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Abstract 
 
The use of position and map information as a part of algorithms in active safety 
applications is coming more and more in focus. One field of active safety in which 
navigation information can be used is intersection active safety applications which 
require a precise and continuous position of vehicle on the road to help the driver to avoid 
intersection accidents or mitigate their effects. 
 
Today most of land navigation systems are based primarily on the GPS; However in an 
intersection active safety application, positioning requirements can not be satisfied by 
GPS alone due to possible occlusions by high buildings or heavy foliages. Thus 
complementary onboard sensors should be implemented in the navigation system. 
Furthermore a digital road map should be used to utilize the restriction of land vehicles to 
the road network and provide information about the vehicle’s position relative to road. 
 
In this thesis work a Kalman filter and a map matching algorithm are presented. The 
Kalman filter fuses data from GPS receiver and other complementary onboard sensors 
such as differential odometer, yaw rate sensor and longitudinal accelerometer to achieve 
the required performance for intersection active safety applications. The map matching 
algorithm uses heading, position and vehicle trajectory given by Kalman filter to 
calculate vehicle position on the road network. 

To verify the performance of the fusion algorithm a test was conducted in downtown 
Alingsås, Sweden which showed encouraging results. The project goals: filling the gaps 
of GPS coverage, giving a smooth and continuous position and matching the vehicle 
position to the digital road map were achieved. 
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Abbreviations 
 
GPS: Global Positioning System 
DGPS: Differential GPS 
INS: Inertial Navigation System  
DR: Dead Reckoning 
ICAS: Intersection Collision Avoidance System 
ICA: Intersection Collision Avoidance 
IASA: Intersection Active Safety Application 
WGS84: World Geodetic System 84 
ITS: Intelligent Transportation system 
CPS: Continuous Positioning System  
 
Glossary 
 
GPS Occlusion: blockage of GPS signal. 
GPS outage Error: increase in error due to lack of GPS coverage and relying on 
INS/DR. 
Latency: The time between initiating a request for data and the beginning of the actual 
data transfer 
MLE: Maximum Likelihood Estimation. A statistical estimation method based on 
likelihood functions (as opposed to probability functions) and on maximizing the 
likelihood of the estimate, rather than minimizing some expected loss functions (e.g., 
minimum mean square). 
Position Fix: The given position by positioning system before map matching is 
performed. 
WGS84: The world geodetic System (WGS) is an international standard for navigation 
coordinates. WGS84 is a reference model released in 1984. It approximates mean sea 
level by an ellipsoid of revolution with its rotation axis coincident with the rotation axis 
of the earth, its center at the centre of mass of the earth, and its prime meridian through 
Greenwich. Its semimajor axis (equatorial radius) is defined to be 6,378,137 m, and its 
semiminor axis (polar radius) is defined to be 6,356,752.3142 m. 
White Noise:  White noise is a signal (or process) with a flat frequency spectrum. In 
other words, the signal has equal power in any band, at any centre frequency, having a 
given bandwidth. A white noise has zero autocorrelation with itself over time, except at 
zero time shift.  
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1. Introduction 

1.1. Background  

The use of position and map information as a part of algorithms in active safety 
applications is becoming more and more in focus. Many in-vehicle navigation and safety 
applications are under development that provide warnings to the vehicle driver or modify 
operation of the vehicle (or component thereof) based upon the position of the vehicle on 
the road network and conditions around the vehicle or other factors. Such applications 
require the measured position to be relatively well defined and the digital map 
information to be fairly accurate in order for the algorithms not to misinterpret the 
information.  

Today, most of land navigation systems are based primarily on the Global Positioning 
System (GPS) readings together with a relatively crude digital map. Although GPS has 
been widely used for land navigation, GPS alone cannot satisfy most land vehicle 
navigation requirements due to signal occlusions by high buildings or heavy foliages and 
multipath in urban environments. Therefore implementation of complementary onboard 
sensors such as Inertial Navigation System (INS) or Dead Reckoning (DR) sensors 
(gyros, accelerometers, odometers, etc) is essential to maintain a precise and continuous 
position.  

Both GPS and INS/DR devices fail to utilize the restriction of land vehicles to the road 
network and a valuable source of information is lost. Thus digital map are used in land 
navigation systems to provide information about the vehicle’s relationship to the roadway 
infrastructure that is not feasible to obtain with other sensors. 

In land navigation systems which use two or much more different navigation sensors a 
fusion method should be used to continuously fuse the noisy measurements from 
different sensors in an optimal manner. There are different methods for data fusion such 
as Kalman Filter, Artificial Neural Network [6], Particle Filters [7], etc. The most 
common method is the Kalman filter. The Kalman filter is a predictor-corrector type 
estimator that is optimal in the sense that it minimizes the estimated error covariance 
when some presumed conditions are met. 

One field of active safety in which land navigation systems can be used is to aid the 
driver in avoiding an intersection accident. Statistical data from the U.S. shows that 
roughly 43 percent of vehicle crashes occur at intersections or are intersection-related. A 
significant part of them takes place at intersections with traffic signals or stop signs. 
Their causes are often due to drivers' misjudgment of the situation, failure to correctly 
observe the situation, or inability to accurately perceive the degree of danger. These 
findings suggest that interventions such as warning systems and driver assistance could 
be particularly effective in reducing intersection crashes. Different intersection collision 
scenarios are shown in Figure 1-1. [8] 
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Figure  1-1 Intersection Collision scenarios [8] 

(a) (b) 

(c) (d) 

(e) 

a) Left turn across path – opposite 
    direction 
b) Left turn across path – lateral 
    direction  
c) Left turn into path 
d) Right turn into path 
e) Straight crossing path 
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1.2. Aim of the study 

One of the fields in which Autoliv Research is working is intersection safety. A method 
for a precise and continuous positioning of the vehicle on the road network may be part 
of a future intersection active safety application.. However this task can not be done just 
based on GPS data and implementation of complementary onboard sensors such as 
INS/DR sensors is essential.  

The objective of this thesis work is to create a data fusion algorithm which integrates all 
the noisy data from a GPS receiver and INS/DR sensors with information obtained from a 
digital map to achieve the required performance in vehicle positioning for intersection 
applications. The result of the algorithm will be analyzed and evaluated. 

Since the content of this report will not cover automotive-grade implementation of the 
algorithm, all the data will be treated in non real-time, that is, that they will not be treated 
at the same time they are collected. The algorithm will use stored output data collected by 
the sensors on a test vehicle driven in the field.   

1.3. Intersection Active Safety  

The requirements for positioning and map data fusion were investigated to identify 
priorities for the fusion and error estimation algorithms, specifically for intersection 
active safety applications.  

In this section, first active safety systems, especially Intersection Collision Avoidance 
Systems (ICAS) are introduced. Then vehicle positioning in automotive applications is 
discussed which will be followed by requirements for digital map and positioning 
accuracy in ICAS and criteria for evaluation of a positioning system. 

1.3.1. Active Safety Systems  

There are many different safety models. In this section two of them; the Mercedes Benz 
safety model [10] and Autoliv safety phase chart are presented. 

Mercedes Benz Safety Model: In the Mercedes Benz safety model an active safety 
system is a system that can be applied to any of the blocks F1, F2 and F3 shown in Figure 
1-2. 

During the warning phase, block F1, sensors detect a safety deficit or a running state 
which deviates from the desired state and therefore the driver or the passenger are 
informed by warning alerts. During Assistance phase if sensors detect a critical operating 
condition the driver is assisted by automatic safety system. If sensors detect a high 
probability of an accident, pre-crash phase is activated and along with further action 
designed to avoid accident, in this phase protective measures can be activated.  
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Figure  1-2 Mercedes Benz Safety Model [10] 

Autoliv Safety Model: The Autoliv safety phase chart (Figure 1-3) agrees with the 
Mercedes model. In Autoliv safety phase chart active safety systems are the systems that 
are utilized before the “point of no return”. 

 

 

Figure  1-3 Autoliv Safety Phase Chart  
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1.3.2. Intersection Collision Avoidance System 

An Intersection Collision Avoidance System is an active safety system that is designed to 
provide a driver with warnings of an impending crash or potential hazards at intersections 
or intervene to prevent the collision or mitigate the consequences. Intersection Collision 
Avoidance Systems use sensors to gather information about vehicle movements near an 
intersection, process that information to determine if a collision is at risk of occurring, 
and take the necessary actions. [8] 

There are three types of ICAS systems: 

• Vehicle-based autonomous systems, which have been developed mainly by 
private sector manufacturers;  

• Infrastructure-based systems, where the warnings and sensors are located in 
roadside arrays;  

• Systems that link vehicles to other vehicles or vehicles to infrastructure, so-called 
"cooperative" systems.  

The latter two are more often the purview of state department of transportations and 
government-supported research institutions because they would demand public 
investments. Vehicle-based systems can be divided into systems that:  

• Advise or warn the driver (collision warning) 
• Partially control the vehicle, either for steady-state or as an emergency 

intervention to avoid a collision (driver assistance)  
• Fully control the vehicle (vehicle automation). [8] 

1.3.3. Vehicle Positioning in Automotive Applications 

The implementation of the ICAS requires that vehicle position be known, and that this 
position data be related to upcoming intersections. An onboard Continuous Positioning 
System (CPS) and a digital map database should be used to provide this information. This 
application utilizes position data derived from the CPS to locate the vehicle on a specific 
roadway segment. 

The required accuracy in the positioning of a road vehicle depends on its application. In 
general as Tomas J. Nagel has pointed out in [1], there are three rough levels of accuracy 
that are relevant, road level, lane level, and control level. Road level is adequate to 
identify the road that a vehicle is on; this is the current status of GPS (10m). The next 
level of accuracy, lane level, allows a vehicle to identify a specific lane on a road, this 
accuracy is about 1 meter. Finally, a vehicle may be located to a level sufficient for 
collision avoidance and control applications, on 0.1 meters. These three levels are 
described briefly in Table 1-1. [1] 
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Table  1-1 Vehicle interaction possibilities vs. position accuracy 

Position Accuracy Application Information Capabilities 
Road Level General situation-needs to be confirmed or interpreted by driver 
Lane Level Warning capable- Applications have enough information to appeal 

to instinctive responses of drivers- still need driver in loop. 
Within Lane Level Control capability- accurate enough to take control of car if 

situation is well defined. 

Furthermore active safety applications are not based on position alone- they require 
knowledge of relative position to either other vehicles or infrastructure (traffic controls, 
road edge, etc.). While a vehicle application may know the vehicle position quite 
accurately, often the reliability is limited by the certainty of the information regarding the 
location of the other object. This information can be either highly variable (as in the 
position of another vehicle), or static (the location of a bridge abutment). Every type of 
information has an associated ‘time constant’ over which you can expect the data to be 
accurate, and after which an application would require an update or validation [1]. Figure 
1-4 and 1-5 shows some required update rates and positioning accuracy for automotive 
applications.  
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Figure  1-4 Required update rates for automotive applications [1] 

 

Once the position of other objects in the driving environment is determined, many new 
applications become possible. These systems provide the vehicle a preview of the road 
ahead based on a digital map in the vehicle. 
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Figure  1-5 Communication latency and required positioning accuracy for different automotive 

applications [1] 
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given location so that the receiver can search for those satellites when it is first 
turned on. 

