
Improving the customizability of in-
terfaces that communicate with dif-
ferent systems
Master’s thesis in Software Engineering

Georgios Pseiridis Pseiras
Zhenyu Zhang

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2016

Improving the customizability of interfaces that
communicate with different systems

GEORGIOS PSEIRIDIS PSEIRAS,
ZHENYU ZHANG

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2016

Improving the customizability of interfaces that communicate with different systems

Georgios Pseiridis Pseiras
Zhenyu Zhang

© Georgios Pseiridis Pseiras 2016.
© Zhenyu Zhang 2016.

Supervisor: Patrizio Pelliccione, Department of Computer Science and Engineering
Examiner: Regina Hebig, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

Abstract
This thesis describes the process of handling the variability needs of a company
which does not follow traditional product lines approaches and where the work of
code maintenance is divided between the company and their customers. More specif-
ically, this study focuses on improving the customizability of interfaces used for data
transmission through different system, where misinterpretations can occur leading
to problematic communication. The background specification, related work, trade-
off analysis of available methods, the development of a prototype and its evaluation
are presented in this study. We document the guidelines for decision making and
suggest ways for future work. We pushed the prototype on the company’s code
repository, ready to be used by their employees and hopefully be proven useful. We
hope that the findings of this study could support the customization endeavors of
companies of similar technical contexts.

Keywords: Software customization, Variability Handling, Product Lines, Interoper-
ability, Maintainability

iv

Acknowledgements
We would like to express our sincere appreciation of Jeppesen for giving us the
wonderful opportunity to work with them. More specifically, we would like to thank
our supervisor at the company, Thekla Damaschke for her tremendous support on
our study. She is the mind behind the original idea of this thesis topic and she was
always willing to help.
We would also like to thank all our interviewees for making time from their busy
schedule to engage in our study and answer our questions. Many thanks also to the
line manager in the company, Cormac O’Brien for helping us get an office for our
work and helping us with scheduling meetings, to Hans Andreasson for helping us
identify key stakeholders, all the people from the IO team for helping us setting up
our working environment and provide valuable feedback.
We would also like to express our gratitude to our supervisor in the university
Patrizio Pelliccione for his support, encouragement and for showing us ways to
continue with our work.

Georgios Pseiridis Pseiras, Zhenyu Zhang, Gothenburg, Sweden, August 2016

vi

viii

Contents

1 Introduction 1
1.1 Purpose and objective . 1
1.2 Research questions . 2
1.3 Scope and limitations . 3
1.4 Method . 3
1.5 Outline of the thesis . 4

2 Background 5
2.1 Crew management systems . 5
2.2 Standard interfaces . 6

2.2.1 SSIM interface . 6
2.2.2 Operational messages interface 6

2.3 The avocado model . 7

3 Theory and related work 9
3.1 Challenges of Software Customization 9
3.2 Related Work . 9
3.3 Software Product Lines . 10
3.4 Key concepts . 11

3.4.1 Variation Point . 11
3.4.2 Variant . 11
3.4.3 Run time and build time binding 11
3.4.4 Variability Types . 12
3.4.5 State of variability . 12
3.4.6 Software Features . 12
3.4.7 Interfaces . 13

3.5 Software Quality . 13
3.5.1 Maintainability . 13
3.5.2 Interoperability . 14

3.6 Dimensions of variability handling . 14
3.7 Methods for variability handling . 15

3.7.1 Generators . 15
3.7.2 Configuration Management 15
3.7.3 Self-Adaptive systems . 16
3.7.4 Code level techniques . 16

3.7.4.1 Design Patterns . 16

ix

Contents

3.7.4.2 Software product lines patterns 16

4 Methodology 19
4.1 Research Method . 19
4.2 Awareness of the problem . 20

4.2.1 Interviews . 20
4.2.2 Code and document analysis 21

4.3 Literature review . 22
4.4 Trade off analysis and development 23
4.5 Development . 23
4.6 Evaluation . 23

5 Towards effective variability handling 25
5.1 Variation inside standard interfaces 25

5.1.1 Main Variation Points of SSIM 25
5.1.2 Data element identifiers . 27
5.1.3 Misused Fields . 27
5.1.4 Different SSIM versions . 28
5.1.5 Time modes . 28
5.1.6 Onward flight . 28
5.1.7 Main variation points of Operational messages interface . . . 29

5.2 The old and the new system . 29
5.2.1 The old system . 29
5.2.2 The new system . 30

5.3 Indicators for selecting a method . 31
5.3.1 Summary of indicators . 32

5.4 Trade-off Analysis of Variability Realization Mechanisms 32
5.4.1 Generators . 32
5.4.2 Configuration management systems 33
5.4.3 Self-Adaptive systems . 33
5.4.4 Code level approaches . 33
5.4.5 Summary . 33

6 Development and implementation of proposed solution 37
6.1 Java implementation . 37
6.2 Change of technology . 38

6.2.1 Code analysis results . 38
6.2.2 Issues of the current appraoch 39
6.2.3 Suggested approach . 40

6.3 Development process . 40
6.3.1 Example use cases . 41
6.3.2 The rest of the variation points 42
6.3.3 Operational messages variation points 43

7 Results and discussion 45
7.1 Validation . 45
7.2 Evaluation . 45

x

Contents

7.2.1 Preliminary feedback . 46
7.2.2 Final Evaluation . 47

7.3 Integration . 49
7.4 Guidelines for decision making . 50

7.4.1 Understanding the nature of the variation point 50
7.4.2 Implementation of a variation point 50

8 Threats of Validity 53

9 Conclusion 55
9.1 Future work . 55

Bibliography 57

A Interview and evaluation questions I
A.1 Semi-structured interview questions I
A.2 Group interview questions . I
A.3 Code analysis questions . I
A.4 First evaluation questions . II
A.5 Final evaluation questions . II

xi

Contents

xii

1
Introduction

Software variability is defined as the ability of a software system or artifact to be
changed, extended or configured for use in a specific context. As the variability
is improved, the system can be easier customized (Svahnberg, Gurp, Bosch 2001).
Variability is a leading aspect of success in software engineering but at the same
time a dominant reason for complexity augmentation (Rhein et al. 2015). To exploit
the benefits of variability, requirements between different stakeholders need to be
addressed and different software solutions should be proposed. There is not a single
software package which could satisfy all customers. Customization is therefore often
presented as a solution to the needs of the different customers (Weiss & Schweiggert
2013).

1.1 Purpose and objective
Handling variability is crucial for a company which places great emphasis on mass
customization. There is a risk of problems occurring between different systems
due to their inability of to interpret correctly the given parameters. Therefore, to
mitigate this, effective variability management is required to enclose the activities
needed to explicitly manage variability and handle the dependencies among the
various software artefacts (Schmid & John 2003 p260).
In the concrete case of the Jeppesen Company, in each installation, their crew plan-
ning and tracking system is put into a unique system context that needs to exchange
information with a varying set of other systems from different vendors. The timely
and correct information exchange is crucial for the ability of the system to provide
the expected services with expected quality. Especially for a tracking system, in-
teroperability problems with surrounding systems can lead to severe impact on the
airlines operation
Due to the high degree of variation which is required, interface development has so
far been the domain of customization. These interfaces define the interpretation of
the airline data. In the past, each airline had their own customer specific interfaces
to communicate with the company’s systems. The company is currently striving
to introduce standard interfaces. In this way they are expecting to move away
from customer specific interfaces and impose a standard behaviour which will be
followed by all airlines. However, in the avionics field, it is a common phenomenon
for different customers to use their own interpretation of otherwise well-defined
standards and thusly violating the imposed standard behaviour.
Software product line engineering techniques cope with the high demand of varia-

1

1. Introduction

tion among their products. Software product lines define a family of products which
share commonalities and variations with each other and can be viewed as a family
of products (Bosch Capilla & Kang 2013). Product line techniques suggest ways to
minimize the costs of development, maintenance and evolution of the software prod-
ucts (Svahnberg, Gurp & Bosch, 2001 p2). The software companies are responsible
for their products during all the life-cycles.
There is a significant area of research about handling software variability where
a considerable amount of different methods have already been proposed. These
methods suggest patterns, theoretical frameworks and tools, mainly in the context
of software product lines. These methods work under the assumption that the
maintenance of the software systems is being done completely by the company’s
side and that the required variation will live for very long.
However, this is not the case for Jeppesen, as part of their system’s code is main-
tained by their customers. After the company delivers their systems, they lose
control over customer specific source code. Their clients are responsible for partial
code maintenance and compatibility of their systems. Therefore, the risk of incor-
rect interpretation of the provided parameters is high when one of the systems in
the whole landscape is updated or replaced.
This study aims to support the customization efforts in a company which does
not follow traditional product line engineering techniques. We asses and analyze
the requirements, compare them with existing solutions and define whether they
fit in our case. The outcome of this thesis are the guidelines to support future
decision making for the customization needs of similar contexts based on the acquired
knowledge, accompanied by solid reasoning.

1.2 Research questions
We have defined two research questions to determine a decision making strategy.
These research questions are as follows:

RQ1: What are the variability needs and what are the limitations of the interfaces?

In order to suggest a method we needed first to understand the nature of the required
variation of the interfaces. This research question’s aim was to let us understand the
context and provide a basis to design a method to address the variability needs. We
therefore had to understand, why different airlines interpret well-defined standards in
different ways, what causes faulty communication between different systems, which
parts of the standard are still open for interpretation and how did the company
so far managed the variability inside these interfaces. To answer these questions,
interviewed experts inside the company about a specific standard interface. After
the analysis phase was over, we tried to answer the second research question which
was:

RQ2: What are the guidelines to support the customization efforts of a software
system whose code maintenance is divided between the company and its customers?

2

1. Introduction

This research question is concerned with providing the outcome of the thesis. Having
obtained the context of the problem based on the first research question, we tried to
suggest guidelines to effectively increase the customizability of their systems. These
guidelines would be based on solid reasoning and evaluated to ensure the degree to
which it is successful in facilitating the customization needs of the company under
study and other companies with similar technical context.

1.3 Scope and limitations
This thesis focuses on the variability handling issues in the technical context of
Jeppesen, located in Gothenburg, Sweden. Thus the conclusions of this study might
not be applicable to other companies. Additionally, the main focus is placed on im-
proving the customizability of the new system although we interviewed stakeholders
working in the old system as well. However, the new system was supporting only
one customer by the time this study took place. It is therefore hard for our method
to be integrated right away since the possible emerging use cases are not well known
right now.
The basis of the study was placed on a single, rather complex interface where several
aspects are affected at the same time. It is concerned about timetable information
and although it is standardized, airlines still interpret it differently with each other.
Each field in the standard is translated into semantics which systems can be under-
stood my Jeppesen’s system. However, since some fields are open for interpretation,
the processing of the semantics could lead to incorrect results.
Later during this study, we decided to expand the scope to another interface to
investigate whether the suggested method for the first interface could be replicated to
a similar context. This is the operational messages interface which can be considered
as family of standards. Due to limited time, for this interface we took a more
theoretical approach.

1.4 Method
The methodology followed the guidelines of design research as described in (Vaish-
navi & Kuechler, 2004). We tried to first understand the problem and create knowl-
edge by implementing our conceived idea. To gain an insight of the company’s
technical context we performed semi-structured interviews, a group interview and
code analysis. To get the state-of-the-art of existing methods for variability han-
dling, we performed literature review. The interviews were recorded, transcribed
and analyzed further. The knowledge gained from the literature was documented
and used to suggest a conceptualized solution.
We defined two research questions which served as the main guidelines of the re-
search. In this way, we expected to come closer to the research goal by answering
them. We later performed a trade-off analysis of the existing methods found in the
generic literature. The purpose was to give solid argumentation of which method
was more suitable in the problem under investigation. We later proceeded to develop
a prototype and evaluate it.

3

1. Introduction

1.5 Outline of the thesis
This thesis is structured as follows. In chapter 2 we present general information
about the company and the systems they develop. In chapter 3 we present the
key concepts of software customization and variability handling that this thesis is
focused on and discuss the related work. In chapter 4 we present the methodology
we followed to deal with the variability problem under investigation. In chapter 5
we discuss about the main variation points, the main indicators which influenced
our decision making and a trade-off analysis of the main realization mechanisms.
In chapter 6 we discuss the development process while in chapter 7 we present the
evaluation of our approach and the guidelines for future decision making. In chapter
8 we state the threats of validity. The study concludes in chapter 9 and suggestions
for future work is presented.

4

2
Background

Boeing was founded on July 15, 1916 by William Boeing and is the world’s leading
aerospace company (Boeing, 2016). This study took place in one of their subsidiary
companies called Jeppesen founded in 1934. They offer a diverse set of products
such as navigation charts, planning tools and crew management systems This study
focuses on the last (Jeppesen 2016). In this section we discuss the background of the
company, presenting an overview of their crew management systems, the interfaces
we studied and the avocado model.

