -125400 16506.2 -152000 18474 -180300 20570.1 -210400 22802.8 -242400

180 6599.1 3292 7640.3 4090 8743.3 4924 9922.2 5789 11178.8 6682 12529.5 7599 13976.5 8542 15523.5 9505

225 9494.2 64390 10924.4 87180 12447.6 112000 14076.4 138700 15813.2 167200 17670.5 197700 19649.2 230000 21757.4 264400

270 10192.5 84730 11644.2 106100 13169.4 129800 14785.5 156000 16491.2 184600 18297.7 215600 20203.5 249000 22223 285000

315 10141.1 166700 11747.9 205500 13456 249600 15273.9 299300 17169.4 354300 19024.9 413000 20951.9 475700 22958.6 542800

360 6317 2103 7313.8 2675 8369.8 3344 9499.9 4127 10705.9 5044 12004.5 6114 13396.1 7358 14886.5 8796

43

B
Complete results

44

B.1 First implemented algorithms

B.1.1 Using dpopt as warm start

Gradient descent

45

Conjugate Gradient descent

The algorithm tries both the next conjugate gradient descent step, as well as the pure
gradient descent step, and selects the one with most decrease.

Quasi-Newton

As above, we enable the quasi-Newton step while retaining the possibility of conjugate
gradient descent and gradient descent.

46

Newton

Here the algorithm tries all four possibilities above, that is; Newton, Quasi-Newton,
Conjugate gradient descent and Gradient descent.

Trust-region reflective

47

Interior-Point

Active-set

48

Sequential quadratic programming

49

B.1.2 Cold start

Gradient descent

Conjugate Gradient descent

The algorithm tries both the next conjugate gradient descent step, as well as the pure
gradient descent step, and selects the one with most decrease.

50

Quasi-Newton

As above, we enable the quasi-Newton step while retaining the possibility of conjugate
gradient descent and gradient descent.

Newton

Here the algorithm tries all four possibilities above, that is; Newton, Quasi-Newton,
Conjugate gradient descent and Gradient descent.

51

Trust-region reflective

Interior-Point

52

Active-set

Sequential quadratic programming

53

B.2 Final results

B.2.1 Augmented Lagrangian, Smoothed eff, Trust region solver

Warm start

Cold start

54

	Introduction
	Background
	Short introduction to the problem
	Report overview
	Overview

	Problem description
	Real world description
	Weather conditions and model data
	Measure of success

	Optimization background
	What is mathematical optimization
	Local and global optimization
	How optimization is performed

	Mathematical formulation of the DP problem
	Problem properties
	Complexity of the problem
	Properties of the problem

	Guarantees for the solution to the static DP problem

	The current algorithm
	Description of the algorithms
	Issues and strengths

	Algorithms described in modern text books: any that work?
	Possible algorithms
	Penalty method with line search
	Algorithms for constrained optimization
	Particle swarm optimization
	Iterated hill climbing

	Results
	Conclusions

	Reviewed optimization algorithms
	Deterministic, line search
	Derivative free descent method
	[Conjugate] gradient descent
	 [Quasi-]Newton method

	Deterministic, model based
	Trust region
	Surrogate function / Simulation based methods

	Stochastic
	Particle swarm optimization
	Simulated annealing

	Branch and bound
	Unconstrained model of constrained problem
	Penalty method
	Augmented Lagrangian
	Exact penalty and exact augmented Lagrangian methods

	Implemented algorithms
	Branch and bound
	Simulation based algorithm
	Penalty method with line search
	Augmented Lagrangian with trust region optimization

	Global search (specific to DP)

	Computational results
	Branch and bound
	Simulation based method
	Line search and penalty method
	Trust region and augmented Lagrangian

	Global search (specific to DP)

	Conclusion and future work
	Conclusion
	Future work

	Tables
	Complete results
	First implemented algorithms
	Using dpopt as warm start
	Cold start

	Final results
	Augmented Lagrangian, Smoothed eff, Trust region solver