2. Satellite Ephemeris data. Orbital data which enables much more accurate 
determination of satellite position needed for ranging. Ephemeris data for a 
particular satellite is only broadcasting by that satellite, and is valid for only 
several hours. 

3. Signal Timing Data: Time tagging included in GPS data stream which is needed 
to determine the satellite-to-user propagation delay used for ranging. 

4. Ionospheric Delay Data: estimates of ionospheric delay (described in 1.5.3). 
5. Satellite Health Message: Information regarding the current health of the satellite. 

1.4.2. Differential GPS 

Differential GPS (DGPS) is a technique for reducing the error in GPS-derived positions 
by using additional data from a reference GPS receiver at a known position. The most 
common form of DGPS involves determining the combined effects of navigation 
message ephemeris and satellite clock errors (including propagation delays) at a reference 
station and transmitting pseudorange corrections, in real time, to a user’s receiver, which 
applies the corrections in the process of determining its position. [5] 

1.4.3. GPS Data Errors 

Errors associated with the GPS data can be divided into the following categories: 

Ionospheric Propagation Errors: The ionosphere1 changes GPS signals propagation 
velocity and consequently causes errors in the pseudorange measurements. This error in 
the pseudorange for a satellite at zenith varies from about 1 m at night to 5-15 m during 
late afternoon due to daily variation of the ionosphere’s characteristics. At low elevation 
angles the corresponding error can increase to several meters at night and as much as 50 
m during the day. This error can be reduced to about 50% by using a model of the 
ionosphere and can be nearly eliminated by the use of DGPS. [5] 

Tropospheric Propagation Errors: The troposphere2 lengthens the GPS signal 
propagation path and consequently causes errors in the pseudorange measurements. This 
error in the pseudorange varies from about 2.5 m in the zenith direction to 10-15 m at low 
satellite elevation angles. This error can be reduced to within about 0.5 m by using a 
model of the standard atmosphere at the antenna location and can also be nearly 
eliminated by the use of DGPS. [5] 

The Multipath Problem: Multipath propagation of the GPS signal is a dominant source 
of error in differential positioning. Objects in the vicinity of e receiver antenna (notably 
the ground) can easily reflect GPS signals and significantly distort the amplitude and 
phase of the direct-path signal. Errors due to multipath can not be reduced by the use of 

                                                 
1 A region of the earth’s atmosphere where ionization caused by incoming solar radiation affects the 
transmission of radio waves 
2 The lower region of atmosphere which is composed of dry gases and water vapor 
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DGPS, since they depend on local reflection geometry near each receiver antenna. 
Multipath errors can increase in urban areas due to more severe reflection geometry. [5] 

Ephemeris Data Errors: Small errors in the ephemeris data transmitted by each satellite 
cause corresponding errors in the computed position of the satellite which result in range 
errors less than 1 m. This error can also be nearly eliminated by use of DGPS. [5] 

Onboard Clock Errors: The satellite’s clock error can cause error about 1 m in range. 
This error can also be nearly eliminated by use of DGPS. [5] 

Receiver Clock Errors: Because the navigation solution includes a solution for receiver 
clock error, the requirements for accuracy of receiver clocks is far less severe than for the 
GPS satellite clocks. [5] 

For more detailed information about GPS data errors refer to Appendix B. 

1.4.4.  Dilution of Precision  

GPS positioning is based on range measurements and a better accuracy is obtained by 
using reference points (satellites) well separated in space. For example, the range 
measurements made to four reference points clustered together will yield nearly equal 
values. Position calculation involves range differences, and where the ranges are nearly 
equal, small relative errors are greatly magnified in the difference. This effect, brought 
about as a result of satellite geometry is known as Dilution of Precision (DOP). This 
means that range errors that occur from other causes such as clock errors are also 
magnified by the geometric effect, in other words, when ranges are nearly equal due to 
geometry of satellites, errors from other sources are also magnified in the difference. [5] 

1.5. Inertial Navigation System 

Inertial Navigation System (INS) relies on knowing the initial position, velocity and 
altitude and thereafter measuring attitude rates and accelerations and integration of them 
to maintain an estimate of the host vehicle. An inertial measurement unit contains a 
cluster of sensors (accelerometers and gyroscopes) which are rigidly mounted to a 
common base to maintain the same relative orientations. 

1.5.1. Advantages and Disadvantages of INS 

The advantages of INS over other forms of navigation for active safety applications are as 
follows: 

1. It is autonomous and does not rely on external aids or on visibility conditions. It 
can operate anywhere on the globe. 

2. It is inherently well suited for integrated navigation, guidance and control of host 
vehicle. 
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The main disadvantage of INS is that the mean-squared navigation errors increase with 
time due to integration of sensing errors. 

1.5.2. INS Error Sources 

Initialization Errors: Inertial navigation can only integrate sensed accelerations to 
propagate initial estimates of position and velocity. Initialization errors are the errors in 
these initial values. 

Alignment Errors: Errors between sensors input axes and the navigation axes are the 
alignment errors. 

Sensors Compensation Errors: Sensor Calibration is a procedure for estimating the 
parameters of models used in sensor error compensation. It is not uncommon for these 
modeled parameters to change over time and between turn-ons which causes sensor 
compensation errors. 

1.6. Dead Reckoning 

Dead Reckoning methods can be of many kinds. The one widely used in vehicles is 
odometry which measures vehicle speed. Odometry means integration of incremental 
motion information over time, which leads to accumulation of errors. These errors 
increase proportionally with the traveled distance. The main errors are caused by wheel 
slippage, variations in tire pressure or radius and travel over nonsmooth surfaces or 
unexpected objects. [11] 

1.7. Requirements on Digital Map and Positioning Accuracy in 
IASA 

Digital road maps may be able to act as an additional sensor for various driver assistance 
systems, providing information about the vehicle’s relationship to the roadway 
infrastructure that is not feasible to obtain with other sensors such as radar or computer 
vision. It will not preclude the need for these other sensors, but may add a necessary 
component for successful implementation of future systems. [2] 

However there are also imprecisions associated with digital road maps due to model error 
or data error. These errors can be either geometrical or topological and a summary 
follows below. 

• Digital road maps are mostly based on a single line model; however, real world 
roads are multi lane. 

• Roads are usually described by piece-wise linear links which approximate road 
curvature, while real world roads are smooth. 

• Current road network models can not describe road intersections perfectly. In 
current road network models intersections are shown by their center point and 
there is no information about intersection geometry, e.g. whether there are traffic 
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islands or traffic circle (see Figure 1-6). Another attribute that is not available in 
current road maps is intersection corner curvature which is specified either by 
road side marking line or asphalt edge and which determines space available for 
turning maneuver. (see Figure 1-7) 

• There are deficiencies due to the road network topological1 model. For example a 
road network model which is based on the connection of nodes, can describe 
vehicle motion along one road segment, however it can not describe the turn 
restrictions in an intersection. [3] 

 

Figure  1-6 (a) Traffic Circle, (b) Traffic islands 

 

 

Figure  1-7 Intersection Corner Curvature 

There is a need for further information in road databases for active safety applications 
such as width of each lane, lane marking, shoulder information, etc. 

Much effort has been put into the enhancement and specification of digital road maps. 
For example the Enhanced Digital Maps Project, carried out by DaimlerChrysler 
Research and Technology North America (DCRTNA), Ford, GM, Navigation 
Technologies (NavTech) and the Toyota Technical Center (Toyota). The Enhanced 
Digital Map Project is a three-year effort launched in April, 2001 to develop a range of 

                                                 
1 Relationship between spatial entities, such as connecting, separating, etc. 

(a) (b)

Intersection Corner 
Curvature



Data Fusion                                                                                                        Spring 2005 
________________________________________________________________________ 

12 

digital map database enhancements that enable or improve the performance of driver 
assistance systems currently under development or consideration by U.S. automakers. 
This effort is examining the feasibility of expanding the content and / or enhancing the 
resolution of current digital maps as an enabling technology for various collision 
avoidance systems. [2] 

An activity was included in the Enhanced Digital Map Project to investigate the required 
accuracy for three different active safety applications; Stop Sign Assist, vision based 
Traffic Signal Assist and Intersection Collision Avoidance System (ICAS). A summary 
of its suggested requirements for Stop Sign Assist and Traffic Signal Assist applications 
are presented in Table 1-2. Suggested requirements for ICAS are presented in section 
1.7.1. 

Table  1-2 Positioning requirements for Stop Sign Assist application [2] 

Driving speed: - Maximum speed at  non-
posted section 

55MPH, 88km/h, 
24.4m/s 

Maximum Deceleration 0.3G (2.94m/s2) 
Stop line width 0.3m 
Stop line offset 3m 

Assumptions  

Brake actuator response delay 100ms, 2.5meter at 
24.4 m/s 

Absolute map position error in longitudinal 
direction 

1m 

Vehicle positioning error in longitudinal 
direction 

5m 
 

Positioning 
Requirements 
for Stop Sign 
Assist 
(Warning) Data update rate 10Hz 

Absolute Map position error in longitudinal 
direction 

0.3m  
 

Vehicle positioning error in longitudinal 
direction 

0.5m 

GPS outage error: (in last 10s prior to reaching 
the stopping point) 

0.1m 

Positioning 
Requirements 
for Stop Sign 
Assist 
(Control) 
 

Data update rate will directly relate to the 
response delay 

At least 50Hz is 
expected 

Vehicle positioning error  1m to 2m 

Traffic signal longitudinal position error in map 2m 

Positioning 
Requirements 
for Traffic 
Signal 
Assistant Traffic signal lateral position error in map 3m 
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1.7.1. Requirements for Intersection Collision Avoidance System 

The infrastructure is stationary but vehicles are not, therefore, positioning requirements 
should be a concern mainly for vehicles. ICAS assists in avoiding “inattentive” or 
“aggressive1” driving. To do so, the ICAS should transmit warnings/control commands to 
vehicles to stop/reduce speed and/or control the drive path when the vehicle is likely to 
run past defined stopping locations or likely to get into a collision. [2] 

The functionality of the ICAS is quite similar to the “Stop Sign Assistant (Control)” in 
terms of making a stop. Therefore, positioning requirements for ICAS application are 
similar to requirements for Stop Sign Assist. Regarding communication capability, 
shorter communication latency would be required due to the fact that both vehicles are 
moving and their relative speed is vector addition of their speeds. (e.g. the distance 
traveled in 20ms corresponds to 0.2m when driven at 40km/h). [2] 

Summary of vehicle positioning requirements for ICAS is covered in Table 1-3. 

Table  1-3 Summary of vehicle positioning requirements for ICAS [2] 

Longitudinal absolute positioning error Less than 0.5m for control 
Lateral absolute positioning error Less than 0.2m for control 
GPS outage error in 10 seconds Less than 0.1m for control 
Data update rate At least 50Hz 
Communication latency Less than 20ms, at least 50H 

Positioning 
Requirements 
for ICAS 
 
 
 Expected absolute accuracy of road/lane 

geometry2 
0.3m 

In another report published by NHTSA [4] performance guideline for an ICAS system 
using GPS and ITS countermeasures (laser radar) is investigated.  Some important 
parameters, the source of the parameters, the current and desired values of the parameter 
and a comment on how the parameter affects system performance are listed in table 1-4.  