2.1 Crew management systems
An enormous amount of airlines expenses emanates from the costs of moving crew.
Jeppense’s office in Gothenburg specialises in providing crew management solutions
to airlines so as to increase the crew productivity. The planning process is very
complex and consists of a number of different stages.
The first one is the manpower process which is about the long term plans. Here, the
general number of crew members, along with the required qualifications is defined.
This can be considered as defining anonymous work-blocks for crew personnel, where
they should be filled by real people later on. The companies can decide who should
be hired, promoted, who needs training and how the leave should be divided.
The next process is called pairing. It is a set of flight legs, which start and end
in the same destination. This is a sophisticated process where a large number of
factors should be taken into consideration. When the crew comes back, the pairing
is finished. There are a lot of restrictions such as the hours the crew can work, how
many continuous days they are allowed to work, the different workforce laws of the
country they come from to name a few.
The next process is called rostering and it is about assigning actual personnel. The
rosters can be viewed as the actual work schedules. Again, here there are lot of
restrictions. For example, a trip going to Brazil requires at least one crew personnel
who can speak Portuguese. What is more, a crew member might wish to take a
few days off and therefore another crew member should replace him or her for.
Sometimes crew can not work together or they should work together.
Finally, there is the crew tracking stage. This is where the company tries to solve
problems when they arise. For example, a crew member who got sick in the middle
of his or her assigned trip has to be replaced by another member who is on standby
in this city.
Valid and consistent information exchange between different systems is crucial for

5

2. Background

the optimization system to provide the best results. However different airlines have
different customization needs. Consequently, their systems vary with each other.
This imposes a threat for the information interoperability as there is a risk for
misinterpretations of the exchanged data.

2.2 Standard interfaces
International Air Transport Association (IATA) provides support for most airline
companies throughout the world. The IATA manual defines the structure and be-
haviour of both interfaces of the study. We used the issue of March 2011 for the
study.

2.2.1 SSIM interface
The Standard Schedules Information Manual (SSIM) defines the interface which is
complied to the IATA regulations. It is used from airline companies to produce
schedule data in the form of timetable information. The airline companies gen-
erate an SSIM file which is then distributed to multiple recipients such as airline
reservation systems, timetable agencies, air traffic control authorities and so on (In-
ternational Air Transport Association, 2011). Jeppesen systems use these files for
crew and fleet management, with a strong emphasis on optimization of crew pair-
ing, rostering and tracking. The need for the consistency of the data is therefore
considered highly important in order to create valid and efficient solutions.
The interface under investigation has been selected because it is well-known by the
people in the company and it is well-defined by the IATA manual. However it
contains a number of variability points. This means, there are parts of the standard
which are open for interpretation that the interface should be aware of. Therefore,
it was considered a good candidate to provide a basis for this research, where the
outcome could be replicated to other similar interfaces as well.
The manual provides explicit formatting rules to define the interface’s syntax. Each
byte in the syntax has its own meaning and corresponds to one of the supported
fields. It should be noted that the company’s systems do not read all the fields, since
some of the optional fields such as meal service, have no impact on crew planning
and are therefore discarded.

2.2.2 Operational messages interface
The second interface is about the operational messages, which could be considered
as a family of formats. They are concerned with information regarding amendments
of flight schedules, deviations from original schedules and aircraft movements. The
information are being exchanged between airlines, aircraft and schedule aggregators
(International Air Transport Association, 2011).
An identifier is placed at the beginning of the message to differentiate between
each format. Information for permanent changes to basic schedules are transmitted
through the Standard Schedules Message (SSM). Modifications of schedules are de-
fined through the Ad-Hoc Schedules Message (ASM). Aircraft Movement Messages

6

2. Background

(MVT) are concerned with messages regarding departure, arrival and delay of a
flight which were produced manually. Aircraft Initiated Movement Message (MVA)
are concerned with messages of the same nature as with MVT but produced by the
aircraft itself (International Air Transport Association, 2011).
The manual provides guidelines for specifying a diverse set of actions for each of
these formats, in the form of sub-messages. These actions, for example, can define
behaviour for inserting a new flight designator, update information of existing flights
and change of existing routing information. Each of these sub-messages are specified
in a similar fashion as with the SSIM’s case; each byte corresponds to a field which
contain data for messages between the aircraft and the airport. Not all the messages
are being used by each airline.

2.3 The avocado model
The Avocado model demonstrates how the company develops its products. This
Avocado Model is shown on the figure below:

Figure 2.1: The Avocado model.

The core part consists of functionality that is the same to all of their customers. For
example, all the optimization algorithms are embedded in the core. The translation
of SSIM information to semantics is also inside the system’s core.
Then, there is the soft layer that surrounds the core. This layer contains the busi-
ness logic and it can be different from customer to customer. For example, union

7

2. Background

contracts are different between the United States and Europe. Another example
is how the graphical user interface is displayed from customer to customer. Even
the translation of the SSIM can be modified to adhere to an airline’s needs. This
layer can be modified by the airlines companies alone, or with the help of Jeppesen
engineers. The configuration can be done by utilizing a domain specific language
developed by the company as well as by writing Python scripts which do not require
the system to be recompiled. The soft layer therefore varies for each airline. Jeppe-
sen does not have control over this layer after their system is delivered. It is up to
the airlines to maintain it.
Finally, there is the skin, which is the outer layer of the avocado. This is where the
system allows its users to define parameters. For example, how many days off in a
month can a crew member have.

8

3
Theory and related work

In this chapter, we discuss foundations, key concepts behind the study as well as
related work. There is a significant area of research to suggest ways and tools to
manage variability. Most literature refers to product line engineering, which authors
differentiate it from pure software engineering techniques. Typically, in software
engineering approaches, the focus is placed on delivering single products. Product
lines aim to deliver a family of products (Völter, 2009).

3.1 Challenges of Software Customization
Mass customisation is concerned with the production of goods that address the par-
ticular requirements for a number of different customers (Davis 1987). Dealing with
software customisation requires significant investment and variability management
from the software companies. Additionally, risk management is required as there is
a number of potential problems that can arise. The systems need to be kept com-
patible with each other. Every time a system is updated, removed or changed, there
is a risk that something might break. Consequently, maintaining low customiza-
tion costs and the ability to assess risks of potential mismatches between software
products are central challenges of mass customization.

3.2 Related Work
To the best of our knowledge, we identified a gap in the literature of case studies in
similar contexts. That is, all existing literature we came across talks about managing
variability from the company’s side, not sharing the maintenance work among the
company and their customers. There is a significant amount of case studies related
to variability handling, management and customization efforts.
The authors in (Svahnberg, Gurp & Bosch, 2005) performed and analyzed a num-
ber of case studies in large IT companies for ways of managing variability. They
proceeded to present guidelines for decision making based on explicitly defined in-
dicators. They suggest thirteen different realization mechanisms as shown in figure
5.5 in the trade-off analysis subsection. However, the guidelines were meant to be
followed by companies which utilize traditional product line approaches, where the
maintenance is done by the company’s side. Although our study was greatly influ-
enced by their work, we could not be sure whether they could be applicable in our
context too. For this reason we decided to expand their guidelines to a different
context as well, following their indicators.

9

3. Theory and related work

The authors in (Capila Bosch) present a systematic review of foundations and prin-
ciples for effectively handling variability. Similarly, (Galster et al. 2014) present a
systematic literature review for variability in Software Systems.
In (Renault 2014) the author shares his industrial experience of ways to explore
reuse and variability management mechanisms with system engineering methods.
He discusses the drivers for variability management, the drivers for reuse, the main
existing practices and some gaps of existing approaches.
The authors (Galster & Avgeriou 2015) discuss their findings of case studies about
variability handling in large scale systems. Again, here the authors suggest ways to
handle variability. Their work does not focus on product lines but rather in large
scale enterprise systems. They also compared their methods with the mechanisms
discussed in (Svahnberg, Gurp & Bosch, 2005). They provide tables for mapping of
variability types to levels of variability and to compare their suggested variability
realization techniques against variability handling mechanisms.
In (Jansen et al. 2010) they discuss how can customization mechanisms in soft-
ware product lines be applied in the context of multi-tenant web applications. They
perform two case studies and discuss their findings. The variability realization tech-
niques aim to solve functionality in this concrete context but they are inspired by
the previously mentioned techniques in the taxonomy of (Svahnberg, Gurp & Bosch,
2005).

3.3 Software Product Lines
The ability of customers to demand products tailored to their requirements, shapes
the software industry. To cope with this demand, software companies have intro-
duced product lines (Bosch Capilla Kang 2013). Software product lines can be
viewed as a family of products where commonalities and variations are shared be-
tween the products. The aim is to keep the development, maintenance and evolu-
tion costs to a minimum by exploiting asset reuse mechanisms (Svahnberg, Gurp &
Bosch, 2001 p2).
The demand of individual products is steadily on the rise, while there is a continuous
pressure to deliver these products as fast as possible so as to obtain a competitive
advantage on the market. Product lines offer methods and mechanisms to exploit
the commonalities and varying parts of each individual system (Svahnberg, Gurp &
Bosch, 2005).
Companies define a domain software architecture that enables the development of
a number of software solutions that can be configured to match the market needs.
The individual products are built by borrowing a number assets from this domain
architecture. When the development starts, there is an arbitrary number of possible
systems that can be built. Later on, however, this number is constrained to only
one run-time system by taking some design decisions. These design decisions are
defined as variability points of the system (Svahnberg, Gurp, Bosch 2001).
A large number of papers discuss techniques that can be applied in the context
of software product line engineering. According to (Svahnberg, Gurp, Bosch 2001)
most design decisions are delayed until the later stages of the development life cy-
cle. This implies that the product can choose which variants to include for each

10

3. Theory and related work

variability point as a set of the available components which are selected in build
time. Another way is to allow the users to change the system according their wishes
during run time by choosing the available functionality provided by the system.
Modelling the variability is considered essential to support the construction of an
adjustable architecture (Griss, 2000). This is also supported by (Pohl, Böckle,
Linden. 2005 p60) where they discuss that the first step towards an effective way
to handle these points is by understanding them. They also suggest to use feature
models which are used to represent the common and different features of a software
product line. During the different development cycles, there are different types of
modeling as they describe different abstraction levels.

3.4 Key concepts
This section clarifies the key concepts that are being used in the rest of this studies
chapters. It should be noted that there is not necessarily a single definition for each
of these concepts.

3.4.1 Variation Point
Variation point, also referred as variability point, expresses where differences be-
tween products exist (Linden, Schmid & Rommes 2007, p10). A Variability point
implies that a particular artefact will be different among the family of products (Pohl
et al. 2005, p61). An example of a variability point is the video capturing quality
of a modern mobile phone. This can be different based on the phone’s hardware or
based on the the choices the user makes during the phone’s operation.

3.4.2 Variant
A variant defines the available options for a particular variation point (Linden,
Schmid & Rommes 2007, p11). An example of a set of variants is the available
options for selecting the quality of the video recording functionality. These options
can be can be for example low, medium, high and ultra-high quality. The variants,
when selected, are bounded to the particular variation point of the video recording
quality.

3.4.3 Run time and build time binding
An important dimension of variability management is the time of binding. It can
either take place during build time or run time. Build time means the variability is
bounded during the system’s development, maintenance and evolution. During run
time means the variability is bounded during the operation of the system (Svahnberg,
Gurp, Bosch 2001 p5-6). An example of build time variability could be a family of
products, such as surveillance cameras. One of these could be a fixed camera which
includes 720p recording while another camera includes 1080p recording and 360
degrees view and zoom capabilities but is more expensive. The buyer then decides
which camera is more suitable for his or her needs accordingly. Therefore, the buyers

11

3. Theory and related work

can not change the variants of the system.
An example of run time variability binding could be the language selection of the
user interface of the surveillance camera’s software. The available languages are the
variants and are all included in the system. The users then decides the language
during the system’s operation and can change it later if they wish. The user interface
of the system is then changed dynamically based on the current user’s requirements.
Run time and build time variability play an important role on our decision making
as we will discuss in the following sections.

3.4.4 Variability Types
We use the definitions presented in (Anastasopoulos & Gacek. 2001). The variability
types can be:

• Positive: A functionality is added in the product
• Negative: A functionality is excluded from the product
• Optional: A certain code fragment or module can be added.
• Alternative: A certain code fragment or module can be replaced.
• Function: A functionality is altered.

3.4.5 State of variability
Following the taxonomy of (Svahnberg, Gurp, Bosch 2005, p710), the state of vari-
ability influences the decision making strategy. These indicators are also defined in
(Svahnberg, Gurp, Bosch 2001, p6). The state of variability can either be

• Implicit: The variability point is part of a higher abstraction level but not
part of the system.

• Designed: The variability point is considered explicit and design decisions are
taken to suggest how it should be implemented into the system.

• Bound: The variability point is bound to a particular variant.

3.4.6 Software Features
The products vary with each other in term of the provided features. According to
(Bosch et al. 2013 p.26- 29) product lines need to define the common and varying
parts between each of their products. These are commonly referred as features. This
is also supported by (Svahnberg, Gurp, Bosch 2001) where they refer to features as
an abstract way to describe the user requirements. The authors suggest that the
features can be grouped as follows:

• Mandatory, which means the feature should always be part of the system.
• Optional, where the feature may or may not be included.
• Alternative, which implies exactly one feature can be selected.
• External, which means the features are not part of the current system. This

means that the system allows the use of functionality which is part of another
system.

12

3. Theory and related work

3.4.7 Interfaces
Interface is defined as a common boundary between different systems or between
parts of a system, through which data are transmitted (IEEE 100 2000, p. 574). In
the company’s context, interfaces are being used to define airline related operations
and properties. Information for crew, trips, rosters and aircraft are being trans-
mitted through them. Most of these interfaces have been tailored to adhere to the
needs of each individual airline company. For certain behaviours, each airline used
their own interface which could not be reused by another customer. This resulted to
a significant amount of customer specific interfaces. Furthermore, their customers
were responsible for the maintenance of their interfaces and make sure they are
compatible with the other systems and as a result the company was receiving a lot
of support questions.
The company is now trying to move away from customer specific interfaces by in-
troducing standardized ones with standard behaviour. The SSIM is one of these
standard interfaces. Its well-defined format is expected to be followed in the same
way from all of the airline companies. However, in practice, even standard interfaces
are being misused in some way as there are still parts which are being interpreted
in a different way by each airline.