ICAS vehicle speed should be accurate within 0.15 m/sec. The ICAS vehicle’s speed is 
estimated by the Continuous Positioning System (CPS) which uses the vehicle speed 
sensor and GPS. In addition to causing errors in positioning, the error in the CPS’s speed 
estimate can result in tracking targets which have zero velocity. These stationary targets 
would appear to have a velocity equal to the error in vehicle speed. This would cause the 
                                                 
1 Aggressive driving has been said generally to include excessive horn-honking, running red lights, traffic 
weaving, tailgating, headlight flashing, braking excessively, excessive speeding, profanity/obscene 
gestures, blocking the passing lane, etc. [7] 

2 The travel distance to the stopping point or road signs could be obtained from this attribute. The ICAS 
should be capable of providing precise lane guidance. Lane-by-lane representations of each map element 
would be required because restrictions are lane dependent. The centerline represents the lane. [2] 
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tracker to establish a track and the warning algorithm to be applied causing possible false 
alarms.  

Position and roadway information update rate of 10 Hz adequate for ICAS. The ICAS 
system performed adequately when operating at a system update rate of 
10Hz.Investigation of vehicle position update rate of 1 Hz, which is the update rate for 
standard GPS systems, was found to be inadequate to support the countermeasure 
function. The inadequate update rate caused false alarms and inconsistency of the 
warnings provided by the GIS/GPS un-signalized intersection warning system. 

The latency of data is important in the ICAS, and needs careful attention to detail. The 
latency of data being provided by the various sensors in the ICAS is a critical area that 
must be addressed. Common to many applications where vehicle position and dynamics 
are being measured, the synchronization of data streams is important.  

Time delays in the accessing of map data should not be sufficient to cause problems with 
data flow and processing of countermeasure functions.  

Table  1-4 Performance Guidelines of Threat Detection System (ICAS capable of issue warnings) [4] 

Parameter  Source Desired Value Affects 

Target and ICAS 
vehicle position 
accuracy 

DGPS 
/GIS  

<3 m Countermeasure logic, warning 
times 

ICAS vehicle speed CPS  <0.15m/s Target and ICAS speed 
estimate 

Intersection 
location accuracy 

GIS 1 m 
 

consistency of alarms, tracker 
accuracy 

Vehicle position 
update rate 

DGPS 10 Hz consistency of alarms 

Data latency GIS/ GPS 0.3 sec Provision of warnings 

Accuracy of roadway data 
elements 

GIS Highly Accurate 
 

ability of system to function 

Accuracy of roadway 
shape characteristics  

GIS Highly Accurate 
 

ability to point radar, vehicle 
position 

Accuracy of Traffic 
Control Device Inventory 

GIS Highly Accurate 
 

Provision of warning, system 
actions at intersection 
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1.7.2. Analysis of positioning requirements  

In conclusion positioning requirements for an ICAS can be categorized into two levels; 
warning level requirements and control level requirements. A summary of these 
requirements found in the literature are presented in Table 1-5.  
Table  1-5 positioning requirements stated in literature for Intersection active safety applications  

No. Item  Warning level Control level 
1 Longitudinal absolute positioning error 5m 0.5m 
2 Lateral absolute positioning error 2m 0.2m 
3 Expected absolute accuracy of road/lane geometry 1m Road level 0.3 
4 Speed Accuracy 0.15m/s ---- 
5 GPS outage error in 10 seconds 1m 0.1m 
6 Position update rate 10Hz 50Hz 
7 Communication latency 100ms  20ms 
 
There are some other specifications of the positioning system that should be identified 
regarding these requirements. To have an estimate of these requirements, effect of these 
variables on positioning system performance was analyzed.  
 
According to Table 1-5, GPS outage error should be less than 0.1m during last 10 
seconds of GPS blockage for control level and less than 1 m for warning level. To 
achieve this requirement, needed heading accuracy, speed accuracy and acceleration 
accuracy can be calculated as follows: 
 
Assume that the vehicle shown in Figure 1-8 is driving on a straight road in x direction at 
time 0t  and after t∆  seconds of GPS blockage, δψδδ ,, yx  are errors in x and y position 
and heading respectively.  
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Figure  1-8 A model and symbols used for analysis of positioning requirements 

 
Based on vehicle’s equations of motion: 
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Required speed accuracy to achieve longitudinal position requirement, is: 
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So required acceleration accuracy is: 
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Required heading accuracy to achieve lateral position requirement, is: 
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So required yaw rate accuracy is: 
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In the calculation of heading accuracy, maximum acceptable GPS outage error in lateral 
direction is estimated from absolute longitudinal and lateral positioning requirement and 
GPS outage error stated in table 1-5.  
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The required heading accuracy in both levels of application are very high. Achieving 
such level of accuracy even by using a highly accurate gyro is not feasible due to lack of 
an accurate absolute heading measurement for initiation. Therefore heading data should 
be corrected by other sources of data such as digital map or data from local positioning 
systems like vision system or active cruise control system. 
 
A summary of requirements on positioning system parameters suggested by the authors is 
presented in Table 1-6.  
 
Table  1-6 Positioning Requirements suggested by Author 

No. Item  Warning level Control level 
1 Longitudinal absolute positioning error 5m 0.5m 
2 Lateral absolute positioning error 2m 0.2m 
3 Expected absolute accuracy of road/lane geometry 1m Road level 0.3 
4 Speed Accuracy 0.1m/s 0.01m/s 
5 GPS outage error 1m 0.1m 
6 Position update rate 10Hz 50Hz 
7 Communication latency 100ms  20ms 
8 Heading Accuracy 0.1 deg 0.01 deg 
9 Yaw rate Accuracy 0.01 deg/s 0.001 deg/s 
10 Acceleration accuracy 0.01 2/ sm  0.001 2/ sm  
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2. Method 
 
In this chapter an overview of the test vehicle and sensors used for navigation will be 
presented, followed by an explanation of fusion method which integrates the data from 
GPS receiver and other sensors. Finally the map fusion algorithm will be explained. 

2.1. Test Vehicle 

The test vehicle is a standard Volvo V70, which is equipped with a GPS receiver (G12), a 
Cronos unit - which collects CAN bus data and analogue sensor measurements - and a 
fiber optic gyro (FOG) which are explained below. 

G12 GPS Receiver: According to its manual, G12 GPS receiver features 12-channel/ 12-
satellite operation; each of up to 12 visible satellites can be assigned to a discrete channel 
for continuous tracking. Each satellite broadcasts almanac and ephemeris data every 30 
seconds which will be recorded by G12.  Obviously G12 does not use data from satellites 
which are marked unhealthy in ephemeris. The G12 is designed for both stand alone and 
DGPS operation; when it is in DGPS operation, it will use SWEPOS1 reference GPS 
stations. 

The G12 uses instantaneous Doppler values form four satellites to compute velocity 
which make it independent of the last position fix. (For information about Doppler 
measurements refer to Appendix C.) 

The major sources of error affecting the accuracy of GPS range measurements (stated in 
section 1.5.3) are ephemeris data error, satellite clock error, ionosphere, troposphere, 
multipath and receiver noise in measuring range). In stand alone operation, the G12 uses 
ionospheric and tropospheric models to compensate for errors caused by ionospheric and 
tropospheric delay. However when it is operating in differential mode, these errors as 
well as ephemeris data error and satellite clock error are nearly removed, the residual 
error due to these sources is in the order of one millimeter for every kilometer of 
separation between base and remote receivers.  

Multipath error and receiver noise are not correlated between the base and remote 
receiver and is not canceled by differential GPS; however in the G12, integrated doppler 
measurements are used to smooth the range measurements and reduce the errors resulting 
from receiver noise. Multipath errors are also reduced by means of a digital signal 
processing technique implemented in the hardware and software of the G12 receiver. 
This technique removes multipath errors for reflected signals with delays of 37 meters or 
more, almost entirely. [7] 

                                                 
1 http://swepos.lmv.lm.se/english/index.htm 
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On the whole stand alone position accuracy is 3 meters in case of PDOP1 less than 4, but 
when the G12 is operating in differential mode, position accuracy improves to better than 
1 m.  

The GPS parameters which were used in this thesis work are presented in Table 2-1 and 
Figure 2-1. 

Cronos unit: The Cronos unit is a measurement device which offers direct connection of 
different components like the Controller Area Network (CAN) bus and analog/digital 
sensors in the vehicle. The cronos out parameters which were used in this thesis work are 
presented in Table 2-1 and Figure 2-1. 

Fiber Optic Gyro (FOG): FOG is an optical fiber gyro in the test vehicle which measures 
the yaw rate. 

Table  2-1 Measurements used in this thesis work 

Measurements   Symbol Source Sampling Frequency 
Longitude a GPSθ  10Hz 
Latitude a GPSφ  10Hz 
Altitude a GPSh  10Hz 
Ground Speed GPSV  10Hz 
Heading b GPSψ  10Hz 
HDOP c HDOP  

GPS 
 

10Hz 
ABS Speed  CANV  50Hz 
Longitudinal Acceleration CANa  50Hz 
Yaw Rate    CANY&  

Cronos 

50Hz 

Yaw Rate 
FOGY&  FOG 50Hz 

a Referenced to an earth fixed global reference frame called World Geodetic System 1984 (WGS84) 
     b Measured clockwise from north axis  
     c Horizontal Delusion of Precision 
 
 
 

                                                 
1 Position Dilusion of Presicion 
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Figure  2-1 Measurements used in this thesis work with position of relative sensor 

 

2.2. Data Fusion  

GPS has been playing a major role in land navigation systems; however due to signal 
blockage by high buildings or heavy foliages and severe multipath in urban 
environments, GPS alone cannot satisfy requirements for an intersection active safety 
application. Thus, in this thesis work, data from GPS was integrated with data from 
complementary onboard sensors (presented in Table 2-1) to maintain a continuous and 
more accurate position. A schema of fusion system is presented in Figure 2-2. 

A Kalman filter, which is the most common data fusion method, was used to integrate all 
the noisy measurements from different sensors in an optimal manner. In the following 
section a short description of Kalman filter along with Kalman filter formulation of 
vehicle positioning system established in this project is presented. 
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Figure  2-2 Schema of the fusion system 
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2.3. Kalman Filter 

Theoretically the Kalman Filter is an estimator for what is called the linear-quadratic 
problem which is the problem of estimating the instantaneous “state” of a linear dynamic 
system perturbed by a white noise: 

)()( twxtx
dt
d

+Φ=  

 
 by using measurements linearly related to the state but corrupted by white noise:  
 

)(tvHxz +=  
 

The random variables )(tw  and )(tv  represent the process and measurement noise, 
respectively. They are assumed to be independent of each other, white, and with normal 
probability distributions. 

The Kalman filter is an optimal recursive data processing algorithm. It is optimal in the 
sense that it minimizes the estimated error covariance. Another aspect of its optimality is 
that the Kalman filter incorporates all information that can be provided to it. It processes 
all available measurements, regardless of their precision, to estimate the current value of 
the variables of interest, with use of (1) knowledge of the system and measurement 
device dynamics, (2) the statistical description of the system noises, measurement errors, 
and uncertainty in the dynamics models, and (3) any available information about initial 
conditions of the variables of interest.  

The word recursive in the previous description means that the Kalman filter does not 
require all previous data to be kept in storage and reprocessed every time a new 
measurement is taken. This will be of vital importance to the practicality of filter 
implementation. [9] 

The Kalman Filter is a two-step process, “prediction” and “correction”.  In the prediction 
step, the estimate of state variables x̂  and its associated covariance matrix of uncertainty, 
P, are propagated from one time step to another. This is the part where the dynamics of 
underlying physical processes come into play. The correction step makes corrections to 
the estimate of state variables and covariance matrix P, based on new information 
obtained from sensor measurements. 

The equations used to propagate the covariance matrix, model and manage uncertainty; 
taking into account how sensor noise and dynamic uncertainty contribute to uncertainty 
about the estimated system state. By maintaining an estimation of its own estimation 
uncertainty and the relative uncertainty in the various sensor outputs, the Kalman filter is 
able to combine all sensor information optimally. 
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The main focus in the Kalman filter is on computation of the optimal value of the Kalman 
gain matrix K used for correcting estimate of x̂  and its associate covariance matrix )(−P , 
based on a measurement: 

[ ]
)()()(

)(ˆ)(ˆ)(ˆ

−−−=+

−−+−=+

HPKPP
xHzKxx

 

The Kalman gain matrix K is derived based on Gaussian Maximum-Likelihood Estimate 
(MLE) which results in: 

1))(()( −+−−= RHHPHPK TT  

Where )(−P is the predicted value of estimation covariance, H is the measurement 
sensitivity matrix and R is the covariance of sensor noise or measurement uncertainty. [1, 
2] 

2.3.1. Extended Kalman Filter 

Kalman filter is defined for linear dynamic systems with linear sensors, However it has 
been applied more often to real world applications without truly linear dynamics or 
sensors, which is also the case in this thesis work. It is due to these nonlinearities that 
Extended Kalman Filter, which is an approach to Kalman filtering for nonlinear systems 
using linearization of the system model about the estimated state, was used in this thesis 
work.  

The essential Extended Kalman Filter equations are summarized in Table2-2. The 
following are some names commonly used for the symbols in Table 2-2. [1] 

H is the measurement sensitivity matrix. 
)(ˆ −kxH is the predicted measurement. 

)(ˆ −− kxHz , the difference between the measurement vector and the predicted 
measurement is the innovations vector. 
K is the Kalman gain. 

)(−kP is the predicted or a priori value of estimation covariance. 
)(+kP is the corrected or a posteriori value of estimation covariance. 

kQ  is the covariance of dynamic disturbance noise. 
R  is the covariance of sensor noise or measurement uncertainty. 

)(ˆ −kx  is the predicted or a priori value of the estimated state vector. 
)(ˆ +kx  is the corrected or a posteriori value of the estimated state vector. 

z is the measurement vector. 
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Table  2-2 Extended Kalman Filter equations [1] 

System dynamic model 
)(tw is white noise )(),( twtxfx

dt
d

+=  (2.1) 

Measurement model 
)(tv  is white noise )()( tvxhz +=  (2.2) 

Initial conditions 00ˆ xEx =  (2.3) 

 000
~~ xxEP =  (2.4) 

Predictor (Time Updates) 

Predicted state ∫
−

⋅++=− −

k

k

t

t
kk dtfxx

1

)(ˆ)(ˆ 1  (2.5) 

Predicted covariance matrix 11 )()( −− +Φ+Φ=− k
T
kkkk QPP  (2.6) 

Where 1ˆˆ −Φ= kkk xx  (2.7) 
 Φ=Φ F&  (2.8) 
 ( ) Itk =Φ −1  (2.9) 

 
KXXx

fF ˆ|
=∂

∂
=  (2.10) 

Corrector (Measurement Updates) 
Kalman gain 1))(()( −+−−= k

T
kkk

T
kkk RHPHHPK  (2.11) 

Where 
KXXk x

hH ˆ|
=∂

∂
=  (2.12) 

Corrected state prediction ))](ˆ([)(ˆ)(ˆ −−+−=+ kkkkk xhzKxx  (2.13) 
Corrected  covariance matrix )()()( −−−=+ kkkkk PHKPP  (2.14) 

 

2.3.2. Vehicle Dynamic Model 

As stated in previous section, the Kalman filter is an extremely effective and versatile 
procedure for combining noisy sensor outputs to estimate the state of a system with 
uncertain dynamics optimally. For the purpose of this thesis: 

 The noisy sensors include GPS receiver, inertial sensors (accelerometer and 
gyroscope) and ABS wheel speed sensor. (see Table 2-1) 

 The system state includes position, velocity, acceleration, heading (yaw) and 
heading rate. (see Table 2-3) 

 Uncertain dynamics includes unpredictable disturbance of the vehicle, whether 
caused by a human operator or by medium (e.g., wind or turn in the road). 
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Table  2-3 State variables used in Kalman filter 

State Variables Description  
Longitude )(θ  Longitude coordinate of vehicle reference point position in WGS84 
Latitude )(φ  Latitude coordinate of vehicle reference point position in WGS84 
Altitude )(h  Altitude coordinate of vehicle reference point position in WGS84 
Heading )(ψ  Direction of vehicle reference point velocity measured clockwise from 

north axis of local tangent plane coordinate 
Speed )(V  Magnitude of vehicle reference point velocity 
Acceleration )(A  acceleration of vehicle reference point along roll axis in RPY coordinate 

(see Figure 2-3) 
Yaw Rate )(Y&  Rate of change of vehicle angle about yaw axis in RPY coordinate (see 

Figure 2-3) 
 
 
 

 
 

 
 
 

 
 
 

 
Figure  2-3 Test vehicle and state variables 
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The vehicle dynamic model on which Kalman filter equations were written is fairly a 
standard model, with: (For established extended Kalam filter equations refer to Appendix 
A.) 

U

M

N

T

E

Vh
dt
d

hr
V

dt
d

hr
V

dt
d

=

+
=

+
=

φ

φ
θ

))(cos(

 

 
where  UNE VVV ,,  are east, north and up coordinates of velocity in local tangent plane 
coordinate, respectively. MT rr , are transverse radius of curvature and meridional radius of 
curvature of WGS84 reference ellipsoid at altitude φ , respectively, with following 
equations: 

φ22 sin1 e
arT

−
=  

2/322

2

)sin1(
)1(
φe

earM −
−

=  

a is the semi major axis of reference ellipse and e  is the eccentricity.  

For simplicity, it was assumed in this model that vehicle speed is in local tangent plane or 
in other words, the up coordinate of vehicle velocity, UV  is zero. It was also assumed that 
the state variable; heading, is equal to yaw and consequently its rate of change is equal to 
yaw rate. This is only true at non-slip conditions where direction of vehicle reference 
point velocity is along the vehicle centerline (Roll axis) and lateral speed is zero. To 
reduce the error caused by this assumption vehicle reference point (GPS antenna 
location) should be close to vehicle center of rotation1. Vehicle center of rotation moves 
back and forth as vehicle yaw rate, speed and slip condition changes. Therefore the best 
solution is to put GPS antenna somewhere on vehicle centerline close to vehicle center of 
rotation in normal driving condition (see section 4.X). These assumptions lead to 
following equations: 

)sin(ψVVE =  
)cos(ψVVN =  

)cos()sin( ψψ YVA
dt

dVE &−=  

                                                 
1 Vehicle center of rotation is somewhere on vehicle centerline in which vehicle speed in lateral direction is 
zero 
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)sin()cos( ψψ YVA
dt

dVN &+=  

awA
dt
d

&=  

Y
dt
d &=ψ  

YwY
dt
d

&
& =  

Where Ya ww && ,  are white noises. 

2.4. Stop and Turn Detection 

In the fusion algorithm, there are sub modules which detect vehicle stop and turning. Stop 
detection is important due to the fact that the position given by GPS receiver can varies 
up to 10 meters during a stop, although vehicle position does not change1. Therefore the 
fusion algorithm maintains the last estimated vehicle position until vehicle movement is 
resumed; vehicle stop can easily be detected by checking ABS speed which returns a zero 
value during the stop. 
 
A turning module processes vehicle heading and yaw rate to detect a turning maneuver 
which will be used in Map Matching algorithm explained in the following section. The 
turning module will be trigged whenever the yaw rate value exceeds 2.3deg/s- this value 
was determined by observing yaw rate values during field tests- and if there be an 
increase or decrease more than 20 degree in heading afterwards, the vehicle would be 
assumed to be in a turning maneuver. The value of 20 degree is the maximum heading 
change in an overtaking maneuver in a straight road according to Ocheing [3] which is 
also approved by field test results conducted during this thesis work. 

2.5. Map Matching  

  As stated in chapter 1, digital road maps are used in land navigation systems as an 
additional sensor which utilize the restriction of land vehicles to the road network and 
provide information about the vehicle’s position relative to road network. However, there 
are also imprecision with digital road maps as described in section 1-4. Moreover, even 
with very good sensor calibration and sensor fusion algorithms, inaccuracies are often 
inevitable in positioning results. Hence, positioning results do not always match onto the 
digital road map. This phenomenon is even more severe at intersections which is topic of 
this thesis work. Therefore, map matching algorithms are usually used to match the 
positioning results with digital road map. Generally Map Matching refers to the 
procedure of determining the location of a vehicle with respect to a digital road map. 

                                                 
1 This may be due to use of GPS heading and velocity for calculation of position in GPS receiver and the 
fact that the GPS heading and velocity measurement is really poor in low velocities and during stops.  
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2.5.1. Literature Review on Map Matching Algorithms 

A literature survey on different map matching algorithm already developed was done as a 
part of this thesis work, a summary of which follows: 

Point-to-Point matching:  In this approach, each positioning point is matched to the 
closest ‘node’ in the network. This approach is easy to implement, however, it is very 
sensitive to the way in which road network is digitized, like number of nodes per meter of 
a road, etc. In this approach the best achievable precision is the map resolution or in other 
words the least distance between map nodes. [3] 

Point-to-Curve matching: In this approach, the positioning point is matched with the 
closest curve in the network. Each curve is described by piece-wise linear segments. The 
line segment which gives the smallest distance is selected as the one on which the vehicle 
is assumed to be traveling. Although this approach gives better results than point-to-point 
matching, it also has some deficiencies such as generating very unstable results in dense 
urban networks with too many intersections and roads which are too close to each other. 
[3] 

 On the whole a matching algorithm which just relies on instant position of the vehicle 
rather than its historical trajectory can lead to unstable results and unreasonable jump 
from one road to another one especially in dense urban networks and at intersections 
where distance from all intersecting roads is almost equal.  