3.5 Software Quality
Software quality is a broad topic in software engineering. Quality requirements
specify how well the software product is expected to perform its functions. They are
also known as non-functional requirements to distinguish with the actual functional
requirements of the system (Soren 2002, p217). We follow the definitions of the
(ISO/IEC 9126-1) standard which categorizes the different dimensions of software
quality in six clauses. Maintainability and interoperability are the core quality
requirements of our study. The reason is that the company wishes to implement
a solution which is easy to maintain, without breaking the communication of the
interfaces with different systems. Changeability is a categorized as a sub-quality of
the maintainability clause. We analyze these qualities below.

3.5.1 Maintainability
According to (ISO/IEC 9126-1) maintainability is about the capability of the soft-
ware system to be changed after it has been delivered. The sub categories of main-
tainability refer to the ease that the product can be analyzed, modified, tested and
comply to maintainability standards. (Sommervile, p243-244) identifies three main
categories of software maintenance. The first is about fixing bugs, the second is
adaptation to a new enviroment and finally the inclusion of additional functional-
ity. The additional functionality is usually the source of the highest maintenance
efforts. Additionally, the cost of maintenance is considered as the most costly phase
of software development as discussed in (Asadi, Rashidi, 2016) and (McKee 1984).
The company stresses the importance that the solution to their customization issues
needs to be easy to maintain. As an example which was raised during our inter-

13

3. Theory and related work

views, the component which translates raw input data into XML might slightly be
different from customer to customer. Should this be the case, the company might
end up having thirty or more instances of the same component to maintain resulting
to maintenance hell.

3.5.2 Interoperability
According to (ISO/IEC 9126-1) interoperability is defined as the capability of two
or more software systems to communicate and exchange information correctly in
order to achieve their goal. Different systems have different behavior patterns. A
message sent from a particular system could be interpreted differently from another
one, resulting to problematic communication. In some cases, the reason for this is
the complexity of the required parameters for the effective communication (Rowely
1995). As an example, in (Garlan et al. 1995) found that integrating commercial
off-the-shelf products (COTS) proved to be hard because each product had different
behavioral model. The effort to make the systems interoperate proved to be futile
and very costly. Another example of industrial interoperability problem in the avia-
tion industry, would be the interpretation of the date field field. A system sends the
date in local time to another system which in turn interprets it as UTC. This results
in problematic communication, even if the semantics comply to the standards of the
interface used.

3.6 Dimensions of variability handling
The authors in the systematic literature review by (Galster et al. 2014) identify two
major dimension clusters of the variability handling. The first one is concerned with
portraying and modeling the variability, the different requirement types and which
software artifacts are affected. This dimension is intertwined with requirements
engineering, where the specifications of the variants are introduced. Representing
the functional requirements using feature models appears to be the most dominant
approach.
The second dimension is related to the methods of realizing the variants inside the
system. These methods are grouped on a higher level as follows:

• Reorganization: The structure of the system, along with its artifacts is reor-
ganized to adapt to changes.

• Selection: Selecting among a given set of variants for each variation point.
This appears to be a typical approach in the context of software product line
engineering.

• Value assignment: A particular value is assigned to a variation point, usually
by parsing parameters.

• Code generation: This refers to techniques used to generate customer specific
artifacts based on a given input.

According to the authors, the most popular realization technique is the selection

14

3. Theory and related work

from a pool of variants followed by the system’s reorganization (Galster et al.). It
should also be noted that the authors distinguish between software engineering and
software product line engineering techniques. The variability handling strategies in
the context of software product lines share similarities, something that does not exist
in pure software engineering approaches (Galster et al. 2014 p297). In the following
subsections of our report we will discuss about the available technical methods in
more detail.

3.7 Methods for variability handling
In this section we discuss the identified methods for variability handling and man-
agement. Because of the large amount of different available methods, we will focus
on the most popular ones that appear more often in the literature.

3.7.1 Generators
(Wölfl et al. 2015) (Bass, Clements & Kazman 2012 p402) (Pohl, Böckle & Linden
2005, p251) have discussed the concept of Generators as a widely used mechanism
in software product lines to produce product specific architecture. According to a
systematic mapping in (Mehmood & Jawawi, 2013) code generators rely on model-
driven engineering and aspect-oriented techniques. Model-Driven Engineering uses
models as primary artifacts which generate automatically the required components
a software system needs. Aspect-oriented software development focuses on the sep-
aration of cross-cutting concerns.
(Jörges 2013, p11-35) presents the state of the art in code generation. Most genera-
tors use meta-models and domain-specific languages. Generative programming is a
concept that implements a family of systems which is generated by a given require-
ments specification. Most of the available techniques make use of domain-specific
models, developing domain specific and defining languages and transformation rules.
(Wölfl et al. 2015) present an experience report with making use of a novel code
generation approach making use of aspect-oriented development. They combine
model-based and product-line technology to create safety critical software in the
technical context of Airbus Helicopters.

3.7.2 Configuration Management
(Bass, Clements & Kazman 2012 p402), (Svahnberg, Gurp, Bosch 2001) and (Svahn-
berg, Gurp, Bosch 2005) suggest configuration management tools as another pow-
erful mechanism to manage variability.
Based on the definition in (Bachmann & Bass 2001 p7), this approach aims to
develop customer specific products by invoking the required modules. The variants
of each variation point are used as input and configuration items are produced to
shape the product accordingly.
In (SEI 2000) the authors suggest a Capability Maturity Model of enhancing the ef-
fectiveness of these tools. Configuration management is concerned with the integrity
of the different software products, making use of configuration control mechanisms

15

3. Theory and related work

(SEI 2000, p72). Configurations form a baseline which defines the required grouping
of various products (SEI 2000, p186).

3.7.3 Self-Adaptive systems
In (Galster et al. 2014) they discuss the concept of self-adaptive systems, which
heavily rely on managing variability. Since our study focuses on the SSIM adapter,
we investigated related work for self-adaptive adapters and connectors. The work
of (Di Marco, Inverardi & Spalazzese 2013), (Ke & Huang 2012), (Van den Heuvel,
Weigand, Hiel. 2007) addresses the issue of solving protocol mismatches between
clients and servers. The main idea is the use of an adapter or connector which
contains a strategy to select among a pool of algorithms the optimum one for each
mismatch case.
The area of configurable adapters is currently not widely explored and the proposed
solutions put a lot of emphasis on satisfying performance requirements. A controller
retains a knowledge-base, in the form of a repository of scripts and based on the
current state of the system it changes its behaviour dynamically.

3.7.4 Code level techniques
There are code level techniques for handling variability in both traditional software
engineering and software product line engineering. These techniques range from
either applying design patterns, or simply by putting conditions on constants or
variables. We reviewed related work in both fields. It is noteworthy that hybrid
approaches can exist, as the patterns in both fields can be used together.

3.7.4.1 Design Patterns

To increase the software’s customizability, the software architecture needs to be
able to accommodate the variation points. For this reason, we consider generic
design patterns that should facilitate this purpose. We reviewed the design patterns
originally presented by the Gank of Four (Gamma et al. 1995). These patterns are
also explained by (Freeman, Sierra & Bates 2004) in an easier to understand way.
Design patterns are reusable solutions to recurring problems that arise in specific
design contexts (Gamma et al. 1995). Their aim is to solve these problems in an
elegant and effective way but most importantly in a way that is predictable since
the risks and benefits of each design pattern are known beforehand.
The authors in (Mirakhorli, Mäder & Cleland-Huang. 2012) discuss the applicability
of the design patterns and architectural tactics in different contexts. The aim is to
enable the software architecture to accommodate variability points efficiently. Addi-
tionally, they provide figures and illustrative examples to enhance the understanding
of the readers and aid their decision making.

3.7.4.2 Software product lines patterns

We reviewed a summary of product lines patterns as presented in (Lee, Hwang 2014).
We also reviewed the patterns which this paper references, such as those presented in

16

3. Theory and related work

(Anastasopoulos & Gacek. 2001). The taxonomy in (Svahnberg, Gurp, Bosch 2005)
provides some code level techniques and their expected results for each of these.
These papers provided an important insight of the current methods for managing
variability to highly customized software systems by exploiting reuse mechanisms.
(Völter, 2009) identifies three general patterns in software product lines. These
patterns are removal, injection and parametrization. Removal instantiates a product
without the inclusion of specific components. Injection includes adds up more to
the product’s core. Parametrization suggest ways where variants can be specified
for certain components by providing parameters.
The methods are also affected by the different lifecycle phases of the product lines
and the binding time of the variability. Lifecycles can be for example during re-
quirements engineering or architecture design, while the binding time can be during
compile-time, link-time or runtime. The different variability types, such as positive,
negative optional are discussed as in (Anastasopoulos & Gacek. 2001) and presented
in chapter 3.3.4 of this document.
Since the company our study took place in does not follow traditional product line
approaches, we have reviewed an experience report of a study that took place in
a company that did not make conscious use of software product line engineering
techniques (Benavides & Galindo. 2014). The company manages variability by
simply providing a base project, which contains all optional parts.

17

3. Theory and related work

18

4
Methodology

This study follows the guidelines for design research in information systems, as
presented by (Vaishnavi & Kuechler, 2004). In this section we describe the steps we
followed in order to propose our suggestion and collect feedback. In summary, the
steps we followed were as follows:

1. Understand the context of the problem by performing semi-structured inter-
views and code analysis.

2. Capture, document and analyze the extracted information.
3. Perform literature review to explore available solutions from the state of the

art.
4. Provide trade-off analysis for each variability point.
5. Conceive a solution and realize a prototype for showing the idea.
6. Evaluate by collecting feedback from key stakeholders in the company
7. Iterate this process, refine the method, expand the scope and reevaluate

4.1 Research Method
The aim of this thesis was to focus on a particular problem and suggest a method
to solve it. We followed the steps of the model proposed by (Vaishnavi & Kuechler,
2004 p.7), we first had to understand the context of the problem. Then, we explored
the current available solutions and select the optimum by providing the reasoning
behind. This enabled us to suggest a way to solve it by designing a prototype. We
then proceeded to evaluate our suggestion based on the feedback of the company’s
stakeholders. Based on that we further refined our method. Additionally, to assess
whether or not our approach could be applied to another similar context, we used
the findings of the first iteration to suggest a way for another interface. Feedback
from experts was once again collected and documented. The figure 4.1 shows the
process steps we followed.

19

4. Methodology

Figure 4.1: The process model for design research. Taken from (Vaishnavi &
Kuechler, 2004 p.7)

4.2 Awareness of the problem
Initially, the focus was placed on the SSIM interface only. After concluding the first
iteration with the evaluation we decided to expand the scope to a second interface.
Due to time constrains and the required effort to build the required components,
the second iteration had a more theoretical approach.

4.2.1 Interviews
In an attempt to extract the knowledge which was dispersed in several stakeholders
of the company, we conducted a number of semi-structured interviews. In this way,
we gained an insight about the context of the SSIM interface, the customization
procedures and other relevant technical information. The identification of right in-
terviewees was considered fundamental for the study. We wanted to extract as much
relevant information as possible. For this reason we focused on stakeholders who
worked with interfaces before, either as developers or by interacting with customers.
Some interviewees had a hard time to give us relevant information that we needed
but they helped us by pointing some other person who could help us more during
our analysis phase. We only kept the information we believed was relevant for our
study, after the interviews were complete. Irrelevant information for example could
be about the difficulty to understand error reports when the parsing of SSIM files

20

4. Methodology

fail, as it had nothing to do with improving the customization of this interface.
Those stakeholders were in total twelve. We list them below:

• A developer who worked in the implementation of the SSIM parser in the old
system.

• Three software engineers involved in the development of the new system, in-
cluding the SSIM parser.

• A system’s expert involved in the production of the new system who also gave
us an insight of the new system’s architecture.

• A system Architects of the Core Technical Development, involved in the de-
velopment of the old system but also provides support in the new system’s
architecture.

• A process consultant who also plays the role of the Product Owner of the new
system.

• A system expert who is also a Subject Matter Expert in pairing systems and
with vast experience in the old system.

• Two service managers from the Service center, who come in contact with
clients.

• A systems expert from the Implementation Department, who engage in cus-
tomization and delivery procedures, sometimes with the help of customers.

• A Business Consultant involved in premarket and benchmark activities

The interviews followed a semi-structured approach by preparing questions before-
hand. Each interview was planned for at least thirty minutes. However, some of the
interviews took longer, with a maximum time of one hour and twenty minutes, as
we allowed the interviewees to elaborate more based on topics that were considered
relevant to the study. All the interviews were recorded and later transcribed for
further analysis.
Additionally, in an attempt to mitigate the risk that we might have missed some im-
portant aspect or that the questions might have been misunderstood by the experts
and also to ensure the consistency of our findings a group interview also took place.
In the group interview engineers from both the new and old system were involved
and we allowed them to discuss with each other for each point that was raised. The
total time of the group interview was approximately sixty minutes.
The main focus of all interviews was placed on identifying the variability issues
within the SSIM interface. However, to further facilitate our understanding of the
general context that this interface operates in, other issues were also taken into con-
sideration. Discussion about the high level architecture of the new system as well
as the general demonstrations of the company’s business goals and challenges took
place during this phase.