Curve-to-Curve Matching: In this approach, the historical vehicle path is compared to 
the possible candidate paths on the map. These candidate paths are paths on the map 
which lie within general vicinity of the vehicle at any instant time. The candidate map 
path which best matches the vehicle path is selected as the path on which the vehicle is 
traveling. Many different pattern recognition techniques can be applied to this approach, 
the most common of which is cross-correlation. This approach is computationally rather 
intensive and is quite sensitive to outliers. [5] 

Fuzzy Logic Based Matching: Syed (2004) propose a fuzzy logic based map matching 
algorithm, the basic steps of which are: 1) Identifying the first road link and determining 
the position of vehicle on it. 2) Tracking the correct link subsequently. 3) Determining 
the position on the road link tracked in step2. In each steps, algorithm uses fuzzy inputs 
such as: proximity of positioning solution, small heading differences, average distance 
traveled on the current link and time. [6] 

Ochieng Method: Ochieng (2003) propose a method of map matching which has two 
distinct processes for identification of the correct link, namely the Initial Matching 
Process (IMP) and Subsequent Matching Process (SMP).  IMP identifies an initial correct 
link for an initial position fix (position obtained from positioning unit). It uses a 
confidence region around a position fix based on variance-covariance information 
associated with GPS or GPS/DR. Then the segments in the confidence region are filtered 
based on the heading difference between vehicle and each segment. If there remains more 
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than one candidate, the most appropriate segment will be selected considering the link 
connectivity and historical information of vehicle location. SMP identifies the consequent 
road links using turning information.  

When the actual road link is identified whether by IMP or SMP, the location of vehicle 
on it is calculated in two ways. In one way the position fix is projected perpendicularly 
on the actual road to obtain the easting and northing coordinates of vehicle location on 
the road. In the other way, bearing of actual road link, vehicle speed and the previous 
matched point are used to calculate the location of vehicle on the road as below: 

θ
θ

cos
sin

1

1

⋅+=
⋅+=

+

+

vNN
vEE

ii

ii  

Where iE , 1+iE  are the easting coordinates of vehicle location on road link at time t and 
t+1 respectively and iN , 1+iN are northing coordinates. θ  is bearing of actual road link 
and v is vehicle speed. Finally the optimal estimate of the easting and northing 
coordinates of vehicle location on the road is obtained by a linear function of two 
methods: 
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Where E, N are easting and northing coordinates of vehicle location on the road and 1k , 

2k are weight factors which are calculated based on error variances associated with each 
method. [3] 

Scott Method: Another method for calculating vehicle location on an identified road link 
is proposed by Scott (1994). This method utilizes the spatial correlation of the 
measurements errors in a coordinate with one axis collinear with the identified road link. 
The spatial correlation arises from the angle between the road link and the measurement 
coordinate in which vehicle position is measured and can be shown by using standard 
coordinate transformation techniques: 
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Where ba σσ ,  are the error variances in the measurement coordinate and xyyx σσσ ,, are 
error variances and covariance in the coordinate with one axis collinear with the road link 
(see Figure 2-4); r is the resulted spatial correlation. [4] 

 

Figure  2-4 Error variances in the measurement coordinate and transferred coordinate 

2.5.2. Proposed Map Matching Algorithm 

As explained in previous section, in current map matching algorithms, the vehicle 
position fix is matched on the centerline of roads. This means that the given vehicle 
trajectory by these map matching methods follows a road’s centerline pattern and vehicle 
maneuvers on the road such as lane changing and turning in an intersection can not be 
presented (For example vehicle turning in an intersection will be presented by an in place 
turning on the node where centerlines of intersected roads meet). However in an 
intersection active safety application the vehicle trajectory is most likely of great 
importance, therefore in proposed map matching algorithm in this thesis it has been tried 
to keep the given vehicle trajectory by Kalman and not to match the given vehicle 
position only to a point on the road centerline, but to match it to a point within the road 
width. This has been done by calculating and updating the general offset (explained 
further in following paragraphs) between vehicle position fixes and their respective 
vehicle location on the road map, which is referred to as “common offset” in this report. 

In general the offset between a given vehicle position and its respective location on a 
given road is calculated as below: 

The given vehicle position will be projected on the centerline of given road, which is the 
only available data about road geometry. Next, the road width will be estimated based on 
the speed limit on the road (Table 2-4), since road width is not available in the map data 
but speed limit is.  

aσ
bσ

xσ

yσ
θ

Actual road link
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Table  2-4 Assumed road widths based on the speed limit [8] 

Speed Limit (km/h) Road Width (m) 
0-70 7 

71-90 9 
91-100 13 
>100 Highway * 

* Since there is no intersections at highways, there are not covered in this thesis and while on a highway, 
the position fix is considered as vehicle location on the map as well. 

Then the offset between the given vehicle position and its respective location on the 
given road is calculated based on the situation of the given vehicle position relative to its 
projection on the centerline of given road which can be categorized as follows: 

On two way roads (see Figure 2-5): 

a. The given vehicle position is on the right side of the centerline and it is within the 
road width. In this case the vehicle position is also considered as the vehicle 
location on the road and the offset is equal to zero. 

b. The given vehicle position is on the right side of the centerline but it is outside the 
road width. In this case the offset between the vehicle position and the vehicle 
location on the given road is assumed to be: d1-d2, referenced in WGS84, where 
d1 is the distance between vehicle position and projection of it on the centerline of 
the road and d2 is the largest possible distance between centerline and center of a 
vehicle which is within the road width. 

c. The given vehicle position is on the left side of the centerline. In this case, the 
offset between the vehicle position and the vehicle location on the road is 
assumed to be: d1+d2, referenced in WGS84, where d1 is the distance between 
vehicle position fix and projection of it on the centerline of the road and d2 is half 
of the vehicle width. 

On one way roads (see Figure 2-6): 

a. The given vehicle position is within the road width on either side of the 
centerline. In this case the vehicle position is also considered as the vehicle 
location on the road and the offset is equal to zero. 

b. The given vehicle position is on either side of the centerline and is outside the 
road width. In this case the offset between the vehicle position and the vehicle 
location on the given road is assumed to be: d1-d2, referenced in WGS84, where 
d1 is the distance between vehicle position and projection of it on the centerline of 
the road and d2 is the largest possible distance between centerline and center of a 
vehicle which is within the road width. 
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Figure  2-5 given vehicle position and its respective calculated location on a two way road (shown by 
dashed line if different from given vehicle position)  

 

 
Figure  2-6 given vehicle position and its respective calculated location on a one way road (shown by 

dashed line if different from given vehicle position) 
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Clearly, by the above described method only the offset perpendicular to the road can be 
obtained but not the offset along the road. Even the perpendicular offset is the minimum 
of that offset which if be added to given vehicle position will give a location within the 
road width and on the correct side of the road. Here is where the common offset comes to 
play. By keeping and updating a common offset based on local calculated offsets, which 
are referenced to a global coordinate: WGS84, and adding it to each vehicle position fix 
before projection, the position fix will also be corrected for offsets which are along the 
road. For example in Figure 2-7, when the vehicle is at point 1 and point 2, the local 
offsets are d1 and d2 respectively. However by keeping d1 as a common offset and 
adding it to vehicle position fix at point 2 and then calculating the residual local offset, 
the vehicle location on the road respective to vehicle position fix 2 would be point 4 
rather than point 3 which is a better estimation of vehicle location along the road 
regarding the vehicle trajectory. 

 

Figure  2-7 Effect of common offset on calculation of respective vehicle location to a vehicle position 
fix 

When the algorithm starts the common offset will be equal to zero and will be updated by 
each projection and calculation of the residual local offset. However the residual local 
offset will not be directly added to common offset and a filtering will be applied on it by 
a Kalman filter based on uncertainty of respective position fix.  

Considering the fact that projection does not give reasonable results at intersections due 
to vehicle turning and lack of information about intersection in the map data and the fact 
that it is just presented by a node, knowing common offset will improve calculation of 
vehicle location on the road network at intersections noticeably. This process will be 
explained in the following sections where different modes of algorithm, namely: 
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1. Searching Mode 
2. Tracking Mode 
3. Intersection Mode 

are presented. 

2.5.3. Searching Mode 

In this mode, algorithm searches for the road link on which the vehicle is traveling. 
Algorithm will be in this mode when it starts or if the tracking fails unexpectedly. 

The road link will be determined based on the vehicle position and heading in a sequence 
of time steps. In each time step a rectangular search region based on the positioning 
uncertainty will be used (see Figure 2-8). Road links which were in search region in all 
time steps will be considered for further analysis. If there is only one candidate road link, 
it will be given as the actual road link, however, in the case of more than one candidate, 
the most appropriate road link will be the one with the least average total error which is 
calculated as follows: 

In each time step, a total error is obtained for each road link in the search region by 
summing up normalized distance error and normalized heading error. Normalized 
distance error is the distance between the vehicle position (calculated by Kalman filter) 
and the nearest point on the road link, divided by a nominal distance error based on 
positioning uncertainty.  In a similar way, normalized heading error is the heading 
difference between vehicle and road link, divided by a nominal heading error based on 
heading uncertainty. Obviously average total error for each road link will be the average 
of its total error in considered time steps. This mode is summarized in the flow chart in 
Figure 2-9. 

 

Figure  2-8 A search region around vehicle position with two roads in it and projected point of vehicle 
position on each road with associated distance and heading errors are shown. 
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Figure  2-9 Flowchart of searching mode algorithm 

2.5.4. Tracking Mode 

In this mode, the vehicle will be tracked on the previously selected road in either of 
searching mode or intersection mode and the distance to the coming intersection will be 
calculated. The algorithm will stay in this mode until vehicle is in the proximity of a 
coming intersection (e.g. 30 m). Since the focus of this thesis work is on intersection 
safety and the vehicle is far from an intersection in this mode, the process of calculating 
the vehicle location on the road map from respective position fix will be done once in a 
while (e.g. every 20 m) instead of every time step. In time steps which this process is not 
performed, the distance to coming intersection will be updated by simple integration of 
velocity.  

To calculate the vehicle location on the road map, common offset (described in section 
2.5.2) would be added to the vehicle position fix, then the resulted vehicle position will 
be projected on the road centerline and distance to next intersection(see Figure 2-10) and 
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residual local offset (as described in 2.5.2) will be calculated. Other factors which has 
been used in the existed map matching algorithms such as velocity (in Ochieng method) 
and positioning variances (in Ochieng and Scott method), have been already considered 
in the Kalman filter which determines the vehicle position fix. This mode is summarized 
in the flow chart of Figure 2-11. 

 

Figure  2-10 Projection of the vehicle position on the actual road and associated distance to 
intersection 

distance to intersection 
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Figure  2-11 Flowchart of tracking mode algorithm 
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2.5.5. Intersection Mode 

In this mode, the vehicle location on the road it is traveling on will be calculated more 
frequent (e.g. each 2m) but with the same method as explained in tracking mode, until it 
starts turning or reaches a certain distance to intersection point (e.g. 10 m). From this 
point on, as stated before, the projection method will not give reasonable results due to 
vehicle turning and lack of information about intersection in the map data and the fact 
that it is just presented by a node. Thus, from this point on the vehicle location on the 
map will be calculated by adding the last obtained offset between vehicle positioning fix 
and map data to each position fix (See Figure 2.12). Last offset is equal to common offset 
plus last residual local offset. This mode will end when the turning ends or vehicle gets 
far enough from the intersection node (e.g. 10 m). At the end of Intersection mode the 
road on which the vehicle is, will be determined by using turning magnitude and vehicle 
heading and comparison of it by intersected roads bearing.  