4.2.2 Code and document analysis
Our study aims to allow the new system’s integrator to become more configurable.
We therefore considered code analysis of both the old and the new system’s source
code as an essential part of our study. Main focus was placed on the translation

21

4. Methodology

process of the SSIM files, containing raw data, to semantics which the company’s
system can understand. We analyzed the code both of the old and the new system.
Especially in the new system, code analysis was essential for the development of
the prototype as it required understanding of the classes, their methods, their data
structures and their dependencies.
For the code analysis of the old system an engineer who had worked a lot on the
SSIM integration part was also involved. We used screen capturing software to
record the code analysis in order to facilitate its documentation. In this way we
could look into the code multiple time with the expert’s commentary and grasp the
issues of the old approach. He explained how the code was written and refactored in
the past, the challenges they have faced and the causes of complexity. Moreover he
proceed to demonstrate the functionality of the system by running some test cases.
The code analysis of the new system was mostly done manually by us. However,
support of the engineers was provided by answering our questions and providing
short explanation of the reasoning behind their implementation. We have also been
involved in the new system’s team meetings where we kept notes of their discussions.
These meetings discussed mostly the architectural aspects of the new system’s inte-
grator.
Finally, analysis of relevant company documentation was applied. These documents
included the 2011 version of the IATA standard manual, architecture diagrams, of-
ficial manuals and tutorials of both systems. Especially the manual of the IATA
standard helped us a lot to understand the code of both systems and based on that
we got a grasp of the customer specific use cases that have appeared in the past or
might appear in the future.

4.3 Literature review
In order to get a background of the research problem, a set of research papers, jour-
nal articles and dissertations have been selected. The core focus was placed on the
variability management and handling, software customization and design patterns.
Our purpose is to adopt a method based on the state-of-the-art variability handling
methods which we consider relevant to the company’s technical context. In the
previous chapter we discussed the related work based on the literature review. We
started by reviewing a systematic literature about variability in software systems
done by (Galster et al. 2014). We read the summary of variability mechanisms
in product lines by (Lee & Hwang 2014) and also reviewed the referenced papers.
We adopted definitions presented in (Svahnberg, van Gurp & Bosch, 2001), a paper
which is cited many times. We also followed their taxonomy for variability realiza-
tion techniques in (Svahnberg, van Gurp & Bosch, 2005) which is also referenced by
many other papers. The keywords we used to obtain references from various dig-
ital libraries were closely related to variability management. Literature related to
variation point models, patterns for software variability, variability modelling and
software customization were selected. The appropriateness of the selected litera-
ture is evaluated by reading the abstract and introduction, the proposed tools and
frameworks and their implementation or the overview of the method and finally the
conclusion of the study. In the related work chapter we presented the main methods

22

4. Methodology

we discovered.

4.4 Trade off analysis and development
We were looking for a solution which would adhere to the requirements of the com-
pany’s stakeholders. We therefore wanted a solution with as minimal effort to im-
plement as possible. During the trade off analysis we looked through the available
methods in the literature; we assessed their applicability on the company’s context
and their expected strengths and weaknesses.
We documented the results of the analysis and discussed the different methods
with stakeholders in the company. Based on their feedback we decided which of
the methods were more appropriate for interface customization and we proceeded
to develop a prototype. In chapter 6 we presented the trade off analysis for each
method.

4.5 Development
Having concluded with the trade off analysis, we picked a method and went on
to design a prototype. The initial design was on the core Java implementation.
However, when the company changed to Python, we went a step back and tried
another approach.
The idea was to observe whether or not we could support the customization of the
use cases we found through the interviews. Each use case was dealt in isolation and
we observed whether or not our suggestion could support them. The development
was done in a test-driven development approach. We started by writing a test case
which represented a use case and let it fail. We then wrote code which would make
the test case pass. The prototype included a separate python module which would
inherit and overwrite parts of the system’s core code. The core code was left intact.

4.6 Evaluation
After the completion of the prototype we proceeded to evaluate it. We wanted to
get early feedback to see whether or not our method is aligned with the company’s
customization needs so as to decide how we would continue. For this purpose,
we invited experts from the company to collect initial feedback. The stakeholders
involved were a system expert of the new system and a service manager from the
service center department. The system expert was the person who wrote the parser’s
code in Python. The person from the service center was selected because he comes
in contact with customers.
The evaluation started by asking permission to record the evaluation. We later used
slides and performed a live demonstration of our prototype. We asked their opinion
of the strengths and weaknesses of our approach. We transcribed and analyzed their
feedback. Based on it we would then proceed to refine our method further.

23

4. Methodology

The final evaluation took place after the refinement of our original approach. The
stakeholders involved were engineers of the new system, one of the new system’s
architect, an architect from the core development product, a line manager and a
stakeholder from the implementation team. The presentation included slides which
gave an overview of our work, the problem at hand and the flow of logic of how we
concluded to our results. After the presentation we encouraged the employees to
give us their opinion. We stressed the importance of why they think this way. We
encouraged them to elaborate on the reason they think our approach is good or bad
and to discuss with each other.

24

5
Towards effective variability

handling

The first step towards an effective way to handle variability is by understanding it.
This is also required if we want to answer the first research question regarding the
variability needs and limitations. For each variability point, we identify the variable
item, why different airlines have different needs and which are the required variants,
as suggested by (Pohl, Böckle, Linden. 2005 p60).
In this chapter we present the main variation points of SSIM and Operational Mes-
sages interfaces. We then present an overview of how the old and the new system
parse SSIM files. Finally, we discuss the indicators which influenced our decision
making and provide a trade-off analysis of variability realization mechanisms.

5.1 Variation inside standard interfaces

5.1.1 Main Variation Points of SSIM
The results of the analysis phase led to the identification and grouping of the main
variation points of the investigated interface. We use the term variation point to
describe the parts of the standard which are open for interpretation from customer to
customer. The system needs to be aware of these fields and their required variants,
providing a mechanism to handle the possible use cases.
Some of the issues of more technical nature were not considered as variation points.
These issues were mainly related with the inability of some customers to produce
proper SSIM files complying with the IATA standard. For example, a customer
might include four bytes in a field that is meant to contain only two, ruining the
syntax for the rest of the fields. It is then up to the customer to fix the syntax of
the corrupted files and resend it again.
During our interviews we observed that the various stakeholders had some difficulty
to remember all the use cases which appeared in the past. During the group inter-
view, the significance of each variation point was discussed. The general feeling was
that the standard should be the same for everyone and there should be no room
for interpretation. However some stakeholders strongly believe that this can hardly
be the case and it is very likely that airlines will impose their own use cases, as it
happened before. By the time our study started, the new system was supporting
only one customer and the requirements for the next ones were not known.
We summarize the main variation points of the SSIM in figure 5.1 as follows:

25

5. Towards effective variability handling

Figure 5.1: Main SSIM variability points using feauture diagrams

The SSIM standard contains two main parts. The standard core part which contains
the fields shared by all the customers. We found three variation points inside the
standard core. The first one is an optional field for the onward flight information.
The second one is the different time modes. Lastly, there can be different versions of
SSIM followed by different airlines. We illustrate further the variants of the variation
points for the time modes and different SSIM versions in figure 5.2.
The second part is about extending the standard through custom attributes where
the customers can add more functionality. Custom attributes can take the form of
data element identifiers (DEI) which are defined by the IATA manual. They can
also take the form of misused fields, where customers violate the syntax in some
way.

26

5. Towards effective variability handling

Figure 5.2: Different SSIM Versions and time modes

Depending on the IATA manual issue which an airline uses, different SSIM versions
can exist. Some airlines might even use very old versions. Time modes can be either
in Local Time or UTC. In the following sub sections we include more details for
each variation point.

5.1.2 Data element identifiers
We begin with the Data Element Identifiers (DEI) as the first identified variation
point. These can be used to extend the SSIM interface. This way customers can
address their individual and distinct needs. DEIs take the form of an integer in
a specific field inside the interface. Another string field corresponding to this DEI
contains information to address an airlines specific requirements. The DEIs are
described by the IATA manual and each integer has a different meaning. Currently
there were only four DEIs supported inside the core code of the new system, as their
total number can be a few hundred different cases.

5.1.3 Misused Fields
Moreover, there can exist customer specific use cases which can not be handled by
the use of DEIs.The system needs to know how it should handle each customer’s
individual case. An example of such case is code-share issues, where an airline might
wish to replace the subsidiary carriers with the main carrier. Another example is the

27

5. Towards effective variability handling

departure time shown to the customers and the actual departure time of the aircraft.
This might occur because in some airports the passengers are being transported with
buses to the aircraft, so there might be a few minutes variation. However, from crew
planning perspective the aircraft time is what is important. As a last example, some
customers use the flight service type, such as cargo only, in the field that is meant
for the flight suffix. Finally, there could exist a case where an airline might want
to use a field inside the SSIM interface which is usually not read by Jeppesen´s
systems. Therefore the system should be aware of this case and act accordingly.
During the group interview all the stakeholders agreed this was the most urgent
variability point.

5.1.4 Different SSIM versions
In addition to the custom attributes, different SSIM versions exist. The IATA stan-
dard releases a new version of their manual twice a year. During our investigation we
used the 2011 version as a reference. Airlines whose systems use a very old version
might not be compatible with the newer ones. Throughout the different versions,
lots of fields have new meanings. Some unused or empty fields start being used.
Some of the fields that the company normally does not read might be required by
some customers. However, according to some interviewees in the group interview,
this is rarely a problem as it is very rarely changed in a major way. Furthermore,
some clients might have a completely new use case which results on a modified
version of the SSIM standard.

5.1.5 Time modes
Another issue is related with the time mode an airline company is using. More
precisely, for the date of operation of each flight leg can be specified either in UTC
or in Local Time. Although the IATA standard states that the time shall be in
UTC, some customers still might want to store it in local time because this was the
time format their systems were using. It should be noted that the handling of this
issue is responsible for a significant percentage of the old system’s code complexity,
according to engineers in the company. As an example, a flight from an American
airport can take place late at night. If the airline company sends the time in Local
Time, the day of operation is different in UTC time because it is a different day
in Europe. This can cause confusion, especially since the day of operation for each
flight should be unique according to the IATA standard.

5.1.6 Onward flight
Finally, stakeholders raised the issue of an optional field containing information
about the onward flights. These flights are concerned with the next leg flown by the
same aircraft. The information about these flights can either be missing, or it can
be included and still not be consistent. The system should be able to handle these
cases as this information is necessary for planning purposes.

28

5. Towards effective variability handling

5.1.7 Main variation points of Operational messages inter-
face

We identified four variation points for the operational messages interface. The first
variation point is concerned with whether or not the aircraft rotations need to be
updated. Different airlines have different scheduling process. In this interface, the
company can choose to either update the onward aircraft rotations by performing
an action or keep the same information provided by the SSIM. If the airline actu-
ally wishes to update the onward information, functions which swap flight legs or
assigning new pointers in the rotations can be called.
The next variation point is about the time mode for the date of origin. The manual
for the operational messages says the time should be in UTC, but some airlines
especially in America still use local date of origin because it is easier to keep unique.
However, the time obtained from the SSIM interface can still be in Local Time. As
an example, a flight starting late at night in USA which uses Local Time, appears
to be the next day in Europe. The system therefore needs to know how to properly
adjust the date accordingly.
Another variation point is about the diversions from original schedule. When a
flight leg can not land to the original arrival station it might have to land to another
airport. This can occur, for example, because of harsh weather conditions. The
follow up messages might be different between airlines. The aircraft might have to
go back to its original destination, or continue to the next destination. The variation
lies on the assumption of what the aircraft should do, as long as not further message
arrives or opposite, for what situation additional messages are expected
Finally, the last identified variation point is concerned with the reliability of the
different sources the system gets messages from. If an airline company has an
internal consolidation system, then this requirement is not needed at all. An example
of different sources reliability would be the messages for the actual and estimated
time of departure. For actual time of departure the system would typically trust
more the messages sent from the aircraft, while for estimated messages it would
trust those sent from the airport.

5.2 The old and the new system
In this section we present the difference between the old and the new system for
when it comes to parse SSIM files.

5.2.1 The old system
The variability binding takes different approaches in the two systems. The old
system provides a form that allows its users to define many parameters when they
wish to import the raw data from SSIM files, giving them the capability to configure
the system in run time. These parameters correspond to one more flags of the tool.
Some of them are taken from the input form, some are taken from the configuration
files. The files are then converted to a specified format and handled by the same
component of the tool.

29

5. Towards effective variability handling

The original code, which was written in C language, was closely following the IATA
format and it was expected to be used in the same way by all the customers. In
reality, the algorithms had to be adjusted to accommodate more customer specific
requirements. This resulted in an extremely complex code which was hard to read
and manage, as described by the company’s experts. Although it works correct and
satisfies the expected functional requirements, it is hard to maintain as there is a
high risk of problems occurring when the system is updated.