 

Figure  2-12 vehicle trajectory based on position fix (black) and after matching on the road (blue)  

The road map data present each intersection by a “node”, so there can appear two close 
intersections nodes in the map data which in reality is one intersection with roads that 
have an offset to each other. In such cases the algorithm will merge these two 
intersections to one. This mode is summarized in the flow chart in Figure 2-13. 
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Figure  2-13 Flowchart of intersection mode algorithm 
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2.6. Summary of the Fusion Algorithm  
A data fusion algorithm based on Kalman filtering and a map matching algorithm for 
vehicle positioning in intersection active safety applications are presented. The Kalman 
filter integrates complementary sensors and GPS data to achieve a continuous and precise 
positioning and map matching algorithm determines location of vehicle on the digital 
road map with respect to a position fix given by Kalman filter. Both Kalman filter and 
map matching algorithm are implemented in Matlab. The map matching algorithm uses 
the NAVTech digital map and a program developed by Carmenta Company, Sweden, 
which works as an interface between digital map and Matlab. The fusion algorithm is 
intended to be run off-line on high end workstations.    
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3. Results 

In order to evaluate created Kalman filter and map matching algorithm, the system was 
tested on a complex urban roadway. The test trajectory is introduced in section 3.1 which 
will be followed by Kalman filter and map matching results.    

3.1. Test Trajectory 

A test was conducted in downtown Alingsås located in Västra Götalands län, Sweden. 
Figure 3-1 shows the full test trajectory which was close to 2 km long and which included 
driving in narrow streets (7 meters width) where triple floor buildings restricted view of 
the sky creating urban canyon conditions.  

The GPS receiver was in stand alone operation and DGPS data was not available during 
the test. 

 

Figure  3-1 Test Trajectory 

3.2. Estimated Position  

In Figure 3-2 performance of unaided GPS receiver is presented. As it can be seen GPS 
derived position is not available in some segments of trajectory due to signal blockage by 
high buildings, and even in segments with GPS  coverage,  data is faulty where HDOP 
(described in 1.5.3)  is rather high. 

The estimated trajectory by Kalman filter is presented in Figures 3-3. As it can be seen 
goals of filling the gaps of GPS coverage and giving a smooth and continuous position 
were achieved. Three zoomed view of estimated trajectory with respective explanation 
follow. 



Data Fusion                                                                                                        Spring 2005 
________________________________________________________________________ 

44 

-500 -400 -300 -200 -100 0 100 200
-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

Easting [m]

N
or

th
in

g 
[m

]

Unaided GPS Trajectory,0<HDOP≤ 2
Unaided GPS Trajectory,2<HDOP≤ 4
Unaided GPS Trajectory,4<HDOP≤ 8
Unaided GPS Trajectory,8<HDOP
Map

 
Figure  3-2 Unaided GPS trajectory 
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Figure  3-3 Kalman estimated trajectory  
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Figure 3-4 shows a zoomed view of first turn of test trajectory. The trajectory starts with 
a few GPS measurements (five measurement in half a second) which as can be seen in 
Figure 3-5 do not give a precise measurement of heading and shows almost 20 degrees 
variation.  In addition half a second of data gathering is not enough for the Kalman filter 
to converge to a more precise estimation of heading. Thus this poor initiation of heading 
leads to a lateral position error which consequently causes longitudinal error after 
turning. This error is corrected as soon as GPS measurement becomes available again. It 
should be noted that estimated uncertainty of position (explained in section 3.6) also has 
a large value in this section of trajectory and shows the unreliability of estimated 
position. 
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Figure  3-4 Estimated trajectory-zoom window 1 
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Figure  3-5 GPS heading and estimated heading in first second of trip  
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A zoomed view of another turn in the trajectory where GPS blockage has occurred is 
presented in Figure 3-6. This figure shows that the Kalman filter succeeded in estimating 
the trajectory of vehicle in two close turns with GPS blockage and rejecting faulty GPS 
data at the end of first turn. 
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            Figure  3-6 Estimated trajectory-zoom window 2 

Performance of Kalman filter in fusion of GPS data and other sensors measurements can 
also be seen in Figure 3-7. This figure highlights how the Kalman filter rejects faulty 
GPS measurements and keeps a smooth trajectory. 
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              Figure  3-7 Estimated trajectory-zoom window 3 
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3.3. Estimated Heading  
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Figure  3-8 Heading improvement by fusion of Doppler derived heading, yaw rate  from fiber optic 
gyro and yaw rate from analogue yaw rate sensor 

The Kalman filter estimates vehicle reference point heading by fusing GPS Doppler 
derived heading (see Appendix C), yaw rate from FOG and analogue yaw rate sensor. 
The resulted heading is presented in Figure 3-8. Heading is tracking the GPS derived 
heading while heading rate is following the same pattern as measured yaw rate by 
FOG/analogue sensor. The offset between the estimated heading and the heading derived 
by integration of yaw rate sensors is just due to deliberate difference in initial values for 
better visualization. 

The Kalman filter has enhanced the estimate of heading noticeably compared to noisy 
GPS Doppler derived heading which has even magnified error in low velocities (less than 
2 2/ sm ). This magnified error can be seen in time intervals 150-170s and 300-310s in 
Figure 3-8.  
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3.4. Estimated Speed  
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Figure  3-9 Vehicle speed obtained by fusion of ABS speed, Doppler derived GPS speed and 

longitudinal acceleration 

The Kalman filter estimate of vehicle speed is plotted in Figure 3-9. Vehicle speed 
estimate which is obtained by fusion of ABS speed (from CAN bus), Doppler derived 
GPS speed and longitudinal acceleration follows both GPS speed and ABS speed, but is 
more inclined to ABS speed due to its higher precision.  

As it can be seen the accelerometer measurement is really poor due to its non linearity 
and variable offset, therefore its contribution to speed estimation was reduced in Kalman 
filter by applying higher measurement noise covariance.  

3.5. Uncertainty in Estimations 
As stated in section 2.3, the Kalman filter maintains two types of variables: estimated 
state vector and covariance matrix. Covariance matrix is a measure of estimation 
uncertainty. The equations used to propagate the covariance matrix model and manage 
uncertainty, taking into account how sensor noise and dynamic uncertainty contribute to 
uncertainty about the estimated system state. 
 
Covariance matrix is defined as 

[ ][ ]TtxEtxtxEtxEtP )()(.)()()( −−=  

If )(txE  is replaced with the estimate of x(t) defined by )(tx) then the P(t) will be called 
the error covariance matrix. 
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In the following uncertainty in estimation of position, speed and heading, which are 
diagonal elements of matrix P, are presented. 

3.5.1. Estimated Uncertainty in Position 
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Figure  3-10 Position uncertainty in lateral and longitudinal direction 

Estimated uncertainty in position both in longitudinal (tangent to vehicle trajectory) and 
lateral direction (perpendicular to vehicle trajectory) is presented in Figure 3-10.  During 
GPS blockage periods uncertainty in both directions increases. Uncertainty increase in 
longitudinal direction is mostly due to integration of speed uncertainty during this time, 
while lateral uncertainty increase is primarily due to uncertainty in heading which can 
cause large lateral uncertainty in long distances. It can be concluded that accurate 
estimation of speed and heading is crucial for fusion to function properly.  

The large peak value in the beginning of the test is due to lack of enough GPS data and 
initiation error as described in section 3.3. On average the increase in longitudinal 
uncertainty is about 0.5m for each 100m of GPS blockage, and this value for lateral 
uncertainty is about 1.5m for each 100m of GPS blockage. The mean uncertainty either in 
longitudinal direction or lateral direction is about 0.3m.(Table 3-1) 
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Table  3-1 Position Uncertainty 

 Mean Uncertainty 
(m) 

Uncertainty Increase / Displacement during 
GPS blockage  (m/m) 

Longitudinal 0.3 0.5 / 100 
Lateral 0.3 1.5 / 100 

Figure 3-12 shows the estimation of position uncertainty in lateral direction on the 
vehicle trajectory. Width of shadowed area is equal to 3 times of respective uncertainty. 
As stated in section 2.3, in a Kalman filter all the noises are assumed to have a normal 
distribution, and 3 times of uncertainty represents 99.7% probability in a normal 
distribution as shown in Figure 3-11. 

 
 

 

 
 

Figure  3-11 Probabilities associated with a normal distribution 

The lateral uncertainty increases during GPS blockage due to uncertainty in heading, 
lateral uncertainty will change into longitudinal uncertainty after turnings, which are 
almost 90 degree in the entire trajectory. 

Figure 3-13 shows the estimated position uncertainty in longitudinal direction on the 
vehicle trajectory, which has been plotted laterally for easier interpretation. The width of 
the shadowed area is equal to 3 times of respective uncertainty.  

The longitudinal uncertainty increases during GPS blockage due to integration of speed 
uncertainty during this time, however this increase is less than lateral uncertainty increase 
during GPS blockage. Therefore the largest longitudinal uncertainty has occurred after 
turnings in a GPS blockage period where lateral uncertainty before turning has changed 
into longitudinal uncertainty after it.   
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Figure  3-12 Uncertainty in lateral direction  
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Figure  3-13 Uncertainty in longitudinal direction 
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3.5.2. Estimated Uncertainty in Heading 

Kalman estimation of heading uncertainty is presented in Figure 3-14. As it can be seen it 
is not affected by GPS blockage, since heading estimation relies more on FOG 
measurements rather than on noisy Doppler derived heading except in initiation.  
Estimated uncertainty of heading is between 0.5-1.0 degrees.  The large peak value in the 
beginning of the test is due to lack of enough GPS data and initiation error as described in 
section 3.3.  
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Figure  3-14 Uncertainty in Heading 

3.5.3. Estimated Uncertainty in Speed  
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Figure  3-15 Uncertainty in vehicle speed  

Figure 3-15 shows the estimated uncertainty of speed and the fact that it is not affected by 
GPS blockage, since speed estimation relies more on ABS speed rather than on noisy 
Doppler derived speed.  Estimated uncertainty of speed is between 0.05-0.15 m/s. 
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3.6. Map Matching Results 

The performance of the developed map matching method is analyzed and presented in 
this section. For this purpose, the vehicle position fixes (Kalman estimate of vehicle 
position) and respective estimated vehicle locations on the road by map matching method 
are overlaid on the digital road network map. In addition, in order to present the effect of 
common offset (described in 2.5.2), the vehicle location was also calculated just based on 
local offsets (see Figure 3-16).  This method which is a comparison base is referred to as 
“MM-without Common Offset”- MM stands for Map Matching- while the main map 
matching method is referred to as “MM-with Common Offset” in the following figures.  

 
Figure  3-16 a) MM method with common offset1 b) MM method without common offset 
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Last Offset 
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In Figure 3-17 the estimated vehicle trajectory by Kalman filter and resulted trajectories 
in an intersections area after each map matching method are overlaid on the digital road 
network map.  In order to examine intersections in more detail, each zoom window in 
Figure 3-17 is presented in a separate figure in the following pages. 
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Figure  3-17 Estimated Trajectory by Kalman and after map matching on the road map 

As it can be seen the estimated trajectory by Kalman has been matched onto the road map 
fairly good. It should be noted that aim of common offset calculation is to improve the 
estimation of vehicle location along the road which can not be done just based on local 
offset, which is across the road. Second, the target in across positioning of the vehicle is 
to position it on the correct side of the centerline and within the road width which is the 
maximum achievable accuracy with the available information. Thus comparing results of 
map matching method 1 and 2, it can be concluded that estimation of vehicle location 
along the road and consequently estimation of distance to coming intersection has 
enhanced. 
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Most of the roads in the test trajectory were one way road except those which are shown 
with two brown arrows in the figures1. The algorithm never lost track of roads on which 
the vehicle was traveling. 

As explained in section 2.5.2 the road parameters which were used in the proposed map 
matching algorithm are road centerline, road width and whether the road is a two way or 
one way road, but since road width is not available in the digital map, it was estimated 
based on speed limit on the road, available in the digital map data. Knowing the exact 
road width will improve the map matching results significantly due to its important role 
in the map matching algorithm. 
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Figure  3-18 Zoom Window 1 

                                                 
1 The information about whether a road is one way or two way is available in the digital road map data, 
however in the version of “RoadAnalyzer”, which is an interface between road map data and written 
algorithm in matlab and which is developed by Carmenta company, used in this thesis, it is not given as a 
road attribute; Therefore it was checked by the name of the road. 
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Figure  3-19 Zoom Window 2 
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Figure  3-20 Zoom window 3 
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Figure  3-21 Zoom Window 4 
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Figure  3-22 Zoom Window 5 
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Figure  3-23 Zoom window 6 
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Figure  3-24 Zoom window 7 
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Figure  3-25 Zoom window 8 
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Figure  3-26 Zoom window 9 
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4. Analysis 
In this section an analysis of the fusion results will be presented.  It should be noted that 
the presented positioning result uncertainties in previous section are estimated 
uncertainties by the Kalman filter and not the real error. The real error calculation and 
comparison between the achieved results and positioning requirements for an intersection 
active safety application was not possible due to lack of information about real position 
of vehicle and intersections. In this section sources of error in positioning results will be 
analyzed. 

4.1. Sources of error in Fusion 
Kalman filtering has two steps: 

1. Prediction  
2. Correction 

 
In the prediction step, a dynamic model is used to predict state of system. In the 
correction step, sensors’ outputs are collected and these measurements are used to correct 
the prediction in correction step. Errors in estimation can originate from any of these two 
steps and propagate in fusion output. These sources of error in fusion algorithm will be 
discussed in following subsections. 

4.1.1. Modeling errors 

In prediction step a model of the system is used to estimate system state. In this thesis a 
rigid body dynamic model is used for vehicle trajectory estimation. In this model some 
assumptions and simplifications are performed that cause errors in the prediction step. 

For simplicity, it was assumed in this model that vehicle speed is in local tangent plane or 
in other words, the up coordinate1 of vehicle velocity, UV  is zero. This can cause errors 
when vehicle is climbing an upslope or going down a slope. Effect of slope in vehicle 
position error can be calculated as follows. (Figure 4-1) 

 

 

Figure  4-1 effect of slope in positioning 

                                                 
1 In the ENU (East-North-Up) coordinate  

V 

slope 
L 
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))cos(1()cos( slopeLslopeLLL −=−=δ  

where Lδ is error in longitudinal direction. Table 4-1 presents magnitude of error caused 
by slope during GPS blockage in two scenarios.   

Table  4-1 error caused by slope during GPS blockage 

 Scenario 1 Scenario 2 
slope 10 degrees 5 degrees 

L 100 meters 100 meters 
Lδ  1.51meters 0.4 meters 

It was also assumed that the state variable; heading, is equal to yaw and consequently its 
rate of change is equal to yaw rate. This is only true at non-slip conditions where 
direction of vehicle reference point velocity is along the vehicle centerline (Roll axis) and 
lateral speed is zero.  

Vehicle’s equations of motion without simplification should be written as follows. (Table 
4-2, Figure 4-2) 

Table  4-2 Explanation of variables 

xV  Longitudinal Speed 

yV  Lateral Speed 
V  Magnitude of speed 

EV  East speed 

NV  North speed  
ψ  Heading direction 

xA  Longitudinal acceleration 

YA  Lateral acceleration 
YYY &&&,,  Yaw and its derivatives 

(u, w) Position vector of accelerometers 
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Figure  4-2 State variables with lateral speed and lateral acceleration 

To reduce the error caused by this assumption vehicle reference point (GPS antenna 
location) should be close to vehicle center of rotation. Vehicle center of rotation moves 
back and forth as vehicle yaw rate, speed and slip condition changes. Therefore the best 
solution is to put GPS antenna somewhere on vehicle centerline close to vehicle center of 
rotation in normal driving condition (See Figure 4-5). Another approach to reduce this 
error is to use two accelerometers in longitudinal and lateral direction in order to 
calculate heading direction independent of vehicle yaw rate.  

The following calculations present an estimate of difference in heading and yaw angle in 
high speed turns. (See Figure 4-3) 
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Figure  4-3 A simple model to estimate the difference between heading direction and vehicle yaw in 
high speed turn 

The following calculations present an estimate of difference in heading and yaw angle in 
low speed turns. (See Figure 4-4) 
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Figure  4-4 A simple model to estimate the difference between heading direction and vehicle yaw in 
low speed turn 
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Figure  4-5 Position of GPS antenna (reference point) 

 
One source of error in the positioning system presented in this thesis is due to 
longitudinal slip. One of the measurements used for estimation of speed is ABS speed 
which is derived from rotational speed of rear wheels without correction for slip.  In the 
positioning system presented in this thesis a constant slip of 2 percent is assumed which 
is not always correct. For a better estimation of speed another type of sensor for speed 
such as accelerometer should be used.  
 
Another source of error which is covered in section 1.5.2 (INS errors) is sensor 
misalignment. The input axis for a gyroscope defines the component of rotation rate that 
it senses. Its input axis is a direction fixed with respect to the gyroscope mount. Since the 
gyroscope is mounted on vehicle body and vehicle body is subjected to roll for example 
while turning in high speed and pitch for example while going up a slope, output of 
gyroscope is not rate of change of vehicle body angle with local north axis. For example 
5 degree roll angle causes 1.5 percent error in yaw rate and consequently 1 degree error 
in heading in a 90 degree turn. 

4.1.2. Measurement errors  

Another source of error in fusion performance is measurement. Sensor noise and 
resolution contributes in errors in positioning system. Although fusion reduces the effect 
of noise on positioning system performance, their effect on positioning system can not be 
completely removed. Sensor noise variance is taken into account in fusion algorithm and 
propagates in uncertainty estimates. In section 1.5.3 GPS data errors is covered and in 
sections 1.6.2, 1.7 INS and DR (CAN bus speed) errors are covered respectively. 

2.76m
4.71m

0.7m1.56m 1.81m 
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Another source of error in the sensor fusion algorithm is clock error (time offset). Effect 
of time offset on positioning system performance is discussed in section 4.2. 

4.2. Analysis of effect of clock errors on fusion  
In the fusion algorithm data from three sources; Cronos, FOG and GPS receiver, was 
used. The time at which a measurement from any of these sources is received, is 
determined by its own clock. Thus time offset between these three clocks can result in 
error in fusion algorithm which is analyzed in the following subsections. 

4.2.1. Effect of delay in Fiber Optic Gyro 

An intentional delay of 500ms was applied to FOG source in order to analyze the effect 
of its clock time offset on fusion performance. The resulting trajectory and trajectory 
without delay are plotted in Figure 4-6.  

-500 -400 -300 -200 -100 0 100 200
-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

←
 GPS Blockage

←
 GPS Available

←
 GPS Blockage←

 GPS Available

←
 GPS Blockage

←
 GPS Available

←
 GPS Blockage

←
 GPS Available

←
 GPS Blockage

←
 GPS Available

←
 GPS Blockage

←
 GPS Available

Easting [m]

N
or

th
in

g 
[m

]

Estimated Trajectory with 500ms Delay in FOG

Unaided GPS Trajectory

Estimated Trajectory without Delay

Map

D2
D1

 
Figure  4-6 Estimated trajectory with an intentional delay of 500ms plotted with original trajectory 

with no delay 

Delay in FOG source causes some deviation in vehicle trajectory especially in turns 
during which yaw rate has a large magnitude and therefore effect of delay is magnified. 
Effects of this delay increase when the system relies on inertial navigation as a 
consequence of GPS blockage. 
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Figures 4-7 and 4-8 show two zoomed views of vehicle trajectory. In figure 4-7 a lateral 
deviation about 10 meters after 70 meters of traveling can be observed due to error in 
heading caused by delay in FOG. 
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Figure  4-7 zoom window D1 in figure 4-6 

In Figure 4-8 zoomed view of two consequent intersections is presented. Deviation 
increases up to 4 meters after 35 meters traveling without GPS measurement. After the 
180 degree turn about 2m deviation from vehicle trajectory without time offset was 
observed. 
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Figure  4-8 zoom window D2 in figure 4-6 
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In order to investigate the linearity of alteration of position deviation as time delay in 
FOG changes the following activities was performed: 
 

 Two different intentional time offsets was induced to FOG source by adding 
delay (100ms and 500ms) to its time vector. 

 Deviation of position in two scenarios was calculated for the entire test trajectory. 
 Both deviation vectors and their ratio in the entire test trajectory at the same 

reference time (the fusion time) were plotted in the same figure (see Figure 4-9). 
 
As it can be seen the deviation ratio between the two scenarios is almost linear during 
most of the trajectory which means deviation of position at 500ms delay is almost 5 times 
the deviation of position at 100ms delay. 
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Figure  4-9 Effect of clock error in FOG on positioning for different delays  
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4.2.2. Effect of delay in Cronos Unit 

An intentional delay of 500ms was applied to Cronos source in order to analyze the effect 
of its clock time offset on fusion performance. Time offset in Cronos unit clock induces 
delay in ABS speed measurement, longitudinal acceleration measurement and analogue 
yaw rate sensor. The resulting trajectory and trajectory without delay are plotted in Figure 
4-10.  
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Figure  4-10 Effect of delay in Cronos 

Delay in Cronos source causes some deviation in vehicle trajectory especially in 
longitudinal direction that change to lateral position error after a turn. Effects of this 
delay increase when the system relies on inertial navigation as a consequence of GPS 
blockage. 

Figures 4-11 and 4-12 show two zoomed views of vehicle trajectory. In figure 4-11 a 
lateral deviation about 2 meters after 70 meters of traveling can be observed. This error is 
due to error in longitudinal position caused by delay in ABS speed before turn that has 
changed to lateral deviation after turn.   
 
 



Data Fusion                                                                                                        Spring 2005 
________________________________________________________________________ 

69 

-120 -100 -80 -60 -40 -20 0
-50

-40

-30

-20

-10

0

10

20

30

40

50

←
 GPS Blockage

←
 GPS Available

Easting [m]

N
or

th
in

g 
[m

]

Estimated Trajectory with 500ms Delay in Cronos
Unaided GPS Trajectory
Estimated Trajectory without Delay
Map

 
Figure  4-11 Zoom window D3 in figure 4-10 

In Figure 4-12 zoomed view of two consequent intersections is presented. Deviation 
increases up to 2 meters after 35 meters traveling without GPS measurement. After the 
180 degree turn about 1m deviation from vehicle trajectory without time offset was 
observed. 
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Figure  4-12 Zoom window D4 in figure 4-10 

In order to investigate the linearity of alteration of position deviation as time delay in 
cronos changes the following activities was performed: 
 

 Three different intentional time offsets was induced to Cronos source by adding 
delay (30ms, 100ms and 500ms) to its time vector. 
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 Deviation of position in three scenarios was calculated for the entire test 
trajectory. 