5.2.2 The new system
The new system divides the work of interpretation and logic handling between the
adaptor and the back end, as shown in Figure 5.3

Figure 5.3: General overview of parsing an SSIM file and storing it in the database

The aim is to have separation of concerns between these two components. The
SSIM file is generated by an airline company and used as an input to the integrator.
The integrator, consecutively, uses an adaptor to define the structure for the SSIM
standard in XML form. The “Flight Schedule State Service” component imports this
XML file and applies some well defined computations to handle the given semantics
accordingly. Finally it stores in the database the converted information.
The integrator’s code of the new system was originally written in Java. However,
during our analysis phase, the company changed the programming language to
Python. Although the logic stayed somewhat the same, we had to perform ad-
ditional code analysis and change our documentation appropriately. For example,
the class diagrams had to be redrawn. Based on these diagrams we later placed our
proposed solution.
An important aspect of our decision making was, for each variability point, which
of these two components had to be selected. Whether or not it was a structural or
logical problem. Finally, it should be mentioned that the old system is managing
variability in run time while in the new system the variability is bound in build
time. This means, the old system allows the users to change the interpretation of
the parsing of SSIM files by providing an input form containing a number of param-
eters. However, the new system was initially designed and built to manage customer

30

5. Towards effective variability handling

specific use cases. Later, when they changed the technology from Java to Python,
they still provided plug-in scripts which extent the system’s core architecture that
address customer specific issues.

5.3 Indicators for selecting a method
There is a number of indicators that greatly influences our decision making for
selecting one of the available methodologies. We tried to suggest a way to handle
each variation point independently. The first step to manage each of these, according
to the guidelines provided by the taxonomy of (Svahnberg, van Gurp & Bosch, 2005
p708), is to identify the variability and where it is needed. These are the variation
points which we identified during the context’s analysis phase.
The next step, based on these guidelines, is to constrain the variability. A varia-
tion point which can include a significant number of possible alternatives, is often
preferable not to include all of them in the first version of the system. The sys-
tem should include those that are more likely to appear and allow the possibility to
accommodate more in the future (Svahnberg, van Gurp & Bosch, 2005 p710).
Additionally, the current architecture plays a significant role to our decision mak-
ing, as there is currently a single fully-working instance of the system. There is a
separation of concerns between the parsing of the data and the actual logic handler.
We therefore need to decide, for each variability point, which component should
we use for our implementation. The technology of the system also is taken into
consideration along with its strengths and limitations.
The next step, according to (Svahnberg, van Gurp & Bosch, 2005 p714) is to pop-
ulate the variant feature, that is, how the variant should be created and integrated
inside the existing components of the system. The population can either be implicit
or explicit. Implicit population means the system does not recognize the available
variants. Explicit population means the system actually provides functionality to
support the required variants. As an example taken from the authors of the taxon-
omy, an IF-Statement is implicit population, since the system can not usually add
more ELSE-Statements during run time. This decision indicates when should the
binding time of the variants be done. This can either be in build or run time.
In the old system, some of the variants were supported during run time system.
The users were able to select the variants they wish during the system’s operation
through the provided input form when they were loading the SSIM files. There
was also a build time option where users could parse a configuration file along with
the SSIM files to specify their additional requirements. These files included code
which corresponded to the DEIs, as specified in the IATA manual. In the case of
the new system though, the engineers prefer a build time solution. However, run
time variability might be supported in the future for some of the variation points.
Another very important factor is the decision of who is expected to populate a variant
feature by writing or compiling code (Svahnberg, van Gurp & Bosch, 2005 p715).
The end users can still make use of the customization layer to write their own scripts.
After all, Jeppesen allows their customers to customize their system according to
their needs through domain specific language and by Python scripts. As mentioned

31

5. Towards effective variability handling

before, the customers are able to customize the system on the customization layer.
For compiling and building the system, it is up to the engineers of the company.
Finally, a decision should be taken of how to bind the variants. This can either be
done internally or externally (Svahnberg, van Gurp & Bosch, 2005 p717). Internal
binding means that the system provides the required functionality for a particular
variation point. External binding means the system makes use of an external en-
tity that implements the binding, such as an external module, another system, an
external tool or even a person.

5.3.1 Summary of indicators
The indicators are based on the feedback of the engineers of the new system during
the analysis phase of our study.
Below we present the summary of the indicators:

• The collection of variants should be populated implicitly. The company does
not wish to include or maintain customer specific code. Therefore, the system
needs to include code to only satisfy a particular customer’s use cases.

• The system binds the variability during build time, where it is designed and
handed over to the customer.

• When it comes to who needs to write the required code, the customers are
expected to modify the system to handle their variability needs in the form of
Python scripts.

• This means that the functionality should be bounded externally.

Some of the variability points can be handled differently. The initial assumption of
our research was that the collection of the variants had to be done explicitly, which
implied that run time variability and internal binding was required (Svahnberg, van
Gurp & Bosch, 2005). While we choose not to follow this path for the rest of our
study, mainly due to the feedback we got from the company’s stakeholders, some
of the variation points can still be handled in run time. The main reason for this
argument is that this was the case in the old system.

5.4 Trade-off Analysis of Variability Realization
Mechanisms

We have discussed in a previous section about the main realization mechanisms for
variability, found in the generic literature. In this section we present the strengths
and weaknesses for each of these mechanisms.

5.4.1 Generators
According to an experience report for variability management in the field of avion-
ics (Wölfl et al. 2015) generators can follow an asset-based development dividing
the work to domain and application engineering and generating source code. This

32

5. Towards effective variability handling

approach is more suitable when a large number of variation points is expected. This
is also supported by (Bachmann & Bass 2001 p7) The benefit is that the quality
of code increases and only the generator is needed to be maintained and evolved
to support new variability points and also enhances the understandability of the
system. The weakness of this technique is the upfront investment that is required
since generators imply the development of meta models, domain specific languages
and transformation rules, as mentioned in (Wölfl et al. 2015) and (Bachmann &
Bass 2001 p7).

5.4.2 Configuration management systems
Additionally, this approach is efficient when dealing with alternative implementa-
tions and it is easier to maintain. However, it is difficult to manage optional features
and, like the generator, it requires upfront investment although probably not as ex-
pensive as building a generator (Bachmann & Bass 2001 p7). This approach implies
that the company maintains customer specific modules from its side. An alternative
to this approach is simply making use of version control systems to keep track of
the different implementations of a module. (SEI 2000 p53)

5.4.3 Self-Adaptive systems
According to (Van den Heuvel, Weigand, Hiel. 2007), this approach is more suitable
for the automation of solving interoperability conflicts through the use of learning
mechanisms rather than handling variability issues. Strong emphasis is placed on
addressing performance issues. The effort required to define the algorithm which
chooses the best of the available options require some significant effort.

5.4.4 Code level approaches
Code level, or lower level approaches, require less effort to implement but due the
manual effort which is required, they might not be suitable for a large number of
requirements (Wölfl et al. 2015). As mentioned in previous chapter, there are many
ways to make use of code level techniques. Object oriented mechanisms include tech-
niques such as inheritance, extensions and polymorphism (Anastasopoulos & Gacek.
2001) (Lee, Hwang 2014). Design patterns where the benefits and drawbacks are
known beforehand (Gamma et al. 1995) can influence our decision. Furthermore,
code level techniques can provide hybrid approaches. In the variability realization
mechanisms of the taxonomy in (Svahnberg, Gurp, Bosch 2005) some of the ap-
proaches make use of combination of design patterns, mainly to handle run time
variability. Additionally, for build time binding, there are approaches which make
use of configuration management tools and architecture reorganization.

5.4.5 Summary
In figure 5.4 we summarize the main available methods with their strengths and
weaknesses.

33

5. Towards effective variability handling

Figure 5.4: Summary of strengths and weaknesses of the main methods

A generator would require too significant upfront investment. Additionally, there
are currently not enough identified use cases. Therefore, the return of investment
can not be easily estimated.
To make use of Configuration Management Tools include a cost of their purchase.
Alternatively, the existing version control systems of the company could suffice. The
problem of this approach is that maintaining a history of changes of each customer
specific components and configuration still requires effort (Bachmann & Bass 2001
p7). This technique could be a viable approach if there were more concrete use cases
and there was an urgent need to maintain all these different components from the
side of Jeppesen.
Self-adaptive systems is a more viable approach for networked systems. However,
maintaining a knowledge-base where the appropriate script to handle a certain sit-
uation could be proved viable, especially for run time binding.
Code level techniques appear to be more suitable in the case of the investigated
interface. The main argument to support this decision is that the number of possible
customer specific requirements is not expected to be too high. There is a significant
number of different techniques. We choose to follow the general grouping discussed
in (Völter, 2009), which is the removal, injection and parametrization as we discussed
in 3.7.4.2. For adopting a more concrete realization mechanism, we choose to follow
the taxonomy of (Svahnberg, Gurp, Bosch 2005). In figure 5.4 we borrow their
summary. The indicators which we discussed previously can help us choose among
those methods.

34

5. Towards effective variability handling

Figure 5.5: Summary of realization mechanisms. Taken from (Svahnberg, van
Gurp & Bosch, 2005 p742)

We preferred a solution which does not require major architectural restructuring, as
this would interfere with the company’s current approaches. For this reason, we fo-
cused on two techniques, Variant component specializations and Optional component
specializations as they comply with the identified indicators. In the next chapter
we provide more details about the method we choose to follow and the reasoning
behind it.

35

5. Towards effective variability handling

36

6
Development and implementation

of proposed solution

The aim of our study is to create knowledge by attempting to solve a concrete cus-
tomization problem. In this way, we tried to answer the second research question,
that is, in which way we could increase the system’s customizability. We proceeded
to develop a prototype so as to show the idea. We started with the custom attributes
variation point, which was considered as the most urgent from the company’s stake-
holders.
In this chapter we present the steps we followed during the development phase of
our study. The discussion of the feedback is described in the next chapter.

6.1 Java implementation
The integrator’s code was initially entirely written in Java. Since there was only
one customer, there were not any known customer specific requirements for the new
system. Our initial assumption was that the system would require run time binding,
because this was the way it worked in the old system. Based on the taxonomy of
(Svahnberg, van Gurp & Bosch, 2005 p735-737) and the figure 5.5 we considered
two code-level realization techniques. The first one was run time variant compo-
nent specializations and the second was variant component implementations. These
techniques make use of design patterns in code level to manage variability. The
reason we choose these techniques was based on the indicators which stated that
the binding should be done in run time, the collection of variants should be explicit
while the system provides internal functionality.
Our original suggestion was to apply behavioural design patterns. Behavioural pat-
terns are linked with the assignment of responsibilities between objects and the
handling of diverse algorithms. These patterns favour object composition over in-
heritance (Gamma et al. 1995 p221).
For the case of custom attributes, we tried to to make use of the strategy pattern.
As originally presented in (Gamma et al. 1995 p315), this pattern defines a family
of algorithms, encapsulates each one and makes them interchangeable. Strategy lets
the algorithm to vary independently from the clients that use it. In this way we
expected that we could encapsulate the required behaviours for the different misuse
cases inside separate classes.
We tried to design the parser in a way to make use of this pattern by creating sub-
classes. These sub-classes would include the different algorithms for managing the

37

6. Development and implementation of proposed solution

different misuse cases. In this way, we tried to separate the parts of the application
that vary and the parts that belong to the core of the product, that need to stay the
same. We consider the handling of customer specific use cases as different algorithms
that affect the behaviour of the system.
Our assumption was that not many misused cases would appear since this was the
general impression we obtained during the group interview. Otherwise, should their
number become too big it could lead to class explosion, resulting in increased system
complexity.

6.2 Change of technology
The company changed the programming language of the integrator from Java to
Python. This was done in order to handle the parsing of multiple SSIM files at the
same time. This functionality was also present in the old system.
There is now a main core application written in Java. This application calls python
scripts which support the translation of the SSIM input to XML. Furthermore, the
company provides customer specific scripts. These scripts inherit and overwrite
parts of the core implementation. This way they adjust the system to adhere to
each of their customer requirements. The customers can also edit these scripts since
there is no need to recompile the system.

6.2.1 Code analysis results
The main logic stays somewhat the same with the Java approach. The core of the
integrator uses python modules to define the structure and the general parsing rules.
The module is called ssim.py which is included in the std_interfaces _adaptors core
package.
As shown in figure 6.1, there is a distinction between the core and customer specific
layer. The core part, which is on the right of the figure, handles the generic issues of
transforming the SSIM into an xml file. The left part includes scripts which handle
the concrete issues that are specific for a specific airline company. The DEIs are
handled inside the ssim.py inside the package std_interfaces _adaptors of the core
part. The IF-statement which handles the data element identifiers is relatively small
when our research was performed but it could still significantly increase in size in
the future.
The airline specific module ssim.py is included inside the as_adaptors package of
the customer specific layer. The script inherits and overwrites parts of the super
class it adheres to, without the use of interfaces or abstract classes. The size of
this script is limited to less than fifty lines of code and handles two concrete use
cases. This approach binds the variability in build time. There is clear separation
between the core and varying customer specific solutions. In this way, the company
increases the maintenance of the system since only the additional scripts need to be
maintained which cause no ripple effects to other modules.

38

6. Development and implementation of proposed solution

Figure 6.1: Class Diagram in Python

6.2.2 Issues of the current appraoch
The approach the company is following is quite efficient. The core stays the same
for all customers and they are responsible for editing scripts to customize it further.
They are also responsible for their maintenance and keep it compatible with their
systems; Jeppesen loses control over the code.
During our study we raised some issues. Hard-coded conditions were included inside
the customer specific scripts. The follow-up question was whether or not we could
somehow reuse parts of the code. In this way, we hoped to decrease the amount of
code required to handle use cases which appear more than once.
Another issue we raised was to what extent could the airlines write quality code
by themselves. After all, they need to focus on airline related problems than pro-
gramming related problems. Writing a Python script requires understanding of the
system’s core code as well as writing test cases to ensure the code provides the
expected results.
Finally, there was the issue concerning what would happen when all the company’s
customers migrate to the new system. The maintenance is done by the airlines side
which means they are responsible to keep compatible their systems. According to
some stakeholders who come in contact with customers, they receive support calls
when their customers can not figure out how to fix their systems and even sometimes
they complain that they receive too much code to maintain.
By the time this study was performed, there were only one airline supported in the
new platform and the company was talking with the second customer. The goal of
this study was to look further ahead and suggest a way to mitigate emerging risks.