 Deviation vectors and their ratio at 500ms delay scenario and at 100ms delay 
scenario in the entire test trajectory at the same reference time (the fusion time) 
were plotted in the same figure (see Figure 4-13). 

 Deviation vectors and their ratio at 100ms delay scenario and at 30ms delay 
scenario in the entire test trajectory at the same reference time (the fusion time) 
were plotted in the same figure (see Figure 4-14). 
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Figure  4-13 Effect of clock error in Cronos on positioning for different delays  

As it can be seen the deviation ratio between the two scenarios; 500ms and 100ms delay, 
is almost linear during most of the trajectory which means deviation of position at 500ms 
delay is almost 5 times the deviation of position at 100ms delay. 
 

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Time[s]

Deviation of Position at 30ms delay in Cronos [m]
Deviation of Position at 100ms delay in Cronos [m]
Ratio between two deviations in two scenarios divide by nominal value 3.3

 
Figure  4-14 Effect of clock error in Cronos on positioning for different delays 
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Comparison of deviations in two scenarios; 100ms and 30ms, shows that the ratio 
between two deviations in two scenarios varies considerably from the minimum of 1 to 
maximum of 7 (Note that the ratio shown in Figure 4-14 is divided by nominal value of 
3.3). Therefore to investigate whether the effect of delay in Cronos on deviation of 
position is proportional to delay more tests should be done in different delays. 

4.2.3.  Summary of effect of sensors’ clock error on fusion 

In the proceeding sections investigation of effect of clock error on fusion algorithm was 
presented. These effects can be summarized as follows: 
 

1. Deviation of position due to delay in measurement units; FOG and Cronos, 
increases as delay in these sources increases. 

2. Deviation of position due to delay in measurement units is nearly proportional to 
delay in ranges between 100ms and 500ms of delay. 

3. Further investigation should be conducted on the deviation of position due to 
short delays in measurement units; 30ms to 100ms, since the results of the only 
test in this range did not show a special pattern. 
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5. Conclusion 

A data fusion algorithm based on Kalman filtering and a map matching algorithm for 
vehicle positioning in intersection active safety applications are presented. The Kalman 
filter integrates complementary sensors and GPS data to achieve a continuous and precise 
positioning and map matching algorithm determines location of vehicle on the digital 
road map with respect to a position fix given by the Kalman filter.  

The system was tested on a complex urban roadway where GPS signal occlusion was 
observed frequently. The GPS was available in only about 70% of the total trajectory 
length. Furthermore there were trajectory segments with poor GPS performance. The 
integrated positioning system provided very encouraging results in this test and the 
project goals: filling the gaps of GPS coverage, giving a continuous and more accurate 
position and matching the vehicle position to the digital road map were achieved. 

Speed estimate was improved slightly in comparison with the given ABS speed by CAN 
bus, since the accelerometer used in the project was not good for long time applications 
and had a changing offset which could not improve ABS estimated speed to a more 
accurate estimation and the Kalman estimated speed was tracking ABS speed.  
 
Heading estimate became more accurate and precise by fusion of Doppler derived 
heading and yaw rate from Fiber Optic Gyro and analogue yaw rate sensor. Estimated 
achieved heading accuracy was about 1 degree. The yaw rate sensors used in this thesis 
were expensive non-automotive grade equipment; however considering the sensor 
developments, these results can be obtained by automotive grade sensors in near future.  

Estimated uncertainty in position both in longitudinal (tangent to vehicle trajectory) and 
lateral direction was about 0.3 m in average. The given vehicle trajectory in an 
intersection by the Kalman filter was matched fairly well to the digital map by the 
developed map matching algorithm, although in a few situations the matched vehicle 
trajectory was not within the road width completely. This achievement is due to 
calculation and consideration of a common offset between position fixes and digital map.  

The presented positioning result uncertainties are estimated uncertainties by the Kalman 
filter and not the real error. The real error calculation and comparison between the 
achieved results and positioning requirements for an intersection active safety application 
was not possible due to lack of information about real position of vehicle and 
intersections. But generally it can be said that positioning requirements for warning level 
was fulfilled and positioning system can probably reach lane level positioning accuracy 
by adding a local positioning system e.g. Laser Radar information and using Differential 
GPS and a more accurate digital map with information about road widths. 

It should be noted that although the algorithm was tested off-line, it can easily be 
implemented to work in real-time. 
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Appendix A 

Extended Kalman Filter Equations 

In the following general extended Kalman filter equations are presented. 

)(),( twtxfx
dt
d

+=           

)()( tvxhz +=  
 
x is state vector and )(tw and )(tv are zero mean white noises. 
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Corrected state estimate: 
 

))](ˆ([)(ˆ)(ˆ −−+−=+ kkkkk xhzKxx  
 
Corrected covariance matrix: 
 

)()()( −−−=+ kkkkk PHKPP  

Established Kalman Filter equations 

In the following detailed Kalman filter equations for the model used in this thesis is 
presented. Equations are in the same order as equations presented in previous section for 
general Kalman filter equations. 

State vector is composed of longitude, Latitude altitude, heading, speed, acceleration, 
yaw rate.  
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a is the semi major axis of reference ellipse and e  is the eccentricity. 
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Where xσ̂ is initial estimate of uncertainty on initial value of state variable x. 
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Where zxσ is system dynamic noise variance and Q is Disturbance covariance matrix. 
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GPS measurement equations 
 

)(xhz GPSGPS =  
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It should be noted that measurement error covariance used in GPSR  are for GPS receiver 
operation in the stand alone mode and if the GPS receiver is working in DGPS mode 
these value should be corrected for the error covariance regarding a DGPS measurement. 
 

GPSVσ and 
GPSψσ has different values in different speeds. 

GPSψσ  is larger in low speed while 

GPSVσ is larger in high speed. 

GPSθσ and 
GPSφσ are related to Horizontal Delusion of Precision (HDOP). The larger HDOP 

is the larger variances on longitude and latitude will be. 
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Cronos (CAN) measurement equations 
)(xhz CANCAN =  
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FOG measurements equations 
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Appendix B 

GPS Data Errors  

Ionospheric Propagation Errors: The ionosphere, which extends from approximately 50 
to 1000 km above the surface of the earth, consists of gases that have been ionized by 
solar radiation. The ionization produces clouds of free electrons that changes GPS signals 
propagation velocity. The magnitude of measured pseudorange error is directly 
proportional to the total electron count in a tube of 1 2m  cross section along the 
propagation path and this quantity varies spatially due to nonhomogeneity of the 
ionosphere. A particular location within the ionosphere is alternately illuminated by the 
sun and shadowed from the sun by the earth in a daily cycle; consequently the 
characteristics of the ionosphere exhibit a daily variation in which the ionization is 
usually maximum late in the afternoon and minimum a few hours after midnight. The 
path delay for a satellite at zenith typically varies from about 1 m at night to 5-15 m 
during late afternoon. At low elevation angles the propagation path through the 
ionosphere is much longer, so the corresponding delays can increase to several meters at 
night and as much as 50 m during the day. 

Receivers in nondifferential operation can reduce ionospheric error by using a model of 
the ionosphere broadcast by the satellites, which reduces the uncompensated ionospheric 
delay by about 50% on the average. There are also some other models which offer 
somewhat better performance.  

With DGPS ionospheric errors can be nearly eliminated in many applications, because 
ionospheric errors tend to be highly correlated when the receivers are in sufficiently close 
proximity.  

Tropospheric Propagation Errors: The lower part of the earth atmosphere is composed 
of dry gases and water vapor, which lengthen the propagation path due to refraction. The 
magnitude of the resulting signal delay depends on the refractive index of the air along 
the propagation path and typically varies from about 2.5 m in the zenith direction to 10-
15 m at low satellite elevation angles. The refractive index of the troposphere consists of 
that due to dry gas component and the water vapor component, which respectively 
contribute about 90% and 10% of the total.   

The troposphere errors can also be nearly eliminated by use of DGPS and in 
nondifferential operation it can be reduced by using a model of the standard atmosphere 
at the antenna location to within about 0.5 m. Such models use inputs such as the day of 
the year, and the position of user. Knowledge of the temperature, surface pressure and 
humidity can improve the estimation of this delay considerably.  

The Multipath Problem: Multipath propagation of the GPS signal is a dominant source 
of error in differential positioning. Objects in the vicnity of e receiver antenna (notably 
the ground) can easily reflect GPS signals, resulting in one or more secondary 
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propagation paths. These secondary path signals, which are superimposed on the desired 
direct-path signal, always have a longer propagation time and can significantly distort the 
amplitude and phase of the direct-path signal. Errors due to multipath can not be reduced 
by the use of DGPS, since they depend on local reflection geometry near each receiver 
antenna. Multipath errors can increase in urban areas due to more severe reflection 
geometry.  

Multipath propagation can be divided into two classes: static and dynamic. For a 
stationary receiver, the propagation geometry changes slowly as the satellite move across 
the sky, making the multipath parameters essentially constant for perhaps several 
minutes. However, in mobile applications there can be rapid fluctuations in fractions of a 
second. Therefore different multipath mitigation techniques are generally employed for 
these types of multipath environments.  

Ephemeris Data Errors: Small errors in the ephemeris data transmitted by each satellite 
cause corresponding errors in the computed position of the satellite. Errors in satellite 
position when calculated from the ephemeris data typically result in range errors less than 
1 m. Improvements in satellite tracking will undoubtedly reduce this error further. This 
error can also be nearly eliminated by use of DGPS.  

Onboard Clock Errors: Timing of the signal transmission from each satellite is directly 
controlled by its own atomic clock without any corrections applied. Although the atomic 
clocks in the satellites are highly accurate, errors can be large enough to require 
correction. The onboard clock error is typically less than 1 ms and varies slowly. This 
permits the correction to be specified by a quadratic polynomial in time whose 
coefficients are transmitted in the navigation message. The stability of the atomic clocks 
permits the polynomial correction to be valid over a time interval of 4-6 h. After the 
correction has been applied, the residual error in GPS time is typically less than a few 
nanoseconds, or about 1 m in range. This error can also be nearly eliminated by use of 
DGPS.  

Receiver Clock Errors: Because the navigation solution includes a solution for receiver 
clock error, the requirements for accuracy of receiver clocks is far less severe than for the 
GPS satellite clocks. In fact, for receiver clocks short-term stability over the pseudorange 
measurements period is usually more important than absolute frequency accuracy. 
[Grewal] 
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Appendix C 

Carrier Doppler Measurements 

Measurement of the received carrier frequency provides information that can be used to 
determine the velocity vector of the user. Although this could be done by forming 
differences of code-based position estimates, frequency measurement is inherently much 
more accurate and has faster response time in the presence of user dynamics. The 
equations regarding the measurements of Doppler shift to the user velocity are 
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Where the unknowns are the user velocity vector v  and the receiver reference clock 
frequency error bf  in hertz and the known quantities are the carrier wavelength λ  and 
the measured Doppler shifts dif  in hertz, satellite velocity vectors iv , and unit satellites 
direction vectors iu  (pointing from the receiver antenna toward the satellite antenna) for 
each satellite index i. [Grewal] 



 

 

 