39

6. Development and implementation of proposed solution

6.2.3 Suggested approach
Contrary to our initial approach, we decided our method should aim for build time
binding, implicit collection of variants and external functionality. This decision was
made by asking if run time binding was needed. This question was asked to the
developers of the new system after the Java-to-Python transition was made.
Based on the above indicators, we looked into different techniques of the taxonomy,
such as the variant component specializations and optional component specializa-
tions (Svahnberg, van Gurp & Bosch, 2005 p733-735). These choices follow the
figure 5.5. and based on the indicators we discussed in section 5.3, we selected two
methods as follows:
Variant component specializations suggest a method where a particular component
is adjusted to addresses different variability issues. This is realized by creating a
number of independent classes and selecting those who are required to be included
for each case.
Optional component specializations is about including or excluding the relevant be-
haviour of a component for each case. This can be realized by developing a separate
class which encapsulates the optional behavior (Svahnberg, van Gurp & Bosch, 2005
p733-735).
Inspired by those methods, our new approach suggested a grouping of the recurring
methods in a separate module. This module would inherit and overwrite parts from
the core implementation but the customers would only need to import this module
on their scripts and use the available methods by simply parsing parameters.
The main idea was to support the customization by allowing the users to select
among a set of provided functions instead of customizing those functions. In this
way, we hoped to reduce the code duplication for handling these case as we expect
that only the provided parameters will change in the future. We also hoped we
would increase the understandability of the system.

6.3 Development process
To achieve this, we developed a new Python module which contains methods to
handle misuse cases. We called this python module as script_repository.py and we
created two children scripts, chalmers.py and chalmers2.py that made use of the
provided scripts to handle a number of concrete use cases. In figure 6.2 we present
the class diagram of our approach.

40

6. Development and implementation of proposed solution

Figure 6.2: Approach using a script repository in Python

In order for the script repository to define algorithms for each use case, different
parts of the core implementation had to be taken into consideration, such as the
provided methods and data structure definitions.
Our prototype’s was built in a test driven development approach; we first wrote a
test case, we let it fail and we proceeded to write code to make it pass. For this
reason, we have written a new file explicitly for writing our own test cases which were
satisfied by the modules chalmers.py and chalmers2.py. Moreover, we have written
a test case that only makes use of the core implementation in order to make sure
we have not altered anything in this part and that the core is working as expected.
The script_repository.py is the module which needs to be maintained and extended.
The children modules only needed to call these methods and provide the appropriate
parameters.

6.3.1 Example use cases
To show the idea behind our approach, we tried to support a few use case. Two
of these use cases were making use of a certain airline’s requirements, which the
engineers have solved but in a hard-coded way. These use cases were related with

41

6. Development and implementation of proposed solution

replacing the codes of the subsidiary carriers to to the main carrier and the inclusion
of additional schedules to these subsidiary carriers. Our approach would only require
the customer to import our module and call these methods with the corresponding
parameters.
We also tried to solve some conceptualized use cases, based on what we discovered
during our interviews in the analysis phase. The first use case had to deal with the
time variation of the departure time. If the departure time had to be adjusted a few
minutes, the script would again only require to import our repository and call the
corresponding method with the appropriate parameters. Finally, we tried to handle
the misplacement of the service type suffix, when some airlines use the operational
suffix instead of service type field. We handled this case in the similar fashion as
above, by calling the corresponding method. In this case, however, no parameters
were required.
Our approach follows our initial assumption that not too many customer specific
requirements would emerge. Should this be the case, there could be an explosion
of methods. Additionally, these methods are only viable if they are required from
at least more than one customer. In the next chapter we provide a more detail
discussion about this approach.

6.3.2 The rest of the variation points
We have observed that not all of the issues can be handled with the same method.
For each individual variation point a decision had to be made on which part of
the system it should be handled. More precisely, for each variation point we had
to decide whether it could be solved as a structure or logic issue. Therefore, the
adapter or the logic-handler modules would had to be selected respectively.
The focal point of was placed mostly on the different misuse cases. We have inves-
tigated further of how to handle the rest of the variation points to decide whether
or not it could be handled with our approach or in a different way. Our findings
suggest that not all points could be handled with our suggestion.
Local time and UTC time adjustments require special logic handling. The algo-
rithms responsible for this handling have already implemented in the logic compo-
nent of the new system. The only requirement is that the inputted XML file provides
the correct semantics to define whether the time is Local Time or UTC time. In
this way, there is no need to adjust the system for each customer as it is able to
handle all cases.
Similarly, the onward flight has been handled in this way. The algorithms to handle
inconsistent or missing onward information is handled for all customers in the same
way inside the logic part of the system. According to company’s experts, there
could still be a way to provide a generic method to handle this issue. However, the
required parameters would probably be too many and the time needed to investigate
how this could be implemented would probably be immense. We therefore decided
that this variation point is out of the scope of our thesis.
We have verified that the DEIs are being effectively handled in the core part of the
system. After all, DEIs follow are defined by IATA standard and do not misuse the
SSIM syntax. We have validated this functionality by writing tests and compare

42

6. Development and implementation of proposed solution

the expected output with a given input based on SSIM files we obtained from the
company.
For special cases of certain DEI numbers, an IF-Statement in the core part suffices.
This method is also described in the taxonomy of (Svahnberg, Gurp, Bosch 2005
p739) as Condition on variable which intent is to include functionality to support
multiple operations. There are currently only a small subset of all the possible inte-
gers a DEI can have, as not all of them are required by all the customers right now.
For each new customer who actually wants to use a new DEI, a new ELSE-Statement
would be added. Therefore the overall IF-Statement could become potentially big
and since it is currently included in the core part of the parser, it would might add up
to its complexity. If this should be the case, we suggest to include this IF-Statement
into a separate module and call it through the main core implementation by parsing
the corresponding DEI.
Finally, when it came to handle the different versions of the SSIM interface, we
observed that this could be handled in a similar way as with the misuse cases. If
there are major differences between the supported version and the version an airline
is using, it is implied that there is a need for adjustment. Company’s experts have
also agreed that this case could be considered as a special case of syntax misuse.
As an example, a field of an older version could have a different meaning than the
current version. Should this be the case, then a method from our repository could
be called and adjust the system in the appropriate way.
However, during our investigation we have observed that if a customer wants the
system to read a field that the company usually does not support, this can not be
simply handled with our approach. We tried to write a method to handle this issue
but it was futile as the system would require to be rebuilt and recompiled to become
aware of this field. Our conclusion, supported by the developers of the new system,
was that this can only be solved manually by the company’s side.

6.3.3 Operational messages variation points
We tried to discuss ways to deal with the variation points of the operational messages
interface. The suggestions include high-level methods to handle variability in this
context. The aim to see whether or not the suggestions made for the SSIM interface
could be replicated in this context. The discussion involved the system architect of
the new system. Evaluation of this discussion was performed during the last presen-
tation in the company which also involved engineers of the new system. Everyone
seemed to agree with these suggestions. We assume that the company would follow
the same logic of separation of concerns, where the raw input is translated to XML
semantics and is being handled in the backend.
For the updated aircraft rotations variation point, there is a need to indicate whether
or not the flight legs need to be updated. The decision whether or not to update
these rotations could therefore be considered as a structural issue. Depending on an
indicator, the corresponding function could be called. By default it would assume
that there is no need to update the rotations at all. The functions would be written
by Jeppesen engineers but the selection could be done by the customers. Therefore
the algorithms could be part of the core and encapsulated in the backend. The

43

6. Development and implementation of proposed solution

customers could simply edit a script to include an indicator to call these functions.
In a similar fashion the date of origin could be managed. A flag in the translated
xml file could indicate that a system is using local time. The recalculation is done
in the backend part of the core. Therefore it is shared among all customers and
the functions are written by the company’s engineers. The selection among the
functions could simply be done by the customers.
The reliability of the different priorities is a rather complex variation point. It could
be done entirely in the customization layer and it would require explicit functions
which would overwrite parts of the core. The system could prepare support for
priority handling, either in the core or in the customization layer.
Finally, the diversions variation point could be viewed as a structural issue. The
point is to define which would be the next flight leg. This could be handled by
editing a script and calling the corresponding function and parsing parameters.
This is intertwined with the repository of scripts suggestion of this study. However,
if the functions are proven to be rather hard to replicate because of vast numbers
of parameters, documentation and coding standards could facilitate this purpose.

44

7
Results and discussion

Our suggestion was heavily influenced by the company’s customization needs. There-
fore, our suggested method needed to be easy to introduce, implement, maintain and
extend. In this chapter we will discuss the results of our findings by discussing the
strengths and weaknesses of the method and the knowledge gained from this en-
deavour.

7.1 Validation
The use cases handled by the prototype provided some satisfying results. In order
to use the script repository, an airline company only needs to import our module
and call one of the available methods by parsing parameters. The total amount of
lines of code a customer needs to write in order to use a method from the repository
approximately four or five, including the import of our module in the beginning.
Including an additional method requires at maximum three extra lines of code. The
company’s current approach required approximately ten to fifteen lines of code for
developing a customer specific method which inherits and overwrites part of the core
implementation.
Additionally, we developed our own test cases to validate that we were getting the
expected results. The test cases compared a string of raw data input in the form of
SSIM format to a string of the expected XML file. Their customers do not require
to write the test cases by themselves. We have included commented test cases in
a package where they can adjust fields of the SSIM and XML accordingly. In this
way we hope that we can guarantee that our methods will work.
Finally, there is no need for airlines to understand how the core’s code or the methods
inside the script repository work. The algorithms and data structures needed to
handle these use cases as they have already been implemented from the company’s
side.

7.2 Evaluation
After the completion of our prototype, we proceeded to evaluate it by asking for
feedback from company’s stakeholders. Initially, we invited two key stakeholders
to evaluate our approach. Based on this evaluation, we went on to discuss with a
systems architect for refining our method. In this way we identified the guidelines for
decision making which we describe in a later subsection on this chapter. After that,
we invited stakeholders to our final evaluation where we presented our work, our

45

7. Results and discussion

suggested method for both SSIM and Operational Messages interfaces, the decision
making process and ideas for future work.

7.2.1 Preliminary feedback
We performed a presentation with two key stakeholders of the company to evalu-
ate our suggested method. The first stakeholder was the developer who wrote the
Python code of the integrator in the new system. The second stakeholder was a
person who works in the service center of the company. We used slides to show the
idea behind our approach. These slides also included code parts which compare our
method with the current implementation. The evaluation was recorded and later
transcribed. We present the main points from the feedback we got in this section.
At first, our approach received was treated with scepticism. The main reason was
that they did not intend to maintain customer specific code at all. According to
the first stakeholder, it is up to the clients to edit Python scripts to modify the
system according to their needs, especially since Python language does not require
to recompilation of the system.
The second reason was whether or not they could reuse the methods to handle
customer specific issues. According to the first stakeholder, this approach would add
up to the complexity of their system’s modules. There were currently no concrete
evidence to support the argument that customer specific methods could be reused.
The reason was the use cases were unknown to them since the new system supported
only one customer at that moment.
Additionally, he argued that this repository of methods could become potentially
large and hard to be used; the clients might feel lost of which method they need to
use, especially if some methods had to be used together. The second stakeholder
then also stated that he was sceptical for the degree on which the methods could
be reused. As an example, he talked about the code sharing issue; whether it
could be handled in the same way for multiple airlines or each airline had their own
interpretation.
On the other hand, our approach received some positive feedback as well. The
person from the service center stated that our approach simplifies the system’s use
from the client perspective. He argued that their clients are airlines and not IT
companies.
More importantly, he argued that in this way they would enable their customers
to focus on actually solving their real life problems, airline related problems, rather
than programming in the system. The methods are viewed as black boxes from
client’s perspective and might be hard for them to edit them by their side.
Finally, he stated that this would facilitate the overall understandability of the
system. As an example, after a long period of time someone wants to dig back into
the code, separating customer specific issues into a separate module would be easier
to get an overview of the integrator.
The new system’s developer also argued that our approach would be a good idea if
more than one clients needs these functions. Furthermore, he added that, should
there be a case where they realize a code is duplicated to multiple clients, providing
some kind of utility would actually be a good idea. Additionally he stated that if

46

7. Results and discussion

they could find recurring patterns which are being used by many customers in other
parts of their system this could be proven a good practice. However, he insisted that
they currently prefer to duplicate code as they are not concerned with maintaining
their customer’s scripts from their side.
An interesting comment was that the issue of suffix misuse could be embodied in
the core implementation as it should be the same for all customers. This method
did not take any arguments, it was simply called to fix a problem. Instead including
it in a separate module, it could be manifested in the core instead.
We have also obtained feedback from another stakeholder, a system’s architect who
is involved in the support team of the new system. According to her, the main
argument to adopt our approach is whether or not the functions can be used from
more than one customers. She also added that one of the expected benefits of
our approach would be the reduced number of calls the company receives for tech
support. We summarize the results in the following table.

Strengths Weaknesses
• Effective approach for
handling multiple recurring
issues

• Requires additional main-
tenance. Might increase
complexity

• Increase system’s under-
standability

• Tricky to handle too many
methods

• Increase usability from
client’s perspective; focus is
placed on solving their ac-
tual issues instead of writing
code

• It should not be included
in the core

• Can reduce tech support
requests

Table 7.1: Summary of the preliminary evaluation

7.2.2 Final Evaluation
The final evaluation was performed after the refinement of our method based on the
initial feedback. It took the form of a presentation and a number of stakeholders
were invited to attend. These stakeholders were in total six; two software engineers
and an architect of the new system, a system architect of the core development
involved in both systems, a systems expert of the implementation department and
a line manager. The list of people we invited, however, was longer but only those
could attend our presentation that day.
The presentation lasted almost an hour. We had prepared a few questions to ask
beforehand. We kept notes of their answers highlighting their main points and

47

7. Results and discussion

immediately after the presentation was over we proceeded to documented the results.
We started by discussing the identified variability management mechanisms from the
generic literature and the variation points of the SSIM interface. We then discussed
the current approach of handling the customer specific requests, its strengths and
possible risks. We used two examples to illustrate what could go wrong with the
current method.
Next, we introduced our suggested method and presented the preliminary feedback
summarized in a table. At this point, we asked the stakeholders in the room for
their opinion and why they think this way. At this point, a software engineer ex-
pressed his scepticism. He explained that although he understands the idea behind
our approach, he was still unsure whether this would effectively contribute to their
customization efforts as the company has already provided a solution for the SSIM
case. The system architect replied to him that the company has solved the cus-
tomization needs of the SSIM already multiple times and the point was that they
do not want to solve it again and again for every customer. She therefore believed
that our suggested approach has potential to facilitate the customization needs in
the long run. The software engineer then seemed to agree with her and so did the
rest of the stakeholders in the room.
At this point, we asked our audience whether they think our approach would increase
the code quality from their customers side. More specifically, we asked whether
they think our approach would assist their customers to write a better and cleaner
code. The line manager stated that they always consider code quality as something
very important and that he believed our suggestion could support this purpose.
Additionally, the system architect stated that minimizing the dependencies and
writing less lines of code for doing the same thing is always an improvement in the
overall code quality.
We continued by presenting the guidelines for decision making to integrate a vari-
ation point based on its characteristics, as discussed in section 7.4. These ways of
integration were as a shared component in the core, by instantiating only the re-
quired functions for a customer or in the form of coding standards. The audience
seemed to agree. Someone pointed out that sometimes, whether a component be-
longs to the core or in the customer layer is sometimes debatable. Especially in the
new system’s architecture, it is even harder to know what is customization and what
is core. They try to push more into the core and less in the customization layer,
especially for tracking system and therefore he does not see a problem reusing parts
as long as they appear to more than one customers.
We then discussed the variation points for the Operational Messages interface. We
briefly described each variation point and its variants along with suggestions of how
each of these could be handled in our way. The audience seemed to agree, although
they did not give any concrete feedback.
We finally presented some ideas for future work. These triggered discussion among
the stakeholders of how the company could support its customization needs more
efficiently. One of these ideas was to maintain a knowledge repository. The stake-
holders discussed about how sometimes do not know whether something should be
in the customization layer or in the core, as there have been cases that were proven
as more complex than originally thought or something appears second time and so

48

7. Results and discussion

on. Therefore, maintaining the knowledge of each project could support future deci-
sions. However, they pointed that no one usually wants to work on it as it is viewed
as a tedious task. The second idea for future work was an interactive questionnaire
whose purpose would be to support the requirements elicitation by providing the
right questions to ask their customers.
In summary, the stakeholders agreed that maintaining from their side a repository
of scripts could provide benefits in the long run. However, they do not plan to
integrate it right away as there are still not concrete customer specific use cases and
in general, they do not like to increase the overall maintenance by their side unless
it is absolutely needed.
The general consensus for the decision making guidelines was that they could support
their future decisions. Finally, the proposed future work received an overall positive
feedback as it is intertwined with the company’s current customization needs.

7.3 Integration
Although the company’s stakeholders stated that they can not integrate a script
repository right away due to the lack of concrete use cases, we decided to pushed
our prototype in the company’s code repository. The prototype includes a few
example use cases and their respective test cases and it is ready to be used.
Additionally, based on the initial feedback we received, we proceeded to discuss
with one of the architects who is involved in both the new and the old system’s
architectural design, about other ways to integrate our approach. We identified
three different ways of integration. The selection among the above mechanisms is
based on the expected level of reuse of each function.
The first one is by making use of a shared component. These components are shared
between all clients. The customers simply choose which function they need to call
every time. This approach would only be useful if those functions are being used
by more than one customer otherwise there is a risk of ending up containing dead
code. This is aligned with the idea behind our prototype.
The second way would be to instantiate the required functions for a particular project
only. The functions are embodied in the customization layer of the system, including
only the functions required by each individual customer. In this way customers are
not required to maintain functions they do not need. The maintenance is done by
the company’s side; the customers simply copy a subset of the functions they need.
Finally, these functions might not be included at all to any component. Instead, they
could take the form of documentation and coding standards. This could support
the case where a function which can not be replicated to different customers and
small adjustments need to be made each time. Coding standards could simplify the
writing of those functions. In this way, there could be a common documentation
instead of common code.
It should be noted that these suggestions were part of the final evaluation where
stakeholders agreed about them. As described later in the future work, a knowledge-
base would facilitate the decision making of how each function should be integrated.

49

7. Results and discussion

7.4 Guidelines for decision making
The company does not follow traditional software product lines methods, as the
customers are expected to edit and maintain code in the customization layer while
the company is mostly responsible for the maintenance of the core implementation.
In every customization case, decisions need to be taken. The SSIM interface gave
us a strong basis to perform our study. Based on it, we document the guidelines in
an attempt to support future customization decisions.
Each variation point needs to be dealt independently and in isolation. The charac-
teristics of each point need to be identified; based on these, the decision of how it
is going to be integrated in the system is taken. We therefore create a list of ques-
tions to ask so as to understand these characteristics, followed by a list of variability
handling mechanisms.

7.4.1 Understanding the nature of the variation point
The first question is what is the likelihood that the variation point will appear more
than once. Is it a special case required by only one customer or does it appear to
multiple customers?
The second questions is concerned with the collection of the variants and subse-
quently, the binding time. If the variation point is shared by all the customers, then
the collection is explicit and it is bound in run time. However, if the collection is
implicit, the system is modified accordingly in build time.
The third question is about the problem itself, whether it is a structural or a log-
ical problem. A structural problem is concerned with translating the raw input
in the correct semantics. A logical problem is concerned with how an algorithm
manipulates the provided semantics.
Finally, one important question is about the estimated complexity of the code to
deal with a variation point. This means, it could either be a rather simple to write
script from scratch, or it could require a deeper understanding of the system’s core
code and strong programming skills.

7.4.2 Implementation of a variation point
Having defined the characteristics of the variation point, the next step is to decide
how and where it should be implemented. Again, a few decisions need to be taken.
The first one is about who is expected to write code. If the expected complexity
to implement a customer specific use case is expected to be low and it is unlikely
that it will appear more than once, then it is up to the customers to write code.
However, if the complexity is expected to be high, or the variation point is likely
to appear more than once, then the company’s engineers would need to develop a
high-quality function.
Furthermore, if the problem type of the variation is a structural issue, the corre-
sponding function could be encapsulated in the parser. If, on the other hand, it is
a logical issue, an algorithm which provides diverse behaviour based on the given
semantic input seems more of a reasonable option.

50

7. Results and discussion

Finally, a mechanism which allows the users to access the variation point should
be defined. If the collection of variants is explicit and their binding is done in run
time, then the variation point should be embodied in the core of the system. In the
opposite case, where the collection of variants is implicit and the binding is done in
build time, the variation point could be part of the customization layer. It could be
implemented as a new function, part of a repository of scripts, where clients simply
choose those needed for their needs. If the variation point can be simply replicated
by calling a function but requires to modify the function itself, the variation point
could take the form of documentation and coding standards.

51

7. Results and discussion

52

8
Threats of Validity

The value of this study is subjected to a number of validity threats. We classify the
different types of threats of validity as described in (Wohlin et al. 2000).
Internal validity threats are concerned with how the treatment influences the out-
come. There is a threat of internal validity in regards of selecting the right people
to interview. To alleviate this issue, whenever we suspected the interviewees could
not provide relevant for our study information, we asked if they could suggest some
other stakeholder. Additionally, the interview questions might not have been un-
derstood clearly by the interviewees. To mitigate this risk we performed a group
interview with stakeholders from the service center, the old system as well as in the
new system. We also hoped that in this way we could encourage these stakeholders
to elaborate more on the problem under study. Furthermore, the limited time to
carry this study only allowed us to focus mostly on a single interface and limit the
number of times we could evaluate the suggested methods.
Construct validity threats are concerned with the theory and the results of the
study. The number of customer specific use cases were not clear. The stakeholders
had rather hard time to remember concrete variability issues in the old system and
there was only one customer in the new system by the time our study was performed.
It is therefore not clear whether or not our suggestion will provide adequate support
to manage all the future use cases in the long run. To alleviate this threat, we
dealt with each use case individually. In this way, we strove to understand their
characteristics and based on these to suggest ways to manage them. We document
the decision making process and we suggest future work to further improve this
study.
External validity threats are concerned with the generalizability of the findings be-
yond the scope of the study. This study was placed only on one company, located
in Gothenburg, Sweden. The way this company handles variability is different than
other companies who follow traditional software product lines. Therefore, the meth-
ods might not be easily replicated to other industrial contexts. Additionally, the
study mainly focuses only on one interface which has a few known variation points.
To alleviate this issue, expanded the scope of the study a little bit to investigate and
suggest ways on a higher level to manage variability issues on another interface.
Conclusion validity threats are concerned with the ability to draw the correct con-
clusions. The conclusion whether or not the outcome of this study is a better ap-
proach than the current one the company is using has not been proven yet through
integration. The evaluation is based on feedback we received by the company’s
stakeholders.
The preliminary evaluation involved an engineer of the new system and a person

53

8. Threats of Validity

working on the service center. Additionally, during the last presentation, where
we presented the refined version of our approach and discussion about supporting
the second interface, we involved more stakeholders. These stakeholders were a line
manager, two software engineers of the new system, a system architect involved in
the development of the new system, a systems expert of the implementation de-
partment and a system architect of the core technical development who is involved
in both the new and the old system. The feedback was mostly positive. Although
we had a bigger list of people to attend our presentation, not all of them could be
present at that time due to work obligations. Finally, to reduce the risk of objec-
tivity of the feedback received during the last presentation, we asked to state their
reasons why they think something is a good or bad idea. Additionally, we encourage
stakeholders to communicate with each other in order to hear a different perspec-
tive. We noticed before that sometimes the received feedback varied depending on
individuals perspective. We therefore hope the subjectivity of the feedback was re-
duced by enabling stakeholders to openly state their opinion and hear other people’s
opinion as well.

54

9
Conclusion

Software customization has an impact throughout all the software life cycle such
as requirements elicitation, the design of the system, development, deployment and
maintenance. The majority of the existing research is suggesting ways of how to sup-
port customizability where a company follows traditional product lines approaches
and the variations will live very long.
In the case of the company where this study was performed this was not the case.
The company controls only the core part of the system and loses control of customer
specific code. The customers are responsible for part of the code’s maintenance. By
the time the study took place they hardly had two customers using their newest
system.
The aim of the study was to look further ahead and mitigate the risks which could
potentially arise in the future. We explored the existing literature for methods,
patterns and practices to suggest a way to handle variability in an easy, cheap and
efficient way.
We provided a trade-off analysis of the available methods. Furthermore, we doc-
umented the work flow and how we conceived the suggested method in our study.
We ambition that the findings of this work will provide a strong basis to facilitate
customization efforts by companies of similar technical contexts.
The overall feedback we received from the company’s stakeholders suggested that
our method will be integrated in the future by the company. We therefore encourage
validation of the suggested methods through integration and the expansion of the
guidelines of the decision making process. For this purpose, we have already pushed
a repository containing a number of sample functions, ready to be used by the
employees of the company.
Additionally, we suggested ways for future work in section 9.1. We do not expect
that the findings of this study will either solve all the customization problems of
the company, nor will they reshape the vast landscape of software customization.
We hope, however, that it will serve as a step forward to the vision of handling
variability needs in an optimum way and add up to the existing knowledge for
problems of similar nature.

9.1 Future work
The evaluation of the proposed methods in this study were based on the feedback
of various stakeholders of the company. To justify whether or not these methods
would actually provide the expected benefits, integration with the company’s new

55

9. Conclusion

system is required. We hope that the prototype which we included in the company’s
code repository will be used by the employs and be validated further.
Additionally, the guidelines as well as the lessons learned of this study and sim-
ilar projects should be retained in some way. A knowledge-base could therefore
facilitate the purpose of continuously improve and refine existent knowledge. Each
project could be viewed as an opportunity to expand this knowledge repository. Fur-
thermore, a knowledge repository would provide robust guidelines to drive future
customization decisions. Especially in combination of our method, this preserved
knowledge could help the engineers to decide which method should be included in a
script repository and which should be part of the customization layer for example.
This knowledge-base could also be expanded by asking people who worked with
similar interfaces about their past experiences, worst cases they had and how they
came up with certain solutions.
Finally, another idea would be to develop some sort of interactive questionnaire.
The purpose of this tool is to support the requirements elicitation for interfaces in
a structured way, by suggesting the appropriate questions to ask their customers.
It could guide the identification of important information such as the different use
cases and their frequency of change. The initial content of this tool could be based
on the findings of this study and by performing some interviews about the general
desired requirements information and their priority. It could be extended with more
questions based on the experience gained from interfacing projects.

56

Bibliography

[1] Svahnberg, van Gurp, Bosch. (2001) “On the Notion of Variability in Software
Product Lines,” Proc. Working IEEE/IFIP Conf. Software Architecture, pp.
45-54.

[2] Bosch, Capilla, Chul Kang. (2013) Systems and Software Variability Manage-
ment, Springer, New York. p. 3 – 4 Kitchenham, B., Pickard, L., and Pfleeger,
S.L. (1995) Case studies for method and tool evaluation. IEEE Software, 4(12),
52–62.

[3] Rhein, Thümc, Schaefer, Liebig, Apel. (2015), “Variability Encoding: From
Compile-Time to Load-Time Variability”, Preprint submitted to Elsevier, Ger-
many

[4] Svahnberg, van Gurp, Bosch. (2005), ‘A taxonomy of variability realization
techniques’ in Software-Practice And Experience , Wiley InterScience, Sweden,
p. 705-754

[5] S.M. Davis. (1987), “Future Perfect”, Addison-Wesley, Boston, Massachusetts
[6] Au tili, Inverardi, Mignosi, Spalazzese Tivoli. (2015), “Automated Synthesis

of Application layer Connectors from Automata-based Specifications”, in Lan-
guage and Automata Theory and Applications, Springer International Publish-
ing, Switzerland p. 3–24

[7] Rowely. (1995) ‘Understanding Software Interoperability in a Technology-
Supported System of Education’, United States Air Force, p. 20 – 26

[8] Schmid & John. (2003) A customizable approach to full lifecycle variabil-
ity management, Fraunhofer Institute for Experimental Software Engineering
(IESE), Germany, p. 259 - 282

[9] Vaishnavi, V. and Kuechler, W. (2004). ‘Design Science Research in Infor-
mation Systems’, January 20, 2004; last updated: November 15, 2015. URL:
http://www.desrist.org/design-research-in-information-systems/

[10] Pohl, Böckle, van der Linden. (2005) ‘Software product line engineering: foun-
dations, principles, and techniques’, Springer, Berlin Heidelberg

[11] Svahnberg, van Gurp, Bosch. (2005), ‘A taxonomy of variability realization
techniques’ in Software-Practice And Experience , Wiley InterScience, Sweden,
p. 705-754

[12] Bachmann & Bass. (2001). ‘Managing Variability in Software Architectures’ in
ACM SIGSOFT Software Engineering Notes, ACM, USA, p. 126-132

[13] Anastasopoulos & Gacek. (2001), ‘Implementing Product Line Variabilities’ in
ACM SIGSOFT Software Engineering Notes, ACM, Toronto, Ontario, Canada,
p. 109-117

57

Bibliography

[14] Lee & Hwang. (2014), ‘A review on variability mechanisms for product lines’
in International Journal of Advanced Media and Communication, Inderscience
Publishers Ltd, Daejeon, Korea, p. 172-181

[15] Galster, Weyns, Tofan, Michalik, Avgeriou. (2014), ‘Variability in Software Sys-
tems—A Systematic Literature Review’ in IEEE Transactions on Software En-
gineering, IEEE, p. 282-306

[16] Gamma, Helm, Johnson, Vlissides.(1995), ‘Design Patterns: Elements of
Reusable Object-Oriented Software’ in Addison-Wesley professional computing
series, Addison-Wesley

[17] Freeman, Sierra & Bates. (2004), ‘Head First Design Patterns’, O’Reilly, Avail-
able here

[18] Mirakhorli, Mäder, Cleland-Huang. (2012), ‘Variability Points and Design Pat-
tern Usage in Architectural Tactics’ in SIGSOFT 20th International Symposium
on the foundations of software engineering, ACM, p. 1-11

[19] Di Marco, Inverardi, Spalazzese. (2013), ‘Synthesizing Self-Adaptive Connec-
tors Meeting Functional and Performance Concerns’ in International Sympo-
sium on software engineering for adaptive and self-managing systems, IEEE
Press, p. 133-142

[20] Ke & Huang. (2012), ‘Self-adaptive semantic web service matching method’ in
Knowledge-Based Systems, Elsevier B.V, Nanjing, Jiangsu, China, p. 41-48

[21] Van den Heuvel, Weigand, Hiel. (2007), ‘Configurable Adapters: The Substrate
of Self-adaptive Web Services’ in Proceedings of the ninth international confer-
ence on electronic commerce, ACM, Minnesota, USA, p. 127-134

[22] Wölfl, Siegmund, Apel, Kosch, Krautlager, Weber-Urbina. (2015), ‘Generating
Qualifiable Avionics Software: An Experience Report’ in International Confer-
ence on Automated Software Engineering (ASE), IEEE, p. 726-736

[23] Benavides & Galindo. 2014 ‘Variability management in an unaware software
product line company: an experience report’ in Proceedings of the Eighth In-
ternational Workshop on variability modelling of software-intensive systems,
ACM, p1-6

[24] Bass, Clements, Kazman. (2012). ‘Software Architecture in Practice’ in SEI
series in software engineering, Addison-Wesley, 3rd edition

[25] Jahangir (1990). ‘An Asset-Based Systems Development Approach to Software
Reusability’, The Society for Information Management and The Management
Information Systems Research Center of the University of Minnesota, p.179-198

[26] International Air Transport Association. 2011, Standard Schedules Information
Manual, Issued Montreal — Geneva Ref. No: 9179-21

[27] Wohlin, Runeson, Höst, Ohlsson, Regnell, Wesslén, (2000), Experimentation in
Software Engineering, Springer, Berlin, Germany p. 66 – 73

[28] Griss. (2000), ’implementing Product line Features with Component Reuse’,
in Proceedings of 6th International Conference on Software Reuse, Vienna,
Austria, June 2000

[29] Völter. (2009) ’Handling variability’ in the CEUR archive of conference pro-
ceedings and for Hillside Europe website, Available here

[30] Linden, Schmid, Rommes. 2007, Software product lines in action, Springer
Berlin Heidelberg New York

58

http://www.sws.bfh.ch/~amrhein/ADP/HeadFirstDesignPatterns.pdf
http://www.sws.bfh.ch/~amrhein/ADP/HeadFirstDesignPatterns.pdf
http://www.voelter.de/data/pub/VariabilityPatterns2.pdf

Bibliography

[31] IEEE 100. (2000) The Authoritative Dictionary of IEEE Standard Terms, 7th
Edition, Standards Information Network IEEE Press, Available here

[32] International Organization for Standarization. (2001) ISO/IEC Standard 9126:
Software Engineering – Product Quality, part 1, Switzerland

[33] Sommerville, 2011, "Software Engineering 9th edition", Addison-Wesley
[34] J. R. Mckee. 1984, “Maintenance as a Function of Design”. in Proceedings

AFIPS, National Computer Conference, Las Vegas, pp 187-93
[35] Asadi and Rashidi. 2016, "A Model for Object-Oriented Software Maintainabil-

ity Measurement" in I.J. Intelligent Systems and Applications, Modern Educa-
tion and Computer Science Press

[36] Garlan, Allen and Ockerbloom. 1995 Architectural Mismatch: Why reuse is so
hard, in IEEE Software pp 17-26

[37] Soren. 2002 "Software Requirements Styles and Techniques" 1st Edition,
Addison-Wesley

[38] Mehmood & Jawawi, 2013 "Aspect-oriented model-driven code generation: A
systematic mapping study" in Elsevier Science Ltd p395 - 411

[39] Jörges. 2013, "Construction and evolution of code generators: a model-driven
and service-oriented approach" in Lecture notes in computer science, Springer

[40] Software Engineering Institute. 2000, "Capability Maturity Model Integration",
Version 1.1 CMMI for Systems Engineering and Software Engineering Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University

[41] Boeing.com. (2016). Boeing: The Boeing Company. [online] Available at:
http://www.boeing.com/ [Accessed 7 Sep. 2016]

[42] ww1.jeppesen.com. (2016). Jeppesen – Transforming the Way the World Moves.
[online] Available at: http://ww1.jeppesen.com/index.jsp [Accessed 7 Sep.
2016]

[43] Renault and PLM Industry Expert 2014 "Reuse Variability Management and
System Engineering" Poster Workshop of the Complex Systems Design & Man-
agement Conference CSD&M 2014.

[44] Galster & Avgeriou (2015), ’An industrial case study on variability handling
in large enterprise software systems’ in INFORMATION AND SOFTWARE
TECHNOLOGY, pp 16-31.

[45] Jansen, Slinger, Geert-Jan Houben, and Sjaak Brinkkemper. 2010 "Customiza-
tion realization in multi-tenant web applications: Case studies from the library
sector." International Conference on Web Engineering. Springer Berlin Heidel-
berg

59

http://ieeexplore.ieee.org/servlet/opac?punumber=4116785

Bibliography

60

A
Interview and evaluation questions

A.1 Semi-structured interview questions
1. What is the translation process of the SSIM to semantics that your company

understands?
2. In your experience, can you give us examples where a field inside the SSIM

was used in a different way from customer to customer? That is, customers
had their own interpretation of that field? And why does this happen?

3. What about with misinterpretations of the semantics, what could go wrong?
And how often can it occur?

4. What would you ask your customers to elicit their use cases?
5. Tell us, according to your experiences, about parts of the IATA that could

be misinterpreted, that could maybe be handled differently from different cus-
tomers?

6. How did you manage these issues in the past?
7. How are you handling things right now? Do you think there are issues with

the current approach?

A.2 Group interview questions
For each of the following variation points we found during our analysis phase:

1. Do you agree that they are indeed a variation point?
2. Is there something else that we might have missed?
3. What do you think is the most urgent to deal with?

A.3 Code analysis questions
1. Can you guide us through the SSIM integrator’s code of the old system?
2. Can you talk a little about the special cases the integrator is handling?
3. Can you elaborate more about special cases of your customers?
4. Do you have other issues with the interpretations of the semantics?
5. How do you detect these misinterpretations? and how do you handle them?

I

A. Interview and evaluation questions

A.4 First evaluation questions
1. The functions that you wrote for your current customer in the new system, do

you think they can be reused by some other airline?
2. Do you think, in general, that certain use cases might appear to other cus-

tomers?
3. (after presenting our suggested method) Do you think this approach is good

or bad? Why?
4. Are there some other ways that you could suggest for handling customer spe-

cific use cases?
5. Do you think this method could be replicated to other contexts as well?
6. Would you consider integrate this?

A.5 Final evaluation questions
1. What do you think of this approach? And Why? Do you agree with the

preliminary feedback?
2. Do you think use recurring customer specific use cases could emerge for the

SSIM interface? What about other interfaces?
3. What guarantee you have that your customers will write quality code and that

their systems will be compatible with yours?
4. How do your customers understand the system’s core and how do they test it?
5. Do you agree with these guidelines? And Why? Is there something missing?
6. (after discussing variability management for the Operational Messages inter-

face) Do you agree with this approach? And Why?
7. What do you think about possible future work? What other ways could sup-

port the understanding and effective management of variability?

II

	Introduction
	Purpose and objective
	Research questions
	Scope and limitations
	Method
	Outline of the thesis

	Background
	Crew management systems
	Standard interfaces
	SSIM interface
	Operational messages interface

	The avocado model

	Theory and related work
	Challenges of Software Customization
	Related Work
	Software Product Lines
	Key concepts
	Variation Point
	Variant
	Run time and build time binding
	Variability Types
	State of variability
	Software Features
	Interfaces

	Software Quality
	Maintainability
	Interoperability

	Dimensions of variability handling
	Methods for variability handling
	Generators
	Configuration Management
	Self-Adaptive systems
	Code level techniques
	Design Patterns
	Software product lines patterns

	Methodology
	Research Method
	Awareness of the problem
	Interviews
	Code and document analysis

	Literature review
	Trade off analysis and development
	Development
	Evaluation

	Towards effective variability handling
	Variation inside standard interfaces
	Main Variation Points of SSIM
	Data element identifiers
	Misused Fields
	Different SSIM versions
	Time modes
	Onward flight
	Main variation points of Operational messages interface

	The old and the new system
	The old system
	The new system

	Indicators for selecting a method
	Summary of indicators

	Trade-off Analysis of Variability Realization Mechanisms
	Generators
	Configuration management systems
	Self-Adaptive systems
	Code level approaches
	Summary

	Development and implementation of proposed solution
	Java implementation
	Change of technology
	Code analysis results
	Issues of the current appraoch
	Suggested approach

	Development process
	Example use cases
	The rest of the variation points
	Operational messages variation points

	Results and discussion
	Validation
	Evaluation
	Preliminary feedback
	Final Evaluation

	Integration
	Guidelines for decision making
	Understanding the nature of the variation point
	Implementation of a variation point

	Threats of Validity
	Conclusion
	Future work

	Bibliography
	Interview and evaluation questions
	Semi-structured interview questions
	Group interview questions
	Code analysis questions
	First evaluation questions
	Final evaluation questions

